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Abstract Zooxanthellate corals are threatened by climate

change but may be able to escape increasing temperatures

by colonizing higher latitudes. To determine the effect of

host range expansion on symbiont genetic diversity, we

examined genetic variation among populations of Sym-

biodinium psygmophilum associated with Oculina patago-

nica, a range-expanding coral that acquires its symbionts

through horizontal transmission. We optimized five

microsatellite primer pairs for S. psygmophilum and tested

them on Oculina spp. samples from the western North

Atlantic and the Mediterranean. We then used them to

compare symbiont genotype diversity between an Iberian

core and an expansion front population of O. patagonica.

Only one multilocus S. psygmophilum genotype was

identified at the expansion front, and it was shared with the

core population, which harbored seven multilocus

genotypes. This pattern suggests that O. patagonica range

expansion is accompanied by reduced symbiont genetic

diversity, possibly due to limited dispersal of symbionts or

local selection.

Keywords Oculina patagonica � Symbiodinium
psygmophilum � Zooxanthellae � Microsatellites � Climate

change � Symbiosis

Introduction

Tropical coral-reef communities are declining worldwide

due to several threats, including rising sea surface tem-

peratures associated with climate change (Wilkinson

2008). However, some corals may be able to escape

warming waters by expanding their range to higher lati-

tudes (Precht and Aronson 2004; but see Muir et al. 2015).

The ability of some zooxanthellate coral hosts to associate

with different Symbiodinium types, or even switch between

them, may contribute to acclimatization of the coral
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holobiont to newly encountered or changing environmental

conditions (e.g., Silverstein et al. 2015), because unique

Symbiodinium types exhibit variable tolerance to different

environmental regimes (e.g., temperature and light;

Thornhill et al. 2008; Hume et al. 2016). Therefore, higher

Symbiodinium diversity within coral populations, com-

bined with the ability of hosts to associate with different

symbiont types, is expected to result in increased resilience

to environmental change (Baskett et al. 2009).

Oculina patagonica is a shallow-water (0–10 m; Ser-

rano et al. 2013) stony coral that reproduces through

broadcast spawning and acquires algal symbionts through

horizontal transmission (Fine et al. 2001). Symbiodinium

psygmophilum (ITS2 type B2, LaJeunesse et al. 2012;

cp23S type B224, Santos et al. 2003a) is the primary

symbiont associated with O. patagonica (Leydet and

Hellberg 2016). This coral is rapidly colonizing northern

waters along the Mediterranean coast of the Iberian

Peninsula (Serrano et al. 2013), providing an excellent

opportunity to examine the effect of zooxanthellate coral

range expansion on Symbiodinium genetic diversity.

In this study, we first optimized five microsatellite pri-

mer sets for S. psygmophilum, then used them to compare

S. psygmophilum genotypic variation between two distant

populations of O. patagonica: one population from the

demographic core area of its distribution along the Iberian

coastline and one in the expansion front.

Methods

Primers for five microsatellite loci were developed or

optimized to examine genotypic diversity of the algal

symbiont associated with Oculina, S. psygmophilum

LaJeunesse, Parkinson and Reimer, 2012. Oculina samples

were obtained from the western North Atlantic and the

Mediterranean Sea. Populations of Oculina in the western

North Atlantic were originally described as several taxa

based on morphology; however, recent genetic data indi-

cate the presence of genetically distinct populations that do

not reflect the current morphologically based species

classifications (Eytan et al. 2009). For simplicity, we refer

to these samples as Oculina spp. Mediterranean Oculina

populations consist only of O. patagonica de Angelis,

1908, which is genetically distinct from the western

Atlantic Oculina spp. populations (Leydet and Hellberg

2015). Oculina spp. samples were acquired by Leydet and

Hellberg (2016) from North Carolina (n = 5), Daytona

Beach, FL (n = 5), Cape Florida, FL (n = 4), and Panama

City, FL (n = 5). Oculina patagonica samples were

acquired by Leydet and Hellberg (2016) from Italy

(n = 2), Greece (n = 2), Israel (n = 2), and Lebanon

(n = 2). Additional fragments of O. patagonica were

collected from two Iberian populations: Cabo Cope

(n = 20; mean depth 1.5 m), a ‘‘core’’ Iberian population

(Zibrowius and Ramos 1983); and Roca de l’Illot (n = 20;

mean depth 1.8 m), a population from the expansion front

(Serrano et al. 2013) approximately 380 km north of Cabo

Cope (Fig. 1). DNA was extracted using the Qiagen

DNeasy blood and tissue kit modified for extraction of

Symbiodinium DNA by adding a bead-beating step to

rupture symbiont cell walls (Coffroth et al. 1992).

