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Abstract  

The development of photosynthetic membranes of intact cells of Rhodobacter sphaeroides was tracked by light-

induced absorption spectroscopy and induction and relaxation of the bacteriochlorophyll fluorescence. Changes in 

membrane structure were induced by three methods: synchronization of cell growth, adjustment of different 

growth phases and transfer from aerobic to anaerobic conditions (greening) of the bacteria. While the production 

of the bacteriochlorophyll and carotenoid pigments and the activation of light harvesting and reaction center 

complexes showed cell-cycle independent and continuous increase with characteristic lag phases, the accumulation 

of phospholipids and membrane potential (electrochromism) exhibited stepwise increase controlled by cell 

division. Cells in the stationary phase of growth demonstrated closer packing and tighter energetic coupling of the 

photosynthetic units (PSU) than in their early logarithmic stage. The greening resulted in rapid (within 0–4 h) 

induction of BChl synthesis accompanied with a dominating role for the peripheral light harvesting system (up to 

LH2/LH1 ~2.5), significantly increased rate (~7104 s-1) and yield (Fv/ F max ~0.7) of photochemistry and modest 

(~2.5-fold) decrease of the rate of electron transfer (~1.5104 s-1). The results are discussed in frame of a model of 

sequential assembly of the PSU with emphasis on crowding the LH2 complexes resulting in an increase of the 

connectivity and yield of light capture on the one hand and increase of hindrance to diffusion of mobile redox 

agents on the other hand. 

Introduction 

In free energy converting biomembranes of living organisms, a transmembrane gradient of electrons, protons and/ 

or other species is created that covers the costs of energy consuming physiological processes including 

communication, growth or division (Wraight 2006). The transmembrane potential in photosynthetic bacteria is 

induced by light absorption of the light harvesting (antenna) complexes (LH) that funnel the electronic excitation 

energy to the reaction center (RC) protein. In the RC, charge separation occurs between the excited primary 

electron donor P, a bacteriochlorophyll dimer, and the secondary electron acceptor QB which is a quinone 

molecule. The stabilization of these separated charges occurs through subsequent electron transfers from the 

secondary donor (cytochrome c2) in the periplasmic space to the pool of quinones (Q) in the hydrophobic domain 

of the membrane. They act as electron transfer shuttles between two membrane bound proteins, the RC and the 

cytochrome bc1 complexes. The cyclic electron transfer through the RC is accompanied with net uptake of protons 

from the cytoplasm and transfer to the periplasm. The light-induced protonmotive force completed by the 

cytochrome bc1 complex drives ATP synthesis. The key players and the fundamental processes in photosynthetic 

bacteria are arranged on a wide range of hierarchy in space (from cells to atoms of key biomolecules) and time 

(from ps to s), respectively, as shown artistically in Fig. 1 constructed on basis of recent atomiclevel model of the 

purple bacterium Rhodobacter sphaeroides (Cartron et al. 2014). The spatial arrangement of the molecular 

complexes in the membrane is crucial to convert the light energy to electrochemical potential and to achieve 

efficient and fast (cyclic) electron transfer resulting in transmembrane potential (Tucker et al. 2010). 

Photoheterotrophically growing purple bacterium Rba. sphaeroides represents the most thoroughly investigated 

species that shows remarkable versatility and metabolic elegance. It is capable of growth by aerobic and anaerobic 

respiration, fermentation, and anoxygenic photosynthesis. Therefore, it provides an excellent model system for 

simultaneous study of both photosynthesis and membrane development and for addressing significant problems in 

many areas of interest in cell biology, physiology, and bioenergetics. The bacterium contains three distinct 

membrane systems: the intracytoplasmic membrane (ICM), cytoplasmic membrane (CM), and outer membrane 

with their own unique macromolecular composition and structure. The ICM houses the photosynthetic apparatus. 

The ICM originates from the invagination of the CM that occurs at low (around 3 %) oxygen concentration (Kiley 

and Kaplan 1988) and at curved regions of the CM (Tucker et al. 2010). The extensive system of ICM facilitates 
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the more effective absorption and utilization of light energy. The pheophytin–quinone type RC is surrounded by 

the internal light harvesting antenna (LH1) and the PufX protein and a peripheral light harvesting complex (LH2) 

in the outer sphere of the core complex. The RC–LH1–PufX complex is a dimer (Qian et al. 2008) and participates 

in light-induced cyclic electron transfer (Asztalos and Maro ´ti 2009). The ICM in Rba. sphaeroides adapts to 

alterations in light intensity (Aagaard and Sistrom 1972) and oxygen tension (Woronowicz et al. 2013; Niederman 

2013). The invagination of the CM and the synthesis and assembly of light harvesting and RC complexes are under 

the control of a global two-component oxygen sensing, signal transduction system and additional regulatory 

components (Takemoto and Lascelles 1973; Masuda and Bauer 2002; Fedotova and Zeilstra-Ryalls 2014). Despite 

the elucidation of the regulatory system and its impact on gene transcription in response to changes in oxygen 

availability (Gomelsky and Zeilstra-Ryalls 2013), very little is known about the multi-level regulation of the 

mechanisms governing formation and function of the photosynthetic apparatus (Young and Beatty 2003). 

