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Abstract This work presents a mathematical model that establishes an interesting con-
nection between nucleotide frequencies in human single-stranded DNA and the famous
Fibonacci’s numbers. The model relies on two assumptions. First, Chargaff’s second par-
ity rule should be valid, and second, the nucleotide frequencies should approach limit
values when the number of bases is sufficiently large. Under these two hypotheses, it is
possible to predict the human nucleotide frequencies with accuracy. This result may be
used as evidence to the Fibonacci string model that was proposed to the sequence growth
of DNA repetitive sequences. It is noteworthy that the predicted values are solutions of an
optimization problem, which is commonplace in many of nature’s phenomena.

Keywords Chargaff’s parity rules · Nucleotide frequencies · Fibonacci numbers ·
Golden ratio · Repetitive sequences · Optimization problem

1. Introduction

The amount of available genome data is increasing very fast due to the completion of
a host of genome sequencing projects. The careful analysis of all these data is only be-
ginning. The genome sequence by itself is meaningless, it is necessary to identify genes,
proceed the annotation, and, if possible, get some understanding of the very process re-
sponsible by the sequence formation.

Less than 25% of the fly genome is in coding regions, and the number falls to less than
3% in humans (Do and Choi, 2006). It seems that the most part of eukaryotes genomes
is “junk” DNA. Nevertheless, recently, some evidence shows that it is not the case. Mu-
tations in noncoding regions were associated with cancer (Schwartz et al., 2006). Conse-
quently, the interest in noncoding regions has increased, and the role that those regions
have in the whole genome demands a better comprehension.
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Some unexpected facts were revealed after the genome sequences analysis. For in-
stance, almost half of the mammalian genome is composed of repetitive elements (Ban-
nert and Kurth, 2004). Repetitive elements, or simply repeats, can be subdivided into those
that are tandemly arrayed and those that are interspersed. Examples of the first class are
microsatellites, minisatellites and telomeres; examples of the second class are the trans-
posable elements or transposons. Such considerable amount of repeats should play some
role in the living organisms. Actually, the influence of transposons present in the human
germ line on gene expression can be envisages by the fact that roughly one quarter of all
analyzed human promoters regions harbor sequences derived from these elements (Jor-
dan et al., 2003). However, the most part of the repetitive elements lacks any recognizable
function, and seems to be part of the famous “junk” DNA. It is interesting to notice that in
terms of those eukaryotes that have their genomes completed, there is an approximately
linear correlation between genome size and the total number of DNA repetitive elements
present, although the contribution is more significant in larger genomes (Gregory, 2005).

It is possible to propose mathematical models to the tandem repeats sequence growth.
Possibly the simplest is based on Fibonacci strings (Dress et al., 2003). In this model, the
words are considered over the genetic alphabet and start with two arbitrary strings. These
strings or fragments of them may be excised and become candidates for replication and
concatenation, and this growth process can go on iteratively by the recurrence formula:

Sa,b(0) = a; Sa,b(1) = b;
(1)

Sa,b(k + 1) = Sa,b(k) + Sa,b(k − 1) (k ≥ 1),

where a and b are arbitrary start strings, and the plus signal, +, is supposed to mean string
concatenation.

Of course, some error may be introduced in the concatenation step what turns the
problem of recognition of this process really difficult. However, if this process really
takes place, then some kind of signature should be left behind.

The initial step in any genome analysis is to perform some simple statistical measures
like frequencies and averages. This kind of research has been done even before the dis-
covery of DNA structure, and allowed some striking scientific advances. For instance, in
Chargaff (1951) observed that, in any piece of double-stranded DNA, the frequencies of
adenine and thymine are equal, and so are the frequencies of cytosine and guanine. In
mathematical notation PA = PT and PC = PG, where PA, PC , PG and PT denote the nu-
cleotide frequencies of adenine, cytosine, guanine and thymine, respectively. This obser-
vation is known as Chargaff’s first parity rule. Watson and Crick (1953), were acquainted
with Chargaff’s first parity rule, and used it to support their DNA double-helix model.
Furthermore, Chargaff also observed that the parity rule approximately holds in a single-
stranded DNA, nonetheless, the equality is not strict, but PA

∼= PT and PC
∼= PG. This

is known as Chargaff’s second parity rule. Possibly, the best explanation to this rule can
be found in Forsdyke and Bell (2004). Chargaff’s second rule has been extensively tested
(Mitchell and Bridge, 2006) and proved to hold in the majority of the genome sequences.

