
A Case Study of Refactoring Large-Scale

Industrial Systems to E�ciently Improve Source

Code Quality

Gábor Sz®ke, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy

Department of Software Engineering, University of Szeged

Abstract. Refactoring source code has many bene�ts (e.g. improving
maintainability, robustness and source code quality), but it takes time
away from other implementation tasks, resulting in developers neglect-
ing refactoring steps during the development process. But what happens
when they know that the quality of their source code needs to be im-
proved and they can get the extra time and money to refactor the code?
What will they do? What will they consider the most important for im-
proving source code quality? What sort of issues will they address �rst or
last and how will they solve them? In our paper, we look for answers to
these questions in a case study of refactoring large-scale industrial sys-
tems where developers participated in a project to improve the quality
of their software systems. We collected empirical data of over a thou-
sand refactoring patches for 5 systems with over 5 million lines of code
in total, and we found that developers really optimized the refactoring
process to signi�cantly improve the quality of these systems.

Keywords: software engineering, refactoring, software quality

1 Introduction

With short deadlines or lack of resources, developers tend to neglect refactoring
steps during development and if they see a quick and easy way to get a test
working and a ten-minute way to get it working with a simpler design, they will
go for the quicker way, although the correct choice should be to spend ten minutes
on refactoring. This usually results in the deterioration of the software. One way
to combat this deterioration is to continuously re-engineer the code. Continuous
reengineering is not only mentioned by popular development principles such as
eXtreme programming [3], but the software engineering community realized that
instead of spending money on maintenance tasks periodically it may be cheaper
and more e�ective to continuously maintain the code and check its quality. For
instance, Demeyer et al. say in [5] that �there is good evidence to support the
notion that a culture of continuous reengineering is necessary to obtain healthy,
maintainable software systems.�

In our paper, we investigate how programmers re-engineer their code base
if they have the time and extra money to improve the quality of their software
systems. In a project we worked together with �ve companies where one of the
goals was to improve the quality of some systems being developed by them. It was

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SZTE Publicatio Repozitórium - SZTE - Repository of Publications

https://core.ac.uk/display/84774245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


interesting to see how these companies optimized their e�orts to achieve the best
quality improvements at the end of the project. They are all pro�t-orientated
companies, so they really tried to get the best ROI in terms of software quality.
To achieve it, they had to make important decisions on what, where, when and
how to re-engineer. We collected this information as experimental data and here
we present our evaluation in the form of a case study. We found that developers
really optimized the refactoring process to improve the quality of these systems;
they usually went for the most critical but least risky types of refactorings.
The results presented in this study could serve as a guideline for designing a
re-engineering process.

The main contributions of this paper are:

� A case study on software refactorings with experimental data gathered from
re-engineering large-scale proprietary software systems.

� Guidelines to re-engineer large-scale projects e�ectively.

The paper is organized as follows. In the next section we present related
research work and then in Section 3 we introduce the motivational background
of our case study. After, in Section 4 we present our results by answering our
research questions. We discuss threats to validity and other results we got in
Section 5 and �nally we conclude the paper.

2 Related work

Refactoring has been a hot topic since the appearance of Fowler's book [10] and
Opdyke's PhD thesis [15]. There are many papers published in this area and it
is not the aim here to systematically summarize these studies. In this section,
we will give a general overview of software refactoring, and present some case
studies which are similar to ours.

Mens et al. published a survey to provide an extensive overview of exist-
ing research in the area of software refactoring [12]. They identi�ed six main
refactoring activities. These are:

� Identifying precisely where the software should be refactored
� Determining which refactoring(s) should be applied to the places identi�ed
� Ensuring that the refactoring applied preserves behaviour.
� Appling the refactoring
� Assessing the e�ect of the refactoring on quality characteristics of the soft-
ware (e.g. complexity, understandability and maintainability) or the process
(e.g. productivity and cost e�ort).

� Maintaining a consistency between the refactored program code and other
software artifacts such as documentation, design documents, software re-
quirements speci�cations and tests

Our study can be viewed as a piece of research work which attempts to support
decisions on the �rst �ve activities.

