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Abstract 

Throughout recent years, a public awareness of climate change and a social trend for preserving 

the environment have emerged. Transport sector is the principal contributor to greenhouse gas 

emissions, consequently electric buses are a great opportunity to reduce these emissions and fossil 

fuel dependence. To increase the competitiveness of electric buses, batteries with an accurate size 

are needed in order to optimize the charging infrastructure and reduce the total costs. Therefore, it 

is necessary to analyse the influence of certain parameters on electrical consumption. 

 

This thesis evaluates the impact of passenger loads on the electrical consumption of an electric city 

bus and provides a reliable energy consumption forecast. An electrical consumption sensitivity 

analysis was created with the number of passengers in the bus as uncertainty. This uncertainty is 

stochastically modelled for each stop in the bus route based on actual data and it is evaluated with 

the Monte Carlo method. In addition, the uncertainty in the number of stops is also considered. 

 

An algorithm for passenger load calculation was created in Matlab, based on driving cycles 

generated randomly (with a random number of stops and different speed profiles). Passenger data 

for each bus stop were represented by a normal probability distribution and they were related to 

each other using a multivariate normal distribution. These are the uncertain inputs of the model, as 

well as the number of stops which was modelled previously by another normal distribution. A 

validated electric bus model created in Simulink was simulated by means of the Monte Carlo 

sampling method, varying in each iteration the driving cycle and passenger flow introduced.  

 

The results obtained for a particular bus route, described as a probability distribution, define an 

electrical consumption with an average of 0.549 kWh/km. It is also possible to assure with an 80% 

of probability that the electrical consumption in this route will be between 0.485 kWh/km and 

0.613 kWh/km. These results represent an electrical consumption forecast for the route, including 

all the possible outcomes taking into account the uncertainties of the model. Moreover, the analysis 

of the results indicates that the passenger load has a clear influence on the bus electrical 

consumption that increases with the number of passengers. In addition, the results show a clear 

influence of driving cycle average speed and number of stops on the consumption. Electrical 

consumption increases as the number of stops increases and as the average speed decreases. The 

results also confirm that Monte Carlo method provides an efficient tool for estimating the 

consumption of an electric city bus since it enables to obtain results for the different possible 

scenarios and cover all the variations. 

 

Keywords Battery electric city bus, passenger load, Monte Carlo method, electrical 

consumption, simulation model 
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1 Introduction 

Nowadays, society must cope with the continuous growth of the fuel price [1] and its future 

exhaustion, as it is not a renewable resource. Not less important are the pollution problems 

associated with the use of fossil fuels such as the greenhouse effect, acid rain or deforestation 

[2]. Due to these concerns and to the growth of the energy consumption a change is 

necessary, not only in the way to obtain enough energy in order to satisfy the demand, but 

also in its efficient and intelligent use.  

 

Within this issue, the role of transport has a significant importance as the global number of 

vehicles is increasing mainly due to emerging countries such as China and India [3]. This 

represents a huge increase in CO2 emissions and a decrease in oil reserves. Due to this 

increase in pollutant emissions, urban mobility will be reduced within urban cities, as it is 

already happening in cities such as London [4] and in the future, more cities will promote 

the mobility reduction of high emission cars from their urban areas.  

 

To solve the problems that arise with conventional internal combustion engine vehicles, 

ecological vehicles are being developed. These are hybrid vehicles (internal combustion 

engine and package of batteries) and pure electric vehicles. Hybrid vehicles are a short-term 

solution, although in the medium term the best solution is electric vehicles due to their zero 

emissions. For a long-term solution and definitive implementation of these vehicles, high 

investments are required in order to adapt and increase the electric network. Therefore, the 

electric vehicle presents itself as a future alternative as far as urban transport is concerned, 

since it brings with it a considerable reduction of the environmental pollution.  

 

For more than ten years, electric vehicles have been available as passenger cars and heavy 

vehicles. However, in most cases, their life cycle costs are still higher than those of 

conventional vehicles [5]. Regarding the electrical buses, even though the capital costs are 

high, their lower energy consumption significantly reduces the operating costs converting 

them in a potential alternative for conventional fossil fuel city buses. To increase the 

competitiveness of the electric buses, the total costs need to be reduced. This can be done by 

optimization of the route as well as the design of the charging infrastructure, since the 

number of charging points has a significant influence on total costs [6]. To carry this out, 

accurate models of electric buses are needed in order to perform reliable simulations.  