 

Fig. 1 Illustration of the hierarchy of organization of the photosynthetic apparatus of Rba. sphaeroides: intact cell (left) and 

model of the native architecture of the photosynthetic membrane with key players of light capture, migration of electronic 

excitation energy, charge separation and cyclic electron transfer: the light harvesting (peripheral (LH2) and core (LH1)) 

complexes, dimeric reaction center (RC) protein, cyt bc1 complex and mobile electron carriers cyt c2 and Q (right). Top view 

of the intracytoplasmic membrane with atomic resolution of the complexes (sources: RCSB Protein Data Bank and Cartron et 

al. 2014) 

 

The organization of the complexes resulting in the physiological function of the apparatus has been characterized 

by high atomic resolution and at an unprecedented level of biochemistry and physical chemistry (Bahatyrova et 

al. 2004; Sener et al. 2007; Sener and Schulten 2009; Maro ´ti et al. 2013). There are, however, a number of open 

questions that are as yet unanswered. One of the major problems currently involves the location of the cytochrome 

bc1 complex and the ATP synthase and the stoichiometry of the partners. The functional and spectroscopic 

measurements indicate loose assembly between RCs and bc1 complexes connected by mobile redox species. The 

stoichiometry of 2 (dimeric) RC, 1 cyt bc1, and 1 cyt c2 is generally accepted in ICM of Rba. sphaeroides (Joliot 

et al. 1989; Vermeglio and Joliot 2014). Novel advances of highresolution atomic force microscopy (AFM) 

analysis, however, do not reveal cytochrome bc1 complexes in the membrane areas of the core complexes and the 

ATP synthase is also absent (Scheuring 2009; Sturgis and Niederman 2009). This would mean that neither the 

cytochrome bc1 complexes nor the ATP synthase are in the proximity of the core complexes. The lack of 

connectivity based on AFM studies may be attributed to real disconnection of the complexes. This has generated 

a renewed interest in possible long-range pathways for lateral diffusion of UQ redox species that functionally link 

the RC and the bc1 complexes (Comayras et al. 2005). In Rba. sphaeroides (in contrast to e.g., Rps. rubrum), the 

arrangement of LH and RC complexes is highly organized and the RC electron transfer turnover is fast (Kocsis et 

al. 2010). The packing density of the peripheral antenna in the ICM, however, imposes constraints that significantly 



slow the diffusion of UQ redox species between the RC and cytochrome bc1 complex in the membrane 

(Woronowicz et al. 2012) and decrease the rate of electron transfer at the onset of greening (Koblizek et al. 2005; 

Woronowicz et al. 2013; Niederman 2013). The possibility of artifacts of the AFM measurements, however, cannot 

be disregarded. (1) During membrane preparation, the long-range order of the complex assembly in the native 

membrane can be altered or even the complexes can be removed. (2) The membrane fragments lacking cytochrome 

bc1 or ATP synthase can show preferential adsorption to the AFM support. (3) The face of the cyt bc1 complex 

exposed to the cytoplasm shows very little surface topology for identification by AFM. Indeed, the very recent 

results based on AFM, electron microscopy, and mass spectrometry can be contrasted to those of earlier AFM 

findings and are consistent with cyt bc1 complexes positioned adjacent to RC–LH1–PufX complexes with weak, 

but non-stoichiometric interaction (Cartron et al. 2014). The demonstrated proximity of the cyt bc1 and RC– LH1–

PufX complexes has consequences on the effective confinements of extrinsic mobile redox agents quinones and 

cytochrome c2, that must cycle between these complexes. The redox species may visit several cyt bc1 complexes 

(Crofts et al. 1998) and a timescale of 1–2 ms can be assured for the cyclic electron transfer. In this report, we 

study the ICM remodeling processes in Rba. sphaeroides undergoing acclimation to different physiological 

conditions. Despite the global importance of light (solar) energy utilization, there are significant gaps in our 

understanding of the full complement of entities needed for the function and assembly of a photosynthetic 

membrane (Callister et al. 2006; Zeng et al. 2007). It is therefore of considerable interest to study how the highly 

organized structure becomes established during various physiological processes: (1) different growth phases of the 

bacteria (Asztalos et al. 2010a), (2) aerobic $ anaerobic transitions that result in rapid induction of BChl synthesis 

(‘‘greening’’) (Koblizek et al. 2005) and disruption of the ICM and photosynthetic apparatus (‘‘bleaching’’), 

respectively and (3) synchronization of the cell growth by either diluting late stationary phase cultures (Cutler and 

Evans 1966; Lueking et al. 1978), or application of dark–light cycles (Lueking et al. 1981). These changes induce 

remodeling of the ICM and can be used to investigate how do the essential constituents of the photosynthetic 

apparatus find their correct location and function, how the physical state and crowding of the membrane bilayer 

control the activity of the different components and what constraints are set against the diffusion of mobile redox 

species in different phases of membrane development.  

