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Abstract

Mulching is increasingly employed to stabilize burnt areas, making necessary to elucidate where and how
it should be used. The effects of mulching and the efficiency of two straw application strategies in reducing
nutrient losses were evaluated in a steep area (burnt with moderate severity) with twelve experimental
plots split into three sets: control burnt plots (BS), burnt plots with straw mulching in narrow bands along
the contour lines (NM, global dose 800 kg ha™) and in wide bands (WM, global dose 1000 kg ha™'). None
of the mulching strategies had a significant effect on most of the 16 soil and sediment variables analysed
(pH, nutrient and trace element concentrations). The principal component analyses show that soil and
sediment samples change with time after the fire regardless treatment, decreasing progressively the
differences between successive sampling dates. In sediments, pHy,, Ca, Mg, Mn and Zn fitted to curvilinear
regression models with time after fire as independent variable, while the other variables showed no clear
temporal trend. During the first post-fire year, <500 kg ha™' of sediments were eroded and mulching had
no effect on the total mass of lost sediments and nutrients. We conclude that the erosion rate was rather low
that year due to moderate precipitation rates and therefore mulching did not significantly reduce soil
erosion. Nevertheless, the concentration of Mo, Mn and Zn in sediments exceeded reference levels for
ecosystem protection and can lead to deficiency problems for on-site vegetation and to soil and water
pollution off-site.
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1. Introduction of the forest floor (Bento-Gongalves et al., 2012;
Certini, 2005). Accordingly, fire effects on the soil
can either be reversible or permanent, being climate,
vegetation and topography of the burnt area the
factors controlling the resilience of the soil system
(Certini, 2005). Wildfires often reduce the amount of
organic matter in the soil, alter its structure, modify
soil biological communities and increase nutrient
losses through volatilization, ash entrapment in
smoke columns, leaching and erosion (Shakesby,
2011). Research on the effects of fire on soil chemical
quality has been mainly focused on assessing the
changes in soil organicmatter (SOM) and available
macronutrients, and to a lesser extent on
micronutrients and trace elements.

Fire is a global phenomenon affecting more land
area than any other natural disturbance (Bento-
Gongalves et al., 2012) and one of the major causes
of forest destruction and soil degradation (Certini,
2005; Shakesby, 2011).Although fire is a natural
driving force in some ecosystems, humans are
responsible for most of the current large-scale and
intense wildfires (Bento-Gongalves et al., 2012). In
the foreseeing scenarios of climate change and a
drastic shift in land use due to rural exodus and
socio-economic factors, the number and severity of
wildfires will probably increase substantially
(Bento-Gongalves et al., 2012; Birot, 2009; Pereira et
al., 2011). Lately, extensive research on the effects of
fire on soil properties has been done (see list of
comprehensive reviews in Bento-Gongalves et al.,

Fires lead to an immediate increase in soil
concentrations of most nutrients and trace elements

2012). The impacts on soils depend on fire severity
(duration and intensity), frequency, as well as on
the season of fire occurrence and the characteristics

due to the substantial quantities of these elements
present in ashes from burnt vegetation and also to
the release from SOM after its breakdown by the
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fire (Certini, 2005, and references therein). Fire
effects on soil nutrients and trace elements may last
for a few months or for years, depending on how
fast they are lost from soil (or taken up by plants).
plants). Nutrient losses are conditioned by the
solubility of the elements in ashes (Certini, 2005)
and by the erosion rate, which is highly dependent
on the percentage of bare-ground areas and the
post-fire weather pattern (Thomas et al., 1999).

Although SOM losses are the most common
phenomena in the short-term (Certini, 2005; Certini
et al., 2011; Couto-Vazquez and Gonzélez-Prieto,
2006, Gomez-Rey and Gonzalez-Prieto, 2014),
increases of SOM in the long term have also been
reported in several experiments (meta-analysis by
Johnson and Curtis, 2001). The main effects of
wildfires on the N cycle are: a significant removal of
organic N due to SOM combustion; a redistribution
of the remaining soil organic N; the conversion of
organic to inorganic N; losses due to leaching,
erosion and volatilisation; and a marked alteration
of both quantity and specific composition of
microbial communities (Certini, 2005; Fisher and
Binkley, 2000; Prieto-Fernandez et al., 2004).
Increased soil inorganic N concentrations after fires
have been widely reported. Both measurements of
"N natural abundance in soils and plants (Aranibar
et al., 2003; Couto-Vazquez and Gonzélez-Prieto,
2006) and "N-tracing experiments have been used
to study the effects of burning on the N cycle
(Gomez-Rey and Gonzalez-Prieto, 2013, and
references therein) but no common response of
gross N transformations to fires was found, most
probably due to the large number of influencing
factors. Organic P in soils is depleted by fire at a
higher rate than the supplied from mineral
weathering (DeBano et al., 1998); however, burning
is also responsible of the transient increase in P
availability resulting from the mineralization of
organic P to orthophosphate (Cade-Menun et al.,
2000; Saé et al., 1994).

Fewer studies have assessed the effects of
burning on soil micronutrients and trace elements,
although they are essential for plant development
and post-fire changes in their soil availability could
lead to deficiencies or toxicity effects on plants
(Garcia-Marco and Gonzalez-Prieto, 2008;
Gomez-Rey et al., 2014). The scarce available data
on micronutrients and trace elements in burnt
ecosystems is often contradictory due to the
differences among the studies in terms of fire type

and characteristics (wild or prescribed, severity and
frequency), climate conditions, vegetation cover,
soil type and sampling design (soil/ash/sediment
samples, time after the fire, fraction of the elements
measured) (Brye et al.,, 2002; Close et al., 2011;
Garcia-Marco and Gonzalez-Prieto, 2008;
Gomez-Rey etal., 2013a; Gonzalez-Parraetal., 1996;
Pereira et al., 2011; Pivello et al., 2010; Ponder et al.,
2009; Stankov-Jovanovic et al., 2011).

