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Abstract 13	  

An analysis of Anisotropy of Magnetic Susceptibility was done on Aptian-14	  

Albian sediments from the Basque-Cantabrian basin. Thirty-nine sites were collected 15	  

from the halokinetic sequences of the Bakio, Bermeo, Guernica and Mungia diapirs; 28 16	  

sites were sampled close to diapirs and 11 sites far from the diapir edges. The magnetic 17	  

foliation is parallel to bedding, suggesting it reflects depositional and compaction 18	  

processes, whereas the orientation of magnetic lineation varies. Far from the diapir 19	  

edges, the magnetic lineation is interpreted as being related to the regional Pyrenean 20	  

compression. Close to diapir edges, the observed behaviour shows that diapirs, 21	  

predominantly formed by rigid ophites, have acted as buttress forming shadow areas at 22	  

their northern faces protected from the Pyrenean compression. The high sensitivity of 23	  

AMS allows considering it a very useful tool to distinguish deformation in halokinetic 24	  

sequences related to diapir growth and/or subsequent compression. 25	  

 26	  
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The full characterisation of strata adjacent to salt structures is fundamental in 31	  

exploration and exploitation of geologic reservoirs, despite they often appear hidden in 32	  

seismic lines and good outcrop examples are scarce. Deformation studies in these strata 33	  

have been mostly based on the analysis of mesoscale structures from outcrop examples 34	  

(e.g. Rowan et al., 1999, 2003; Giles and Rowan, 2012; Hearon et al., 2015; Poprawski 35	  

et al., 2014; Alsop et al., 2015, 2016). In this work, we propose the use of the 36	  

Anisotropy of Magnetic Susceptibility (AMS) to analyse the deformation of salt-related 37	  

synkinematic strata. This use is important since it can give information even in absence 38	  

of strain markers and/or poorly developed mesoscale brittle structures. It can be also 39	  

applied to subsurface diapirs as AMS data can be reoriented to geographic coordinates 40	  

using paleomagnetic data. 41	  

AMS represents a powerful tool for geologists, as it gives information related to 42	  

the petrofabric of rocks. In structural studies, it represents a recognised indicator of 43	  

deformation (e.g. Hrouda, 1982), even in very subtle deformed rocks which lack strain 44	  

markers (e.g. Kissel et al., 1986). Applied to salt tectonics, AMS data obtained from 45	  

rocks outcropping in the interior of salt structures can give information in relation to 46	  

diapiric flow or internal deformation (Smíd et al., 2001; Soto et al., 2014; Santolaria et 47	  

al., 2015). We have selected several diapirs, in the Basque-Cantabrian basin, which 48	  

display well-exposed halokinetic sequences and suitable rocks for AMS analysis, to 49	  

study the power of this approach in such geological settings. 50	  

 51	  

Geological setting 52	  

 53	  

The study area is located in the northern margin of the Basque-Cantabrian basin, 54	  

nowadays part of the southern Eurasian plate (Fig. 1). The Basque-Cantabrian basin was 55	  
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developed during the Mesozoic Pyrenean rift associated with the opening of the North 56	  

Atlantic Ocean and Bay of Biscay (García-Mondéjar, 1996). From the Late Cretaceous, 57	  

the African plate began to drift northwards conditioning the convergence between Iberia 58	  

and Europe and the inversion of the Basque-Cantabrian basin in the context of the 59	  

Pyrenean orogeny (Gómez et al., 2002) (Fig. 1).  60	  

The study area is characterised by Triassic to Cenomanian rocks deformed by a 61	  

large WNW-ESE fold locally pierced by several salt diapirs (Bakio, Bermeo, Guernica 62	  

and Mungia diapirs) (Cuevas and Tubia, 1985) (Figs. 1 and 2). These diapirs are 63	  

composed of Triassic evaporites, red clays and basic subvolcanic rocks (ophites) and 64	  

flanked by Jurassic to Cretaceous materials. The ophites constitute their caprock and 65	  

due to their high resistance to erosion dominate the outcrops (Fig. 2). They are flanked 66	  

by Aptian-Albian syn-diapiric rocks organised in sequences limited by angular 67	  

unconformities becoming conformable as distance to the diapir edges increases. These 68	  

sequences are characterised by lateral facies variations and mass-transported deposits 69	  

created at the diapir roofs, typical of halokinetic hooks and wedges triggered by diapir 70	  

growth (Ferrer et al., 2014; Poprawski et al., 2016; Roca et al., 2016). The geometry of 71	  

these halokinetic sequences was not modified during the subsequent Pyrenean 72	  

compression with the exception of the NNW-SSE folds located to the South of the 73	  

