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Abstract 31 

Hen egg lysozyme was hydrolyzed with pepsin in situ on a cation-exchange column to 32 

isolate antioxidant peptides. The most cationic fraction was eluted with 1 M NaCl. Five 33 

positively charged peptides f(109-119) VAWRNRCKGTD, f(111-119) WRNRCKGTD, 34 

f(122-129) AWIRGCRL, f(123-129) WIRGCRL and f(124-129) IRGCRL were identified 35 

using tandem mass spectrometry. Using ORAC-FL, all five peptides presented 36 

antioxidant activity with values of (1,970; 3,123; 2,743; 2,393 and 0.313 µmol Trolox/ 37 

µmol peptide) respectively. Using method TBARS in zebrafish larvae, all five synthetic 38 

peptides were found to efficiently inhibit lipid peroxidation (36.8; 51.6;55.56; 63.2; 39 

61.0 % inhibition of lipid peroxidation) respectively. None of the five peptides were 40 

toxic in zebrafish eggs and larvae at concentrations lower than 50 µg/ml. 41 

Concentrations higher than 50µg/ml were toxic for both zebrafish eggs and larvae. 42 

 43 

Keywords: lysozyme, antioxidant activity in zebrafish larvae, bioactive peptides, 44 

hydrolysate, cation exchange column and toxicity in zebrafish egg.  45 

 46 

Introduction  47 

Lysozyme is a basic protein consisting of 129 amino acids with a molecular weight of 48 

14.3 kDa. These amino acid residues are cross-linked by four disulfide bridges, and 49 

have an isoelectric point of 10.7. Hen egg is the richest source of lysozyme, accounting 50 

for 3.5% of total egg white proteins [1]. Lysozyme belongs to a type of enzymes that 51 

lyses the cell wall of certain Gram-positive bacteria by splitting β (1-4) linkages 52 

between N-acetylmuramic acid and N-acetylglucosamine of the peptidoglycan [2]. As a 53 

well-known antimicrobial protein, hen egg white lysozyme has been commercialized 54 

for applications as a natural preservative to control lactic bacteria in meat products 55 

such as sausages, salami, pork, beef or turkey. Lysozyme has also been used to prevent 56 

growth of Clostridium tyrobutyricum in cheese production or to control lactic bacteria 57 

in wine and beer production [3, 4, 5, 6, 7]. Lysozyme can also be used in other 58 

pharmaceutical and cosmetics applications [3, 7]. Moreover, lysozyme is an enzyme 59 

widely used as food additive (E1105) due to its numerous properties [8]. Lysozyme has 60 

many other functions, including antiviral [9, 10], immune modulatory [11], anti-61 



inflammatory [12] and antitumor [13] activities. At pH 7.0, lysozyme is positively 62 

charged, whereas the rest of the proteins of the egg white are negatively charged. 63 

Many cationic proteins such as lactoferrin, lactoperoxidase and lysozyme may be 64 

purified using ion exchange, as this fact has already been demonstrated [14]. Lysozyme 65 

has also been purified with cation-exchange membranes and resins [15, 16].  66 

Bioactive peptides have between 3-20 amino acid residues; their bioactivity depends 67 

on the sequence and amino acid compositions [17-19]. Recently, attention has mainly 68 

focused on the antioxidant peptides generated from food proteins, being these 69 

peptides safer and healthier than synthetic drugs [20]. Antioxidant peptides contain 5-70 

16 amino acid residues. Their antioxidant activities can be related to ion chelating, 71 

radical scavenging and inhibition of lipid peroxidation. The importance of positively 72 

charged amino acids in determining the strength of peptides as antihypertensive and 73 

antioxidants has been indicated in different studies. Strong antimicrobial peptides are 74 

cationic charged. Those cationic charged peptides content amino acids as Lys, Arg and 75 

His   [21, 3]. Lysozyme has an isoelectric point of 10.7, with a high content of positively 76 

charged amino acids. Lysozyme may be a great substrate for production of bioactive 77 

peptides with antioxidant activity. You et al., (2010)[3] have described two 78 

antioxidants fractions of hydrolysate of lysozyme with pepsin containing positively 79 

charged amino acids such as f(13-20)KRHGLDNY, f(14-23)RHGLDNYRGY and f(13-80 

23)RHGLDNYRGY. Moreover, many researchers have reported that peptides and 81 

protein hydrolyzed from various food sources have significant antioxidant activity [22]. 82 

