

Modelling and solving logistical
problems with combinatorial
optimization
Case Parmatic

Bachelor’s Thesis
Saska Karsi
01.06.2017
Program

Approved in the Department of Information and Service Economy xx.xx.20xx and

awarded the grade

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/84757788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of bachelor’s thesis

2

Author Saska Karsi

Title of thesis Modelling and solving logistical problems with combinatorial optimization: Case
Parmatic

Degree Bachelor of Science

Degree programme Business Technology

Thesis advisor(s) Jyrki Wallenius, Juuso Liesiö

Year of approval 2017 Number of pages 22 Language English

Abstract

This paper deals with various logistical optimisation problems by modelling them with modified
versions of, or problems related to, the Vehicle Routing Problem. The problem is modelled as an
Asymmetrical Capacitated Vehicle Routing Problem with multiple vehicles, the number of vehicles
being found from solving the Bin Packing Problem.

First, a linear programming formulation is constructed. Then an object-oriented programming
implementation is derived from the original formulation, and implemented into a tool used to solve
an empirical case from a construction company. The tool used is a Java-based application developed
by the author.

Keywords Combinatorial optimization, Vehicle Routing Problem, Practical application

Table of Contents

Abstract .. Error! Bookmark not defined.

1. Introduction .. 4

1.1 Relevance of research topic and purpose of the paper .. 4

2. Theoretical background .. 5

2.1. Graphs and Hamiltonian cycles in linear programming ... 5

2.2. Graphs and the Traveling Salesman Problem .. 6

2.3. Other types of problems .. 7

3. Optimizing Logistics at Parmatic ... 8

3.1. Formulation as a VRP ... 8

3.2. Solving the Bin Packing Problem .. 11

3.3. Final Asymmetric Capacitated Vehicle Routing Problem Formulation 13

4. Solution approach ... 14

5. Results ... 16

6. Discussion .. 17

6.1. Simplifications of the model ... 17

6.2. Practical application .. 18

7. Conclusions ... 19

Appendix 1: Java Code .. 20

Appendix 2: Notation used in this paper .. 21

References .. 22

Data sources .. 22

4

1. Introduction

1.1 Relevance of research topic and purpose of the paper

Combinatorial optimization has been used widely to model and optimize logistical problems

for a substantial amount of time (Lenstra and Rinnooy Kan, 1975). This paper discusses vehicle

routing, which is of considerable importance to companies due to routing optimization’s

ability to mitigate transportation costs.

The purpose of this paper is to first consider the theory of combinatorial optimization and its

relation to modelling and solving problems in graph theory. A solution to an empirical

problem is then presented and implemented using this information.

As is often the case with modelling real-life situations as computational problems, deciding

which variables can be simplified and how is extremely important.

The ultimate research question of this paper then considers finding a balance between two

things; how can a vehicle routing problem be modelled accurately enough to be useful, while

retaining actual solvability and computability.

The final purpose of this paper is to model the real-life situation according to the research

question, and then implement the model and demonstrate functionality. Development of a

possible complete real-life application is outside the scope of this paper.

A further emphasis is put on presenting the data, and the solutions, in a somewhat reader-

friendly form.

5

2. Theoretical background

2.1. Graphs and Hamiltonian cycles in linear programming

Define ܩ = (ܸ, ܸ as a graph with vertex set (ܧ = ,ଵݒ} ,ଶݒ … , ܧ ௡} and edge setݒ =

{൫ݒ௜, ݅ :௝൯ݒ ≠ ݆, ௜ݒ , ௝ݒ ∈ ܸ}. Associate with ܧ a cost (or distance, or time) matrix ܥ = (ܿ௜௝),

where ܿ௜௝ is the edge weight, e.g. the cost of “travel” between ݒ௜ and ݒ௝ . When ܿ௜௝ = ௝ܿ௜ for

all ݅, ݆ the cost matrix, and the problem, is called symmetric.

If the graph is not complete, for the purposes of linear programming the value for ܿ௜௝ in ܥ

corresponding to edge ݁ = ௜ݒ) , ௝) can be defined as a very large number. Then, if an optimalݒ

solution is found without edge ݁, it can be considered a Hamiltonian path. If no solution

without ݁ is found, a Hamiltonian path does not exist (Jünger et al., 1995).

