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Background:Weset out to investigate themicrocirculatory consequences of hepatic ischemia

ereperfusion (IR) injury and the effects of L-alpha-glycerylphosphorylcholine (GPC), a

deacylated phospholipid derivative, on postischemic hepatocellular damage, with special

emphasis on the expression of nicotinamide adenine dinucleotide phosphate oxidase type 4

(NOX4), which is predominantly expressed in hepatic microvessels.

Materials and methods: Anesthetized male SpragueeDawley rats were subjected to 60-min

ischemia of the left liver lobes and 180-min reperfusion, with or without GPC treatment

(50 mg/kg intravenously 5 min before reperfusion, n ¼ 6 each). A third group (n ¼ 6) served

as saline-treated control. Noninvasive online examination of the hepatic microcirculation

was performed hourly by means of modified spectrometry. Plasma tumor necrosis factor

(TNF-a), high-mobility group box 1 protein (HMGB1), plasma aspartate aminotransferase,

alanine aminotransferase and lactate dehydrogenase levels, tissue xanthine oxidoreduc-

tase (XOR) and myeloperoxidase (MPO) activities, and expressions of NOX2 and NOX4

proteins were determined.

Results: Liver IR resulted in significant increases in NOX2 and NOX4 expressions and XOR

and MPO activities, and approximately 2-fold increases in the levels of the inflammatory

cytokines TNF-a and HMGB1. The microvascular blood flow and tissue oxygen saturation

decreased by w20% from control values. GPC administration ameliorated the post-

ischemic microcirculatory deterioration and reduced the liver necroenzyme levels

significantly; the NOX4 expression, MPO activity, and HMGB1 level were also decreased,

whereas the NOX2 expression, TNF-a level, and XOR activity were not influenced by GPC

pretreatment.
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Conclusions: NOX4 activation is a decisive component in the IR-induced microcirculatory

dysfunction. Exogenous GPC ameliorates the inflammatory activation, and preserves the

postischemic microvascular perfusion and liver functions, these effects being associated

with a reduced hepatic expression of NOX4.

ª 2014 Published by Elsevier Inc.
1. Introduction 2. Materials and methods
Transient ischemia contributes significantly to the morbidity of

hepaticsurgery.Asaresponsetohypoxia, liver injury ismediated

by inflammatory cascades in which various factors are involved

in the postischemic generation of reactive oxygen species (ROS).

Themajorknowncellular sourcesofROS formationareactivated

polymorphonuclear (PMN) leukocytes, the xanthine oxidore-

ductase (XOR) system and membrane-bound nicotinamide

adenine dinucleotide phosphate (NADPH) oxidases (NOXs) [1].

NOX-linked superoxide generation was once regarded as an

oddity of phagocytic cells such as PMNs and macrophages

(termed NOX2/gp91phox), but nonphagocyte homologs (NOX1,

NOX3, NOX4, and NOX5) and two related enzymes, DUOX1 and

DUOX2, were later identified [2]. Because NOXs are the only

known enzymes whose primary function is ROS generation [3],

the specific roles of the homologs are widely investigated. The

level of expression ofNOX4 is upregulated in various tissues and

cell lines during hypoxia [4,5] and NOX4 is a target gene of

hypoxia-inducible factor 1a (HIF-1a) and nuclear factor kappa

beta (NF-kB) in hypoxic conditions [6]. Of interest, NOX4 is

the predominant isoform in the microvessels in the liver paren-

chyma [7,8], but to date, its role in the pathogenesis of post-

ischemic hepatic injuries remains inadequately characterized.

