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Summary

The nano-sized (100–500 nm) selenium has higher bioavailability and relatively lower toxicity compared to

other selenium forms. The objective of the present study was to compare liver proteome profiles of broiler

chicken fed with control diet without Se supplementation and diet supplemented with nano-Se with 4.25 mg/kg

DM. Differential proteome analyses were performed by two-dimensional gel electrophoresis (2D-PAGE) followed

by tryptic digestion and protein identification by liquid chromatography–mass spectrometry (LC-MS). Seven

hundred and eight spots were detected, and 18 protein spots showed significant difference in their intensity

(p < 0.05) between the two groups. In response to nano-Se supplementation, the expression of 8 proteins was

higher, and 5 proteins were lower in nano-Se supplemented group compared to control group. The functions of

the differentially expressed proteins indicate that the high dose of selenium supplementation induced a dietary

stress. Selenium supplementation may influence the metabolism of fatty acids and carbohydrates and antioxidant

system, and increase the quantity of cytoskeletal actin and the expression of actin regulatory protein as well.
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Introduction

Selenium is one of the essential trace elements for life

processes (K€ohrle, 2004). The biological significance of

Se was recognized only in 1973, as a component of the

glutathione peroxidase (GPx). This enzyme has an

important role in intracellular defence mechanisms

against oxidative damage because it prevents the for-

mation of reactive oxygen species (Rotruck et al.,

1973). Glutathione peroxidase is a selenoprotein which

protects cells and membranes from oxidative damage

by destroying hydrogen peroxide and hydroperoxides

(Watanabe et al., 1997). Selenium is an important

component of several other selenoproteins with essen-

tial biological functions (Van Cauwenbergh et al.,

2004). Even though the functional roles of these

selenoproteins are not fully understood, there is an

increasing evidence that these selenoproteins and

other Se-containing metabolites are important in

immune function and reduce the risk of cancer (Tinggi,

2003). Selenium-enriched food can increase the

human selenium status, and optimal selenium intake

contributes to human health (Fisinin et al., 2009). The

selenium status of chicken has effect on survival,

growth performance, resistance to diseases, fertility,

shelf life of eggs and hatchability (Pappas et al., 2006;

Surai, 2006). Earlier, inorganic selenium compound

(sodium selenite) has been incorporated into animal

diets, but nowadays organic forms of Se (i.e. selenome-

thionin, selenocysteine or selenium-enriched yeast)

are preferred (Payne and Southern, 2005). Chen and

co-workers demonstrated that different selenium forms

(inorganic and organic) had no clear effect on the pro-

duction traits of broilers, but influenced the resistance

against oxidative stress (Chen et al., 2014).

Oremland et al. (2004) presented a biological way

to produce nanospheres elemental selenium by sele-

nium-reducing anaerobe bacteria. Eszenyi et al.

(2011) used lactic acid bacteria to reduce the selenite

in toxic concentration into nano-sized elemental sele-

nium spheres with high purity. This procedure seems

to be more effective than chemical synthesis. Materi-
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als at the nanometers dimension hold promise for

application in medicine and nutrition. Plants and sev-

eral microorganisms, including bacteria and fungi, can

synthesize nanoparticles in their metabolic pathways.

Nano-sized selenium has higher bioavailability and

relatively low toxicity compared to other selenium

forms (Wang et al., 2007). There is a lack of informa-

tion about the role of increased Se content of feed on

liver proteome; thus, the objective of the present

study was to compare liver protein profiles of broilers

fed with control diet and feed supplemented with

4.25 mg/kg DM nano-Se.

