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Abstract The growing number of scientific com-
putation-intensive applications calls for an efficient
utilization of large-scale, potentially interoperable dis-
tributed infrastructures. Parameter sweep applications
represent a large body of workflows. While the prin-
ciple of workflows is easy to conceive, their execution
is very complex and no universally accepted solution
exists. In this paper we focus on the resource alloca-
tion challenges of parameter study jobs in distributed
computing infrastructures. To cope with this NP-hard
problem and the high uncertainty present in these sys-
tems, we propose a series of job allocation models
that helps refining and simplifying the problem com-
plexity. In this way we present some special cases that
are polynomial and show how more complex scenar-
ios can be reduced to these models. It is known from
practice that a small number of job sizes improves the
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result of job allocation, therefore we state a hypothesis
relying on this fact in one of our models. Unfortu-
nately, the reduction of the general problem (using
K-means clustering) did not help, and thus the hypoth-
esis has proved to be false. In the future, we shall look
for clustering techniques which fit this goal better.

Keywords Distributed computing infrastructures -
Job allocation - Parameter sweep applications

1 Introduction

While the principle of workflow applications [1] is
easy to conceive, executing such an application is a
very complex task and no universally accepted solu-
tion exists. The workflow itself is a logic descrip-
tion how tasks are related to each other and what
are the conditions (requirements) of their execution,
hence the name “abstract workflow”. During exe-
cution such abstract workflows are translated into
concrete workflows where all such conditions and
requirements are analysed, evaluated (or fulfilled if
necessary) by an automated mechanism. Parameter
sweep applications or a set of parameter study jobs
represent a specific and commonly used class of work-
flows, where ordering of task executions is irrelevant.
In a slightly different context such applications are
also called as embarrassingly parallel applications or
bag-of-tasks applications. One of the most important
requirements a task certainly has is its resource needs.
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All computational tasks! must be mapped onto some
computing resources so that the task can be realised
and the necessary computations executed. During this
process the resources should be selected so that the
overall execution meets some criteria of optimum,
typically the shortest possible execution time.

Such problems are known as allocation problems,
one of the fundamental ones of parallel and distributed
computing. Hence, they are extremely well studied;
on the other hand they are known to be NP-hard [12]
therefore, no exact and quick solution can be provided
for them. Most of the approaches are based on some
heuristics — and there is a very wide range of possible
heuristics as Load Balancing [13], Shortest Process-
ing Time First [15, 16], Largest Processing Time First
[14], but more importantly they are typically aimed at
a particular problem or a particular class of problems.

This paper follows and advances the pattern of
[2] which was aimed at investigating how allocation
based on elementary probabilistic theory can be effi-
cient if supported by predictions distilled from historic
trace data. While the paper has proven its assump-
tion that these very basic probabilistic approaches can
indeed produce effective allocation, it also revealed
that subtle details can significantly make the allocation
problem more complex and requiring more elaborated
solutions. The present paper is aimed at showing sev-
eral different approaches which are all relevant. For
some of them, we present the answer, while we illus-
trate the difficulties for others. Finally, we concentrate
on one specific approach and state a hypothesis con-
cerning it. This hypothesis has proved to be false. We
shall treat the conclusions in the last section.

The contribution of this paper is its perspective on
the details of the task allocation problem and how
they are revealed and analysed in successive models.
Starting from the most basic deterministic (and practi-
cally unrealistic) one which is extremely easy to study,
we add details in successive models and discuss the
new features. It is interesting to note that the solu-
tion of some more complex models can be reduced
to the first basic model. The models towards the end
of the list are more realistic and in alignment with
practical allocation scenarios and problems. We also
provide an analysis of an approximation method based
on clustering heuristics.