Materials and methods  

The photosynthetic purple bacterium Rba. sphaeroides 2.4.1 was grown in Sistro ¨m’s medium (Sistro ¨m 1962) 

either in completely filled screw top vessels without oxygen (photoheterotrophic and anaerobic growth), or in half 

filled Erlenmeyer flasks sparged with a mixture of air and nitrogen provided by an air pump and a N2 container, 

respectively (photoheterotrophic and semiaerobic growth). The oxygen-to-nitrogen volumetric ratio of the gas 

mixture was adjusted by calibrated flow rate meters (rotameters). The oxygen tension balanced with N2 could be 

changed between 21 % (air) and 0 % (anaerobic condition). The medium was inoculated from a dense batch culture 

(1:100) and was illuminated by tungsten lamps that assured 13 W m-2 irradiance on the surface of the vessel as 

described earlier (Maro ´ti and Wraight 1988). For experiments of bleaching and induction (greening) of the ICM 

under aerobic and anaerobic conditions, respectively, the illuminated culture was sampled over a 24-h period for 

near-IR absorption spectra, pigment analyses and light induced absorption and fluorescence measurements. For 

studies of functional assessment at different growth phases, the cells were harvested at the lag phase (*1 h) and 

early stationary phase (*26 h) of growth. For synchronization of the cells, the cells in the logarithmic phase of 

growth were the inoculum (1:100) source for 3 times repeated dark–light periods (3.5–3.5 h). The response of 

phototrophically growing cultures to varying light and aerobic regimes and confirmation of the presence of division 

synchrony were directly determined by monitoring total cell number with calibrated Bu ¨rker counting chamber 

under light microscope. 

Steady-state absorption spectroscopy 

The steady-state near infrared absorption spectra of the cells during the growth were recorded at room temperature 

by a single beam spectrophotometer (Thermo Spectronic Helios). The baselines were corrected for light scattering, 

and the spectra were decomposed into 3 Gaussian components by least square Marquardt procedure (Marquardt 

1963). 

Flash-induced absorption kinetics 

The kinetics of absorption changes of the whole cells induced by Xe flash or by laser diode (Roithner LaserTechnik 

LD808-2-TO3, wavelength 808 nm and power 2 W) were detected by a home-constructed spectrophotometer 

(Maro ´ti and Wraight 1988). The oxidized bacteriochlorophyll dimer (P?) and the electrochromic shift (ECS) of 



the carotenoids in the photosynthetic membrane were detected at 798 and 525 nm (with reference to 510 nm), 

respectively. The optical density of the samples was kept low [OD (808 nm) \0.1] and weak monochromatic 

detection light was used to keep the secondary effects negligible. 

Induction and relaxation of BChl fluorescence 

The induction and subsequent decay of the BChl a fluorescence of intact cells were measured by a home built 

fluorometer (Kocsis et al. 2010). The light source was a laser diode (808-nm wavelength and 2-W light power) 

that produced rectangular shape of illumination and matched the 800 nm absorption band of the LH2 peripheral 

antenna of the cells. The BChl a fluorescence (centered at 900 nm in mature cells) was detected in the direction 

perpendicular to the actinic light beam, with a near infrared sensitive, large area (diameter 10 mm) and high gain 

Si-avalanche photodiode (APD; model 394-70-72-581; Advanced Photonix, Inc., USA) protected with an 850-nm 

high-pass filter (RG-850) from the scattered light of the laser. The usually very small deviation of the kinetics of 

the excitation from the rectangular shape was corrected by detection of the kinetics of extracted BChl a in organic 

solvent. The induction was measured during the actinic laser light and the dark-relaxation was tested by attenuated 

short (3 us) laser pulses in geometrical series. 

Extraction and assay of molecular components of the cells 

(a) BChl The BChl was extracted from the cells by acetone/ methanol (7:2 v/v) mixture using the extinction 

coefficient of 75 mM-1 cm-1 at 770 nm (Clayton and Clayton 1981). (b) Phospholipids The phospholipids from the 

cell suspension were extracted by the method of Bligh and Dyer (1959) and the quantitative (colorimetric) 

determination of the inorganic phosphate was based on the Bartlett assay (Bartlett 1959). (c) RC The RC pigment–

protein complex was prepared and the concentration was determined according to (Maro ´ti and Wraight 1988). 

(d) Carotenoids The carotenoids were extracted from the cells by acetone/ methanol (7:2 v/v) mixture using the 

extinction coefficient of 128 mM-1 cm-1 at 484 nm (Clayton 1966). 

