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A pair of bubbles starting from rest and rising side-by-side in a liquid have been shown earlier
to display spherical and ellipsoidal shapes. In contrast to earlier computational studies on the
two-dimensional dynamics of a pair of bubbles, we study the fully three-dimensional motion of the
bubbles in the inertial regime. We reveal the destabilizing nature of the interaction between the
wakes of the bubbles, which causes them to rise in an oscillatory path. Such three dimensionality
sets in earlier in time than for a single bubble and also at a lower inertia. The interaction leads to
a mirror symmetry in the trajectories of the two bubbles, which persists for some time even in the
high inertia regime where each path is chaotic. The e↵ect of the inertia and initial separation on the
mirror symmetry of the path, the vortex shedding pattern and the attraction/repulsion between the
bubbles are examined. The bubble rise has been interestingly observed to be symmetrical about the
plane perpendicular to the separation vector for all separation distances considered in the present
study.
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I. INTRODUCTION

The phenomenon of gaseous bubbles rising together in liquid is not only encountered in many chemical and petro-

chemical applications, such as bubble column reactors, heat exchangers [1, 2], but also in natural phenomena [4].

In industrial applications, gaseous bubbles are frequently used to enhance the heat and mass transfer, and this

enhancement depends primarily on the interaction and distribution of bubbles, apart from the flow characteristics.

Thus the e�ciency of these processes can be hugely influenced by topological changes in the bubbles, and the paths

they follow. In this context, a fundamental understanding of the flow dynamics of simplified systems, such as the rising

of a single bubble or two bubbles under the action of buoyancy can be very useful to analyse the above-mentioned

complex flows involving many bubbles. Several researchers in the past have investigated the dynamics of rising of a

single bubble or two bubbles in confined and unconfined media, which are briefly reviewed below.

The hydrodynamics of a single bubble in quiescent liquid has been studied both computationally (see e.g. [5–7]) and

experimentally (see e.g. [8, 9]). The experimental investigation on this subject provides a library of bubble shapes,

including skirted, spherical cap, and oscillatory and non-oscillatory oblate ellipsoidal. Recently, Tripathi et al. [10]

conducted three-dimensional numerical simulations of an initially spherical gaseous bubble rising under buoyancy in

a liquid, and identified five di↵erent regions (shown in Fig. 1), which agree well with the gross features obtained

in the experimental study of Bhaga & Weber [9]. It was shown in the computational study [10] that in region I

(which corresponds to low Eötvös number, Eo (⌘ ⇢
o

gR2/�) and low Galilei number, Ga (⌘ ⇢
o

p
gRR/µ

o

)) the bubble

maintains azimuthal symmetry. The bubble shapes in this region are either spherical, oblate or dimpled. In region II

(high Eo and low Ga), a bubble form axisymmetrical cap with a thin skirt trailing from the main body of the bubble

(known as skirted bubble). A bubble in region III (low Eo and high Ga) rises in a zigzag or a spiral path. A region

III bubble remains its integrity but its shape changes with time due to the influence of relatively low surface tension

force, but high inertial force as compared to an axisymmetric (region I) bubble. This phenomenon, commonly known

as path instability [11–13]. A bubble in regions IV and V undergoes di↵erent types of break-ups, namely peripheral

break-up (region IV) and central break-up (region V).
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FIG. 1. Di↵erent regions in Ga�Eo plane. Region I: axisymmetric; region II: skirted, region III: zigzagging or spiralling, region
IV: peripheral break-up, and region V: central break-up. Also shown are the points A, B, C, D, E and F which corresponds
to (Ga,Eo) = (22.4,4), (32,4), (60,4), (25,1), (100,2) and (25,4), respectively. These sets of Ga and Eo are considered in the
present study. This figure is a modified plot taken from Tripathi et al. [10].

The dynamics of multiple bubbles have also been a subject of research for a long time. Many researchers, e.g.

[14–16] investigated the interactions between flow and many bubbles in the context of bubble-column reactors, bio-

reactors, etc. However, in line with the context of the present study, we only review the previous investigations

conducted on a pair of bubbles rising side by side. The hydrodynamics of two bubbles rising side-by-side not only get

a↵ected by direct interactions of the bubbles (which may result in coalescence for some parameter values), but also
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the interactions between the wakes or boundary layer developed around these bubbles, which can influence the shape

deformations and paths of these bubbles. In the present study, we are mainly interested in the later phenomenon.