1«“Tasks” are used in the workflow terminology whereas “jobs”

are of the scheduling community. We use “jobs” in the rest of
the paper.
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The remainder of the paper is as follows: Section 2
summarizes related work. Section 3 introduces the
assumptions of the model, i.e. an abstract view of the
allocation scenario. Sections 4 through Section 9.1
describe the successive models; Section 4: the basic
deterministic model; Section 5: different processing
speed of nodes modeled as a linear approximation;
Section 6: different processing speed of nodes mod-
eled as a general function; Section 7: reliability of
nodes modeled as constants; Section 8: probabilistic
model of reliability of nodes; and in Section 9 the gen-
eral makespan problem. The latter model is analysed
and evaluated by experiments in Section 10 and the
paper is concluded in Section 11.

2 Related Work

Job allocation and scheduling on a multiprocessor
system has been studied for more than 30 years
and most of its variants are known to be NP-hard
[12].

Scheduling in Grid systems, which is one of the tasks
of Grid resource managers, become even more com-
plicated with multi-organizational shared resources,
therefore Grid scheduling is also NP-hard [3].
Schwiegelshohn et. al. [6] showed that the per-
formance of Garey and Graham’s list scheduling
algorithm is significantly worse in Grids than in
general multiprocessor systems. They proposed a
Grid scheduling algorithm using the “job stealing”
approach that guarantees a competitive factor of 5.
(This factor is the ratio between the performance of a
specific online algorithm and the best possible offline
solution. In case of an NP-hard problem, this solu-
tion may be difficult to obtain.) The basic idea of this
approach is if there are no jobs available in the lists of a
machine, this machine starts to use the list of a neigh-
boring machine involving local communication only.

In order to achieve better scheduling, in some
works approximates and run time estimates are used,
e.g. [10]. On the other hand, the inaccuracy of these
estimates is a perennial problem mentioned in the lit-
erature, and even if users are required to provide these
values, there is no substantial improvement in the
overall average accuracy [4]. Ramirez-Alcaraz et al.
[5] have analyzed different Grid allocation strategies
depending on the type and amount of information they
require, and they found that information about users’
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runtime estimate and local schedules does not help
to significantly improve the outcome of the allocation
strategies. They concluded that quite simple sched-
ulers with minimal information requirements can pro-
vide good performance. Practice seems to adapt to
these findings, because too complex, sophisticated
scheduling algorithms are rarely used in Grid brokers.

Cirne et al. [23] developed Workqueue with repli-
cation (WQR) that keeps computing resources busy
so that if a node runs out of work and would become
idle, a copy of an unfinished task is assigned to it.
In such a way a second chance is given for a faster
execution: the two copies of the same task compete.
The approach does not need any information about the
tasks or the resources and can dampen the effect of
dynamic loads and improve execution time by wasting
some (controlled limit) resources. Following this idea
Da Silva et al. in [24] also raise the question of meth-
ods that require information compared to WQR. WQR
is however, iterative as opposed to our single decision
making for allocation.

Casanova et al. [22] focused on the very same
problem of scheduling parameter sweep applications
on Grids, with particular attention to file transfers
and network performance. Also, their motivation is in
alignment with most of the papers in this area: inaccu-
rate predictions can largely mislead scheduling. Their
approach is modifying existing heuristics so that they
are adaptive in a dynamic heterogeneous environment.
The core of the scheduling is a Gantt chart that is
created and updated periodically and keeps track of
job and resource assignments. Assignments are gov-
erned by a heuristics called sufferage where a task
is assigned to a host if the task would “suffer” the
most if done otherwise; ’suffering” is expressed as the
difference between the best and the second best mini-
mum completion times. A considerable complexity is
added in this model by taking into account file trans-
fer and communication costs; this lead to modify the
definition of the sufferage algorithm.

Maheswaran et al. [21] addresses the issue of map-
ping independent tasks onto heterogeneous computing
systems. They apply heuristics aiming at optimiz-
ing for throughput, i.e. increasing the finished task
per time unit ratio. It considers Minimum Comple-
tion Time (MCT), Minimum Execution Time (MET),
Switching Algorithm (switches between MCT and
MET) and k-percent Best (MCT on a subset of
resources) as on-line heuristics whereas Min-Min,

Max-Min [11] and Sufferage [21] for batch mode
ones. Min-Min and Max-Min roughly correspond to
MCT and MET of on-line algorithms. Their anal-
ysis revealed that batch scheduling can outperform
on-line scheduling for large number of tasks, on the
other hand some on-line scheduling may have lower
computation time. Within the batch scheduling class,
Min-Min and Sufferage were proven to be superior.

