Article

Potassium Disorder in the Defect Pyrochlore KSbTeO_{6} : A Neutron Diffraction Study

José Antonio Alonso ${ }^{1, *}$, Sergio Mayer ${ }^{2}$, Horacio Falcón ${ }^{2}$, Xabier Turrillas ${ }^{3,4}$ and María Teresa Fernández-Díaz ${ }^{5}$
1 Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas., Cantoblanco, E-28049 Madrid, Spain
2 Nanotech (Centro de Investigación en Nanociencia y Nanotecnología), Universidad Tecnológica Nacional-Facultad Regional Córdoba, 5016 Córdoba, Argentina; sergiomayer91@gmail.com (S.M.); hfalcon@frc.utn.edu.ar (H.F.)
3 Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Bellaterra, E-08193 Barcelona, Spain; turrillas@gmail.com
4 ALBA Synchrotron, Cerdanyola del Vallès, E-08290 Barcelona, Spain
5 Institut Laue Langevin, BP 156X, F-38042 Grenoble, France; ferndiaz@ill.eu
* Correspondence: ja.alonso@icmm.csic.es; Tel: +34-91-334-9071; Fax: +34-91-372-0623

Academic Editors: Helmut Cölfen and Silvina Pagola
Received: 25 November 2016; Accepted: 26 December 2016; Published: 13 January 2017

Abstract

KSbTeO}_{6}\) defect pyrochlore has been prepared from $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}, \mathrm{Sb}_{2} \mathrm{O}_{3}$, and 15% excess TeO_{2} by solid-state reaction at $850^{\circ} \mathrm{C}$. Direct methods implemented in the software EXPO2013 allowed establishing the basic structural framework. This was followed by a combined Rietveld refinement from X-ray powder diffraction (XRD) and neutron powder diffraction (NPD) data, which unveiled additional structural features. KSbTeO_{6} is cubic, $a=10.1226(7) \AA$, space group $F d \overline{3} m, \mathrm{Z}=8$ and it is made of a mainly covalent framework of corner-sharing $(\mathrm{Sb}, \mathrm{Te}) \mathrm{O}_{6}$ octahedra, with weakly bonded K^{+}ions located within large cages. The large K-O distances, 3.05(3)-3.07(3) \AA, and quite large anisotropic atomic displacement parameters account for the easiness of K^{+}exchange for other cations of technological importance.

Keywords: pyrochlores; $\mathrm{AB}_{2} \mathrm{O}_{6} ; \mathrm{ASbTeO}_{6}$; neutron powder diffraction; ionic diffusion

1. Introduction

Recently, the defect pyrochlore oxide $\left(\mathrm{H}_{3} \mathrm{O}\right) \mathrm{SbTeO}_{6}$ has been described as an excellent proton conductor [1,2], showing a conductivity (σ) of $10^{-1} \mathrm{~S} \cdot \mathrm{~cm}^{-1}$ at $30^{\circ} \mathrm{C}$ under saturated water vapor partial pressure, matching the performance of Nafion ${ }^{\odot}$ as proton conductor for low-temperature fuel cells. Among the most promising candidates to replace Nafion, the so-called antimonic acids (of general stoichiometry $\mathrm{HSbO}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$ or $\mathrm{Sb}_{2} \mathrm{O}_{5} \cdot \mathrm{nH}_{2} \mathrm{O}$) show a relatively high proton conductivity of $\sim 10^{-4} \mathrm{~S} \cdot \mathrm{~cm}^{-1}$ at room temperature (RT) [3], and some yttrium-doped derivatives reach conductivities as high as $10^{-3} \mathrm{~S} \cdot \mathrm{~cm}^{-1}$ [4]. An even larger σ value of $10^{-1} \mathrm{~S} \cdot \mathrm{~cm}^{-1}$ at $30^{\circ} \mathrm{C}$ under saturated water vapor partial pressure was described by Turrillas et al. [5], for an original derivative of the antimonic acid obtained by partial replacement of Sb by Te , giving rise to a well-defined oxide with pyrochlore structure and composition $\left(\mathrm{H}_{3} \mathrm{O}\right) \mathrm{SbTeO}_{6}$ [5]. The pyrochlore structure is very appealing while searching for materials of high ionic conductivity, since its open framework containing three-dimensional interconnected channels enables $\mathrm{H}_{3} \mathrm{O}^{+}$ion diffusion. The general crystallographic formula of pyrochlore oxides is $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{O}_{6} \mathrm{O}^{\prime}$, consisting of a covalent $\mathrm{B}_{2} \mathrm{O}_{6}$ network of BO_{6} corner-sharing octahedra with an approximate $\mathrm{B}-\mathrm{O}-\mathrm{B}$ angle of 130°, and the $\mathrm{A}_{2} \mathrm{O}^{\prime}$ sub-lattice forming an interpenetrating network which does not interact with the former. It is well known that
both A cations and O^{\prime} oxygens may be partially absent in defect pyrochlores with $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{O}_{6}$ or even $\mathrm{AB}_{2} \mathrm{O}_{6}$ stoichiometry [6].