Results 

Effect of growth phase on membrane remodeling 

The growth curve of the nonsulfur photosynthetic bacterium Rba. sphaeroides with well-defined lag, exponential 

and stationary phases is demonstrated in Fig. 2a. The error bars represent the standard deviations of the mean cell 

numbers including both the fluctuations in the light intensity and temperature during a particular cultivation and 

the variation in measurements due to different cultivations (the # of replicates was 5). At different growth stages, 

the bacterium exhibits significant kinetic changes of the membrane energetization (Fig. 2b) and a remarkable gain 

in the variable component of the BChl fluorescence induction (Fig. 2c) and relaxation (Fig. 2d). As the cells 

progress through the logarithmic phase, large changes can be observed in the kinetics of flashinduced carotenoid 

band shift measured at 525 nm (vs. 510 nm) (Fig. 2b). The time-dependence of absorbance change 

(electrochromism) evoked by flash excitation tracks the generation and decay of the membrane potential due to 

initial charge separation, transfer of electron, and protons in the membrane and finally discharge of the membrane 

capacitor, respectively (Feniouk and Junge 2009). 1 h after inoculating a fresh culture, the cells have a small abrupt 

increase of electrochromism followed by fast decay. The intact cells in stationary phase of growth (26 h) have 

additionally a second and slower increase followed by a much slower relaxation. The control of the cyt bc1 complex 

in energetization of the membrane is indicated by the effect of the bc1 inhibitor myxothiazol in mature cells: the 

relatively small sudden rise after the flash is attributed to the charge separation in the RC. The very slow discharge 

of the membrane is probably due to leakage or charge recombination. The better isolation of the membrane in 

mature cells can be rationalized by supposing tighter packing of the dielectrics of the membrane as cells age.  



 

Fig. 2 Growth curve (a) and kinetics of flash-induced electrochromism (b), induction (c) and dark-relaxation (d) of BChl 

fluorescence of intact cells of Rba. sphaeroides in different physiological states: young (1 h, lag phase) cells and old (26 h, 

late logarithmic) cells. The fit (solid line) to the growth curve was achieved by Eq. (1). The flashinduced electrochromic shift 

was measured by absorption change at 525 nm (vs. 510 nm) without and with 5 lM myxothiazol known as efficient inhibitor 

of the cyt bc1 complex (b). The fluorescence (F) at 900 nm was excited by a rectangular shape of laser diode radiation (1 W 

power at 808 nm) of 1 ms duration and was related to that of the initial value (F0) (c). The relative yield of variable 

fluorescence after the excitation, Fv = (F - Fmax)/(Fmax - F0) was monitored in the dark by attenuated weak (100 mW) and short 

(3 ls) laser diode pulses arranged in geometrical series (d) 

 

The BChl fluorescence measured after sudden dark  light transition (fluorescence induction) shows characteristic 

kinetics with F0, Fv, and Fmax values of initial, variable and maximum levels of fluorescence, respectively (Fig. 

2c). The fluorescence induction in the submillisecond time range has fairly simple kinetics in contrast to 

observation of multiple and unidentified phases in the 1–10 ms time scale (Bina et al. 2010) or to those of green 

plants (see for recent review by Stirbet and Govindjee 2012). The normalized variable fluorescence, Fv = (Fmax - 

F0)/F0 is greater in 26 h cells than in 1 h cells. The increase in variable fluorescence may be attended by structural 

changes in the apparatus. In cells harvested in the stationary phase, the photosynthetic units (PSU) exhibit closer 

packing and tighter energetic coupling resulting in more efficient channeling of energy from the antenna to the 

RC. The observed increase of photochemical utilization could be an adaptive response to decrease in light intensity 

usually prevalent in culture of stationary phase cells. The dark decay of the fluorescence after relatively long (1 

ms) illumination shows marked difference between the cells at different growth phases (Fig. 2d). The mature (26 

h) cells keep the high level of fluorescence longer than the lag phase (1 h) cells. As the relaxation is generally 

believed to depend on the re-opening time of the RC, the assay reflects the rate of cyclic electron transfer between 

the RC and the cyt bc1 complex (Koblizek et al. 2005). In stationary phase cells, the shuttle time of the electrons 

via mobile redox species cyt c2 2+/cyt c2 3+ and QH2/Q between the complexes becomes longer probably due to 

rearrangement of the membrane resulting in slower diffusion and confinement of cytochrome c2 and quinones 

(Lavergne et al. 2009). 