Menascé€ at al. [20] introduce further static schedul-
ing by combining an envelope (a selection of tasks
and resources to be considered) and a heuristics. In
the paper they derived 6 static scheduling methods
by crossing three task selection and two proces-
sor selection heuristics; these were compared with
three dynamic ones. They claim the superiority of
static methods: these are executed rarely hence, more
sophisticated algorithms can be realized without time
penalty. All these methods are based on task priorities
whereas, in our case we do not differentiate between
task priorities.

Oprescu et al. [7] propose a budget constraint-based
resource selection approach for Cloud applications. In
this work they present a budget-constrained scheduler
called BaTS, which can schedule bags of tasks onto
multiple clouds with different CPU performance and
cost, minimizing completion time with maximized
budget. Their scheduler learns to estimate task com-
pletion times at run time. GridBot [19] represents an
approach for execution of bags-of-tasks on multiple
Grids, clusters, and volunteer computing Grids. It has
a Workload Manager component that is responsible
for brokering among these environments, which is
similar to our approach, but they focus on tasks more
suitable for volunteer Grids.

Hirales-Carbajal et al. [17] present an experimen-
tal study of 22 deterministic non-preemptive multiple
workflow scheduling strategies in Grids. While their
objective is to schedule and execute the whole work-
flow, and minimize its makespan, we restrict ourselves
to parameter study jobs of such workflows.

3 Elements of the Models and the Assumptions

To provide a general solution, we introduce an abstract
model for the computing infrastructure and the tasks,
independently from any actual physical realization.
Jobs are the computational tasks, roughly speaking the
“programs to be executed” that are independent from
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each other. Jobs start, do some computation and termi
nate with a result or abort with a failure; beyond these
three stages of behavior it is indifferent what compu
tation they actually carry out or what their internal
structures are. We assume a set of k jobs where k is
reasonably large. The time between the start and the ter-
mination or abort of the job is called the execution time.

Resources are the units of a DCI. This is an abstract
notion in the sense that it may be physically realized
as a single processor (computer) or a set of processors
(a cluster) nevertheless, from scheduling or mapping
point of view, resources are the smallest units that can
be observed or controlled. Obviously, resources may
contain smaller (finer-grained) computing elements
like cores of a processor or processors of a cluster.
Albeit some models will take these into account, they
are managed by an operating system or a middleware
and are assumed hidden from the scheduling or map-
ping agent. We assume a set of n resources. Each
resource may have a pre-load: jobs that are submit-
ted by other parties thus, adding some delay to the
execution. We define ¢; as the pre-load of resource i.

Generally, mapping is an assignment of jobs to
resources so that it conforms certain constraints (e.g.
capacities, functional properties, etc.) and fulfils some
criteria of optimum (such as running time, communi-
cation volume, used resources, consumed energy, etc.)
In the context of the paper we restrict ourselves to a
mapping that is aimed at minimizing the makespan A
of the job execution, i.e. minimize the time that takes
the execution of the job that finishes last. The notation
of our model is summarized in Table 1.

Table 1 Summary of parameters and quantities used in the
algorithms

nez number of all available resources
kelZ number of jobs to be allocated
kieZ number of allocated jobs on resource i

¢ eR delay (waiting) caused by other jobs
(pre-load) on resource i
x = (ky, ka, ...kn) ki number of jobs allocated
on resource i
J expected value of 7;, E(t;)
R; running time (pre-load + own jobs)
on resource i

A makespan (total execution time)

@ Springer

4 Model 1 — Basic, Deterministic Model
for Allocation

The target is to allocate k jobs to some of n resources
representing the nodes of a heterogeneous DCI (i.e. a
Grid or a Cloud) so that each resource has a certain
pre-load ¢; (jobs belonging to different applications).