Materials and methods

Animals and sampling

Probiotic lactic acid bacteria were applied for the

production of elemental selenium nanospheres (100–
500 nm) by fermentation (patent Prokisch and Zom-

mara, 2010). Twelve Cobb 500 broiler chickens were

used in the proteomics experiment. Birds were kept at

conventional housing system, and they had ad libitum

access to feed and water. The control group (n = 6) was

fed with a diet without Se supplementation, and the

nano-Se supplemented group (n = 6) was fed with a

diet supplemented with 4.25 mg/kg nano-Se for

42 days. Chickens were sacrificed on day 42 of the trial,

and livers were removed. From each liver, three repli-

cate samples (about 2 g/replicate sample) were cut and

snap frozen in liquid nitrogen within 20 min after

slaughter and then kept at�80 °C until the subsequent

analyses. The three replicates of liver samples were

pooled before protein isolation. The selenium content

of liver was 185 � 80 lg/kg and 890 � 461 lg/kg
(mean � SD) in control and nano-Se supplemented

groups, respectively.

Ethical issues

The experiment was carried out according to the regu-

lations of the Hungarian Animal Protection Act, in

compliance with the EU rules. The experimental pro-

tocol was authorized by the Food Chain Safety and

Animal Health Directorate of the Pest County Agricul-

tural Office, under permission number XIV-1-001/

1880-5/2011.

Extraction of proteins

Protein samples were prepared from chicken liver tis-

sue as follows: tissue samples were placed in liquid

nitrogen and ground thoroughly to a very fine powder

with a mortar and pestle. The tissue powder (100 mg)

was transferred to sterile tubes, containing 1 ml of

lysis buffer (8.5 M urea, 2 M thiourea, 4% (w/v)

CHAPS, 60 mM DTT, 0.2% (v/v) Bio-Lyte 4/6 and 6/8

ampholyte at a ratio of 1:2) and 80 ll proteinase inhi-

bitor cocktail (Promega). The mixture was incubated

for 60 min at room temperature with occasional vor-

texing and centrifuged at 15 000 g for 40 min at room

temperature. The supernatant was collected and

stored at �80 °C until further analysis. The protein

concentration was determined using RC DC protein

assay kit (Bio-Rad, Hercules, CA, USA) with bovine

serum albumin (BSA) as standard.

Two-Dimensional Polyacrylamide Gel Electrophoresis

(2D-PAGE)

For the first dimension (isoelectric focusing) of two-

dimensional gel electrophoresis, 7-cm immobilized pH

gradient (IPG) strips (pH 5–8, linear, Bio-Rad) were

rehydrated by passive rehydration using samples dis-

solved in 125 ll rehydration buffer (2 M thiourea, 8 M

urea, 2% CHAPS, 15 mg/ml DeStreak reagent, 0.2%

(v/v) Bio-Lyte 4/6 and 6/8 ampholyte at a ratio of 1:2,

0.002% (w/v) bromphenol blue) for 15 h at room

temperature. 150 lg of protein was loaded, and the

isoelectric focusing was conducted in Protean IEF Cell

(Bio-Rad). Low voltage (250 V) was applied for

15 min, and then, the voltage was gradually increased

to 4000 V over 2.5 h and maintained at that level until

a total of 20 000 Vh. Focused IPG strips were equili-

brated for 10 min in 6 M urea, 20% (v/v) glycerol, 2%

(w/v) SDS, 50 mM Tris pH 8.8 and 2% (w/v) DTT, and

then for an additional 10 min in the same buffer

except that DTT was replaced by 2.5% (w/v) iodoac-

etamide. After equilibration, proteins were separated

in the second dimension using OmniPAGE Mini (Clea-

ver Scientific) vertical electrophoresis system. Second

dimension was performed on 100 9 100 mm, 13%

polyacrylamide gels (37.5:1 acrylamide:bis-acrylamide

ratio). The gels were run by applying 80 V in the first

10 min and then 170 V until the bromphenol blue dye

marker reached the end of the gels. A cooling system

provided constant 20 °C running temperature. Poly-

acrylamide gels were stained with colloidal coomassie

G-250 (Thermo Scientific) (Dyballa and Metzger,

2009). 2D-PAGE analysis was carried out in three

replicates of each biologically independent sample;

thus 18 gels per group, a total of 36 gels were analysed.