Many papers have been published on where and how software code should be
refactored � e.g. by applying automatic tools to identify bad smells [2,11], change



smells [17] and by using static rule checkers such as CheckStyle∗, FindBugs† and
PMD‡ for Java. Code clones may be regarded as a special type of bad smells
and they are also typical targets of refactorings [4,20,19].

To determine which refactoring(s) should be applied, most of the studies in-
vestigate the e�ects of refactorings on metrics or quality attributes. Alshayeb et
al. studied how refactoring improves external quality attributes such as adapt-
ability and maintainability [1]. Stroggylos et al. analyzed source code version
control system logs of popular open source software systems to detect changes
marked as refactorings and examine how the software metrics are a�ected by
this process [18]. DuBois et al. studied the impact of refactorings on cohesion
and coupling metrics in [7] and found that bene�ts can occur, and described how
and when the application of refactoring could improve selected quality charac-
teristics [6]. Fontana et al. studied the impact of refactoring applied to reduce
code smells on the quality evaluation of the system [9].

Murphy et al. studied four methods to collect empirical data on refactor-
ings [14]: mining the commit log, analyzing code histories, observing program-
mers and logging refactoring tool use. In our study, we combine these methods.
A similar study was conducted by Moser et al. [13] as they observed small teams
working in similar, highly volatile domains and assessed the impact of refac-
toring in a close-to industrial environment [13]. Pinto et al. investigated what
programmers said about refactoring on the popular Stack Over�ow site [16].

3 Background

3.1 Project

The research work presented here formed part of an EU project. The main goal
of the project was to develop a software refactoring framework, methodology and
software products to support the `continuous reengineering' methodology, hence
provide support to identify critical code parts in a system and to restructure them
to enhance maintainability. During the project, we developed an automatic/semi-
automatic refactoring framework and tested this technology on the source code
of industrial partners, having an in-vivo environment and live feedback on the
tools. So partners not only participated in this project to develop the refactoring
framework, but they also tested the tool set on the source code of their own
product. This provided a good chance for them to refactor their own code and
improve its quality.

In the initial step of the project we asked them to manually refactor their
own code, and provide a detailed documentation of each refactoring, explaining
what they did and why to improve the targeted code fragment. We gave them
support by continuously monitoring their code base and automatically identify-
ing problematic code parts using a static code analyzer based on the Columbus
technology of the University of Szeged [8], namely the SourceMeter product of

∗http://checkstyle.sourceforge.net/
†http://�ndbugs.sourceforge.net/
‡http://pmd.sourceforge.net/



FrontEndART Ltd.� Companies had to �ll in a survey with questions targeting
the initial identi�cation of steps; that is, evaluating the reports of SourceMe-
ter looking for really problematic code fragments and explaining in the survey
why that code part was actually a good target for refactoring. After identify-
ing coding issues, they refactored each issue one-by-one and �lled out another
questionnaire for each refactoring, to summarize their experiences after improv-
ing the code fragment. There were around 40 developers involved in the project
(5-10 on average from each company) who were asked to �ll in the survey and
carry out the refactorings.

3.2 Survey questions

The survey consisted of two parts for each issue. The developers had to �ll in
the �rst part before they began refactoring the code, and the second part after
the refactoring. In the �rst part, they asked the following questions:

� Which PMD rule violations helped you identify the issue?
� Which Bad Smells helped you to �nd the issue?
� Estimate how much it would take to refactor the problem.
� How big is the risk in carrying out the refactoring? (1-5)
� How do you think the refactoring will improve the quality of the whole
system's code? (1-5)

� How do you think the refactoring will improve the quality of the current
local code segment? (1-5)

� How much improvement do you think the refactoring will make to the current
code segment? (1-5)

� How many �les will the refactoring have an impact on?
� How many classes will the refactoring have an impact on?
� How many methods will the refactoring have an impact on?

We asked some questions after developers had �nished the refactoring task. These
were the following:

� Which PMD rule violations did the refactoring �x?
� Which Bad Smells did the refactoring �x?
� How much time did the refactoring task take?
� Did any automated solution help you to �x the problem?
� How much of the �x for this problem could be automated? (1-5)

For most of the questions, we provided some basic options. For the �rst question
for example we provided a list of PMD rule violations with their names, to help
the developers answer the questions quickly. In the questions on the classes and
methods impacted, we provided di�erent ranges, namely 1-5, 5-10, 10-25, 25-
50, 50-100, 100+. Each question had a text �eld where the developers could
explain their answers and they could also suggest possible improvements and
add comments.