In Model 1 it is assumed that the jobs to be allo-
cated have unit execution times thus, k; jobs take
k; time and c¢; is equivalent to a delay of ¢; time
units. Resource i finishes its operation after R; =
¢; + k; time units. (In fact, R; = R;(x), the function
of the execution times for a given job allocation x
(see Table 1). We define turnaround time A(X) =
-Iili?o(R" (x)). The goal is to minimize A, i.e. find an

L,Ki

allocation x so that A = min A(x).
X

Remark 1 The restriction k; # 0 is necessary in the
formula of maximum since the resources without new
jobs allocated there are considered to be non-existing.

Solution 1 An algorithmic solution for Model 1 can
be found in [2]. The algorithm can be applied for any
non-negative real numbers ¢; (later we will use this
fact, in Section 8.2). Several quick algorithms exist
for this simple problem. We may consider both the
problem and the solution as a building block (a black
box, independently of the solution used.) The impor-
tance of these blocks (for Model 1 and also for Model
2) will be clear in Section 8.2, incorporating their
application.

5 Model 2 — A Modified Function for the Running
Time

In practice, often the purely additive formula for the
running time (R; = k; + ¢;) is not valid. One of the
alternative formulae is the following.

(Model 2) The resources have their own speed S;.
Thus the running time on resource i will be calculated
as R; = Bik; + c;. Here we define a general notion in
connection with optimization problems.

Definition 1 For a function A(x), the question
whether there exists an x with A(x) < B for an
arbitrary B we call the decision problem in connec-
tion with the minimization problem of function A(x).
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Here B can be chosen arbitrarily. In the same sense,
we may speak on the decision problem in connection
with a maximization algorithm.

The decision version of the deterministic algorithm,
developed in our former paper [2] can easily solve
the task in Model 2 as well. In the next section we
generalize this result, too.

6 Model 3 — Generalization of Model 2

As we shall see, the functions R; of Model 2 are only
the special cases of a class of functions for which the
makespan problem can be easily solved. However, we
emphasize that the whole Model 3 is valid in case of
equal job sizes only.

Let us suppose we have a function f; for each i =
1, ...,n (that is, for each resource). The meaning of
fi is that j jobs will be finished in (exactly!) f;(j)
time on the ith machine. A good example is f;(x) =
R; (x), where R; is one of the functions in the previous
section.

We are able to use the method below if the ith
function satisfies the following condition: For each i,
fi is monotone and it can be calculated by a quick
algorithm.

Proposition 1 1. [If the condition above is fulfilled
for the functions f; then, given a bound, we are
able to calculate the maximum number of jobs,
allocatable to a a given resource without the
violation of the time bound.

2. Consequently, for such running time functions,
the minimum makespan problem can be quickly
solved.

Proof

1. Letthe given time bound be denoted by B. Putting
J jobs on the ith resource, it does not violate this
bound if and only if f;(j) < B . By the condition,
we easily obtain the maximal j = j (i) for which
fi(j) < B. Summarizing, for every resource i we
know, how many jobs we are allowed to put there,
considering the time bound — the answer is j (i).
If Y-, j(i) < k then there exists an allocation x
with A(x) < B, otherwise not.

2. This means that the decision problem in con-
nection with our minimization problem can be
quickly solved, consequently, so is the minimiza-
tion problem itself.

O

Model 3 may have many applications, because of
the large diversity of resources and running time func-
tions, occurring in practice. The makespan problem
can be solved always when the (very weak) condi-
tions of Proposition 1 are valid. For instance, the
7™ job gets the output of each preceding job thus,
its running time increases by j. The formula for the
function

(ki — Dk;

Ri=1+2+ .+ —1)=——

This function satisfies the condition above. On
the other hand, Model 3 shows, that sometimes even
strangely abstract models can help.

7 Model 4 — Reliability with Constant Penalty

In this model we try to capture the case when some
jobs on some resources abort and we have a statis-
tics for each given resource on the rate of aborts or
failures. This rate, i.e. reliability, can be different for
different resources. Thus, for the ith resource we have
a probability p; for the successful running of a job
allocated there. Unfortunately, the consequence of an
abort cannot be described in any allocation model
(used here), because all these models need a deci-
sion made in a given moment, in accordance with
the name “allocation” (see Introduction). The con-
sequences may involve a significant loss of time in
connection with the job aborted, rescheduling the job,
and so on.