Image analysis

Gels images were recorded using PharosFX Plus (Bio-

Rad) scanner, and the image analysis was performed
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using DELTA2D software (DecodonTM GmbH, Ger-

many). For gel analysis, all gels within a group were

warped to a reference gel. A master gel was created by

fusing all images using union fusion. Every spot on

each gel was quantified and normalized according to

the total intensity of all spots in each gel. Student’s

t-test was performed to assess the statistical signifi-

cance of differentially expressed proteins at 95% con-

fidence level (t-test; p < 0.05). For subsequent mass

spectrometric analysis significant spot coordinates

were transferred to a Coomassie-stained preparative

gel for spot picking.

Protein identification

The protein spots of interest were cut out from the

Coomassie-stained gels and digested by trypsin using

the in-gel digestion protocol as described by Szabo and

co-workers (Szabo et al., 2012). Briefly, excised gel

spots were cut into small pieces and destained in

25 mM NH4HCO3 and 50% acetonitrile, and dehy-

drated with acetonitrile and dried. Then, the gel pieces

were rehydrated in 12.5 ng/ll trypsin (Promega,

Madison, WI, USA) solution (in 25 mM NH4HCO3)

and incubated overnight at 37 °C. Peptides were

extracted with 5% formic acid and twice with 60%

acetonitrile in 1% formic acid. Samples were concen-

trated with vacuum centrifugation and analysed by

LC/MS on an Eldex MicroPro HPLC coupled with a

Thermo LCQ Fleet ion trap mass spectrometer. The

samples (5-ll full loop injection) were initially trans-

ferred to the precolumn with 3% B eluent at a flow

rate of 12 ll/min for 5 min. The column was eluted

with a linear gradient of 3–40% B over 35 min.

Mobile phase A consisted of 0.1% formic acid in

water, while mobile phase B was 0.1% formic acid in

acetonitrile. Separation was performed on an in-

house-made column (75 lm ID * 90 mm l column

with 3 lm particle size, Magic C18AQ packing from

Bruker) with ~400 nl/min flow rate. The mass spec-

trometer was operated in positive ion mode selecting

peptide precursors from mass range m/z 450–1200 in

triple play mode: the three most abundant ions from

each full scan were selected for zoom scan followed by

MS/MS scan of multiply charged precursor ions with

the normalized collision energy value 35 (AGC and

max ion time values: full scan: 10 000, 40 ms; zoom

scan: 100, 80 ms and MSn scan: 50 000, 300 ms,

respectively).

All acquired data were processed by the MATRIXS-

CIENCE MASCOT DISTILLER software (v2.4.3.3) using

default settings for LCQ-Fleet data. Database search

was performed using MASCOT 2.2 (Matrix Science,

London, UK) which was set up to search Uniprot Gal-

lus gallus proteome (UP000000539) database

(2015.01.09 version, 17 656 entries) assuming the

digestion enzyme trypsin, allowing 2 missed cleavage

sites. The data were searched with 1 Da fragment and

0.6 Da parent ion mass tolerances. Oxidation of

methionine and carbamidomethylation of cysteine

were specified as variable and fixed modifications,

respectively.

SCAFFOLD (version Scaffold 3.65, Proteome Software

Inc, Portland, OR, USA) was used to validate MS/MS-

based peptide and protein identifications. Protein

identifications were accepted if they could be estab-

lished at greater than 95.0% probability and con-

tained at least two identified peptides. Protein

probabilities were assigned by the Protein Prophet al-

gorithm. Proteins that contained similar peptides and

could not be differentiated based on MS/MS analysis

alone were grouped to satisfy the principles of parsi-

mony, and in these cases grouped accession numbers

are listed.

Results

To examine the liver, protein profile changes as a

response to nano-Se supplementation liver samples

were analysed by two-dimensional electrophoresis

followed by mass spectrometric protein identification.

Approximately 708 spots were detected on each poly-

acrylamide gel (gels of control and nano-Se supple-

mented group as well). Eighteen protein spots showed

significant difference in the intensity (p < 0.05)

between the two groups, and 13 proteins were identi-

fied successfully by mass spectrometry (Fig. 1,

Table 1).