The interactions and trajectories of a pair of bubbles have been investigated analytically by Leal [17] in the Stokes

flow and by a few researchers (see e.g. [18, 19]) in the potential flow regimes. The analytical solution in the Stokes

flow limit predicts the sedimentation of drops and interaction between slowly moving drops very well, whereas, the

trajectories of bubbles have been predicted well in the potential flow limit by the solution proposed by Kok [18, 20]. He

also experimentally showed that the two bubbles rising vertically in ultrapure water tend to rotate to align horizontally.

By conducting two-dimensional simulations, Chen et al. [21] found that two bubbles rising side-by-side coalesce, and

the resultant single bubble shows shape oscillations, which agrees with those observed in the experiment of Duinevald

[22]. Duineveld [22] experimentally found that the zigzagging pair of bubbles have a higher amplitude of oscillation

than a corresponding isolated bubble. He also noted that the potential theory fails to predict such motion because of

the boundary layer interactions in the experiments. This has also been supported by the experiments and numerical

simulations of Sanada et al. [23] and Legendre et al. [19], respectively. Sanada et al. [23] also experimentally

investigated the bouncing and coalescence of a pair of bubbles rising side by side in an initially quiescent liquid.

They found that for higher Reynolds numbers and low Weber numbers the bubbles approach each other and collide

resulting either in coalescence or bouncing of the bubbles. They found that the Reynolds number at which the bubbles

approach each other and collide decreases with an increase in the Morton number (Mo = Eo3/Ga4). However, they

considered only less viscous surrounding fluid (Mo < 1.14⇥ 10

�5
), and no information was given regarding the wake

characteristics. Legendre et al. [19] predicted that for every Reynolds number there exists a separation distance for

which the two e↵ects, namely irrotational and wake e↵ects due to viscosity, cancel each other and the drag of the

two bubbles becomes equal to that of an isolated bubble. Also, it is correlated with the existence of a boundary

in separation distance and the Reynolds number phase plot which separates the regions of attraction and repulsion

between the bubbles. Recently, a few researchers [24, 26] also investigated rising of a pair of bubbles in shear-thinning

fluids, and found that the attractive motion between the bubbles was increased with the increase in the shear-thinning

tendency of the surrounding fluid.

As the above literature review shows, very few studies have been conducted to investigate the detailed three-

dimensional flow physics of deformable bubbles rising in a pair. Although there exist a few numerical studies (see for

instance [27]) of two bubbles rising under buoyancy, their focus was mainly on validating the solver against existing

experimental data. A detailed numerical study of a pair of non-deformable bubbles rising in a quiescent liquid was

also conducted by Legendre et al. [19]. They used boundary fitted grids and considered only a quarter of the domain

to simulate flow past fixed spherical bubbles. On the other hand, our study is fully three dimensional, which allows

motion and deformation of bubbles in the three dimensional space. In contrast to Legendre et al. [19], we observe

the zigzagging and spiralling motion of bubbles, whereas they always predicted a steady force acting between the

bubbles. In the present work, we have investigated the rise of a pair of bubbles inside a quiescent liquid in the low

inertial (high viscosity) regime and have compared it with the dynamics observed in case of single bubble.

The rest of the paper is organized as follows. The details of the problem formulation is provided in Section II. The

results are discussed in Section III, and concluding remarks are given in Section IV.

II. FORMULATION

A schematic diagram of flow configuration considered in this study is given in Fig. 2. Two air bubbles (designated

by ‘1’ and ‘2’ of fluid ‘i’) of equal radius R rise side-by-side under the action of buoyancy inside a square channel of

width L and height H filled with a liquid (designated by fluid ‘o’). A Cartesian coordinate system (x, y, z) is used to

model the flow dynamics. Gravity acts in the negative z direction. At time t = 0, the two spherical air bubbles ‘1’

and ‘2’ are kept at (0,�q/2, 10R) (0, q/2, 10R), respectively. Initially, the air bubbles and the surrounding fluid are

stationary. Three-dimensional numerical simulations are performed to understand the rising dynamics of the bubbles.

The numerical method used is similar to the one used by Tripathi et al. [10], and is described briefly below.

