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H2A monoubiquitination in Arabidopsis
thaliana is generally independent of LHP1
and PRC2 activity
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Abstract

Background: Polycomb group complexes PRC1 and PRC2 repress gene expression at the chromatin level in eukaryotes.
The classic recruitment model of Polycomb group complexes in which PRC2-mediated H3K27 trimethylation recruits
PRC1 for H2A monoubiquitination was recently challenged by data showing that PRC1 activity can also recruit PRC2.
However, the prevalence of these two mechanisms is unknown, especially in plants as H2AK121ub marks were
examined at only a handful of Polycomb group targets.

Results: By using genome-wide analyses, we show that H2AK121ub marks are surprisingly widespread in Arabidopsis
thaliana, often co-localizing with H3K27me3 but also occupying a set of transcriptionally active genes devoid of
H3K27me3. Furthermore, by profiling H2AK121ub and H3K27me3 marks in atbmi1a/b/c, clf/swn, and lhp1 mutants we
found that PRC2 activity is not required for H2AK121ub marking at most genes. In contrast, loss of AtBMI1 function
impacts the incorporation of H3K27me3 marks at most Polycomb group targets.

Conclusions: Our findings show the relationship between H2AK121ub and H3K27me3 marks across the A. thaliana
genome and unveil that ubiquitination by PRC1 is largely independent of PRC2 activity in plants, while the inverse is true
for H3K27 trimethylation.
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Background
Polycomb group (PcG)-mediated epigenetic marks con-
tribute to maintain the transcriptionally repressed state
of genes involved in important cellular and developmen-
tal processes in eukaryotes [1, 2]. PcG proteins are found
in two major protein complexes, Polycomb repressive
complex 2 (PRC2), which has histone H3 lysine 27
(H3K27) tri-methyltransferase activity [3], and PRC1,
which has histone H2A E3 ubiquitin ligase activity [4] as
well as other non-enzymatic functions critical for chro-
matin compaction [5].
Vertebrate PRC2 comprises EZH2 (or its closely

related EZH1), which is the catalytic subunit, EED,

SUZ12, and RBBP46 (or RBBP48) [6, 7]. Homologs of
these components are also found in Drosophila [6, 7]
and plants [8–10]. In Arabidopsis thaliana PRC2
encompasses the EZH2 homologs CURLY LEAF (CLF)
[11], SWINGER (SWN) or MEDEA (MEA) [12, 13], the
SUZ12 homologs EMBRYONIC FLOWER 2 (EMF2)
[14], VERNALIZATION 2 (VRN2) or FERTILIZATION
INDEPENDENT SEED 2 (FIS2) [15, 16], the EED
equivalent FERTILIZATION INDEPENDENT ENDO-
SPERM (FIE) [17], and the RBBP46/48 homolog SUP-
PRESSOR OF IRA 1 (MSI1) [18]. While CLF and SWN
are the catalytic subunits of the different combinational
PRC2s acting during sporophyte development [12],
MEA confers enzymatic activity to the complex during
gametophyte and early seed formation [19, 20].
The vertebrate PRC1 E3 monoubiquitin ligase module

comprises RING1B (or RING1A) and one of the six
Polycomb RING finger (PCGF) proteins, while the one
in Drosophila is constituted by dRing and Psc, Su(z)2, or
L(3)73 Ah [7, 21]. The E3 monoubiquitin ligase module
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can associate with PHC1/2/3 and CBX2/4/6/7/8 (Ph
and Pc, respectively, in Drosophila) to constitute ca-
nonical PRC1s or with other subunits to form variant
PRC1s [6, 7]. In A. thaliana the module includes one of
three AtBMI1s (AtBMI1A/B/C) and AtRING1A or
AtRING1B [22–24]. Besides these conserved subunits,
there are plant-specific proteins that participate in
PcG-mediated gene repression, playing a role that is
not yet well-defined [25, 26]. Such is the case of LIKE
HETEROCHROMATIN PROTEIN 1 (LHP1), which
has been proposed to be the functional equivalent to
vertebrate CBX proteins or Drosophila Pc due to its
ability to bind H3K27me3 [27, 28] and interact with
other PRC1 components [22, 29, 30]; however, it also
co-purifies with PRC2 [31, 32].
Since the identification of PcG proteins, an immense

amount of biochemical work has focused on under-
standing the PcG repression mechanism. A major issue
has been to determine the sequence of events. The re-
cruitment of PcG complexes to specific targets in ani-
mals has been widely thought to occur in two steps: first
PRC2 incorporates H3K27me3 at a specific gene, and
then the PRC1 complex is recruited by its ability to bind
to H3K27me3 to mediate H2A monoubiquitination [33].
This classic hierarchical model was also adopted by the
plant field despite very limited supporting evidence.
However, recent results indicate that PRC1 recruitment
may occur via H3K27me3-dependent and -independent
mechanisms [34] and, furthermore, that PRC1, in some
cases, recruits PRC2 [24, 35–37]. The prevalence of
these possible mechanisms is unclear, especially in
plants, as H2AK121ub marks have been examined at
only a handful of PcG targets and the interdependence of
PRC1 and PRC2 remains an unanswered key question.
Our genome-wide chromatin data in PcG mutants in