Furthermore, hen egg white lysozyme suppresses reactive oxygen species (ROS) 83 

generation and protects against acute and chronic oxidant injuries [20, 23]. Some 84 

peptides have shown to have multifunctional activities [3, 24]. Different bioactive 85 

peptides from lysozyme have been reported with antimicrobial, antioxidant and 86 

antihypertensive activities [25-29]. 87 

The zebrafish (Danio rerio) has become a promising model organism for experimental 88 

studies in different biomedical areas. Zebrafish is an ideal animal model for laboratory 89 

research. These animals are inexpensive, low-maintenance, and abundantly produced 90 

all year round [30-33]. Zebrafish genes are highly conserved sharing a 70 – 80% 91 

homology to those of humans [34]. The transparent embryos rapidly develop 92 

externally. Organogenesis is completed within the first 48 hours of development. Since 93 



zebrafish embryos develop externally, changes in development may be continuously 94 

monitored and observed, which greatly facilitates developmental time course studies. 95 

Zebrafish development has been well characterized and therefore results from 96 

zebrafish are comparable to mammalian developmental studies [35-37]. Moreover, 97 

zebrafish is a vertebrate model for modeling behavioral and functional parameters 98 

related to human pathogenesis and for clinical treatment screening. More recently, 99 

zebrafish has become also a valuable model to environmental and toxicological 100 

studies. Therefore, zebrafish model can be an interesting model to evaluate toxicology 101 

of new ingredients of functional foods such as antioxidant peptides.  102 

In this study, ion-exchange chromatography has been used to isolate the bioactive 103 

peptides from hen egg white lysozyme. Lysozyme was hydrolyzed in situ with pepsin to 104 

generate positive charged peptides. Those peptides were separated on a cation-105 

exchange column by selective elution. The objective was to identify new antioxidant 106 

peptides and evaluate their toxicity in the Zebrafish model (Danio rerio). 107 

 108 

Materials and methods 109 

Chemicals  110 

Hen egg white lysozyme 58,000 U/ml, pepsin crystalline 3,440 U/mg obtained from 111 

porcine stomach mucus, 2,20-azobis (2-methylpropionamide)-dihydrochloride (AAPH), 112 

6-hydroxy-2,5,7,8-tetramethylchroman- 2-carboxylic acid (Trolox), fluorescein 113 

disodium (FL), and dithiothreitol (DTT) were obtained from Sigma Chemical (Saint 114 

Louis, MO, USA). The rest of chemicals used were of HPLC grade.  115 

 116 

Pepsin hydrolysis of lysozyme in situ on an ion-exchange column and isolation of 117 

peptides 118 

Denaturation of lysozyme was performed as previously described by Carrillo et al., 119 

2014 [38]. Lysozyme was denatured using heat treatment. Lysozyme at 5mg/ml was 120 

suspended in buffer phosphate pH 6.0 and heat at 95°C during 20 minutes. Then, 121 

lysozyme was lyophilized and stored at -20°C. To carry out the hydrolysis of column-122 

bound native and denatured lysozyme, 1000 ml of a 0.1 mg/ml solution of protein in 123 

10 mM NaCl, adjusted to pH 2.0 with HCl, were pumped through a column cation-124 



exchange column. The binding of native and denatured lysozyme was carried out at 125 

room temperature (25°C) with at a flow rate of 20 ml/min, which was generated by a 126 

peristaltic pump (Verder-Vleuten, Vleuten, The Netherlands). The process was 127 

monitored by a UV detector with a 2 mm light path flow cuvette (Model EM-1 Econo 128 

UV Monitor, Bio-Rad) at 280 nm. Prior to be used, the ion-exchange column was pre-129 

equilibrated with water acidified with HCl (pH 2.0). The native and denatured lysozyme 130 

bound to the column were hydrolyzed at 37°C by recycling with 100 ml of an aqueous 131 

solution (pH 2.0) of porcine pepsin (25 mg/ml) at 20 ml/min during 6 hours. The 132 

column was washed sequentially with acidified water at pH 2.0. Solvent A was 10 mM 133 

ammonium hydrogen carbonate acidified to pH 7 with formic acid, and solvent B was 134 

