
Co-immobilization and stabilization of xylanase, β-xylosidase and α-L-arabinofuranosidase 

from Penicillium janczewskii for arabinoxylan hydrolysis 

 

Authors 

César Rafael Fanchini Terrasan1, Lara Trobo-Maseda1, Sonia Moreno-Pérez1, Eleonora Cano 

Carmona2, Benevides Costa Pessela3, José Manuel Guisan1 

 

 

Affiliations 

1 Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquimica (ICP), Consejo Superior 

de Investigaciones Científicas (CSIC). Campus Universidad Autónoma de Madrid (UAM), 

Cantoblanco, 28049, Madrid, Spain. 

2 Biochemistry and Microbiology Department, Biosciences Institute, Univ Estadual Paulista - 

UNESP. PO 199, 13506-900, Rio Claro, SP, Brazil. 

3 Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en 

Ciencias de los Alimentos (CIAL), Consejo Superior de Investigaciones Científicas (CSIC). 

Campus Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049, Madrid, Spain. 

 

 

 

 

 

*Corresponding author 

aDepartamento de Biocatálisis, Instituto de Catálisis y Petroleoquimica (ICP), Consejo Superior de 

Investigaciones Científicas (CSIC). 

Campus Universidad Autónoma de Madrid (UAM), Cantoblanco, Calle de Marie Curie. 

28049, Madrid, Madrid, Spain 

Email: cesarterrasan@hotmail.com  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/84777726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.researchgate.net/profile/Lara_Maseda?el=1_x_100&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
https://www.researchgate.net/profile/Benevides_Pessela2?el=1_x_100&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
https://www.researchgate.net/profile/Sonia_Moreno-Perez?el=1_x_100&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==


	 1

Graphical abstract 

 

 

Highlights 

 Xylanolytic enzymes cooperatively degrade complex hemicellulosic polysaccharides 

 Glutaraldehyde support rendered good balance in the concomitant immobilization of the 

enzymes 

 Additional coating with low molecular weight dextran stabilize enzymes in the support  

 Derivative coated with dextran at intermediate degree of oxidation is the most stable one 

 Xylose release is observed from the hydrolysis of different arabinoxylan with the 

immobilized enzymes 

	
 

Abstract 

Differently activated agarose-based supports were evaluated for co-immobilization of a 

crude extract from Penicillium janczewskii containing xylanase, β-xylosidase and α-L-

arabinofuranosidase activities. Adequately selecting support and immobilization conditions (8 h, 

using agarose with 10% crosslinking) increased enzyme levels substantially, mainly in relation to 

the xylanase (2-fold). A coating with dextran aldehyde MW 6,000 Da, partially oxidized, 

covalently attached the enzymes to the support. Optimum activity was verified in the pH range 2-

4, and at 50, 65 and 80 °C for the xylanase, α-L-arabinofuranosidase and β-xylosidase, 
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respectively. The xylanase was highly thermostable retaining more than 70% of activity even after 

24 h incubation at 60 and 70 °C; and at 80 °C its half-life was 1.7 h. The half-lives of the β-

xylosidase and α-L-arabinofuranosidase at 50 °C were 2.3 and 3.8 h, respectively. The co-

immobilization of the enzymes on a single support give raise to a functional multi-enzymatic 

biocatalyst acting in the complete hydrolysis of different and complex substrates such as oat spelt 

and wheat arabinoxylans, with xylose yield higher than 40%. The xylanase and the α-L-

arabinofuranosidase presented high stability retaining 86.6 and 88.0% of activity after 10 reuse 

cycles. 

 

Keywords: Penicillium janczewskii; xylanase; β-xylosidase; α-L-arabinofuranosidase; enzyme 

co-immobilization; xylan hydrolysis.  
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1. Introduction  

Xylan is the second most abundant biopolymer in plant cell walls and the main 

hemicellulosic polysaccharide. It is composed of a β-(1→4) D-xylopyranosyl backbone 

substituted at various degrees by side chain residues such as glucopyranosyl, 4-O-methyl-D-

glucurono-pyranosyl, α-L-arabinofuranosyl, acetyl, feruloyl, and/or p-coumaroyl [1]. The precise 

composition of the polymer is strongly dependent on plant species and tissue. For instance, hard 

wood xylans often have D-glucuronic acid attached to their backbone, whereas L-arabinose is the 

most common branch in cereal xylans [2].  

Given the diversity of xylan structures, their complete and efficient hydrolysis involves 

the synergistic action of main chain degrading enzymes, including endo-β-1,4-xylanases (EC 

3.2.1.8) and β-D-xylosidases (EC 3.2.1.37), and side chain cleaving enzymes, including α-L-

arabinofuranosidases (EC 3.2.1.55), α-glucuronidases (EC 3.2.1.139), acetyl xylan esterase (EC 

3.1.1.72), and feruloyl esterases (EC 3.1.1.73). Endo-β-1,4-xylanase and β-D-xylosidase are the 

main enzymes responsible for the degradation of the polymer: xylanases cleave the internal β-

(1→4) bonds in the xylan backbone, liberating different chain-length-(substituted) 

xylooligosaccharides, and β-xylosidases are exoglycosidases that release xylose from the non-

reducing ends of these xylooligosaccharides. β-xylosidases are critical for the systems since they 

carry the greatest work load in terms of number of glycosidic bonds cleaved, as well as in 

relieving product inhibition of xylanases [3]. Among other accessory enzymes, α-L-

arabinofuranosidases are exo-type enzymes that catalyze the cleavage of the terminal α-L-

arabinofuranosyl residues from arabinosylated substrates. Xylan hydrolysis is not aleatory, i.e., the 

degree of substitution in xylan influence the products of hydrolysis for xylanases [4]. In this sense, 

accessory enzymes such as α-L-arabinofuranosidases are important since the removal of side-

chain residues from xylan backbone may have a synergistic effect with the other xylanolytic 

enzymes [5] and also the difference in substrate specificity among different xylanases has 

important implications in the deconstruction of xylan [4]. 

Enzyme immobilization poses as a possibility to improve the characteristics of an enzyme 

in terms of stability and catalysis, as well as for process improvement allowing the reuse of the 
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biocatalyst for many operational cycles [6]. Immobilization of more than one enzyme on the same 

support, however, is especially challenging, as it has to preserve the catalytic activity of all 

enzymes involved in the system and ideally improve their stability [7]. Many xylanolytic enzymes 

have been individually immobilized by different methods; and some studies have investigated the 

co-immobilization of two xylanolytic enzymes [8]. In this sense, the xylanase and β-xylosidase 

from Talaromyces thermophilus were co-immobilized on chitosan and employed for the 

hydrolysis of oat spelt xylan, demonstrating the synergistic action of both enzymes by increasing 

the saccharification of the substrate [9]. In another study, co-immobilization of recombinant 

xylanase and α-L-arabinofuranosidase in glyoxyl agarose was evaluated through different 

approaches in the hydrolysis of xylan for the production of non-arabinosylated xylan [10]. The 

effect of xylanase, β-xylosidase and α-L-arabinofuranosidase from Aspergillus oryzae in the 

decomposition of arabinoxylan was verified using the soluble enzymes in the moromi mash 

during soy sauce fermentation [11], nevertheless, co-immobilization of three xylanolytic enzymes 

acting cooperatively in the complete hydrolysis of complex substrates has not been reported to 

date. 