A Hamiltonian cycle (Figure 1) is a cycle through a graph which visits each vertex of the graph

exactly once (except the one vertex that is both the start and the end point, which is visited

twice). A Hamiltonian path is a path that visits each vertex exactly once, i.e. a Hamiltonian

cycle that does not connect back to the start point.

6

.

Figure 1: A Hamiltonian path (as well as the optimal solution). Vertices, or nodes, are denoted with P0...P7 with corresponding
x and y coordinates to their right and the edges are drawn as lines

2.2. Graphs and the Traveling Salesman Problem

The Traveling Salesman Problem (henceforth TSP) is a problem asking the following question:

“For a set of cities and the distances between, what’s the shortest route through each city

and back to the origin city, visiting each city once?” (Jünger et al., 1995).

In terms of graph theory, the problem can be formulated as finding the Hamiltonian cycle

with the least possible weight from a complete weighted graph.

7

2.3. Other types of problems

The Vehicle Routing Problem (VRP) asks the same question as the TSP, but using multiple

vehicles (salesmen). What is the shortest combined path for ܭ vehicles to visit all vertices

once starting from and ending to a central depot ݒ଴? The VRP (without other constraints) is

equivalent to a TSP with multiple salesmen. (Laporte, 1992).

A Capacitated Vehicle Routing Problem (CVRP) accounts for the limited capacity of a vehicle.

Intuitively, a vehicle cannot carry an infinite amount of cargo. Thus, the demand for a given

route cannot exceed the capability of the vehicle. A lower bound for the number of vehicles

can be found using the Bin Packing Problem, which will be explained later in this section. The

CRVP generalizes the Traveling Salesman Problem, which is a case of the CRVP where the

capacity of the vehicle is greater than the demand of the graph and ܭ = 1. (Toth and Vigo,

2002).

The Asymmetric Capacitated Vehicle Routing Problem is a special case of the VRP, where the

cost of travel from vertex ݅ to vertex ݆ is not necessarily the same as the cost from ݆ to ݅. In

other words, the symmetry requirement ܿ௜௝ = ௝ܿ௜ ∀ ݅, ݆ does not hold. The problem then

becomes non-Euclidian (and further non-metric), since it does not follow the rules of metric

space, and the triangle equality ܿ௜௞ + ܿ௞௝ ≥ ܿ௜௝ cannot be strictly held true for all ݅, ݆, ݇. This

is the way the final empirical problem will be modelled in this paper. (Toth and Vigo, 2002).

The Bin Packing Problem (BPP), with a set of identical containers and a set of items, finds out

what is the minimum number of containers with a constant volume that can fit the set of

items, each with their own volume. The problem is computationally more complicated than

it at first glance appears to be, since the number of required computational sizes increases

rapidly with the size of the item set. This is also true for almost all versions of the TSP and

VRP. (Fleszar and Hindi, 2002).

8

3. Optimizing Logistics at Parmatic

Parmatic is a small construction renovation located in Espoo. Their main logistics operator is

a single driver with a van, whose responsibilities include:

- Sourcing

- Purchasing

- Delivery

- Collections

- Waste disposal

- Warehousing

The company has one main retailer for sourcing, K-Rauta Merituuli. Work sites, of course, vary

with open contracts. For the purposes of the study a list from spring 2017 will be used (Table

2). The problem will, however, be formulated to account for any instance. Our problem deals

mainly with the sourcing, purchasing and delivery aspects, which were seen as the most

important and pressing. All other things can be outsourced or done at less busy times. The

scenario is as follows: the driver is sitting in his van at the parking lot of K-Rauta Merituuli. He

(for the interviewed driver was male) has orders to a set of locations. Items must be picked

from the hardware store and transported to the correct construction sites. Our question is;

“In which order should the driver visit the sites and resupply at the hardware store in order

to minimize the amount of time, while ensuring that every construction site gets what they

need, considering that the van cannot be filled over its capacity?”

To formulate the problem, some key characteristics of the empirical case must first be

recognized and then modelled using objective functions and constraints. Forming

computational relaxations is a secondary objective.

3.1. Formulation as a VRP

The first thing to consider is that the problem is non-Euclidean. This comes intuitively; since

the cost of a trip is more than a function of the trip’s length, the cost associated with edge ܿ௜௝

in edge set ܧ is also not the straight-line distance between ݒ௜ and ݒ௝ in vertex set ܸ.