Despite these difficulties, managing the mathemat-
ical problem of aborts cannot be avoided. There are
many ways of formalizing this phenomenon. One of
the solutions is to associate a penalty with an abort —
a constant time penalty 7. For the determination of T,
experience is the only possibility. This is the roughest
model, thus we will solve a more general one in the
next section. one can easily treat it as we will see in
Section 8.2.
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8 Model 5 — Reliability with Penalty Distribution

This model is a refinement of Model 4, and a little
bit more realistic. Whenever a job is aborted due to
some failure, its re-enactment takes more time and
resources, represented as time loss or penalty. Sup-
pose, the experience on the abort phenomenon can be
coded in a probability distribution of the time loss. It is
known that the number of aborts has a binomial distri-
bution [18] (we shall apply this fact in Proposition 2),
but the authors did not find any realistic loss distribu-
tion yet. One may expect that the correlation of these
two random variables, is small (often 0). However, as
it will be treated below, one can partially manage the
problem, using only a realistic penalty distribution.

8.1 Model 5’ — Zero Correlation

Model 5’ is a special case of Model 5 above where
the two random variables — the number of successful
jobs and the loss of time — are independent, i.e. their
correlation is 0.

The solution to this problem is reduced to the one
presented in Section 4, i.e. the elementary solution of
a simple deterministic problem, taken as a black box
is incorporated into this more sophisticated approach,
as introduced in details in the following subsection.

8.2 A Method for Solving a Non-deterministic
Problem by Deterministic Tools

The key step of this method is that we restrict our-
selves to one information on the probability distri-
butions of all the random variables, occurring in the
problem — namely their expected value. Furthermore,
we use the obvious property of the expected value
being additive. This yields a possibility to reduce the
stochastic problem to the task described in the first
model.

An Example — Reduction of Model 4 to Model 2 Given
k jobs with unit runtime and n resources. The pre-load
on resource [ is ¢; (c1 < ¢ < ... < ¢y). After alloca-
tion, k; jobs will run on resource i and each of them
will be finished with probability p;. In case of suc-
cessful execution the runtime of the job will be a unit,
otherwise we consider that its runtime will be T where
T is the time penalty. The runtime on resource i is a

@ Springer

random variable #;, with expected value R;. The task
is to minimize makespan A(x) over all assignments X.

The number of jobs successfully finished on
resource i is denoted by Y; (it is a random variable).
With this notation

ti=Yi+ ki —YD)T + ¢ (1)
Proposition 2 For the expected value E (Y;),
E(Y:) = piki

Proof Y; has a binomial distribution (see above), thus
we may use this well-known fact in probability theory

[18]. O
This implies

R; = giki + ¢; 2

where g; := T —(T —1) p; (2) means that we can simu-

late this non-deterministic model by the deterministic
Model 2.

A new Example — Reduction of Model 5’ to Model
2 The only necessary modification of the calculation
in the former section is the following. In (1) #;, the
product of the random variables Y; and T appears.
Their independence implies that the expected value
can be calculated in the same way and the previously
introduced method can be applied.

Remark 2 The same reduction is impossible without
the assumption of independence.

9 Model 6 — the General Makespan Problem

As we know, the initial deterministic problem with
arbitrary job sizes and zero pre-loads is NP-hard — it
is called the Makespan problem in the literature and
its decision problem in connection with it is the same
as that of the famous Bin Packing problem [8]. (This
problem was treated in Section 5.) The approaches
below are attempts to cope with the Makespan prob-
lem, always in the sense that we solve an easier
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problem, and thus we obtain a solution, ’good enough’
for the Makespan Problem.