Erosion is widely recognized as a common
process after wildfires (DeBano et al., 1998;
Robichaud and Brown, 1999) and post-fire erosion
effects on downstream water quality and
sedimentation are recognised (Smith et al., 2011).
However, it is still controversial whether nutrient
losses in eroded sediments affect the long-term soil
quality and site productivity (Baird et al., 1999;
Goémez-Rey et al., 2013b, 2014; Robichaud et al.,
2006; Shakesby et al., 2002; Thomas et al., 1999).
Although studies have been mainly focused on
nutrient losses in solution rather than onlosses with
the eroded material (de Koff et al., 2006), nutrients
attached to sediments can substantially exceed those
lost in solution (Gimeno-Garcia et al., 2000; Smith et
al., 2011). Reported annual post-fire erosion rates
are highly variable, ranging from 1 to 240 Mg ha™
(Moody and Martin, 2009; Robichaud etal., 2006), as
they depend on fire intensity, climate, topography
and vegetation of the site, the percentage of bare
soil and its infiltration capacity (Fisher and Binkley,
2000; Vega et al., 2005). The greater the intensity of
the fire, the higher the amount of nutrients found in
eroded sediments (Andreu et al., 1996;
Gimeno-Garcia et al., 2000), although high nutrient
losses in sediments have also been reported in low
intensity fires (de Koff et al., 2006; Gomez-Rey et al.,
2013b, 2014). Usually, the greatest nutrient losses
are recorded within the first 4-12 months after the
fire and they generally decrease by an order of
magnitude per year (Gomez-Rey et al., 2013b, 2014;
Robichaud et al., 2006).

Different measures have beenimplemented after
wildfires to minimize fire impacts (Bento-Gongalves
et al., 2012) in the frame of the so-called burnt area
emergency response (BAER). Post-fire stabilization
techniques must be applied as soon as possible after
a wildfire, especially when the vegetation cover is
completely destroyed, in order to prevent surface
runoff and erosion and to accelerate development of
vegetation cover (Robichaud, 2009; Robichaud et al.,
2000; Vega et al., 2005). Besides seeding of



fast-growing grass species, the most effective and
widely used post-fire stabilization technique is
straw mulching (Bento-Gongalves et al., 2012),
which has shown an immediate effectiveness in
increasing ground cover and thus it alleviates
erosion during the first critical months after the fire
(Bautista et al., 2009; Diaz-Ravifia et al., 2012; Groen
and Woods, 2008; Robichaud et al., 2010).

Until recently, the available information about
the effects of post-fire straw mulching on chemical
properties of soils and sediments was very scarce
(Diaz-Ravina et al., 2012; Fonttrbel et al., 2012).
Mulching can alter the MIT turnover (by supplying
a substrate with high C/N ratio), enhance
vegetation recovery (and thus nutrient uptake by
plants), modify the runoff-infiltration ratio, or
preferentially reduce the erosion of some soil
fractions; consequently, this stabilization technique
could alter the chemical composition of soils and
sediments. However, some studies have already
shown that mulching does not affect the nutrient
concentrations in soils and sediments when
compared to a control burnt soil, but it does
effectively reduce erosion. For instance, Vega et al.
(2014) conducted a prescribed fire in a steep area
with rainy climate and concluded that erosion was
significantly reduced by straw mulching on burnt
plots during the first year. A similar experiment
carried out after a wildfire in another steep area (up
to one year after the fire) showed that mulching did
not modify the concentration of nutrients in soils
and that mulched plots were more similar to the
unburnt control than burnt plots without mulching
(Gomez-Rey and Gonzalez-Prieto, 2014).

Despite the fact that Galicia (NW Spain) has a
temperate-humid climate, it is one of the European
regions with the highest fire incidence (Birot, 2009).
The causes are a complex mixture of traditional use
of fire as a silvopasture agroforestry tool, deep
economic and demographic changes in rural areas
and incendiarism as protest (Gémez-Rey et al.,
2013a). In a region like Galicia, where the area
affected by wildfires is so large, the compromise
among applying straw to burnt soils in order to
prevent erosion, the costs and difficulties of its
application in large or remote burnt areas and the
potential competence with other uses (livestock
fodder) of this limited resource arises as a
controversial issue. Therefore, it is paramount to
elucidate where and how is convenient to use straw
mulching as a BAER technique. To ensure the

60-70% of ground cover needed to effectively
protect the burnt soil against erosion (Robichaud,
2009), straw doses of 2300-2500 kg ha™ have been
used in Galicia (Diaz-Ravifia et al., 2012; Fernandez
etal., 2011; Fernandez etal., 2012; G6mez-Rey etal.,
2013a). Instead of mulching the entire burnt area, a
possible strategy to reduce these doses, could be to
apply the straw on bands along the contour lines
alternating with bands without straw. In such a
design, we need to determine how wide the
mulched bands should be to effectively protect the
unmulched bands against the erosion. The aims of
the present study, conducted in an area with a steep
slope affected by a medium severity wildfire, are: a)
to evaluate the effects of straw mulching on soil and
sediment properties; and b) to assess the efficiency
of two straw mulching application strategies
(narrow and wide bands with a global straw dose of
800 and 1000 kg ha”, respectively) to reduce
nutrient losses in eroded sediments.

2. Materials and methods
2.1.  Site description and experimental design

The study area was located in Escairén (Lugo,
NW Spain;42°402" N, 7°37'1" W, 510-530 m a.s.1;
Fig. 1), under temperate (mean annual temperature
12.7 °C) and moderately rainy climate (827 mm y™).
In September 2012 a medium severity wildfire burnt
85 ha of forest and shrubland and twelve plots were
set up in an experimental field of 1.3 ha with
homogeneous slope (33-38%), orientation (S-SW),
soil type (Entisol developed over slates) and
vegetation cover (dominated by the shrubs Erica
arborea, Ulex europaeus and Pterospartum tridentatum).
As it was a wildfire, all plots were distributed in the
only suitable homogeneous area (1.3 ha) found in
the whole burnt zone (see Fig. 1) and, thus,
pseudoreplication can restrict the generalization of
our results. The plots were 40x10 m each, with the
longest dimension parallel to the maximum slope.
To monitor post-fire erosion, the plots were
delimited by a geotextile fabric fixed to posts
following the design suggested by Robichaud and
Brown (2002). One month after the fire, three
treatments were arranged in a fully randomized
design with four replications: a) control (BS), burnt
plots without any stabilization treatment; b) wide
mulching (WM), burnt plots with straw applied in
the upper half of the plot at 200 g m™ (global plot
dose: 1000 kg ha™); and c) narrow mulching (NM),



burnt plots with straw applied in two alternated 8
m wide bands at 200 g m™ (global plot dose: 800 kg

ha™).
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Fig. 1. Map showing the location of the experimental field and the arrangement of treatments.