9

Furthermore, the problem is also non-metric. Because of e.g. one-way streets and

intersections, it’s logical to think that the cost (or time or distance) from and to a place aren’t

necessarily the same. Thus, the symmetry requirement ܿ௜௝ = ௝ܿ௜ of metric space is violated.

By convention graph ܩ will henceforth be defined as ܩ = (ܸ, is a set of directed ܣ where (ܣ

arcs instead of undirected edges.

A modified triangle equality can, however, be held true. This is to say that between two places

the direct route can never be longer than an indirect route – barring unusual circumstances.

The word “modified” is used to highlight that this is not a true triangle inequality, as it is

directed and not tied to any coordinate system. Nonetheless, it’s a point of interest and also

comes intuitively – if one could get from place A to place B faster by visiting place C, one could

merely visit place C on their way to B. This is due to the way GPS pathfinding works, as there

is no real-life reason not to visit C. Again, this is not a true triangle inequality and cannot be

used to tie the problem into metric space.

The difference in vehicular maintenance and fuel costs between routes is held negligible and

the matrix (Table 1) is constructed simply using time (in minutes). These values have been

gathered via Google Maps and confirmed to be accurate during an interview with a Parmatic

delivery driver. The assumption will also be made that the loading or unloading time at any

given construction site will stay constant regardless of the order these sites are visited in, so

unloading time is excluded from the scope and is not considered in the calculations for the

optimal path.

Table 1: Asymmetric cost matrix of Parmatic supply and open construction sites. Data source: maps.google.com.

Assuming a real-world scenario such that the vehicle used has a limited capacity, it is sensible

to formulate the problem as a Capacitated Vehicle Routing Problem or CRVP (Toth and Vigo,

10

2002). While the Vehicle Routing Problem is classically considered to optimize routing for a

vehicle set ܭ ,ܭ can equally be defined as a set of trips for a single vehicle. The only discernible

difference is that a single vehicle cannot execute multiple trips simultaneously, which when

not considering on-site waiting time does not affect the total cost of the routing. Any given

trip starts at the supply point, or depot, here K-Rauta Merituuli. The depot is denoted as ݒ଴,

and without any additional constraints a single-depot Vehicle Routing Problem is equal to an

m-TSP (Multiple Traveling Salesmen Problem).

A way to model the VRP as a TSP is to introduce ܭ − 1 dummy clones of the depot. That is,

vertices with the same coordinates and other variables as the original depot. As a result, there

are ܭ identical depots. As a curiosity, the identity of indiscernibles of metric space can be

considered to be broken. Considering every visit to the depot as a separate depot is, however,

mainly a computational trick and since the problem is non-metric regardless, any and all

philosophical implications are outside of the scope of this paper.

It’s important to make sure the arcs between the ܭ depots cannot be traversed, and this can

be done by assigning them a large positive value in the cost matrix. If ܹ is then defined as

the set of all vertices, including the dummy vertices, and continue to define ܸ as the original

set without them, the constraint can be formulated as

௝ݒ௜ݒ ∀ , ൛ݒ௜ , ௝ൟݒ ⊆ ,଴ݒ} ܸ\ܹ}: ܿ௜௝ = +∞

which is equivalent to “if vertices ݅ and ݆ are both either vertex 0 or belong in the set of

dummy vertices (which include ݒ଴ as well as any vertex in ܹ that is not in ܸ), the

corresponding edge ܿ௜௝ in the cost matrix is positive infinity”. Positive infinity can

computationally be replaced with a very large number.

When interviewed, the driver said he “always tries to minimize the amount of trips to the

hardware store”, since “it takes a massive amount of time”. This is due to the size of the store,

and order-picking (although a problem solvable by this same algorithm) can, at worst, take an

hour. Thus, the edge cases will not be considered even if they might exist, and ܭ will be found

by solving the Bin Packing Problem (BPP). This means finding out the minimum number of

bins, or vans, that can supply the demand of the vertices. The problem is normally formulated

to find a partition (here a ܭ-partition of ܸ, which means splitting ܸ into ܭ subgraphs) that

fulfils the condition that every subset’s demand is smaller than the capacity of the van, but

11

that is unnecessary in our case. While it would be a possible path in the CVRP, it is not

necessarily optimal. One could, however, use a routing based on the partition as a lower

bound to the computational solution should one wish to. It should be noted that while in a

symmetric TSP or m-TSP the optimal solution will never have an edge cross another in a

Hamiltonian path, in a CRVP this is possible (and when asymmetric, it is also possible within a

“subtour”, which will become relevant later).