3M and 5M of ammonia solution and finally the column was treated with 1 M NaCl to 135 

remove more cationic peptides. The effluent was monitored at 280 nm. All fractions 136 

were collected with Fast Protein Liquid Chromatography (FPLC) of GE-Pharmacia, 137 

freeze-dried, and analyzed with a high-performance liquid chromatography-138 

electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS-MS).  139 

 140 

Identification of peptides by ESI-MS/MS 141 

The selected fractions separated and collected from FPLC were analyzed by RP-HPLC-142 

ESI-MS/MS, on an Agilent 1100 HPLC System (Agilent Technologies, Waldbron, 143 

Germany) connected on-line to an Esquire 3000 ion trap (Bruker Daltonik GmbH, 144 

Bremen, Germany) and equipped with an electrospray ionization source, as described 145 

by López-Expósito et al. (2006) [39]. The variable-wavelength detector was set at 214 146 

nm. A C18-guard column (Nova-Pak® 20 mm × 2826 x 3.9 × 4 μm of particle size; 147 

Waters Corp., Milford, MA, USA) was used to protect the analytical column (HiPore® 148 

RP318 C18 column 250×4.6 mm and 5 μm of particle size; Bio-Rad, Richmond, CA, 149 

USA). The samples were eluted at 0.8 mll/min with a linear gradient from 0 to 45% of 150 

solvent B (acetonitrile and TFA, 1,000:0.270, v/v) in solvent A (water and TFA, 151 

1,000:0.370, v/v) in 60 minutes. The injection volume was 50 μl and duplicate of 152 

injection was made for each point of the standard curve and the samples. The flow 153 

from HPLC was divided approximately 1:3 previous to ionization source, and the first 6 154 

min of the eluent flow was directed to waste to reduce salt deposit on the transfer 155 

capillary of the MS instrument and to reduce interferences. For HPLC-MS, spectra were 156 



recorded over the mass-to-charge (m/z) range of 100 to 1,500. Helium was used as 157 

collision gas with an estimated pressure of 5×10−3 bar. About 15 spectra were 158 

averaged in the MS analyses and about five spectra in the tandem MS analyses. Using 159 

Data AnalysisTM (version 3.0; Bruker Daltoniks), the m/z spectral data were processed 160 

and transformed to spectra representing mass values. The acquired MS/MS spectra 161 

were interpreted using BioTools (version 2.1; Bruker Daltoniks).  162 

 163 

Peptide synthesis 164 

The synthetic peptides from lysozyme VAWRNRCKGTD, f(109-119), WRNRCKGTD, 165 

f(111-119)  AWIRGCRL, f (122-129), WIRGCRL, f (123-129) and IRGCRL, f (124-129) 166 

were prepared using a conventional FMOC solid-phase synthesis method with a 431A 167 

peptide synthesizer (Applied Biosystems Inc. Überlingen, Germany).  168 

 169 

Oxygen radical absorbance capacity-fluorescein (ORAC-FL) assay 170 

The ORAC-FL assay was based on the assay proposed by Ou, Hampsch- Woodill, & Prior 171 

(2001) and Dávalos et al., 2004[40, 41]. The reaction was made at 40°C in 75 mM 172 

phosphate buffer (pH 7.4). The final assay mixture (200 mL) contained FL (70 nM), 173 

AAPH (14 mM), and antioxidant [Trolox (0.2-1.6 nmol) or samples of the five synthetic 174 

peptides (at different concentrations)]. The fluorescence was recorded during 137 min 175 

(104 cycles). A FLUOstar OPTIMA plate reader (BMG Labtech, Offenburg, Germany) 176 

with 485 nm excitation and 520 nm emission filters was used. The equipment was 177 

controlled by the FLUOstar Control software version (1.32 R2) for fluorescence 178 

measurement. Black polystyrene 96-well microplates (Nunc, Denmark) were used. 179 

AAPH and Trolox solutions were prepared daily and FL was diluted from a stock 180 

solution (1.17 mM) in 75Mm phosphate buffer (pH 7.4). All reaction mixtures were 181 

prepared in duplicate and at least three independent runs were performed for each 182 

sample. Final ORAC-FL values were expressed as µmol of Trolox equivalent/ µmol of 183 

peptide [42]. 184 

 185 

Thiobarbituric acid reactive substances (TBARS) 186 

The thiobarbituric acid reactive species method was used as described by Westerfield, 187 

1995 [43]. The Zebrafish colony was established in the laboratory, in a glass aquarium, 188 



containing an internal filter and an activated carbon aerator for water oxygenation. 189 

