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Message From the CEFC Editor-in-Chief

THE 17th Biennial IEEE Conference on Electromagnetic Field Computation (IEEE-CEFC) was held in Miami, Florida,
USA, from November 13 to 16, 2016. The conference’s technical program attracted 916 digests from 35 countries. Once

again, the large number of high-quality scientific contributions confirms that CEFC remains among the foremost conferences
for the computational electromagnetics community.

The IEEE-CEFC 2016 activities constituted an excellent forum for specialists from academia, research centers, and industry
worldwide to establish cooperation and share knowledge and experience, and for the cross-fertilization of new ideas in the
design, analysis, innovative media utilization, and optimization methods for electromagnetic devices. The main topics were
Static and Quasi-static Fields, Wave Propagation, Material Modeling, Coupled Problems, Numerical Techniques, Optimization
and Design, Software Methodology, Nanomagnetics, Nanophotonics, Bioelectric Field computation, as well as Devices and
Applications.

It is worth noting that the review process was performed in two stages. The Editorial Board Chairman/Editor-in-Chief first
invited qualified experts on the above fields to become members of IEEE-CEFC 2016 Editorial Board as associate editors.
In the subsequent stage, the associate editors assigned each digest to at least two reviewers selected based on their expertise.
A score-based review procedure was used for the selection of accepted digests. The score ranged from 1 to 10 and was used
to evaluate relevance, originality, quality, significance of results, language clarity, and technical presentation. As a result of
implementing this peer review process, 588 digests were accepted and presented at the conference. An additional note relating
to the technical program of the conference is that three prizes (U.S. $500 each) were awarded for best poster presentation to
young researchers who participated in IEEE-CEFC 2016 during the closing ceremony.

After the conference, authors of accepted digests were invited to submit an extended four-page versions of their papers to the
IEEE TRANSACTIONS ON MAGNETICS. As a result, 479 papers were submitted. An International Editorial Board comprising
the Editor-in-Chief and 19 associate editors handled the review process for the extended version:

1) Antonopoulos, Christos (Greece); 11) Kladas, Antonios (Greece);
2) Barmada, Sami (Italy); 12) Koh, Chang-Seop (Korea);
3) Barzegaran, Reza (USA); 13) Lowther, David (Canada);
4) Biro, Oscar, (Austria); 14) Magele, Christian (Austria);
5) Clemens, Markus (Germany); 15) Mesquita, Renato (Brazil);
6) Dular, Patrick (Belgium); 16) Mohammed, Osama (USA);
7) Fahimi, Babak (USA); 17) Peterson, Andrew (USA);
8) Ionel, Dan (USA); 18) Sykulski, Jan (U.K.);
9) Kanai, Yasushi (Japan); 19) Yang, Shiyou (China).
10) Ida, Nathan (USA);

Each of the associate editors assigned papers to reviewers, following the standard IEEE TRANSACTIONS review process.
As a result, each paper had at least two peer reviews. Some papers went through a second or even a third review cycle. At the
end of this process, 242 papers were accepted for publication in this issue of IEEE TRANSACTIONS ON MAGNETICS. We hope
the reader of this issue finds these papers to be intriguing and of high scientific quality.

In closing, I would like to note the excellent organization and management skills of the Conference Chair
Prof. Osama Mohammed that made this conference a success. In addition, I would like to express my sincere appreciation to
the authors and all the participants whose high-level contributions guaranteed the success of IEEE-CEFC 2016. Moreover, I
would like to affirm my gratitude to the associate editors and the reviewers for their diligent work throughout the peer review
process.

A. A. ARKADAN, Editor-in-Chief
IEEE CEFC 2016
Department of Electrical Engineering
Colorado School of Mines
Golden, CO 80401 USA
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1

A New Adaptive Mesh Refinement Method in FEA Based on 
Magnetic Field Conservation at Elements Interfaces and Non-

conforming Mesh Refinement Technique 
 

So Noguchi1,2,3,4, Takuto Naoe1, Hajime Igarashi1, Shinya Matsutomo5, Vlatko Cingoski6, Akira Ahagon7, and 
Akihisa Kameari7 

 
1Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0815, Japan 
2Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 

3National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA 
4Florida State University, Tallahassee 32310, USA 

5National Institute of Technology, Niihama College, Niihama 792-8580, Japan 
6Faculty of Electrical Engineering, University “Goce Delcev” – Stip, Skopje 1000, Macedonia 

7Science Solutions International Laboratory, Inc., Tokyo 153-0065, Japan 
 

Mesh quality strongly affects the solution accuracy in electromagnetic finite element analysis. Hence, the realization of adequate 
mesh generation becomes a very important task. Several adaptive meshing methods for automatic adjustments of the mesh density in 
accordance with the shape and complexity of the analyzed problem, have been proposed. However, the most of them are not enough 
robust, some are quite laborious and could not be universally used for adaptive meshing of complex analysis models. 