This way, the aims of this work were to establish a protocol for simultaneous co-

immobilization of the xylanase, β-xylosidase and α-L-arabinofuranosidase from Penicillium 

janczewskii present in the crude extracellular extract, as well as improve the stabilization of the 

immobilized enzymes via post-immobilization techniques. After that, the immobilized enzymes 

were biochemically characterized and evaluated in the hydrolysis of arabinoxylans. 

 

2. Materials and Methods 

2.1 Materials 

Agarose with 4, 6 and 10% of cross-linking BCL were purchased from Agarose Bead 

Technologies (Madrid, Spain). p-nitrophenyl β-D-xylopyranoside (pNPX), glycidol, potassium 

tetraborate tetrahydrate, sodium borohydride, sodium periodate, ethylenediamine, glutaraldehyde, 

Leuconostocc spp dextran (MW 6,000-100,000), polyethylenimine (PEI, MW 1,300), oat spelt 

and beechwood xylans were obtained from Sigma-Aldrich Co (St. Louis, MO). D-xylose Assay 

https://www.researchgate.net/publication/247170065_Synergistic_degradation_of_arabinoxylan_with_a-L-arabinofuranosidase_xylanase_and_b-xylosidase_from_soy_sauce_koji_mold_Aspergillus_oryzae_in_high_salt_condition?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
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Kit, xylose, p-nitrophenyl α-L-arabinofuranoside (pNPAra) and low viscosity wheat arabinoxylan 

were from Megazyme (Wicklow, Ireland). All reagents were of analytical grade.  

 

2.2 Methods 

2.2.1. Microorganism, enzyme production and preparation of enzyme extract 

Penicillium janczewskii (CRM 1348) is deposited in The Central of Microbial Resources, 

CMR-UNESP, Brazil. The microorganism was maintained on Vogel solid medium [12] and liquid 

cultures were prepared in the same medium with brewer’s spent grain as substrate, under 

optimized conditions for xylanolytic enzymes production [13]. After cultivation, the mycelium 

was removed by vacuum filtration and the culture filtrate was centrifuged (10,000g, 4 °C, 15 min). 

The supernatant was dialyzed overnight against distilled water, 0.025 M sodium acetate buffer pH 

5.0 or 0.025 M sodium phosphate buffer pH 7.0 before immobilization. A sample of the 

supernatant was also treated with 0.01 M sodium periodate for 1.5 h in order to oxidize sugar 

moieties of the enzymes and then dialyzed against 0.025 M sodium phosphate buffer pH 7.0.  

 

2.2.2 SDS-PAGE 

A sample containing 50 μg of protein prepared from the extracellular extract obtained under 

optimized conditions for xylanase production (medium with oat spelt xylan, pH 6.5, 7 days of 

cultivation, 30 °C) was applied to SDS-PAGE performed in 8 to 18% (w/v) gradient gels, 

according to Laemmli [14]. The resolved protein bands were visualized after staining with 0.1% 

Coomassie brilliant blue R-250 dissolved in methanol, acetic acid, and distilled water (4:1:5 

v/v/v). Standard proteins (Sigma) were phosphorylase b (97 kDa), bovine serum albumin (66 

kDa), ovalbumin (45 kDa), carbonic anhydrase (29 kDa), trypsin inhibitor (20 kDa), and α-

lactalbumin (14.2 kDa). 

 

2.2.3 Enzyme assays 

Xylanase activity was determined according to Bailey et al. [15] with 1% (w/v) 

beechwood xylan prepared in 0.05 M sodium acetate buffer pH 5.0 (before determining optimum 

https://www.researchgate.net/publication/287712210_A_convenient_growth_medium_for_Neurospora_Medium_V?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
https://www.researchgate.net/publication/223507982_Interlaboratory_Testing_of_Methods_for_Assay_of_Xylanase_Activity?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
https://www.researchgate.net/publication/17737345_Cleavage_Of_Structural_Proteins_During_Assembly_Of_Head_Of_Bacteriophage-T4?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
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pH) or pH 4.0 (after determining optimum pH) and appropriately diluted enzyme solution. 

Reducing sugars were quantified with DNS acid reagent [16]. β-xylosidase and α-L-

arabinofuranosidase activities were determined in a reaction mixture containing, respectively, 3 

mM pNPX and pNPAra prepared in 0.05 M sodium acetate buffer buffer pH 5.0 (before 

determining optimum pH) or pH 4.0 (after determining optimum pH) and appropriately diluted 

enzyme solution to 1 mL final volume. Reactions were stopped by adding 1 mL of a saturated 

potassium tetraborate solution and the absorbance was measured at 405 nm [17]. One unit of 

activity was defined as the amount of enzyme required to release 1 mol of product equivalent per 

min in the assay conditions at 25 °C. 

 

2.2.4 Preparation of support 

Monoaminoethyl-N-aminoethyl (MANAE)-agarose, was prepared as described elsewhere 

[18] and the glutaraldehyde-agarose support was prepared from MANAE agarose [19,20]. Briefly 

described, we used 10 g of MANAE in 20 mL of 0.5 or 15% (v/v) glutaraldehyde solution 

prepared in 0.2 M phosphate buffer pH 7.0. The suspensions were kept under mild stirring at 25 

°C for 1 and 15 h in the case of the supports activated with 0.5 or 15% (v/v) glutaraldehyde, 

respectively. This treatment permitted to fully modify the primary amino groups of the support 

with one or two glutaraldehyde molecules, respectively [19]. After that, the supports were filtered 

and washed exhaustively with 0.025 M sodium phosphate buffer and then with distilled water.  

Glyoxyl-agarose was prepared with the maximal activation degree, as previously described [21]. 

Polyethylenimine (PEI) and dextran sulfate [22] and heterofunctional amino-glyoxyl and amino-

epoxide [23,24] supports were prepared as described elsewhere.  

The supports were initially prepared using agarose with 4% crosslinking. MANAE and 

0.5% (w/v) glutaraldehyde supports were further prepared using agarose with 6 and 10% 

crosslinking. Activated supports were stored at 4 °C and, before use, washed with incubation 

buffer according to immobilization condition. 

