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Abstract  

Submillisecond dark-light changes of the yield (induction) and anisotropy of fluorescence under laser diode 

excitation were measured in the photosynthetic reaction center of the purple bacterium Rhodobacter sphaeroides. 

Narrow band (1–2 nm) laser diodes emitting at 808 and 865 nm were used to selectively excite the accessory 

bacteriochlorophyll (B, 800 nm) or the upper excitonic state of the bacteriochlorophyll dimer (P-, 810 nm) and the 

lower excitonic state of the dimer (P+, 865 nm), respectively. The fluorescence spectrum of the wild type showed 

two bands centered at 850 nm (B) and 910 nm (P-). While the monotonous decay of the fluorescence yield at 910 

nm tracked the light-induced oxidation of the dimer, the kinetics of the fluorescence yield at 850 nm showed an 

initial rise before a decrease. The anisotropy of the fluorescence excited at 865 nm (P-) was very close to the 

limiting value (0.4) across the whole spectral range. The excitation of both B and P- at 808 nm resulted in 

wavelength-dependent depolarization of the fluorescence from 0.35 to 0.24 in the wild type and from 0.30 to 0.24 

in the reaction center of triple mutant (L131LH– M160LH–M197FH). The additivity law of the anisotropies of 

the fluorescence species accounts for the wavelength dependence of the anisotropy. The measured fluorescence 

yields and anisotropies are interpreted in terms of very fast energy transfer from 1B* to 1P- (either directly or 

indirectly by internal conversion from 1P+) and to the oxidized dimer. 

Introduction 

The reaction center (RC) protein of the photosynthetic bacterium Rhodobacter (Rba.) sphaeroides is designed to 

convert light energy into chemical potential by very fast and effective transfer of electronic excitation energy and 

initial electron transfer among cofactors arranged in two branches, labeled M (inactive) and L (active) forming a 

pseudo twofold axis of symmetry (Deisenhofer and Michel 1991; Wraight 2004). The six chlorophyll-like 

pigments, the special pair dimer (P) with two strongly interacting bacteriochlorophylls, the two accessory 

bacteriochlorophylls (B), and the two bacteriopheophytins (H) assure (a) very fast excitation of P either directly 

by absorption of light or through energy transfer and (b) transfer of an electron from P* to H within 3 ps (Zinth 

and Wachtveitl 2005; Jones 2009; Zhu et al. 2013). Figure 1 shows the atomic arrangement of the dimer and the 

two accessory bacteriochlorophylls together with their transition dipoles between the excited states and ground 

state. They differ in direction significantly setting the stage for orientation-dependent intraprotein energy transfer 

and anisotropy of fluorescence of these chromophores. 
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Fig. 1 The dimeric (P) and monomeric (BM and BL) bacteriochlorophylls without their phytol chains together with three 

amino acid residues targeted for mutation in the atomic structure of the wild-type reaction center of Rba. sphaeroides (PDB 

structure 3I4D, resolution 2.01 A ˚ ). Arrows show the projection of the Qy transition dipoles onto the plane of the figure for 

the accessory bacteriochlorophylls and for the lower excitonic state of the dimer (after Jonas et al. 1996). The dipoles of BL 

and BM are at angles 164 and 34 relative to that of the dimer, respectively (top) 

 

The cofactors can be characterized and identified by specific bands of the near-IR absorption and fluorescence 

spectra. The absorption band of H is at 760 nm, and the absorption and fluorescence bands due to the Qy transition 

of both bacteriochlorophyll monomers (B) are at 800 and 850 nm, respectively. The two bacteriochlorophylls of 

the dimer have extensively delocalized excitations that are close to symmetric (P+) and antisymmetric (P-) 

combinations of monomeric excitations. The absorption band attributed to transition to P+ is located at 810 nm 

and overlaps the band of B at 800 nm. At low temperature, it appears as a shoulder near 810 nm (Warshel and 

Parson 1991; Parson and Warshel 2009). The transition to P- state is characterized by a strong band at 865 nm. The 

transition moment of the P+ band is nearly orthogonal to that of P-, and the dipole strength is about 10 times larger 

than that of P -. The observed fluorescence comes from P– and gives a band at 910 nm. A number of spectroscopic 

studies using ultrafast pumpprobe absorption and fluorescence method (Jonas et al. 1996; Arnett et al. 1999), 

fluorescence up-conversion (Stanley et al. 1996), delayed fluorescence (Onidas et al. 2013), single RC crystals 