In order to minimise the boundary e↵ect, the outer boundaries are kept far away from the bubbles. Free-slip and

no-penetration conditions are imposed on all the boundaries of the computational domain. The governing equations

are the equations of mass and momentum conservation, given by

r · u = 0, (1)

⇢


@u

@t
+ u ·ru

�
= �rp+r ·

⇥
µ(ru+ruT

)

⇤
+ ��n� ⇢gj, (2)

where u = (u, v, w) denotes the velocity field, in which u, v and w represent the velocity components in the x, y
and z directions, respectively. The interface separating the air and liquid phases is obtained by solving an advection
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FIG. 2. Schematic diagram showing the initial configuration of the bubbles of equal radius R (designated by ‘1’ and ‘2’) rising
under the action of buoyancy inside a square computational domain of width L and height H. The gaseous and the liquid
phases are designated by ‘i’ and ‘o’, respectively. The two bubbles are initially separated by a distance q along the y coordinate,
and placed at z = 10R initially. The value of L, and H are fixed at 40R and 120R, respectively. The acceleration due to
gravity, g acts in the negative z direction.

equation for the volume fraction of the liquid phase, c (c = 0 and 1 for the air and liquid phases, respectively):

@c

@t
+ u ·rc = 0, (3)

where p is the pressure field, t denotes time, j denotes the unit vector along the vertical direction, g is the acceleration

due to gravity, � represents the (constant) interfacial tension, � is the Dirac delta function (given by |rc|), and

 = r · n is the interfacial curvature, in which n is the outward-pointing unit normal to the interface.

The density, ⇢, and the viscosity, µ, are assumed to depend linearly on the liquid volume fraction c as

⇢ = c⇢
o

+ (1� c)⇢
i

, (4)

µ = cµ
o

+ (1� c)µ
i

, (5)

where ⇢
i

, µ
i

and ⇢
o

, µ
o

are the density and dynamic viscosity of the air and the liquid phases, respectively.

The following scaling is used to non-dimensionalise the above governing equations:

[x, y, z, q] = R [ex, ey, ez, eq] , t = R

V
et, u = V ˜u, p = ⇢

o

V 2ep, µ = µ
o

eµ, ⇢ = ⇢
o

e⇢, � =

e�/R, (6)

where the velocity scale is V =

p
gR, and the tildes designate dimensionless quantities. After dropping tildes from all

nondimensional variables, the governing dimensionless equations are given by

r · u = 0, (7)

@u

@t
+ u ·ru = �rp+

1

Ga
r ·

⇥
µ(ru+ruT

)

⇤
+ �

r · n
Eo

n� ⇢j, (8)

@c

@t
+ u ·rc = 0, (9)

where the dimensionless density and dynamic viscosity are given by

⇢ = c+ (1� c)⇢
r

, (10)

µ = c+ (1� c)µ
r

. (11)

Here ⇢
r

(⌘ ⇢
i

/⇢
o

) and µ
r

(⌘ µ
i

/µ
o

) are density and viscosity ratios, respectively. An open-source fluid flow solver,

Gerris created by Popinet [28] is used in the present study. The present numerical method uses the framework of
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a Volume-of-Fluid (VOF) approach that incorporates the surface tension term as a body force in the Navier-Stokes

equations [29]. In order to minimise the problem of spurious currents, which one encounters while dealing with large

density and viscosity ratios, a height-function based balanced-force continuum-surface-force formulation is used [30].

In order to ensure the accuracy of the results, a dynamic adaptive grid refinement is incorporated based on the

vorticity magnitude and bubble interface. This solver was also validated extensively by comparing with the previous

numerical and experimental results (see Tripathi et al. [10]). Figure 15 (see appendix) also shows a comparison of

the terminal shapes of an air bubble rising in a liquid obtained from the present solver with those of Bhaga & Weber

[9] for di↵erent values of Galilee number. The results obtained from the present study are discussed next.

III. RESULTS

The non-dimensional parameters in this problem are the Galilee number, the Eötvös number and the initial hor-

izontal separation q between the bubbles, expressed as a multiple of a bubble radius. The first two, as mentioned

above, are defined respectively by

Ga ⌘ ⇢
o

g1/2R3/2

µ
o

, and Eo ⌘ ⇢
o

gR2

�
.

Ga is a ratio of the inertial to the viscous forces in the problem. It is e↵ectively a Reynolds number, with the velocity

scale based on gravity (

p
gR). Eo is also known as the Bond number, giving the ratio of gravitational to surface forces.

Throughout this study, the values of the density and viscosity ratios are kept fixed at 10

�3
and 10

�2
, respectively.

First, we study the e↵ect of varying the Galilei number and the initial separation in turn, for a fixed Eo = 4.