 

2.2.5 Enzyme immobilization 

https://www.researchgate.net/publication/293107540_Use_of_Dinitrosalicylic_Acid_Reagent_for_Determination_of_Reducing_Sugar?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
https://www.researchgate.net/publication/226740533_Glutaraldehyde_in_Protein_Immobilization?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
https://www.researchgate.net/publication/226740533_Glutaraldehyde_in_Protein_Immobilization?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
https://www.researchgate.net/publication/226060776_Very_Strong_But_Reversible_Immobilization_of_Enzymes_on_Supports_Coated_With_Ionic_Polymers?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
https://www.researchgate.net/publication/223914226_Glyoxyl_agarose_A_fully_inert_and_hydrophilic_support_for_immobilization_and_high_stabilization_of_proteins?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
https://www.researchgate.net/publication/15435147_Preparation_of_activated_supports_containing_low_pK_amino_groups_A_new_tool_for_protein_immobilization_via_the_carboxyl_coupling_method?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
https://www.researchgate.net/publication/7705259_Enzyme_stabilization_by_glutaraldehyde_crosslinking_of_adsorbed_proteins_on_aminated_supports?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
https://www.researchgate.net/publication/7308352_Epoxy-Amino_Groups_A_New_Tool_for_Improved_Immobilization_of_Proteins_by_the_Epoxy_Method?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
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Immobilizations were performed by suspending 1:10 (w/v) the activated supports in the 

dialyzed/diluted enzyme solution. Buffers for each immobilization were: 0.025 M sodium 

phosphate buffer pH 7.0 for MANAE, PEI, glutaraldehyde, amino-epoxide and amino-glyoxyl 

supports, 0.05 M sodium acetate buffer pH 5.0 for dextran sulfate support, 0.1 M sodium 

bicarbonate buffer pH 10.0 for glyoxyl support (enzyme solution dialyzed against distilled water 

was 2-fold diluted in the buffer). Immobilizations were carried out under gentle agitation at 25 °C 

for 4 h or overnight incubation. During immobilization, samples of the suspensions and the 

supernatants were withdrawn and enzyme activities were measured. Proteins were measured 

during immobilization time-course and immobilization for different periods.  

 

2.2.6 Post-immobilization techniques  

Dextran-coated derivatives: a mass of 0.5 g of the uncoated Glut derivative 

(immobilization carried out by 8 h) was added to 5 ml of aldehyde-dextran suspensions, pH 

adjusted to 7.0. Dextrans with MW of 1,500, 6,000, 25,000 and 75,000 Da completely oxidized 

were initially evaluated [25]. Dextran with MW of 6,000 with 20 and 40% degree of oxidation 

were further evaluated. The suspensions were gently agitated overnight, the derivative was then 

re-suspended in sodium borate buffer pH 8.5 or sodium phosphate buffer pH 7.0 and reduced by 

adding 1 mg/mL sodium borohydride. The suspension was gently agitated for 30 min, washed 

abundantly with water and vacuum filtered. 

PEI-coated derivative: a mass of 0.5 g of the uncoated Glut derivative (immobilization 

carried out for 8 h) was added to 5 ml of 5% (w/v) PEI MW 1,300 Da solution, pH was adjusted 

to 7.0. The suspension was gently agitated overnight, washed abundantly with water and vacuum 

filtered. 

Glutaraldehyde cross-linked derivative: a mass of 1.0 g of the uncoated Glut derivative 

(immobilization carried out for 8 h) was added to 10 ml of 0.5% (v/v) glutaraldehyde solution pH 

adjusted to 7.0. The suspensions were gently agitated for 30 min, washed abundantly with water 

and vacuum filtered. A mass of 0.5 g of this derivative was directly reduced with 1 mg/mL 

sodium borohydride and 0.5 g was previously coated with dextran, as described above, and then 

https://www.researchgate.net/publication/8584767_Prevention_of_interfacial_inactivation_of_enzymes_by_coating_the_enzyme_surface_with_dextran-aldehyde?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
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reduced with 1 mg/mL sodium borohydride. The suspensions were washed abundantly with water 

and vacuum filtered. 

 

2.2.7 Immobilization parameters 

Immobilization yield was defined as the ratio between the activities (or protein) in the 

supernatant compared to the activity (or protein) in the control. Expressed activity was defined as 

the ratio of the activity in the final suspension after the immobilization process and the initial 

enzyme activity. 

 

2.2.8 Evaluation of the attachment between enzyme and support 

The glutaraldehyde agarose 10 BCL derivative (before and after coating with aldehyde 

dextran) was incubated in 0.005 M sodium phosphate buffer pH 7.0 with 0.5 M NaCl at 25 °C. 

After 1 h, enzyme activities were analyzed in the supernatant, as previously described. 

 

2.2.9. Derivative characterization 

Thermal stability 

A mass of 0.1 g of the Glut derivative coated with dextran MW 6,000 and 40% oxidation 

degree was suspended in 1.0 ml of 0.05 M acetate buffer pH 5.0 and incubated at 50 °C. In all 

cases, samples of the suspension were withdrawn at several intervals and the activity was assayed 

as previously described. Residual activity was calculated as the ratio between activity at a given 

time and the activity in the beginning of incubation (regarded as 100%). 

 

pH stability 

A mass of 0.1 g of the Glut derivative coated with dextran MW 6,000 at 40% degree of 

oxidation was suspended in 1.0 ml of 0.05 M glycine HCl buffer pH 3.0, 0.05 M sodium acetate 

buffer pH 4.0 and 5.0, and 0.05 M sodium phosphate buffer pH 7.0. The suspension was incubated 

at 50 °C and after 4 h residual activity was assayed. Initial activities before incubation were 

regarded as 100%. 
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Optima pH and temperature 

Optimum pH was determined by assaying enzyme activities of the Glut derivative coated 

with dextran MW 6,000 at 40% degree of oxidation at 25 °C at various pH from 2.0 to 8.0. The 

following buffers were utilized: 0.05 M glycine-HCl pH 2.0 and 3.0, 0.05 M sodium acetate pH 

4.0 and 5.0, 0.05 M sodium phosphate pH 6.2 and 7.0, and 0.05 M Tris HCl pH 8.0.  

Optimum temperature was determined by assaying enzyme activities at temperatures 

ranging from 40 to 85 °C, with 5 °C intervals, in 0.05 M sodium acetate buffer pH 5.0. 

 

2.2.10 Hydrolysis of arabinoxylans 

The hydrolysis of 0.5% (w/v) oat spelt xylan (arabinose residues ≤10%, glucose residues 

≤ 15%, xylose residues ≥ 70%) and low viscosity wheat arabinoxylan (38/62 arabinose:xylose 

relation) were carried using the Glut derivative coated with dextran MW 6,000 at 40% degree of 

oxidation. The reactions were carried out in 0.05 M sodium acetate buffer pH 4.0 at 40 °C. 