Synchronization of the culture 



This method facilitates the analysis of development of the ICM during steady-state growth of the cells. After 

several generations, the division of the cells can be synchronized by exposure of the culture to a sequence of dark–

light periods (Fig. 3). In steady-state synchronous culture, the number of cells increases stepwise as all of the cells 

are in the same stage of their development (Fig. 3a). Under the conditions of the experiment, the doubling time 

amounts about 3 h. The advantage of the synchronization is the possibility to directly track the insertion of the 

photosynthetic apparatus into the old and newly formed ICM. In sharp contrast to the stepwise increase of the 

population, the production, insertion into the ICM and activation of the photosynthetic proteins (light harvesting, 

RC and cytochrome bc1 complexes) are cell-cycle independent processes, i.e., they do not follow a stepwise but 

rather a continuous process with well-defined lag phase at the beginning (Fig. 3b–d). Similar observations were 

reported earlier for the photopigments and RC by Wraight et al. (1978). For quantitative evaluation of the 

asynchronous anaerobic growth, the curves were fitted by the modified Gompertz equation (Zwietering et al. 1992; 

Asztalos et al. 2010b) 

(1) 

where t is the time elapsed from the light exposure, t0 is the duration of the lag phase, N0, N, and Nmax are the 

initial, actual, and maximum (saturating) values of the referred quantities (cell number, BChl fluorescence of the 

culture or concentration of pigments), respectively, and lmax is the maximum of the growth rate. Comparing the 

initial lag phases, similar values were found for the BChl (2.35 h), carotenoid (2.87 h) pigments and the rise of 

BChl fluorescence maximum (3.1 h), but significantly smaller value for the functional (light-induced oxidized) 

dimer in the RC protein (1.52 h). The rate of synthesis of the BChl pigment (0.26 uM h-1) proved to be somewhat 

lower than that of the carotenoids (0.38 uM h-1). 

 

Fig. 3 Cell-cycle related (a) and independent (b–d) changes in synchronized culture of Rba. sphaeroides wild type 2.4.1. The 

discontinuous increase of the cell number, the total phosphate content of the cells and the amplitude of the electrochromic 

absorption change flash excitation demonstrate the stepwise assembly of ICM from phospholipids and its energetization upon 

division of the cell (a). The increase of the fluorescence maximum of BChl (b), the functional RC (measured by flash-

induced absorption change of the cell at 798 nm arising from the oxidation of the dimeric BChl in the RC) (c) and the 

carotenoid and BChl content of the culture (d) are asynchronous during the cell cycle. The kinetics are approximated by the 



modified Gompertz equation (solid lines) with best fit parameters [saturation, maximum of the growth rate (umax) and 

duration of the lag phase (t0)] indicated on the panels 

 

In contrast to the continuous production of the pigments and the RC protein, the phospholipid synthesis (Knacker 

et al. 1985) and the electrochromic signal due to the cytochrome bc1 complex (Asztalos and Maro ´ti 2009) showed 

clear cell-cycle dependence (Fig. 3a.). The cellcycle dependent synthesis and accumulation of the phospholipids 

in the membrane are not unique to phototrophically grown cells. Reports were published about fluctuation in the 

rates of phospholipid synthesis and stepwise increase in total lipid content during the cell cycle of E. coli 

(Mozharov et al. 1985). 

Anaerobic  aerobic transitions, ICM bleachinggreening regimen 

The formation and disintegration of the ICM can be induced by modification of essential environmental factors. 

A convenient method is the control of oxygen content of the culture. As the formation of ICM and the synthesis 

of the photosynthetic components in Rba sphaeroides are under the control of a global two-component oxygen 

sensing, signal transduction system (Oh and Kaplan 2000; Bauer et al. 2009), they are repressed by high oxygen 

tension (bleaching) and induced at sufficiently low oxygen level (greening) (Takemoto and Lascelles 1973; Tucker 

et al. 2010; Niederman 2013). In our experiments, the preculture grown anaerobically in the light was adapted to 

high (20 %) oxygen tension for bleaching, and the greening was afterward induced by transferring the culture from 

aerobic to anaerobic conditions under illumination. The transitions induce major and characteristic changes of the 

growth rate of the bacterium, antenna composition, photochemical utilization of the light and coupling of the PSU 

(Fig. 4). The growth profile of the cells is shown in Fig. 4a. After switching from anaerobic to aerobic conditions, 

the cell number reaches within 10 h a saturation level that will be not significantly enhanced by subsequent 

transition to anaerobic conditions. The LH2 content (characterized by B850) does not change significantly during 

aerobic growth, but increases tremendously in the anaerobic environment (Fig. 4b). The steady-state near-IR 

absorption spectra demonstrate the large antenna changes during greening (Fig. 5a). The RC-LH1 core (875 nm) 

predominates over the first hours but after 2 h, the peripheral LH2 complex (800–850 nm) starts to become 

dominating. The modification of the absorption spectra indicates changes of BChl stoichiometry and/or 

rearrangement of the antenna complexes. 