In this paper, a new adaptive mesh refinement method based on magnetic field conservation at the border between finite elements is 
proposed. The proposed error estimation method provides easy mesh refinements, generates smaller element within regions with large 
curvature of the magnetic flux lines. The proposed adaptive mesh refinement method based on non-conforming edge finite elements, 
which could avoid generation of flat- or ill-shaped elements, was applied to a simple magnetostatic permanent magnet model. To 
confirm the validity and accuracy, the obtained results were compared with those obtained by means of the Zienkiewich-Zhu (ZZ) 
error estimator. The results show that the computational error using the proposed method was reduced down to 1.0% compared with 
that of the ZZ method which yields error of 8.6%, for the same model. 
 

Index Terms—Adaptive meshing, element surface integral term, error estimation, finite element analysis.  
 

I. INTRODUCTION 

INITE ELEMENT METHOD (FEM) is one of the most 
successful numerical simulation methods in 

electromagnetics. However, an eternal problem is how to 
generate adequate mesh to enhance simulation accuracy, and 
reduce computation time and used memory. Hence, to tackle 
this problem, some adaptive meshing techniques have already 
been investigated [1], [2]. 

Two major techniques are required for obtaining good 
adapting meshing method: (1) a good error estimation method, 
and (2) an adequate mesh refinement technique, of which the 
first one has crucial importance. Although the Zienkiewicz-
Zhu (ZZ) method [3] is widely used as an error estimator, 
recently some other error estimation methods based on the 
local (element) error estimators obtained from the local 
verification (residual) of the FEM analysis and the 
conservation of the magnetic field H at the interface between 
two elements are very promising [4]–[6]. These newly 
introduced error estimator have proven superior to the ZZ 
method, pointing out that the magnetic field conservation 
could be successfully used as an error estimator in FEM 
analysis. However, no results have already been reported on a 

development of an adaptive FEA using this superior error 
estimator based on the magnetic field conservation.  

Mesh refinement scheme is also important in an adaptive 
meshing. After estimation of the errors, elements estimated to 
have a large error need to be refined. As a mesh refinement 
technique for triangular or tetrahedral meshes, the Delaunay 
triangulation method is conventionally used. However, using 
the Delaunay triangulation method, many ill-shaped elements 
such as flat, distorted, or inside-out elements are generated. 
Therefore, we proposed a new mesh refinement method using 
the non-conforming finite element technique [7], [8]. 

In this paper, the authors proposed a new adaptive meshing 
method based on the magnetic field conservation between two 
elements and the non-conforming edge finite element 
technique. The proposed method results with a generation of a 
suitably coarse mesh with less number of finite elements and 
less computational cost. 

II. ADAPTIVE MESHING METHOD 

A. Adaptive Meshing Method 

Fig. 1 shows the flow of common adaptive meshing finite 
element analysis (FEA). A bad error estimator could lead to 
generation of an unnecessary large number of elements with 
low accuracy result. Nevertheless, a good error estimator 
produces a fine mesh with adequately large and well 
distributed finite elements, resulting with high accurate 
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computational results.  
The commonly used ZZ error estimator [3] performs error 

estimation based on the field energy: 

e 

1

2
(Be  Be ) (Be  Be )de

1
2

Be Be de
 (1) 

where e, Be, Be , and  are the estimated error, the magnetic 

field obtained from FEA, the magnetic field estimated from 
the neighboring elements, and the magnetic reluctivity, 
respectively. Although the ZZ method is a very good error 
estimator, often in the air region far from objects, this method 
results with gratuitously subdivided smaller elements (e.g. Fig. 
7(c)), that unwontedly increase the number of elements and 
the computational time, while in the same time, does not 
improve the computational accuracy. 

As seen from Fig. 1, the mesh improvement procedure is 
the second important task for obtaining highly accurate 
solutions. Commonly, the Delaunay triangulation method is 
used for mesh improvement. It is a well-known, stable, and 
powerful tool for making triangular or tetrahedral meshes. 
However, when it is used for mesh refinement in an adaptive 
FEA, many ill-quality elements are generated. As shown in 
Fig. 2, even if the shapes of a parent element is well, after 
subdivision, newly generated offspring elements become ill-
shaped, or if a flat parent element is subdivided, flatter 
offspring elements are generated. Subsequently, with each 
subsequent subdivision, the quality of elements downgrades, 
making the Delaunay triangulation method unsuitable for the 
mesh improvement in an adaptive FEA.  

