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• For Szeged, MLP and tree-based models, while for Lyon only MLP performs well for predicting pollen concentration.
• When predicting alarm levels, the performance of MLP is the best for both cities.
• When forecasting high pollen episodes, the more complex CI methods prove better for both cities.
• The selection of the optimal method depends on climate, as a function of geographical location and relief.
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Forecasting ragweed pollen concentration is a useful tool for sensitive people in order to prepare in time for high
pollen episodes. The aim of the study is to use methods of Computational Intelligence (CI) (Multi-Layer
Perceptron,M5P, REPTree, DecisionStump andMLPRegressor) for predicting daily values of Ambrosia pollen con-
centrations and alarm levels for 1–7 days ahead for Szeged (Hungary) and Lyon (France), respectively. Ten-year
dailymean ragweed pollen data (within 1997–2006) are considered for both cities. 10 input variables are used in
the models including pollen level or alarm level on the given day, furthermore the serial number of the given
day of the year within the pollen season and altogether 8 meteorological variables. The study has novelties as
(1) daily alarm thresholds are firstly predicted in the aerobiological literature; (2) data-driven modelling
methods including neural networks have never been used in forecasting daily Ambrosia pollen concentration;
(3) algorithm J48 has never been used in palynological forecasts; (4) we apply a rarely used technique, namely
factor analysis with special transformation, to detect the importance of the influencing variables in defining
the pollen levels for 1–7 days ahead. When predicting pollen concentrations, for Szeged Multi-Layer Perceptron
models deliver similar results with tree-based models 1 and 2 days ahead; while for Lyon only Multi-Layer
Perceptron provides acceptable result. When predicting alarm levels, the performance ofMulti-Layer Perceptron
is the best for both cities. It is presented that the selection of the optimal method depends on climate, as a func-
tion of geographical location and relief. The results show that the more complex CI methods perform well, and
their performance is case-specific for≥2 days forecasting horizon. A determination coefficient of 0.98 (Ambrosia,
Szeged, one day and two days ahead) using Multi-Layer Perceptron ranks this model the best one in the
literature.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Warming of the climate system is obvious, as it is now evident from
observations of increases in global average air and ocean temperatures,
widespread melting of snow and ice, and rising global average sea level
(IPCC, 2013). Recent climate warming is associated with the modifica-
tion of the distribution areas of plants producing allergenic pollen
(Laaidi et al., 2011; Ziska et al., 2011), furthermore, with an earlier
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onset (Frei, 2008; Rodríguez-Rajo et al., 2011), an earlier end dates
(Stach et al., 2007; Recio et al., 2010), a longer pollen season (Stach
et al., 2007; Ariano et al., 2010), an increase in the total annual pollen
load (Cristofori et al., 2010; Ariano et al., 2010; Laaidi et al., 2011), as
well as an increase of patient number sensitised to pollen throughout
the year (Ariano et al., 2010).

The genus of ragweed (Ambrosia spp.) comprises 42 species. They
are the best knownweeds for themost severe andwidespread allergies
caused by its pollen (Béres et al., 2005). However, in Europe, common
ragweed (Ambrosia artemisiifolia) is predominant of allAmbrosia species
(Makra et al., 2005; Bullock et al., 2010; Vinogradova et al., 2010). The
most important habitat areas of common ragweed in Europe are the
Rhône valley in France (Chauvel et al., 2006; Gladieux et al., 2011),
north-western Milan and south Varese (Lombardy, Po River valley) in
Italy (Bonini et al., 2012), the Pannonian Plain including Hungary and
some parts of Serbia, Croatia, Slovenia, Slovakia and Romania (Kiss
and Béres, 2006; Makra et al., 2005), furthermore Ukraine (Rodinkova
et al., 2012) and the south-western part of the European Russia
(Reznik, 2009).

Several evidences of the association between ragweed pollen counts
and ragweed induced pollen allergy have been confirmed in the litera-
ture. Based on clinical investigations, pollen of ragweed (Ambrosia
spp.) is the most important cause of allergy-associated respiratory dis-
eases (Kadocsa and Juhász, 2002). Harf and Déchamp (2001) found a
steep rise in anti-allergic drug sales (eye drops, nasal spray, oral antihis-
tamines) in July, August and September over an area of high infestation
in France. In the Pannonian Plain, about 30% of the Hungarian popula-
tion has some type of allergy, 65% of them have pollen-sensitivity, and
at least 60% of this pollen-sensitivity is caused by Ambrosia (Járai-
Komlódi, 1998; Makra et al., 2004). Furthermore, in Szeged, 83.7% of
the patients were sensitive to Ambrosia in 1998–1999 (Kadocsa and
Juhász, 2000). In addition, due to the recent climate change (D'Amato
and Cecchi, 2008; Ziska and Beggs, 2012), pollen counts of Ambrosia
show a slight increase according to linear trends as moderate warming
is favourable for warm-tolerant Ambrosia (Makra et al., 2011a).

Common ragweed and its pollen cause serious losses in the economy
and several fields of everyday life. The current costs of A. artemisiifolia in
terms of human health and agriculture were estimated by Bullock et al.
(2010) for 40 European countries. All the costs are given in Euros at
2011 prices. The human health impacts were estimated to affect around
4 million people with total estimated medical costs of €2136 million
per year. Furthermore, total estimated workforce productivity losses
due toA. artemisiifolia as high estimateswere€529 million. The estimat-
ed total costs are valued at €2.665 billion per year (Bullock et al., 2010).