 

Fig. 4 Time-dependent structural and functional characteristics of photosynthetic membrane of Rba. sphaeroides grown 

aerobically (+O2) and then transferred to anaerobic conditions (-O2) (note the extended time scale). The increase of the cell 

number of the inoculated bacterium (a) includes depressed LH2 content under aerobic condition and exponential initial 

increase in nitrogen atmosphere (b) and similar changes of the variable fluorescence (Fv) to maximum fluorescence (Fmax) (c) 

and the rate constants of photochemistry (kI) and relaxation (kr) of the variable fluorescence (d). e, f The amplitude of the 

initial rise and decay constant of the flash-induced electrochromic change, respectively 

 

The ratio of BChl variable fluorescence to maximum fluorescence exhibits marked changes (Fig. 4c): a slow drop 

from 0.70 to 0.10 within 1 day in aerobic environment that reverses within a couple of hours under an anaerobic 

atmosphere. The change is accompanied by a constant level of maximal fluorescence under aerobic conditions 

followed by a similarly fast rise as in Fv (not shown). Figure 4d indicates the changes of the rate constants of the 

rise of the fluorescence induction (kI) and the fluorescence relaxation (kr). The kinetics of the rise of the 

fluorescence induction can be fairly well approximated by a monoexponential function, and the rate constant is 

proportional to the light intensity indicating the photochemical nature of the process. The decay of the BChl 

fluorescence in the dark is fast throughout the ICM formation and shows extended (complex) kinetics that can be 

decomposed formally by multiexponential functions only (Fig. 5b). The rate constant of relaxation introduced in 



Fig. 4d is approximated by the average of the rate constants of the components weighted by their amplitudes. In 

case of proper theory, the derived rate constants kI and kr can be related to the size and connectivity of the PSU 

and to the rate of electron transfer, respectively (Koblizek et al. 2005; Rivoyre et al. 2010; Maro ´ti and Asztalos 

2012). The amplitude (Fig. 4e) and decay times (Fig. 4f) of the flash-induced electrochromic response demonstrate 

also opposite changes during bleaching and greening. The progressive loss of photoactive RCs in aerobic 

environment is accompanied with improving storage capacity of the membrane. The energized new ICM under 

anaerobic conditions is discharged significantly faster than the old ICM in aerobic atmosphere.  

 

Fig. 5 Steady-state absorption spectra (a) and relaxation of BChl fluorescence (b) of intact cells undergoing induction of ICM 

upon transfer from aerobic to semiaerobic conditions at t = 0. The LH1 core and LH2 peripheral complexes correspond to 

spectral bands centered at 875 nm and 800–850 nm, respectively (a). The prompt fluorescence induction (not shown) was 

excited by short laser pulse (50 ls) followed by fast dark-relaxation of complex kinetics demonstrating only slight 

deceleration upon greening (b) 

 

As the ICM formation is repressed by high oxygen tension, increasing the oxygen partial pressure results in 

disruption of ICM assembly together with disintegration of the photosynthetic complexes. The kinetics and 

oxygendependence of these processes were tracked and demonstrated in 3D relief maps (Fig. 6). The 

depigmentation of the culture upon anaerobic to aerobic transition is more completed and faster at higher oxygen 

concentrations. As the disintegration of the BChl components in the LH complexes is not uniform, the partition of 

the BChl forms show significant variations. This can be seen by plotting the kinetics of the B800/B850 ratio of the 

LH2 and the B875/ B850 ratio of the LH1/LH2 systems as a function of the oxygen tension (Fig. 6a). The B800 



component of the LH2 complex exhibits fast (several hours) partial (*50 %) drop at relatively small (*5 %) oxygen 

tension, while no loss of the B850 component is observed. The effect can be due to different location and coupling 

of the two cyclic BChl systems in LH2 (Papiz et al. 1995). The 9 loosely bound BChls of the B800 band are at the 

outer ring and the 18 strongly excitonically coupled BChls of the B850 band are inside the complex. That 

difference can make B800 more vulnerable to oxygen tension. Both the initial rise of the ECS that measures the 

extent of charge separation in the RC and the maximum level of the fluorescence induction (Fmax, the RCs are 

closed) characteristic of LH complexes show decays similar to that of B800 under the same conditions (Fig. 6b). 

These findings indicate that the loss of P800 of the RC can contribute to the observed decrease of the absorption 

at 800 nm, but the disruption of B800 should play the determining role. 

 

Fig. 6 Changes of relative portion of BChl forms B800, B850 and B875 in antenna complexes (a) and maximum fluorescence 

of induction (Fmax) and magnitude of flash-induced electrochromic shift (ECS) (b) as a function of time (t) of exposure to 

(semi)aerobic conditions of different oxygen tensions between 0 and 21 %. The kinetics are normalized to 1 at t = 0 h. The 

oxygen bleaching targets primarily the B800 pigment of LH2 and the RC complex (significant disintegration occurs at 

oxygen tension as low as 5 %). See the colored animation in the Supplement for more detailed demonstration 

 

 

 



 

Discussion 

These experiments clearly demonstrated the structural and functional changes of the photosynthetic membrane 

upon division, asynchronous growth and aerobic  anaerobic transitions of the bacterium Rba. sphaeroides. 

We will attempt to offer a coherent view of the results obtained by different methods. 

Cell-cycle-related phenomena 

The incorporation of photosynthetic pigments and major protein complexes (LHC and RC) was found to occur 

continuously in synchronously dividing cell populations. The continuous synthesis of total particulate proteins and 

photopigments during the synchronous growth (Wraight et al. 1978) was in marked contrast to the observed 

discontinuous accumulation of cellular phospholipid (Lueking et al. 1978) and membrane potential (Fig. 3). 