Therefore, in this paper we implemented a new adaptive 
analysis method which utilizes a new error estimator based on 

the magnetic field conservation on the interface between two 
elements [4], and a new mesh refinement scheme based on the 
non-conforming edge-based FEA [7], [8]. 

B. Proposed Error Estimator based of the Magnetic Field 
Conservation 

The governing equation for magnetostatic problems is: 
 ( A)  J0  (2) 

where A and J0 are the magnetic vector potential and the 
source current, respectively. Applying the weighted residual 
method, from (2) the following equation could be obtained:  

w  ( A)dv
v  w  J0 dv

v  (3) 

where w and v are the vector interpolation function and the 
integration volume, respectively. With integration by parts, the 
left term of (3) becomes: 

w  ( A)dv
v

  (w)  ( A)dv
v  n  ( A)w dS

S
 (4) 

where S and n are the integration surface and the unit vector 
normal to the integration surface S, respectively.  

In the formulization of edge-based FEM, the second term 
on the right side of (4) is neglected because the values of the 
tangential components of the magnetic field H should be 
regarded as identical on the interface between the adjacent two 
elements: 

n  ( A)w dS
S  (H w) ndS

S . (5) 

However, during the computation, these values slightly differ 
between each other. Therefore, one could use these differences 
as an error estimator in the adaptive meshing method. 

Let us consider the elements i and j having the common 
interface S as shown in Fig. 3. This interface consists of the 
edges k, l, and m, and their vector interpolation functions wk, 
wl, and wm, respectively. Thus, the expression of the right term 
in (5) with respect to the edge k becomes: 

) (     d)(, ji,eSd
S ekeke   nwH . (6) 

Similarly, two equations per edge could be written, while the 
following equations with respect to all three edges have to 
hold: 

)  (     0,, ml,k,fddD fjfif   (7) 

In the ordinary edge-based FEA, as a result of neglecting of 
the second right term in (4), the values for Dk, Dl, and Dm 
should be zero. However, in our case during the computation 
they are not zero and thus we utilize the calculated values for 
Dk, Dl, and Dm as an error estimator Eij as following: 

Eij  max Dk , Dl , Dm     (8) 

Start

End

Finite Element Analysis

Mesh Generation

Error Estimation

Enough 
Accuracy?

Mesh Improvement

No

Yes

 
Fig. 1.  Flowchart of conventional adaptive meshing FEA. 

 

 
Fig. 2. Well-shaped parent element produce ill-shaped offspring elements 
(upper). Ill-shaped parent element produce ill-shaped offspring elements 
(lower).  

 
Fig. 3.  The adjacent elements i and j with the common interface S. The 
triangular interface S consists of the edges j, k, and l. 
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where  is the prescribed threshold. If Eij exceeds the threshold 
, the elements i and j are adaptively subdivided into smaller 
elements. 

C. Proposed meshing refinement method utilizing non-
conforming finite element technique 

Let us suppose that an element has a large error as shown in 
Fig. 4(a), and it has to be subdivided into eight smaller finite 
elements. Obviously, the elements surrounding the element 
with large error remain unchanged, resulting in generation of 
non-conforming element surfaces between the elements. If the 
initial shape of the parent element before subdivision was 
well-shaped, then also the shapes of the newly generated eight 
finite elements could remain well-shaped. 

Three kinds of non-conforming techniques have already 
been proposed: (1) the discontinuous Galerkin method [8], (2) 
the mortar FEM [9], and (3) the mesh interpolating method 
[10], and in this paper we use the third one. 

In the non-conforming finite element technique, the vector 
potential on master edges is obtained from slave edges as 
shown in Fig. 4(b). The original FEA equation is: 
Ka  b  (9) 
where K, a, and b are the stiffness matrix, the vector potential, 
and the source vector, respectively. The vector potential on 
slave edges a has the following relation with that on the 
master edge : 

 (10) 
where C is the constitutional matrix derived from the relation 
between the master and slave edges [10]. The following 
system of equations needs to be solved: 

 (11) 
where t stands for transpose, and Ct is introduced in order to 
generate a symmetrical stiffness matrix. 

In the proposed adaptive meshing method, a several 
iterative steps are taken for mesh refinement until an error Eij 
becomes below a defined tolerance value . Therefore, after 
the ith refinement iteration step the following system is 
derived: 

 (12) 

where Ci is the constitution vector between the master and 
slave edges at the ith adaptive subdivision step. The system of 
linear equations (12) at the ith adaptive subdivision step needs 
to be solved, and the constitutional vectors Cj (j = 1, ···, i-1) of 

the previous steps could be reused to reduce a labor task. As 
for the stiffness matrix Ki and the source vector bi, it is just 
necessary to add their elements with respect to the newly 
subdivided elements to Ki-1 and bi-1 at the previous step. 