A particular interesting case is found in human genome. We have tested the Chargaff’s
second parity rule for each one of the 24 human chromosomes (22 + X + Y ), and it is
definitely valid. Moreover, it is known that PA + PT + PC + PG = 1 by definition (the
sum of all frequencies must be equal to 1), and assuming Chargaff’s second parity rule,
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Fig. 1 In red, the line PA + PC = 1
2 , and in green, the observed points (PA,PC) for each human chro-

mosome (colour figure online).

we get that PA + PC
∼= 1

2 or, equivalently, PT + PG
∼= 1

2 , or any possible combination. If
we plot the points (PA,PC) for each human chromosome, we get another interesting fact:
they are not evenly spread over the line PA + PC = 1

2 , but seem to be aggregated around
some very precise values. In Fig. 1, in red, the line PA + PC = 1

2 , and the green dots are
the points (PA,PC) for each human chromosome.

Although this observation is not expected, it is not completely unusual. Many phenom-
ena in nature show the same pattern, and some of them can be mathematically modeled.
Usually, those mathematical models that describe nature’s phenomena involve optimiza-
tion problems. It seems that nature is always trying to optimize itself in different contexts.
Therefore, the following question emerges naturally: Is it possible to build a mathematical
model that predicts or explain the observed frequencies?

Assuming that (i) the human nucleotide frequencies really tend to limit values when
the number of bases is sufficiently large, and (ii) Chargaff’s second parity rule is valid, we
derived a mathematical model that predicts the observed frequency values with accuracy.

2. Mathematical model

In order to understand our model, it is necessary to introduce the Fibonacci numbers
(Fibonacci and Singler, 2002).

2.1. Fibonacci numbers

In mathematics, one of the most famous integer sequence is without doubt the sequence
{1,1,2,3,5,8,13, . . .}.
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This sequence, called Fibonacci sequence, is obtained through the recurrence formula

F(n + 2) = F(n + 1) + F(n), (2)

together with the initial conditions F(1) = 1 and F(2) = 1.
The Fibonacci sequence was first described, in the Occident, by Leonardo of Pisa, also

known as Fibonacci, in his book Liber Abaci. The Fibonacci sequence appears in nature
in different contexts: sea shell shapes, flower petals and seeds, etc.

It is related to the Golden Ratio, φ, by the limit

φ = lim
n→∞

F(n + 1)

F (n)
. (3)

The Golden Ratio is associated to Beauty and Perfection, and for this reason, it is con-
ventional to find φ present in art (Leonardo da Vinci), architecture (Parthenon in Athens,
for example) and music (notably in Bartók and Debussy). There is a plenty of written
works about the Golden Ratio and the Fibonacci numbers.

2.2. Assumptions and model

The main assumption of our model is that Chargaff’s second parity rule is valid in all
human chromosomes. There are many different forms to state it mathematically. We’ve
decided to do it in the following way: the division of the frequency of one nucleotide
by the sum of the frequencies of the remaining nucleotides is in the proportion of three
Fibonacci numbers. The choice of Fibonacci numbers were based not only on their gener-
alized occurrence in nature, but also taking in account that the growth process of repetitive
sequences may be related to Fibonacci strings in some sense. It is also noteworthy that
we’ve also tried other sets of numbers, but with no success.

Consider the three Fibonacci numbers below

{F(n),F (n + 1),F (n + k)}, (4)

where n is a sufficiently large number and k = 0,1,2,3, . . . ,N ( N is finite number).
Therefore, we can write the main assumption as

x(n)

y(n) + z(n) + w(n)
∝ F(n)

F (n + k)
, (5)

y(n)

x(n) + z(n) + w(n)
∝ F(n + 1)

F (n + k)
, (6)

z(n)

x(n) + y(n) + w(n)
∝ F(n)

F (n + k)
, (7)

w(n)

x(n) + y(n) + z(n)
∝ F(n + 1)

F (n + k)
, (8)

where x(n), y(n), z(n) and w(n) represent the nucleotide frequencies, without any a priori
association, when the number of nucleotide bases is n, i.e., x(n) = xn

n
, where xn stands

for the number of nucleotide x.
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It is not straightforward to recognize Chargaff’s second parity rule in Eqs. (5)–(8). One
way to grasp the idea behind the formulas is to note that Eqs. (5) and (7) are proportional
to the same quotient ( F(n)

F (n+k)
), and the same can be said about Eqs. (6) and (8). In next

section, we will show how to get Chargaff’s second parity rule from the above equations.

2.2.1. Limit values
Now, lets impose our second assumption, i.e., that the nucleotide frequencies tend to limit
values when n is sufficiently large. Mathematically, it can be written as

x = lim
n→∞

xn

n
, (9)

y = lim
n→∞

yn

n
, (10)

z = lim
n→∞

zn

n
, (11)

w = lim
n→∞

wn

n
. (12)

It is also necessary to understand what happens with the quotients F(n)

F (n+k)
and F(n+1)

F (n+k)

when n → ∞.
Using Eq. (2) recursively, it is easy to get the following recurrence formula

F(n + k) = F(k)F (n + 1) + F(k − 1)F (n). (13)

We are particularly interested in the cases where n, the numbers of bases, is large, and
the quotient of the Fibonacci numbers tends to a limit.