2.2, Sampling and chemical analysis of soils, ashes and
sediments

One month after the fire but prior to treatment
application, ash samples (ashes and charred plant
and litter debris, thereafter referred to as "ashes")
and soil samples (0-2.5 cm depth) were collected
from four of the corridors between plots (not within
the plots to prevent trampling on them). The central
corridor in each of the four blocks of plots (see Fig.
1) was selected and 10 squares of 15 x 15 cm per
corridor were sampled for ashes and combined in a
composite sample per corridor, weighed,
homogenized, air dried; the same was done for soil.
Once the treatments were applied, in each plot and
at each sampling date (3, 6, 9 and 12 months after
treatment application) soil samples were collected
from 10 uniformly distributed sampling squares.
These 10 subsamples were combined to yield one
composite sample per plot and sampling date. In
plots with mulching, samples were taken separately
in the area with straw (NM-1 and WM-1) and
without straw (NM-0 and WM-0). We did not find
straw on the NM-0 and WM-0 areas, nor in the
sediments collectors, in any of the samplings. All
soil samples were sieved (2 mm) and homogenised

in the laboratory, then they were divided into fresh
subsamples, which were kept at 4 °C for inorganic
N measurements, and air-dried subsamples for the
other analyses. After each sediment-producing rain
event (December 2012, February 2013,March 2013,
April 2013, June 2013 and November 2013), eroded
sediments were collected from the geotextile,
homogenized and weighed in situ and aliquots of
each plot were transported to the laboratory, where
they were air-dried for further analyses.

The dry matter content of soils and sediments
was assessed by oven-drying sub-samples at 105 °C
for 5 h. Due to the wide differences in water holding
capacities of soils, sediments and ashes, different
sample:solution ratioswere used to obtain the “solid
suspension” needed for pH measurements, aswell
as a volume of extract large enough for inorganic N
analyses. Soil pH was measured with a pH meter
(Metrohm, Switzerland) in water and 1 M KCl
employing the standard soil:solution ratio of 1:2.5,
while for sediment and ashes a sample:solution
ratio of 1:6 was used. For total N and §"N
determination, aliquots of air-dried soils, sediments
and ashes were finely ground (<100 pm) in a



planetary ball mill (Retsch PM100, Retsch GmbH,
Haan, Germany) and then combusted with an
elemental analyser (Carlo Erba, Milano, Italy)
coupled on-line with an isotopic ratio mass
spectrometer (Finnigan Mat, delta C, Bremen,
Germany). An elemental reference material (Soil 3
from Eurovector, Milano, Italy) and isotopic
standards (IAEA-N1 and IAEA-N2, alternately,
from the International Atomic Energy Agency,
Vienna, Austria) were included in each set of 10
samples to check the accuracy of the results; if
necessary, drift correction was made against
internal standards during the run. Inorganic N was
extracted by shaking 20 g of soils and sediments or
5 g of ashes for 1 h with 2 M KCl (1:5 soils and
sediments:solution ratio and 1:10 ash:solution ratio).
Extracts were passed through glass microfibre filters
(Whatman GF/ A, 125-mm diameter). For NH,"-N
and NO;-N analysis, an extraction-diffusion
method described in Ferndndez-Ferndndez et al.
(2015) was used. For extractable element analyses,
soil, sediment and ash samples were shaken for 2
hours with a solution of NH,Ac 1 M and DTPA
0.005 M (sample:solution ratio 1:5). The extracts and
the corresponding blanks were then filtered through
cellulose paper (Filter-Laboratory 1242, 90-mm
diameter) and analysed by simultaneous
inductively coupled plasma optical emission
spectrometry (ICP-OES, Varian Vista Pro,
Mulgrave, Australia) to quantify Al, Ca, Cu, Fe, K,
Mg, Mn, Mo, Na, P and Zn concentrations. A
calibration curve prepared with certified standards
of all elements was measured beforehand and one
of the calibration solutions was routinely included
in each set of 30 samples as a quality control and,
when necessary, the calibration curve was
measured again. Analytical-grade chemicals and
type I water (ASTM 2008) were used for analyses.

To ensure the reproducibility and traceability of
theresults, certified standardswere included in each
batch of samples and all analyses were carried out
in duplicate, being the mean of both measurements
used in the statistical procedures (after doing a third
analysis if the coefficient ofvariation was higher
than 5%).

2.3.  Statistical analyses

The working hypothesis of no effects of straw
addition on soil properties regardless sampling date
was tested by means of two sets of one-way

ANOVAs: a) straw addition does not modify soil
properties in-situ (one-way ANOV As including BS,
WM-1 and NM-1 subplots); and b) straw addition
does not affect soil properties of the adjacent bare
subplots (one-way ANOVAs including BS, WM-0
and NM-0). These two ANOV As were done for each
sampling date and t = 0 values were not included as
no treatments were applied yet. Similarly, the
hypothesis of no effects of straw addition on
sediment composition regardless sampling date was
tested by one-way ANOVAs comparing the
sediments retrieved in BS, WM and NM plots.
Moreover, sediments of each erosion event were
compared with soils (t = 0) and ashes as reference
values (one-way ANOVA and Dunnett's test)
because they are the likeliest sources of sediments.
Curvilinear regression models were also developed
to check trends on sediment composition
throughout the study period. The effectiveness of
mulching dose on erosion rates and nutrient losses
was assessed by comparing the accumulated mass
of sediments and of each nutrient in BS, WM and
NM plots with one-way ANOVAs. For all
performed ANOV As, significant differences among
the group means were established at p< 0.05 (using
Tukey's or Dunnett's test) after checking the normal
distribution of variables (Shapiro-Wilk's W test) and
the equality of variances among treatment groups
(Levene's test). A Principal Component Analysis
(PCA, based on the correlation matrix, to extract the
factors, plus Varimax rotation with Kaiser
normalization) was performed to assess the
relationships among the studied variables and
whether samples are grouped together according to
treatment or sampling date. The anti-image
correlation matrix (comprising the negative values
of the partial correlation coefficients) was analysed
to detect soil variables less suitable for the factor
analysis (Cu and Mo in soils; "N and Fe in
sediments). After this procedure, the
Kaiser-Meyer-Olkin measure of sampling adequacy
increased from 0.730 to 0.784 (soils) and from 0.742
to 0.795 (sediments), and the Barlett's test of
sphericity was highly significant (p< 0.0005). All
statistical analyses were performed with SPSS 15.0
software (SPSS Inc., Chicago, IL).