Our major aim in the present work was to investigate the

ischemia-inducedmicrocirculatory reactions in a rat model of

hepatic ischemiaereperfusion (IR) injury, and to determine

the contribution of NOX4 to these changes. We additionally

set out to examine the consequences of potentially anti-

inflammatory treatment on IR-induced damage, with special

emphasis on the expression of NOX4. We took into account

here a previous finding of significantly lower liver concentra-

tions of L-alpha-glycerylphosphatidylcholine (GPC) in a

porcine model of hemorrhagic shock, with recovery to the

baseline only 48 h later [9]. GPC is a water-soluble, deacylated

phosphatidylcholine (PC) component and a possible endoge-

nous choline donor required for membrane phospholipid

synthesis [10]. PC and itsmetabolites have been demonstrated

to play a role in themaintenance of phospholipid homeostasis

under hypoxic conditions [9,11]. It is of particular interest that

membrane-forming phospholipids increase the tolerance to

ischemia and hypoxia in various in vitro and in vivo systems of

hypoxia and reoxygenation [12e15]. It is also recognized that

PC derivatives reduce PMN accumulation and activation

[14,15] and inhibit the formation of ROS in inflammatory

scenarios [13]. Taken together, these data strongly suggested

that GPC supplementation might modulate the inflammatory

consequences of ischemia-related liver injury. We hypothe-

sized here that NOX4 is critically involved in the IR-associated

hepatic microcirculatory dysfunction, and that the anti-

inflammatory potential of GPC is linked to its interference

with NOX4-associated ROS production.
The experiments were carried out on male SpragueeDawley

rats (Charles River, Sulzfeld, Germany, average weight

300� 20 g) housed in an environmentally controlled roomwith

a 12-h lightedark cycle, and kept on commercial rat chow

(Charles River, Wilmington, MA) and tap water ad libitum. The

experimental protocol was in accordance with the European

Union directive 2010/63 for the protection of animals used for

scientific purposes and was approved by the Animal Welfare

Committee of the University of Szeged. This study also com-

plied with the criteria of the US National Institutes of Health

Guidelines for the Care and Use of Laboratory Animals.

2.1. Surgical procedures

Anesthesia was induced with a combination of 25 mg/mL (S)-

ketamine (Ketanest; Parke Davis, Berlin, Germany) and 20 mg/

mL xylazine (Rompun; Bayer, Leverkursen, Germany) in a ratio

of 8:1, injected intraperitoneally and sustained with small

supplementary intravenous (i.v.) doses in every 30 min. The

trachea was cannulated to facilitate respiration, and the right

jugular vein and carotid artery were cannulated for fluid and

drug administration and for the measurement of arterial

pressure, respectively. The animals were placed in a supine

position on a heating pad to maintain the body temperature

between 36�C and 37�C, and lactated Ringer solution was

infused at a rate of 10 mL/kg/h during the experiment. For the

preparation of the liver, the fur covering the abdomen was

shaved, and the skin was disinfected with povidone iodide.

After midline laparotomy and bilateral subcostal incisions,

the liver was carefully mobilized from all ligamentous at-

tachments, the left and median liver lobes were exteriorized,

placed on a specially designed pedestal, and turned on its left

side, providing a suitable horizontal plane of the liver lobe for

examinations of the microcirculation. This method provided

free access to the appropriate vessels while ensured the

adequate blood supply of the investigated liver lobes without

twisting of vascular pedicles. Complete ischemia of the me-

dian and left hepatic lobes was achieved by clamping the left

lateral branches of the hepatic artery and the portal vein with

a microsurgical clip for 60 min. After the period of ischemia,

the clips were removed and measurements were performed

during a 180-min reperfusion period [16e18]. The wound was

temporarily covered with nonewater-permeable foil during

the reperfusion period.

2.2. Experimental protocols

The experiments were performed in two series, with the an-

imals randomly assigned to one of the following groups. In the

first series, the microcirculatory consequences of the partial
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hepatic ischemia were determined by using the noninvasive

modified spectrometric O2C method (O2C system; LEA Medi-

zintechnik, Gieben, Germany). In the first group, the hepatic

microcirculatory responses to 60-min complete ischemia

of the median and left hepatic lobes followed by a 180-min

reperfusion period were examined (IR group, n ¼ 6).