3.2. Solving the Bin Packing Problem

Since it does not make sense to partially fill an order if it can be avoided (that would add a

trip), the whole demand of a vertex needs to “fit” in the van.

A demand ݀ ௜ ∈ ℝା ∪ {0} is given to each vertex ݒ௜. It’s defined here as a simple non-negative

real number for simplicity. Defining the demand as specific items, each with their own

dimensions would provide questionable benefit (explained in the section relating to the

shortcomings of the model).

A capacity ܾ ∈ ℝା is given to the van. As this is the maximum amount the van can hold at one

time, the demand for a single route ݀(ܵ) (where ܵ ⊆ ܸ is used to denote the demand of a

subset, or a cut, of construction sites) cannot exceed ܾ.

With these definitions (with ݊ being the number of vertices, and noting that ݈ is the index of

the bin, or in our case van, while ݅ is the index of a vertex in ܸ) the BPP can be formulated as

min ܭ = ෍ ௟ݖ

௡

௟ୀଵ

.ݏ .ݐ

ܭ ≥ 1 (1)

∀ ݈ ∈ {1, … , ௟ݖ :{݊ = ൜

1, ݀௟ ≥ 0
0, ݀௟ = 0

(2)

 ∀ ݈, ݅ ∈ {1, … , ௜௟ݕ :{݊ ൜
1, ݅ ∈ ݈
0, ݅ ∉ ݈

 (3)

12

 ∀ ݈ ∈ {1, … , ݊}: ෍ ݀௜ݕ௜௟ ≤ ௟ݖܾ

௡

௜ୀଵ

 (4)

∀ ݅ ∈ {1, … , ݊}: ෍ ௜௟ݕ = 1

௡

௟ୀଵ

(5)

The constraints work as follows: (2) specifies that ݖ௟ is one if the demand associated with van

݈ is non-zero (if the van is required on the route). Note that ܭ in the objective function is the

sum of non-empty vans in a series of ݊ vans (some empty, some nonempty). This follows

naturally from the fact that since if a single demand is larger than the capacity, the problem

becomes unsolvable. Thus, the maximum amount of vans for any solvable problem must be

smaller than, or equal to, ݊.

Constraint (3) specifies that ݕ௜௟ is one if the demand of vertex ݅ is associated with bin ݈, that

is if the things that a construction site requires are packed in van ݈.

Constraint (4) specifies (in conjunction with the last constraint) that the sum of the demands

associated with van ݈ must be smaller than the capacity of the van. Note that if ݖ௟ is zero,

nothing can be packed into the van.

Constraint (5) specifies that for all ݅, the sum of all ݕ௜௟ must be one. In other words an item

has to be packed into exactly one van (and not zero – packing it into more than one van would

require significant effort and couldn’t improve the optimal solution).

13

3.3. Final Asymmetric Capacitated Vehicle Routing Problem Formulation

After solving for ܭ, corresponding with the cost matrix ܥ define ݊ଶ − ݊ binary variables ݔ to

indicate whether an arc belongs to a route. If arc (݅, ݆) ∈ ௜௝ݔ ,is in the optimal route ܣ (݅ ≠ ݆)

takes the value of 1; otherwise, ݔ௜௝ takes the value of zero. The values ݔ௜௝ represent the

solution graph’s adjacency matrix ܺ. The main diagonal is undefined, or defined as very large

numbers.

With these characteristics in mind, the problem can be modelled as an Asymmetric

Capacitated Vehicle Routing Problem, or ACVRP. A linear programming formulation of the

problem is as follows:

min ෍ ෍ ܿ௜௝ݔ௜௝

௝∈ ௏௜ ∈ ௏

(6)

.ݏ .ݐ

∀ ݅, ݆ ∈ ௜௝ݔ :ܸ ∈ {0,1}

(7)

∀ ݆ ∈ :{଴ݒ} \ ܸ ෍ ௜௝ݔ = 1

௜ ∈ ௏

(8)

∀ ݅ ∈ :{௢ݒ} \ ܸ ෍ ௜௝ݔ = 1

௝ ∈ ௏

(9)

 ∀ ܵ ⊆ ܸ {0, ܸ\ܹ}, ܵ ≠ ∅: ෍ ෍ ௜௝ݔ ௝݀ ≤ ܾ
௝∈ௌ௜∈ௌ̅

 (10)

14

Where the objective function, (6), is the sum of the sums of the values in the rows (or

columns) of a matrix defined as the Hadamard product (Million, 2007) of matrices ܥ and ܺ.