A. E↵ect of bubble inertia (Ga)

The dynamics of two bubbles rising side-by-side are shown for di↵erent inertia, i.e., for Ga = 22.4, 32 and 60 in Fig.

3(a), (b) and (c), respectively. The Eötvös number is kept fixed at Eo = 4, and initially the bubbles are separated

by a distance q = 3 in the y coordinate. These values of Ga are chosen because they represent qualitatively distinct

regimes of the behaviour of a single bubble rising in an initially quiescent liquid. This can be seen in Fig. 1, where

these parameters are denoted by small circles termed as A, B and C. In the context of a single bubble, point A lies

well within region I, where the bubble would adopt an axisymmetric shape and, after some initial transience, attain a

terminal velocity. Point C lies in region III, where a single bubble would execute zigzagging/spiralling motion. Point

B lies in the latter region, but very close to the border between regions I and III. We now wish to examine how the

behaviour of the bubble gets modified by the presence of another bubble of the same size rising simultaneously. The

horizontal location of the centre of gravity of each bubble is denoted by y
CG

and x
CG

in the y and x coordinates,

respectively. These positions of the center-of-gravity of the bubbles are presented in the top and bottom panels of

Fig. 3(a), (b) and (c), respectively as the bubbles rise, as functions of the height z. The path of bubble ‘2’ has been

mirrored about the x axis, so that one may easily examine whether the dynamics is symmetric. In order to compare

the rise dynamics with the single bubble behaviour, the variations of y
CG

and x
CG

obtained for a single bubble rising

in the same liquid are plotted by black dot-dashed lines.

The e↵ect that is immediately evident is that the bubbles move away from each other progressively, i.e., their

horizontal separation in y shows an overall tendency to increase. This increase is modulated by oscillations. At low

inertia, where a single bubble would merely have travelled vertically upwards at constant velocity, the two bubbles

show small amplitude oscillations in the y-z plane as they move away from each other (Fig. 3(a)), and their motion in

the x-axis is negligible, so the dynamics remains two-dimensional. For Ga = 32 and 60 (Fig. 3(b,c)), the frequency of

pitch of the spiralling motion of the bubbles in the y-z plane is 0.12. In the case of single bubble, as well, it is nearly

the same (0.118). For Ga = 22.4, the two bubbles oscillate at a frequency 0.11 (Fig. 3(a)), but the single bubble does

not oscillates but merely migrates vertically along the axis of symmetry. The bubbles for Ga = 22.4 migrate away

from each other achieving a terminal vertical velocity and a small spreading angle (made with the z axis) of radians.

This migration is modulated by small amplitude oscillations. Thus the transition to oscillatory behaviour sets in at

a lower Galilee number than in the single bubble case. In other words, the dynamics of a single bubble for Ga = 22.4
and Eo = 4 lies completely in the axisymmetric region (region I in Fig. 1), i.e., the bubble rises along a vertical line,

whereas the two bubbles display an increasing separation modulated by small amplitude oscillations. The bubbles for

Ga = 32 also move away from each other at a spreading angle (with the z axis) of 0.017 radians, but modulated now

by high amplitude oscillations. In contrast, the dynamics of the bubbles for Ga = 60 appears to be chaotic. For two

bubbles, the amplitude of oscillations at later times are 0.175, 0.708 and 1.2 for Ga = 22.4, 32 and 60, respectively.
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FIG. 3. Variation of y
CG

(top panels) and x
CG

(bottom panels) along the vertical path of the two bubbles released side by
side. The Galilei numbers in each case are (a,d) Ga = 22.4, (b,e) Ga = 32, and (c,f) Ga = 60. The rest of the parameter values
are Eo = 4, q = 3, ⇢

r

= 10�3 and µ
r

= 10�2. The position of the bubble initially placed at positive y (bubble ‘2’) has been
mirrored about the x axis in order to compare its path with that of the other bubble. The black dot-dashed lines represent the
path a single bubble released at (x, y, z) = (0, 0, 10R) would follow.

(a) (b) (c)

FIG. 4. The top view of the trajectories of the two bubbles for (a) Ga = 22.4, (b) Ga = 32, and (c) Ga = 60. The top view of
the trajectories of the single bubble are also shown by black dot-dashed lines. The other parameter values are the same as in
Fig. 3.