Bakio diapir and a slight E-W folding to the West of the Bermeo diapir (Fig. 2). The 74	  

Pyrenean compression inverted the northern part of the Basque-Cantabrian basin by 75	  

means of north-directed thrusts that propagated from South to North and the 76	  

development of a cleavage mostly oriented E-W to ENE-WSW in the study area (e.g. 77	  

Gómez et al., 2002) (for example Fig. 3, site BK01). Locally, as in site BK03, cleavage 78	  

together with faults and tension gashes are associated to syn-diapiric layer-parallel slip 79	  
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of a thick bed of breccias with irregular base above marls occurred during syn-diapiric 80	  

drape folding (Fig. 3). 81	  

 82	  

Sampling and laboratory analysis 83	  

 84	  

Thirty-nine sites (6 to 12 cores per site) of Aptian-Albian marls, marly limestones, 85	  

fine sandstones and lutites were analysed by means of low-field AMS measured at room 86	  

temperature. All sites were collected from halokinetic sequences related to the Bakio, 87	  

Bermeo, Guernica and Mungia diapirs (Fig. 2). Twenty-eight sites were sampled close 88	  

to diapir edges (sites located less than 1 km from the diapir walls except sites BK15 and 89	  

BK59 situated between two diapirs and further from their walls, and considered related 90	  

to Bermeo diapir) and 11 far from that (Table 1). The AMS analysis was done using a 91	  

KLY3 from Zaragoza’s University. Data were processed using Anisoft 4.2 (Chadima 92	  

and Jelinek, 2009) to obtain the directional and tensor data (where Kmax, Kint and Kmin 93	  

are the maximum, intermediate and minimum principal axes of the magnetic ellipsoid, 94	  

respectively) and the parameters defined by Jelinek (1981), the corrected anisotropy 95	  

degree Pj and the shape parameter T, ranging from -1 (prolate ellipsoid) to +1 (oblate 96	  

ellipsoid).  97	  

Low-temperature AMS (LT-AMS) of 5 representative sites (6 samples per site) 98	  

was measured to analyse the contributions from paramagnetic and ferromagnetic (s.l.) 99	  

minerals to the total AMS and assess the significance of the low-field AMS. This was 100	  

measured following the method proposed by Parés and van der Pluijm (2002). 101	  

Additionally, three types of experiments were performed to characterise the 102	  

ferromagnetic (s.l.) minerals: (1) thermal demagnetization of the natural remanent 103	  

magnetization (NRM) of all samples using the thermal demagnetisers TSD-1 104	  
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(Schonstedt) and MMTD-80 (Magnetic Measurements) and a superconducting rock 105	  

magnetometer SRM 755R (2G), (2) isothermal remanent magnetisation (IRM) 106	  

acquisition up to 1 T and three-axis IRM (in fields of 1.2, 0.3 and 0.1 T) thermal 107	  

demagnetisation as in Lowrie (1990) using an IM10-30 pulse magnetiser (ASC 108	  

Scientific), a TSD-1 thermal demagnetiser and a magnetometer JR6A (Agico), all 109	  

measured in the Paleomagnetic Laboratory of Barcelona (CCiTUB-CSIC), and (3) K–T 110	  

curves of selected samples using a KLY3. 111	  

 112	  

Results 113	  

 114	  

Magnetic properties and ferromagnetic (s.l.) mineralogy 115	  

 116	  

The bulk magnetic susceptibility (Km) of the studied rocks ranges from 50 to 117	  

412 x 10-6 SI (Table 1). Most magnetic ellipsoids are oblate and the corrected 118	  

