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Abstract: In response to the need for generic remote sensing tools to support large-scale agricultural
monitoring, we present a new approach for regional-scale mapping of agricultural land-use systems
(ALUS) based on object-based Normalized Difference Vegetation Index (NDVI) time series analysis.
The approach consists of two main steps. First, to obtain relatively homogeneous land units in terms
of phenological patterns, a principal component analysis (PCA) is applied to an annual MODIS
NDVI time series, and an automatic segmentation is performed on the resulting high-order principal
component images. Second, the resulting land units are classified into the crop agriculture domain or
the livestock domain based on their land-cover characteristics. The crop agriculture domain land
units are further classified into different cropping systems based on the correspondence of their NDVI
temporal profiles with the phenological patterns associated with the cropping systems of the study
area. A map of the main ALUS of the Brazilian state of Tocantins was produced for the 2013–2014
growing season with the new approach, and a significant coherence was observed between the spatial
distribution of the cropping systems in the final ALUS map and in a reference map extracted from the
official agricultural statistics of the Brazilian Institute of Geography and Statistics (IBGE). This study
shows the potential of remote sensing techniques to provide valuable baseline spatial information for
supporting agricultural monitoring and for large-scale land-use systems analysis.

Keywords: geographic object-based image analysis (GEOBIA); Moderate Resolution Imaging
Spectroradiometer (MODIS); principal components analysis (PCA); cropping systems; Stratification

1. Introduction

Ensuring food security through sustainable agricultural development sets a double challenge
to agricultural systems: Food production must substantially increase to satisfy the demand of
a continuously growing population while improving the stewardship of natural resources and
minimizing environmental impacts [1]. This transition towards sustainability is further challenged by
the consequences of climate change and an increased competition for land, generating an urgent need
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for repetitive spatial information to help monitor the dynamics of the agricultural land-use systems at
the regional and global scales.

Land use is defined as “the sequence of operations carried out with the purpose to obtain
goods and services from the land” [2]. Land-use systems (LUS) can thus be considered as coupled
human–environment systems that can be characterized by two main aspects: land resources and
management practices [3]. LUS mapping originally consisted in the delineation of relatively
homogeneous areas of land (referred to as land units), which are directly linked to a specific type
of land use [4,5]. Regional-scale agricultural land-use systems (ALUS) maps typically represent the
major agricultural zones for a given region, each agricultural zone (land unit) being directly linked to
a particular agricultural system. The land units of a regional-scale ALUS map are naturally composed
of multiple agricultural fields which are spatially “concentrated” and representative of a particular
agricultural system, but also contain a mosaic of other land-cover types, e.g., patches of natural
vegetation among the agricultural fields, due to their extent. The plotting of the land units’ boundaries
is, however, challenged by limited access to spatially explicit and detailed land-use information over
large areas, which may account for the general lack of LUS maps.

The few existing large-area LUS mapping approaches, such as the one developed by FAO [2],
are usually based on a subjective choice of socio-economic and environmental variables. These are
derived from heterogeneous sources which are empirically categorized and combined to map the
different land-use systems. The resulting LUS maps are subject to error propagation due to the
disparity of spatial resolution, production date, and quality of the original data. In addition, access to
the data is not always guaranteed, which limits the reproducibility of the LUS maps in time and across
regions. As a result, the description and location of the different agricultural land-use systems remain
highly unclear for most world regions.

Earth observation satellite systems can significantly contribute to LUS mapping since they provide
timely and detailed land-use information over large areas due to their synoptic coverage and high
revisiting frequency. In particular, remote sensing-derived time series of vegetation indices allow
monitoring of the phenology (seasonal vegetation variation) and the intra-seasonal variations of the
agricultural land cover (i.e., cropland, pastures, and rangelands), from which the agricultural land
use (including some management practices) can be determined [6–9]. Furthermore, the geographic
object-based image analysis (GEOBIA) [10] segmentation techniques, which automatically delineate
homogeneous objects at multiple scales, seem particularly adapted for the extraction of land units.
Bisquert et al. [11] introduced an innovative approach based on GEOBIA of spectral and textural
variables derived from coarse-resolution vegetation index images that produced a spatial segmentation
of the French territory in broad-scale land units. The resulting land units proved to be consistent
in terms of land cover [12], but remained unclassified, and the variables used are not descriptive
enough for effective delineation of agricultural land-use systems since they do not account for the
intra-seasonal variations that characterize agricultural land-use practices.