In the case of a single bubble, the amplitude of oscillations are much smaller, at 0.0317 and 0.157 for Ga = 32 and 60,

respectively. Inspection also reveals that for Ga = 32 and 60, single bubble rises in a straight vertical path initially

and then oscillates later. However, it can be seen that the oscillations start from t = 0 in case of two bubbles rising

simultaneously. Thus the presence of the second bubble significantly increases the amplitude of oscillations, decreases

the time of onset of oscillations as well as decreases the Ga at which the transition from steady to oscillatory motion

occurs. These changes due to the presence of the second bubble can be directly correlated with the changes in vortex

shedding, as will be seen later. In the case shown, the paths of the two bubbles are perfect mirror images of each

other about the x-axis. When we examine the top view shown in Fig. 4(a), the systematic increase in separation

between the bubbles is apparent, and it is clear that the motion is confined to the y � z plane.

At a higher Galilei number (Fig. 3(b)) a single bubble begins to display spiralling motion. The two bubbles execute
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FIG. 5. Three dimensional trajectories of single bubble (shown in black) and bubble pair (shown in indigo and red) for Ga = 32.
The rest of the parameter values are the same as in Fig. 3.

spiralling motion too, while each increases its distance from the other. A breaking of mirror-symmetry is already in

evidence. Note that the scale for x
CG

is exaggerated compared to the one for y
CG

, but it is clear that the motion

is three dimensional now. The top view in Fig. 4(b) shows how an initial rapid repulsion is followed by a slowly

widening spiral motion. For purposes of illustration, the three dimensional trajectories in this case are shown in Fig.

5. Superimposed on the moving apart of the two bubbles, a spiralling motion is seen whose pitch is comparable to its

radius, and whose amplitude at later times is smaller than that of a single bubble. At an even higher Galilei number

(Fig. 3(c) and Fig. 4(c)) the dynamics is fully three dimensional, and the asymmetry in the tracks of the two bubbles

is very noticeable, as is the irregularity in the spiralling motion. Oscillations set in sooner for the two bubbles case

than for a single bubble.

The trajectories we have seen lead us to expect oscillations in the horizontal velocity components as well, and these

are shown as functions of time for the three Galilei numbers in Fig. 6 (a) and (b). The temporal variations of vertical

velocity component of the bubble, v
bz

are also shown in Fig. 6 (c) for di↵erent values of Ga. Interestingly, for the

higher Galilei numbers, the vertical velocity shows oscillations (Fig. 6 (c)) as well, with the bubbles alternatingly

rising slower and faster. The frequency of this variation is twice than that of the horizontal components. The in-plane

velocities in the phase portrait of Fig. 6 (d) are therefore seen to follow figures of ‘eight’. This oscillation in the

vertical velocity is caused by the breaking of left-right symmetry in the two-bubble configuration, and is absent in the

single bubble velocity pattern. It can also be seen in Fig. 6 (b,c) that only for low Galilei number (Ga = 22.4), the left
bubble achieves a terminal velocity in the z-direction (v

bz

is approximately equals to 1.05), and the variations in other

components of bubble velocity, v
bx

and v
by

are very small. The average values of v
bx

and v
by

for Ga = 22.4 are about 0

and -0.02, respectively. The motions of the right and left bubbles are symmetrical about the x axis. Thus, the bubbles

for low Ga move away from each other very slowly in the y-z plane at x = 0. In other words, for Ga = 22.4 and

Eo = 4, a single bubble rises along a vertical line, whereas the two bubbles display an increasing separation modulated

by small amplitude oscillations. The dynamics of the bubbles at high Ga values is three dimensional. The transition

from two-dimensional motion to three-dimensional motion occurs at Ga ⇡ 30 for Eo = 4. The mechanism of this

transition was studied by Cano-Lozano et al. [31, 32] via a stability analysis. Their study consisted of perturbations

on an axisymmetric bubble shape, whereas the presence of another bubbles breaks the axisymmetry of the flow around

a given bubble at all Ga. We have seen that this promotes three-dimensionality. For Ga = 60, the motion appears

to be chaotic. The dimensionless force of attraction and repulsion acting on bubble ‘1’ and ‘2’, which are defined as

m
b

a1 and m
b

a2, are plotted in Fig. 7. Here, m
b

represents the mass of each bubble, and a1 and a2 represent the

accelerations of bubble ‘1’ and ‘2’ in the y direction, respectively. Kok [18] derived the equations of motion for a

spherical bubble in the Lagrangian framework using a potential flow approximation, which was later used by De Vries

et al. [25] after taking into account the dipole interactions between a vertical wall and a bubble. Additional physics

was accounted for in these equations by the authors to obtain the repeated bouncing, sliding and lift e↵ects in the

model. The dimensionless lift force derived by De Vries et al. [25] for their experiments is given by L ⇡ ⇡U2
T