A. thaliana revealed that PRC2 activity and H3K27me3
marking do not act upstream of H2A monoubiquitina-
tion in the regulation of most genes, which strongly ar-
gues against the classic model for PcG mark deposition
as the prevailing mechanism. Furthermore, LHP1 is fully
dispensable for H2A monoubiquitination, indicating that
a non-canonical PRC1 is responsible for all H2AK121
monoubiquitination in A. thaliana and that this complex
can find target regions independently of H3K27me3. In
contrast, the activity of this non-canonical PRC1 is
required for H3K27me3 coverage at the majority of PcG
target loci since these display reduced levels of both
H2AK121ub and H3K27me3 in atbmi1a/b/c mutants.

Results and discussion
H2AK121ub marks are widely distributed in the A.
thaliana genome, often co-localizing with H3K27me3
To investigate the sequence of events in A. thaliana PcG
mark deposition, we first mapped the genome-wide

localization of H2AK121ub and H3K27me3 marks in
wild-type Columbia-0 (Col-0, WT) seedlings 7 days after
germination (DAG) by chromatin immunoprecipitation
followed by sequencing (ChIP-seq). We found that
H2AK121ub marks were surprisingly widespread in A.
thaliana as 14,088 genes were associated with these,
whereas 6843 were H3K27me3 marked (Additional file
1: Figure S1; Additional file 2: Dataset S1). Since the
number of H2AK121ub peaks was unexpectedly high,
two different peak-calling methods were employed,
which generated largely identical results (Additional file
1: Figure S2). Widespread localization of H2AK118ub
marks has also been recently reported in animals, where
the impact of this modification at most loci is not yet
understood [21]. Distribution analysis of H2AK121ub
and H3K27me3 peaks across the genome and metagene
analysis showed that both marks were generally targeted
to gene regions (Fig. 1a, b); however, H3K27me3
peaks were significantly longer than H2AK121ub
peaks (p value of 2.2 × 10–16 according to Wilcoxon
test), covering on average 1.7 kb and 0.6 kb, respectively
(Additional file 1: Figure S3). Using a random permutation
test, we found that the overlap of H2AK121ub and
H3K27me3 peaks with the promoter and different gene
regions was significant (Bejamini–Hochberg corrected p
values of the order of 10–3); however, while 80% of the
H2AK121ub-marked genes presented a peak overlapping
with their first exon (Fig. 1a), a similar percentage of
H3K27me3-marked genes presented a peak overlapping
with the promoter, 5′ UTR, first exon, and gene body
(Fig. 1a), indicating that the majority of H3K27me3 peaks
occupy genes spreading into their promoter regions
whereas H2AK121ub peaks remain centered around the
first exon.
We found that H2AK121ub and H3K27me3 peaks often

marked the same genes (H2AK121ub/H3K27me3; 4979
genes); however, a surprisingly high number of genes were
also exclusively marked with H2AK121ub (only-
H2AK121ub; 9109 genes) and a lower but considerable
number of genes were only marked with H3K27me3 (only-
H3K27me3; 1864 genes) (Fig. 1c, d; Additional file 2: Data-
set S1; Additional file 1: Figure S4). These three differently
marked subsets of genes have also been recently reported
in animals [21, 38]. To identify possible differences between
the two subsets of H2AK121ub-marked genes, we com-
pared H2AK121ub coverage at H2AK121ub/H3K27me3-
and only-H2AK121ub-marked genes (Additional file 1:
Figure S5). We found higher levels of H2AK121ub in gene
bodies of H2AK121ub/H3K27me3- compared to only-
H2AK121ub-marked genes (p value of 2.2 × 10–16 accord-
ing to Wilcoxon test), suggesting that H3K27me3 has an
effect on H2AK121ub distribution.
To determine the transcriptional states of these dif-

ferently marked genes, we analyzed their steady-state
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transcript levels by RNA-seq in WT at 7 DAG (Additional
file 2: Dataset S1; Additional file 1: Figure S6). Most of
H2AK121ub/H3K27me3 and only-H3K27me3 genes were
not expressed or displayed very low expression levels
(Fig. 2a), consistent with a repressive nature of these
marks. Gene Ontology (GO) analyses showed that
H2AK121ub/H3K27me3-repressed genes were enriched
for GO terms related to transcriptional regulation (Fig. 2b),

including different families of transcription factors
(Additional file 1: Figure S7), while only-H3K27me3-
repressed targets showed specific enrichment for floral
organ identity genes (Fig. 2c), among which the MADS
box transcription factors were significantly overrepre-
sented (Additional file 1: Figure S7). Surprisingly, 60%
of only-H2AK121ub genes were non-canonical PcG
targets as they were transcriptionally active and