3. Results

The one-way ANOVA checking the effect of
straw on soils (Supplementary material, Table A)
yielded significant differences among treatments
only for NH,"-N,; (BS > WM-1 = NM-1) and
NO;-N,; (BS > WM-1 > NM-1) at t=6, § °N,; at t=9
(WM-1 > BS > NM-1) and Ca,,; at t=12 (WM-1 >
NM-1 > BS) and Mg, ; (WM-1>NM-1=BS) att =
12 months. When checking the effect of straw on
adjacent unmulched soils (Supplementary material,
Table A), there were small but significant
differences for Ca,, at t=3 (WM-0 > BS > NM-0)
and Fe,; (NM-0 > Control > NM-0) and K, ; (WM-0
. NM-0 . BS) at t = 6 months. Most of the studied
variables oscillated with time after the fire, although
the initial values were higher than the final ones
except for Na,; (Table 1).
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Fig. 2.

In the PCA for soil samples (Fig. 2A and Table 2),
the first three components jointly explained 70% of
the total variance (41%, 19% and 10%, respectively).
Soil extractable Mg, K, Zn, Ca, Mn and pHy, were
strongly associated with the positive side of factor
1 (r > 0.7). Regarding factor 2, its positive side was
mostly defined by Na and P (r > 0.7) and its
negative side by Aland & N (r < -0.6). Inorganic N
(both NH,* and NO;) was strongly associated with
the positive side of factor 3 (r > 0.7). The
distribution of soil samples on the plane defined by
the first two factors shows a change of the samples
with time after fire, whereas there is no difference
among plots from different treatments within each
sampling date. Samples from t= 3 and t= 6 months
are clearly separated from each other, as well as
from those collected at t= 9 and t=12 months,
although these last two samplings are intermingled.

b) PCA sediments
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data for each treatment and sampling time. Symbols represent different sampling times regardless

treatment.
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Table 2. Matrix of correlations of soil and sediment variables with the first 3 factors (soils) and 2 factors
(sediments) obtained by principal component analyses (PCA).

Soil components Sediment
components
Variable 1 2 3 1 2

PHyq 0.767 0.144 0.242 0.912 0.048
Total N 0.529 0.212 0.247 0.674 0.282
5 °N -0.341 -0.647 0.304

NH,"-N 0.496 -0.125 0.767 0.034 0.732
NO,-N 0.122 -0.038 0.922 -0.468 0.240
Al 0.032 -0.678 0.357 -0.147 -0.849
Ca 0.865 0.182 -0.006 0.885 0.296
Cu 0.658 -0.654
Fe -0.101 -0.055 -0.050

K 0.914 0.001 0.154 0.566 0.624
Mg 0.931 0.141 0.051 0.905 0.199
Mn 0.768 0.273 0.128 0.821 0.158
Mo 0.741 -0.583
Na -0.089 0.800 -0.032 0.674 0.477
P 0.233 0.738 0.236 0.089 0.853
Zn 0.871 -0.232 0.220 0.846 -0.134

The one-way ANOVAs comparing sediments NH,"-N_ 4imens (€xcept for those collected at t = 3

from BS, WM and NM plots for each sampling date
yielded no significant differences among treatments
for any of the variables (Supplementary material,
Table B). Irrespectively of the treatment considered,
sediment pHy., extractable Ca, Mg, Mn and Zn
fitted to curvilinear models with time after
treatment application as the independent variable,
explaining 50-75% of the variance (Figs. 3 and 4).
For the rest of the sediment variables, no suitable
regression models were found to explain data
variability.

Compared with that of ashes, the pHy of the
sediments was similar in the first erosion event and
lower in those successively eroded (Table 3 and
Supplementary material, Table C). Sediments
experienced a progressive acidification with time,
but their pHy, was always higher than that of the
soil at t=0 (Table 3 and Supplementary material,
Table D). Irrespectively of the erosion event, total
N, ogiments and 8N, were similar to those in
ashes but, in most cases, they were higher (total N)
or lower (8"°N) than in soil. The concentration of

sediments

months) was well over the ash and soil levels, while
almost no differences between sediments, ashes and
soils were found for NO, -N. Levels of K and Na in
sediments were similar or lower than in ashes, but
always higher than in soil. Extractable Ca, 4;ens and
Mg gimenss Were lower that Ca,,., and Mg, ., in the
first erosion event, but similar in the subsequent
events, and much higher than Ca,; and Mg_;. In
almost all cases, extractable Al ;o and Fe
were higher than in ashes and lower than in soil.
Depending on the erosion event considered,
sediments showed Mn levels lower or similar to
ashes, and higher or similar to soil. If ashes and soil
values are taken as a reference, Zn,, ;... levels were
higher in the first 3-4 erosion events and similar in
the rest, while Cu levels were lower in the two last
erosion events and similar in the previous ones.
Finally, the extractable Mo levels in sediments were
similar or lower than in ashes but always higher
than in soil, whereas P_;.....s Was lower than P
except in the last two erosion events but similar to
P...s in most cases.

sediments

ashes

soils
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Fig.3.  Significant curvilinear regressionmodels for sediment pHKClwith time after the fire as independent
variable. Key: BS, control burnt plots; WM, wide-mulched burnt plots; NM, narrow-mulched burnt

plots.

In the PCA for sediment samples (Fig. 2B and
Table 2), the first two components jointly
explained 71% of the variance (46% and 25%,
respectively). The variables most strongly
correlated with the positive side of factor 1 were
pHio, Mg, Ca, Zn, Mn and Mo (r > 0.7), whereas
P and NH," were strongly associated (r > 0.7)
with the positive side of factor 2 and Al and Cu
with the negative one (r < -0.7). The distribution
of sediment samples on the plane defined by the
first two factors showed a change with time after
fire and lack of differences among treatments
within each sampling date. Sediments from t=1
month are well separated from all the other
erosion events, samples from t= 3 are slightly
apart from the preceding (t= 1 month) and the
two subsequent events (t= 4 and 5 months), the
latter being intermingled. Sediments from t=7 and
12 months are close together and further away
from the others.