Up-regulated proteins in the nano-Se supplemented

group

The intensity of eight spots was higher in the nano-Se

supplemented group compared to control group

(Fig. 2). Protein spot 160 was identified as ‘Uncharac-

terized protein’ in the Uniprot database, but based on

Blast search, this protein belongs to aldehyde dehy-

drogenase family, and it shows sequence homology

with alpha-aminoadipic semialdehyde dehydrogenase

in cattle. This is a multifunctional enzyme having pro-

tective functions: transforms betaine aldehyde to

betaine, and metabolizes lipid peroxidation-derived

aldehydes protecting cells against oxidative stress

(Fong et al., 2006; Brocker et al., 2010). Spot 160 had

a 2.3-fold higher expression in the nano-Se supple-

mented group compared to the control group.
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Spot 190 have shown a 2.4-fold up-regulation in

the nano-Se supplemented group and was identified

as cytoplasmic actin which is a major constituent of

cytoskeleton and has a key role in transport, signalling

pathways, cell division, cell motility, etc. (Small et al.,

1999).

Proteasome subunit alpha protein was identified in

spot 268 showing a 1.4-fold higher expression as a

response to the administration of the increased Se

doses. The proteasome is a proteinase complex, which

degrades those damaged or unneeded proteins in

cytoplasm which have a polyubiquitin tag (Glickman

and Ciechanover, 2002). The proteasomal degradation

pathway is essential, and beside removing the unfunc-

tional proteins, it has regulatory functions having role

in the cell cycle, response to oxidative stress and the

regulation of gene expression (K€ohler et al., 2001;

Jung et al., 2009; Murata et al., 2009).

Peroxiredoxin-6, a bifunctional enzyme with glu-

tathione peroxidase and phospholipase A2 activities

(Fisher, 2011), was identified in spot 301 showing a

1.2-fold higher expression in nano-Se supplemented

group. The peroxiredoxins can control cytokine-

induced peroxide levels and can have a role in the sig-

nalling pathways (Rhee et al., 2005). Peroxiredoxin-6

is not a selenium-dependent enzyme, in contrast to

other peroxiredoxins from the Prdx family (Kang

et al., 1998), but it was shown that oxidative stress

increases its expression (Kim et al., 2003).

The highest fold change (4.8-fold) upon Se treat-

ment was observed in case of spot 374. The identified

actin-binding protein, the actin depolymerizing factor

(ADF), is a microfilament-associated protein and

functions as a regulator of cytoskeletal actin turnover.

The human counterpart, the coactosin-like protein

(Q14019), was shown to be a chaperon of 5-lipoxi-

genase, the enzyme which regulates leukotriene

biosynthesis (Rakonjac et al., 2006).

There are several isoenzymes of malate dehydroge-

nases; the most important types are the cytoplasmic

and the mitochondrial. The mitochondrial variant is

one of the key enzymes of citric acid cycle: it catalyses

the oxidation of malate to oxalacetate (Musrati et al.,

1998). The cytoplasmic isoenzyme is part of malate-

aspartate shuttle, catalysing the oxidation of malate to

oxalacetate with the reduction of NAD+ to NADH

(Min�arik et al., 2002). The cytoplasmic malate dehy-

drogenase identified in spot 1776 showed a 1.3-fold

higher expression in nano-Se supplemented group

compared to the control group.

The glycolytic enzyme alpha-enolase was identified

in spot 4320. The enzyme catalyses the conversion of

2-phosphoglycerate to phosphoenolpyruvate in gly-

colysis (Peshavaria and Day, 1991). The enolase has

three major isoforms: alpha-, beta- and gamma-eno-

lase. Alpha-enolase is expressed in several tissues, and

beta-enolase is the muscle-specific enolase, expressed

in striated muscle while the gamma-enolase is

restricted to the cells of nervous system (Chen and

Giblett, 1976). The intensity of protein spot 4320 was

70% higher in the selenium-treated group than in

control.