The presence of S. psygmophilum in all samples was

verified using cp23S markers (224 bp fragment size, San-

tos et al. 2003a). Genotypic diversity of S. psygmophilum

was examined using microsatellite loci. A total of 41 pri-

mer sets were screened, of which 22 were designed from

the S. psygmophilum transcriptome (Parkinson et al. 2016)

using PRIMER3 (Koressaar and Remm 2007; Untergasser

et al. 2012). Microsatellite repeats were identified using

SciRoKo (Kofler et al. 2007). Other primers tested were

previously developed for Symbiodinium ITS2 types B1 and

B7 (Santos et al. 2003b; Pettay and LaJeunesse 2007;

Andras et al. 2009). Optimization yielded five primer sets

(Table 1) with 2–9 alleles per locus (Electronic supple-

mentary material, ESM, Table S1). All forward primers

had an M13 sequence (50-CAC GAC GTT GTA AAA

CGA CG-30) at the 50 end for attachment of IRdye (Li-Cor

Biotechnology). PCR reagent concentrations and thermo-

cycler conditions varied between primer sets (see ESM

Table S1 for methods). Because the forward primer for

locus B2Sym17 (B2Sym17F1: 50-CGA TGG AGG CAT

ACA AGT GA-30) failed to amplify some samples, an

alternative forward primer was used (B2Sym17F2; Leydet

and Hellberg 2016). Amplicons were visualized on
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Fig. 1 Symbiodinium psygmophilum multilocus genotype diversity

(MLG; based on four microsatellite loci) in a core (Cabo Cope) and

expansion front (Roca de l’Illot) Oculina patagonica population.

Unique MLGs are indicated in different colors, and the number of

host colonies harboring a specific S. psygmophilum MLG is printed

within. IC Ibiza Channel
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polyacrylamide gels as described by Santos et al. (2003a).

Fragments amplified using primer set B2Sym14 had vari-

able sizes in the northern and eastern Mediterranean, but

not at the two Iberian sites; therefore, this locus was not

included during the assignment of multilocus genotypes

(MLGs) for the latter two sites. Furthermore, Iberian

samples that failed to amplify at one or several of the

microsatellite loci were excluded (final n = 30, 15 per

Iberian site). Linkage disequilibrium was tested at Cabo

Cope to verify that the loci were independent (ESM

Table S2). Lastly, remote sensing data for temperature,

photosynthetically active radiation (PAR), and concentra-

tions of chlorophyll a, phosphate and inorganic nitrogen

were obtained for both Iberian study sites (ESM Table S3).

Results and discussion

Analysis of cp23S fragments verified that all samples

contained S. psygmophilum (Santos et al. 2003a). The

primer pairs reported here consistently amplified poly-

morphic alleles that differ within the western North

Atlantic and the Mediterranean Sea, providing a useful tool

for studying population differentiation in S. psygmophilum.

All five microsatellite loci were polymorphic in at least one

location (ESM Table S4). The western Atlantic host pop-

ulation harbored a diverse set of symbionts, reflecting

Leydet and Hellberg (2016). Using our five microsatellite

loci, we identified at least 12 MLGs across these popula-

tions (n = 19; Table 2). Multiple alleles were found at

locus B2Sym17 in two Oculina spp. samples from Cape

Florida, indicating the presence of multiple Symbiodinium

genotypes within these colonies. No fragments were visu-

alized for several samples screened with loci B2Sym14 and

B2Sym17 (10 and 11, respectively) from Cape Florida,

Daytona Beach and North Carolina. Direct sequencing

using the B2Sym17 primers, however, resulted in detection

of these alleles (Leydet and Hellberg 2016). We found

seven unique MLGs within samples from the northern and

eastern Mediterranean Sea (excluding Iberian sites;

Table 2).

Within the Iberian sites, we identified seven unique

MLGs at the core host population based on size variation at

four microsatellite loci (B2Sym02, B2Sym04, B2Sym17

and Gv2_100). A single MLG was present in all O.

patagonica individuals sampled at the expansion popula-

tion and was shared with two individuals from the core

population (Fig. 1). None of the microsatellite loci showed

significant deviation from linkage equilibrium (ESM

Table S2).

Several possible scenarios may explain reduced sym-

biont genotype diversity at the expansion front. First,

because O. patagonica can propagate by means of polyp

expulsion (Kramarsky-Winter et al. 1997), high rates of

symbiont clonality within a coral population can be caused

by asexual host propagation whereby host ‘‘offspring’’

maintain the ‘‘parental’’ symbiont genotypes. However, no

O. patagonica clones were observed during a recent survey

using the same samples from our expansion front study

site, suggesting that asexual reproduction is not a major

mechanism of propagation (Leydet 2016).

Since recruits acquire compatible Symbiodinium from

the environment (Fine et al. 2001), migrating larvae or

newly settled recruits in the expansion area must have

acquired symbionts locally, i.e., at the expansion front.