The full characterization of the crystal structure of $\left(\mathrm{H}_{3} \mathrm{O}\right) \mathrm{SbTeO}_{6}$ was performed by neutron diffraction, leading to the location of the protons in the framework [1]. $\left(\mathrm{H}_{3} \mathrm{O}\right) \mathrm{SbTeO}_{6}$ has been prepared by ion exchange from KSbTeO_{6} pyrochlore in sulfuric acid at 453 K for 12 h [1,2]. The crystal structure of KSbTeO_{6} has not been described in detail, although a pioneering study reports the synthesis of the $\mathrm{A}(\mathrm{SbTe}) \mathrm{O}_{6}$ pyrochlore family $(\mathrm{A}=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{Tl})$ [7]. The crystal structures of these oxides were defined in the $F d \overline{3} m$ space group (No. 227), with $Z=8$. For $A=K$, the unit-cell parameter reported is $a=10.1133(2) \AA . \mathrm{Sb}$ and Te atoms were defined to be statistically distributed at $16 d$ Wyckoff sites; oxygen atoms were placed at $48 f$ sites, and A cations at $32 e(x, x, x)$ Wyckoff positions with $x=0.109$, from XRD data [7]. In the present work, we report the ab-initio crystal structure determination of KSbTeO_{6} from NPD data, followed by a Rietveld refinement from combined XRD and NPD data, yielding complementary information on the K^{+}positions.

2. Experimental

KSbTeO_{6} was prepared by the solid-state reaction between potassium oxalate $\left(\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right), \mathrm{TeO}_{2}$, and $\mathrm{Sb}_{2} \mathrm{O}_{3}$ in a 1:2.3:1 molar ratio, providing an excess of TeO_{2} to compensate for volatilization losses. The starting mixture was thoroughly ground and heated at $823,973,1073$, and 1123 K for 24 h at each temperature, with intermediate grindings in order to ensure total reaction.

The initial product characterization was carried out by XRD with a Bruker-AXS D8 Advance diffractometer ($40 \mathrm{kV}, 30 \mathrm{~mA}$) (Germany) controlled by the DIFFRACT ${ }^{\text {PLUS }}$ software, in Bragg-Brentano reflection geometry, with $\mathrm{Cu} \mathrm{K}_{\alpha}$ radiation $\left(\lambda=1.5418 \AA\right.$). A nickel filter was used to remove $\mathrm{Cu} \mathrm{K}_{\beta}$ radiation. NPD experiments were carried out in the D2B high-resolution powder diffractometer ($\lambda=1.595 \AA$) at the Institut Laue-Langevin, in Grenoble, France. About 2 g of sample was contained in a vanadium can. The full diffraction pattern was collected in 3 h .

The crystal structure was solved ab-initio from NPD data using direct methods and the software EXPO2013 [8]. The model obtained was refined by the Rietveld method [9] with the program FULLPROF (Grenoble, France, version Nov. 2016) [10], from combined XRD and NPD data. A pseudo-Voigt function was chosen to generate the line shape of the diffraction peaks. The following parameters were refined in the final Rietveld fit: scale factor, background coefficients, zero-point error, pseudo-Voigt profile function parameters corrected for asymmetry, atomic coordinates, anisotropic atomic displacement parameters for all atoms, and the occupancy factor of the K^{+}positions. The coherent scattering lengths of $\mathrm{K}, \mathrm{Sb}, \mathrm{Te}$ and O were $3.67,5.57,5.80$ and 5.803 fm , respectively.