The above-mentioned facts make unavoidable producing ragweed
pollen concentration forecasts in order to help sensitised people prepare
for days of severe airborne pollen load. Different techniques have been
applied for modelling daily Ambrosia pollen concentrations. Makra et al.
(2011b) developed time-varying nonparametric regression methods
that combine regression analysis with themethod of summing tempera-
tures (Laaidi et al., 2003). Furthermore Makra andMatyasovszky (2011)
introduced time-varying parametric linear and time-varying nonpara-
metric regressionmodels, aswell as a time-varying nonparametricmedi-
an regression model to predict the daily pollen concentration for Szeged
in Hungary using previous-day meteorological parameters and the daily
pollen concentration. The models were applied to rainy days and non-
rainy days, respectively. Matyasovszky and Makra (2011) used a time-
varying first order autoregressive [AR(1)] model to describe daily rag-
weed pollen levels based on previous-day pollen concentration values
and previous-day meteorological variables. Laaidi et al. (2003) used
two forecasting models, namely (1) summing the temperatures and
(2) a multiple regression to forecast pollen season characteristics. Some
further papers usingmultiple regression analysis formodelling daily pol-
len concentration of different taxa include Angosto et al. (2005), Ribeiro
et al. (2008), Stach et al. (2008), Rodríguez-Rajo et al. (2009) and
Myszkowska (2013). Furthermore, selection of a suitable statistical
clusteringmethodmay help in improving, among other things, the accu-
racy of the ratio of the transported pollen by long-range air currents in
the measured pollen concentration over a target area (Kassomenos
et al., 2010).

More advanced techniques such as neural networks, Multi-Layer
Perceptron and the support vector regression learning methods have
also been used for forecasting air quality parameters (Kassomenos
et al., 2006; Juhos et al., 2009; Paschalidou et al., 2011; Vlachogianni
et al., 2011; Voukantsis et al., 2011; Kassomenos et al., 2013). However,
methods of Computational Intelligence (CI) have only been scarcely ap-
plied in airborne pollen related studies. They were used for forecasting
(a) daily pollen concentrations (Delaunay et al., 2004, cedar pollen;
Aznarte et al., 2007, olive pollen; Rodríguez-Rajo et al., 2010, Poaceae
pollen; Voukantsis et al., 2010, Oleaceae, Poaceae and Urticaceae pollen;
Puc, 2012; Betula pollen), (b) pollen-induced symptoms (Voukantsis
et al., 2013), (c) risk level of Betula pollen in the air (Castellano-
Méndez et al., 2005) and (d) the severity of the Poaceae pollen season
(Sánchez Mesa et al., 2005). Furthermore, Aznarte et al. (2007) used
neuro-fuzzy models for forecasting olive pollen concentrations. The
above-mentioned applications of neural networks and neuro-fuzzy
models produced better results than traditional statistical methods
(Sánchez Mesa et al., 2005).

These methods of Computational Intelligence 1) can deal with the
complexity of the mechanisms concerning the release and dispersion
of the airborne pollen, 2) can be applied for different tasks (e.g. optimi-
zation and forecasting), 3) are computationally efficient and can be eas-
ily integrated into operational use of the models (Voukantsis et al.,
2010).

In this paper we use factor analysis with special transformation, a
technique for detecting the importance of the influencing variables in
defining the pollen levels for 1–7 days ahead. Furthermore, data-
oriented models are applied for (1) predicting daily concentration of
ragweed pollen that shows the highest allergenicity of all taxa and (2)
comparing the efficiency of different prediction techniques over two
heavily polluted areas in Europe, i.e. over Lyon (France) and Szeged
(Hungary), respectively. The main objectives are: i) development of
accurate forecasting models for operational use, ii) evaluation of CI
methods that have not been previously applied for Ambrosia pollen,
such as Multi-Layer Perceptron and regression trees and iii) obtaining
a forecast of highest accuracy among CI methods based on input data
of former prediction algorithms. Note that (1) data-driven modelling
methods includingneural networks have never been used in forecasting
daily Ambrosia pollen concentration, (2) daily alarm thresholds are first-
ly predicted in the aerobiological literature; furthermore (3) algorithm
J48 has never been used in palynological forecasts.

2. Materials and methods

2.1. Study area

Two European cities, namely Lyon (Rhône Valley, France) and
Szeged (Pannonian Plain, Hungary) were considered as they repre-
sent heavily polluted areas with ragweed pollen in Europe.

These cities differ in their topography and climate as well as in
ragweed pollen characteristics. Szeged (46.25N; 20.10E), the largest
settlement in South-eastern Hungary, is located at the confluence
of the rivers Tisza and Maros (Fig. 1). The area is characterised by
an extensive flat landscape of the Great Hungarian Plain with an ele-
vation of 79 m AMSL. The city is the centre of the Szeged region with
203,000 inhabitants. In the Köppen system the climate of Szeged
is the Ca type (warm, temperate climate), with relatively mild and
short winters and hot summers (Köppen, 1931). Lyon (45.77N; 4.83E)
lies in the Rhône-Alpes of France. The city is located in the Rhône val-
ley with an elevation of 175 m AMSL at the confluence of the Rhône
and Saône rivers (Fig. 1). Lyon has the second largest metropolitan
area in France, with a population of 1.8 million in the urban area,



Fig. 1. The geographical positions of Lyon and Szeged.
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and 4.4 million in the metropolitan area. In the Köppen system its
climate is of the Cbf type. That is, it has a temperate oceanic climate
with mild winters and cool-to-warm summers, as well as a uniform
annual precipitation distribution (Köppen, 1931).

2.2. Ragweed and ragweed pollen related characteristics

The pollen season of Ambrosia lasts form mid-July till mid-October.
Seasonality of Ambrosia pollen concentrations is the strongest and
their peak values are the highest compared to those of all taxa. They
show their maximum values in the late summer early autumn period.