The main features of proposed mesh refinement method are: 
· Easier subdivision into smaller elements. Just one 

tetrahedral element is simply subdivided into eight 
tetrahedral elements with high shape quality. 

· The matrix elements of newly generated elements on 
every adaptive step are only added to the constitutional 
vector, the stiffness matrix, and the source vector, while 
the constitutional vectors on the previous steps are reused. 

After estimation of the computation error, it is not necessary to 
take into account the surfaces of objects during the mesh 
refinement procedure.  

III. APPLICATION 

To confirm the validity of the proposed adaptive method, 
we performed edge-based FEA on a simple model of a single 
permanent magnet (1T) as shown in Fig. 5, using a very rough 
tetrahedral initial mesh with 1325 elements. The mesh 
refinement behavior and accuracy transition of the proposed 
method were compared with those of the ZZ method. To keep 
approximately the same level of increasing rate of elements 
during mesh refinement for both, the proposed and the ZZ 
methods, only 10% of elements were allowed for subdivision 
per iteration.  

A. Mesh refinement 

In Figs. 6 and 7 the distribution of newly subdivided 
elements during iterative adaptive meshing process by the 
proposed and by the ZZ methods, respectively, are presented. 

As shown in Fig. 6, the proposed method results into a finer 
mesh as expected mainly in the area around the permanent 
magnet. At earlier steps (Figs. 6(a) and (b)), the elements all 
over analysis area are subdivided. At the following steps (Figs. 
6(c) and (d)), only finite elements belonging to the permanent 
magnet region and the air region surrounding the permanent 
magnet are evaluated. At the final step, only the elements near 
the outside surfaces of permanent magnet and the air are 
subdivided. Throughout the refinement process with the 
proposed method, only elements belonging in the area with 
large magnetic field gradient are chosen for subdivision. 

In comparison, in case of the ZZ method the air region 
elements are subdivided in each step throughout the entire 
refinement process, as can be seen in Fig. 7. At the first step, 
the elements all over the analysis region are subdivided. 
However, at the second step, some elements on the top and 

 
Fig. 5.  Simple model of a single permanent magnet (1T). 

Non-Conforming Surface

1 2

3
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B C

D

EF

GH

I

Slave EdgeMaster Edge

Element with large error

Element with good accuracy

Subdivision 
to eight 
elements

(a) Element refinement

(b) Relation between master and slave edges  
Fig. 4.  (a) Subdivision of one element with large error to eight smaller 
elements, and (b) relation between master and slave edges on non-
conforming surface. 
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bottom surfaces and corners of analysis region are also 
evaluated as elements with large error, and consequently 
considered as a subject for subdivision. Even more, at the 3rd, 
4th, and 5th steps, still elements far from the permanent 
magnet are also unnecessary subdivided (see Fig. 7(e)).  

B. Simulation accuracy 

Next, the accuracy of the obtained results is compared 
between the proposed and ZZ error estimation methods. Fig. 8 
shows the transition of magnetic field energy error as the 
adaptive steps proceed in both, the proposed and ZZ methods.  

The computation error using rough initial mesh was 32.6%. 
Using the proposed method, the error at 5th step finally 
decreases to 1.0% with 146,050 elements. The computation 
error of the ZZ method decreases to 8.6% at the 4th step, and 
remained unchanged to the 5th step, which leads to the main 
conclusion that the proposed method provides high-quality 
mesh with less number of elements and better accuracy, than 
that of the traditional ZZ method. 

IV. CONCLUSION 

In this paper, we have applied an error estimator based on 
the magnetic field conservation and a mesh improvement 
methodology using the non-conforming edge-based FEM to 
develop a new adaptive meshing method. The previously 

proposed error estimator based on the magnetic field 
conservation, in this paper, was extended and implemented to 
the adaptive meshing FEA. The proposed adaptive meshing 
generates better quality elements surrounding an object. As a 
result, the magnetic field error decreases from 32.6% to 1.0%, 
showing superiority to the traditional ZZ error estimation 
method. 

In the future, authors intend to apply the proposed method 
to non-linear and magneto-dynamic problems utilizing 
hexahedral edge-based finite elements. 
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Fig. 6.  Element subdivision map as the adaptive step proceeds in the proposed adaptive meshing method. The red-highlighted elements mean subdivided 
elements at each refinement step. 
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Fig. 7.  Element subdivision map as the adaptive step proceeds in ZZ method. The red-highlighted elements are subdivided elements at each refinement step. 

 
Fig. 8.  Transition of magnetic field energy with increase of the number of 
elements in cases of the proposed adaptive meshing and ZZ method. 
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