(Huang et al. 2012), linear dichroism (Breton 1985), and hole burning (Reddy et al. 1993) supported by theoretical 

calculations (Warshel and Parson 1991; Scherer et al. 1994) have addressed the interpretation of energetics and 

dynamics of excitation energy- and electron transfer. They revealed some degree of coupling between the cofactors 

among which the coupling with the excitonic states of the dimer has the largest impact. It is well documented that 

P- state is mixed with charge transfer states (Boxer et al. 1989), and P+ is mixed with accessory bacteriochlorophyll 

states leading to several transitions forming the absorption band at 800 nm. Due to the strong coupling and ultrafast 

energy transfer (~100 fs) between B and P, it is proposed that there is a transfer from a B/P+ mixed state to a state 

of mostly Pcharacter (Arnett et al. 1999) rather than via separate steps (B*  P+ energy transfer followed by P+ 

 P- internal conversion) (Jonas et al. 1996). To obtain more information on the intraprotein excitation energy 

transfer between B and P, we performed (quasi) steady-state fluorescence induction and anisotropy spectroscopy 

on isolated RCs from wild-type and triple mutant L131LH–M160LH–M197FH strains of Rba. sphaeroides. The 

mutation affects the energetics of the dimer (the redox midpoint potential is elevated (Lin et al. 1994), and the 

primary charge pair P+QA - is destabilized by about 200 meV (Onidas et al. 2013)) and the coupling between B 

and P because the mutation sites are in close vicinity of the cofactors (Fig. 1). The experiments reported here were 

carried out under physiological conditions including single and low pulse energy that avoids saturation and 



multiple excitation of the RC. By analyzing the spectra of induction and anisotropy of fluorescence of different 

RCs after selective excitation, we deduce below that (quasi) steadystate measurements with adequate structural 

information can offer insight into the world of ultrafast processes. 

Materials and methods 

The cultivation of the carotenoid-containing strain 2.4.1 of Rba. sphaeroides and the isolation and the purification 

of the RC protein were described earlier (Maróti and Wraight 1988). The construction of the triple mutant strain 

L131LH–M160LH–M197FH, the mutagenesis procedures, growth conditions for mutant cells, as well as the RC 

preparation have been described previously (Spitz et al. 2005). The photochemical function of the RC was 

characterized by the near-infrared steady-state absorbance spectrum and by the flash-induced P/P+ absorption 

change at 860 nm performed on a kinetic spectrophotometer of local design. The purity of the RC preparation is 

characterized by the OD(280)/OD(802) ratio that was less than 1.3 in our experiments. The secondary quinone 

activity of the RC remaining after preparation was inhibited by the addition of 100 µM terbutryn. 

Fluorescence induction 

The kinetics and yield of the RC fluorescence on illumination with rectangular profile were recorded by a 

homebuilt spectrofluorometer with laser diode excitation of high (1–2 W) power (Roithner LaserTechnik) (Maróti 

2008). The emission wavelengths and bandwidths of the laser diodes were 808 (± 0.5 nm) and 865 (±1 nm). The 

laser beam was expanded and homogenized by ground glass at the cuvette to avoid mixing of kinetics due to 

heterogeneous illumination. The laser intensity was attenuated by calibrated neutral density filters. The rise time 

of the laser excitation was much less than the time resolution of the device (~1 µs), and the flash of the laser diode 

formed the shape of a step function with good approximation. The fluorescence of the RC was detected at 90o with 

respect to the excitation light through an IR monochromator (Jobin– Yvon H-20 with a concave holographic 

grating) by a redsensitive photomultiplier tube (Hamamatsu R3310-03) that was cooled down to -30 C (Photocool 

PC 410CE; Products for Research) to reduce the dark current by 2–3 orders of magnitude. The kinetic trace of the 

fluorescence was divided by that of the laser diode emission to obtain the relative yield of the fluorescence. 