Mathematically, this can be obtained as follows. Dividing (13) by F(n + k), we get

1 = F(k)
F (n + 1)

F (n + k)
+ F(k − 1)

F (n)

F (n + k)
. (14)

Taking the limit as n → ∞,

1 = F(k) lim
n→∞

F(n + 1)

F (n + k)
+ F(k − 1) lim

n→∞
F(n)

F (n + k)
. (15)

We define

λ1,k = lim
n→∞

F(n + 1)

F (n + k)
(16)

and

λ2,k = lim
n→∞

F(n)

F (n + k)
. (17)

Observe that λ1,k and λ2,k are linked to the Golden Ratio by

λ1,k = φ1−k (18)
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and

λ2,k = φ−k, (19)

respectively. It is interesting that in Dress et al. (2003) the exponential growth of the
sequence length of repetitive sequences in the Fibonacci–Cayley model is the order of φk ,
where k is related to the kth step in the Fibonacci strings concatenation process.

Thus, the Eq. (15) can be written as

1 = F(k)λ1,k + F(k − 1)λ2,k. (20)

Finally, our model can be rewritten as

x

y + z + w
= λ1,k, (21)

y

x + z + w
= λ2,k, (22)

z

x + y + w
= λ1,k, (23)

w

x + y + z
= λ2,k. (24)

As noted before, x, y, z, and w are frequencies, so we have

x + y + z + w = 1. (25)

Using Eq. (25), the Eqs. (21)–(24), we get

x

1 − x
= λ1,k, (26)

y

1 − y
= λ2,k, (27)

z

1 − z
= λ1,k, (28)

w

1 − w
= λ2,k. (29)

Equations (26) and (28) imply that

x = z (30)

and, analogously, Eqs. (27) and (29) imply that

y = w. (31)

Equations (30) and (31) are the Chargaff’s second parity rule.
Moreover, an immediate consequence of Eqs. (30), (31) and (25) is

x + y = 1

2
. (32)
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2.3. Optimization problem

Now, we have 3 equations in two variables

x

1 − x
= λ1,k, (33)

y

1 − y
= λ2,k, (34)

x + y = 1

2
, (35)

which can be rewritten as

x = λ1,k

1 + λ1,k

, (36)

y = λ2,k

1 + λ2,k

, (37)

x + y = 1

2
. (38)

This is a linear system, and, using Eqs. (20) and (32), it is not difficult to show that it is
inconsistent, independently, of k. In fact, only when k → ∞, the system is consistent, but
we are dealing with the cases where k is finite.

The Eq. (32) must be satisfied because x and y are frequencies and, by definition, the
Eq. (25) must hold. Therefore, we should try to minimize the difference between x and

λ1,k

1+λ1,k
, and the difference between y and λ2,k

1+λ2,k
under the condition that x + y = 1

2 .
This is a classical optimization problem, and can be mathematically stated as

min
x+y= 1

2

fk(x, y), (39)

where

fk(x, y) =
(

x − λ1,k

1 + λ1,k

)2

+
(

y − λ2,k

1 + λ2,k

)2

. (40)

This minimization problem is sufficiently easy to solve, because its objective function
is quadratic and the Jacobian of the constraint is full rank, therefore, the solution exists
and is unique (Nocedal and Wright, 2000).

In Table 1, we list the solutions to the first 8 values of k. It is not difficult to show that
(x, y) → (0.25,0.25) as k → ∞.

The values of Table 1 are in agreement with the observed frequencies in human chro-
mosomes. In the next section, we will present the data that supports this mathematical
model.
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Table 1 Solutions of the optimization problem for different values of k

k x x ∼= y y ∼=

0 3+√
5

8+4
√

5
0.3090 1+√

5
8+4

√
5

0.1909

1 3+√
5

8+4
√

5
0.3090 1+√

5
8+4

√
5

0.1909

2 127+57
√

5
420+188

√
5

0.3027 83+37
√

5
420+188

√
5

0.1972

3 161+72
√

5
550+246

√
5

0.2927 114+51
√

5
550+246

√
5

0.2072

4 881+392
√

5
3126+1398

√
5

0.2818 682+305
√

5
3126+1398

√
5

0.2181

5 20583+9205
√

5
75588+33804

√
5

0.2723 17211+7697
√

5
75588+33804

√
5

0.2276

6 15908+7070
√

5
59665+26683

√
5

0.2649 3(9349+4181
√

5)