The aim of this work is to provide a simple and reproducible approach for regional-scale mapping
of ALUS based on GEOBIA and vegetation index time series analysis. The presented approach involves
the extraction of temporal variations of the vegetation cover in relation to agricultural land use from a
vegetation index time series, by performing a principal components analysis and selecting the principal
component images that capture the seasonal and intra-seasonal variability of the vegetation index time
series. Segmentation and classification of the selected principal components images follow, finally
producing an ALUS map. The approach was applied to an annual Moderate Resolution Imaging
Spectroradiometer Normalized Difference Vegetation Index (MODIS NDVI) dataset and tested on
a new agricultural expansion region of Brazil. The spatial distribution of the cropping systems in
the final ALUS map was evaluated with the annual crop estimates of the Municipal Agricultural
Production database (PAM) of the Brazilian Institute of Geography and Statistics (IBGE).
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2. Materials

2.1. Study Area

The study area corresponds to the Brazilian State Tocantins, a region that spans 50◦W to 45◦W
and 5◦S to 13◦S, covering 277,621 km2 between the Amazon and the Cerrado biomes (Figure 1).
The geographical location between two biomes provides this region with a rich diversity of
environmental conditions, which have led to a diversification of human activities and thus a variety of
agricultural landscapes [13].
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Figure 1. The study area corresponds to the Tocantins state (TO, red-striped), located in the center-north
of Brazil, which is part of the MATOPIBA region (color-coded orange). This region is the latest
agricultural frontier of Brazil, composed of parts of the states of Maranhão (MA), Piauí (PI), Bahia (BA),
and the full extent of Tocantins.

While livestock production on extensive rangelands still dominates most of the land outside of
the protected area’s limits, this region has experienced rapid agricultural expansion within the last
decade. This trend is mainly characterized by an expansion of the soybean-cultivated area, which is
mostly produced for export (with an increase of 804,800 hectares in the last 15 years [14]). Sequential
cropping systems (mainly soybean-based double-cropping systems, where soybean is preceded or
succeeded by a cereal) are widespread, since the cultural season benefits from a 7-month rainy season
(from October to April) and agriculture is mostly mechanized, with field sizes around 100 hectares.

2.2. TerraClass Land-Cover Map

Among the efforts to produce datasets which will effectively help monitor the recent land-use
transitions in Brazil, the National Institute for Space Research (INPE) (in partnership with Brazilian
Agricultural Research Corporation (EMBRAPA)) has contributed to the TerraClass project [15].
TerraClass products include land-cover maps of the Amazon biome for every two years since 2004,
together with a first version of the Cerrado biome that was recently released for the year 2013 [16,17].

For this study, we combined the results of the latest TerraClass products (TerraClass Amazônia
2014 and TerraClass Cerrado 2013) to generate a land-cover map at 30 m spatial resolution covering the
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full extent of the Tocantins state. The combined product is used to extract an agricultural land-cover
map, composed of the land-cover classes’ pasture and rangelands, and annual agriculture (Figure 2).

Figure 2. Agricultural land-cover map extracted from the combination of the TerraClass Amazônia
2014 map (covering the North East of the State of Tocantins) and the TerraClass Cerrado 2013 map
(covering the rest of the State of Tocantins) [16,17].

2.3. Agricultural Statistics

The official agricultural statistics at the Brazilian municipality administrative level were acquired
from the Municipal Agricultural Production database (PAM) of the Brazilian Institute of Geography
and Statistics (IBGE) [18]. This database provides annual estimates of planted and harvested area,
average yield, average income, and production of the different crops since 1973.