In other words, each value of ܿ௜௝ is multiplied by the corresponding value ݔ௜௝ , either one or

zero, based on whether the edge appears in the graph. The sum of each value in the matrix is

the total cost of the path.

Constraint (7) defines ݔ௜௝ as either one or zero, while constraints (8) and (9) specify the

degrees of the vertices in the graph: if ݔ௜௝ can only be zero or one and the sum of each row

and column in adjacency matrix ܺ is one, it follows that each vertex has one edge entering

and one edge leaving it, thus giving it a degree of 2 and applying the constraint that each

vertex can only be visited once. The last constraint, (10), is the capacity constraint, specifying

that any non-empty subset of the graph cannot be adjacent if its demand exceeds the capacity

of the van, in other words the van cannot travel through a path if the total demand is more

than it can carry.

This is a very simple formulation of the problem, with no relaxations. Implementing this as-is

with or without a lower bound will take large amounts of computational time, and enforcing

only these rules in an implementation would be considered a brute-force algorithm.

4. Solution approach

Solving the Bin Packing Problem is done through simple iteration. There are a number of

different exact and approximate algorithms one could use that are orders of magnitude

faster, but with our current problem size optimal computational efficiency is not of large

concern. Solving the BPP can be conducted by defining ܭ = {1, … , ݊} and iterating through

the ACVRP algorithm using different values of ܭ until a feasible solution is found – thus also

finding the minimum value of ܭ.

The tool uses what is effectively a brute force algorithm – while it is technically branch-and-

bound, the ordering of the subproblem queue is such that this aspect is underutilized. While

ordering would be somewhat trivial to implement, the research topic of this paper does not

15

concern computational efficiency, and the problems this algorithm is used with in this scope

are not large enough to present a problem.

The tool uses a simple subproblem queue, from which it “pops” the most recently added

subproblem (here a tour). When a tour is retrieved, it checks whether that tour is complete.

If the tour is not complete, the code iteratively adds to the queue every feasible continuation

of the tour with a new vertex. If the tour is complete, it checks the tour against the shortest

one found.

For the purposes of object-oriented programming, the capacity constraints can be equally

formulated as

ܾ௜ = ൜
ܾ௜ିଵ − ݀௜ , ∋ ௜ݒ {଴ݒ}\ܸ

1, ௜ݒ ∈ ܹ\ܸ {௢ݒ} ∪

.ݏ .ݐ

ܾ௜ ≥ 0

where ܾ௜ is the capacity of then van at vertex ݒ௜. This models a situation where if the visited

vertex is a depot (either ݒ଴ or one of the dummy vertices) the capacity of the car will be reset

back to 1, while if the vertex visited is one with a non-negative demand, the capacity will be

the previous capacity minus the demand. The capacity cannot drop below zero.

One of the largest benefits of this type of object-oriented programming (where the van

“traverses” the vertices instead of maximising a simple objective function, thus recognising

the degree of a vertex as two when only one edge is traversed both ways) is the ability to do

single-vertex routes. This is important in modelling a real-world scenario where a driver can

leave a depot, make a single delivery, and go straight back to the depot. This is necessary e.g.

when the demand of a single construction site fills the whole capacity of the van.

16

5. Results

Figure 2: Program output visualisation. Background image: maps.google.com

This is the output visualisation for a ܭ = 3 problem. It should be noted that while the arcs

drawn are purely Euclidian straight line distances between the vertices, they are purely for

demonstrating the path. The cost matrix used for the calculational edges can be found in

Figure 2. The visualisation lacks directional edges, but the directional path can be read from

the text output. The program prints the vertices in order of traversal and the values of ௜ܲ in

the program output correspond with the values in the vertices of the visualization and the

vertex set ܸ.