119330+53366
√

5
0.2350

7 100793+45076
√

5
388045+173539

√
5

0.2597 186459+83387
√

5
776090+347078

√
5

0.2402

3. Results

We’ve performed a simple experiment using the nucleotide frequencies in human genome.
The human genome data were obtained at NCBI.1 Every so often, new human genome
versions are released. We’ve used Build 35.1. Two points are worthy to mention. First,
only partial data is available for each chromosome, i.e., there are still missing sections,
for instance, chromosome 1 is supposed to have about 263 million bases, but only about
220 million bases were available. Second, in a recent study (Salzberg and Yorke, 2005),
the very quality of the published genomes was put under doubt. The authors explicitly
state that “Finishing (genome) efforts are usually directed at closing gaps, not at fixing
mis-assemblies, and therefore, ‘finished’ genomes are very likely to contain errors of the
type we are discussing”. The errors discussed in this study were genome mis-assemblies
due repetitive sequences. In some cases, the repetitive sequence length is underestimated
what really affects our results. It is interesting to notice that the majority of biologists are
not aware of this. These two points are relevant because they may explain some minor
deviations from the predicted values.

3.1. Human nucleotide frequencies

This experiment consisted in calculating the nucleotide frequencies in all 24 human chro-
mosomes. The results are summarized in Table 2.

The nucleotide frequencies are clustered around the predicted values of Table 1. In
Fig. 2, we have in red, the solutions of the optimization problem for different values
of k, and in green, the points (PA,PC) for each one of the human chromosomes. The red
circles have their centers in the solutions of the optimization problem and they have the
same radius equal to 0.005.

1National Center for Biotechnology Information. Site (http://www.ncbi.nlm.nih.gov).
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Table 2 Nucleotide Frequencies for all human chromosomes

Chromosome PA PC PG PT k

Chrom 1 0.2916 0.2080 0.2080 0.2922 3
Chrom 2 0.3000 0.2003 0.2005 0.2997 2
Chrom 3 0.3019 0.1980 0.1980 0.3020 2
Chrom 4 0.3093 0.1905 0.1906 0.3094 1
Chrom 5 0.3020 0.1974 0.1975 0.3011 2
Chrom 6 0.3024 0.1975 0.1976 0.3023 2
Chrom 7 0.2950 0.2040 0.2040 0.2951 3
Chrom 8 0.3002 0.2001 0.2000 0.2999 2
Chrom 9 0.2933 0.2067 0.2067 0.2931 3
Chrom 10 0.2922 0.2074 0.2074 0.2928 3
Chrom 11 0.2925 0.2072 0.2075 0.2926 3
Chrom 12 0.2950 0.2040 0.2033 0.2956 3
Chrom 13 0.3072 0.1922 0.1922 0.3080 1
Chrom 14 0.2951 0.2034 0.2039 0.2974 3
Chrom 15 0.2903 0.2101 0.2099 0.2895 3
Chrom 16 0.2750 0.2040 0.2040 0.2750 4
Chrom 17 0.2740 0.2261 0.2258 0.2713 5
Chrom 18 0.3014 0.1982 0.1985 0.3017 2
Chrom 19 0.2588 0.2403 0.2409 0.2598 7
Chrom 20 0.2785 0.2194 0.2202 0.2817 5
Chrom 21 0.2940 0.2040 0.2039 0.2952 3
Chrom 22 0.2605 0.2398 0.2397 0.2598 7
Chrom X 0.3027 0.1968 0.1967 0.3033 2
Chrom Y 0.3098 0.1893 0.1889 0.3118 1

It is interesting to note that all the points (PA,PC) are near (less than 0.005) to the
predicted values.

The average values are μPA
= 0.292, μPC

= 0.207, μPG
= 0.207 and μPT

= 0.292,
which are close to the optimization’s solution when k = 3.

4. Conclusion

Using Chargaff’s second parity rule and assuming that the nucleotide frequencies tend to
limit values when the number of nucleotide bases is sufficiently large, we’ve described
a mathematical model that predicts the limit values of the human nucleotide frequencies
with great accuracy. Our mathematical model maybe be viewed as an evidence that some
kind Fibonacci string process might be involved in the DNA sequence growth, particu-
larly, in those DNA repetitive sequences which are almost 50% of the human genome.

It is also interesting to notice that the limit values are the results of an optimization
problem, and it is commonly found in many phenomena in nature.

If our two hypotheses hold and our mathematical model is correct, then it is possible
to make the following conjecture: the noncoding DNA regions play a major role in the
“optimization process” to reach the limit values predicted in our mathematical model.
This conjecture is based on the fact that about 97% of human genome is believed to be
noncoding.
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Fig. 2 In red dots, the solutions of the optimization problem for different values of k. In green, the points
(PA,PC) for each one of the human chromosomes (colour figure online).
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