During the first year after the wildfire, less
than 500 kg ha™ of sediments were eroded, being
the losses of elements lowest for NO;-N, Cu, Mo,
P and Zn (< 10 g ha™), intermediate for NH,"-N,
Al, Fe, K, Mg, Mn and Na (20-100 g ha™) and
highest for Ca (around 400 g ha™) and total N (5
kg ha™) (Table 4). While NO,-N, Al, Fe and Zn
losses accounted for around 10% of the
corresponding ash extractable elements, the
percentage of the other elements accounted for
5% (total N, NH,"-N, Ca and Mg) or less (Cu, K,
Mn, Mo, Na and P) (Table 4). If extractable
nutrients in ash+topsoil were taken as a reference,
the nutrient losses in eroded sediments never
exceeded 0.7%, having Al and Fe the lowest
losses (0.04 and 0.06% respectively) (Table 4).
According to the one-way ANOVA, neither the
total mass of sediments nor the mass of any
nutrient lost by erosion was affected by the tested
treatments (Supplementary material, Table B).
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Table 4 Accumulated mass of sediments and nutrients lost by erosion (mean values + standard error),
ash nutrients lost by erosion (%) and ash+topsoil nutrients lost by erosion (%) for the different plots.
Key: BS, control burnt plots; WM, wide-mulched burnt plots; NM, narrow-mulched burnt plots

Mass of sediments and nutrients

lost by erosion

Ash nutrients Ash+topsoil
nutrients lost by

lost by erosion (%) erosion (%)

BS WM NM BS WM NM BS WM NM
Sediments (kg ha™) 347 + 372 310+172 414 + 309
Total N (kg ha™) 481+1.09 640+137 581+£034 38 513 466 017 023 021
NH,*-N (g ha™) 442+123  504%116 56.0+7.9 436 498 554 015 0.18 0.20
NO;-N (g ha™) 294+123 894+505 328+1.05 1074 3263 1197 010 032 0.12
Extractable Al (g ha™) 454+171 612+£20.7 65.0+133 1019 13.71 1458 0.03 0.05 0.05
Extractable Ca (g ha™) 336 + 87 430 £ 94 394 + 36 419 536 492 043 055 050
Extractable Cu (gha’)  048+0.09 0.69+0.17 081+016 264 377 442 0.08 0.11 0.13
Extractable Fe (g ha™) 393+146  456+13.0 477+104 1045 1210 1266 0.05 0.06 0.06
Extractable K (g ha™) 714£19.7  961+£267 898+114 292 392 367 022 029 028
Extractable Mg (gha™)  475+137  61.9+159 59.9+58 396 516 500 035 045 044
Extractable Mn (gha™)  325%9.0 371+87 398+102 319 365 391 031 036 0.39
Extractable Mo (gha™)  0.41+0.11 051+£011 052+0.07 3.06 384 392 010 013 0.13
Extractable Na (gha')  153+3.5 21.7+62  202+%19 256 3.62 336 016 023 021
Extractable P (g ha™) 357+0.81  463+£089 377+034 186 241 197 010 013 0.11
Extractable Zn (gha')  878+138 10.33+0.95 9.19+055 1044 1228 1092 059 0.70 0.62

4. Discussion

Fires lead to an increased soil pH as a result of
the oxides and carbonates of basic ions supplied by
ashes (Certini, 2005). Although soil alkalinity due to
burning might persist during several years (Antos
et al., 2003), it is supposed to slowly return to
pre-fire values due to leaching of basic ions during
thewet season (see references in Couto-Vazquez et
al., 2011). Although we do not have pre-fire values,
our results for soil pH seem to agree with other
studies in the same region (Couto-Vazquez and
Gonzalez-Prieto, 2006; Gomez-Rey and
Gonzélez-Prieto, 2014), in which soil pH of burnt
plots decreased to values similar to unburnt plots
within the first year after the fire. Concurrently,
there was a significant acidification of sediments
with time which can be explained by the loss of soil
exchangeable cations by leaching and runoff as
reported elsewhere (Gomez-Rey et al., 2013b;
Robichaud et al., 2006). As in other experiments
testing mulching effectiveness, there was no effect
of straw addition on the pH of either soils or
sediments (Gomez-Rey et al., 2013a,b; Gomez-Rey

and Gonzalez-Prieto, 2014; Robichaud et al., 2006).

Soil and sediment total N concentrations neither
showed a clear trend during the study nor were
affected by mulching, as also reported Gomez-Rey
et al. (2013a,b). As these authors suggest, although
N-rich sediments are continuously eroded, these
losses are likely not reflected in the successive
measurements of soil total N concentration because
the big soil N pool masks those losses. Similarly,
neither §°N_; nor 8N, y.... sShowed a trend with
time and they were not affected by treatments,
although Gomez-Rey et al. (2013a,b) found that both
variables were influenced by time after the fire due
to enhanced N outputs (nitrates) depleted in °N. It
seems that in our case N losses through erosion and
leaching are not that important to modify "N, likely
due to the four-fold lower annual precipitation in
our study area. Sediments and ashes shared similar
concentrations of total N, which were 1.5-2 fold
higher than soil values, whereas 8N gimens and
8N, 4hes Were also similar but slightly below soil
levels; both patterns agree with the data presented
in Gomez-Rey et al. (2013b) and shows that the



contribution of ashes to the eroded sediments was
higher than that of soil.

The oscillating values of soil NH,"-N contrast
with the decrease with time recorded in other
studies (Gimeno-Garcia et al., 2000; Gomez-Rey et
al., 2013a; Gomez-Rey and Gonzalez-Prieto, 2014),
most probably due to differences in erosion rates as
the soil NH,"-N decrease and the extent of erosion
of N-rich ashes and sediments are tightly coupled
(Gomez-Rey et al., 2013a,b). In sediments the
concentration of extractable NH," was within the
same range as in a prescribed burnt area
(Gomez-Rey et al., 2013b) and no clear trend with
time was found in any case, most probably because
the NH,"-N pool is subjected to simultaneous and
counteracting processes. Extractable NH,-N in
sediments is often abundant right after burning
because of the high concentration of extractable
NH,"-N in the ash, but it decreases with time due to
ash loss by erosion, translocation and condensation
in deeper soil layers, uptake by newly sprouted
vegetation, and nitrification (see de Koff et al., 2006,
and references therein). In our case, the
concentration of NH,"-N in sediments was higher
than in soils and ashes, while Gomez-Rey et al.
(2013b) found that NH,-N concentrations in
sediments were also higher than those of burnt
soils, but only half than in ashes. Soil NH,"-N was
not significantly affected by mulching application,
as also reported in other studies (Gomez-Rey et al.,
2013a; Gomez-Rey and Gonzalez-Prieto,2014). For
NH,"-N in sediments we did not record an effect of
mulching whereas Gomez-Rey et al. (2013b) found
that it reduced sediment NH,"-N during the second
half of the study.