�http://frontendart.com



3.3 Systems under investigation

In the study, we had chance to work together with �ve experienced companies
in the ICT sector. These companies were founded in the last two decades and
some of their projects were initiated before the millennium. The 5 given projects
consisted of about 5 million lines of code altogether, written mostly in Java.
The projects covered di�erent ICT areas like ERPs, ICMS and online PDF
Generation. More details can be found in Table 1.

Id LOC Domain

Company A 200k Speci�c Business Solutions
Company B 4,300k Enterprise Resource Planning (ERP)
Company C 170k Integrated Business Management
Company D 128k Integrated Collection Management Systems (ICMS)
Company E 100k Web-based PDF Generation

Table 1. Systems that we examined

Each project had Web/online modules and some of them could run as stan-
dalone applications too. Companies A and B commenced their projects with the
�rst releases of Java Enterprise Edition. At that time there were no application
frameworks (like SpringFramework) available, so they implemented their own
versions. Therefore the core of their systems can be regarded as legacy Java
systems, but still under active development.

4 Case study

4.1 RQ1: What kinds of issues did the companies �nd most

reasonable to refactor?

Our �rst research question focused on which issue types the companies consid-
ered the most important to refactor. We asked the companies which indicators
helped them best in �nding problematic code fragments in their systems. In our
survey, companies could select Bad Code Smells and Rule Violations as indica-
tors on how they found the issues.

In our evaluation, we distinguish a special kind of bad smell which suggests
code clones in the system. In Figure 1, a distribution can be seen for the issues
which helped the companies to identify the problematic code fragments in their
code. The intersections in the �gure came from the fact that developers could
select more than one indicator per issue. The reason why bad smells and clones
had no elements in their intersection was because a clone is a special kind of bad
smell, as mentioned earlier. The same applies for the intersection of the former
group and the rules group (an empty set cannot intersect anything).

When we look at the results in Figure 1, we see that the companies found
the majority of issues lay in the sets of rule violations and bad smells. It can
also be seen that rule violations alone cover 85% of all the issues found. This
also includes 75% of all the bad smells (because of the intersection). So the
assumption is that rule violations are the best candidates for highlighting issues.



bad smells
10,01%

bad smells ∩ rules
30,80%

rules
54,50%

rules ∩ clones
0,25%

clones
4,44%

bad smells ∩ clones
0,00%

bad smells ∩ rules ∩
clones
0,00%

Fig. 1. Distribution of issue indicators

However to con�rm this, we also had to look at how many issues the companies
�xed in order to choose the best indicator of refactorings.

Figure 2 shows the percentage of each �xed issue found from our survey.
When we examine the ratio of �xed issues, we see that the bad smells are mostly
refactored issues. However if we include the total number of issues, it is clear
that rule violations gave the most advance.

Based on the fact that 85% of all issues were rule violations and developers
mostly �xed these issues instead of the others, in future RQs we will focus on
rule violations.

4.2 RQ2: What are those attributes of refactorings that can help in

selecting them?

The rule violations in the survey were provided by the PMD source code analyzer

tool. In our study, we categorized and aggregated these rules into groups. The
groups we used were the Rulesets taken from the PMD website. The companies
�lled in the survey for 961 PMD refactorings altogether. These 961 refactorings
produced 71 di�erent rule violation types over 19 rulesets.

Below, we will examine these rulesets based on di�erent attributes. Based on
our survey questions, we created the following attributes:

� number of refactorings indicates how many issues were �xed for a certain
kind of PMD or ruleset.

� average and total time required tells us the total and average time that
companies spent on a refactoring. (Values are in work hours.)

� estimated time shows how companies estimated the time that a refactoring
operation would take. (Values were enumerated between 1 hour and 3-4
days.)