9.1 Clustering Method: Reduction to a Constant
Number of Job Sizes

Though in a real situation we find a lot of job sizes,
considering a system as a non-deterministic process,
we are able to make groups such that, within a given
group, the job sizes can be viewed as the values of
a random variable with small deviation. For a con-
stant number k of job sizes, the Makespan problem
can be solved better in practice (and, from a theoretical
point of view, there exist polynomial algorithms for
this case [8]. Suppose the number of groups is small,
then, applying “the method of mean”, described in [2],
we obtain a good estimation of the real system.

Remark 3 In Section 10 we shall describe tests in
connection with the clustering method.

9.2 Approximation Method

The solution of the approximation problem means that
we do not search for the minimum makespan M but
we want to have a solution with makespan at most
(1 + e)M. For every e, there is polynomial algorithm
but it is not usable in practice. The reason is that in
the exponent of time estimation we can find (roughly)
1/€ [8]. However, for € = 1/3, a quick algorithm,
Longest Processing Time First (LPT) is known, clas-
sical already (can be found in the well-known paper
of Graham [14], also containing the List Scheduling
Algorithm). A further advantage of LPT is that it is a
so-called quasi-online algorithm, namely, after mak-
ing a preorder, it works as an online algorithm. Here
we emphasize that our model is static in the sense that
the whole set of the jobs to be executed is given in
advance.

Remark 4 Once we combined Clustering and Approx-
imation, we arrive to a new model. Seemingly, this
model is too sophisticated. However, the mathemat-
ical methods of scheduling can often solve such
combinations relatively easily. If solved, we could
obtain better results than both of the two former
models. In the next section, for the models above we
shall use both zero and general pre-loads.

10 Evaluations of the Clustering Method
Combined with LPT

We have also performed measurements based on the
Clustering Method where the LPT algorithm is used
to allocate jobs on the distributed infrastructure. This
algorithm works with — a preferably small number of
— distinct job sizes (in terms of execution time). In the
former (discrete) case, the less the number of possi-
ble job sizes are, the better LPT performs [9]. In the
extremal case when there is only a single possible job
size, LPT trivially achieves optimal results [2].

In a real world scenario, jobs may be of any size,
in which case the LPT algorithm tends to produce
makespans closer to (1 4+ 1/3)M.[14] We may try to
reduce the number of possible job sizes to a small
given number by using K-means clustering with dif-
ferent values for K. Each job can then be assigned to a
representative element, the mean in its cluster, then the
LPT algorithm can allocate these jobs based on their
representatives. Our hypothesis is the following:

Hypothesis As these representatives have only a small
number (K) of possible values, the LPT algorithm can
achieve better results than in the case where the jobs
were allocated based on their real size.

To test the effect of clustering on the LPT algo-
rithm, we assumed that the job run times are known
at allocation time, and that there is no error in this
information.

As a control case for our simulations, we have ver-
ified that the LPT algorithm works better when there
are relatively few possible job run times. Then we
have conducted measurements to validate our hypoth-
esis. The goal of these measurements was to see the
effect of the number of possible job sizes on the per-
formance and behaviour of the LPT algorithm; and
deciding whether using K-means clustering can make
as if there are less possible job sizes.

10.1 Measurement Parameters

We have defined the parameters of the measurements
as shown in Table 2.

Deciding for a model distribution for job size is a
difficult task, as real-world jobs are extremely unpre-
dictable. However, the Pareto principle works in this
case too i.e., a small number of jobs cause the majority
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Table 2 Parameters applied in experiments

Parameter Description Range
Algorithm  The algorithm used LPT
to allocate jobs
neN Number of available 100
resources
keN Number of jobs to be 500
allocated
ti eR Run time of job i € [1..k] ~ Gamma(u, o)
where u =2
and o = 500
= E(t;) = 1000
o Preload on DCI i € [1..n] {0, Convex, Concave,
Linear}
—See Fig. 1
K Number of clusters in [1..6]

K-means clustering plus special case:

unclustered

of the load on the computing infrastructure. Thus, we
assume that any symbolic distribution that follows this
principle may be an acceptable model for job size dis-
tribution. In our measurements, we used the Gamma
distribution to generate job run-times. Gamma distri-
bution was chosen based on experience: a series of
extensive experiments showed the best match on job
length distribution on our computing infrastructure,
the SZTAKI Desktop Grid [26]. The focus on desktop

Fig. 1 Non-zero preloads 12000
(convex, concave, linear) 10000

i 8000
used in the measurements 6000
4000
2000

Q

grids is intentional: they are strongly related and espe-
cially taylored to embarrassingly parallel applications
such as parameter sweeps or bag-of-tasks hence, they
better reflect the conditions of a real execution envi-
ronment.