Fig. 1 Genome-wide occupancy of H2AK121ub and H3K27me3 marks in A. thaliana. a Percentage of genes showing H2AK121ub and H3K27me3
peaks at annotated genic and intergenic regions in the A. thaliana genome. b Metagene plots of H2AK121ub and H3K27me3 coverage at target
genes. TES transcription end site, TSS transcription start site. c Overlap between H2AK121ub- and H3K27me3-marked genes in WT at 7 DAG. Asterisk
indicates significant overlap with p value <2.2 × 10−16 and odds ratio 1.74 according to Fisher’s exact test. d ChIP-seq genome browser views of
H2AK121ub and H3K27me3 occupancy at selected genes. Gene structures and names are shown underneath each panel. Arrows indicate TSSs
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predominantly involved in metabolic processes (Fig. 2a, d).
The remaining 40% were lowly or not expressed genes
involved in diverse cellular processes (Fig. 2a, e). A recent
report in humans presented a PRC1 variant that binds and
H2A monoubiquitinates genes involved in metabolism that
are devoid of H3K27me3 and have a transcriptionally
active chromatin profile [38]. A repressive role of H2A

monoubiquitination at these genes is possibly overridden
by the presence of other chromatin modifications involved
in transcription activation or PRC1 might have a role in
transcriptional activation, as has been previously pro-
posed [39]. In any case, the distribution of H2AK121ub
marks in the two subsets of only-H2AK121ub-marked
genes was similar (Additional file 1: Figure S5).

Fig. 2 Expression levels of differentially marked genes in A. thaliana WT seedlings at 7 DAG. a Percentage of genes belonging to different
expression level categories for only-H2AK121ub-, H2AK121ub/H3K27me3-, and only-H3K27me3-marked genes. Expression levels are indicated in
fragments per kilobase of exon per million fragments mapped (FPKM). b Gene ontology (GO) enrichment analysis of H2AK121ub/H3K27me3-
repressed genes (below 5 FPKM). c GO enrichment analysis of only-H3K27me3-repressed genes. d GO enrichment analysis of only-H2AK121ub-
marked expressed genes (at least 5 FPKM). e GO enrichment analysis of onlyH2AK121ub-repressed genes. Distribution of enriched GO terms into
the different “biological process” categories as defined by TAIR. P values are indicated by color, the number of genes per category is indicated on
the x-axes for b–e
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Neither PRC2 activity nor LHP1 function are a major
determinant for H2A monoubiquitination in A. thaliana
As the classic model of PcG repression in animals pro-
poses that PRC2-mediated H3K27me3 recruits PRC1
that in turn monoubiquitinates H2A [33], we examined
whether this model could be supported by experimental
data in A. thaliana. We compared the genome-wide
localization of H2AK121ub in clf28/swn7 double mu-
tants, in which H3K27me3 marks nearly disappear [40],
and WT seedlings at 7 DAG (Additional file 1: Figure S8).
A metagene plot of H2AK121ub coverage at target genes
showed a significant increase of H2AK121ub in mutants
compared to WT (Fig. 3a; p value of 2.2 × 10–16 according
to Wilcoxon test). The same result was obtained when
building the density heatmap of H2AK121ub marks in

WT and clf28/swn7 (Additional file 1: Figure S9). When
we analyzed the coverage at H2K121ub/H3K27me3 and
only-H2AK121ub genes separately (Fig. 3b, c), we found
that the global change of H2AK121ub levels in clf28/swn7
was due to a significant increase in the levels at
H2AK121ub/H3K27me3-marked genes (p value of
2.2 × 10–16 according to Wilcoxon test); nevertheless,
this global increase of H2AK121ub levels could not
be clearly appreciated by western blot analysis (Fig. 3g;
Additional file 1: Figure S9).
To further evaluate the extent of the increase in

H2AK121ub at target genes, we normalized peak read
coverage using robust linear regression computed over
common peaks with ±20% change (mutant versus WT)
in coverage measured as reads per million mapped

a b c

d

d h

e f

Fig. 3 H3K27me3 marks and LHP1 are dispensable for H2AK121ub marking in A. thaliana. a–c Metagene plot showing H2AK121ub coverage at a
all marked genes, b H2AK121ub/H2AK121ub/H3K27me3-marked genes,and c only-H2AK121ub-marked genes in WT and clf28/swn7 mutants. d–f
Metagene plot showing H2AK121ub coverage at d all marked genes, e H2AK121ub/H2AK121ub/H3K27me3-marked genes, and f only-H2AK121ub-
marked genes in WT and lhp1 mutants. g Western blot quantification of H2AK121ub levels normalized to H3 levels in clf28/swn7. Error bars represent
standard deviation among at least three biological replicates (see also Additional file 1: Figure S9). h Levels of H2AK121ub marks at H2AK121ub/
H3K27me3-marked genes in clf28/swn7 and lhp1 mutants compared to WT. Percentage of genes with different levels of the marks is indicated by the
shade of red (80–120% is considered WT levels)
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(RPM). This constitutes a variation of the MAnorm ap-
proach [41] (“Methods”; Additional file 1: Figure S10).
The normalized values were then used for quantitative
comparison. We found that despite the fact that most
H2K121ub/H3K27me3-marked genes showed unaltered
or even increased levels in clf28/swn7, there was also a
small percentage of genes displaying a considerable
reduction (Fig. 3h; Additional file 3: Dataset S2), which
was validated by ChIP-quantitative PCR (qPCR) analysis
(Additional file 1: Figure S11). These data reveal that
PRC2 activity is not required for establishing H2AK121ub
at most target genes; however, in the absence of this
activity the levels of these marks are not appropriately
maintained at some genes.
Since the binding of Pc to H3K27me3 marks has been