The population of animals was fed three times a day with food chips for fish. Adult fish 190 

were kept on 16 hours light and 10 hours dark cycles. Embryos were obtained by 191 

photo-induced spawning over green plants and cultured at 28°C in a fish tank water. 5 192 

days post fecundation (dpf) larvae were then incubated in 24-well plates, 30 larvae per 193 

well, with 50 µg/ml of lysozyme peptide in each well. Lipid peroxidation was initiated 194 

by adding 1 ml 500 µM H2O2 and incubated during 8 hours at 28°C. Groups from 30 195 

larvae/well in aquarium water were used as controls.  Then, H2O2 was removed with a 196 

micropipette and 500 µl of Tween 0.1% was added.  All groups were mixed and 197 

homogenized with a T25 Ultra turrax IKA. Then, absorbance of the solution of zebrafish 198 

larvae and peptides was measured at 532 nm. The decrease of absorbance indicates an 199 

increase of antioxidant activity. The values of antioxidant activity were expressed as 200 

the percentage inhibition of lipid peroxidation in larvae homogenate as follows:  201 

The total antioxidant activity % Inhibition of lipid peroxidation = [(Ab - As )/Ab =  X 100] 202 

where Ab is the absorbance of blank and As is the absorbance the sample.  203 

 204 

Test of toxicity in the Zebrafish model 205 

Zebrafish of the AB strain (wild-type, wt) embryos were obtained from natural 206 

spawning. Embryos were raised and fish were maintained as described by Westerfield, 207 

(1995) [43]. After collection and disinfection, eggs were placed in 24-well microplates 208 

with 1 mL of water. To study the in vivo toxicity of all peptides coming from lysozyme 209 

with the zebrafish model, the FET test was employed.  210 

 211 

FET Test  212 

The assay was based on the OECD draft guideline on Fish Embryo Toxicity (FET) Test 213 

[44] and is described in detail by (Domingues et al., 2010) [45]. The Test Guideline is 214 

based on chemical exposure of newly fertilized zebrafish eggs for up to 48 hours and is 215 

expected to reflect acute toxicity in fish in general. After 24 and 48 hours of exposure 216 

to the peptides, four apical endpoints were recorded as indicators of acute lethality in 217 

fish: coagulation of fertilized eggs, lack of somite formation, lack of detachment of the 218 



tail-bud from the yolk sac and lack of heart-beat. The eggs were considered dead when 219 

they exhibit at least one of the previous mentioned indicators.  220 

In the control wells, there should be less than 10% of the eggs with one of the 221 

mentioned indicators after 48 hours, (29) [46]. Ten eggs per treatment (3 replicates) 222 

were selected and distributed in 24-well microplates. The test started with newly 223 

fertilized eggs exposed to the nominal concentrations of 50; 156; 312; 625; 1250; 2500 224 

and 5000 µg/ml of peptides and run during 2 days. Embryos were observed at 24 and 225 

48 hours under a stereomicroscope (magnification used in the stereomicroscope for 226 

observations was 40X).  227 

 228 

Results and discussion  229 

Hydrolysis in situ from lysozyme with pepsin in a cation-exchange column.  230 

Hen egg white lysozyme was subject to hydrolysis in situ with pepsin in a cation-231 

exchange column (Figure 1).  The objective was to obtain, in one step, rich peptides 232 

with positively charged amino acids derived from the hydrolysis of lysozyme and, to 233 

assess whether denatured lysozyme could generate peptides other than native 234 

lysozyme.  It is known that lysozyme has resistance to the hydrolysis with pepsin, but it 235 

has been recently described that lysozyme at pH 1.2 has total susceptibility to the 236 

hydrolysis with pepsin [39, 47-49]. Fu, Abbott, and Hatzos (2002) [50] have reported 237 

that lysozyme resisted more than 60 minutes at pH 1.2, at an E: S of (13:1) wt:wt. 238 

Thomas et al., (2004) [49] described that hen egg white lysozyme is resistant to 239 

hydrolysis with pepsin at pH 2.0. Ibrahim et al. (2005)[51] found that 40% of the 240 

original lysozyme was hydrolyzed after 120 minutes of digestion at an E: S of 1:50 241 