3. Results and Discussion

KSbTeO_{6} oxide was obtained as a well-crystallized powder. The XRD pattern, shown in Figure 1, is characteristic of a pyrochlore-type structure, with $a=10.1226$ (7) A. As input data for EXPO2013 [8], the unit-cell parameters, $F d \overline{3} m$ space group symmetry and unit-cell contents were given: $8 \mathrm{~K}, 48 \mathrm{O}$ and 16 Sb , due to the similar Sb and Te scattering lengths. NPD data were used for the crystal structure determination, given their monochromaticity, well-defined peak shape, and the large 2θ range covered (from 0 to 159°). EXPO2013 readily gave a structural model with O positions ($1 / 8,1 / 8,0.429$) corresponding to $48 f$ Wyckoff sites, Sb positions $(1 / 2,1 / 2,1 / 2$) corresponding to $16 d$ sites, and two possible Wyckoff sites for $\mathrm{K}:(1 / 8,1 / 8,1 / 8)$, i.e., $8 a$ sites; and (x, x, x), i.e., $32 e$ sites with $x=0.248$, defined in the origin choice 2 of the space group $\operatorname{Fd} \overline{3} m$ (No 227). A combined XRD and NPD Rietveld refinement was carried out in that setting. The Sb and Te atoms were considered to be statistically distributed at $(1 / 2,1 / 2,1 / 2) 16 d$ Wyckoff sites, and K at $(x, x, x) 32 e$ sites. The K^{+}ions were allowed to shift along the $(x, x, x) 32 e$ position adopting intermediate x values between those suggested by the ab-initio crystal structure determination. At the stage of refining isotropic atomic displacement parameters, $x=0.1429(6)$ was reached for the (x, x, x) $32 e$ Wyckoff position after convergence, accompanied by large temperature factors (B) of 1.2(2) \AA^{2}.

A further fit improvement was achieved by refining anisotropic atomic displacement parameters, leading to the crystallographic data and Rietveld agreement factors gathered in Table 1.

Figure 1. Rietveld-refined XRD pattern of KSbTeO_{6} at 298 K , characteristic of a cubic pyrochlore phase. The experimental XRD data is represented with red crosses, the calculated profile is shown with a black solid line, and their difference is shown at the bottom (blue line). Vertical green symbols indicate allowed peak positions.

Table 1. Unit-cell, fractional atomic coordinates, atomic displacement parameters, refined occupancy factors and Rietveld agreement factors of KSbTeO_{6} in the cubic space group $\operatorname{Fd} \overline{3} m$ (No. 227), with $\mathrm{Z}=8$.

Crystal Data	
Cubic, Fd $\overline{3} m$	X-ray radiation, $\lambda=1.5418$ A
	Neutron radiation, $\lambda=1.595 \AA$
$\begin{gathered} a=10.1226(7) \AA \\ V=1037.22(12) \AA^{3} \end{gathered}$	Particle morphology: powder $Z=8$
Rietveld Agreement Factors	
XRD data	NPD data
$\mathrm{R}_{\mathrm{p}}=7.55 \%$	$\mathrm{R}_{\mathrm{p}}: 4.75 \%$
$\mathrm{R}_{\mathrm{wp}}=11.77 \%$	$\mathrm{R}_{\mathrm{wp}}: 6.27 \%$
$\mathrm{R}_{\exp }=9.11 \%$	$\mathrm{R}_{\mathrm{exp}}: 3.85 \%$
$\mathrm{R}_{\text {Bragg }}=3.40 \%$	$R_{\text {Bragg }}=3.59 \%$
$\chi^{2}=1.67$	$\chi^{2}=2.65$
1801 data points	3240 data points

Atomic Coordinates, Isotropic Atomic Displacement Parameters (\AA^{2}) and Refined Occupancy Factors

	x	y	z	$U_{\text {eq }}$	Occupancy
K	$0.126(3)$	$0.126(3)$	$0.126(3)$	$0.060(4)$	$0.256(4)$
Sb 1	0.50000	0.50000	0.50000	$0.0037(3)$	
Te 1	0.50000	0.50000	0.50000	$0.0037(3)$	
O 1	$0.42760(9)$	0.12500	0.12500	$0.0099(3)$	

	Anisotropic Atomic Displacement Parameters $\left(\AA^{2}\right)$					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
K	$0.055(3)$	$0.055(3)$	$0.055(3)$	$0.025(8)$	$0.025(8)$	$0.025(8)$
Sb	$0.0037(3)$	$0.0037(3)$	$0.0037(3)$	$-0.0004(3)$	$-0.0004(3)$	$-0.0004(3)$
Te	$0.0037(3)$	$0.0037(3)$	$0.0037(3)$	$-0.0004(3)$	$-0.0004(3)$	$-0.0004(3)$
O	$0.0075(4)$	$0.0111(3)$	$0.0111(3)$	0.0	0.0	$-0.0065(4)$

In the final Rietveld refinement, the x parameter in the $32 e$ position shifted to $0.126(3)$. Thus, K practically occupies the $(1 / 8,1 / 8,1 / 8) 8 a$ Wyckoff sites. The main interatomic distances and angles are shown in Table 2. Figures 1 and 2 illustrate the good agreement between the observed and calculated XRD and NPD patterns, respectively.