Ragweed favours temperate climate and prefers dry, sunny grassy
plains, sandy soils, river banks, roadsides, and ruderal sites (disturbed
soils) such as vacant lots and abandoned fields (Ziska et al., 2007).

The pollen season is defined by its start and end dates. For the start
(end) of the season we used the first (last) date on which 1 pollen
grain m−3 of air is recorded and at least 5 consecutive (preceding)
days also show 1 or more pollen grains m−3 (Galán et al., 2001). For a
given pollen type, the longest pollen season during the 11-year period
was considered for each year.

2.3. Pollen sampling and counting

Airborne ragweed pollen grains were collected in both cities using a
seven-day Hirst-type volumetric pollen trap Lanzoni VPS 2000 (Hirst,
1952). Pollen sampling was performed as follows: A specific tape was
made adhesive by washing it with silicone oil. The sampler absorbed
air at a rate of 10 l/min (=14.4 m3/day, which is corresponding to the
daily requirement of an adult person) and was supplied with a timer,
to which a rotating drum was fitted. The drum moved the adhesive
tape (2 mm/h) where pollen grains adhered. After a week of exposure,
the tape was removed and cut to a length corresponding to 24 h pollen
sampling, coveredwith a gel mounting agent containing fuxin as a stain
and put on a microscope slide. Afterwards, the samples were examined
under a lightmicroscope at amagnification of 400× to determinepollen
types and counts. Five horizontal sweeps were analysed on each slide.
Horizontal sweepswere used because the variation in the concentration
during the day can be observed along this axis (the direction of the tape
shifts in the sampler). The accuracy of the measurement was propor-
tional to the number of sweeps and the concentration of particles.
Counting was performed using a standard sampling procedure. Pollen
concentrations were expressed as number of pollen grains · m−3 of
air (Käpylä and Penttinen, 1981; Peternel et al., 2006). Note that due
to the restrictions of the sampling procedure (daily pollen counts are
available after a 7-day period, respectively), applicability of the statisti-
cal models for operative pollen forecast is limited in time. This problem
can only be solved if instruments based on a totally new principle will
be introduced measuring “in situ” pollen counts.

2.4. Pollen and meteorological data

Ten-year (1997–2006) daily mean ragweed pollen data were con-
sidered for both Szeged and Lyon. Ragweed pollen concentrations or
ragweed pollen alarm threshold values for 1, 2,…, 7 days after the
given day were used as resultant variables. Ragweed pollen levels or
ragweed pollen alarm thresholds on the given day; furthermore, the
serial number of the given day of the year within the pollen season
and altogether 8 meteorological variables on the given day were
selected as influencing variables. The meteorological variables include
daily values of mean temperature (Tmean, °C), minimum temperature
(Tmin, °C) and maximum temperature (Tmax, °C), daily temperature
range (ΔT = Tmax − Tmin, °C), daily mean relative humidity (RH, %),
daily total radiation (TR, W · m−2), daily means of air pressure
(P, mm) and wind speed (WS, m · s−1). For Lyon, daily data of total
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radiation were absent hence they were replaced with daily sunshine
duration (SD, hour). In Szeged, both themeteorological monitoring sta-
tion and the aerobiological station are located in the inner city and their
distance is within 2 km (Makra et al., 2005). The pollen trap in Lyon is
placed at the Lyon–Bronmeteorological station on the eastern outskirts
of Lyon, around 7 km from the city. It is a semi-urbanized area with fair-
ly low, widely spaced dwellings (Déchamp et al., 1997).

Alarm levels of Ambrosia pollen used in Hungary are as follows
(Mányoki et al., 2011). Level 0: there is no Ambrosia pollen in the air.
Level 1: (1–9 pollen grains/m3 of air): (very low pollen concentration,
it produces no symptoms. Level 2: (10–29 pollen grains/m3 of air):
low pollen concentration, it may cause symptoms. Level 3: (30–49 pol-
len grains/m3 of air): medium pollen concentration, it may generate
symptoms even for less sensitive people. Level 4: (50–99 pollen
grains/m3 of air):mediumhigh pollen concentration, it may induceme-
dium strong reactions even for less sensitive people. Level 5: (100–199
pollen grains/m3 of air): high pollen concentration, it may provoke
strong or very strong symptoms for all sensitive people. Level 6:
(200–499 pollen grains/m3 of air): very high pollen concentration,
health state of sensitive people may turn critical, asthmatic symptoms
may also occur. Level 7: (500–999 pollen grains/m3 of air): exceptional-
ly high pollen concentration, it may provoke acute symptoms inducing
serious decay in the quality of life. Level 8: (N1000 pollen grains/m3 of
air): extreme pollen concentration, excessively strong symptoms
(Mányoki et al., 2011).

The datawere separated into twoparts: the training set (1997–2004)
to develop forecasting models, and the test set (2005–2006) to validate
these models.