anisotropy degree Pj is low (Pj≤1.1), typical of weakly deformed sediments. A 119	  

significant correlation between Pj and lithology is observed, showing variable Pj values 120	  

in a wider range between 1 and 1.1 in marls and fine sandstones, and values between 1 121	  

and 1.03 in marly limestones (Fig. 4). Km, Pj and T parameters do not show any 122	  

significant variation related to distance of sites to diapir edges (Fig. 4). 123	  

K–T curves display a concave-hyperbolic shape in its initial part indicating a 124	  

paramagnetic behaviour up to 300-400ºC (Fig. 5). Thermal demagnetisation of three-125	  

axis IRM shows the predominance of low coercivity minerals (< 0.1-0.3 T) and the 126	  

complete demagnetisation below 590 °C in all samples (Fig. 5). Maximum unblocking 127	  

temperatures of the NRM demagnetisation range between 480 and 550ºC (Fig. 5). 128	  

Altogether it points to the occurrence of magnetite as the main ferromagnetic (s.l.) 129	  
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phase. Although the formation of new magnetic phases upon heating obscures some of 130	  

the thermomagnetic experiments, the main decrease in magnetic susceptibility below 131	  

590 °C also supports the occurrence of magnetite. Thermal demagnetisation of three-132	  

axis IRM reveals an additional and progressive IRM drop below 350 °C (Fig. 5) that 133	  

might be attributed to the occurrence of either pyrrhotite and greigite (Larrasoaña et al., 134	  

2007) or maghemite (Liu et al., 2005). The increase in bulk susceptibility at low 135	  

temperature with respect to its value at room temperature is similar in all samples, being 136	  

the LT/RT ratio between 1.7 and 3.1 (Fig. 6), regardless of lithology or distance of sites 137	  

to diapir edges. These LT/RT ratios indicate the predominance of paramagnetic 138	  

minerals controlling the total AMS, which represent good markers of rock petrofabric 139	  

(e.g. Oliva-Urcia et al., 2009). 140	  

 141	  
Magnetic fabric  142	  

 143	  

 The good correspondence between axes of LT and RT-AMS magnetic ellipsoids 144	  

corroborates the dominance of paramagnetic minerals to the total AMS (Fig. 7), as LT-145	  

AMS amplifies the contribution of paramagnetic minerals (Parés and van der Pluijm, 146	  

2002). Most magnetic ellipsoids show a well-defined magnetic foliation parallel to 147	  

bedding with Kmin grouped and perpendicular to bedding. The magnetic lineation, 148	  

defined by Kmax, is contained in the bedding plane in most sites (Table 1), but five sites 149	  

do not have a well-defined magnetic lineation (sites BK01, BK10, BK20, BK54 and 150	  

BK55; where e12>45º). Site BK03 presents a prolate magnetic ellipsoid and a magnetic 151	  

foliation that does not coincide neither with bedding nor cleavage (see Fig. 3) and has 152	  

been discarded for further structural interpretations.  153	  

 In sites located far from the diapir edges, the magnetic lineation shows a 154	  

dominant WSW-ENE to E-W orientation. Close to diapir edges, however, the 155	  
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orientation of the magnetic lineation varies strongly depending on site location (Figs. 8 156	  

and 9). In the southeastern edge of the Bakio diapir, the magnetic lineation is oriented 157	  

parallel to the diapir walls (Fig. 9); it shows a preferred NE-SW orientation in sites 158	  

located in the northern sector of its eastern edge and an ENE-WSW orientation in sites 159	  

located in the southern sector of the same edge. Close to the Bermeo diapir, site BK22 160	  

shows its magnetic lineation parallel to the E-W orientation of this structure and sites 161	  

BK19 and BK16, BK57 and BK58, located around this diapir, show a WNW-ESE and 162	  

ENE-WSW trend, respectively. Sites BK15 and BK59, considered related to Bermeo 163	  

diapir and located between the Bermeo and Guernica diapirs, show a roughly N-S trend 164	  

for the magnetic lineation. And the magnetic lineation orientation of site BK61 is 165	  

parallel to the Guernica diapir wall (Fig. 9). A remarkable feature is that sites located at 166	  

the northern edges of diapirs have magnetic lineation oriented perpendicular or highly 167	  

oblique to diapir walls. These orientations are A) roughly N-S (sites BK51 and BK62 in 168	  