Collected samples were filtered and the adequately diluted supernatant was analyzed for xylose. 

 

2.2.11 Reuse assay 

Successive hydrolysis cycles of 0.5% (w/v) wheat arabinoxylan prepared in 0.05 M 

sodium acetate buffer pH 4.0 were performed using the Glut derivative coated with dextran MW 

6,000 at 40% degree of oxidation, at 1:10 proportion (w/v). Each cycle was carried out at 40 °C 

for 1 h under magnetic stirring (300 rpm). At the end of the cycles, the derivative was filtered, 

washed with 0.05 M sodium acetate buffer pH 4.0 and new substrate was added for a new reaction 

round. Samples of the supernatant were withdrawn during the first, the fifth and the tenth cycles, 

filtered and analyzed for reducing sugars. After the fifth and the tenth cycles the derivative was 

suspended in the washing buffer (1:10, w/v) and residual activities were measured, as previously 

described (activities before the first cycle were regarded as 100%).  

 

2.2.12 Analytical methods 
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Protein concentration was determined with the modified Bradford's method, with bovine 

serum albumin as standard [26]. Reducing sugars were quantified with DNS acid reagent, with 

xylose as standard [16]. Xylose was quantified using the enzymatic D-xylose Assay Kit. The first 

reaction involves the conversion of the α- to the β-anomeric form of D-xylose catalyzed by xylose 

mutarotase. The β-D-xylose was then oxidized by NAD+ to D-xylonic acid in the presence of β-

xylose dehydrogenase. The amount of NADH formed in the reaction is stoichiometric with the 

amount of D-xylose. NADH was measured by the increase in absorbance at 340 nm (ε = 6,300 M-

1 cm-1). Samples of hydrolyzed oat spelt and wheat arabinoxylans were adequately diluted and 

analyzed according to the supplier instruction, in duplicate, and expressed as mean value. Xylose 

yield was calculated using 0.88 as the conversion factor of pentose to equivalent xylan, as below: 

ሺ%ሻ	݈݀݁݅ݕ	݁ݏ݋݈ݕܺ ൌ
0.88	ݔ	ሺ݃ሻ	݀݁ݏ݈ܽ݁݁ݎ	݁ݏ݋݈ݕݔ

	ሺ݃ሻ	݈݊ܽݕݔ	݈ܽ݅ݐ݅݊݅
 100	ݔ	

 

3. Results and Discussion 

3.1 Enzyme immobilization 

Penicillium janczewskii was isolated from soil of the Brazilian Rainforest [27] and 

characterized as an excellent producer of xylanolytic enzymes in the absence of cellulases [13]. 

Production of xylanase, β-xylosidase and α-L-arabinofuranosidase has been previously optimized 

[28,29] but other enzymes from the xylanolytic complex may also be produced by this fungal 

strain since SDS-PAGE revealed the presence of several extracellular proteins (Fig. 1) [28]. Due 

to their potential application in many bioprocesses, several activation protocols, techniques and 

strategies were evaluated in order to optimize the concomitant immobilization of the crude 

extracellular xylanase, β-xylosidase and α-L-arabinofuranosidase on agarose-based supports, 

which have been widely used for immobilizing different enzymes [30].  

In general, good results were observed in relation to the β-xylosidase immobilization, 

although the xylanase and the α-L-arabinofuranosidase were hardly immobilized on the supports 

(Table 1). Good balance for the immobilization of the three enzymes was obtained with ionic 

immobilization on MANAE agarose. The use of pH 8.5 and more prolonged immobilization 

https://www.researchgate.net/publication/293107540_Use_of_Dinitrosalicylic_Acid_Reagent_for_Determination_of_Reducing_Sugar?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
https://www.researchgate.net/publication/280985426_A_rapid_sensitive_and_versatile_assay_for_protein_using_Coomassic_brilliant_blue_G250?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
https://www.researchgate.net/publication/280928227_-L-Arabinofuranosidase_from_Penicillium_janczewskii_Production_with_brewers_spent_grain_and_orange_waste?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
https://www.researchgate.net/publication/228344666_Enzyme_Immobilization_The_Quest_for_Optimum_Performance?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
https://www.researchgate.net/publication/8052650_Soilborne_filamentous_fungi_in_Brazil?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
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period did not improve the activities on this support. When the enzymes were previously treated 

with sodium periodate to oxidize saccharide moieties of the proteins, the three enzymes were 

easily attached to the anionic MANAE support. This fact indicate that the presence of 

carbohydrates may be blocking the access of the enzymes to the reactive groups of the support or 

the formed aldehyde can readily react with these groups forming imine or Schiff bases. The 

removal of glycosylation was good in terms of immobilization; nevertheless, the enzymes became 

unstable even during mild conditions of enzymatic assays (not shown). The use of MANAE 

agarose cross-linked with 0.5% (w/v) glutaraldehyde also resulted in good enzyme 

immobilization. When this support was activated with higher glutaraldehyde concentration (10%, 

w/v), which results in the formation of glutaraldehyde dimers, improved immobilization yield of 

the xylanase was observed, probable consequence of the higher glutaraldehyde concentration, 

which allowed more attachments between enzyme and support. Nevertheless, these attachments 

may have been excessive, causing distortion in the xylanase structure resulting in the very low 

expressed activity. Expressed activities of the β-xylosidase and α-L-arabinofuranosidase increased 

by increasing glutaraldehyde concentration that may be related to the fact that these enzymes 

usually have higher MW than the xylanases or correspond to multimeric enzymes [31,32]. In this 

case, the higher glutaraldehyde concentration provided more attachments stabilizing the structure 

of the immobilized enzyme or provided enough attachments to stabilize all enzyme subunits, thus 

resulting in the higher expressed activity. Immobilization of enzymes on glutaraldehyde-activated 

supports has been largely used on supports previously activated with amine groups. 

Immobilization is promoted through a two-step mechanism: in a first step the enzyme is adsorbed 

on the support via an anionic exchange mechanism and then, the covalent immobilization occurs 

[20,33].  