1.1 Background 

Since 1970´s, when the interest in hybrid vehicle simulation grew in order to predict the 

performance before prototyping phase [7], modelling and simulation has become an 

important tool for electric vehicle design. Since then, several computer programs have arisen 

to describe the operation of electric vehicles, including: SIMPLEV [8], MARVEL [9], 

CarSim [10], JANUS [11], ADVISOR [12], Autonomie [13] and Simulink [14]. These are 

MATLAB-based software developed for automotive control-system design, simulation and 

analysis. 

 

A large number of analyses and simulations have been performed using driving cycles based 

on actual data, noting the great influence of the driving cycles on the consumption and the 

traction performance of vehicles [15]. Although consumption and efficiency of a city bus 

are highly dependent on engine and vehicle characteristics, other external factors can modify 

the consumption such as travel speed, number of stops, traffic state, road grade and passenger 
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load [16]. In order to develop methods for consumption prediction and optimization, it is 

necessary to make a quantitative exploration of the effects of these factors. Following this 

trend, Joel Anttila in his Master´s Thesis [17] developed a validated energy flow model of a 

battery electric bus by means of Autonomie program, run in MATLAB. Moreover, a driving 

cycle sensitivity analysis was done indicating the influence of the uncertainty in the number 

of stops in energy consumption. 

 

In addition to the number of stops, one of the most important sources of uncertainty that 

affect the electric consumption is the passenger volume [18]. However, prediction about the 

passengers´ arrival to each stop has not been deeply studied before [19]. Studies about 

passenger arrival can be found only to predict the number of vacancies of a bus or the transit 

demand [20], but not to analyse their influence in the vehicle consumption. For example, in 

the study realized in [20], Kalman-filter algorithms are applied to make predictions about 

travel times and arrival times. There are also several studies about the impact that boarding 

and alighting activities have on the bus dwell time and therefore on driving time. There is a 

study where the analysis is carried out at a microscopic user-by-user level with an electronic 

smart card system [21]. Furthermore, origin-destination matrices have become a requirement 

in transport planning [22]. These dynamic passenger matrices describe the demand between 

different transportation zones and they are helpful to predict the passenger arrival at each 

stop. According to the available literature, most of the studies carried out on passenger loads 

are aimed at transport planning [23], [24]. 

 

On the other hand, there is little published work about the influence of passenger loads on 

bus fuel consumption [25], although a high correlation between fuel consumption and 

number of passengers has been found [26]. However, generally in consumption modelling, 

passenger load is neglected and a fixed vehicle mass is used [25]. Therefore, there is a gap 

in this issue and that is the motivation of this research. 

1.2 Research Problem  

Knowing the variation of the electric consumption, size accurate batteries could be designed 

and charging stations could be better settled [18]. This optimization leads to improvement 

in cost and efficiency of the electric bus, as well as reduction in environmental pollution.  

 

As the objective is to assess the vehicle performance, one of the main factors involved (apart 

from the design aspects) is the environment where the electric vehicle is moving through 

and some characteristics of its movement such as speed, accelerations and decelerations. 

This can be analysed by using the driving cycles which represent the speeds to which a 

vehicle would circulate under certain traffic conditions or environment. Moreover, as it has 

been explained above, it is important to analyse as well the influence of the mass fluctuations 

in the bus, caused by the passengers, as a factor with great effect in consumption. The 

quantity of passengers and their weight affect the driver´s behaviour as the vehicle´s speed 

changes. 

 

Taking into account the importance of the passenger factor, the research problem addressed 

in this thesis is the energy consumption quantification of an electric city bus depending on 

the mass of the bus, through the variation of the number of passengers inside the bus. 
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1.3 Objective and Scope 

Hence, the aim of this thesis is to evaluate the impact of passenger loads on energy 

consumption of an electric city bus and provide a reliable energy consumption forecast. To 

achieve that goal, an energy consumption sensitivity analysis is created, with the number of 

passengers in the bus as uncertainty. This uncertainty is stochastically modelled for each 

stop in the bus route and it is evaluated with Monte Carlo Method.  

In addition, the uncertainty in the number of stops is also considered in this study. 

 

The scope of research includes the statistical analysis of passenger fluctuations in each stop 

of the bus route, followed by the creation of the passengers flow for each driving cycle. In 

addition, a mathematical algorithm to calculate the mass for the energy flow simulation 

model is developed, and the consequent simulation and validation of the model are done. 

Finally, electric consumption forecast is estimated by means of Monte Carlo method and the 

results are analysed. 