Bakio diapir and, BK15 and BK59 in Bermeo diapir), B) NE-SW (site BK28 in Bermeo 169	  

diapir) and C) NW-SE (site BK27 in Bakio diapir) contrasting with the orientation 170	  

shown by sites located at thesouthern edges of the diapirs. All sites without a defined 171	  

magnetic lineation (BK01, BK10, BK20, BK54 and BK55) are also located on the 172	  

northern sides and close to diapirs (Fig. 9). 173	  

 174	  

Discussion 175	  

 176	  

The magnetic foliation of all sites, except for site BK03, is parallel to bedding 177	  

and has been interpreted related to depositional and compaction processes. On the 178	  

contrary, the orientation of the magnetic lineation varies through the studied area and 179	  

has been interpreted as controlled by tectonic processes. Far from the diapir edges, the 180	  
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magnetic lineation shows a WSW-ENE to E-W trend (Fig. 8). We interpret it as related 181	  

to the N-S Pyrenean compression. This interpretation is justified as a cleavage 182	  

associated with the Pyrenean orogeny is observed in the studied area. Formation of 183	  

cleavage and/or incipient cleavage is able to reorient a previous magnetic fabric (Soto et 184	  

al., 2007; Oliva-Urcia et al., 2013). Sedimentary processes triggering the magnetic 185	  

lineation acquisition can be discarded, as its orientation does not coincide neither with 186	  

paleocurrents (turbidites were sourced in the North, but they were driven by the diapir 187	  

relief) nor with slumping (triggered by the diapir growth) directions detected in the 188	  

Bakio diapir by Poprawski et al. (2014) (Fig. 2). 189	  

Close to the diapir edges, two different types of behaviour are observed (Fig. 9). 190	  

Sites located on the southern sides of diapirs show a magnetic lineation parallel to the 191	  

diapir walls. We interpret the magnetic lineation observed at the southern walls 192	  

associated to the Pyrenean compression stresses deviated around the diapirs. These 193	  

diapirs are mainly composed of hard subvolcanic rocks (ophites) that act as a buttress 194	  

hinding the northward propagation of deformation and producing stress perturbations 195	  

able to reorient the magnetic lineation parallel to the diapir walls (Fig. 9). On the 196	  

northern sides of diapirs, however, the magnetic lineation is either perpendicular/highly 197	  

oblique to the diapir walls or could not be defined. In this case, we interpret the 198	  

magnetic lineation associated to the outer-arc extension occurred during salt rise (e.g. 199	  

Giles and Rowan, 2012) (see Fig. 10). Magnetic lineation in extensional scenarios 200	  

coincides with the stretching direction (e.g. Mattei et al., 1997), therefore, it is expected 201	  

that outer-arc extension related to salt rise also orients the magnetic lineation parallel to 202	  

the extensional direction which would be perpendicular to the salt wall ridge (Fig. 10). 203	  

The occurrence of sites without defined magnetic lineation and with magnetic lineation 204	  

acquired during Mesozoic diapir growth points to the existence of areas (“shadow 205	  
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area”) protected from the subsequent Cenozoic Pyrenean compression at the northern 206	  

edges of the diapirs due to the presence of rigid ophites (Fig. 9). This work highlights 207	  

the potential of AMS studies applied to halokinetic sequences to characterise their 208	  

outer-arc deformation and so, identifying the trend of the diapir edges. It also indicates 209	  

that caution is required in interpreting magnetic lineations from halokinetic sequences if 210	  

subsequent tectonic events are present. 211	  

 212	  

Conclusion 213	  

 214	  

 The application of AMS to syn-diapiric overburden rocks highlights its potential 215	  

to study deformation in halokinetic sequences related to passive salt rise. Aptian-Albian 216	  

turbiditic series from the Basque-Cantabrian basin have been analysed. Paramagnetic 217	  

minerals dominate the total AMS validating AMS results in terms of reflecting the 218	  

petrofabric of the studied rocks. The observed magnetic foliation is parallel to bedding 219	  

and the orientation of the magnetic lineation variable and related to different 220	  

deformation processes. Far from the diapir edges, magnetic lineation is related to the 221	  