For our study, we collected the harvested area estimates of the 2014 annual crops of the
municipalities of Tocantins. The collected data were processed and used as the reference for the spatial
distribution of the main cropping systems of Tocantins, against which our results were evaluated.

2.4. MODIS NDVI Time Series

Although the NDVI is known to be affected by background, aerosol effects, and saturation in
high biomass regions [19], it is highly sensitive to small increases in the amount of photosynthetic
vegetation [20] and is therefore well adapted to capture the vegetation dynamics of the agricultural
land-use systems.

A time series of 23 16-day composited NDVI images from October (start of the growing season)
2013 to October 2014 (of the MOD13Q1 v5 product at a 250 m spatial resolution) is used in this
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study. The dataset was retrieved from the NASA Land Processes Distributed Active Archive Center
(LP DAAC) through the processing R package MODIStsp Version 1.3.2 [21]. Two MOD13Q1 tiles
(h13v09 and h13v10) are needed for covering the entire state of Tocantins.

3. Methods

The methods applied in this study follow a typical GEOBIA approach [10] through automatic
image partition into meaningful image objects (the land units), and subsequent classification of the
resulting objects by an assessment of their characteristics to generate new geographic information
(the agricultural land-use systems (ALUS) map). The methodological framework is presented in
Figure 3 and described in the following three sub-sections: Pre-processing of the NDVI time series
(Section 3.1); Extraction of the land units (Section 3.2); Classification of the land units (Section 3.3).
A final sub-section presents the unsupervised evaluation approach that was used to evaluate the
cropping systems’ classification results of the ALUS map (see Section 3.4. Unsupervised Evaluation of
the Classification Results).

Figure 3. Representation of the methodological framework used in this study.

3.1. Pre-Processing of the NDVI Time Series

The compositing process of the MOD13Q1 product uses the Constrained View angle-Maximum Value
Composite (CV-MVC) algorithm, which involves selecting (pixel-wise) the observation with the highest
NDVI value and the smallest view angle out of all the observations made during a 16-day cycle [22].
However, remaining effects such as cloudiness or bi-directional effects are still present in the dataset.

In order to generate a noise-reduced time series, an adapted version of the function-fitting
smoothing method introduced by Chen et al. [23] was applied. This noise-reduction algorithm is based
on a linear interpolation of cloudy pixels, followed by the use of the Savitzky–Golay (SG) filter through
an iteration process until the upper envelope of the original NDVI profile is best approached [23,24].

The cloud flag data supplied with the MOD13Q1 product (Pixel Reliability layer) showed
systematic overestimations of clouds in the cropland areas, which are particularly evident during
the harvest stages in the crop calendar. Consequently, only the pixels followed by an unnatural
NDVI increase (greater than 0.4 between two composited images) were considered as cloudy dates
and linearly interpolated. In order to reduce the noise of other residual effects such as consecutive
cloudiness, the iterative SG filter was applied. After several tests, the parameters d (degree of the
smoothing polynomial) and m (half-width of the smoothing window) of the SG filter (for the long-term
change curve and for the fitting iteration) were set to d = 2, m = 2, and d = 6, m = 4, respectively. This
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smoothing method effectively improved the quality of the time series, reducing signal noise while
preserving the detail of the NDVI temporal profiles (Figure 4).

To avoid the temporal discontinuities generated by the compositing process (which affect the
shape of the NDVI profiles), the values of the smoothed time series were linearly interpolated. This
was done using their actual acquisition dates provided in the “Composite Day of Year (CDOY)” layer
of the MOD13Q1 product, to place them at 16-day regular intervals.

Figure 4. Sample Normalized Difference Vegetation Index (NDVI) time series profile of (a) the raw
data; (b) the filtered and smoothed data; and (c) the final temporally-corrected data.