proposed to recruit PRC1 for H2A monoubiquitination
[33], we compared the profile of H2AK121ub marks in
lhp1 mutants and WT (Additional file 1: Figure S8). Meta-
gene plots of H2AK121ub coverage at all marked genes or
at H2K121ub/H3K27me3- and only-H2AK121ub-marked
genes separately did not show differences between lhp1
mutants and WT (Fig. 3d–f ). The same result was
obtained when comparing the density heatmap in WTand
lhp1 (Additional file 1: Figure S9). In agreement with this,
the levels at H2AK121ub peaks after normalization
(Additional file 1: Figure S10) were similar in lhp1
and WT (Fig. 3h; Additional file 4: Dataset S3). All
together, these data indicate that LHP1 is dispensable
for H2AK121ub marking in A. thaliana.

The levels of H2AK121ub and H3K27me3 are significantly
affected in atbmi1a/b/c mutants
AtBMI1 proteins were shown to be involved in H2A
monoubiquitination [22–24]; we therefore compared
H2AK121ub profiles in WT and atbmi1a/b/c triple
mutants at 7 DAG (Additional file 1: Figure S12). A
metagene plot and heatmap of H2AK121ub coverage at
target genes (Fig. 4a; Additional file 1: Figure S13)
showed that H2AK121ub levels were significantly
decreased in mutants compared to WT (p value of 2.2 ×
10–16 according to Wilcoxon test). A global reduction of
H2AK12ub marks was further supported by WB and
ChIP-qPCR analyses (Fig. 4g; Additional file 1:
Figures S13 and S14). Although both H2AK121ub/
H3K27me3- and only-H2AK121ub-marked genes dis-
played significantly decreased levels (Fig. 4b, c; p value of
2.2 × 10–16 for both), note that the marks were not
completely lost. In addition, the loss of H2AK121ub
marks observed in metagene plots was apparently smaller
than the one detected by WB analysis. This is in part
explained by technical limitations as libraries prepared
from atbmi1a/b/c mutants yielded less DNA and showed
reduced mappability (Additional file 1: Table S1),
which likely causes an underestimation of the loss of

H2AK121ub levels at peaks after normalization (see
“Methods”; Additional file 1: Figure S13). Nonetheless,
the in vivo H2A E3 monoubiquitin ligase activity in
animals resides in RING1A/B, while BMI1 stimulates
this activity [42]; hence, a similar scenario in A. thali-
ana may lead to differential sensitivity of H2AK121ub
sites to the loss of AtBMI1 function. To determine to
what extent the levels of H2AK121ub were dependent
on AtBMI1 activity, we quantified H2AK121ub levels at
peaks in the atbmi1a/b/c mutant compared to WT after
normalization (Fig. 4h; Additional file 5: Dataset S4; see
also “Methods” and Additional file 1: Figures S15 and S16).
Around 80% of H2AK121ub-marked genes showed
reduced levels of H2AK121ub at their associated
peaks in atbmi1a/b/c mutants (Fig. 4h; Additional
file 1: Figure S17) to clearly varying degrees, ranging
from less than 20% to 80% of WT levels (Fig. 4h).
Therefore, loss of AtBMI1 function impacts the incorpor-
ation of H2AK121ub marks to different degrees depend-
ing on the gene, suggesting that the stimulating activity of
AtBMI1 over AtRING1 is context-dependent.
Next, we examined whether H3K27me3 marking