This suggests several not mutually exclusive possibilities:

(1) the environmental pool has low S. psygmophilum

diversity due to limited connectivity or a founder effect; (2)

Table 1 Sequences of forward

(F) and reverse (R) primer sets

for each microsatellite locus

Locus Primer sequence (50–30)

B2Sym02 F: CTC CAT GTG CAA AGG GAA TC

R: ATG GTG CTT TGT TCA GAC CC

B2Sym04 F: AGC CAA ACC GTG AAA CAA CT

R: CCT GTC AGA GTT TGC CAC AA

B2Sym14 F: GCA CTC TAT CCA CAG CAC CA

R: GCA TGA TAG GCA CTT GAG CA

B2Sym17 F2a: GCA ACA ATC ATA TTG ACT AGG CC

R: GAT CCT ATT GGT GGT GGT GG

GV2_100b F: CTA TCA AGG TCC TAT TTT CAC AGC ACA A

R: A CAG GCG AGG TAT AGT ATT GAG TAA AAG AA

Reagent concentrations, thermocycler conditions, and motif sequences can be found in ESM Table S1. Size

ranges per area are given in ESM Table S4
a Forward primer F2 was designed by Leydet and Hellberg (2016). The F1 primer sequence is presented in

the text
b Gv2_100 forward and reverse primers were designed by Andras et al. (2009) for Symbiodinium B1
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local selective pressures limit Symbiodinium diversity in

the environmental pool; and/or (3) selection by the host

and/or environment for specific symbiont pairings has

resulted in local dominance of a single symbiont MLG.

Although symbiont species such as S. psygmophilum can

have a broad distribution at the species level (LaJeunesse

et al. 2012, 2014), dispersal of symbionts at the population

level is generally thought to be limited (see review by

Thornhill et al. 2017). Moreover, observations between

1992 and 2010 suggest that northward expansion of O.

patagonica has occurred through a small number of long-

distance dispersal events (between 76 and 182 km; Serrano

et al. 2013), possibly limited by the oceanographic barrier

represented by the Ibiza Channel (Fig. 1; Leydet 2016),

and symbiont dispersal may have been similarly low.

Subsequently, the most prevalent symbiont strains in the

environment might be those that are released by nearby

adult colonies (Nitschke et al. 2016), leading to dominance

of a single symbiont MLG. However, two other cnidarians

native to the expansion front (Cladocora caespitosa and

Bunodeopsis strumosa) have been recorded to harbor S.

psygmophilum in addition to clade A symbionts at several

locations in the western Mediterranean Sea (reviewed by

Casado-Amezúa et al. 2016), indicating that there are

several putative sources of Symbiodinium at the expansion

front. Therefore, environmental symbiont diversity here

may not be shaped solely by limited dispersal rates.

Alternatively, given that unique genotypes within S.

psygmophilum may exhibit functional variation (Parkinson

et al. 2016), some of these genotypes might fare better

under environmental conditions at the expansion front,

potentially leading to limited diversity within the envi-

ronmental pool (Pettay and LaJeunesse 2013; Baums et al.

2014). Similarly, the observed pattern of reduced symbiont

genetic variation may be a result of predominant associa-

tion of coral hosts with a distinct symbiont genotype well

adapted to the prevailing local environment (e.g., Hume

et al. 2016). Coral-associated symbiont distributions have

been proposed to correlate with several environmental

parameters including depth (LaJeunesse 2002; Kirk et al.

2009), PAR (Rowan et al. 1997) and temperature (Baums

et al. 2014; LaJeunesse et al. 2014; Hume et al. 2016).

While sampling depths were similar between the two

populations, satellite data indicate that the expansion front

site experienced lower yearly mean and minimum tem-

peratures and lower mean PAR than the core population

but higher concentrations of chlorophyll a and nutrients

(phosphate, inorganic nitrogen; ESM Table S3). Low

winter temperatures at the expansion site have been related

to recurring patterns of partial colony mortality and sub-

sequent tissue regeneration, which is energetically costly

(Serrano et al. 2017). Therefore, local conditions may exert

selective pressure on the environmental Symbiodinium pool

and/or on host–symbiont associations.

In summary, our findings suggest that O. patagonica

range expansion is accompanied by reduced genetic

diversity of Symbiodinium, and this may be caused either

by low diversity in the environmental pool, environmental

selection of symbionts and/or selection for specific host–

symbiont pairings. However, a more detailed genetic

characterization of S. psygmophilum along the Iberian

Peninsula using these new primer sets is needed to deter-

mine the most likely driver of the observed reduction in

genetic diversity.
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exotique en Méditerranée—nouvelles observations dans le Sud-

Est de l’Espagne. Rapports Commission Internationale pour

l’Exploration Scientifique de la Mer Méditerranée 28:297–301

Coral Reefs

123

http://dx.doi.org/10.1111/mec.14055

	Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes
	Abstract
	Introduction
	Methods
	Results and discussion
	Acknowledgements
	References