3.2. Extraction of the Land Units

The extraction of the land units is developed in two steps which are described in the following
sub-sections: Principal Components Analysis (Section 3.2.1) and Delineation of the Land Units
(Section 3.2.2).

3.2.1. Principal Components Analysis

A principal components analysis (PCA) transformation was applied to the corrected NDVI time
series. Originally formulated by Pearson (1901), the PCA technique consists of a linear orthogonal
transformation (or rotation) of the original variables into a set of uncorrelated variables known as
the principal components (PC). When applied to remote sensing time series, PCA computes new
values for each pixel of the original time series’ images to produce a set of PC images (also known as
eigenchannels). The resulting PC images are uncorrelated with one another and ordered according to
the amount of variance retained within the total variance of the original time series dataset (from most
to least). Low-order PC images (PC1, PC2) concentrate most of the variance and therefore inevitably
capture the information redundancy among the original images, while the higher-order PC images
capture less redundant information (associated with specific localized change events).

PCA has proven to be particularly effective (when applied to NDVI time series) at identifying
seasonal changes of the land cover and revealing their relationship to different factors—mainly climate
variability and human activities factors [25–30]. The type of information captured by each PC image
will vary according to the characteristics of the input NDVI time series (temporal resolution and length
of the time series, spatial resolution and extent) and the PCA method used (either unstandardized if
the PC images are calculated using the covariance matrix, or standardized if the correlation matrix
is used instead). However, some common outcomes are observed when the area under analysis is
large enough to include different types of land cover: The first PC image captures the major element of
variability in the NDVI time series (which for large areas corresponds to the spatial variability of the
NDVI values, and is correlated to the integrated NDVI over all seasons), whilst the other PC images
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capture the seasonal and intra-seasonal variability of NDVI, each related to a particular factor or a
combination of factors [25–30].

We expect the phenological patterns of different agricultural land-use systems (configured by
seasonal development of the vegetation and intra-seasonal variability and short-term fluctuations
induced by the agricultural practices), to be detectable in these latter PC images. Therefore, after
performing a PCA on the corrected NDVI time series of 23 images, we retained the last 22 PC images
(the high-order PC images) out of the 23 resulting PC images for further analysis, which contain 27%
of the total variance. The first PC image was deliberately discarded after verification that the temporal
variability of NDVI was not significantly captured, and that (as expected) the 73% of the total variance
captured by the first PC image is mostly related to the spatial variability of the NDVI values, as shown
in other studies (e.g., [27,28]).

The PCA was performed by means of the rasterPCA tool in the processing R package RStoolbox
Version 0.1.8 [31] and was based on the covariance matrix (unstandardized PCA). Unstandardized
PCA is preferred since sudden changes in the magnitude of the NDVI related to land use (such as
a rapid NDVI decrease due to crop harvest) will contribute significantly to the development of the
new component images. Conversely, normalizing the input images through standardized PCA would
weaken the contribution of these sudden change events by forcing all the original input images to have
equal weight in the derivation of the PC images.

3.2.2. Delineation of the Land Units

The segmentation of the high-order PC images was performed using the iterative region-growing
algorithm based on the Baatz and Schäpe criterion, implemented in the Multiresolution Segmentation
tool of the object-orientated image analysis software eCognition® Developer 9.0 [32]. This algorithm
starts with each pixel of the image forming an image object. At each iteration, neighboring objects are
merged based on their similar characteristics described by a homogeneity criterion, until a user-defined
threshold (known as the scale parameter) is reached. The multiresolution segmentation algorithm
ensures a regular growth of the image objects over the whole scene, and so the resulting objects have a
similar size, which is determined by the scale parameter threshold. In this way, a low scale parameter
will lead to many objects of small size and, conversely, a high scale parameter will allow the growth of
few large objects. The influence of the radiometry versus the shape in the definition of the homogeneity
criterion is determined by the weight assigned to the color and shape parameters [33].