/13,
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FIG. 6. Temporal variations of the velocity, v
b

of the left bubble (bubble ‘1’) for di↵erent values of Ga in the (a) x, (b) y and
(c) z directions. The components v

b

in the x, y and z directions are v
bx

, v
by

and v
bz

, respectively. (d) Phase portrait (v
by

versus v
bz

plot). The other parameter values are the same as in Fig. 3.

which in dimensionless form is 0.24. Our bubbles are not restricted to a plane, and are seen to undergo spiralling

motion. The main force of one bubble on the other is thus in the azimuthal (horizontal component along the spiral)

rather than the radial direction (y). Accordingly the lift forces obtained in the present study (Fig. 7) are two orders

of magnitude smaller as compared to the magnitudes suggested by these authors. Also, the lift forces obtained by

Hallez & Legendre [3] were of the order of 0.05 for Ga ⇡ 100 and q = 1, which too is an order of magnitude larger

than the results of the present study. It is to be noted that in the case of Kok [18], De Vries et al. [25], and Hallez

& Legendre [3] the bubbles were spherical with no motion in the x-direction. Our study displays the importance of a

three-dimensional study of bubbles in the flow regime considered in our investigation.

In order to understand the associated shape deformation, while the two bubbles are moving away (for Ga = 22.4)
or spiralling (for Ga = 60), the spatio-temporal evolutions of shape of bubbles are shown for these Galilei numbers in

Figs. 8 and 9, respectively. Two views: tilted-side and top views are shown. The shape evolutions of the corresponding

case of rising of single bubble are also shown in the right panel of each figure. It can be seen in Fig. 8(a) that the two

bubbles deform to steady oblate shapes, which look similar to that observed for the single-bubble case. The bubbles

remain circular when viewed from the top (Fig. 8(b)) as they move away from each other. Unlike for Ga = 22.4, in
the high Galilei number case (Ga = 60), it can be seen in Fig. 9(a) and (b) that the bubbles undergo unsteady large

asymmetrical deformations, which are evident in both the tilted-side and top views. The deformations are similar to

those displayed by a single bubble, but set in sooner than for a single bubble, this di↵erence is visible at t = 10 in the

figure.

The e↵ect of one bubble on the other is most apparent in the vortex shedding patterns, as shown for di↵erent

Galilei numbers in Fig. 10(a,b,c) at t = 15 and (d,e,f) at t = 30. The positive and negative values are shown by red

and green colors respectively for !
z

= ±0.3. At the low Galilei number (Ga = 22.4; see Fig. 10(a,d)) of regime I
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FIG. 7. Temporal variations of lateral force (in the y direction) acting on bubble ‘1’ and ‘2’ for di↵erent values of Ga. The
other parameter values are the same as in Fig. 3.

(a) (b)

FIG. 8. Spatio-temporal variation of the shape of the bubble in (a) tilted-side view, and (b) top view for Ga = 22.4. From
bottom to top: t = 10, 20, 30, 40 and 50. The remaining parameter values are the same as in Fig. 3.

motion, there is no visible vorticity in the case of a single bubble, but vorticity is developed in the equatorial plane

when two bubbles rise side-by-side. Further the wake of each is distorted from a straight path by the presence of the

other wake, with the oppositely signed vortices being drawn to each other. This lead to an asymmetry in the pressure

distribution on each bubble, resulting in repulsive motion rather than a solely vertical rise. With the increase in the

Galilei number (for Ga = 32, see Fig. 10(b,e)), vortex shedding occurs in the wake regions in case of two bubbles.

It is to be noted that when we plot the vorticity contours for !
z

= ±0.05 or less, we observe vortex shedding even

in case of single bubble at Ga = 32, but vortex shedding does not appear for both the single and two bubbles at

Ga = 22.4. This is a strong evidence that vortex shedding is the mechanism behind the oscillatory motion of the

bubbles. The vortex shedding becomes more intense for high Galilei number (Ga = 60) as shown in Fig. 10(c,f).