0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00%

bad smells

bad smells ∩ rules

rules

rules ∩ clones

clones

bad smells ∩ clones

bad smells ∩ rules ∩ clones

fixed %

not fixed %

Fig. 2. Percentages of �xed issues for di�erent problem types

� local improvement indicates the subjective opinion of developers on how
much the local code segment was improved by the refactoring (Values are
between 1-5.)

� global improvement indicates the subjective opinion of developers on how
much the code improved globally. (Values are between 1-5.)

� risk indicates the subjective opinion of developers on how risky the refactor-
ing is. (Values are between 1-5.)

� impact is an aggregated number that tells us how many �les/classes/meth-
ods a refactoring a�ected. (Values are enumerated between 1-100.)

� priority tells us how dangerous a rule violation is, and how important it is
to �x it. The priority attribute did not come from the survey; we used the
prioritisation of the underlying toolchain. (Values lie between 1-3.)

4.3 RQ3: Which refactoring operations were the most desirable

based on to the attributes de�ned above?

The attributes above tell us how risky a refactoring operation is and how much
time it will usually take to �x. By combining these attributes, we can discover
which rules or rulesets are the most bene�cial or riskiest; or by aggregating the
�rst two attributes with time required, we can see which rules will best return the
e�ort we invested in refactoring. Next, we investigate the number of refactorings,
time required, improvement and risk.

Number of refactorings Now let us look into the most obvious attribute,
namely the number of refactorings the companies performed. The results in Fig-
ure 3 indicate that the companies dealt with almost every kind of rule violation.
The majority of refactored rule violations were found in the Design ruleset. This



ruleset contains rules that �ag suboptimal code implementations, so �xing these
code fragments should signi�cantly improve the software quality and perhaps
even the performance. The Design ruleset is followed by the Strict Exceptions,
Unused Code and Braces categories, which focuses on throwing and catching
exceptions correctly, removing unused or ine�ective code, and also the use and
placement of braces. Some rule violations in the following categories were also
�xed in large numbers under the Basic, Migration, Optimization, String and

StringBu�er rulesets. The other rulesets scarcely came up (like Empty Code) or
not at all (like Android). This is probably due to the fact that the projects did
not contain these kinds of violations or contained only false positives.

Basic
13%

Braces
13%

Design
18%

Migration
9%

Optimization
7%

StrictCExceptions
9%

StringCandCStringBuffer
7%

UnusedCCode
7%

Coupling
4%

Other
13%

Basic

Braces

Design

Migration

Optimization

StrictCExceptions

StringCandCStringBuffer

UnusedCCode

Coupling

Other

Fig. 3. Distribution of refactorings by PMD rulesets

Average and total time required After investigating how many refactorings
the companies made, we will now examine how much time a refactoring operation
took. (Here, we consider the time the developers spent on refactoring their source
code, excluding the time they spent on testing and verifying the code.)

When we look at the total time needed for the categories in Figure 4, we see
that the time distribution of the refactorings shows a similar tendency as the
number of refactorings. A linear correlation can be seen between the number of
refactorings and the total time spent on them. However, other interesting things
were observed when we looked at the average time spent on the di�erent kinds
of PMD categories in Figure 5. It seems as if the companies spent most of the
time on average on Code Size, Security Code Guidelines and Optimization rules.
The least time was spent on average on Braces, Import Statements and Java

Beans rules (excluding those rules where no time was spent at all). The Code



Basic
105

Braces
125

Design
175

EmptyOCode
45

JavaOLogging
35

Migration
95

Optimization
65

StrictOExceptions
155

StringOandO
StringBuffer

75

UnusedO
Code
65Other

115

Basic

Braces

Design

EmptyOCode

JavaOLogging

Migration

Optimization

StrictOExceptions

StringOandOStringBuffer

UnusedOCode

Other

Fig. 4. Total refactoring durations by PMD rulesets

Size ruleset contains rules that relate to code size or complexity (e.g. Cyclo-
maticComplexity, NPathComplexity), while the Security Code Guidelines rules
check the security guidelines de�ned by Oracle. The latter guidelines describe
violations like exposing internal arrays or storing the arrays directly. Optimiza-

tion rules concern di�erent optimizations that generally apply to best practices.
Reducing the complexity of the code, making the application more robust or op-
timizing it takes time. Apparently, these take the most time. Removing unused
import statements or adding or removing some braces usually can be performed
quickly, but to �nd which independent statements to extract so as to reduce the
complexity is a hard task.