Fig. 1 (a) Representative 2-D PAGE image of chicken liver of control group, proteins with higher expression, compared to nano-Se supplementation,

are marked with numbers. (b) Representative 2-D PAGE image of chicken liver of nano-Se supplemented group, proteins with higher expression, com-

pared to control, are marked with numbers.
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The sulfurtransferase protein (in spot 15301) local-

ized in mitochondria showed 1.3-fold higher expres-

sion in nano-Se supplemented group. This enzyme

catalyses the production of pyruvate and thyocianate

from 3-mercaptopyruvate and cyanide (Vachek and

Wood, 1972). It can be considered as an antioxidant

enzyme because the harmful cyanide is transformed

into less toxic thyocianate. The sulfurtransferase is

able to bind and transport selenium and plays role

in cysteine metabolism, as well (Ogasawara et al.,

2005).

Down-regulated proteins in the nano-Se supplemented

group

The intensity of five spots was lower in the nano-Se

supplemented group compared to control group

(Fig. 2).

Spots 134 and 137 were both identified as mito-

chondrial phosphoenolpyruvate carboxykinase

(PEPCK-M). These two spots are located at different

pI positions, which might be the consequence of

post-translational modifications influencing the

charge of the proteins, such as the often observed

acetylation, malonylation or succinylation widely

used for the regulation of metabolic enzymes

(Hirschey and Zhao, 2015). The expressions of both

spots were reduced by almost half (0.5 and 0.6

respectively) in the Se-treated group. The phospho-

enolpyruvate carboxykinase protein is an enzyme

which catalyses the phosphoenolpyruvate synthesis

from oxalacetate in gluconeogenesis (Delbaere et al.,

2004). Two isoforms of PEPCK exist in all eukary-

otes, the cytosolic and mitochondrial, but in the liver

of birds, only the mitochondrial isoform is expressed

to recycle the lactate in gluconeogenesis. In birds,

the primary gluconeogenic organ is the kidney,

which generates glucose from pyruvate and amino

acids (Watford et al., 1981; Yang et al., 2009).

Protein spot 231 was identified as cytoplasmic glyc-

erol-3-phosphate-dehydrogenase. This enzyme takes

part in both carbohydrate metabolism and fatty acid

metabolism: during triglyceride synthesis, the acti-

vated fatty acids bind to glycerol-3-phosphate, while

in the carbohydrate metabolism, they catalyses the

dihydroxyacetone phosphate – glycerol-3-phosphate

conversion in the glycerol-3-phosphate shuttle

(Harding et al., 1975). Expression of glycerol-3-phos-

Table 1 Differentially expressed proteins (p < 0.05) of chicken liver between control and nano-Se supplemented group identified by LC-MS/MS

Spot Identified protein Accession number Protein family N/C* pI/Mw (Da)† Ratio‡ p-Value

134 Phosphoenolpyruvate

carboxykinase [GTP],

mitochondrial

P21642 (Gallus gallus) 19/39 7.2/71 107 0.5 0.002

137 Phosphoenolpyruvate

carboxykinase [GTP],

mitochondrial

P21642 (Gallus gallus) 28/59 7.2/71 107 0.6 0.009

160 Uncharacterized protein E1C4W4 (Gallus gallus) Aldehyde dehydrogenase

family

15/38 7.0/58 053 2.3 0.008

190 Actin, cytoplasmic type 5 P53478 (Gallus gallus) 15/52 5.3/41 837 2.4 0.003

231 Glycerol-3-phosphate

dehydrogenase [NAD+],

cytoplasmic

F1NFY2 (Gallus gallus) 21/78 6.3/38 463 0.7 0.008

268 Proteasome subunit alpha

type

F1NFI8 (Gallus gallus) 10/43 6.1/29 322 1.4 0.005

301 Peroxiredoxin-6 F1NBV0 (Gallus gallus) 19/83 6.0/25 076 1.2 0.003

363 Eukaryotic translation

initiation factor 5A-1

Q09121 (Gallus gallus) 5/22 5.3/15 889 0.4 0.004

374 ADF actin-binding protein C7G537 (Gallus gallus) 9/77 5.3/16 106 4.8 0.000

1776 Malate dehydrogenase,

cytoplasmic

Q5ZME2 (Gallus gallus) 15/55 6.9/36 543 1.3 0.008

4320 Alpha-enolase F1NZ78 (Gallus gallus) 21/53 6.4/47 333 1.7 0.015

6069 Uncharacterized protein

(Fragment)