The objective of the segmentation being the delineation of land units with relatively homogeneous
phenological patterns, the shape of the objects in the definition of the homogeneity criterion becomes
irrelevant and, therefore, we assign the total weight to the color by setting the color parameter to 1
and the shape parameter to 0. In practice, setting the color parameter to 1 means that the relative
homogeneity of the resulting image objects (land units) will be entirely based on the pixel values of the
PC images and their implicit information related to the temporal variability of the vegetation cover.
Besides, each of the 22 PC images is made to contribute equally to the segmentation by setting the
weight of each input PC image to 1.

A scale (according to Benz et al. [34]) is defined as the level of aggregation and abstraction at
which an object can be clearly described. Since our geographic objects of interest (the land units) do
not relate to an inherent scale but can rather be described at different scales of analysis, we consider
that there is no optimal segmentation scale and that different scale parameters should be tested in
each particular case to approach adequately sized, thematically meaningful land units. We assume
that the multiresolution segmentation algorithm based on homogeneity criterion delineates relatively
homogeneous objects regardless of the scale parameter used. However, some simple guiding principles
were followed in this study to choose among different scale parameters aiming at meaningful land
units (in terms of relatively homogeneous phenological patterns): Objects should be larger than the
minimum mapping unit of an agricultural land-use system (i.e., the field) and there should be a sensible
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trade-off between the number of objects for further analysis and their degree of heterogeneity. After
testing several segmentation levels, the scale parameter threshold was empirically set to 850 (unitless).

3.3. Classification of the Land Units

The classification of the land units is developed in two steps which are described in the following
sub-sections: Rule-based Classification (Section 3.3.1) and Classification through Phenological Pattern
Analysis (Section 3.3.2).

3.3.1. Rule-Based Classification

The agricultural land-cover map extracted from the TerraClass product was used for the
classification of the land units belonging to the agricultural domain (either to the crop agriculture
domain or to the livestock domain) into four major ALUS: Dominant crop agriculture system,
coexistence (crop-livestock) system, semi-intensive livestock system, and intensive livestock system.
This preliminary classification of the ALUS was performed following the decision tree ruleset
developed by Almeida et al. [35] for the localization of agricultural production systems in the Brazilian
State Rondônia at the municipal level, presented in Figure 5. This ruleset seems well adapted for the
classification of the ALUS in the Tocantins state, owing to its closeness to the Rondônia state (in terms
of land-cover and land-use systems’ characteristics).

Figure 5. Decision tree ruleset used for the classification of the land units into four major agricultural
land-use systems adapted from Almeida et al. [35].

3.3.2. Classification through Phenological Pattern Analysis

The land units belonging to the crop agriculture domain were further classified into different
cropping systems based on the analysis of their phenological patterns. The mean temporal NDVI
profile of the cropland cover inside each land unit was extracted from the MODIS NDVI time series
using the TerraClass annual agriculture class as a mask. The general NDVI variations over the growing
season were analyzed through visual interpretation of the shape of the resulting mean temporal
NDVI profiles, which revealed the principal crop development stages of the cropland cover inside
each land unit. The NDVI profiles with visually equivalent shapes were grouped together and were
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finally classified into different cropping systems by correspondence with the crop calendar of the main
cropping systems of Tocantins.

3.4. Unsupervised Evaluation of the Classification Results

Since there are no available thematically-equivalent maps with which to validate the accuracy
of the classification of the ALUS, an unsupervised evaluation was carried out with a reference map
extracted from the official agricultural statistics (area estimates of the annual crops in the municipalities
of Tocantins for the year 2014). The evaluation was only carried out for the cropping systems’ results
since no official statistics were available on the pasture and rangelands with which to evaluate the
livestock systems’ classification results.

In order to produce a synthetic reference map out of the detailed agricultural statistics dataset
that could be compared to the cropping systems in the ALUS map, we first calculated the proportion
of area occupied by each crop type in the municipalities with more than 2000 hectares of cultivated
area. The predominant crop types (accounting for most of the cultivated area) were differentiated from
minor crops and were used to characterize the main cropping system related to each municipality.