(wt:wt) and pH 4.0. There is then controversy about the hydrolysis of hen egg white 242 

lysozyme and this can be due to the different methods used.  In this study, lysozyme 243 

was hydrolyzed at pH 2.0 with an excess of pepsin. 244 

Many antimicrobial and antioxidant peptides contain positively charged amino acids 245 

thus determining the strength of their activity [21, 52, 53]. Lysozyme has an isoelectric 246 

point of 10.7 with a high content of positively charged amino acids. Hen egg white 247 

lysozyme has 17 positively charged (6 Lys, 11 Arg) and nine negatively charged residues 248 

(7 Asp, 2 Glu), thus leading to a net positive charge at pH below the isoelectric point 249 



(10.7). This positive charge makes hen egg white lysozyme even more attractive for 250 

investigation with the negative charged peptides [54].  251 

Therefore, lysozyme may be a good substrate for production of antimicrobial and 252 

antioxidant peptides.  You et al., 2010 [53] have reported antioxidant hydrolysates 253 

from lysozyme obtained with alcalase. They found that the fractions were rich in 254 

cationic peptides with high percentage of Arg and Lys (positively charged amino acids).   255 

Samples of native and denatured lysozyme were loaded in the cation-exchange 256 

column. Then, those samples were treated over night at 37°C with recirculation of 257 

pepsin solution. Immediately after, the hydrolysate was eluted with a gradient of 3 M 258 

and 5 M of ammonia. Two different fractions were successively collected respectively, 259 

and then a third fraction was eluted with sodium chloride (NaCl) 1 M. This fraction 260 

contained the peptides with maximum net positive charge and, therefore, those with 261 

the highest affinity for the cation-exchange column (Figure 2).  262 

 263 

Identification of peptides sequences  264 

After treatment with dithiothreitol all fractions from native and denatured lysozyme 265 

were analyzed with RP-HPLC-ESI-MS-MS to characterize their molecular mass and 266 

amino acid sequences. Table 1 shows the identified peptides eluted with NaCl 1 M. The 267 

peptides from 3 M and 5 M ammonia fractions were discarded as those peptides are 268 

less cationic. Both fractions were very complex with high content of peaks. As 269 

expected, this fraction contained peptides with abundant positively charged amino 270 

acids (Arg and Lys). For this reason, it was decided to work with this fraction.  All 271 

sequences are located in the C-terminus of lysozyme, in the α-dominium in the zone of 272 

helix 90-129.  It can be seen that there was no difference between the peptides 273 

identified in both hydrolysates, indicating that the process of heat denaturation of 274 

lysozyme results in a lack of production of new hydrolysis sites in the protein.  Ibrahim 275 

et al., (2001, 2005) [51, 55] have reported antimicrobial peptides with high activity 276 

present in the α-dominium (1-40 and 90-129), specifically in the regions 1-38 and 87-277 

114 from the lysozyme. However, we only found peptides located in the α-dominium 278 

C-terminal 90-129. This could be caused by the ionic separation performed, where 279 

cationic peptides have predominantly been recovered.  The peptides identified were 280 

synthesized to be used in the antioxidant assay.  281 



Antioxidant peptides sequences 282 

Five peptides from the fraction NaCl were assayed for their antioxidant activity, against 283 

peroxyl radicals, by using ORAC-FL assay. Table 2 shows results of antioxidant activities 284 

for the five peptides assayed. ORAC-FL values of peptides from hen egg white lysozyme 285 

were very high, indicating very high antioxidant activity. Four peptides f(109-119) 286 

VAWRNRCKGTD, f(111-119) WRNRCKGTD, f(122-129) AWIRGCRL and f(123-129) 287 

WIRGCRL (1,970; 3,123; 2,743 and 2,393 µmol Trolox/ µmol peptide) respectively were 288 

more active than vitamin C (1.65 µmol Trolox equivalents/µmol vitamin C). Peptides 289 

f(122-129) AWIRGCRL and f(123-129) WIRGCRL were more active than synthetic 290 

antioxidant peptide named butylated hydroxyanisole (BHA) (2,430 µmol Trolox 291 

equivalents/µmol BHA) used in food industry for its high antioxidant activity [56,42]. 292 

Only the peptide f(124-129) IRGCRL presents low activity with 0.313 µmol Trolox/ µmol 293 

peptide, this might be due to the absence of Trp in its sequence. As shown in the ORAC 294 

database prepared by Li and Li (2013) [57], the length of peptides derived from food 295 

sources with peroxyl radical scavenging activity, ranges from 4 to 20 amino acids. 296 