Global and local improvement To learn which PMD rule violations �t the
attributes best, we summarized and averaged both the global and local improve-
ment values got from the survey. We ranked both sets of values by their position
in their data set. The average of the two former values gave us a list of the best
improving PMD rulesets. From our results, the best improvements locally and
globally are given by the Strict Exceptions, Coupling and Basic PMD rulesets.
However, rulesets contain a lot of di�erent rules, and hence the categories alone
did not give us the proper information we sought. To get further information, a
per-rule statistic was required.

For the per-rule statistics, we �ltered the results with those cases where the
companies did fewer than 4 refactorings of a single kind of PMD rule. This
ensured that only relevant data was included in the statistics, and a single-
refactored PMD rule could not harm the average values.



0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

CodefSize

SecurityfCodefGuidelines

Optimization

EmptyfCode

StringfandfStringBuffer

Design

Basic

StrictfExceptions

UnusedfCode

Migration

TypefResolution

Controversial

Naming

JavafLogging

Coupling

ClonefImplementation

Braces

ImportfStatements

JavaBeans

hours

Fig. 5. Average refactoring durations by PMD Rulesets

Table 2 shows a top list of the best improving PMD rule violations. The top
list was made by taking the average of the local improvements and summing the
average of global improvements, in descending order.

PMD rule violation Rank

PMD_LoC - LooseCoupling 1.
PMD_PLFIC - PositionLiteralsFirstInComparisons 2.
PMD_CCOM - ConstructorCallsOverridableMethod 3.
PMD_ALOC - AtLeastOneConstructor 4.
PMD_ATRET - AvoidThrowingRawExceptionTypes 5.
PMD_ULV - UnusedLocalVariable 6.
PMD_USBFSA - UseStringBu�erForStringAppends 7.
PMD_OBEAH - OverrideBothEqualsAndHashcode 8.
PMD_AICICC - AvoidInstanceofChecksInCatchClause 9.
PMD_MRIA - MethodReturnsInternalArray 10.

Table 2. Top 10 PMD rules with the best improvements

Risk Table 3 shows the riskiest PMD rules used to refactor based on the
replies by company experts. We can observe that in most cases the riskiest
refactorings are for basic Java functionalities. The list includes rules concerning
java.lang.Object 's clone, hashCode and equals method implementation, proper
catch blocks and throws de�nitions, array copying and unused variables. All of
the previous refactorings increased the quality of the software (by de�nition),
but �xing these rule violations can have some unexpected consequences. These
unexpected consequences are also caused by a previous improper implementa-
tion. Of course, if the software code had been written properly in the �rst place,



these unexpected results would have been appeared earlier, and could have been
�xed during the development phase.

PMD rule violation Rank

PMD_PCI - ProperCloneImplementation 1.
PMD_ALOC - AtLeastOneConstructor 2.
PMD_SDTE - SignatureDeclareThrowsException 3.
PMD_ACNPE - AvoidCatchingNPE 4.
PMD_LoC - LooseCoupling 5.
PMD_OBEAH - OverrideBothEqualsAndHashcode 6.
PMD_AICICC - AvoidInstanceofChecksInCatchClause 7.
PMD_ULV - UnusedLocalVariable 8.
PMD_AISD - ArrayIsStoredDirectly 9.
PMD_ATNPE - AvoidThrowingNullPointerException 10.

Table 3. Top 10 riskiest PMD rules to refactor

4.4 RQ4: Which refactoring operations give the best ROI?

In the above we saw the most bene�cial and riskiest PMD rules, but which rule
violations should we �x to improve the code the most with the least risk and as
speedily as possible? To discover this, we de�ned an index value which indicates
the `return of investment' or ROI for short. To calculate this index, we ranked the
averages of each attributes according to their percentage values with all averages
in the same attribute using the percentrank¶ function.