The ALUS map was finally evaluated based on the spatial agreement between the classified
cropping systems and the cropping systems in the reference map.

4. Results

4.1. Land Units

The segmentation of the high-order principal component images produced a total of 90 land
units (Figure 6), with an average size of 3090 km2, 44 km2 for the smallest one, and 15,069 km2 for the
largest one.

4.2. Agricultural Land-Use Systems

The decision tree ruleset based on the agricultural land-cover map extracted from the TerraClass
product identified a total of 44 land units belonging to the agricultural domain (114,114 km2) among
the 90 automatically delineated land units. Out of the 44 land units, 21 were classed as dominant crop
agriculture systems (11,193 km2), 15 as semi-intensive livestock systems (82,576 km2), 7 as intensive
livestock systems (18,329 km2) and 1 was classed as a coexistence system (2016 km2) (the latter
corresponding to an area where both a crop agriculture system and a livestock system are present).

Three distinct phenological patterns were identified from the analysis of the shape of the temporal
NDVI profiles of the 22 land units belonging to the crop agriculture domain. The plots of the 22
temporal NDVI profiles are presented in Figure 7 in three groups of phenological patterns.

In the first group a major single crop cycle prevails, with a peak NDVI period around February
(from day 33 to day 65) (Figure 7). Since only minor increases of NDVI appear before and after the
main growing cycle, we can consider that there is no secondary meaningful development cycle of the
vegetation cover, and that, therefore, the land units belonging to the first group are mainly related to a
single cropping system. Since the soybean crop is the dominant crop of Tocantins, the first group of
land units seems distinctive of the soybean single cropping system.

The second and the third groups of land units both show a characteristic double NDVI peak
representing separate crop cycles (Figure 7). Although the first cycle of both groups has a common
peak NDVI period around January (from day 1 to day 33), these two groups are easily dissociable
by their temporal NDVI profile shapes, for their second cycle appears with more than a month
difference between the two groups. The phenological pattern of the second group is distinctive of the
soybean–maize double cropping system, which is characterized by a summer soybean crop during the
rainy season followed by a winter maize crop. This phenological pattern exhibits low NDVI values
around Mars (from day 65 to day 81) as a result of the soybean harvest, after which the winter maize is
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usually immediately sown and subsequently harvested during June and July (shown by the low NDVI
values after day 161).

Figure 6. Land units’ boundaries over a color composition of the first three principal component (PC)
images (RGB PC2, PC3, PC4) of the 22 PC images used as the segmentation variables.

The phenological pattern of the third group is distinctive of the rice–soybean double cropping
system, which is the characteristic cropping system of the lowlands located in the southwest
of Tocantins in the Formoso river basin. This particular cropping system is characterized by a
flood-irrigated rice crop during the rainy season followed by a sub-irrigated soybean crop from
May to September (mostly for seed production). The low NDVI values around May (from day 113 to
day 145), followed by an increase until the second peak NDVI period is reached around July (from day
193 to day 225—shown in Figure 7), evidences the late second soybean crop cycle, which is unique to
the rice–soybean double cropping system.
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Figure 7. The temporal NDVI profiles’ plots of the 22 crop agriculture domain land units. The plots
show the mean (solid black curve) and the standard deviation (shaded dark grey curve) of the NDVI
pixel values inside the annual agriculture TerraClass class for each land unit against the day of the year
(DOY). A representative land-unit profile for each of the three phenological pattern groups is shown
in detail at the left and the profiles of the other land units belonging to each group are represented
assembled at their right side. The “monthly” (32-day) periods (at which the NDVI profiles peak) are
represented by shaded light grey vertical bands, and are consistent between the plots of each group.

The crop agriculture domain land units were therefore sub-classified into the three main
cropping systems of Tocantins according to the correspondence of their phenological patterns with the
characteristic cropping pattern of each cropping system. The map of the main ALUS of Tocantins with
the final classification is presented in Figure 8.