was affected in atbmi1a/b/c mutants by comparing
H3K27me3 profiles in WT and mutant plants (Additional
file 1: Figure S12). A metagene plot and heatmap of
H3K27me3 coverage in WT and atbmi1a/b/c mutants
(Fig. 4d; Additional file 1: Figure S18) showed a significant
reduction in global H3K27me3 levels in the mutants (p
value of 2.2 × 10–16 according to Wilcoxon test), which
was confirmed by western blot analysis (Fig. 4g; Additional
file 1: Figure S18). A global reduction in levels of
H3K27me3 in atbmi1a/b/c was correlated with the
decrease of the marks at H2AK121ub/H3K27me3 genes
(Fig. 4e, f ). To further investigate the impact of the loss of
AtBMI1 function on H3K27me3 levels, we quantified the
changes of the levels at H3K27me3 peaks in atbmi1a/
b/c mutants (Fig. 4i; Additional file 1: Figures S19
and S20; Additional file 6: Dataset S5). Fifty percent
of H2AK121ub/H3K27me3 genes displayed, to some ex-
tent, decreased levels of H3K27me3 at their associated
peaks in the mutants (Fig. 4i). Furthermore, H3K27me3
peaks were severely reduced at some of these genes, indi-
cating that loss of AtBMI1 function affects the deposition
or the maintenance of H3K27me3 marks. We also found
that 10% of the genes exhibited increased levels of
H3K27me3 marks (Fig. 4i). Increased levels of H3K27me3
have been previously reported at some loci in atring1a/b
and atbmi1a/b double mutants [43]; however, it is not
known whether this is a consequence of unbalanced PcG
activities or an indirect effect of the global gene misregula-
tion experienced by these mutants [44]. Surprisingly,
around 20% of only-H3K27me3 genes showed decreased
or increased levels of H3K27me3 marks at peaks in atb-
mi1a/b/c mutants (Fig. 4i; Additional file 6: Dataset S5). It
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is possible that AtBMI1s target and affect these genes by
an H2AK121ub-independent mechanism given that H2A
monoubiquitination is dispensable for repression of some
PRC1 targets in animals, while other BMI-mediated func-
tions are still required [45, 46].

Levels of H3K27me3 and H2AK121ub are correlated
To ascertain if altered levels of H2AK121ub and
H3K27me3 at H2AK121ub/H3K27me3 genes in atb-
mi1a/b/c mutants reflect an interdependence of these
marks, we compared the number of H2AK121ub/
H3K27me3 genes that displayed decreased levels of
H2AK121ub with those with reduced levels of H3K27me3
in atbmi1a/b/c. Most of the genes showing decreased
levels of H3K27me3 were included in the subset of genes
with reduced H2AK121ub (Fig. 5a). To further examine
how H3K27me3 levels were correlated to H2AK121ub

levels, we partitioned H2AK121ub/H3K27me3 genes to
consecutive categories ranked by the percentage of
H2AK121ub marks at their associated peaks in mutants
compared to WT. Then, we determined the fraction of
genes in each category showing differential levels of
H3K27me3 in mutants. Genes displaying strongly de-
creased levels of H2AK121ub were also severely depleted
in H3K27me3 (Fig. 5b, c), whereas genes that maintained
H2AK121ub levels also kept higher levels of H3K27me3
(Fig. 5b, c). Taken together, these results indicate a re-
quirement of H2A monoubiquitination to establish and
maintain appropriate H3K27me3 levels.

Conclusions
Our findings show that LHP1 is not required for
H2AK121ub marking and that PRC2 activity is dispens-
able to establish H2AK121ub marks at most genes,

cba

fed

g h i

Fig. 4 H2AK121ub and H3K27me3 marks are reduced in atbmi1a/b/c mutants. a–c Metagene plot showing H2AK121ub coverage at a all marked
genes, b H2AK121ub/H3K27me3-marked genes, and c only-H2AK121ub-marked genes in WT and atbmi1a/b/c mutants. d–f Metagene plot showing
H3K27me3 coverage at d all marked genes, e H2AK121ub/H3K27me3-marked genes, and f only-H3K27me3-marked genes in WT and atbmi1a/b/c
mutants. g WB quantification of H2AK121ub and H3K27me3 levels normalized to H3 levels in WT and atbmi1a/b/c. Error bars represent standard
deviation among at least three biological replicates (see also Additional file 1: Figures S13 and S18). h, i Percentage of genes retaining different levels
of h H2AK121ub and i H3K27me3 marks at peaks in atbmi1a/b/c mutants. H2AK121ub levels are indicated by the shade of red and H3K27me3 levels by
the shade of blue (80–120% is considered WT levels)
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which argues against the classic hierarchical model for
PcG mark deposition as the prevailing sequence of
events in A. thaliana. Nevertheless, we found that
around 20% of H2AK121ub/H3K27me3-marked genes
showed to some extent decreased H2AK121ub levels in
the absence of PRC2 activity. It could be possible that
PRC2 activity is required to maintain appropriate
H2AK121ub levels at these genes. Alternatively, loss of
H2AK121ub might be a consequence of the transcrip-
tional activation of these genes. Moreover, we found that
AtBMI1 activity is required for establishing and main-
taining proper H3K27me3 levels at H2AK121ub/
H3K27me3 genes (Fig. 5d). According to this, H2A

monoubiquitination has been shown to promote
H3K27me3 [37]. However, the fact that H2AK121ub
coverage is more similar to that of H3K27me3 in
H3K27me3/H2AK121ub-marked genes than in only-
H2AK121ub genes suggests a positive feedback loop for
H2A monoubiquitination. Positive feedback loops for
generating PcG-repressed chromatin has been previously
proposed in animals [37]. Interestingly, loss of AtBMI1
function seems to have an effect on the levels of
H3K27me3 at some only-H3K27me3-marked genes,
which is a priori surprising but consistent with studies
showing that PRC1 ubiquitin-independent functions are
required for the repression of some targets in animals