Cenozoic Pyrenean compression which propagated from South to North. Close to the 222	  

diapirs, it shows the effect of diapirs filled with ophites as rigid bodies deflecting 223	  

Pyrenean compression at their southern faces and protecting Mesozoic syn-diapiric 224	  

deformation at their shadow areas located to the North. 225	  
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Figure captions 330	  

 331	  

-Figure 1. Location of the study area in the frame of the Basque-Cantabrian basin, 332	  

northern Spain, and cross-section across the Basque-Cantabrian basin (modified from 333	  

Pedreira et al., 2007). 334	  

-Figure 2. Geological map of the study area showing bedding plane data from field 335	  

work and from EVE (1991, 1992, 1993a, 1993b), location of sites and paleocurrent 336	  

directions from Poprawski et al. (2014). 337	  

-Figure 3. In situ magnetic ellipsoids of sites BK01 and BK03 showing their 338	  

relationship with bedding and cleavage planes. Lower-hemisphere equal area 339	  

stereoplots. 340	  

-Figure 4. Pj-T graphs in function of different lithologies indicating sites sampled close 341	  

or far from the diapir edges (circle and square symbols, respectively). 342	  

-Figure 5. Representative examples of rock magnetic experiment results. (a-d) 343	  

Thermomagnetic curves in argon atmosphere. Heating and cooling curves are in red and 344	  

blue, respectively. Insets show enlarged heating curves. (e, f) Thermal progressive 345	  

demagnetisation of the natural remanent magnetisation (NRM). (g, h, i) Three-axes 346	  

IRM demagnetisation as in Lowrie (1990). 347	  

-Figure 6. Ratio between the magnetic susceptibility (Km) at low and room temperature 348	  

(LT/RT) where LT/RT=3.8 corresponds to perfect paramagnetic behaviour (Lüneburg 349	  

et al., 1999). 350	  

-Figure 7. Stereoplots of the RT-AMS (left), LT-AMS (middle) and T–Pj diagrams 351	  

(right) differentiating the RT- and LT-AMS values for each site. Confidence ellipses for 352	  

AMS principal axes are shown. Lower-hemisphere equal-area stereoplots after bedding 353	  

tilt correction. 354	  
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-Figure 8. Stereoplot showing Kmax (magnetic lineation), density plot and rose diagram 355	  

after bedding tilt correction for sites located far from the diapir edges and for sites 356	  

located close to Bakio and Bermeo diapirs. Lower-hemisphere equal area stereoplot. 357	  

-Figure 9. Geological map of the study area showing the magnetic lineation (Kmax) after 358	  

bedding tilt correction and magnetic lineation trajectories. Magnetic lineation of sites 359	  

located close to diapir edges is represented in red, whereas black lines represent 360	  

magnetic lineation of sites located far from the diapir edges. Sites BK01, BK10, BK20, 361	  

BK54 and BK55 do not show defined magnetic lineation and site BK03 has been 362	  

discarded for further structural interpretations (see text for further explanation). 363	  

Magnetic fabric acquired during or shortly after the deposition syn-diapiric rocks is only 364	  

observed at the shadow areas located on the northern faces of diapirs (see text for 365	  

further explanation).  366	  

-Fig. 10. Active/inactive outer-arc deformation model related to salt rise in halokinetic 367	  

sequences. The main stretching direction at the active stretching area is perpendicular to 368	  

the salt wall ridges. The analysis of inactive stretched areas of rocks previously placed 369	  

in the arching salt wall roof reveals that magnetic lineation would be also oriented 370	  

perpendicular to the salt wall ridge in protected areas (i.e. where subsequent Pyrenean 371	  

compression is not able to reorient the magnetic fabric). 372	  

 373	  

Table captions 374	  

 375	  

-Table 1. Site means of magnetic parameters measured at room temperature. 376	  

 377	  

 378	  
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