2.5. Methods

The study applies the factor analysis with special transformation.
Furthermore, the following CI methods are evaluated for the task.
Multi-Layer Perceptron (MLP) (Haykin, 1999)models are artificial neu-
ral networkmodels capable of modelling complex and highly nonlinear
processes. Two types of neural networks are applied: a complex (MLP
with more than one hidden layer) and a less complex (MLPRegressor
with only onehidden layer) version. For predicting both the daily pollen
concentrations and daily alarm levels of ragweed, several tree algo-
rithms (M5P, REPTree, DecisionStump and J48) are used. These algo-
rithms have not been used for the above tasks. The models have been
developed in Matlab environment with WEKA implementation of the
above algorithms, described in Hall et al. (2009).
Table 1
Special transformation, Szeged. Relevance of the influencing variables in defining the resultan
variables for determining the resultant variable. (Thresholds of significance: italic: x0.05 = 0.06

aDay Influencing variables

bDay cTmean
dTmax

eTmin
fΔT

Weight Rank Weight Rank Weight Rank Weight Rank Weight Rank

+1 0.00 7 0.13 7 0.14 7 0.06 7 0.10 4
+2 −0.02 6 0.16 6 0.17 6 0.07 6 0.11 3
+3 −0.04 5 0.18 5 0.19 5 0.09 4 0.12 2
+4 −0.06 4 0.20 4 0.21 4 0.09 5 0.15 1
+5 −0.08 3 0.21 3 0.21 3 0.14 3 0.09 5
+6 −0.13 2 0.26 2 0.25 2 0.19 2 0.07 6
+7 −0.17 1 0.29 1 0.27 1 0.25 1 0.03 7

a Target day of the forecast.
b Serial number of the day in the year.
c Daily mean temperature (°C).
d Daily maximum temperature (°C).
e Daily minimum temperature (°C).
f Daily temperature range (°C).
g Daily relative humidity (%).
h Daily total radiation (W · m−2).
i Daily mean air pressure (hPa).
j Daily wind speed (m · s−1).
2.5.1. Factor analysis with special transformation
Factor analysis identifies linear relationships among examined vari-

ables and thus helps to reduce the dimensionality of the initial database
without substantial loss of information. Factor analysis was applied to
our initial datasets consisting daily values of 11 correlated variables
[10 explanatory variables including the serial number of the days in
the year, 8 meteorological and 1 pollen variable (Ambrosia pollen level
or alarm level) and 1 resultant variable (Ambrosia pollen level or
alarm level for 1–7 target days, respectively)] in order to transform
the original variables into fewer uncorrelated variables. These new var-
iables, called factors, can be viewed as latent variables explaining the
joint behaviour of the day in the year, furthermore the meteorological
elements and the pollen variables. The number of retained factors can
be determined by different criteria. The most common and widely ac-
cepted one is to specify a least percentage (80%) of the total variance
of the original variables that has to be explained (Jolliffe, 1993) by the
factors. After performing the factor analysis, a special transformation
of the retained factors was made to discover to what degree the
above-mentioned explanatory variables affect the resultant variable
and to give a rank of their influence (Jahn and Vahle, 1968). When
performing factor analysis on the standardized variables, factor loadings
are correlation coefficients between the factors and the original vari-
ables. Consequently, if the resultant variable is strongly correlated
with a factor and an explanatory variable is highly correlated with this
factor, then the explanatory variable is also highly correlated with the
resultant variable. Hence, it is advisable to combine all the factors to-
gether with the resultant variable into one new factor. It is effective to
do so that only one factor has big contribution to the resultant variable
and the remaining factors are uncorrelated with the resultant variable.
This latter procedure is called special transformation (Jahn and Vahle,
1968).

2.5.2. Multi-layer Perceptron (MLP)
MLP (Haykin, 1999) is the most successful implementation of

feedforward artificial neural networks and have been widely applied
in the field of environmental science for classification, regression and
function approximation problems. MLP can model complex and highly
non-linear processes through the topology of the network. Multi-
Layer Perceptron comprises an input and an output layer with one
or more hidden layers of nonlinearly-activation functions. These capa-
bilities have already been successfully utilized in previous studies in
order to forecast pollen concentrations (e.g. Voukantsis et al., 2010),
therefore MLP is an important procedure and this is the first occasion
t variable (pollen levels) 1–7 days ahead and the rank of importance of the influencing
4; bold: x0.01 = 0.084).

gRH hTR iP jWS Ambrosia

Weight Rank Weight Rank Weight Rank Weight Rank Weight Rank

−0.01 6 0.11 7 −0.07 4 0.07 1 0.96 1
−0.02 3 0.13 6 −0.06 6 0.06 2 0.93 2
−0.02 2 0.15 5 −0.08 3 0.05 3 0.90 3
−0.03 1 0.17 1 −0.07 5 0.02 4 0.87 4
−0.01 5 0.15 4 −0.05 7 −0.01 5 0.84 5

0.00 7 0.16 3 −0.10 1 0.01 6 0.81 6
0.01 4 0.16 2 −0.09 2 0.00 7 0.78 7
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for using this method for predicting daily concentrations and daily
alarm thresholds of ragweed pollen.

In the study, MLPmodel always has more than one hidden layer and
MLP has several parameters that need to be set. They are training time,
learning rate, hidden layers and neurons in the layers. Training timewas
1500, learning rate started from0.3 and itwas reduced in each step. This
helps to stop the network from diverging from the target output as well
as improve the general performance. The number of hidden layers is
generated automatically byWEKA. MLP was applied with the same op-
tions for predicting both the daily pollen concentrations and daily alarm
thresholds of ragweed.

2.5.2.1. MLPRegressor and MLPClassifier. Both classes are built-in WEKA
modelling softwares (Hall et al., 2009). These algorithms are special
parts of Multi-Layer Perceptrons. They always have only one hidden
layer, where the number of neurons is user specific. Both use optimiza-
tion by minimizing the squared error plus a quadratic penalty with the
BFGSmethod. All parameters are standardized, including the target var-
iable. The activation function is a logistic function. MLPRegressor and
MLPClassifier are applied for predicting the daily pollen concentrations
and daily alarm thresholds of ragweed, respectively.

2.5.3. Tree-based algorithms

2.5.3.1. M5P. This procedure is a reproduction of Quinlan'sM5 algorithm
(Quinlan, 1992) being a combination of decision trees and multivariate
regression models. Contrary to other regression trees the leaves of the
M5P tree structure consist of MLR models. So, it is possible to model
local linearity within the data similarly to piecewise linear functions.
This is the first study applyingM5P tomodel daily ragweed pollen data.