ROIrefactoring = percentrank(average(improvementlocal))

+ percentrank(average(improvementglobal))

− percentrank(average(risk))− percentrank(average(time))

After we got the index number, we ordered the rule violations and took the
�rst 15, which are listed in Table 4. Based on our �ndings the best ROI is
indicated by mostly small, local refactorings of those possible errors that can
cause big inconsistencies in future development or other parts of the software.

ROI statistics can tell developers which rule violations need to be �xed in
order to get the most out of their refactoring e�orts. They can improve the e�ec-
tiveness of the software maintenance process, and can �x more issues; thus they
can help to make the system more robust and also reduce the overall maintenance
costs.

4.5 RQ5: How can we schedule refactoring operations e�ciently?

Now we will describe a way of scheduling refactoring operations. First, we will
examine how the industrial partners scheduled their refactorings and then we
will make recommendations based on these observations.

¶Here, percentrank returns the rank of a value in a data set as a percentage of
the data set.



PMD rule violation Rank

PMD_LoC - LooseCoupling 1.
PMD_ATRET - AvoidThrowingRawExceptionTypes 2.
PMD_USBFSA - UseStringBu�erForStringAppends 3.
PMD_OBEAH - OverrideBothEqualsAndHashcode 4.
PMD_PLFIC - PositionLiteralsFirstInComparisons 5.
PMD_MRIA - MethodReturnsInternalArray 6.
PMD_LVCBF - LocalVariableCouldBeFinal 7.
PMD_ALOC - AtLeastOneConstructor 8.
PMD_SDTE - SignatureDeclareThrowsException 9.
PMD_CCOM - ConstructorCallsOverridableMethod 10.
PMD_PST - PreserveStackTrace 11.
PMD_UPF - UnusedPrivateField 12.
PMD_ULV - UnusedLocalVariable 13.
PMD_AICICC - AvoidInstanceofChecksInCatchClause 14.
PMD_CC - CyclomaticComplexity 15.

Table 4. Top 15 PMD rules to refactor with the best ROI values

How did companies schedule their refactorings? We asked the companies
how they scheduled their refactoring operations when �xing rule violations. Each
of the companies used the priority attribute that was given for each kind of rule
violation, by using the toolchain that was used to extract the rule violations.
Priorities were 1, 2, 3, indicating di�erent levels of threat for each rule violation.

� Priority 1 indicates dangerous programming �ows.
� Priority 2 indicates not so dangerous, but still risky or unoptimized code

segments.
� Priority 3 indicates violations to common programming and naming con-

ventions.

43%

34%

23%

1

2

3

Fig. 6. Fix rate according to Priority

In Figure 6, we can see the percentage values of all the issues that were �xed
for each priority level. They reveal that companies �xed Priority 1 issues the
most and Priority 2 issues the second most. This means that companies here
opted to �x the most threatening rule violations detected in the code.



Given these attributes, the most e�cient way is to start refactoring those
issues that had Priority 1 level rule violations. To �nd out how the companies
actually scheduled their refactorings, we split the refactorings into two sets. The
�rst set contains refactorings which were made in the �rst half of the project,
and the other set contains refactorings made in the second half. The results of
these experiments are represented in Figure 7. They tell us in percentage terms
how much was �xed for each priority level in the �rst half and second half of the
project. They indicate that the companies �xed most Priority 1 rule violations
in the �rst half of the project and �xed most Priority 2 rules in the second
half. This is consistent with what the companies told us and they provided good
feedback on how they scheduled their refactoring process.

0% 20% 40% 60% 80% 100%

first half

second half

3

2

1

Fig. 7. Fixes in the �rst and second half according to Priority

How should the refactoring be scheduled? Learning from the experiences
that the participating companies gained in the project, and from the results
presented in Section 4.4, we suggest two kinds of scheduling. They are:

� Schedule refactorings by the priority-level of the issue, starting with the most
threatening ones.

� Schedule refactorings by �xing issues with the best ROI score (see Table 4).

Choosing either of the above approaches should give an e�ective refactoring pro-
cedure. Scheduling by priority-level concentrates on �xing the most threatening
issues, while concentrating on the ROI score should bring about the best im-
provement with the least e�ort and time. Moreover, combining the these former
methods can also lead to a very e�cient refactoring procedure, which o�ers the
best of both approaches.