The number of DCIs (n), the number of jobs to
be allocated (k), the expected size of the jobs (w),
and the preload (c;) are interdependent parameters
that interfere with each other. We expect that if we
fully explored their domains, we would find points
in the parameter space where in each class the LPT
algorithm would work similarly for each point.

Remark 5 For example, scaling the preload and the
expected size of the jobs with the same constant would
simply scale the turn-around time accordingly. Or, if
we use twice as many DClIs with similarly distributed
preload and twice as many jobs, the turn-around time
would be the same. This is only a hypothesis, which
we are yet to prove (or disprove) in the future. Never-
theless, the interference of these parameters is not in
the scope of our measurements, as we are mainly inter-
ested in the behaviour of LPT regarding the number
of possible job sizes. Therefore, we used fixed values
for these parameters to provide a stable basis for our
measurements.

For preload, we considered four cases: the spe-
cial case when there is no preload at all, and three
fixed preload vectors (Fig. 1), two of which have been
generated offline from a Pareto distribution, which

Convex

Concave

@ Springer
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Fig. 2 Control-case results Preload: Zero Preload: Convex
5150 | 5800.E
5100 | . 5750 |
5050 | s 1 1 T 57004 I I I
5000f 5650 ¢
4950 F 5600 ¢ i
E 5550 ¢
2 3 4 5 6 7 2 3 4 5 6 7
Preload: Concave Preload: Linear
16 500 11100
16450 11050
16 400 . . 11000
16350 Lo . 10950 A R
16300 * 10900 o
16250 | | | | | | 10850 | | | | | |
2 3 4 5 6 7 2 3 4 5 6 7
captures real-life preloads well [2]. The difference — clustering jobs into K distinct clusters, and
between the three non-zero preloads is their shape: assigning its cluster representative to each
one is linear, one is convex, and one is concave. We job; or
will identify these preloads with these names in the — in the unclustered case, each job is assigned
discussion. to itself as the representative.

3. The LPT algorithm is used to assign each job to a
DCI, based on the representative associated with
that job.

4. For each DCI, the local turn-around time is the
sum of the real job run times (¢;), plus the preload.

10.2 Measurement Method

Each parameter set described in Section 10.1 has been
tested according to the following algorithm:

1. k jobs are generated with random run times f; In the control case, the run time of the represen-
based on the Gamma distribution. tative element (f;) is used as the job run time,
2. Each job is assigned to a representative element making the number of possible job lengths equal
#;. This is done by either to K.
Fig. 3 Hypothesis Preload: Zero Preload: Convex
validation results N
6400 3 *
6200 | : 6800 ¢ S S
6000 | Tt T e 6600¢
5800 F 6400 |
5600 6200
5400 £ 6000 £
5200 £ 5800.¢
2 3 4 5 6 7 2 3 4 5 6 7
Preload: Concave Preload: Linear
17800F T, 12200 T e ., .
17600 s s ., 12000 !
17 400 11800
17000
16800 11400
16600 11200
2 3 4 5 6 7 2 3 4 5 6 7
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5. The result of the measurement is the turn-around
time, which is the maximum of the local turn-
around times.

6. This is repeated 100 times for each parameter set
to find average results.

10.3 Measurement results

We have performed 100 measurements for all param-
eter sets described in Section 10.1 to validate our
hypothesis; and we repeated all measurements for
the control case — resulting in a total of 2 x 16800
measurements. The averaged results of these measure-
ments are shown in Figs. 2 and 3, as a function of
K.