d

Fig. 5 Levels of H3K27me3 and H2AK121ub marks are correlated. a Overlap between genes with reduced levels of H2AK121ub and H3K27me3
marks in atbmi1a/b/c mutants (<80% of WT levels). Asterisk indicates significant overlap with p value <2.2 × 10−16 and odds ratio of 7.95 according
to Fisher’s exact test. b Correlation of H2AK121ub and H3K27me3 levels in atbmi1a/b/c mutants. H2AK121ub-marked genes were partitioned to
consecutive categories ranked by the percentage of H2AK121ub marks at peaks in mutants compared to WT (category on the y-axis). The number
of genes in each category is indicated. The x-axis indicates the percentage of genes displaying different changes in H3K27me3 marks. Categories
for change in H3K27me3 levels are indicated by the shade of blue. c ChIP-seq genome browser views of H2AK121ub and H3K27me3 levels at
different genes in WT, atbmi1a/b/c, and clf28/swn7 mutants. Gene structures and names are shown underneath each panel. Arrows indicate
transcription start sites. d Proposed model for a requirement of PRC1 activity to establish H3K27me3 marks at H2AK121ub/H3K27me3 marked
genes. Although LHP1 interacts with PRC1, its function is not required for H2AK121 monoubiquitination
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[45, 46]. On the other hand, a recent report revealed that
the H2A deubiquitinases UBIQUITIN SPECIFIC PROTE-
ASE (UBP) 12 and UBP13 are needed for H3K27me3
marking and repression of a subset of PcG targets in A.
thaliana [47]. Similarly, Drosophila Calypso deubiquiti-
nase has been proposed to remove or balance H2A mono-
ubiquitination levels for appropriate repression [48, 49].
Therefore, it might be possible that H2AK121ub marks
are initially incorporated at only-H3K27me3 genes but
then removed.

Methods
Plant material and growth conditions
A. thaliana Col-0 wild type (WT), atbmi1a/b/c [24],
clf28/swn7 [40] and lhp1 (also named tfl2-2 [50]) mu-
tants were grown under long-day conditions at 21 °C on
MS agar plates containing 1.5% sucrose and 0.8% agar
for 7 days.

ChIP-seq and ChIP-qPCR
ChIP experiments were performed as previously described
[51]. Chromatin was extracted from 7-day-old whole
seedlings (150 seedlings). Anti-H2Aub (Cell Signaling
Technology, 8240S) and anti-H3K27me3 (Diagenode,
C15410069) antibodies were used for chromatin immuno-
precipitation. For ChIP-seq, two immunoprecipitations
from independent biological replicates were processed for
next-generation sequencing library preparation. All librar-
ies were prepared by the Ovation® Ultralow Library Sys-
tems (NuGEN) following the manufacturer’s instruction
using 80% of a typical ChIP as starting material. After
amplification for 16 PCR cycles, DNA of a size range
between 200 and 500 bp was purified from an agarose gel.
Amplification was confirmed by testing an aliquot of the
library before and after amplification by qPCR. Sequen-
cing was carried out as single-end 100-nucleotide reads
on an Illumina HiSeq by the Max Planck Genome Centre
in Cologne. For ChIP-qPCR, amplification was performed
using Sensi FAST SYBR & Fluorescein kit (Bioline) and an
iQ5 Biorad system. Samples were normalized to input
DNA prepared from a reverse cross-linked aliquot of
each chromatin preparation. qPCR data are shown as
the means of two replicates from a representative
experiment. Primers used for ChIP-qPCR are shown
in Additional file 1: Table S2.

Quality control and read mapping
Read quality of each sequenced sample was examined
using the software package FASTQC (http://www.bioinfor
matics.babraham.ac.uk/projects/fastqc/). No quality prob-
lem was detected in the sequenced samples. The A. thali-
ana genome sequence TAIR10 in fasta format and its
corresponding gene annotation in GTF format were down-
loaded from the data base Ensembl plants (http://

plants.ensembl.org/) release 23 and used as the reference
genome. Read mapping to the A. thaliana reference gen-
ome was carried out using the ultrafast, memory-efficient
short read aligner bowtie [52]; the parameters -v 2 –best
–strata -m 1 were used to allow at most two mismatches
and report only the best alignment when multiple ones
were found. High percentages of mapped reads were pro-
duced for each sample and no problems were detected
during the mapping process (Additional file 1: Table S1).
The bowtie output was stored in SAM format. SAM to
BAM format conversion, sorting, and indexing were per-
formed with the software package SAMtools [53].