2.5.3.2. DecisionStump. DecisionStump builds a decision tree with a sin-
gle split point. It makes (1) regression based on mean-squared errors
or (2) classification based on entropy depending on the data type to
be forecasted.

2.5.3.3. REPTree. REPTree is a fast decision tree learner. It builds a deci-
sion tree using information gain or makes a regression tree from the
variance. It applies pruning with backfitting for reducing error.

2.5.3.4. J48. J48 is an implementation of C4.5 algorithm in theWEKAdata
mining pool. C4.5 builds decision trees from a set of training data in the
sameway as ID3 using the concept of information entropy. J48 classifier
Table 2
Special transformation, Lyon. Relevance of the influencing variables in defining the resultant var
for determining the resultant variable. (thresholds of significance: italic: x0.05 = 0.064; bold: x

aDay Influencing variables

bDay cTmean
dTmax

eTmin
fΔT

Weight Rank Weight Rank Weight Rank Weight Rank Weight Rank

+1 0.05 2 0.12 1 0.11 1 0.09 5 0.08 1
+2 0.04 4 0.06 5 0.05 2 0.07 7 0.03 6
+3 0.01 6 0.05 7 0.04 4 0.08 6 0.01 7
+4 −0.01 7 0.06 6 0.03 7 0.13 4 −0.03 5
+5 −0.03 5 0.07 4 0.03 6 0.14 3 −0.03 4
+6 −0.05 3 0.08 3 0.04 5 0.17 2 −0.03 2
+7 −0.07 1 0.09 2 0.04 3 0.17 1 −0.03 3

a Target day of the forecast.
b Serial number of the day in the year.
c Daily mean temperature (°C).
d Daily maximum temperature (°C).
e Daily minimum temperature (°C).
f Daily temperature range (°C).
g Daily relative humidity (%).
h Daily total radiation (W · m−2).
i Daily mean air pressure (hPa).
j Daily wind speed (m · s−1).
achieves fast execution times and adequate scales of large datasets
(Quinlan, 1993).

3. Results and discussion

3.1. Performance evaluation

3.1.1. The weight of the influencing variables in determining a future day
pollen level

The importance of the serial number of the day in the year, further-
more daily values of eightmeteorological variables and Ambrosia pollen
level were analysed in determining a future day pollen level for
1–7 days ahead using factor analysis with special transformation
(Tables 1–2). When comparing the results very little similarity was re-
ceived for the two cities. The importance of the serial number of the
day of the year shows a tendency of higher weights towards increasing
target days for both Szeged and Lyon; however, this effect is more re-
markable for Szeged. From the meteorological influencing variables,
only TR and Ambrosia pollen level showed similarly significant positive
weights with values of the samemagnitude in determining a future day
pollen level (Tables 1–2). The weights of actual day Ambrosia pollen
level emerge extraordinarily from all variables indicating its high signif-
icance for both cities. This confirms former findings according to which
the most decisive influencing variable of all is actual day Ambrosia pol-
len level for assigning pollen levels 1–7 days ahead (Makra et al.,
2011b; Makra and Matyasovszky, 2011).

For Szeged, Tmean, Tmax and ΔT indicate significant and substantially
higher positive weights compared to Lyon. While the importance of RH
andWS can be negligible for Szeged, these parameters show highly rel-
evant negative associations in formation pollen levels 1–7 days ahead
for Lyon. P shows significant negative and positive weights for Szeged
and Lyon, respectively. The here-mentioned definite difference in the
weights and signs of the influencing variables for the two cities can be
explained by their different climate and relief. The temperate oceanic
climate of Lyon with cool-to-warm summers and a uniform annual pre-
cipitation distribution confirms the role of humidity parameters (RH)
here, while the location of the city in the Rhone valley on the foothills
of High Alps emphasizes the weight of the wind (WS). The warm, tem-
perate climate of Szegedwith hot summers highlights the importance of
the temperature parameters (Tmean, Tmax, Tmin andΔT) and shows insig-
nificant weights for the humidity (RH), while the central location of the
city in the Pannonian Plain makes negligible the role of the wind (WS)
(Tables 1–2).
iable (pollen levels) 1–7 days ahead and the rank of importance of the influencing variables
0.01 = 0.084).

gRH hTR iP jWS Ambrosia

Weight Rank Weight Rank Weight Rank Weight Rank Weight Rank

−0.14 5 0.17 5 0.03 7 −0.02 7 0.87 1
−0.17 3 0.24 2 0.16 2 −0.11 4 0.71 2
−0.18 1 0.26 1 0.16 1 −0.13 2 0.69 4
−0.17 2 0.18 4 0.10 3 −0.09 6 0.70 3
−0.15 4 0.19 3 0.10 4 −0.11 3 0.66 5
−0.12 6 0.17 6 0.11 5 −0.10 5 0.62 7
−0.11 7 0.10 7 0.05 6 −0.14 1 0.62 6



Table 3
Statistical evaluation of the Ambrosia pollen concentration forecasting models for Szeged in terms of the correlation coefficient (r), the Root Mean Square Error (RMSE) and the Mean
Absolute Error (MAE). T indicates the forecasting horizon (in days). (MLP: Multi-Layer Perceptron model, M5P: Regression tree model, REPTree: regression tree model, DecisionStump:
decision tree model and MLPRegressor: Multi-Layer Perceptron model).