In each figure, the horizontal axis is the number of
clusters (K), the vertical axis is the average turnaround
time (smaller is better). In all cases, the horizontal line
shows the unclustered result for that case.

The results of the control case is presented in Fig. 2.
In this case, after allocating the jobs, we modified
their run times to match that of their representative.
That is, in each case, there was only K different pos-
sible values for job length. We can see that the LPT
algorithm works better, indeed, when there are less
possible job sizes. It is very clear from these figures,
that the LPT algorithm performs considerably worse
when job lengths can be of any value (the case repre-
sented by the horizontal lines). It can also be seen that
as the number of possible job sizes grow, so do the
turnaround times achieved by the LPT allocation.

However, as a consequence of our evaluations, our
hypothesis proved to be wrong. In Fig. 3, we can see
the case where the representative job sizes (f;) were
used for allocation, but jobs were allowed to run for

their real run time (#;). The worst case is when all
jobs are “clustered” into a single cluster; that is, while
allocating them, all jobs are considered unit length,
where the unit is the median of the job lengths. We can
see that the turnaround time decreases as the number
of clusters is increased, achieving the best turnaround
time when the real job size, ¢; is used to allocate jobs;
that is, when we do not use clustering.

This is completely the opposite of the behaviour
experienced in the control case. The unclustered allo-
cation in the clustered case is actually equivalent to
that in the control case; and indeed, it can be seen
that the horizontal lines pertaining to the same preload
closely match, as expected. For example, when there
is no preload, both horizontal lines are between 5100
and 5150. As we increase K, the results of both cases
tend towards this line; the control increases (worsens),
while the clustered case decreases (improves) towards
it.

In the next section we shall treat the possible
answer to the questions involved.

11 Conclusions

In this work we addressed the resource allocation
problem of parameter study jobs or bag-of-tasks appli-
cations, and aimed at systematically exploring the
possible scenarios and techniques in a series of succes-
sively more complex allocation models for Distributed
Computing Infrastructures. Table 3 summarizes the
models and Fig. 4 shows the connections between
them. The allocation problem is known to be NP hard
even in the simplest cases and by revealing its consti-
tuting facets we examined this long studied problem

Table 3 The series of

allocation models. In some Deterministic Preload Makespan Complexity Speciality
cases, the notion in the optimisation
column is not applicable or
not known for the model — Model 1 yes yes yes P
this is 1nd19ated in the Model 2 yes yes yes P R = Biki + 6;
corresponding entry
Model 3 yes yes yes P monotone,
general
Model 4 no yes yes P
Model 5 no no yes n/a
Model 5’ no no yes P
Model 6 yes yes/no yes NPH
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Fig. 4 The relationship Model 3 Model 5/A

between models. Arrow A

— B means that model B is

the special case of model A Model 2 Model 4
Model 1

area with novel insights. The outcome of our explo-
ration is the series of models and their analysis with
the aim to give hints for selecting the right approach
at practical applications.

A model comprises certain elements and assump-
tions of the problem, these differ in the successive
elements of the model series. Solutions to these prob-
lems are orthogonal: some problems have easy solu-
tions, some others do not have any solution described
by a polynomial algorithm. We did not provide solu-
tions to each model in the series but demonstrated (i)
an algorithm to a deterministic problem; (ii) reducing
stochastic models to the simple deterministic model
thus, solving a more complex problem based on a
simple one; (iii) some methods and experiments to
solve the more complex problems by heuristic means.
In the latter case we provided an analysis of an
approximate method based on clustering heuristics.
In these measurements we focused on a few, syn-
thetic cases of job-length and preload distributions.
We have shown that using K-means clustering is not
a viable option to imitate a small number of possible
job-lengths.

There are several possible explanations for the neg-
ative result above. We mention here two of them. —
The LPT algorithm yields much better results than
the theoretically guaranteed ones, even for an enor-
mous number of job sizes and thus it is not needed
to decrease this number. — Keeping the frame of the
method, a very special clustering technique is needed
to yield the result expected in the original hypothesis.
To find such a technique, is a challenge both in practi-
cal and theoretical sense. In the future, we shall work
in this direction.
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