The $\mathrm{Sb}: \mathrm{Te}$ ratio could not be refined, given the similar scattering factors (or scattering lengths for neutrons) of both elements using XRD or NPD. This ratio has to be 1:1 if K fully resides at $8 a$ Wyckoff sites, or at $32 e$ sites with an occupation of $1 / 4$. The excess of TeO_{2} added to compensate for volatilization losses could also result in a slight over-occupation of the position with Te; therefore, an even lower occupation of the K position would occur. To address this problem, the occupancy of K was also refined: it converged to 1 atom per formula unit, within standard deviations (see Table 1), thus confirming the $1: 1 \mathrm{Sb}:$ Te ratio.

Table 2. Selected interatomic distances and angles for KSbTeO_{6} at 298 K .

Distances (Å)	
K-O (x3)	$3.05(3)$
K-O' (x3)	$3.07(3)$
$(\mathrm{Sb}, \mathrm{Te})-\mathrm{O}(\times 6)$	$1.9338(6)$
Angles (${ }^{\circ}$)	
$\mathrm{O}-(\mathrm{Sb}, \mathrm{Te})-\mathrm{O}$	
	$86.10(3)$
(Sb,Te)-O-(Sb,Te)	$93.90(3)$

Figure 2. Rietveld-refined NPD pattern of KSbTeO_{6} at 298 K in the cubic $F d \overline{3} m$ space group. The experimental NPD data is represented with red crosses, the calculated profile is shown with a black solid line, and their difference is shown at the bottom (blue line). Vertical green symbols indicate allowed peak positions.

Figure 3 displays the pyrochlore structure of KSbTeO_{6}, which can be described as composed of a mainly covalent network of $(\mathrm{Sb}, \mathrm{Te}) \mathrm{O}_{6}$ units sharing corners, with a $(\mathrm{Sb}, \mathrm{Te})-\mathrm{O}-(\mathrm{Sb}, \mathrm{Te})$ angle of $135.45(2)^{\circ}$ (Table 2). The cage-like holes within this network contain the K^{+}ions statistically distributed at $32 e$ Wyckoff positions, with four times the required multiplicity to host K^{+}ions (eight per unit cell); thus, only one in four lobes within each K^{+}cluster shown in Figure 3 must be considered as occupied.

Figure 3. View of the KSbTeO_{6} pyrochlore structure approximately along the [110] direction. It consists of a mainly covalent framework of $(\mathrm{Sb}, \mathrm{Te}) \mathrm{O}_{6}$ octahedra sharing vertices, forming large cages wherein K^{+}ions are distributed at $32 e$ Wyckoff sites with $1 / 4$ occupancy and large anisotropic atomic displacement parameters.

The so-called $(\mathrm{Sb}, \mathrm{Te}) \mathrm{O}_{6}$ octahedra are in fact slightly axially distorted, but they contain six equal (Sb,Te)-O interatomic distances of $1.9338(6) \AA$ (Table 2), which compare well with $1.96 \AA$, Shannon's ionic radius sum [11].

The location of K^{+}ions at $32 e$ Wyckoff sites has been previously reported for the ASbTeO_{6} series [6]. It is noteworthy that, in pioneering work on defect $\mathrm{AB}_{2} \mathrm{O}_{6}$ pyrochlores [12-14], the position of the A atoms was thought to be $8 a$; later on, the occupancy of $(x, x, x) 32 e$ positions, with x close to $1 / 8$ was suggested [15-17]. For KSbTeO_{6}, the present work underlines the different results obtained refining isotropic atomic displacement parameters $[x(\mathrm{~K})=0.1429(6)]$, thus with K^{+}at $32 e$ Wyckoff sites; or anisotropic atomic displacement parameters, resulting in $x(\mathrm{~K})=0.126(3)$, very close to $1 / 8$ and thus equivalent (within experimental error) to $8 a$ Wyckoff sites. If the K^{+}positions are fixed at the $8 a$ site, the Rietveld fit does not improve and the atomic displacement parameters of all atoms remain similar.