T (day) MLP M5P REPTree DecisionStump MLPRegressor

r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE

+1 0.99 45.08 17.11 0.98 52.34 18.60 0.95 63.69 24.25 0.75 128.86 78.95 0.97 60.89 20.28
+2 0.99 66.66 27.54 0.83 115.81 38.30 0.85 110.29 38.11 0.64 150.69 64.11 0.97 76.02 34.72
+3 0.98 80.08 33.79 0.82 117.62 46.30 0.80 123.15 45.26 0.63 152.21 64.09 0.61 153.23 56.85
+4 0.96 94.02 40.69 0.78 126.04 54.91 0.71 138.79 58.79 0.63 153.05 64.97 0.54 162.09 61.61
+5 0.94 111.30 50.43 0.59 153.11 73.12 0.69 143.99 59.74 0.62 154.44 65.28 0.42 175.27 73.71
+6 0.92 121.51 58.88 0.53 161.07 81.92 0.49 166.75 77.98 0.60 157.77 66.24 0.65 149.11 71.15
+7 0.90 127.13 63.34 0.43 172.45 83.79 0.43 174.15 75.35 0.60 157.97 66.34 0.54 161.88 80.57

547Z. Csépe et al. / Science of the Total Environment 476–477 (2014) 542–552
3.1.2. Performance of the forecasting models
The following statistical indices were used to compare the perfor-

mance of the models: (1) correlation coefficient as a measure of the
strength; (2) Root Mean Square Error (RMSE) as a measure of the
error in the forecast; and (3) Mean Absolute Error (MAE) as another
measure of the error in the forecast.

For Szeged, MLP provides the best results for the forecasting horizon
(1–7 days) that is confirmed by former studies (Sánchez-Mesa et al.,
2002; Voukantsis et al., 2010). 1-day forecast indicates the best perfor-
mance. This can be explained by the close association between the pol-
len concentrations of consecutive days and the predominant role of
local pollen release in the measured pollen concentration in Szeged
(Makra et al., 2010). The efficiency of MLPRegressor declines intensely
when forecasting more than 2 days ahead due to its simpler construc-
tion (Table 3; Fig. 2). Considering decision trees, performance of
REPTree decreases for N1-day forecasts, while DecisionStump provides
an overall weak result for the forecasting horizon. MLPRegressor serves
the best performance for 1 and 2-day ahead forecasts; however, when
the forecasting horizon exceeds 2 days, the accuracy of the predictions
sharply decrease. High values of RMSE and MAE can be attributed to
the very high variability of the daily ragweed pollen concentrations.
There are no periods in the pollen season that can be approximated lin-
early with high confidence. This is whyM5P is not a reliable method for
N2 days forecasts. Based on the scatter plots, when the forecasting hori-
zon expands, (1) the accuracy of the forecast weakens and (2) the best
method (MLP) increasingly underestimates the pollen concentration
(Fig. 2). Note that for the remaining methods, under- and overestima-
tion may occur at both the beginning and end of the pollen season.
However, MLP underestimates consistently regardless the day of the
pollen season and the length of the forecasting horizon. On the whole,
all the methods analysed in the study (except for the simplest
DecisionStump) perform well for 1 and 2-day ahead forecasts for Sze-
ged. Note, however, that MLP provides correlation coefficient 0.96
even for 4-day forecast and the efficiency of the prediction does not de-
crease below r = 0.90 even for 7-day forecast. For the remaining
methods the accuracy of the forecasts for N2 days ahead indicate
sharp decay (Table 3; Fig. 2).
Table 4
Statistical evaluation of theAmbrosiapollen alarm level forecastingmodels for Szeged in termso
Error (MAE). T indicates the forecasting horizon (in days). (MLP: Multi-Layer Perceptron mod
model and MLPClassifier: Multi-Layer Perceptron model).

T (day) MLP J48 REPTree

r RMSE MAE r RMSE MAE r

+1 0.98 0.37 0.14 0.94 0.70 0.44 0.98
+2 0.95 0.67 0.40 0.91 0.88 0.52 0.96
+3 0.96 0.67 0.38 0.87 1.01 0.63 0.90
+4 0.80 1.19 0.73 0.85 1.08 0.73 0.91
+5 0.94 0.77 0.46 0.79 1.26 0.87 0.92
+6 0.82 1.18 0.78 0.73 1.39 0.95 0.83
+7 0.76 1.36 0.88 0.72 1.41 0.93 0.77
Predicting alarm levels is another area of pollen forecasts. Their fast
and efficient prediction serves a simple and easily traceable tool for sen-
sitive people in preparing to days of high pollen load. In order to better
predict Ambrosia pollen alarm levels introduced for Hungary (Mányoki
et al., 2011), the original 0–1 and 7–8 categorieswere aggregated. In the
scatter plots of forecasting alarm levels for both Szeged and Lyon, the
horizontal axis indicates the observed alarm level, while the vertical
axis shows the forecasted alarm level. Starting from the actual day sev-
eral alarm levels can be expected on the target day depending on the
initial day, and the forecasts for the target day can result in different
alarm levels. Note that with the increase of the forecasting horizon the
uncertainty of the alarm level increases. The numbers beside the fore-
casted alarm levels indicate their total occurrences for the data set ex-
amined (Figs. 2–3).

MLP shows the best results for the alarm levels of Szeged. The deci-
sion tree based REPTreemodel provides better or similarly good perfor-
mance than MLP since alarm levels form classes for which RAPTree
is very sensitive. Besides these methods the simply constructed
MLPClassifier, that has a faster run-time compared toMLP, is yet capable
for predicting alarm levels with good performance. When forecast-
ing 1-day alarm level, three methods (MLP, REPTree and MLPClassifier)
indicate the same efficacy (Table 4). 1, 2 and 3-day ahead predictions of
alarm levels performwell, while forecasts for N3 days ahead indicate sub-
stantial decrease for all the methods applied. Note that MLP provides
good result even for a 5-day forecast, aswell; whereas, the performance
of DecisionStump is the worst due to the construction of the method: it
carries out only one single split (Table 4; Fig. 2).