Fluorescence anisotropy 

The wavelength-resolved anisotropy of laser-diode-excited fluorescence was measured with standard right-angle 

geometry (Fig. 2). The polarization of the partially polarized exciting laser diode was achieved by a Glan-Taylor 

polarizer (P). The fluorescence from the sample was polarized by a Glan–Thompson polarizer (A) either 

perpendicular or parallel to the direction of the polarizer. The analyzer could be rotated by the New Focus rotary 

stage (8401) and controlled by PC equipped with a New Focus Intelligent Picomotor Driver. At the corner of the 

right angle, the cuvette in a massive brass block contained the RC solution thermostated at room temperature. The 

fluorescence was excited by linearly polarized laser light with either vertical (V) or horizontal (H) direction of the 

electric vector referred to the laboratory system. The anisotropy of the fluorescence, r, was determined by 

(1) 

 

Fig. 2 Schematic arrangement of the apparatus used to excite and detect the polarized fluorescence. Notations: LD: laser 

diode of wavelengths 806 or 865 nm, P: Glan-Taylor polarizer, K: 1 9 1 cm thermostated quartz cuvette with the sample, L1 

and L2: lens system for collimation of the fluorescence, F: combination of infrared transmitting filters, A: Glan–Thompson 

polarizer, M: infrared monochromator, PM: cooled photomultiplier tube,<: electric amplifier, and C: computer 

 



where G = IHV/IHH is the instrument-factor. The two letters in the subscript of the fluorescence intensity, I, denote 

the directions of the polarization of the excitation (first letter) and emission (second letter). The instrument-factor, 

G, describes the contribution of all factors (e.g., monochromator with holographic grid) that cause depolarization 

and should be separated from that due to the sample. The G-factor was determined prior to and occasionally during 

the measurement. The fluorometer was calibrated by scattering the light of a tungsten lamp in ludox solution and 

by detection of the fluorescence of BChl or IR806 dyes in castrol oil excited by laser diode (Ebrey and Clayton 

1969). 

Results 

The fluorescence of the bacterial RC can be selectively excited by monochromatic light of laser diodes adequate 

to the absorption bands of the chromophores. Using diode lasing at 808 nm, both B and the upper exciton state of 

the dimer in wild-type RC can be directly excited resulting in two well-defined fluorescence bands at 850 and 910 

nm corresponding to radiative transitions from 1B* and from 1 P – (the lower exciton state of the dimer) to the 

ground state, respectively (Fig. 3a). If the RC is chemically oxidized by excess ferricyanide before the excitation, 

the band characteristic of the dimer disappears (Fig. 3b). The oxidation of the dimer can be achieved progressively 

by light excitation. The P  P+ transition during laser diode excitation is reflected by drop of the yield of the 

dimer fluorescence band at 910 nm as a result of loss of excitable P (Fig. 4a). The phenomenon is similar to 

characteristic changes of bacteriochlorophyll fluorescence yield in intact cells upon dark  light transition 

(fluorescence induction) (Clayton 1966; Osva ´th et al. 1996) that has gained a wide field of interest and 

applications (Koblizek et al. 2005; Kocsis et al. 2010; Asztalos et al. 2012; Kis et al. 2014). The rate constant of 

decay of the fluorescence yield is controlled by the intensity of the laser diode. The small fluorescence signal 

remained after the photooxidation of the dimer can be attributed to impurities of the isolated RC. 

 

Fig. 3 Near-IR absorption and fluorescence spectra of native (panel a) and chemically oxidized (panel b) photosynthetic 

reaction center from Rba. sphaeroides 2.4.1 at room temperature. The absorption and fluorescence bands of the dimer 

disappear upon oxidation of the RC. Conditions: 2–10 µM RCs, 0.03 % LDAO detergent, 10 mM Tris buffer, and pH 8.0 

(panel a) and ~40 mM potassium ferricyanide (panel b) 

in intact cells upon dark  light transition (fluorescence induction) (Clayton 1966; Osva ´th et al. 1996) that has 

gained a wide field of interest and applications (Koblizek et al. 2005; Kocsis et al. 2010; Asztalos et al. 2012; Kis 

et al. 2014). The rate constant of decay of the fluorescence yield is controlled by the intensity of the laser diode. 