The enzymes could not be immobilized on PEI (Table 1), dextran sulfate and glyoxyl 

activated supports (not shown). In the case of glyoxyl support, the enzymes probably present low 

stability in pH 10, a required condition for optimal immobilization in this support [21]. In the case 

of heterofunctional amino-glyoxyl and amino-epoxide supports (not shown) the enzymes were not 

immobilized, remaining in the supernatant even after pH increase or long-term incubation.  

https://www.researchgate.net/publication/262387843_ChemInform_Abstract_Glutaraldehyde_in_Bio-Catalysts_Design_A_Useful_Crosslinker_and_a_Versatile_Tool_in_Enzyme_Immobilization?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
https://www.researchgate.net/publication/227192742_b-Xylosidases_from_filamentous_fungi_An_overview?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
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https://www.researchgate.net/publication/7705259_Enzyme_stabilization_by_glutaraldehyde_crosslinking_of_adsorbed_proteins_on_aminated_supports?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
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Considering the previous results, a comparison between the immobilization on MANAE 

and 0.5% (w/v) glutaraldehyde (further called Glut agarose) prepared with different agarose 

beads, i.e., 4, 6 and 10% of crosslinking, was carried out (Table 2). The expressed activity 

gradually increased by increasing the agarose crosslinking in the Glut derivative, whereas in the 

MANAE derivative the expressed activity decreased by increasing agarose crosslinking from 4 to 

6 or 10%. The low crosslinking level in the 4 BCL agarose results in larger pores, which contain 

higher concentration of reactive groups for the co-immobilization of the enzymes in the MANAE 

support. The higher quantity of weak ionic interactions were not enough to distort enzyme 

structure resulting in the higher expressed activities. In opposition, the lower degree of 

derivatization with glutaraldehyde and the consequent fewer covalent bonds in the 10 BCL 

agarose resulted in less distortion to enzyme structures and consequent higher expressed activities. 

The Glut derivative using 10% cross-linked agarose was that which resulted in the highest 

expressed activity levels, corresponding to 26.1, 100 and 42.5% for the xylanase, β-xylosidase and 

α-L-arabinofuranosidase, respectively.  

Based on previous observations, immobilization on the Glut support was followed by 

measuring the enzyme activities and protein in the supernatant during 16 h (Fig. 2). The enzymes 

were quickly immobilized on the support, i.e., after 30 min most of the enzyme activities had 

disappeared from the supernatant. After this period, immobilization proceeded at lower rate, with 

exception of the xylanase whose activity remained in the supernatant (≈ 20%) for the subsequent 

period. Immobilization of proteins also proceeded at lower rate and after 16 h, 20% of the proteins 

still remained in the supernatant. 

In sequence, three derivatives were prepared by carrying out immobilization for 4, 8 and 

16 h in order to verify the enzyme activities in the derivatives obtained after these three 

immobilization periods (Table 3). As previously observed in Fig. 2, immobilization yield in 

relation to protein and enzymatic activities increased by increasing the immobilization period, 

nevertheless the best result in terms of expressed activities was obtained with the derivative 

prepared by proceeding immobilization during 8 h (Table 3). These results indicated that 

enzyme–support reaction for more prolonged periods may be causing distortion of the enzyme 
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structures, resulting in activity loss. Thus, the selected support for the co-immobilization of the 

xylanase, β-xylosidase and α-L-arabinofuranosidase from P. janczewskii was agarose 10% 

crosslinking activated with MANAE cross-linked with 0.5% (v/v) glutaraldehyde and by carrying 

out immobilization at pH 7.0 for 8 h.  

In order to obtain covalent bonds from Schiff base formed between protein lysines and 

aldehyde groups of glutaraldehyde, the support was incubated in pH 8.5 and reduced with sodium 

borohydride. The pH increase and reduction in itself negatively influenced the enzymatic 

activities, i.e., after the procedure, xylanase and β-xylosidase activities were 50 and 90% reduced, 

respectively, and no α-L-arabinofuranosidase activity was detected on the support. Due to these 

results, the non-reduced Glut derivative was submitted to post-immobilization techniques (Table 

4), i.e., coating with PEI or dextran-aldehyde (and further reduced), and it was also submitted to a 

second round of cross-linking with glutaraldehyde (further reduced or not). Coating with the ionic 

polymer PEI had a strong negative influence and the three enzyme activities were totally depleted 

from the biocatalyst. Dextran-aldehyde coating and the maintenance of pH 7.0 during borohydride 

reduction resulted in residual activity corresponded to 66.9, 57.0 and 55.5% of those previously 

observed for the xylanase, β-xylosidase and α-arabinofuranosidase, respectively. When the 

derivative was submitted to a second round of glutaraldehyde crosslinking it presented residual 

activity of 39.6, 21.7 and 47.8% before, and 33.0, 7.7 and 25.9% after borohydride reduction, for 

the xylanase, β-xylosidase and α-L-arabinofuranosidase, respectively. If this latter derivative was 

coated with dextran-aldehyde and then reduced, the residual activity was even lower, 

corresponding to 15.8, 7.4 and 10.9% for the xylanase, β-xylosidase and α-L-arabinofuranosidase, 

respectively. 

When the Glut derivative coated with dextran (and reduced) was incubated in 0.005 M 

sodium phosphate buffer pH 7.0 containing high salt concentration (0.5 M), no enzyme activity 

was verified in the supernatant after 1 h incubation, indicating that the enzymes were covalently 

immobilized in the support. The proposed mechanism of enzyme immobilization on 

glutaraldehyde as a bifunctional support involves initial immobilization occurring by physical 

adsorption due to the presence of primary amino groups and then the covalent immobilization 
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rapidly occurs through the aldehyde portion of glutaraldehyde [34]. The use of neutral pH and 

completely oxidized aldehyde-dextran for coating the derivative surface not only preserved the 

enzyme activities during the reduction but may also provide rigidification of the enzyme 

structures due to stronger attachment of the enzymes to the support via covalent bonds. It may 

have the additional advantage of preventing subunit dissociation of enzymes [35], specially 

considering some xylanolytic enzymes, mainly β-xylosidases, which may be multimeric enzymes 

as cited by [31]. 

In the subsequent step, dextrans of different MW (6,000 40,000 and 100,000 Da; 100% 

degree of oxidation) were evaluated for coating the Glut derivative in order to improve enzyme 

activity and stabilization (Table 5). Coating the derivative with dextran MW 100,000 negatively 

influenced the immobilized enzymes and their activities were greatly reduced. Coating with 

dextran MW 6,000 resulted in similar xylanase and β-xylosidase activities and half of the α-L-

arabinofuranosidase activity was observed in relation to the derivative coated with dextran MW 

40,000. A previous stability study, however, demonstrated that the xylanase was more 

thermostable in the derivative coated with dextran MW 6,000 than with dextran MW 40,000 (as 

further presented). In this sense, derivatives coated with dextran MW 6,000 at 20 and 40% degree 

of oxidation (DO) were prepared and the expressed activities were compared to those from the 

derivative coated with the completely oxidized dextran. Among them, the lowest enzyme levels 

were observed in the derivative coated with dextran at 20% DO. Similar levels of xylanase and β-

xylosidase were observed in the derivatives coated with dextrans at 40 and 100% DO, while the α-

L-arabinofuranosidase activity was substantially higher in the derivative coated with dextran at 

40% DO (Table 5).  