After recording of the baseline microcirculatory variables

(t ¼ �100 min), ischemia was induced in the median and left

hepatic lobes by clamping the left lateral branches of the he-

patic artery and the portal vein. The occlusions were subse-

quently released (t ¼ 0 min), and the microcirculation in the

affected lobes was observed viaO2C at t¼ 60, 120, and 180min

in the reperfusion phase. In the second group, 50 mg/kg GPC

(MW: 257.2; Lipoid GmbH, Ludwigshafen, Germany) was

injected into the right jugular vein, 5 min before the end of the

ischemic period (IR þ GPC group, n ¼ 6). These dosage condi-

tions were based on the data of previous investigations; this

dose was equimolar with the effective, anti-inflammatory

dose of PC (MW: 785; 0.064 mM, 50 mg/kg body weight, i.v.)

in rodents [19,20]. The animals in the third group were sub-

jected to the same surgical procedures except for the induc-

tion of liver ischemia (Sham group, n ¼ 6).

Blood samples for liver enzymes were taken at t ¼ 0, 60,

120, and 180min of the experiments and were stored at �20�C
until assays. Tissue biopsies for myeloperoxidase (MPO) and

XOR activity and NOX2 and NOX4 protein expression mea-

surements were taken at the end of the experiments andwere

stored at �80�C until assays.

2.3. Microcirculatory analysis

We used the O2C system (LEA Medizintechnik) for noninva-

sive and online examination of the microcirculation, which

allows simultaneous recording of tissue oxygen saturation

(SO2 percentage, absolute value), capillary blood flow (arbi-

trary units) and capillary blood flow velocity (arbitrary units).

To prevent the influence of regional heterogeneity and tem-

poral blood flow variations, measurements were performed at

three predetermined locations on the liver surface for 30 s

each [21].

2.4. Liver transaminase (aspartate aminotransferase,
alanine aminotransferase and lactate dehydrogenase)
measurements

Blood samples withdrawn from the carotid artery were

analyzed for aspartate aminotransferase (AST), alanine

aminotransferase (ALT), and lactate dehydrogenase (LDH) by

using a fully automated clinical chemistry analyzer (Vitros 250

analyzer; Ortho-Clinical Diagnostics, Raritan, NJ).

2.5. XOR activity

Tissue biopsies were homogenized in phosphate buffer (pH

7.4) containing 50 mM Tris. HCl, 0.1 mM EDTA, 0.5 mM

dithiotreitol, 1 mM phenylmethylsulfonyl fluoride, 10 mg/mL

soybean trypsin inhibitor and 10 mg/mL leupeptin. The ho-

mogenate was centrifuged at 4�C for 20min at 24,000 g and the

supernatant was loaded into centrifugal concentrator tubes.

The activity of XOR was determined in the ultrafiltered
supernatant by a fluorometric kinetic assay based on the

conversion of pterine to isoxanthopterine in the presence

(total XOR) or absence (XO activity) of the electron acceptor

methylene blue [22].

2.6. Liver MPO activity

Tissue MPO activity was measured in liver biopsies by the

method of Kuebler et al. [23]. Briefly, the tissue was homoge-

nized with Tris.HCl buffer (0.1 M, pH 7.4) containing 0.1 M

polymethylsulfonyl fluoride to block tissue proteases, and

then centrifuged at 4�C for 20 min at 24,000 g. The MPO ac-

tivities of the samples were measured at 450 nm (UV-1601

spectrophotometer; Shimadzu, Japan), and the data were

referred to the protein content.

2.7. Determination of plasma TNF-a and high-mobility
group box 1 levels

Blood samples (0.5mL) were taken from the carotid artery into

precooled ethylenediaminetetraacetic acid-containing poly-

propylene tubes. Samples were centrifuged at 1000 g for

30 min at 4�C and then stored at �70�C until assay. Plasma

TNF-a and high-mobility group box 1 (HMGB1) concentrations

were determined with commercially available enzyme-linked

immunosorbent assays (Quantikine ultrasensitive ELISA kit

for rat TNF-a; Biomedica Hungaria Kft, Hungary, and Shino-

Test Corporation ELISA kit for HMGB1, Kanagawa, Japan).