Post-fire increases in soil NO,-N of different
magnitude and timing have been reported
(Couto-Vazquez and Gonzalez-Prieto, 2006;
Chandler et al., 1983; Goémez-Rey and
Gonzéalez-Prieto, 2014; Prieto-Fernandez et al,,
1993). Soil NO;-N concentrations in our experiment
were similar to those reported after a wildfire
nearby (Gémez-Rey and Gonzalez-Prieto, 2014) but
much lower than in burnt plots after a prescribed
fire in the same region (Gomez-Rey et al., 2013a).
The concentrations of NO,-N in the sediments
collected throughout the first post-fire year agree
with the results of several authors (Gimeno-Garcia
etal., 2000; Goémez-Rey et al., 2013b; Robichaud and
Brown, 1999; Robichaud et al.,, 2006), but the
concentration of NO,-N in ashes was rather low (25

times lower than in Gémez-Rey et al., 2013b) and
within the sediment's range instead of well above
them. There was no effect of mulching on soil
NO;-N (same as in Goémez-Rey et al., 2013a, and
Goémez-Rey and Gonzélez-Prieto, 2014) and
sediment NO;-N was not affected by straw addition
either, although other studies showed lower
sediment NO;-N concentrations in mulched plots
(Gomez-Rey et al., 2013b). These results confirm the
hypothesis of Goémez-Rey et al. (2013a) that
mulching does not have an effect on net
mineralization and nitrification, as neither NH,*-N
nor NO;-N concentrations are affected by treatment
application.

Soil P concentration was within the same range
reported in other studies (Gémez-Rey et al., 2013a;
Gomez-Rey and Gonzalez-Prieto, 2014), but instead
of decreasing with time it oscillates during the
study period. High post-fire P_; concentrations are
aresult of the increased mineralisation of organic P
(Cade-Menun et al., 2000; Saa et al., 1994) and the
higher solubility of inorganic P when pH increases
towards neutrality (Certini, 2005). Soil P tends to
decrease afterwards due to sediment losses (Andreu
etal., 1996; Gomez-Rey et al., 2013b; Sad et al., 1994)
and to orthophosphate chemisorption on Al, Fe and
Mn oxides if the soils are acidic (Certini, 2005), but
most probably sediment losses are too low in our
experiment to cause a significant P depletion in
soils. The concentration of P, ;. ..« Was almost the
same as in ashes and slightly higher than in soils.
Compared to our data, in Thomas et al. (1999) soils
had similar concentration of P, but the sediments
and ashes showed much higher values most
probably due to the higher intensity of the fire. Our
data on P,y agrees with the values recorded by
Gomez-Rey et al. (2013b), although in the latter
study ash levels of P were 6 times higher than those
in sediments. Like for N, the application of
mulching had no effect on soil and sediment P as
also reported by Goémez-Rey et al. (2013b) and
Gomez-Rey and Gonzalez-Prieto (2014).

In general the availability of basic cations and
micronutrients increases due to the combustion of
soil organic matter and to the accumulation of
ashes, but eventually the concentration of these
nutrients decreases (Certini, 2005; Khanna et al,,
1994). The concentrations of basic cations in
sediments were similar to those recorded elsewhere
(de Koff et al., 2006; Gémez-Rey et al., 2013b;
Robichaud and Brown, 1999; Thomas et al., 1999),



although in our case only Ca,gimens ANd M8, .giments
decreased with time. While in Gémez-Rey et al.
(2013b) ashes were always richer in basic cations
than sediments, in the present study ash and
sediment levels were within the same range. The
addition of mulching does not affect the
concentration of basic cations in burnt soils and
sediments, although Gémez-Rey et al. (2013a,b)
concluded that mulching had little but positive
effects on soil K, Mg and Ca mostly by reducing
erosion. On the contrary, these authors found that
the concentration of basic cations in sediments was
not affected by mulching.

In our soils the values for Al, Mn, Mo and Zn
were similar to those reported elsewhere
(Garcia-Marco and Gonzalez-Prieto, 2008;
Gomez-Rey et al, 2013a; Goémez-Rey and
Gonzélez-Prieto, 2014), whereas Cu was slightly
higher compared to these studies and Fe was
slightly lower than in Gémez-Rey et al. (2013a) and
Goémez-Rey and Gonzalez-Prieto (2014). For
sediments, Mn and Zn were the only trace elements
that significantly decreased with time; and when
compared to the data from Gémez-Rey et al. (2014),
the concentrations in our experiment are similar for
Zn, lower for Al, Cu and Fe and higher for Mn. It
must be highlighted that, in our case, Mo, Mn and
Zn concentrations in sediments exceeded the
reference levels for ecosystem protection (CEC,
1986, DEC, 2010; EPA, 2007a,b;Macias Vazquez and
Calvo de Anta, 2009), and that might negatively
impact the vegetation recolonizing the burnt area
and also lead to toxicity risks in the sedimentation
area (water and soil) as also suggested Gomez-Rey
et al. (2014). Twelve months after the fire, our
sediments had less Al and Fe and more Mn and Zn
compared to soils, whereas in Gémez-Rey et al.
(2013b) sediments and soil concentrations were
similar except for Cu, Mn and Zn, which had higher
concentrations in sediments. Levels of trace
elements in ashes were in general within the
sediment range both in our experiment and in
Goémez-Rey et al. (2014), but the absolute
concentrations in ashes were 2-6 fold higher in the
latter than in present study. The lack of mulching
effects on the concentration of micronutrients and
trace elements in soils and sediments is in
agreement with the data provided by Gémez-Rey et
al. (2014).