The K^{+}coordination is shown in Figure 4, with K-O distances of 3.05 and $3.07 \AA$ (Table 2) in a pseudo-octahedral coordination to oxygen atoms. In defect $\mathrm{AB}_{2} \mathrm{O}_{6}$ pyrochlores, it is worth recalling that for x equal or close to zero, the A atom can be considered as coordinated to six oxygen atoms only, forming a corrugated hexagon normal to the three-fold axis along the [111] direction. For increasing x, some new A-O distances decrease in such a way that for x equal to $1 / 8$ ($8 a$ Wyckoff position in the $F d \overline{3} m$ space group), A atoms occupy the center of a wide cage formed by 18 oxygens, six of them at relatively short distances $\left(3 \mathrm{O}+3 \mathrm{O}^{\prime}\right)$, and 12 at larger distances $\left(3 \mathrm{O}^{\prime \prime}+\right.$ nine-additional oxygens, which are not shown in Figure 4).

In the present structural description, with x virtually $1 / 8$, quite large anisotropic thermal ellipsoids (Figure 4) were determined, with r.m.s. displacements of $0.324 \AA$ and $0.172 \AA$ along the long and short ellipsoid axes, respectively. Furthermore, the crystal structure described accounts for the large mobility of K^{+}ions within the pyrochlore cages and the easiness of ion exchange that leads to $\left(\mathrm{H}_{3} \mathrm{O}\right) \mathrm{SbTeO}_{6}$ by treatment in $\mathrm{H}_{2} \mathrm{SO}_{4}$ [1,2], thus enabling the conversion of the present material in a technologically important compound with exceedingly high ionic conductivity.

Figure 4. Close up of the coordination polyhedra around K^{+}ions enhancing the lobes of the anisotropic thermal ellipsoids, with K^{+}statistically occupying one in four lobes within each polyhedron. $(\mathrm{Sb}, \mathrm{Te}) \mathrm{O}_{6}$ octahedra are not represented for clarity.

4. Conclusions

KSbTeO_{6} exhibits a defect pyrochlore structure defined in the cubic $F d \overline{3} m$ symmetry. The mainly covalent network formed by vertex-sharing $(\mathrm{Sb}, \mathrm{Te}) \mathrm{O}_{6}$ octahedra enables weak interatomic interactions with K^{+}ions. A combined XRD and NPD study showed that K^{+}occupies $32 e$ Wyckoff sites indistinguishable (within experimental error) from $8 a$ sites, placed in the center of a large cage determined by 6 K-O distances in the range $3.05(3)-3.07(3) \AA$. The quite big anisotropic atomic displacement parameters account for the easiness of ion exchange of this material to yield a product of technological importance, $\left(\mathrm{H}_{3} \mathrm{O}\right) \mathrm{SbTeO}_{6}$ [2].