The small fluorescence signal remained after the photooxidation of the dimer can be attributed to impurities of the 

isolated RC. The kinetics of the induction shows remarkable changes when the emission is detected not at 910 nm 

but at 850 nm (Fig. 4b). At this wavelength, the contribution of B dominates and determines the observed 

fluorescence of the RC (Fig. 4c). After the initial rise, the fluorescence levels off at relatively high intensity. The 

opposite shapes of fluorescence kinetics with identical fall and rise times at 910 and 850 nm, respectively, serve 

as clear cut evidence for the electronic excitation energy transfer from 1B* to the dimer. The more general and 

demonstrative connection between the spectral and kinetic changes of the fluorescence induction of wildtype RC 

is shown in a 3D relief map (Fig. 4d). The triple mutation of the amino acids between P and B does not change the 

near-IR absorption spectrum of the RC, but modifies the spectrum and the induction kinetics of the fluorescence 

significantly. While the yield of the B fluorescence at 850 nm decreases dramatically, the yield of the dimer 

fluorescence at 910 nm increases by a factor of two (Fig. 4c). The rate constant of light utilization for charge 

separation measured as the decay constant of the fluorescence induction at 910 nm is not modified upon mutation 



(Fig. 4a). However, the kinetics detected at 850 nm become significantly different (see the convex/concave 

difference in Fig. 4b). The anisotropy of the dimer fluorescence upon direct excitation of the 865 nm band is high 

(very close to the theoretical maximum of +0.4) both for wild-type and mutant RC and shows no wavelength 

dependence (Fig. 5b, d). Similarly, high and constant fluorescence anisotropies can be observed if the dimer is 

chemically oxidized by ferricyanide (Fig. 5a). The anisotropy spectrum will change if the lower excitonic level of 

the dimer is not directly excited. The anisotropy of fluorescence from B will be mixed with those of the dimer 

excited both directly and indirectly. The excitation energy transfer from 1B* to 1P– depolarizes the indirectly 

excited dimer fluorescence. According to the law of additivity of anisotropies, the observed anisotropy will be the 

sum of the anisotropies weighted by the fluorescence intensities of the species. The calculated spectrum of 

fluorescence anisotropy performs a smoothed step function with descending end at longer wavelengths both for 

wildtype and mutant RC (Fig. 5a, c). The selective excitation of the Qy transitions of B and P keeps the anisotropy 

at elevated level below 850 nm which is not the case if other cofactors and other transitions are simultaneously 

excited as reported in (Ebrey and Clayton 1969). 

Discussion 

The observed spectral and temporal changes of the yield and anisotropy of the RC fluorescence during induction 

will be discussed based on energy level diagram of the two chromophores (P and B) that are relevant to both the 

energy and electron transfer processes under our conditions (Fig. 6). 

Yield of fluorescence 

Upon excitation of the 800 nm absorption band, two distinct fluorescence bands at 850 and 910 nm appeared that 

could be attributed to radiative transfer from excited 1P*_ and 1B* states to the ground state, respectively. The 

quantum yield of the dimer fluorescence is very low: 410-4 (Zankel et al. 1968) due to the high rate constant of the 

photochemistry (charge separation). Similarly, low value can be expected for the B fluorescence because (1) the 

dimer (1P+) absorption near 810 nm accounts for roughly one-quarter of the B absorption around 800 nm and (2) 

the fluorescence intensities of the two fluorescence bands are in the same orders of magnitude in wild-type RC 

(Fig. 3). Although the exact rate constant of the energy transfer from 1B* to 1P  via 1P þ is debated (Jonas et al. 

1996; Stanley et al. 1996; Arnett et al. 1999), it should be at least 10 times larger than that of the charge separation. 

To get about similar quantum yields of fluorescence for B and P, one has to assume at least 10 times larger radiative 

rate constant for B than for P in the wild-type RC. The intraprotein chemical surrounding and energetic coupling 

may account for this difference. 



 

Fig. 4 Spectral and kinetics changes of fluorescence induction evoked by 808 nm laser diode excitation in wild-type and 

triplemutated (L131LH–M160LH–M197FH) reaction centers of Rba. sphaeroides. Kinetics of fluorescence induction 

observed at 910 nm (panel a) and at 850 nm (panel b) for WT (black) and triple mutant (red) RCs. Fluorescence spectra of 

WT (black dots) and mutant (green dots) RCs in reduced and (chemically) oxidized states of the dimer (red dots) (panel c). 

Quasi 3D demonstration of the spectrum and kinetics of fluorescence in wild-type RC (panel d) 

 

The finding was interesting that the yield of the B fluorescence did not change dramatically upon oxidation of the 

dimer: a slight increase was detected only. If P is oxidized (either chemically or progressively by light) then no 

1B* to 1P*+  energy transfer will take place, i.e., much larger yield of B fluorescence will be expected. However, 

this does not occur, probably because of the appearance of another deactivating (loss) process with similar rate 

constant as the 1B*  1P*
+  energy transfer. As 1B* and 1P+ ox (the upper excitonic level of the oxidized dimer) are 

approximately isoenergetic states and are closely located, strong energetic coupling and therefore high transfer 

rate can be expected that keeps the yield of B fluorescence on the observed low level (Fig. 6). 