Peptides described in our study with peroxyl radical scavenging activity have between 297 

1 to 11 amino acids. Peptides of our study are small peptides with high antioxidant 298 

activity using ORAC-FL. On the other hand, Hernández-Ledesma et al., (2005) [58] have 299 

described a peptide from soybean named lunasin with high antioxidant activity 3.44 ± 300 

0.07 µmol Trolox equivalents/µmol lunasin. Potent activity of lunasin was attributed to 301 

the presence of amino acids Trp, Cys, and Met in its sequence. All peptides in our study 302 

contain in their sequence Trp, Cys or both. Possibly, the higher antioxidant activity of 303 

peptides in this study is explained by the presence of Trp and Cys amino acids in a 304 

particular site of their sequence. Peptide number 2 IRGCRL was compared to peptide 305 

number 3 WIRGCRL. We observed that IRGCRL peptide has not Trp (W) in its sequence, 306 

and a value of ORAC-FL of 0.311 µmol Trolox/ µmol peptide was detected. On the 307 

other hand, peptide number 3 WIRGCRL presented antioxidant activity with a value of 308 

2,393µmol Trolox/ µmol peptide. The difference in the antioxidant activity can be 309 

related to the presence of Trp in peptide number 3 WIRGCRL sequence. 310 

The molecular weight of the identified peptides are in the range of most of the 311 

antioxidant peptides derived from food sources isolated previously of 4 to 20 residues 312 

amino acids [59]. Moreover, antioxidant peptides often possess hydrophobic amino 313 



acid residues such as Pro, His, Tyr, Trp, Met, or Cys in their sequences and Val or Leu at 314 

the N-terminus [60]. One of our peptides showed Val at the N-terminus. 315 

 316 

Potential of synthetic peptides from lysozyme to inhibit lipid peroxidation  317 

The antioxidant action is assessed by inhibiting the damage caused by free radicals and 318 

the mechanisms involved in many human diseases such as hepatotoxicities, 319 

hepatocarcinogenesis, diabetes, and skin cancer to include lipid peroxidation as a main 320 

source of cellular damage. Lipid peroxidation in biological systems has been thought to 321 

be a toxicological phenomenon leading to various pathological consequences. MDA 322 

formed from lipid peroxidation of unsaturated phospholipid reacts with TBA to 323 

produce a pink MDA-TBA adducts. MDA is reactive and active in crosslinking with DNA 324 

and proteins and damages liver cells [61]. Phospholipids are believed to be present in 325 

high amounts in cell membranes [62]. Lipid peroxidation has been a major contributor 326 

to the loss of cell function under oxidative stress [63, 64]. To determine oxidative 327 

stress, inhibition of lipid peroxidation in zebrafish larvae model was used to determine 328 

damage cellular in vivo. Figure 3A presents the inhibition of lipid peroxidation by 329 

synthetic peptides from lysozyme at a concentration of 50 µg/ml. This assay confirmed 330 

that these synthetic peptides were not toxic for zebrafish larvae.  Zebrafish larvae 331 

presented normal aspect after 24 hours of assay.  When zebrafish larvae were 332 

examined, no morphological abnormalities are shown such as crooked bodies, spinal 333 

deformities or any significant effects in the growth of the body (Figure 3B). The values 334 

of percentage inhibition of lipid peroxidation indicated that all synthetic peptides were 335 

efficient to inhibit the lipid peroxidation in zebrafish larvae. For example peptide P4 336 

(AWIRGCRL) had a result of 63.2 % TBARS inhibition, (Figure 3A).  The antioxidant 337 

results showed the higher activity of peptides 3, 4 and 5 in both assays. The presence 338 

of tryptophan seems important for the ORAC activity. However, in the case of the 339 

TBARS inhibition, the peptide size is probably contributing to the increased values of 340 

activity in peptides P2 to P5. 341 

 342 

 343 

 344 

Test in Zebrafish embryo 345 



Based on the in vitro studies antioxidant activity described above, we decided to 346 

evaluate the toxicity of the peptides in a model of zebrafish eggs. Zebrafish has 347 

become a widely used model organism for studies of developmental biology and drug 348 

discovery. This model helps drug development by combining the tools of medicinal 349 

chemistry and zebrafish biology.  350 

Figure 4 shows a representative curve doses-response result of FET test for AWIRGCRL 351 

peptide, this peptide presents the highest TBARS inhibition percentage. This sample 352 

was only taken as an example as all samples presented identical results. The test was 353 

carried out for all peptides of this study, however, no significant differences were 354 

observed in the rest of peptides. Again, as in the zebrafish larvae test, the AWIRGCRL 355 

peptide does not present toxicity at a concentration of 50 µg/ml for zebrafish eggs. 356 