 

3.2 Derivative characterization 

After selecting the most adequate support and optimizing immobilization conditions, the 

stability of the immobilized enzymes in the Glut derivative coated with dextrans MW 6,000 and 

40,000 Da (completely oxidized) was initially evaluated (Fig. 3). The immobilized xylanase was 

highly stabilized, retaining 80% of activity in the case of the derivative coated with dextran MW 

https://www.researchgate.net/publication/247238205_Stabilization_of_multimeric_enzymes_Strategies_to_prevent_subunit_dissociation?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
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6,000, and around 60% in the derivative coated with dextran MW 40,000. Similar activity was 

observed even after 24h incubation (shown up to 8 h). The β-xylosidase coated with dextran MW 

6,000 was only a little more stable than that coated with dextran 40,000; while for the α-L-

arabinofuranosidase no differences were observed. 

When the stability of the xylanase in the derivatives coated with dextran MW 6,000 at 

different DO was evaluated at different pH and 50 °C (Fig. 4), it was observed that coating the 

biocatalyst surface with this polymer stabilized the enzymes in all pH. Among the dextrans 

oxidized at different degrees, the derivative coated with dextran at 20% DO presented the lowest 

stability, intermediate levels were verified with dextran at 100% DO and the highest stability was 

observed with the 40% DO, especially in the pH range from 3.0 to 5.0, in which more than 85% of 

the activity was retained.  

Dextran coating as a post-immobilization technique has been widely used in enzyme 

technology for many different enzymes. When dextran at low degree of oxidation is used only 

some covalent attachments are formed between enzyme and the polymer, and the residual sugar 

chains remain attached rendering non-natural and large sugar moiety for the enzyme, i.e., the 

chemical glycosylation of a protein [36]. On the other hand, when the dextran is highly oxidized, 

it results in the formation of many covalent attachments between enzyme and support rigidifying 

enzyme structure, improving stabilization with consequent thermostabilization [25]. In this sense, 

some stabilization was achieved by glycosylation of the enzymes as observed for the xylanase 

from P. janczewskii, although it was not stabilized in a wide pH range. Additional covalent 

attachments rendered more stability to the enzyme at different pH, but when excessive it results in 

loss of activity as previously observed in Table 5. Thus, the best results were obtained with 

partially oxidized dextran, which corresponds to a mix of both glycosylation and an intermediate 

level of covalent attachments, rendering the highest stabilization to the co-immobilized enzymes. 

Considering the stability of the immobilized xylanase in different pH and also that the 

derivative coated with dextran at 40% DO expressed good levels of the three enzyme activities, 

the derivative coated with dextran MW 6,000 at 40% DO was the most promising, being further 

characterized and applied for arabinoxylans hydrolysis.  
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When the enzymatic reactions were carried out at different conditions, the immobilized 

xylanase and α-L-arabinofuranosidase presented optimum activity in pH between 2.0 and 4.0, and 

the β-xylosidase in pH 3.0 (Fig. 5a). The immobilized xylanase, α-L-arabinofuranosidase and β-

xylosidase presented optimum activity at 50, 65 and 80 °C, respectively (Fig. 5b). A shift in the 

pH for optimum activity is observed since the free xylanase presented optimum activity at pH 5.0 

and both free β-xylosidase and α-L-arabinofuranosidase were optimally active at pH 4.0. The 

optimum temperature of the xylanase was similar to that observed for the free-enzyme, while for 

the α-L-arabinofuranosidase and β-xylosidase the optimum temperature was increased by 5 °C in 

relation to those previously observed for the free enzymes [28,29]. 

The xylanase was highly thermostable retaining 83.1 and 70% of activity even after 24 h 

incubation at 60 and 70 °C, respectively (not shown). At 80 °C, its half-life was 1.7 h (Fig. 6). The 

β-xylosidase and the α-L-arabinofuranosidase were very stable up to 40 °C, retaining 53 and 

100% of the activity after 24 h incubation (not shown). At 50 °C, the half-lives of the β-xylosidase 

and α-L-arabinofuranosidase were 2.3 and 3.8 h (Fig. 6). The immobilized α-L-

arabinofuranosidase is therefore 23-fold stabilized in relation to its free counterpart [29]. The 

higher thermostability of the xylanase may be associated to its possible monomeric structure and 

lower MW that resulted in more attachments to the support and a more adequate coating by the 

dextran. 

 

3.3. Hydrolysis of arabinoxylans 

The synergistic action of xylanolytic enzymes, divided into homeosynergy, occurring 

between main-chain cleaving enzymes, and heterosynergy, occurring between main-chain 

cleaving and debranching enzymes, has been reported by using free- [37] and at a lesser extent by 

using immobilized enzymes  [8]. In this hydrolysis study a low viscosity wheat arabinoxylan 

(WAX) and oat spelt xylan (OSX) were used. WAX is a highly arabinosylated polymer containing 

41% arabinose and 59% xylose residues, according to the supplier. OSX holds a complex 

structure containing 81.4% xylose, 9.7% arabinose, 3.4% glucose, 1.2% galactose and 4.3% 

uronic acid residues [38]. The presence of substituents intensely limits the action of endo-
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xylanase, hampering the complete degradation of the polymers into their monomers. The 

functionality of the multienzymatic derivative was evaluated by hydrolyzing these substrates in 

pH 4.0 at 40 °C during 72 h (Fig. 7). As previously observed, at these conditions the xylanase and 

the α-L-arabinofuranosidase were very active, and the β-xylosidase operate with 65% of its 

maximum activity; at this temperature the enzymes do not operate with maximum activity, 

nevertheless, they present high stability to operate for prolonged cycles. The prepared biocatalyst 

was active and the similar hydrolysis profiles revealed that they equally degraded both substrates, 

independent of structure and composition. After 8 h, the reaction velocity is reduced probably due 

to the inhibitory effect of xylose or arabinose on enzyme activities since the enzymes were stable 

in the reaction conditions. The maximum xylose yield verified after 72 h corresponded to 43.5 and 

42.8% for WAX and OSX, respectively (Table 6).  

The application of a biocatalyst in industry requires the stability of immobilized enzymes 

through many operational cycles. After consecutive cycles of wheat arabinoxylan hydrolysis, the 

xylanase and the α-L-arabinofuranosidase were very stable retaining 86.6 and 88.0% of the 

activity even after 10 reuse cycles. The β-xylosidase activity decreased to 78.7 and 47% after five 

and ten cycles, respectively (Fig. 8a). The product release decreased to 80 and 60% after five and 

ten cycles, respectively, that may be mainly related to the reduction in the β-xylosidase activity 

during the cycles (Fig. 8b). 