 

Fig. 5 Anisotropy spectra of fluorescence excited at 808 and 865 nm by laser diodes in wild-type (panels a and b) and triple 

mutant (panels c and d) RCs of Rba. sphaeroides. Upon excitation at 808 nm, the fluorescence originates from B* and P-, and 

therefore, the observed anisotropy is the sum of anisotropies of the species weighted by their fluorescence intensities 

determined from Gaussian decomposition of the fluorescence spectra (Fig. 3.). The calculated anisotropies (solid lines in 

panels a and c) are close to the data points within the error of the measurement 

 

 

Fig. 6 Schematic energy level diagram of singlet excited bacteriochlorophyll monomers (1BL * and 1BM * ), lower (1P–) and 

upper (1P+) excitonic levels of the dimer in the reduced (1P) and oxidized (1Pox) states and charge separated P+HL - state. The 

scale of energy levels of the states is not proportional. The possible pathways of excitation energy transfer (EET), internal 

conversion (IC), charge separation (CS), and fluorescence emission (wavy arrow) with approximate time half times are also 

indicated 



 

Anisotropy of fluorescence 

Upon excitation of the lower excitonic level of the dimer (P–) by light of 865 nm wavelength, the measured 

fluorescence anisotropy was very close to the maximum theoretical value of +0.4 all over the spectral range 

covering the fluorescence spectrum. This observation signifies a single transition (or two distinct but parallel 

transitions) and not a pair of degenerate transitions. The single CD band coincident with the 870 nm absorption 

band supports this conclusion (Sauer and Austin 1978). Similarly, fluorescence anisotropy close to the limiting 

value was obtained by excitation at 808 nm if the dimer was oxidized. Consequently, the absorption and emission 

dipole moments of the monomeric bacteriochlorophyll (B) should be (close to) parallel. If the dimer is not oxidized, 

then both P and B will emit fluorescence, and the observed anisotropy will be the sum of anisotropies of the 

components weighted by the corresponding fluorescence intensities. The fluorescence from B has anisotropy r = 

r0 = +0.4 because of direct excitation. The dimer fluorescence comes from state 1P  that can be populated either 

from 1P*+ (anisotropy r = -0.2, because 1P+ makes a large angle (~90o) with 1P–) or from 1BL* and 1BM* by energy 

transfer (anisotropy , here aPL and aPM denote the angles between transitions of P and 

BL and P and BM, respectively (see Fig. 1)). To explain the fairly high measured value of the anisotropy of the 

dimer fluorescence, a significant portion of energy transfer from 1B* should directly target the 1P*+ state. Different 

kinetic models including several steps (combination of energy transfer and internal conversion) between several 

states (1B*, 1P*+, 1P*_ and P+H–) may account for this possibility (Jonas et al. 1996; Arnett et al. 1999). The 

wavelength dependence of the anisotropy of the fluorescence based on our crude model gives acceptable agreement 

with the experiment. 

Triple mutant 

The 2-acetyl and the 9-keto groups of both PM and PL in the dimer are engaged in a hydrogen-bond with the 

surrounding protein. The L131LH–M160LH–M197FH mutation modifies the hydrogen-bonding pattern of the 

dimer by introduction of three His residues capable of H-bond formation. The increase of the number of H-bonds 

in the mutant increases the redox midpoint potential of the dimer by about 200 meV (Lin et al. 1994), the intensity 

of the delayed fluorescence, and destabilizes the P+QA - charge pair by 200 meV at pH 8 (Onidas et al. 2013). Our 

experiments indicated, however, that the major (prompt) fluorescence properties of the dimer, i.e., the spectrum, 

the orientation and strength of transition dipoles, the magnitude of the Stokes-shift, and the yield of fluorescence 

were hardly modified by the mutation. On the other hand, a significant drop of the yield of fluorescence related to 

the monomeric bacteriochlorophyll was experienced. The decrease of the yield could include either an increase of 

the rate of electronic excitation energy transfer to 1P or a decrease of the intrinsic rate constant of radiation of 1B* 

relative to those in wild-type RC. The mutation of amino acids between P and B can affect the coupling between 

the chromophores resulting in changes of the fluorescence properties of B and excitation energy transfer to the 

dimer. 
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