For Lyon, MLP provides the best performance of all the procedures.
One-layer MLPRegressor is the least efficient and, similarly to the case
of Szeged, DecisionStump is not capable for predicting alarm levels. As
wind speed shows significant negative associations with the measured
pollen concentrations for 1–7 days ahead (Table 2), this parameter
strongly destroys the performance of the methods (Tables 5–6; Fig. 3).

The procedures performwell for Szeged, but they are not really effi-
cient for Lyon. For the latter case, neither pollen concentrations nor
alarm levels indicate definite annual course, due to the substantially
smaller pollen concentrations, furthermore different climate and relief
f the correlation coefficient (r), theRootMean Square Error (RMSE) and theMeanAbsolute
el, J48: decision tree model, REPTree: decision tree model, DecisionStump: decision tree

DecisionStump MLPClassifier

RMSE MAE r RMSE MAE r RMSE MAE

0.40 0.16 0.74 1.32 0.92 0.98 0.37 0.14
0.60 0.32 0.74 1.32 0.92 0.96 0.62 0.37
0.93 0.58 0.74 1.32 0.93 0.90 0.94 0.53
0.85 0.54 0.74 1.32 0.93 0.81 1.22 0.70
0.78 0.46 0.73 1.32 0.94 0.82 1.14 0.78
1.10 074 0.73 1.32 0.94 0.86 1.05 0.67
1.32 0.92 0.73 1.32 0.95 0.74 1.39 1.02



Fig. 2. Scatter plots, Szeged. Selected scatter plots of actual and predictedAmbrosiapollen concentrations (MLP), aswell as alarm thresholds (MLP). The forecasting horizon is given in days.
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in Lyon compared to those of Szeged (Tables 6). Predictability of
alarm levels for Lyon is quite weak that can be explainedwith the fol-
lowing reasons: (1) alarm levels introduced for Hungary cannot be
applied well for Lyon due to the different distribution of pollen concen-
trations for the two cities, (2) structure of the association between the
influencing and resultant variables are different for Szeged and Lyon
(Tables 1–2;Tables 5–6; Fig. 3).

Uncertainties in the accuracy of the forecasts can be explained by the
lack of sufficient number of influencing variables including the fact that
environmental associations of ragweed pollen level has not been fully
discovered. For example, high air pollutant concentrations are likely to
have either short or long term impact on pollen levels (Minero et al.,
1998; Jäger et al., 1991), especially in a polluted urban environment
like Szeged and Lyon. The results show that the learning strategies of
the algorithms can perform well, but the really good model is MLP for
predicting both pollen concentrations and alarm levels for each city.
The results received for Szeged and Lyon show that we can perform ac-
curate forecasts of the daily pollen concentrations and alarm levels for
several days ahead. The efficiency of the models belongs to the best
ones compared to those reported in the literature. When forecasting,
the following values of coefficient of determination (R2) (i.e. squared
correlations) of one day ahead forecasts were received: 0.60 for
Poaceae using neural networks (Sánchez-Mesa et al., 2002); 0.93
again for Poaceae using neural networks (Rodríguez-Rajo et al.,
2010); 0.45 for grass pollen (whole season) using correlation analy-
sis (Stach et al., 2008) and 0.79 for Poaceae using Multiple Linear Re-
gression (Voukantsis et al., 2010). Our study provides a coefficient of
determination of 0.98 (Ambrosia, Szeged, one day and two days
ahead) using Multi-Layer Perceptron that ranks this model the best
one in the literature.

image of Fig.�2


Fig. 3. Scatter plots, Lyon. Selected scatter plots of actual and predicted Ambrosia pollen concentrations (M5P, MLP), as well as alarm thresholds (MLP, MLPClassifier, REPTree). The fore-
casting horizon is given in days.

Table 5
Statistical evaluation of the Ambrosia pollen concentration forecasting models for Lyon in terms of the correlation coefficient (r), the Root Mean Square Error (RMSE) and the Mean
Absolute Error (MAE). T indicates the forecasting horizon (in days). (MLP: Multi-Layer Perceptron model, M5P: Regression tree model, REPTree: regression tree model, DecisionStump:
decision tree model and MLPRegressor: Multi-Layer Perceptron model).

T (day) MLP M5P REPTree DecisionStump MLPRegressor

r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE

+1 0.96 33.53 12.73 0.97 28.26 11.62 0.70 48.99 15.89 0.81 45.88 18.39 0.36 62.09 22.44
+2 0.91 48.31 21.67 0.68 52.14 21.05 0.42 60.85 23.63 0.43 60.13 23.33 0.59 56.29 20.08
+3 0.81 53.59 24.74 0.64 55.12 22.76 0.57 56.42 20.21 0.43 60.88 25.20 0.33 62.86 25.72
+4 0.74 63.17 29.13 0.29 63.06 24.80 0.41 60.85 24.47 0.43 60.63 24.19 0.01 70.02 29.37
+5 0.64 58.82 26.67 0.19 65.15 26.80 0.42 59.91 22.83 0.35 62.18 25.65 −0.01 73.23 32.35
+6 0.78 55.92 24.81 0.43 59.93 23.81 0.33 62.05 24.75 0.35 62.15 25.54 0.01 72.99 32.16
+7 0.92 51.67 22.47 0.80 52.29 21.84 0.34 61.75 23.94 0.34 62.06 25.33 0.12 69.23 30.04
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Table 6
Statistical evaluation of the Ambrosia pollen alarm level forecastingmodels for Lyon in terms of the correlation coefficient (r), the RootMean Square Error (RMSE) and theMean Absolute
Error (MAE). T indicates the forecasting horizon (in days). (MLP: Multi-Layer Perceptron model, J48: decision tree model, REPTree: decision tree model, DecisionStump: decision tree
model and MLPClassifier: Multi-Layer Perceptron model).