 

4. Conclusions 

The simultaneous co-immobilization of the crude xylanase, β-xylosidase and α-L-

arabinofuranosidase from P. janczewskii was not such a simple procedure, but by adequately 

selecting the support and by optimizing parameters such as agarose cross-linking and 

immobilization period, the amount of each enzyme in the derivative can be considerably 

increased, allowing the preparation of a multienzymatic biocatalyst acting cooperatively in the 

complete degradation of complex substrates. By selecting conditions, the expressed activity of the 

xylanase, the most difficult enzyme to be immobilized, in the glutaraldehyde derivative can be 

two-fold higher than initially verified. By optimizing the dextran coating, the activity and the 
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stability of the enzymes could also be substantially increased. The mildly activated glutaraldehyde 

derivative coated with low molecular weight partially oxidized dextran is the most promising, 

presenting interesting properties, and offering advantages over the use of free enzymes. It is 

possible to obtain a very stable derivative, with improved temperature, pH and operational 

stability. Furthermore, the use of this multi-enzymatic derivative leads to the direct formation of 

xylose monosaccharide from different arabinoxylans, therefore representing an encouraging 

alternative for degradation of hemicelluloses since it can be successively reused thereby reducing 

the need for new enzyme loads and consequently reducing the process cost. 
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Figures 

Fig. 1. SDS-PAGE (8-18%) of the crude extracellular extract from P. janczewskii. Lane 1: 

standard proteins, phosphorylase b (94 kDa), bovine serum albumin (67 kDa), ovalbumin (43 

kDa), carbonic anhydrase (30 kDa), trypsin inhibitor (20 kDa) and α-lactalbumin (14.4 kDa); 

Lane 2: crude extracellular extract (50 μg). Modified from [14].  

Fig. 2. Time-course of total protein, xylanase, β-xylosidase and α-arabinofuranosidase from P. 

janczewskii co-immobilization on Glut agarose 10% crosslinking. Immobilization was carried out 

in 0.025 M sodium phosphate buffer pH 7.0 at 25 °C. Enzymatic activities were assayed in 0.05 

M sodium acetate buffer pH 5.0 at 25 °C. Initial protein (5.3 mg) and activities (xylanase – 64 U; 

β-xylosidase – 23 mU; α-L-arabinofuranosidase – 34 mU) in the supernatant were regarded as 

100%. Relative (%) protein (*), and xylanase (), β-xylosidase () and α-L-arabinofuranosidase 

() activities. 

Fig. 3. Thermostability of xylanase, β-xylosidase and α-L-arabinofuranosidase from P. 

janczewskii co-immobilized on MANAE-Glut derivative coated with MW 6,000 and 40,000 

dextrans (completely oxidized). Incubation was carried in 0.05 M sodium phosphate buffer pH 7.0 

at 50 °C. Enzymatic activities were assayed in 0.05 M sodium acetate buffer pH 5.0 at 25 °C. 

Initial activities were regarded as 100%. Full symbols: derivative coated with dextran MW 6,000. 

Empty symbols: derivative coated with dextran MW 40,000. Residual (%) xylanase (), β-

xylosidase  () and α-L-arabinofuranosidase () activities. 

Fig. 4. Stability in different pH of the xylanase from P. janczewskii immobilized on Glut 

derivative coated with dextran MW 6,000 at different degrees of oxidation. Incubation was carried 

for 4 h in 0.05 M glycine HCl buffer pH 3.0, 0.05 M sodium acetate buffer pH 4.0 and 5.0, and 

0.05 M sodium phosphate buffer pH 7.0, at 50 °C. Enzymatic activity was assayed in 0.05 M 

sodium acetate buffer pH 5.0 at 25 °C. Initial activities before incubation were regarded as 100%. 

Residual (%) activity in the derivatives coated with dextran at 20 (black), 40 (white), and 100% 

(grey) degree of oxidation.  

https://www.researchgate.net/publication/17737345_Cleavage_Of_Structural_Proteins_During_Assembly_Of_Head_Of_Bacteriophage-T4?el=1_x_8&enrichId=rgreq-6ac3a37740d970a83a6b02bffd24fc53-XXX&enrichSource=Y292ZXJQYWdlOzI5NzU4ODY4ODtBUzozMzk1NjcwNjk2Nzk2MjFAMTQ1Nzk3MDUwNjMxNA==
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Fig. 5. Influence of pH (a) and temperature (b) on the activity of xylanase, β-xylosidase and α-L-

arabinofuranosidase from P. janczewskii co-immobilized immobilized on Glut derivative coated 

with dextran MW 6,000 at 40% degree of oxidation. (a) Enzymatic activities were assayed at 25 

°C in 0.05 M glycine-HCl buffer pH 2.0 and 3.0, 0.05 M sodium acetate buffer pH 4.0 and 5.0, 

0.05 M sodium phosphate buffer pH 6.2 and 7.0 and 0.05 M Tris-HCl buffer pH 8.0. (b) 

Enzymatic activities were assayed 0.05 M sodium acetate buffer pH 4.0. Relative (%) xylanase 

(), β-xylosidase () and α-L-arabinofuranosidase () activities. 

Fig. 6. Thermostability of xylanase, β-xylosidase and α-L-arabinofuranosidase from P. 

janczewskii co-immobilized on Glut derivative coated with dextran MW 6,000 at 40% degree of 

oxidation. Incubation was carried out in 0.05 M glycine HCl buffer pH 3.0 at 50 °C for the β-

xylosidase and α-L-arabinofuranosidase, and at 80 °C for the xylanase. Enzymatic activities were 

assayed in 0.05 M sodium acetate buffer pH 4.0 at 25 °C. Initial enzyme activities were regarded 

as 100%. Residual (%) xylanase (), β-xylosidase () and α-L-arabinofuranosidase () 

activities. 

Fig. 7. Hydrolysis of wheat and oat spelt arabinoxylans by multienzymatic derivative of 

xylanolytic enzymes from P. janczewskii. Hydrolysis was carried out by incubating 0.05 g of Glut 

derivative coated with dextran MW 6,000 at 40% degree of oxidation with 10 mL of 0.5% (w/v) 

substrate prepared in 0.05 M sodium acetate buffer pH 4.0 at 40 °C. Xylose released (mg/mL) 

from oat spelt () and wheat () arabinoxylans.  