For Ga = 60, a smaller tail (less intense) of vortex shedding appears for the single-bubble case. For the intermediate

and high Galilei numbers, the shed vortex from each bubble alternates in sign with time. This results in oscillatory

and spiralling behaviour. The shedding from one bubble moreover is out of phase with the shedding from the other

bubble and again there is a distortion in the shed pattern, resulting in overall increase in bubble separation, as was
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(a) (b)

FIG. 9. Spatio-temporal evaluations of shape of the bubble for (a) tilted-side, (b) top view for Ga = 60. From bottom to top:
t = 10, 20, 30, 40 and 50. The rest of the parameter values are the same as in Fig. 3.

seen in figure 3.

B. E↵ect of initial separation, q

We now examine the e↵ect of initial separation between the bubbles, for a fixed Galilei number of 32. The trajectories

are shown in the y� z and x� z planes in figure 11. Two features are noteworthy. The first is that the initial increase

in bubble separation is stronger when the bubbles are nearer to each other, while at later times they settle into a

trajectory which, in the y � z plane alone, does not depend on the initial separation. The frequencies of oscillations

for q = 2.2, 3 and 4 are found to be 0.1, 0.12 and 0.12, respectively. The amplitude and frequency of oscillations

appear to be insensitive to q for the parameter values considered in this study. The speed of the bubbles along the

line of separation is shown in figure 12, and it is seen that barring a phase, all three initial separations settle into the

same oscillation in the speed along the y direction. Thus, for initial separations below a threshold, the dynamics, in

the y � z plane alone, at this Galilei number follows a common pattern except at early times.

The second striking feature of this dynamics is that the three-dimensional nature of the trajectories is highly

dependent on the initial separation. Bubbles which start life close to each other, remain tightly bound in their

futures, displaying trajectories that are mere mirror images of each other, as seen in figure 11(a), top and bottom

panels. However, this symmetry is broken when bubbles start life further apart. One of the bubbles oscillates gently

into the third dimension whereas the other displays large forays in the x (cross) direction. While the dynamics remains

out-of-phase in the y � z plane, the phase in the x � z plane of one bubble is not tied to the other. The resulting

complete trajectories are seen in figure 13. For q � 3, one of the bubbles has a significantly lower spiralling radius

than the other. At all initial separations, both bubbles have smaller spiralling amplitudes than a single bubble does

under the same conditions.

C. Some other cases

In order to understand how the dynamics changes if we slightly vary the parameters, we investigate motion of

bubbles for some other sets of (Ga,Eo), designated by points D (Ga = 25, Eo = 1), E (Ga = 100, Eo = 2) and

F (Ga = 25, Eo = 4) in Fig. 1. In Fig. 14(a), the variations of y
CG

and x
CG

in the z directions are plotted for

bubble ‘1’ and bubble ‘2’ (mirrored about the x axis) for Ga = 25 and Eo = 1 (point D). This point is slightly closer

to the boundary separating regions I and II, i.e. with slightly higher inertia than the bubbles at point A, whose

dynamics is investigated in Fig. 3(a). It can be seen in Fig. 14(a) that the bubbles ‘1’ and ‘2’ migrate away from
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(d) (e) (f)

(a) (b) (c)

FIG. 10. Isosurfaces for z vorticity at t = 15 (a,b,c) and t = 30 (d,e,f) for (a,d) Ga = 22.4, (b,e) Ga = 32 and (c,f) Ga = 60.
The positive and negative values are shown by red and green colors respectively; !

z

= ±0.3. The top and bottom panels in
each subfigure are for two bubbles and single bubble, respectively. The rest of the parameter values are the same as in Fig. 3.

each other with some path oscillations at the earlier times. The wavelength of these initial oscillations are larger than

that of the bubbles at point A (Fig. 3(a)). However, the higher surface tension (low Eo) suppresses asymmetrical

shape deformations of the bubbles as compared to those associated with point A. This in turn minimises the path

oscillations of the bubbles at later times. In Fig. 14(a), the bubbles are initially separated by a distance q = 3 in the

y coordinate.

Then we investigate the rising dynamics of the bubbles at point F for two values of q, i.e. q = 4 and 2.2. The value

of Eo for point F is the same as that of point A, but Ga is slightly higher than that of point A. In Fig. 14(b) (q = 4,

point F), it can be seen that both the bubbles move away for each other progressively, and this increasing separation

is modulated by oscillations. The oscillations in the top panel of Fig. 14(b) is larger than those observed in Fig. 3(a).