Membrane phospholipids are known to be involved with the numerous functional and structural activities. 

Although the accumulation of phospholipids in the ICM was found discontinuous with respect to the cell cycle, 

the rates of synthesis of the individual phospholipid species remained constant with respect to one another 

throughout the cell cycle (Cain et al. 1981). Similarly, each of these phospholipid species appeared to be transferred 

simultaneously to the ICM. As neither the partition of production nor the transfer of the phospholipids showed 

cell-cycle dependence, it can be concluded that the total amount of the phospholipids synthesized in the cell is 

sensitive to the division. Upon division of the cell, the area of the total membrane surface of the cell should increase 

significantly due to the resulting daughter cells with their own outer, cytoplasmic and ICM membrane systems. 

This is a highly energy consuming process that should influence the phospholipid synthesis of the whole cell. This 

is why a burst of phospholipid synthesis occurs prior to cell division and the phospholipids will be inserted into 

the replicating ICM as it is being partitioned to daughter cells. At the time of cell division, however, the synthesis 

of the phospholipids is transiently interrupted, and no new phospholipids will be incorporated into the ICM. The 

protein to phospholipid ratio of the ICM undergoes cyclical fluctuations during synchronous growth of the 

organism. The change can directly influence the activities of membranous protein complexes and the physical state 

of the membrane seen by modulation of the polarization of a fluorescence probe upon cell division (Fraley et al. 

1979). The uncoupling of protein and lipid incorporation into the ICM immediately preceding or at the time of cell 

division has widespread consequences as it is believed to reflect the influence of ICM proteins in modulating bulk 

membrane fluidity and crowding (determined by the protein/phospholipid ratio) (Kiley and Kaplan 1988). The 

cell-cycle specific changes of the fluidity will influence the supercomplex structure of the photosynthetic apparatus 

in Rba. sphaeroides, the mobility of the species in the cyclic electron transfer and the properties of the reporter 

molecules (BChl and carotenoids) by several ways. (1) The signaling species are usually bound to integral 

membrane proteins immersed in the ICM. For example, the yield of Chl a fluorescence is sensitive to the 

hydrophobicity of the surroundings: it is high when immersed in the membrane and becomes lower when 

partitioned in the aqueous phase (Murata and Fork 1975). The process is controlled by the fluidity of the 

membrane. (2) The average distance between the PSU will decrease and therefore the connectivity will increase 

upon crowding the membrane via increased protein/phospholipid ratio. (3) If the crowding is mainly due to the 

increase of the local concentration of the LH2 complex in tightly packed arrangement of the complexes (e.g., Rba. 

sphaeroides grown at low light intensity), then the long-range pathways for lateral diffusion of quinone redox 

species between RC and cyt bc1 complexes will increase (Woronowicz et al. 2012). On the other hand, the dense 

packing of RC–LH1– PufX and LH2 complexes favors efficient light capturing. Because of the conflicting 

requirements between lateral diffusion of quinone/quinol and yield of energy transfer, it is hard to predict the 

observed rate of electron turnover. In our experiments, the electrochromic change that is connected to the 

energetization of the membrane, demonstrates cell-cycle-dependent increase upon cultivation (Fig. 3a). The 

changes observed during the cell cycle can be attributed either to shorter distance of diffusion (membrane bilayer 

crowding) or to increased diffusion coefficient (increased fluidity of the membrane) or to both effects. The initial 

production of photosynthetic membrane components asynchronous with the cell cycle showed marked lag phases 

with different duration and various rates in the exponential phase indicating different ways of insertion into the 

newly assembled structure (Fig. 3b–d). It can be suggested that some elements of the PSU (e.g., the RC-B875 core 

complex or the cyt bc1 complex) are thought to be inserted preferentially into membrane growth initiation sites 

and the incomplete PSUs are transferred from their sites of assembly into the ICM during cell division. Other 

elements of the PSU (e.g., the B800-850 peripheral LH complexes) are added directly to the ICM throughout the 

cell cycle (Wraight et al. 1978; Kiley and Kaplan 1988). 

Assembly of the photosynthetic units during greening  



Some essential functional aspects of the photosynthetic unit assembly process during aerobic ? anaerobic transition 

can be obtained by analysis of the kinetics of induction and relaxation of the variable fluorescence. The evaluation, 

however, becomes somewhat more difficult as not all RCs in intact cells of Rba. sphaeroides strain Ga are 

supposed to organize in ICM. Vermeglio and Joliot (2014) estimated that about 17 % of the total number of RCs 

is localized in non-invaginated part of the membrane. They share cytochromes c2 and cyt bc1 complexes with the 

respiratory chains. That could be the reason why a small variable fluorescence remains even after prolonged 

bleaching of the ICM (Fig. 4c). The quantum yield of the primary photochemistry during the early stages of 

adaptation showed a gradual increase [variable/maximal fluorescence from 0.1 to 0.7 between 0 and 4 h (Fig. 4c)], 

while the initial value of the photochemical rate constant of 2104 s-1 gradually increased to 7104 s-1 over 6 h (Fig. 