5 Discussion

Next, we will elaborate on potential threats to validity and some other interesting
results that we obtained from our survey.



Threats to Validity

We identi�ed some threats that can a�ect the construct, internal and external
validity of our results.

The �rst one we encountered was the subjectivity of the survey. The answers
to our survey questions were given by developers on a self-assessment basis.
We did not measure the time needed or enhancement of refactorings with any
automated solution; instead we let the developers answer the survey freely. Nev-
ertheless, we carried out the survey with �ve industrial partners and therefore
with many experts, which surely makes the results statistically relevant.

Another threat that we anticipated was that developers got `unlimited' extra
money and time to do the refactorings, so we could monitor how they refactored
their system without any budget pressure. Although they got extra time and
money in part of the project, there were still limits that might a�ect the results
and the refactoring process.

Turning to external validity, the generalizability of our results depends on
whether the selected programming language and rule violations are represen-
tative for general applications. The Java programming language was selected
in the assessment together with the companies. These refactorings were made
mostly on issues identi�ed by PMD rule violations, hence they were Java speci�c.
However, most of these rules could be generalized to abstract Object-Orientated
rules, or they can be speci�cally de�ned for other programming languages.

Another threat is that whether �xing PMD rule violations can be viewed as
refactoring or not. PMD refactorings are not like traditional refactoring opera-
tions that most studies examine (e.g. pull up, push down, move method, rename
method, replace conditional with polymorphism). Despite this, Fowler [10] de-
�ned refactoring as �the process of changing a software system in such a way
that it does not alter the external behavior of the code yet improves its internal
structure.� During the project we encountered several PMD rule violations and
our general experience is that the refactoring of these violations does not alter
external behavior, so they can by de�nition be treated as refactoring.

Overall, our methods were evaluated on large-scale industrial projects, with
contributions from expert developers, on a big set of data, which is a rather
unique case study in the refactoring research area.

Other results

In our case study (see Section 4) we summarized our results based on research
questions addressed to experts working in �ve ICT companies. However we ran
into several interesting cases which were worth mentioning, but could not be
incorporated into our research questions.

One of the interesting cases we found was when we searched for the longest-
lasting refactorings. We found that Company A carried out a SignatureDe-

clareThrowsException refactoring, which lasted 16 hours. The issue occurred
in a method of a widely implemented interface, and the problem was that the
method threw a simple java.lang.Exception Exception-type. This is not recom-
mended because it hides information and it is harder to handle exceptions. The
developer assigned to the issue estimated that the work took 1-2 days, and said



that the risk was high because it impacted 10-25 �les, but it was worth refac-
toring because the extra information they gained after the refactoring helped
improve the maintainability of the source code.

Another intriguing example was with the same search as before. We found
that Company D performed several AvoidDuplicateLiterals refactorings, which
took them 7 hours on average to do; and each of the refactorings impacted
on more than 100 classes. According to the comments in the survey, they used
NetBeans IDE‖ to �x these kinds of issues. NetBeans IDE has a integrated refac-
toring suite that helps developers to refactor their source code. Here, they used
this suite to extract duplicated literals to constant variables. The survey com-
ments revealed that the refactoring suite really helped them in this refactoring
task, and it would be great help if automated solutions could be devised and
implemented to tackle other of issues as well.

6 Conclusions and Future Work

In our study, we evaluated �ve research questions on refactoring in Java pro-
grams. The main goal of our experiments was to learn how developers refactor
in an industrial context when they have the required resources (both time and
money) to do so.

Our experiments were carried out on 5 large-scale industrial Java projects
of di�erent sizes and complexity. We studied refactorings on these systems, and
learned which kinds of issues developers �xed the most, and which of these
refactorings were best according to certain attributes de�ned in Section 4.2.

We also found that developers tried to optimize their refactoring process to
improve the quality of these systems. We recommended two methods to schedule
refactorings; one was based on priority and the other was based on a return
in investments. Forming a refactoring process from either of these or simply
combining them should lead to a very e�cient refactoring process, making the
system more robust, more maintainable, and most of all with lower costs.