In Fig. 14(c) (q = 2.2, point F), top panel shows that when we increase the initial distance between the bubbles, the

lateral motion of the bubble decreases. This can be visualised by comparing the top panels of Fig. 14(b) and (c).
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FIG. 11. Variation of y
CG

(top panels) and x
CG

(bottom panels) along the vertical path of the two bubbles released side by
side for di↵erent values of q: (a,d) q = 2.2, (b,e) q = 3 and (c,f) q = 4. Here Ga = 32 and Eo = 4 (Point B). The position of
the bubble initially placed at positive y (bubble ‘2’) has been mirrored about the x axis in order to compare its path with that
of the other bubble.
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FIG. 12. Variation of v
by

(velocity of the left bubble, bubble ‘1’ in the y direction) with time for di↵erent values of q. The rest
of the parameter values are the same as in Fig. 11.

It can be seen in the bottom panels of Fig. 14(b) and (c) that their motion in the x � z plane is negligible. Close

inspection also reveals that the amplitude of oscillations increases progressively for Eo = 4 (see Fig. 14 (b) and (c)),

while it decreases for Eo = 1 (see Fig. 14(a)). The increase in the amplitude of oscillations observed for Eo = 4 can

be attributed to the larger deformation of the bubbles (due to lower surface tension) as compared to that for Eo = 1.

Next, we investigate the dynamics at point E in Fig. 14(d). This point is located in the central part of region

III and corresponds to a set of parameters in the high inertial regime. It can be seen in the top panel of Fig. 14(d)

that the motion of the bubbles in the y� z plane is chaotic, although the paths of the two bubbles are perfect mirror
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(a) (b) (c)

FIG. 13. The top view of the trajectories of the bubble for (a) q = 2.2, (b) q = 3 and (c) q = 4. The top view of the trajectorie
of the single bubble is also shown by black dot-dashed lines. The rest of the parameter values are the same as in Fig. 11.

images of each other about the x axis till they reach upto z ⇡ 40, after that they deviate slightly from each other.

The bottom panel of Fig. 14(d) presenting the motion of the bubbles in the x � z plane shows that there is some

foray into the third dimension as they rise.
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FIG. 14. Variation of y
CG

(top panels) and x
CG

(bottom panels) along the vertical path of the two bubbles released side by
side: (a,e) Ga = 25, Eo = 1, q = 3 (Point D), (b,f) Ga = 25, Eo = 4, q = 4 (Point F), (c,g) Ga = 25, Eo = 4, q = 2.2 (Point
F) and (d,h) Ga = 100, Eo = 2, q = 3 (Point E). The position of the bubble initially placed at positive y (bubble ‘2’) has been
mirrored about the x axis in order to compare its path with that of the other bubble.

IV. CONCLUDING REMARKS

Two spherical objects rising through a heavier fluid in the Stokes flow regime would maintain their spacing. In

particular, if the two objects are initially in the same horizontal plane, they would rise in straight vertical paths

and the line separating them would be horizontal and of constant length. We ask how two identical inertial bubbles

rising under gravity would respond to each other. We focus our attention on two regimes, termed regimes I and III

in Tripathi et al. [10], in which a single bubble would display vertical rise in a straight line and oscillatory/zig-zag

motion, respectively. We find that in both regimes, the vortices shed by the two bubbles interact strongly with each

other, and the bubbles tend to move apart from each other as they rise. Further, the propensity to go to a spiralling

or oscillatory state is increased by the presence of the second bubble. The interaction between the shed vortices

organises the phase of the oscillations such that the motion of the bubbles tend to be mirror images of each other,
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except at significant inertia and high initial separation, where the motion is three dimensional and departures from

mirror symmetry are observed particularly in the plane perpendicular to the separation vector. While the presence

of the second bubble causes a drift along the separation line, it reduces the spiralling amplitude of each bubble.

Increasing inertia has the e↵ect of destabilising the steady trajectories, and chaotic motion is observed at high inertia,

in a regime where a single bubble would display periodic oscillations. Interestingly however, the mirror symmetry is

preserved in the chaotic regime as well, which speaks of a phase-locking in the vortex shedding of the two bubbles. A

stability analysis of this flow will confirm our findings.
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APPENDIX: VALIDATION OF THE NUMERICAL SOLVER

(a) (b) (c)

FIG. 15. Comparison of terminal shapes of an air bubble in water (large viscosity and density ratios) obtained from the present
numerical solver with those of Bhaga & Weber [9] for Eo = 29 and three values of Ga: (a) Ga = 2.316, (b) Ga = 3.094, and
(c) Ga = 4.935.