However, concentrations higher than 50 µg/ml of peptides were cytotoxic to zebrafish 357 

egg after 24 hours of incubation.  Mortality was identified with an absence of 358 

embryonic development and coagulation of nuclear material of eggs. The control eggs 359 

were totally normal in their development (Figure 5A). However, eggs treated with the 360 

peptides of this study presented no embryonic development and coagulation total of 361 

nuclear material of eggs. Around the eggs, material of the chorion due to ruptures of 362 

the eggs was observed (Figure 5B).  363 

 364 

As a conclusion, hen egg lysozyme was hydrolyzed with pepsin in situ using a cation-365 

exchange. Hen egg white lysozyme is a good source of antioxidant peptides using 366 

pepsin for hydrolysis at low pH.  The zebrafish model was efficient to measure the 367 

inhibition of lipid peroxidation and cytotoxicity of synthetic peptides from lysozyme.  368 

Development of zebrafish is sensitive to the exposure to all lysozyme synthetic 369 

peptides used in this study at concentrations higher than 50µg/ml. However, further 370 

investigations would need to be carried out to evaluate the death mechanisms of 371 

these peptides on zebrafish embryos, for eventual pharmaceutical and medical 372 

applications.    373 
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 645 

N° Fragment Mass 
Obss. 

Mass 
Calc.a 

m/zb Sequencec NLZ LZ95°C 

1 f(109-119) 1306,0 1306,0 653,5 (2) VAWRNRCKGTD + + 

2 f(124-129) 716,6 717,6 717,6 (1) IRGCRL + + 

3 f(123-129) 902,7 903,7 903,7 (1) WIRGCRL + + 

4 f(122-129) 973,7 974,7 974,7 (1) AWIRGCRL + + 

5 f(111-119) 1134,7 1135,7 1135,7 (1) WRNRCKGTD + + 

Nº Peptides ORAC (micromol Trolox 
equivs/micromol peptide) ± SD 

1 VAWRNRCKGTD 1.970 ± 0.171 

2 IRGCRL 0.313 ± 0.029 

3 WIRGCRL 2,393 ± 0.280 

4 AWIRGCRL 2,743 ± 0.193 

5 WRNRCKGTD 3,123 ± 0.266 



 646 

 647 
Figure 1. Hydrolysis in situ from lysozyme with pepsin in a cation exchange column inside of 648 

oven at 37°C over night.  649 

  650 

 651 

Figure 2. Fractions of FPLC obtained with: A) 3 M ammonia, B) 5 M ammonia, C) NaCl 1 M 652 

 653 
Figure 3. A) TBARS result of synthetic peptides from lysozyme. Data is expressed as % TBARS 654 

inhibition compared to positive control (error bars expressed as ± SD). P1= VAWRNRCKGTD; 655 

 

Lysozyme  
load 

Pepsin 

Pump 

37ºC 

Cation - 
Exchange  
column 

37ºC 

pH 2.0 

Control

Sample P5
0

20

40

60

80

100

control P1 P2 P3 P4 P5

%
 In

hi
bi

tio
n 

TB
AR

S

A B



P2= IRGCRL; P3= WIRGCRL; P4= AWIRGCRL; P5= WRNRCKGTD. B) Photography of zebrafish 656 

larvae with peptide and without peptide after assay. All peptides were assay at 50 µg7ml. 657 

 658 

 659 
Figure 4. Mortality percentage of Zebrafish embryo treated with AWIRGCRL peptide from 660 

lysozyme at different concentrations at 48 hours for three replicates.  661 
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 663 

 664 

 665 

 666 

 667 

 668 
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 671 

Figure  5. Peptides from lysozyme induced inhibition cellular in embryo Zebrafish. A) Control 672 

without peptides and B) embryo with AWIRGCRL peptide from lysozyme.  Magnification was 673 

of 40X.  AWIRGCRL peptide was incubated with zebrafish eggs during 24 hours at 26°C.  674 
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