The PCAs show that both soil and sediment
samples change with time according to the

measured variables, being the differences among
sampling dates more pronounced during the first
half of the experiment. Soils sampled 9 and 12
months after the fire cannot be distinguished
between them, contrasting with the differences
between samples taken 8 and 12 months after the
fire in a similar field experiment carried out by
Gomez-Rey and Gonzélez-Prieto (2014). These
contrasting results are likely due to differences in
site characteristics (soil quality, fire severity,
dominance of resprouters or obligate seeders,
altitude and orientation of the area), weather
conditions (temperature and rain regimes) and
relative importance of erosion, as all these factors
affect the speed of recovery of the vegetation cover
and the characteristics of the soil remaining in situ.
Due to a more severe fire and harsher climatic
conditions in the field site studied by Gémez-Rey
and Gonzélez-Prieto (2014), burning effects on
different soil properties were still noticeable 4 years
after the fire (authors unpublished data), while in
the present study site values from 2 years after the
fire indicate no differences on the measured soil
properties compared to t = 12 months (data not
shown). The variables most strongly associated with
the first two factors are rather similar between the
PCA,; and PCA_ . cns and they are also similar to
the PCA loadings in Goémez-Rey and
Gonzalez-Prieto (2014).

The lack of differences among control
andmulched plots in the accumulated mass of
sediments is most probably due to low erosion rates
in our site, where the annual precipitation was 827
mm. These results contrast with those from a similar
experiment carried out nearby but under much
rainier conditions (3036 mm y™, Gémez-Rey et al.,
2013b), where the total mass in the accumulated
sediments of most of the analysed elements was
much higher in their control and seeding plots than:
a) in their mulched plots; and b) the amount
retrieved in all plots from our experiment (up to
35-fold).Moreover, the mass of nutrients lost by
erosion in their mulching plots was similar in
magnitude to the losses in all our plots (slightly
lower for K, Ca, Mn, Zn, Cu and Mo; similar for
total N, NH,*, NO;  and Na; and slightly higher for
Mg, P, Al and Fe). Therefore, it can be concluded
that with moderate precipitation rates, erosion of
burnt areas is not significantly reduced by mulching
addition. This fact should be taken into account
when planning where to wuse this post-fire



stabilization technique, especially considering the
costs and difficulties of its application in large or
remote burnt areas and also the potential
competence with straw use as livestock fodder.
Despite the low erosion rates compared to other
fires, it should be highlighted again that in the
present study burning lead to exceed the reference
levels for ecosystem protection of Mo, Mn and Zn in
sediments.

The percentage of ash elements lost by erosion
could be useful when assessing the potential
recovery of vegetation, especially for micronutrients
in repeatedly burnt areas where they can become
limiting. In our case, Fe, gnens and Zn
accounted for a high percentage of ash elements lost
by erosion. All the studied elements but Mo
accounted for a higher percentage of ash elements
lost by erosion in our experiment than in the
mulching plots from the prescribed fire studied by
Gomez-Rey et al. (2013b) and Goémez-Rey and
Gonzélez-Prieto (2014). Despite the much lower
erosion rates recorded in our experiment when
compared to the prescribed fire, NO;  giments
CUgimentsy K and Na in our plots
accounted for an even higher percentage of ash
elements than in the control and seeding plots from
the prescribed fire. Nonetheless, to compare the two
studies in a comprehensive way is rather difficult
due to several dissimilarities between both sites: a)
slates vs. granitic parent material (i.e. fine textured
soil with good aggregation vs. coarse textured soil
with weak aggregates, leading to differences in
water holding capacity, heat transfer, organic matter
stabilization, etc.); b) S vs. NW orientation, which
usually exert a great influence on litter
accumulation; c¢) wildfire vs. prescribed fire with
fuel addition; and d) 0.70 kg m™ of ashes collected
one month after the fire vs. 1.29 kg m™ of ashes
sampled just after the fire. Although precipitationin
our study area before ash sampling was low and
likely prevented significantlosses by lixiviation and
runoff, a fraction of ash enriched in some nutrients
might have been wind-eroded before ash sampling
and treatment application as suggests the rather
different ash elemental composition and the
proportion ash:sediments for the different elements
between the two studies. If this occurred in our
experimental site, the percentages of ash elements
lost by runoff might be overestimated when
compared to other studies without ash losses before
sampling.

sediments

sediments sediments

For most elements, the erosion losses expressed
as percentage of nutrient pools in ash + topsoil were
within the same range in our study and in the
mulched plots of Gémez-Rey et al. (2013b) and
Gomez-Rey and Gonzalez-Prieto (2014), indicating
again how low was the erosion rate in the present
study.

5. Conclusions

This field experiment after a medium-severity
wildfire in a steep area confirms the already
suggested hypothesis that mulching has no impact
on soil and sediment concentrations of nutrients
and trace elements and it does not affect net soil N
rates (mineralisation and nitrification). Both soils
and sediments change with time in a similar way
and it seems that the PCAs including the studied
variables can be a useful tool to assess whether
burnt soils and the eroded sediments in the area are
changing with time and the speed of the change.
Despite the low erosion rates due to moderate
precipitation, the concentration of Mo, Mn and Zn
in sediments is above reference levels for ecosystem
protection. However, straw mulching does not have
a significant effect in reducing soil erosion and the
subsequent loss of nutrients with such low erosion
rates; and we found no differences between the
plots with straw mulch applied in wide and narrow
bands along the contour lines (higher and lower
straw dose per plot respectively).
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Table C. Statistics of ANOVA-1 to compare the main properties of sediments from each erosion event with those of
ashes (Dunnett’s test). Only significant differences are shown, in bold when sediments > ashes and in regular type when
sediments < ashes. Key: BS, control burnt plots; WM, wide-mulched burnt plots; NM, narrow-mulched burnt plots.

sed. 1 month sed. 3 months sed. 4 months sed. 5 months sed. 7 months sed. 12 months