F1NEF6 (Gallus gallus) Acyl-CoA dehydrogenase

family

24/40 7.2/67 807 0.6 0.007

15 301 Sulfurtransferase E1C8D8 (Gallus gallus) 12/55 5.8/33 221 1.3 0.015

*Number of matched peptides/sequence coverage percentage (%).

†Theoretical isoelectric point and molecular weight.

‡Ratio of the protein expression of nano-Se supplemented group compared to the control group.
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phate-dehydrogenase was decreased with 40% upon

nano-Se supplementation.

The eukaryotic translation initiation factor 5A-1

identified in spot 363 had a 0.4-fold-change difference

in its expression between the two groups. This protein

binds to mRNA in the initial step of the translation

and is present during elongation, helping the binding

of small and large ribosomal subunits and activating

the GTP-ase activity of eukaryotic initiation factor 2

(Hir et al., 2001).

Spot 6069 was identified as ‘uncharacterized pro-

tein’ in the Uniprot database. The protein belongs to

acyl-coenzyme A dehydrogenase family, whose mem-

bers catalyse the first step of beta oxidation of fatty

acids in mitochondria using FAD as a cofactor (Thorpe

and Kim, 1995). Expression of the protein in spot

6069 was lower by nearly half in the nano-Se supple-

mented group compared to control group, indicating a

marked decrease in beta oxidation upon Se treatment.

Discussion

The aim of the present study was to compare liver pro-

teome profiles of broilers fed with a control diet with-

out Se supplementation and a diet supplemented with

4.25 mg/kg DM nano-Se. Our results indicate that liver

cells were exposed to a dietary stress caused by the high

dose of selenium supplement in the feed. The cellular

stress response (CSR) counteracts the stress-induced

damages of macromolecules in response to environ-

Fig. 2 Normalized volumes (V%) of differentially expressed spots (p < 0.05) of control and nano-Se supplemented group. Data are presented as

mean � SEM
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mental stressors. It is a universal mechanism; many

aspects of CSR does not depend on the type of stressor.

Common features of stress induced by different stres-

sors are the deformation and damage of macro-

molecules, the alterations of the functional three-

dimensional structure of proteins and the change in

cellular redox potential (Pastori and Foyer, 2002; K€ultz,

2003). All cellular organisms have a minimal stress pro-

teome, which can take part and control the key mecha-

nisms of cellular stress response (K€ultz, 2005). These

stress proteins play a role in redox regulation, lipid

metabolism, energy metabolism, protein degradation,

chaperoning and repair, and DNA damage sensing and

repair as well (K€ultz, 2003). There are several hypothe-

ses how high dose of selenium can cause stress

response and toxicity. One of them is that selenium has

a pro-oxidant ability to catalyse the oxidation of thiols

and to generate superoxide, which cause oxidative

stress (Spallholz, 1994; Spallholz and Hoffman, 2002).

Usually, stressors rapidly activate the synthesis of stress

proteins. We expected that the level of heat shock pro-

teins (Hsps), especially of Hsp70 are higher in nano-Se

supplemented group, but no such change could be

observed. Previous studies have demonstrated that the

selenium supplemented diet decreased the mRNA level

of Hsp70 in piglets and chicken under heat stress (Mah-

moud and Edens, 2003; Gan et al., 2013). Gorman

et al. (1999) have observed that some antioxidants

suppress the Hsps induction on protein level.