Acknowledgments: We thank the financial support of the Spanish MINECO to the project MAT2013-41099-R. We are grateful to the Institut Laue-Langevin (ILL) in Grenoble for making all the facilities available.
Author Contributions: José Antonio Alonso and Xabier Turrillas conceived and designed the experiments; Sergio Mayer, Horacio Falcón and María Teresa Fernández-Díaz performed the experiments; José Antonio Alonso and Xabier Turrillas analyzed the data; they all wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alonso, J.A.; Turrillas, X . Location of H^{+}sites in the fast proton-conductor $\left(\mathrm{H}_{3} \mathrm{O}\right) \mathrm{SbTeO}_{6}$ pyrochlore. Dalton Trans. 2005, 865-867. [CrossRef] [PubMed]
2. Soler, J.; Lemus, J.; Pina, M.P.; Sanz, J.; Aguadero, A.; Alonso, J.A. Evaluation of the pyrochlore $\left(\mathrm{H}_{3} \mathrm{O}\right) \mathrm{SbTeO}_{6}$ as a candidate for electrolytic membranes in PEM fuel cells. J. New Mater. Electrochem. Syst. 2009, 12, 77-80.
3. England, W.A.; Cross, M.G.; Hamnett, A.; Wiseman, P.J.; Goodenough, J.B. Fast proton conduction in inorganic ion-exchange compounds. Solid State Ion. 1980, 1, 231-249. [CrossRef]
4. Ozawa, K.; Wang, J.; Ye, J.; Sakka, Y.; Amano, M. Preparation and Some Electrical Properties of Yttrium-Doped Antimonic Acids. Chem Mater. 2003, 15, 928-934. [CrossRef]
5. Turrillas, X.; Delabouglise, G.; Joubert, J.G.; Fournier, T.; Muller, J. Un nouveau conducteur protonique $\mathrm{HSbTeO}_{6} \cdot \mathrm{xH}_{2} \mathrm{O}$. Conductivite en fonction de la temperature et de la pression partielle de vapeur d'eau. Solid State Ion. 1985, 17, 169-174.
6. Subramanian, M.; Aravamudan, G.; Subba Rao, G.V. Oxide pyrochlores-A review. Prog. Solid State Chem. 1983, 15, 55-143. [CrossRef]
7. Alonso, J.A.; Castro, A.; Rasines, I. Study of the defect pyrochlores $\mathrm{A}(\mathrm{SbTe}) \mathrm{O}_{6}(\mathrm{~A}=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{Tl})$. J. Mater. Sci. 1988, 23, 4103-4107. [CrossRef]
8. Altomare, A.; Cuocci, C.; Giacovazzo, C.; Moliterni, A.; Rizzi, R.; Corriero, N.; Falcicchio, A. EXPO2013: A kit of tools for phasing crystal structures from powder data. J. Appl. Cryst. 2013, 46, 1231-1235. [CrossRef]
9. Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65-71. [CrossRef]
10. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 1993, 192, 55-69. [CrossRef]
11. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751-767. [CrossRef]
12. Babel, D.; Pausegang, G.; Werner, V. Die Struktur einiger Fluoride, Oxide und Oxidfluoride $\mathrm{AMe}_{2} \mathrm{X}_{6}$: Der RbNiCrF ${ }_{6}$-Typ. Zeitschrift für Naturforschung B 1967, 22, 1219-1220. [CrossRef]
13. Darriet, B.; Rat, M.; Galy, J.; Hagenmuller, R. Sur quelques nouveaux pyrochlores des systemes $\mathrm{MTO}_{3}-$ WO_{3} et $\mathrm{MTO}_{3}-\mathrm{TeO}_{3}(\mathrm{M}=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{Tl} ; \mathrm{T}=\mathrm{Nb}, \mathrm{Ta})$. Mater. Res. Bull. 1971, 6, 1305-1315. [CrossRef]
14. El Haimouti, A.; Zambon, D.; El-Ghozzi, M.; Avignant, D.; Leroux, F.; Daoud, M.; El Aatmani, M. Synthesis, structural and physico-chemical characterization of new defect pyrochlore-type antimonates $\mathrm{K}_{0.42} \mathrm{Ln}_{\mathrm{y}^{\prime}} \mathrm{Sb}_{2} \mathrm{O}_{6+\mathrm{z}^{\prime}}$ and $\mathrm{Na}_{0.36} \mathrm{Ln}_{\mathrm{y}} \mathrm{Sb}_{2} \mathrm{O}_{6+\mathrm{z}}\left(0<\mathrm{y}, \mathrm{y}^{\prime} ; ' \mathrm{z}, \mathrm{z}^{\prime}<1 ; \mathrm{Ln}=\mathrm{Y}, \mathrm{Eu}\right.$ and Gd$)$ prepared by soft chemistry route. J. Alloy. Compd. 2004, 363, 130-137. [CrossRef]
15. Fourquet, J.L.; Javobini, C.; de Pape, R. Les pyrochlores $\mathrm{AIB}_{2} \mathrm{X}_{6}$: Mise en evidence de l'occupation par le cation AI de nouvelles positions cristallographiques dans le groupe d'espace Fd $\overline{3} m$. Mater. Res. Bull. 1973, 8, 393-403. [CrossRef]
16. Pannetier, J. Energie electrostatique des reseaux pyrochlore. J. Phys. Chem. Solids 1973, 34, 583-589. [CrossRef]
17. Castro, A.; Rasines, I.; Sanchez-Martos, M.C. Novel deficient pyrochlores $\mathrm{A}(\mathrm{MoSb}) \mathrm{O}_{6}(\mathrm{~A}=\mathrm{Rb}, \mathrm{Cs})$. J. Mater. Sci. Lett. 1987, 6, 1001-1003. [CrossRef]
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