Program output:

P0 (524, 662) d = 0.0
P5 (437, 639) d = 0.39
P4 (371, 631) d = 0.395
P3 (533, 63) d = 0.165
P1 (524, 662) d = 0.0
P8 (382, 783) d = 0.485
P7 (796, 709) d = 0.495
P2 (524, 662) d = 0.0
P10 (887, 550) d = 0.25
P9 (934, 291) d = 0.195
P6 (963, 187) d = 0.435
P0 (524, 662) d = 0.0
122.0

17

This is the directed path. It contains a vertex index in the form ௜ܲ, the coordinates (in relation

to the program drawing board – not a real-life coordinate system) and a value for the demand

of the vertex, ݀. The last number is the total cost of the route. The sum of all demands in this

example is 2.8 and the program found a solution where ܭ = ௠௜௡ܭ = 3. Three depot vertices

are then defined first, here ଴ܲ, ଵܲ and ଶܲ (bolded in the text output and drawn in the same

coordinates on the graph in order – thus in they are all at the circle marked ଶܲ in the

visualization). None of the subtours between depots are larger than ܾ = 1.

The route can either be read from the visualization or the list of construction sites (either a

row or column in Table 1, noting that the depot, K-Rauta Merituuli, has a final index of ଶܲ. In

this particular instance, the driver should travel from the depot, drive the route

Eestinkallionkoulu-Nöykkiölaakson koulu-Karamzininkoulu, resupply at the depot, drive the

route Espoonlahden tukikohta-Toppelundin Päiväkoti, resupply once more, drive the route

Tapiolan uimahalli-Perkkaanpuiston Koulu-Mäkkylän päiväkoti and finally return to the depot.

Note that the order the routes are taken in is irrelevant, i.e. as long as the sites in a route are

taken in the correct order, the routes themselves are interchangeable. The total length of all

three routes, the value of the objective function, is 122.0 minutes.

6. Discussion

6.1. Simplifications of the model

The model is, like all models, a simplification of the real-world situation. Some of these

simplifications are considered here.

Firstly, the model does not consider waiting time. The cost of late delivery can be immense,

especially in this type of construction site setting where a crew of five to ten people can be

waiting for their supplies with no work capability whatsoever. The cost of lost man hours can

be substantial. This could be solved with simple prioritisation, or by including it in the actual

objective function. With proper planning, however, these situations are rare, and were thus

excluded to make constructing an exact (rather than a heuristic) algorithm simpler.

Second, the capacity and demand are given as simple real numbers between zero and one.

This is a necessary simplification with little drawbacks – constructing an exact algorithm for

18

what can and cannot fit within a van from a hardware store catalogue of tens of thousands of

items is not only near impossible, but also a futile effort. The same exact algorithm would also

need to be followed by whoever was loading the van, and that does not reflect a real-life

scenario. In the real world construction materials can also vary from perfect cubes to sheets

of 3200݉݉×1200݉݉×6݉݉ to massively long timber. Multiple variables, like fragility and

transit orientation, would also need to be considered. The core problem, then, is whether two

distinct sets of items can feasibly be hauled together by the same vehicle.

6.2. Practical application

The driver, when presented the tool and interviewed a second time, said that it has potential

to considerably benefit the operation and flow of Parmatic’s limited logistical capability,

particularly material supply. Particular interest was shown in the capability of the software to

split the construction sites to multiple routes, since it is possible Parmatic will be hiring one

or more drivers in addition to the current one. As shown previously, the algorithm will work

identically whether considering one van and multiple trips, or multiple vans each doing a

single trip.

Before a real-life application can be implemented, however, a few shortcomings need to be

addressed.

Firstly, data input is currently painfully slow and it is hard to gain much from the model and

its implementation in its current state. The scope of this paper is, however, a single instance.

Automatically querying an outside map API (application programming interface) for travel

durations in real-time would be trivial. The list of vertices could then equally trivially be

transmitted to the same API to get pre-routed site-by-site GPS navigation.

The second problem is less fatal and was suggested by the driver. Currently, the situation is

modelled in a way that requires the route to start at the depot. This is not always the case,

and it would be helpful to be able to start routing from anywhere. A possible method for

creating a routing based on the current position of the vehicle is to read current GPS

coordinates through an API and create the first depot in the algorithm using those coordinates

in creating the cost matrix.

19

Any further required depots would then be given the coordinates of K-Rauta Merituuli, as

before.

Both of these shortcomings are possible venues for further research, the second being more

relevant to the same principles already applied in this paper. The first one is largely a question

of interfacing.