2.8. Western blot analysis of NOX2 and NOX4

Liver samples were homogenized and then lyzed with radio-

immunoprecipitation assay buffer (Santa Cruz Biotech, Heidel-

berg, Germany). Protein extracts (20 mg of total protein) were

heated at 95�C for 10 min, then placed in ice to cool, electro-

phoresed in 4%e15% gradient sodium dodecyl sulfate poly-

acrylamide gels, and transferred onto nitrocellulosemembranes

(Millipore, Darmstadt, Germany).Membraneswere blockedwith

Tris-buffered saline and 5% skimmedmilk at room temperature

for 1 h before overnight incubation at 4�C with primary anti-

bodiesagainst gp91phox (1:2000dilution; Epitomics, Burlingame,

CA), and NOX4 (1:2000 dilution; Epitomics). After washing with

Tris-buffered salinewithTween,membraneswere incubated for

1 h at room temperaturewith horseradish peroxidase-conjugate

corresponding secondary antibodies (anti-rabbit 1:2500 dilution;

Promega, Madison, WI). The membranes were next developed

with the Supersignal West Pico Horseradish Peroxidase Sub-

strate Kit (Pierce, Rockford, IL), and the intensities of protein

bands were quantitated and photographed on a Lumi-Imiger

(Roche-Diagnostics, Boehringer Mannheim, Germany) image

station. To control sample loading and protein transfer, the

membranes were stripped and reprobed with b-actin antibody

(1:1000 dilution; Sigma-Aldrich, St. Louis, MO).

2.9. Statistical analysis

Data analysis was performed with the SigmaStat Statistical

Software (Jandel Corporation, San Rafael, CA). Changes in

microcirculatory parameters and liver enzyme activities be-

tween groups and within groups were analyzed by two-way

http://dx.doi.org/10.1016/j.jss.2013.12.025
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analysis of variance, followed by the Bonferroni test. For the

evaluation of biochemical assays and ELISA data, changes in

variables between groups were analyzed by one-way analysis

of variance on ranks, followed by the Tukey test. P values

<0.05 were considered statistically significant.
Fig. 1 e Changes in microcirculatory variables in the left

liver lobe in response to 60 min of partial hepatic ischemia

followed by 180 min of reperfusion. Animals were treated

with GPC (50 mg/kg i.v.; 5 min before the end of ischemia;

gray triangles) or vehicle (black squares) or subjected to

sham operation (white squares). (A) Capillary blood flow

(Capillary blood flow, given in arbitrary units), (B) velocity

in the capillaries (Blood flow velocity, given in arbitrary

units), (C) tissue oxygen saturation (SO2 given in

percentage). Data are presented as mean ± standard error

of mean. *P < 0.05 versus baseline; #P < 0.05 versus Sham

group (two-way analysis of variance, Bonferroni test).
3. Results

3.1. Microcirculatory changes

For the comprehensive evaluation of the hepatic microcircu-

lation, the tissue blood flow, red blood cell velocity (RBCV), and

tissue oxygen saturation of the left liver lobes were assessed

simultaneously (Fig. 1). The reperfusion phase after the 60-

min ischemia (IR þ vehicle group) was not associated with

significant changes in hepatic capillary blood flow as

compared with the sham-operated (Sham þ vehicle) group,

whereas the capillary blood flow was significantly lower than

the baseline value at 120 and 180 min of reperfusion (Fig. 1A)

when GPC was administered 5 min before the end of the

ischemic period (IRþ GPC group). The RBCV in the IRþ vehicle

group was significantly lower in comparison with the pre-

ischemic value at 60 and 120 min of reperfusion, and differed

significantly from that measured in the sham-operated group

at 60 min of the examination period (Fig. 1B). GPC resulted in

significant increases at 120 and 180 min as compared with the

levels in the sham-operated group. Taken together, the flow

and velocity changes caused by the 60-min partial ischemia

were manifested in a deterioration of the tissue oxygen

saturation throughout the examination period (IR þ vehicle

group), which was completely prevented by the administra-

tion of GPC (IR þ GPC group; Fig. 1C).