As shown in Figure 8, the livestock systems occupy a larger area (about eight times larger) than the
cropping systems, and are mainly distributed along a longitudinal transect located in the center-west
of the state. The cropping systems are concentrated in specific locations that are sparsely distributed
over most of the state—except for the northern third of the state, where the livestock systems are
predominant. The livestock systems and the cropping systems are mostly separated, except for the
only coexistence area located in the southern region of the livestock-dominant longitudinal transect.
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Figure 8. Map of the main agricultural land-use systems of the Tocantins state in the 2013–2014
growing season.

4.3. Unsupervised Evaluation of the Classification Results

The agricultural statistics at the municipal level revealed three predominant crops accounting
for more than 94% of the total cultivated area: Soybean (75%), rice (11.1%), and winter maize (8.6%).
All of the municipalities with more than 2000 hectares of cultivated area present a high proportion of
the soybean crop, with 29–100% of their cultivated area dedicated to its production (which confirms
the dominance of this crop type in Tocantins). However, three distinct classes of municipalities were
observed. A first class (composed of 15 municipalities)—where the cultivated area is almost exclusively
covered by soybean—was related to the soybean single cropping system. A second class (composed
of 7 municipalities)—where the proportion of winter maize is considerable—was related to the
soybean–maize double cropping system. Finally, a third class (composed of 3 municipalities)—where
the proportion of rice is nearly equivalent to the proportion of soybean—was related to the rice–soybean
double cropping system. The average proportion of the different crop types for each class of
municipalities is presented in Figure 9.
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Figure 9. The average proportion of the crops of the municipalities belonging to the first class (left), the
second class (center), and the third class (right), related to the soybean single cropping system, to the
soybean–maize double cropping system, and to the rice–soybean double cropping system, respectively.

The resulting classification of the municipalities is represented on a map together with the
classification of the cropping systems in the ALUS remote sensing-based map (Figure 10).

Figure 10. The spatial distribution of the three main cropping systems (a) in the reference map at the
municipal level, extracted from the agricultural statistics, and (b) in the agricultural land-use systems
remote sensing-based map. The boundaries of the municipalities are included in both maps to facilitate
their comparison.

Although the reference map and the ALUS map are produced at different scales, an apparent
coherence between both maps can be recognized for the spatial distribution of the soybean single
cropping system and the rice–soybean double cropping system (Figure 10). The spatial distribution of
the soybean–maize double cropping system shows general coherence between both maps but seems
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overestimated locally for some regions, covering some municipalities which are classified as being
dominated by the soybean single cropping system in the reference map.

5. Discussion

The study area was partitioned into relatively homogeneous land units that were linked to a
specific type of agricultural land use, resulting in a regional level agricultural land-use systems’ map.
Two livestock systems could be differentiated by the proportion of pasture and rangelands in the
land units, and the three main cropping systems of the study area could be differentiated through
the proportion of annual cropland in the land units and through their specific phenological patterns
(Figure 7); this allowed not only to characterize the land units in terms of the crop type but also in
terms of the cropping pattern.

The results showed a general agreement between the location of the three main cropping systems
in the final agricultural land-use systems map and the reference map, except for some localized
overestimations of the presence of the soybean–maize double cropping system over some of the
reference soybean single cropping system municipalities. This overestimation might be due to the
non-inclusion of the non-commercial summer grass cover crops such as millet, sorghum, or brachiaria
in the agricultural statistics and, therefore, in the reference map. Cover crops are sometimes sown
after the winter soybean harvest instead of maize, as part of the widely adopted no-tillage system in
the study area. These cover crops might contribute to the second peak of NDVI that is apparent in
the NDVI temporal profiles of the land units, which partially intersect municipalities where only the
soybean surface area has been officially censused.