Fig. 8. Operational stability (a) and product release (b) from multienzymatic derivative of 

xylanolytic enzymes from P. janczewskii. Successive hydrolysis 1 h-cycles were carried out by 

incubating 0.05 g of Glut derivative coated with dextran MW 6,000 at 40% degree of oxidation 

with 10 mL of 0.5% wheat arabinoxylan prepared in 0.05 M sodium acetate buffer pH 4.0 at 40 

°C. (a) Enzymatic activities were assayed in 0.05 M sodium acetate buffer pH 4.0 at 25 °C. 

Enzymatic activities before the first cycle were regarded as 100%. Residual (%) xylanase (black), 

β-xylosidase (ligh grey) and α-L-arabinofuranosidase (dark grey) activities after five and ten 
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consecutive cycles. (b) Reducing sugars (%) released from the first (), fifth () and tenth () 

cycles. 
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Table 1 Co-immobilization of xylanase, β-xylosidase and α-L-arabinofuranosidase from P. 

janczewskii on different agarose-based supports. 

Derivative Condition/strategy 

Xylanase β-xylosidase 
α-L-

arabinofuranosidase 

Yield 
(%) 

Expressed 
activity 

(%) 

Yield 
(%) 

Expressed 
activity 

(%) 

Yield 
(%) 

Expressed 
activity 

(%) 

MANAE 

pH 7, 4h 53.4 20.0 100 58.5 100 18.0 

pH 8.5, overnight - - - - - - 

pH 7, 24h, sodium 
periodate treatment 

100 167.5 100 73.3 100 55.1 

Glutaraldehyde 
0.5% 

pH 7, 4h 63.2 20.8 100 76.2 100 22.4 

Glutaraldehyde 
10% 

pH 7, 4h 100 1.2 100 100 100 74 

PEI 1,300 0,5% pH 7, overnight 100 6.8 0 0 30 28.9 

Enzyme activities were assayed in 0.05 M sodium acetate buffer pH 5.0 at 25 °C. Initial loads: xylanase – 64 U; β-
xylosidase – 23 mU; α-L-arabinofuranosidase – 34 mU; proteins – 5.3 mg. Supports were prepared using agarose 
with 4% crosslinking.  
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Table 2 Co-immobilization of xylanase, β-xylosidase and α-L-arabinofuranosidase from P. 

janczewskii on different agarose beads MANAE and Glut supports. 

Derivative 
Agarose 

beads 
(% CL) 

Expressed activity (%) 

Xylanase β-xylosidase α-L-arabinofuranosidase 

MANAE 
4 20.0 58.5 18.0 
6 14.6 54.6 14.2 

10 14.0 54.0 14.0 
     

Glut 
4 20.8 76.2 22.4 
6 23.1 82.5 25.1 

10 26.1 100 42.5 
Immobilization was carried out in 0.025 M sodium phosphate buffer pH 7.0 for 4 h at 
25 °C. Enzyme activities were assayed in 0.05 M sodium acetate buffer pH 5.0 at 25 
°C. Initial loads: xylanase – 64 U; β-xylosidase – 23 mU; α-L-arabinofuranosidase – 
34 mU; proteins – 5.3 mg. CL – crosslinking. MANAE – monoaminoethyl-N-
aminoethyl, Glut – 0.5% (v/v) glutaraldehyde activated support.  
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Table 3 Co-immobilization of xylanase, β-xylosidase and α-L-arabinofuranosidase from P. 

janczewskii for different periods on Glut agarose 10% crosslinking. 

Incubation 
(h) 

Protein 
yield 
(%) 

Xylanase β-xylosidase α-L-arabinofuranosidase 

Yield  
(%) 

Expressed 
activity 

(%) 

Yield  
(%) 

Expressed 
activity (%) 

Yield  
(%) 

Expressed 
activity (%) 

4 78.1 79.8 26.1 94.3 100 85.4 42.5 

8 83.1 80.1 41.8 100 105.6 89.8 38.3 

16 84.3 81.7 11.2 100 61.5 98.2 23.5 
Immobilization was carried out in 0.025 M sodium phosphate buffer pH 7 at 25 °C. Enzyme activities were 
assayed in 0.05 M sodium acetate buffer pH 5.0 at 25 °C. Initial loads: xylanase – 64 U; β-xylosidase – 23 
mU; α-L-arabinofuranosidase – 34 mU; proteins – 5.3 mg.  
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Table 4 Post-immobilization strategies evaluated on co-immobilized xylanase, β-xylosidase and 

α-L-arabinofuranosidase from P. janczewskii on Glut agarose 10% crosslinking. 

Step  Residual activity (%)* 

First coating 
Sodium 

borohydride 
reduction 

Second 
coating 

Sodium 
borohydride 

reduction 

 
Xylanase 

β-
xylosidase 

α-L-
arabinofuranosidase 

PEI - - - 
 

0 0 0 

Dextran + - - 

 

66.9 57.0 55.5 

Glutaraldehyde 
- - -  39.6 21.7 47.8 
+ - -  33.0 7.7 25.9 
- Dextran +  15.8 7.4 10.9 

Immobilization was carried out in 0.025 M sodium phosphate buffer pH 7 at 25 °C. Enzyme activities were assayed in 
0.05 M sodium acetate buffer pH 5.0 at 25 °C. Step present (+) or absent (-). *In relation to the expressed activities of 
the derivative prepared by 8 h incubation (Table 3). 
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Table 5 Xylanase, β-xylosidase and α-L-arabinofuranosidase from P. janczewskii on Glut 

derivative coated with dextrans of different MW and degrees of oxidation 

MW 
(Da) 

DO 
(%) 

Expressed activity (%) 

Xylanase 
β-

xylosidase 
α-L-

arabinofuranosidase 
6,000 100 53.5 41.7 26.4 

40,000 100 66.9 57.0 55.5 

100,000 100 8.8 10.2 24.3 

6,000 
20 35 31.8 14.8 

40 58.8 58.7 60.4 
Enzyme activities were assayed in 0.05 M sodium acetate buffer pH 5.0 at 25 °C. 
MW – molecular weight; DO – degree of oxidation.  
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Table 6 Hydrolysis of wheat and oat spelt arabinoxylans by multienzymatic derivative of 

xylanolytic enzymes from P. janczewskii.  

Time 
(h) 

Xylose yield (%) 

WAX OSX 

0.25 0.8 1.2 
0.5 1.4 1.9 
1 2.3 2.9 
2 5.0 5.8 
4 9.2 9.5 
8 16.9 15.1 

24 28.9 26.8 
48 41.0 37.4 
72 43.5 42.8 

Hydrolysis was carried out by incubating 0.05 g of Glut derivative coated with 
dextran MW 6,000 at 40% degree of oxidation with 10 mL of 0.5% (w/v) 
substrate prepared in 0.05 M sodium acetate buffer pH 4.0 at 40 °C. WAX – 
wheat arabinoxylan; OSX – oat spelt xylan. 
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