4d). These dramatic increases showed a direct relation to gradual increase of the absorption cross section of the 

PSU by increase of the size and connectivity of the light gathering units. Simultaneously, the rate of P? re-oxidation 

by mobile reduced cyt c2 measured by the rate of fluorescence relaxation showed slight and monotonous decrease 

from ~1.5104 s-1 to ~6103 s-1 that would include a ~2.5-fold slowing of the shuttle of the electron between the RC 

and the cyt bc1 complex during greening. In contrast to our results, Koblizek et al. (2005) described a more dramatic 

change of the electron transfer rate upon transition from aerobic to semiaerobic conditions. They reported at 1 h 

of greening extremely slow relaxation that turned to very fast decay at 4 h and finally became significantly slower 

at 24 h in fully developed cells. Niederman (2013) reported close to tenfold slowing of the rate of electron transfer 

turnover during de novo formation of the ICM at low aeration. The modest and monotonous drop of the rates in 

our experiments is not due to changes in cyt c2 pool size, but rather to longer cyt c2 periplasmic diffusion pathways 

between the RC and cytochrome bc1 complex. The developed (mature) membrane becomes more densely packed 

with LH2 rings and/or the distal RC in the dimer turns to be less easily accessible to cyt c2. The conclusion is 

supported by functional proteomic analysis of the ICM development process performed in Rba. sphaeroides during 

adaptation from highintensity illumination to indirect diffuse light (Woronowicz et al. 2011). Our results favor 

previous suggestions arguing that the photosynthetic apparatus during greening is assembled in functional unit not 

in one step but in a sequential manner (Koblizek et al. 2005; Niederman 2006). The major processes of 

photosynthetic complex assembly can be summarized in the following model (Fig. 7). Under aerobic conditions, 

low levels of the RC–LH1–PufX complex are built and inserted into CM in a form that is highly inactive in light 

capture and forward electron transfer. At the beginning of adaptation to the anaerobic conditions, ICM is formed 

after invagination and vesicularization of the CM. The peripheral light harvesting antenna (LH2) starts to surround 

the core complex that improves the yield and rate of photochemical conversion. The initially loose structure of the 

supercomplex facilitates the access of cyt c2 to the RC and cyt bc1 complexes that makes fast cyclic electron transfer 

available. Upon synthesis and insertion of more and more LH2 complexes, the membrane becomes more densely 

packed and the diffusion of mobile redox species will be partially hindered. After 3–4 h, the regular anaerobic 

photosynthetic competence is achieved with optimal organization of the cyclic electron transport chain. Similar 

mechanism of sequential assembly has been observed for PS I and PS II in cyanobacteria (Cline 2003). 

Additionally, the initial synthesis of the thylakoid membranes in plant proplastids may involve invagination of the 

inner envelope, into which thylakoid proteins were first inserted. 

 

Fig. 7 Simplified sequential model of assembly of the bacterial photosynthetic apparatus upon greening. Initially, the highly 

unconnected units keep the yield and rate of photochemistry low but make the protein complexes (RC and cyt bc1) readily 

accessable to the mobile redox species (cyt c2 and Q) that assures high electron transfer rate. Later, the connectivity of the 

PSU increases and the structure becomes more compact resulting in more efficient and fast photochemistry. Finally, 

peripheral LH2 in excess is assembled and the closed supercomplex structure is established. The mobile redox shuttles get 



less access to distal RC of the dimer in the crowded membrane which may slightly decrease the rate of electron transfer. For 

more exact recent details of the structures of the components obtained from AFM, EM and MS see Cartron et al. (2014) 

 

The knowledge gained from synchronization and greening of the bacterial culture contributes to the great wealth 

of information that has been accumulated about the induction and assembly of the ICM and its connection to the 

photosynthetic apparatus. Many other issues, however, remained to be resolved including better understanding of 

formation, development and function of ICM invaginations from CM membrane and how these structural changes 

determine the activity of the different components of the photosynthetic apparatus. The proteomics and dynamics 

of the ICM at the level of structural resolution covering wide time scales (from femtoseconds to hours) together 

with spectroscopic and functional studies constitute perspectives for the next years. 

Outlook 

Advances in spectroscopic and kinetic techniques in combination with structural information during the past few 

years have vastly improved our knowledge on the mechanism of photosynthetic energy transduction and biological 

electron transfer. Further extensive characterization of the problems of membrane development of photosynthetic 

bacteria will certainly constitute the bases for new breakthroughs in organization and function of the complexes. 

These findings will set the stage for engineering new biological functions, new materials and new facilities based 

on light-induced redox chemistry mimicking the natural system (Maro ´ti and Trotta 2012; Jackson et al. 2014). 
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