Peak calling and annotation
The software package MACS2 [54] was used for the
identification of read-enriched regions or peaks. The
software tool SICER [55] was used to check the robust-
ness of our results for H2AK121ub. Indeed, 93.7% of the
peaks detected by MACS2 were also detected by SICER
(Additional file 1: Figure S2). A common input library
and default parameters were used for all samples. More
specifically, an adjusted p value according to Benjamini–
Hochberg of less than 0.01 and a fold change between 5
and 50 were chosen as the enrichment threshold. Con-
version to BED format and manipulation of BED files
were carried out using BEDTools [56]. Peak annotation
or the identification of genes associated with peaks was
performed with PeakAnalyzer [57] according to the
Nearest Downstream Gene (NDG) criterion. Specifically,
a peak was associated with a gene when it overlapped
any of the gene regions or when it was located at most
2 kb upstream of its transcription start site (TSS). A
gene was assumed to be marked when at least one peak
was found to be associated with it. H2AK121ub- and
H3K27me3-marked genes were identified in the WT
samples. Each replicate was analyzed separately and the
final set of marked genes was determined as those
detected in both replicates (Additional file 1: Figure S1).

Peak visualization
The Integrative Genome Viewer (IGV) [58] was used for
peak profile visualization. Read counts were RPKM
(reads per kilobase and million mapped reads) normal-
ized using the deepTools [59] utility bamCoverage with
a bin size of 10 bp. Scatter plots comparing RPKM nor-
malized peak values for each replicate show high similar-
ity and reproducibility between replicates (Additional file
1: Figures S1, S8, and S12). Metagene plots representing
the coverage of H2AK121ub and H3K27me3 marks were
generated using the Bioconductor R package ChIPpea-
kAnno [60] (http://bioconductor.org/packages/release/
bioc/html/ChIPpeakAnno.html). The significance of the
overlaps between H2AK121ub or H3K27me3 peaks and
A. thaliana gene regions (obtained from the
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Bioconductor R package TxDb.Athaliana.BioMart.plants-
mart28) was determined using the functions shuffle and
enrichPeakOverlap from the R Bioconductor package
chipseeker [61]. We generated 500 random shuffles of
H2AK121ub or H3K27me3 peaks to estimate the back-
ground null distribution of the overlap with the follow-
ing genomic regions: intergenic, promoter (2 kb
upstream of the TSS), 5′ UTR, first exon, gene body,
and 3′ UTR. P values were corrected for multiple testing
using the Benjamini–Hochberg precedure. Percentages
of genes showing H2AK121ub and H3K27me3 peaks at
annotated genic and intergenic regions in the A. thali-
ana genome were computed using the Bioconductor R
package GenomicRanges (http://bioconductor.org/pack-
ages/release/bioc/html/GenomicRanges.html). Heatmaps
representing the intensity of H2AK121ub and H3K27me3
marks around peak centers were generated using the Bio-
conductor R package ChIPpeakAnno [61]. RPKM and total
library size (reads per million reads sequenced (RPM)) nor-
malizations produced similar qualitative results with a
sharper apparent decrease in the case of total library
size normalization when comparing atbmi1a/b/c to
WT (Additional file 1: Figures S13 and S18).

Transcriptomic analysis by RNA sequencing
In order to analyze the expression levels of marked
genes, RNA-seq was performed in two biological repli-
cates for WT and atbmi1a/b/c mutant plants at 7 DAG.
The Qiagen RNAeasy minikit was used for RNA extrac-
tion following the manufacturer’s instructions. RNA
concentration and purity were tested using nanodrop-
photometric quantification (Thermo Scientific). The
TruSeq RNA Sample Prep Kit v2 Illumina was used for
library preparation following the manufacturer’s recom-
mendations. Sequencing of RNA libraries was carried
out with the Illumina HiSeq 2000 sequencer, yielding
an average of approximately 15 million 100-nucleotide
long paired-end reads for each sample. The high quality
of each sample was verified using the software package
FASTQC. The number of reads and concurrent pair
alignment rate per sequencing sample and scatterplots
of pairwise comparison between RNA-seq replicates are
shown in Additional file 1: Figure S6. Read mapping to
the A. thaliana TAIR10 reference genome, transcript as-
sembly, and differential expression were performed with
the software tools TopHat andCufflinks [62]. Differentially
expressed genes (DEGs) were selected according to the
false discovery rate (FDR) calculation performed by cuff-
diff, a tool from the cufflinks package. P values were
corrected for multiple testing using the Benjamini–
Hochberg procedure. The Bioconductor R package
cummeRbund (http://www.bioconductor.org/) was used
for result processing and visualization. An FDR of 0.05
was used for DEG selection. Gene expression was

measured in FPKM (fragments per kilobase of exon
and million mapped reads). A gene was assumed to be
expressed when its FPKM was higher than 5. Differen-
tially expressed genes were selected according to false
discovery rate calculation and a log-fold change cut-off
>|1| in atbmi1a/b/c when compared to Col-0 and a p
value <0.05.