3.2. Inflammatory enzyme levels (MPO and XOR)

The IR injury resulted in a dramatically increased XOR activity

after 180 min of reperfusion (Fig. 2A). Similarly, the MPO ac-

tivity, the commonly used index of PMN priming and

inflammation, was increased significantly as compared with

the control group (Fig. 2B). The MPO activity was reduced after

the i.v. GPC treatment protocol (Fig. 2A), whereas the XOR

activity was not changed by the administration of GPC before

the reperfusion (Fig. 2B).

3.3. Plasma HMGB1 and TNF-a levels

The 60-min ischemia of the left liver lobes led to significantly

increased plasma TNF-a and HMGB1 levels at 180 min of the

reperfusion period (IR þ vehicle group) (Fig. 3A and B). GPC

pretreatment significantly decreased the IR-induced elevation

in the plasma HMGB1 level (Fig. 3A). In the case of TNF-a, the

GPC administration decreased this tendency, but no differ-

ences were observed between the IR þ vehicle group and

IR þ GPC groups (Fig. 3B).

3.4. NOX2 and NOX4 protein expression

At the end of the reperfusion period, the expression of both

NOX2 and NOX4 protein were elevated in the liver tissue
(Fig. 4A and B). When GPC was administered 5 min before the

end of the ischemic period (IR þ GPC group), the NOX4

http://dx.doi.org/10.1016/j.jss.2013.12.025
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Fig. 2 e Hepatic MPO and XOR activities in response to

60 min of partial hepatic ischemia followed by 180 min of

reperfusion. Animals were treated with GPC (50 mg/kg i.v.

5 min before the end of ischemia; IR D GPC) or vehicle (IR)

or subjected to sham operation (Sham). (A) XOR activity. (B)

MPO activity. Data are presented as mean ± standard error

of mean. #P < 0.05 versus Sham group (one-way analysis

of variance, Holm-Sidak test).

Fig. 3 e ELISA for the evaluation of the plasma cytokine

levels of TNF-a and HMGB1 in response to 60 min of partial

hepatic ischemia followed by 180 min of reperfusion.

Animals were treated with GPC (50 mg/kg i.v. 5 min before

the end of ischemia; IRD GPC) or vehicle (IR) or subjected to

sham operation (Sham). (A) TNF-a level; (B) HMGB1 level.

Data are presented as mean ± standard error of mean.

#P < 0.05 versus Sham group (one-way analysis of

variance, Holm-Sidak test).
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expression was attenuated, whereas no change was observed

in the NOX2 level.
3.5. Hepatic enzymes in the plasma

To characterize the overall magnitude of the functional liver

injury, the levels of aminotransferases and LDH were

measured 60, 120, and 180 min after reperfusion (Fig. 5). The

animals in the control group not subjected to IR exhibited

minimal increases in necroenzyme levels throughout the

experimental protocol as compared with the baseline values.

In contrast, the IR þ vehicle group demonstrated significantly

higher levels of AST, ALP, and LDH during the reperfusion

period, indicating significant liver damage. GPC treatment

significantly reduced the plasma necroenzyme levels relative

to those in the IR group (Fig. 5).
4. Discussion

Apart from technical problems, IR-related complications are

major challenges in the field of liver surgery. Hemostasis and

a bloodless operation field are often required, and the

potentially harmful consequences of warm ischemia remain

at the focus of research interest. In this study, we used awell-

established experimental protocol. Partial liver IR was ach-

ieved by clamping and then releasing the left branches of the

portal structures [16e18]. This method produces ischemia to

the left and median lobes of the liver (approximately 70% of

the liver) while maintains normal blood flow to the right and

caudate lobes. This allowed the evaluation of reactions

induced solely by IR, excluding the poorly tolerated mesen-

teric congestion with concomitant mediator release [24].