F sig. F sig. F sig. F sig. F F sig.
BS 0.010 0.000 0.000 0.000 0.008
pH ko WM 042 540 0.023 14.10 0.001 20.06 0.000 20.33  0.000 6.26 0.012
NM 0.026 0.001 0.000 0.000 0.013
BS
Total N WM 2.65 0.61 0.51 1.70 0.35 0.28
NM
BS
8 °N WM 3.69 0.018 0.87 1.49 3.54  0.030 0.75 0.31
NM
BS 0.041 0.001 0.046
NH,-N WM 3.81 11.32  0.001 3.78 0.015 546  0.012 1.98 1.38
NM 0.031 0.004 0.012
BS 0.018 0.010 0.003
NO,-N WM 394 0.82 6.31 0.006 6.04 1.37 2.22
NM
BS 0.003 0.033 0.000 0.000 0.011
Al WM  9.38 0.017 648 0.023 20.46 0.000 20.47 0.000 7.13  0.043 3.37
NM 0.001 0.003 0.000 0.000 0.003 0.023
BS 0.015
Ca WM  5.67 0.007 0.74 0.03 0.46 0.59 0.16
NM
BS 0.000 0.000
Cu WM  1.03 1.77 2.16 1.59 62.92  0.000 23.89  0.000
NM 0.000 0.001
BS 0.001 0.021 0.000 0.000 0.000 0.000
Fe WM 993 0.008 598 0.018 24.66 0.000 2322 0.000 11.67 0.007 29.43  0.000
NM 0.002 0.007 0.000 0.000 0.002 0.000
BS 0.008 0.001 0.001
K WM  3.00 0.031 4.84 9.22  0.013 9.01 0.006 0.16 0.90
NM 0.006 0.006
BS 0.006
Mg WM  8.38 0.002 1.77 0.18 0.14 0.53 0.11
NM 0.013
BS 0.058 0.041
Mn WM 0.97 0.23 2.76 3.17 0.050 4.13  0.025 1.86
NM 0.047
BS 0.000 0.000
Mo WM  3.07 0.038 1.61 1.73 1.68 174.84 0.000 172.11 0.000
NM 0.000 0.000
BS 0.007 0.000 0.008
Na WM 0.23 1.96 5.17 0.064 14.50 0.001 6.65 0.019 0.53
M 0.050 0.001 0.006
BS 0.032 0.000 0.000 0.000
P WM 7.64 42.63 0.000 2292 0.000 2528 0.000 1.37 2.31
NM 0.001 0.000 0.000 0.000
BS 0.001 0.002 0.001 0.007
Zn WM 1544 0.000 824 0.004 8.00 0.030 4.81 0.85 0.80
NM 0.003 0.020 0.037 0.084

Degrees of freedom: among groups. 3; between groups. 12.



Table D. Statistics of ANOVA-1 to compare the main properties of sediments from each erosion event with those of burnt soil
just after the fire (Dunnett’s test). Only significant differences are shown, in bold when sediments > soil and in regular type

when sediments < soil. Key: BS, control burnt plots; WM, wide-mulched burnt plots; NM, narrow-mulched burnt plots.

sed. 1 month

sed. 3 months

sed. 4 months

sed. 5 months

sed. 7 months

sed. 12 months

F sig. F sig. F sig. F sig. F F sig.

BS 0.001 0.001 0.001 0.001 0.001 0.041
PH xq WM 5498 0.001 33.17 0.001 2521 0.001 29.73 0.001 19.41 0.001 439 0.028

NM 0.001 0.001 0.001 0.001 0.001 0.025

BS 0.004 0.047 0.007 0.012 0.012
Total N WM 853 0.002 567 0.007 256 0.048 7.10 0.004 4.80 0.034 5.73  0.010

NM 0.006 0.018 0.021 0.049 0.033

BS 0.001 0.001 0.001 0.001 0.001 0.008
5N WM 21.55 0.001 17.48 0.001 15.76 0.001 24.02 0.001 13.92 0.001 7.88  0.002

NM 0.001 0.001 0.001 0.001 0.001 0.008

BS 0.005 0.021 0.011 0.001
NH,-N WM 7.94  0.009 3.96 0.045 9.46 0.001 1696 0.001 4.07 0.034 2.18

NM 0.003 0.008 0.001 0.024

BS
NO,-N WM 1.11 2.54 0.38 0.51 0.38 1.63

NM

BS 0.001 0.001 0.001 0.001 0.001 0.001
Al WM 159.27 0.001 14.72 0.001 56.20 0.001 5291 0.001 242.33 0.001 32.87 0.001

NM 0.001 0.002 0.001 0.001 0.001 0.001

BS 0.001 0.001 0.001 0.001 0.001 0.002
Ca WM 2426 0.001 16.39 0.001 17.61 0.001 28.07 0.001 24.37 0.001 9.08 0.003

NM 0.001 0.001 0.001 0.001 0.001 0.005

BS 0.001 0.001
Cu WM 2.14 2.37 2.75 1.44 44.87 0.001 16.45 0.001

NM 0.001 0.012

BS 0.001 0.002 0.002 0.001 0.031
Fe WM 18.07 0.001 2.24 10.94 0.001 12.05 0.001 22.83 0.001 7.30 0.002

NM 0.001 0.002 0.001 0.001 0.030

BS 0.001 0.047 0.013 0.002 0.024 0.006
K WM 28.95 0.001 9.00 0.004 11.27 0.001 15.13 0.001 549 0.011 521  0.050

NM 0.001 0.001 0.001 0.001 0.017

BS 0.001 0.001 0.001 0.001 0.001 0.030
Mg WM 49.66 0.001 3221 0.001 18.72 0.001 18.18 0.001 11.00 0.001 3.89  0.037

NM 0.001 0.001 0.001 0.001 0.003

BS 0.023 0.050
Mn WM 427 0.043 2091 1.84 4.08 0.058 2.53 1.62

NM 0.038 0.050 0.021

BS 0.041 0.013 0.001 0.001 0.001 0.001
Mo WM 5.63 0.007 7.14 0.004 1535 0.001 1546 0.001 158.70 0.001 154.52 0.001

NM 0.018 0.007 0.001 0.001 0.001 0.001

BS 0.002 0.002 0.007 0.032
Na WM 10.14 0.001 12.88 0.001 3.67 0.033 4.84 0.020 791 0.003 3.17

NM 0.004 0.001 0.042 0.014 0.009

BS 0.049
P WM 3.97 0.041 1.37 0.54 0.08 1.14 2.61

NM

BS 0.001 0.001 0.001 0.001 0.033 0.050
Zn WM 18.61 0.001 11.59 0.001 1592 0.001 13.69 0.002 2.88 2.40

NM 0.001 0.005 0.002 0.002

Degrees of freedom: among groups. 3; between groups. 12.
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