Gene Ontology term and transcription factor family
enrichment analysis
The R Bioconductor package clusterProfiler [63] was used
for Gene Ontology (GO) term enrichment analysis apply-
ing the Singular Enrichment Analysis (SEA) algorithm.
The list of transcription factor families in A. thaliana was
downloaded from the plant transcription factor database
PlantTFDB 3.0 [64]. Transcription factor family enrich-
ment analysis in the sets of marked genes was performed
using Fisher’s exact test (Additional file 1: Figure S7).

Quantitative comparison of ChIP-seq samples
In order to quantitatively compare ChIP-enriched re-
gions (peaks) detected in WT to those in atbmi1a/b/c,
clf28/swn7, and lhp1 mutants a variant of the MAnorm
[41] approach was taken. MAnorm main assumption
states that the true intensities (estimated as read counts)
of most commons peaks between the two samples being
compared are identical and therefore the detected differ-
ences can be used to rescale (using robust linear regres-
sion) the intensities of all peaks; however, this does not
hold for atbmi1a/b/c since the intensities of most com-
mon peaks in these mutants are truly affected (Additional
file 1: Figure S15) as global levels of H2AK121ub are sub-
stantially decreased [24] (Fig. 4). Using all common peaks
for rescaling produced a bias that resulted in too few de-
tected peaks with decreased and too many with increased
levels in the mutants; for instance, genes like WUS, MAG-
PIE (MGP) KNUCKLES (KNU), or WOX12, which were
found to be upregulated in atbmi1a/b/c mutants (RNA-
seq data), displayed increased levels of H2AK121ub after
normalization. We therefore required peaks for which a
symmetric distribution was likely to estimate a correction
for the entire dataset. The set of common peaks serving as
a reference to build the rescaling model for normalization
were restricted to those common peaks exhibiting a
change of ±20% in RPKM data compared to WT since we
found that a reduction of 20% in the levels of H2AK121ub
already had a significant impact on gene expression in
atbmi1a/b/c mutants (Additional file 1: Figure S16). For
the comparison between atbm1a/b/c and the WT we
therefore constrained the set of peaks used for
normalization to those whose associated genes were not
differentially expressed. Moreover, a high rate of non-
significant changes were present in the peaks with a vari-
ation smaller than 20% whereas peaks with a reduction
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greater than 20% exhibited a high rate of significant
changes (Additional file 1: Figure S16). Applying this
modification, we found that WUS, MGP, KNU, and
WOX12 displayed decreased levels (Additional file 5:
Dataset S4), which is in line with ChIP-qPCR results
(Additional file 1: Figure S16), expression analysis, and
previously published results [24]. Additional file 1: Figures
S10, S15 and S19 show the selected common peaks used
for building the rescaling model and the fold change (M)/
mean intensities (A) of all peaks after normalization.
For the selection of differential peaks in atbmi1a/b/c,

clf28/swn7, and lhp1 compared to WT, each replicate
was analyzed separately. An adjusted p value cutoff of
0.05 was used and peaks were classified into different
groups. Peaks exhibiting less than 80% of the WT inten-
sity were assumed to have differentially reduced their
intensity whereas peaks exhibiting more than 120% of
the WT intensity were assumed to have differentially in-
creased their intensity. The final set of differential peaks
was taken as the intersection between the differential
peaks found in each replicate.
The annotation of differential peaks was performed

with PeakAnalyzer using the NDG criterion as described
previously. When several peaks were found to be associ-
ated with a gene, only the one exhibiting the biggest
decrease in the observed mark was taken into account.

Significance of Venn diagram overlaps
The significance of Venn diagram overlaps was analyzed
using Fisher’s exact test. Specifically, the function
fisher.test from the R package stats was used.

Western blot analysis
An aliquot of fixed chromatin after sonication was
boiled for 10 min in SDS-PAGE buffer. Proteins were
separated on 12% SDS-PAGE gel and transferred to a
PVDF membrane (Immobilon-P Transfer membrane,
Millipore) by semi-dry blotting in 25 mM Tris–HCl,
192 mM glycine, and 10% methanol. The following anti-
bodies were used: anti-H3K27me3 polyclonal antibody
(Diagenode, C15410069), anti-H2AUb (Cell-Signalling
Technology, 8240S), and anti-H3 (Agrisera, AS10 710).
Horseradish peroxidase-conjugated goat anti-rabbit anti-
body (Sigma-Aldrich, A0545) was used as secondary
antibody at 1/10,000 dilution. Chemiluminescence de-
tection was performed with ECL Prime Western Blotting
Detection Reagent (GE Healthcare Life Sciences) follow-
ing the manufacturer’s instructions.
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Additional file 1: Supplementary Tables and Figures. Table S1. Total
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Figure S2. Identification of H2AK121ub peaks. Figure S3. Genome wide
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function impacts H2AK121ub levels. Figure S18. ChIP-seq density heat-
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regions surrounding the TSS of target genes. Figure S19. H3K27me3
levels at H3K27me3 peaks in atbmi1a/b/c mutant compared to WT after
normalization with a modified MAnorm protocol. Figure S20. Loss of
AtBMI1 function impacts H3K27me3 levels. (PDF 1398 kb)
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