In this set up, the postischemic period was characterized

by signs of microcirculatory derangement, hepatocellular

http://dx.doi.org/10.1016/j.jss.2013.12.025
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Fig. 4 e Western blot analysis of the hepatic expressions of NOX2 and NOX4 in response to 60 min of partial hepatic

ischemia followed by 180 min of reperfusion. Animals were treated with GPC (50 mg/kg i.v. 5 min before the end of

ischemia; IR D GPC) or vehicle (IR) or subjected to sham operation (Sham). (A) NOX2 expression; (B) NOX4 expression. Data

are presented as mean ± standard error of mean. Due to the low number of data, no statistical analysis was performed.
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damage, and enhanced inflammatory activation. More

importantly, preemptive GPC administration exertedmarked

protection against the potentially detrimental consequences

of IR, improved the microvascular blood flow, RBCV, and

tissue oxygenation, and resulted in a significant amelioration

of the hepatic function, as evidenced by a tendency to the

normalization of liver enzyme changes.

The postischemic parenchymal injury can be attributed to

the enhanced activity of several superoxide-generating en-

zymes, including cytosolic XOR [25], mitochondrial electron

transport enzymes, and peroxysomal oxidases [2]. The PMN

granulocytes, the prototype of NOX2-expressing phagocytes,

also generate a substantial amount of ROS and mediate liver

injury [26]. Indeed, reperfusion increased the hepatic XOR and

MPO activities in this model, in accordance with previous

observations [26,27]. Moreover, elevated NOX2 and NOX4 ex-

pressions were demonstrated.

Members of the NOX family are intracellular O2-sensing

enzymes, producing superoxide via electron transfer from

reduced NADPH to molecular oxygen [3,28,29]. Under resting

circumstances, both NOX2 and NOX4 messenger RNA are

present in the liver [30], but little information is available on

the roles of these NOX isoforms in the biology of sinusoidal

endothelial cells and hepatocytes. Similarly, controversial

data are available on the impact of NADPH oxidases in IR

injury, although the consequences of ROS generation may be

deleterious. Among the NADPH oxidases, the predominant

role of NOX4 in ischemia-associated oxidant stress has

been identified in brain [31], heart [32], and liver [26] tissues,

other NOX isoforms such as NOX1 or NOX2 proving less

relevant [33].

In this study, exogenous GPC administration did not in-

fluence the activity of the XOR system, whereas the accumu-

lation of PMN and the hepatic expression of NOX4 were

reduced. In parallel, GPC treatment significantly reduced the

release of biomarkers of functional liver damage. This sug-

gests that PMNs and NOX4 activation may have greater im-

pacts on the extent of postischemic liver injury than other,

potentially momentous sources of superoxide production,

such as XOR.
Furthermore, it appears that NOX4 activation is a decisive

component in the IR-induced microcirculatory dysfunction.

The expression of both NOX2 and NOX4 were elevated in

response to IR, whereas only that of NOX4 expression was

attenuated as a consequence of GPC administration, in asso-

ciation with improved oxygenation, microvascular flow, and

necroenzyme release. Indeed, a growing body of evidence

suggests that NOX2 and NOX4 play different roles in the

development of pathophysiological changes in the vascula-

ture during acute and chronic exposure to hypoxia [34,35].

Hypothetically, endothelial ROS generation by NOX2 may

stimulate NOX4 during the process of hypoxia-dependent

upregulation in the vessels [5]. Among the NOX homologs,

NOX4 is implicated as an oxygen sensor in vascular cells,

revealing enhanced expression and activation in hypoxic lung

and kidney pathologies [4,5]. As opposed to NOX2, NOX4 is not

only inducible but also constitutively active [29]. Of particular

interest, the activation of NOX4 does not require the trans-

location of any of the known cytosolic regulatory subunits to

the plasma membrane [36].

Furthermore, GPC pretreatment decreased the IR-related

elevation of plasma HMGB levels without affecting TNF-a

release significantly. This finding may appear somewhat un-

expected in view of the possible cross talk between TNF-a and

HMGB1 signaling and their common NF-kB-dependent tran-

scription [37]. Moreover, NF-kB activation can be mediated by

ROS production via NOX4 [38,39], and the Toll-like receptor 4-

dependent expression of surface adhesionmolecules is linked

to the NOX4-dependent activation of NF-kB [40]. Nevertheless,

the plasma HMGB1 may also originate from necrotic cells

independently of NF-kB; the preserved hepatocellular integ-

rity would therefore provide a plausible explanation for the

effect of GPC in reducing HMGB1 levels.