T (day) MLP J48 REPTree DecisionStump MLPClassifier

r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE

+1 0.91 1.12 0.53 0.80 1.05 0.46 0.84 0.75 0.29 – 1.48 0.69 0.73 0.97 0.40
+2 0.65 1.31 0.62 0.35 1.67 0.85 0.52 1.22 0.48 – 1.48 0.70 0.51 1.20 0.58
+3 0.26 1.60 0.80 0.17 1.66 0.90 − 1.48 0.70 – 1.48 0.70 0.44 1.29 0.60
+4 0.39 1.41 0.67 0.63 1.07 0.49 0.47 1.33 0.63 – 1.48 0.70 0.45 1.35 0.60
+5 0.26 1.45 0.70 0.37 1.32 0.72 0.65 1.11 0.51 – 1.48 0.70 0.59 1.23 0.54
+6 0.46 1.40 0.68 0.38 1.28 0.61 0.52 1.23 0.52 – 1.48 0.70 0.31 1.30 0.68
+7 – 1.48 0.71 0.38 1.49 0.75 0.48 1.32 0.62 – 1.48 0.70 0.14 1.43 0.74
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3.2. Model fitting on the days of the highest pollen levels

Pollen concentrations on the days exhibiting the highest pollen
levels during a 7-day period were predicted and analysed for both cities
(Fig. 4).

For example, regarding the absolute maximum pollen counts with-
in the 10-year period examined, for Szeged and Lyon the best 1-day
forecast is provided by MLP (actual value: 1385 pollen grains/m3; fore-
casted value: 910 pollen grains/m3) and M5P (actual value: 582 pollen
grains/m3; forecasted value: 335 pollen grains/m3), respectively. How-
ever, all methods underestimate the pollen concentrations in these
episodic situations.

The message of the above experiment is that MLP, M5P and
MLPRegressor follow well the annual course of the pollen concentra-
tion. This is important information as the usefulness of a good forecast
is much higher for the days of the highest pollen concentrations than
for those of small pollen levels at the beginning and end of the pollen
season. Accordingly, these methods can help in developing personal-
ized information services that could improve the overall quality of life
of sensitised people.

4. Conclusions

We applied Computational Intelligence procedures in order to pre-
dict daily values of Ambrosia pollen concentrations and alarm levels
for Szeged (Hungary) and Lyon (France). Contrary to the difficulties in
availability of daily pollen levels (they are at disposable only once a
week), forecasts of daily ragweed pollen concentrations and alarm
levelswere successful for 1–7 days ahead for both cities. The importance
of the influencing variables (the serial number of the day in the year,
meteorological and pollen variables) in forming the resultant variable
(pollen levels or alarm levels for 1–7 days ahead) was analysed.
The weights of Ambrosia pollen level emerge extraordinarily from all
variables indicating its high significance in determining pollen levels
(alarm levels) for 1–7 days ahead for both cities. The weights of the
Szeged

Fig. 4.One-day forecasts for a seven-dayperiod encompassing the day of thehighest pollen load
M5P: regression tree model, REPTree: decision tree model, DecisionStump: decision tree mode
rest of influencing variables are different for the two cities. For instance,
the most important variables are temperature-related ones for Szeged,
while relative humidity and wind speed have the most important role
in forming pollen concentrations in Lyon.

For Szeged, Multi-Layer Perceptron models provide results similar
with tree-based models for predicting pollen concentration 1 and 2-
days ahead, while for more than two days ahead they deliver better re-
sults than tree-based models. For Lyon, only Multi-Layer Perceptron
gives acceptable result for predicting pollen levels 1 and 2-days ahead.
Concerning the alarm levels, the efficiency of the procedures differs
substantially.

When fitting the models to the days of the highest pollen levels the
more complex CI methods proved better for both cities. MLP and M5P
methods provided the best results for Szeged and Lyon, respectively.
We have shown that the selection of the optimal method depends on
climate as a function of geographical location and relief.

Results received can be utilized for the national pollen information
services. Total medical costs of ragweed pollen can be substantially re-
duced if sensitised people can be prepared in time for serious ragweed
pollen episodes. Decision-makers are responsible for introducing regu-
lations and actions in order to facilitate the problem caused by ragweed
pollen. Furthermore, responsibility of aero-biologists is developing per-
sonalized information services in order to improve the overall quality of
life of sensitised people. Note however, that due to the restrictions of the
sampling procedure used (daily pollen counts are available only after a
7-day period) the applicability of the methods presented is limited in
terms of operational use. Accordingly, for the time-being themethodol-
ogy introduced here can only be used as supportive means to the origi-
nal forecasting methods (models). This problem can only be solved if
low-cost, automatic pollen samplers based on a totally new principle
will be introduced by “in situ” recognizing pollen types and measuring
pollen counts.

The methods applied are sensitive to the number of the influencing
parameters. A further aim is to use much more influencing parameters
(including further meteorological parameters, in addition chemical air
Lyon

ofAmbrosia (Actual:measuredpollen concentrations,MLP:Multi-Layer Perceptronmodel,
l, MLPRegressor: Multi-Layer Perceptron model).

image of Fig.�4
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pollutants, land use, relief, etc.) in order to develop a general model for
different locations.
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