Dietary nano-Se supplementation improves the glu-

tathione peroxidase activities in liver, muscle and

serum, as well (Leeson et al., 2008; Zhou and Wang,

2011; Cai et al., 2012). Nevertheless, high selenium

dose may have a negative effect on the antioxidant

capacity, as Cai et al. (2012) have demonstrated that

supplementing 0.3 to 0.5 mg/kg nano-Se improved the

oxidation resistance, including glutathione peroxidase

activity, but when the nano-Se supplementation

reached 2.0 mg/kg, the glutathione peroxidase activity

decreased in liver, and its low activity was similar to the

activity of control group without nano-Se supplemen-

tation. In our study, we did not detect any changes in

the expression of glutathione peroxidase between con-

trol and nano-Se supplemented (4.25 mg/kg) chickens.

The biological effect of selenium is ambivalent: lack

of Se can lead to the development of diseases (e.g.

exudative diathesis, ascites, encephalomalacia in

chicken) (Cantor et al., 1975; Walton et al., 1999;

Taghizadeh et al., 2012), and nevertheless, the over-

dose can cause poisoning. The overdose of selenium

can damage the antioxidant system, the activity of

gluthatione peroxidase reduces and hence. The lipid

peroxidation increases, which may be resulted in cell

death (Mezes and Salyi, 1994). The expression of three

enzymes having antioxidant functions was higher in

the nano-Se supplemented group; none of them are

among the well-known selenium-dependent enzymes.

Alpha-aminoadipic semialdehyde dehydrogenase

metabolizes the aldehydes, which are produced in the

termination phase of lipid peroxidation (Fong et al.,

2006), free radicals, which might be caused by high

selenium dose (Stohs and Bagchi, 1995) and generate

lipid peroxidation (Yin et al., 2011). The peroxire-

doxin-6 reduces the hydrogen peroxide and phospho-

lipid hydroperoxide and has PLA2 activity (Chae et al.,

1994; Fisher, 2011), while the sulfurtransferase trans-

forms the harmful cyanide ion to thiocyanate and is

able to bind and transport selenium (Ogasawara et al.,

2005). Most probably, the level of these enzymes

became higher as a response to the stress induced by

the administration of Se-rich diet.

The lower eukaryotic translation initiation factor

5A-1, which is a significant member of protein synthe-

sis pathway (Jackson et al., 2010), and the higher

proteasome alpha subunit level in the nano-Se supple-

mented group can indicate an increased cellular stress

accompanied by decreased protein synthesis and

increased protein degradation (Flick and Kaiser, 2012).

The highest difference in the expression levels upon

nano-Se treatment has been detected in case of ADF

actin-binding protein (4.8-fold change) and cytoskele-

tal actin (2.4-fold change). No direct evidence was

found in the scientific literature whether the selenium

influences the expression of actin and actin-binding

proteins. It was observed that selenium-binding pro-

tein helps to connect actin monomers that can be an

indirect evidence for the relation between selenium

and actin (Miyaguchi, 2004). Because of the high dose

of selenium added to the feed, liver cells were exposed

to stress. When cells are exposed to stress, cytoskeletal

networks respond with modifications: disassembly of

microtubules, collapse of intermediate filaments and

disorganization of actin filaments (Liang and MacRae,

1997), and these molecular processes could proceed in

livers of our nano-Se supplemented chickens, which

might cause the higher ADF/cofilin expression level.

The high level of dietary selenium seems to affect

the metabolism of fatty acids and carbohydrates as

well; the expression of glycerol-3-phosphate dehydro-

genase, phosphoenolpyruvate carboxykinase and

acyl-coenzyme A dehydrogenase was reduced as a

response to the excess of Se, while the levels of alpha-

enolase and malate dehydrogenase were higher.

In conclusion, our results revealed that excess sele-

nium supplementation produced a stress reaction at

cellular level altering the carbohydrate and fatty acid
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metabolism, increasing the expression of members of

the antioxidant system and modifying the protein

metabolism by decreasing the protein synthesis and

increasing the proteosomal protein degradation. In

the same time, the dynamics of the cytoskeletal rear-

rangements might be changed indicated by the ele-

vated levels of actin and actin-binding proteins.
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