It should be added that a causative relationship has been

demonstrated between NOX2 activation and inflammatory

cytokine release; NOX2 has been found to be one of the major

factors controlling hepatic TNF-a release after IR [41].

Furthermore, NOX2 may be present in activated Kupffer cells

or PMNs and also in hepatocytes [41]. This may explain the

http://dx.doi.org/10.1016/j.jss.2013.12.025
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Fig. 5 e Time course of changes in concentrations of AST,

ALT, and LDH in the plasma in response to 60 min of

partial hepatic ischemia followed by 180 min of

reperfusion. Animals were treated with GPC (50 mg/kg i.v.

5 min before the end of ischemia; gray triangles) or vehicle

(black squares) or subjected to sham operation (white

squares). (A) AST levels (AST, given in units/liter), (B) ALT

levels (ALT, given in units per liter), and (C) LDH levels

(LDH, given in units per liter). Data are presented as

mean ± standard error of mean. *P < 0.05 versus baseline;

#P < 0.05 versus sham group (two-way analysis of

variance, Bonferroni test).
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fact that GPC reduced the elevated MPO activation, but not

that of NOX2 expression.

It has been reported that GPC accumulates in the organs of

excretion, the liver containing the highest metabolite
concentration [42]. Under physiological conditions, GPC is

involved in the preservation of the structural integrity of the

cellular membranes through the stimulation of PC synthesis

via the Kennedy pathway [10]. Its role in maintenance of

phospholipid homeostasis has additionally been demon-

strated indirectly, since the liver concentrations of GPC are

diminished after hemorrhagic shock [9]. Likewise, a choline

deficiency leads to the hepatic recruitment of inflammatory

cells [11], whereas the supplementation of PC increases

ischemic tolerance and reduces leukocyte trafficking during

acute inflammation [14,15].

The exact mechanism of interference with inflammatory

mediators production is still unknown, but appears to involve

activation of the alfa7 subunit of the nicotinic acetylcholine

receptor (alfa7-nAChR). GPC has been demonstrated to stim-

ulate acetylcholine and PC biosynthesis and activate post-

synaptic cholinergic receptors [43], thereby enhancing central

cholinergic functions in the central nervous system; hence

peripheral effects through potential cholinergic modulations

cannot be excluded. An interaction between NOX4 and a7-

nAChRs in the hepatocytes would provide an additional

explanation for the effects of GPC and its metabolites on ROS

production [13]. Unlike other NOXs (but similarly to a7-

nAChRs), NOX4 is localized in the plasma membrane and

the mitochondria [44]. In a chronic kidney disease model, the

expression and activity of NOX4 were altered in response to

a7-nAChR activation by nicotine exposure [45]. In rat micro-

glial cultures, nicotine inhibited ROS production and NADPH

oxidase activation by blocking the Ca2þ influx that follows

inhibition of the ATP efflux [46]. A similar mechanism has

been proposed in other studies where nAChRs were demon-

strated on the outer membrane of the liver mitochondria [47].

If GPC targets cholinergic regulation, this could lead to nearly

immediate reactions in comparison with the relatively time-

consuming humoral anti-inflammatory pathways. Any treat-

ment, which acts as an agonist of the alpha7 subunits on the

hepatocytes and immune cells of the inflammatory cascade

would furnish a highly potent anti-inflammatory approach,

with local effects on hepatocytes and simultaneous effects on

the systemic consequences of IR injury.
5. Conclusions

An increased inflammatory response was demonstrated after

partial liver ischemia, and the anti-inflammatory potential of

GPC was linked to a diminished NOX4 expression, improved

microcirculation and hepatocellular integrity. Further studies

should clarify the specific interactions between GPC and the

cholinergic anti-inflammatory pathway, but the data suggest

that GPC administration may be a promising pharmacother-

apeutic approach in ischemia-related liver pathologies.
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