In our experiments we gathered really big data on manual refactorings in
an in-vivo industrial context. In this case study, we limited the context to the
numerical evaluation of these results and investigated how to best select code
fragments to e�ectively refactor our code base so as to improve software quality.
In the future, with the data we obtained, we would like to investigate the e�ects
of refactorings on source code quality and implement automatic techniques based
on these results. We would also like to investigate the usage of these automatic
algorithms as well.

Acknowledgements

This research was supported by the Hungarian national grant GOP-1.2.1-11-
2011-0002. Here, we would like to thank all the participants of this project for
their help and cooperation.

‖https://netbeans.org/



References

1. Alshayeb, M.: Empirical investigation of refactoring e�ect on software quality. Inf.
Softw. Technol. 51(9), 1319�1326 (Sep 2009)

2. Arcelli Fontana, F., Braione, P., Zanoni, M.: Automatic detection of bad smells in
code: An experimental assessment. Journal of Object Technology 11(2), 1 � 38 (08
2012)

3. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, �rst edn. (1999)

4. Choi, E., Yoshida, N., Ishio, T., Inoue, K., Sano, T.: Extracting code clones for
refactoring using combinations of clone metrics. In: Proceedings of the 5th Inter-
national Workshop on Software Clones. pp. 7�13. IWSC '11, ACM (2011)

5. Demeyer, S., Ducasse, S., Nierstrasz, O.: Object-Oriented Reengineering Patterns.
Morgan Kaufmann (2002)

6. Du Bois, B.: A Study of Quality Improvements by Refactoring. Ph.D. thesis (2006)
7. Du Bois, B., Gorp, P.V., Amsel, A., Eetvelde, N.V., Stenten, H., Demeyer, S.: A

discussion of refactoring in research and practice. Tech. rep. (2004)
8. Ferenc, R., Beszédes, Á., Tarkiainen, M., Gyimóthy, T.: Columbus � Reverse En-

gineering Tool and Schema for C++. In: Proceedings of the 18th International
Conference on Software Maintenance (ICSM'02). pp. 172�181. IEEE Computer
Society (Oct 2002)

9. Fontana, F.A., Spinelli, S.: Impact of refactoring on quality code evaluation. In:
Proceedings of the 4th Workshop on Refactoring Tools. pp. 37�40. WRT '11, ACM
(2011)

10. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc. (1999)

11. Maiga, A.: Impacts and Detection of Design Smells. Ph.D. thesis (2012)
12. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Softw. Eng.

30(2), 126�139 (Feb 2004)
13. Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A., Succi, G.: Balancing agility

and formalism in software engineering. chap. A Case Study on the Impact of Refac-
toring on Quality and Productivity in an Agile Team, pp. 252�266. Springer-Verlag
(2008)

14. Murphy-Hill, E., Black, A.P., Dig, D., Parnin, C.: Gathering refactoring data: A
comparison of four methods. In: Proceedings of the 2nd Workshop on Refactoring
Tools. pp. 7:1�7:5. WRT '08, ACM (2008)

15. Opdyke, W.F.: Refactoring Object-oriented Frameworks. Ph.D. thesis (1992)
16. Pinto, G.H., Kamei, F.: What programmers say about refactoring tools?: An em-

pirical investigation of Stack Over�ow. In: Proceedings of the 2013 ACMWorkshop
on Workshop on Refactoring Tools. pp. 33�36. WRT '13, ACM (2013)

17. Ratzinger, J., Fischer, M., Gall, H.: Improving evolvability through refactoring.
SIGSOFT Softw. Eng. Notes 30(4), 1�5 (May 2005)

18. Stroggylos, K., Spinellis, D.: Refactoring�does it improve software quality? In:
Proceedings of the 5th International Workshop on Software Quality. pp. 10�. WoSQ
'07, IEEE Computer Society (2007)

19. Tairas, R.: Clone detection and refactoring. In: Companion to the 21st ACM SIG-
PLAN Symposium on Object-oriented Programming Systems, Languages, and Ap-
plications. pp. 780�781. OOPSLA '06, ACM (2006)

20. Zibran, M.F., Roy, C.K.: Towards �exible code clone detection, management, and
refactoring in IDE. In: Proceedings of the 5th International Workshop on Software
Clones. pp. 75�76. IWSC '11, ACM (2011)