7. Conclusions

This has been a study into how combinatorial optimization can be used to model and solve

logistical problems. Doing this is often deceptively complex. A relatively accurate model of

the core problem was formulated with an acceptably low number of variables. This model

was then implemented and used to solve a problem instance to demonstrate functionality.

The algorithm worked as expected, producing the optimal result with the given graph, cost

matrix and set of demands.

Computationally, with modern computers, solving instances of this size is practical even using

brute force with no significant relaxations (even though all optimization problems considered

in the paper are computationally extremely difficult and resource-consuming – the technical

term is NP-Hard). Larger problems, or similar problems in larger volumes, could require some

optimization of the algorithm. For practical applications the algorithm would also most likely

run on a mobile platform or on a server (few drivers carry a computer around).

Real life applications would also require connectivity with a map API to be particularly useful.

Implementing this connectivity would, however, be relatively trivial. A way to add to the

functionality of the application would be the ability to start vehicle routing from any given

point on a map instead of solely the depot.

20

Appendix 1: Java Code

The appendix contains only the core methods for minimizing the objective function.

public void optimize() {
 minTour = new Tour();
 double minTourLength = Double.MAX_VALUE;

 tours = new LinkedList<Tour>();

 Tour t = new Tour();
 t.addVertex(vertices.get(0));
 tours.add(t);

 while (!tours.isEmpty()) {
 t = tours.pop();

 if (getTourBound(t) >= minTourLength) {
 continue;
 }

 // if tour is hamiltonian path, add vertex 0
 if (t.getVertexAmount() == n) {
 t.addVertex(vertices.get(0));
 }

 if (t.isComplete() && t.getLength() < minTourLength) {
 minTour = t;
 minTourLength = t.getLength();
 continue;
 }

 double capacity = t.getCap();
 for (int i = 1; i < n; i++) {
 Vertex v = vertices.get(i);
 if (v.getD() > capacity) {
 continue;
 }

 // if tour doesn't have vertex v, add v
 if (!t.containsVertex(v)) {
 LinkedList<Vertex> l = new LinkedList<Vertex>();
 l.addAll(t.getVertexList());
 l.add(v);

 tours.add(new Tour(l));
 }
 }
 }

 System.out.println(minTour.toString());
 runCount++;
 avg += (minTour.getLength() - avg) / runCount;

 System.out.println("Average: " + avg);
 }

21

 private double getTourBound(Tour t) {
 // Get current tour length
 double bound = t.getLength();
 double min = Double.MAX_VALUE;

 // distanceMatrix size is always n*n so laziness in the iterator.
 // t.getVertexAmount() returns
 // the amount of vertices in the tour so the iterator adds the
 // minimum amount to t.getLength(), equaling the bound.
 for (int i = t.getVertexAmount(); i < n; i++) {
 for (int j = 0; j < n; j++) {
 double d = distanceMatrix[i][j];
 if (d < min) {
 min = d;
 }
 }
 bound += min;
 }

 return bound;
 }

Appendix 2: Notation used in this paper

 Graph with vertex set and either an edge set or an arc set ܩ

ܸ Vertex set

 ଴ being the depotݒ ௜ Vertex ݅ withݒ

 Edge set ܧ

݁ Edge

 Cost matrix ܥ

ܿ௜௝ Cost between vertices ݅ and ݆ in ܥ

 Number of vehicles or trips ܭ

 Arc set ܣ

ܹ Vertex set with dummy vertices

ܵ Subset of ܸ

݀௜ demand at vertex i

ܾ capacity of van

ܺ Adjacency matrix of the solution graph

22

References

Fleszar, K., Hindi, S.: New heuristics for one-dimensional bin-packing. Computers & Operations
Research 29 (2002) 821-839

Jünger M., Reinelt G., Rinaldi G.: The Traveling Salesman Problem. Handbooks in OR & MS, VoL 7,
1995.

Laporte, G.: The Vehicle Routing Problem: An overview of exact and approximate algorithms.
European Journal of Operational Research 59 (1992) 345-358

Lenstra J.K., Rinnooy Kan A. H. G.: Some Simple Applications of the Travelling Salesman Problem.
Opl. Res. Q. Vol. 26, 1975. 717-733

Million, Elizabeth. The Hadamard Product. April 12, 2007

Toth P., Vigo D.: Models, relaxations and exact approaches for the capacitated vehicle routing
problem. Discrete Applied Mathematics 123, 2002. 487-512

Data sources
maps.google.com