The reference map that was used for the evaluation of the classification results shows that land-use
systems’ maps can be produced from the agricultural statistics. However, the thematic resolution
of this type of map is limited by the data available in the statistics, thus not accounting for certain
systems (e.g., the livestock systems). Furthermore, the spatial accuracy is greatly limited by the data
aggregation level (e.g., the municipal level)—the administrative boundaries not being representative
of the actual spatial distribution of the land-use systems. The presented remote sensing approach
produces a land-use systems’ map which overcomes these limitations, by automatically delineating
boundaries which are representative of the actual physical differences between zones related to the
temporal variations of the vegetation cover.

While the ability of principal components analysis to uncover significant intra-annual change
events out of vegetation index time series has been widely proven (e.g., [25–30]), studies mainly focus
on the low-order principal component (PC) images—generally the first three—which capture most
of the variance. We decided to include the higher-order PC images in our analysis, since they are
highly sensitive to subtle changes in the data and therefore capture change events which are localized
both spatially and in time, such as the intra-seasonal variations and rapid changes induced by the
agricultural practices. Overall, the results confirm that the high-order PC images do capture the
information related to the temporal variability of the vegetation cover, which was the essential portion
of information of the NDVI time series (represented by 27% of the total variance in the time series)
needed for the segmentation of the study site in land units with relatively homogeneous phenological
patterns. Furthermore, the phenological patterns shown in Figure 7 reflected the intra-seasonal
variations which were linked to cropping practices such as the approximate planting and harvesting
dates of different crops.

The automatic extraction of relatively homogeneous land units in terms of phenological patterns,
through a principal components analysis and an automatic segmentation, is a simple and innovative
approach that can be reproduced in other regions. This approach overcomes the potential error
propagation of the expert-based land units’ border delineation and the subjective choice and use
of variables in the traditional land-use systems’ mapping approaches. Furthermore, the presented
approach is scale-independent and therefore allows multi-scale analysis, which might help improve
the understanding of the land-use systems by characterizing them at different organizational levels.
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In addition, the decision tree ruleset used for the classification of four major agricultural land-use
systems (presented in the Figure 5—adapted from Almeida, et al. [35]), is conceived with simple
threshold rules based on the percentage cover of agricultural land, which can be easily adapted
or directly applied, to other agricultural regions. This classification is, however, dependent on a
land-cover map. Even if land-cover maps are now produced and available for many regions, their
accuracy will condition the agricultural land-use systems’ classification results, and they may be rarely
updated. Consequently, the rule-based classification step would largely benefit from the inclusion of
an automatic remote sensing-based classification method to produce timely and accurate regional-scale
agricultural land-cover maps at the field level. Some studies have shown that partitioning the study
region into sub-regions improves the accuracy of regional-scale land-cover classifications [36,37].
Hence, the presented land units’ extraction approach could therefore also be used as a preliminary step
for automatic remote sensing-based classifications, producing regional-scale land-cover and land-use
maps at the field level.

6. Conclusions

Remote sensing-derived time series of NDVI represent an important source of spectral and
temporal information related to agricultural land use and, when combined with GEOBIA techniques
in the present study, allowed the discrimination of different land-use systems (in particular, cropping
systems) at a regional scale. Remote sensing-based approaches, therefore, present a significant potential
for agricultural land-use system mapping over large areas and benefit from the spatial and temporal
continuity of the satellite data and technological advances such as the new high temporal and spatial
resolution Sentinel-2 satellite systems of the Copernicus program.

The presented approach can be potentially reproduced in other regions with minimal adaptation
to specific context, thus contributing to the development of generic and simple tools for the location
and characterization of the agricultural land-use systems across regions. This baseline-detailed spatial
information is highly valuable for further large-scale agronomic and environmental assessments.
If reproduced periodically, this type of approach can help with long-term analysis of the dynamics of
the major agricultural land-use systems, which can help monitor large-scale land-use change processes
such as cropland expansion or intensification (being particularly useful in changing regions such as
the MATOPIBA region, for effective land-use planning leading to sustainable use of the resources).
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