 

This study has some limitations, as only the uncertainties in the number of stops and 

passenger load are taken into account. Other influential factors such as traffic or road grade 

are left out of the study. 

 

On the other hand, only one type of electric city bus configuration and one specific route 

fragment are studied, hence the forecast obtained with this analysis is only valid for these 

particular bus and route. Accordingly, passenger load sensitivity analysis must be carried 

out for each bus and route combination individually. Thereby, more size accurate batteries 

will be designed, depending on the bus and the route that it follows. 

 

Furthermore, the data acquired for the study is slightly limited, and only the number of 

passengers inside the bus after each stop was registered. Thus the exact number of passengers 

boarding and alighting in each bus stop is not known, just the difference between them. 

 

Another limitation is that the electric bus model used to perform the simulations was 

computed with some simplifications, and only longitudinal dynamics were taken into 

account, excluding all lateral effects.  

 

Moreover, only the mass influence on electric bus energy consumption is analysed, thus the 

number of boarding and alighting passengers in a bus stop is only used to determine the flow 

of passengers inside the bus and to be able to calculate the mass during the driving cycle. 

However, the influence of boarding and alighting of passengers on the dwell time and route 

time is not taken into account. 

1.4 Methods 

The route analysed in this thesis is an urban bus route operated by line 11 in Espoo, Finland. 

Only eight bus stops of the route and their corresponding passenger fluctuations are 

considered in this study. 

 

First of all, the data are statistically analysed with Matlab, creating a probability distribution 

for boarding and alighting passengers in each bus stop. Subsequently, these distributions are 

used to build an algorithm that defines the passengers flow according to the driving cycles 

generated in reference [17].  
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On the other hand, the bus mass is defined for each driving cycle, taking into account the 

passengers flow, and it is included in the energy flow electric bus simulation model. This 

electric bus model was done in Simulink and it is run with Matlab.  

 

Finally, Monte Carlo method is used to analyse the sensitivity to passenger flow in the 

driving cycles, and thus avoid measuring the passengers in hundreds of driving cycles. In 

this way, the number of passengers is sampled with this method to quantify its influence on 

the electrical consumption. 
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2 Literature Review 

In this chapter, a general overview of the drivetrains incorporated into transit electric buses 

is presented, focusing on battery electric buses, hybrid electric buses and fuel cell electric 

buses. In addition, Monte Carlo method is described, as well as the three steps needed to 

perform the Monte Carlo simulation.  

2.1 Electric and Hybrid Electric Buses 

Electric vehicles are those that use an electric motor to propel the vehicle, regardless of the 

power source used. They can be classified into two large groups: purely electric vehicles 

(EV) and hybrid electric vehicles (HEV). In both cases, several energy storage systems can 

be used such as battery, ultracapacitors, fuel cell, or solar cells, among others. The model of 

bus used in this thesis is a battery electric bus. 

 

The development of electric buses has somehow followed the development of electric 

passenger cars, which began receiving greater attention in the 1990s [27]. During that 

decade, most of the research on electric buses was focused on pure battery-powered systems. 

However, from the late 1990s, hybrid systems began to attract more attention for both heavy-

duty and light-duty vehicles [27]. Hybrid systems with diesel or gasoline engines combined 

with an electric motor arose as a viable alternative to solve the limitations of battery 

technology available in those days. 

 

Nowadays, hybrid buses have some of the benefits of electric vehicles, such as the higher 

efficiency and the reduction of emissions and noise, while maintaining the performance and 

vehicle utility of diesel fuel based buses. However, emerging battery storage systems, such 

as ultracapacitors, flywheels, hydraulic systems and lithium batteries, are attracting 

continued research and investment to improve their characteristics [27]. Also, investigators 

have considered fuel cells development as the next phase of electric power source, and transit 

buses have been used as a test bed to advance this technology toward commercialization 

[27]. 

 

This section will present a general overview of the drive technology incorporated into transit 

electric buses. Furthermore, the main characteristics of each technology and the advantages 

and disadvantages of electric and hybrid vehicles will be stablished. In this section only 

electric buses with on board power source are considered, leaving the electric trolleybuses 

outside the scope of this review, as they draw electricity from overhead catenary lines [27]. 

 

Therefore, the three types of electric drive systems that are here considered are battery 

electric buses (BEB), hybrid electric buses (HEB) and fuel cell electric buses (FCEB), since 

they are the ones that are currently being implemented in transit buses [27]. 

2.1.1 Battery Electric Buses 

Battery electric buses are often called pure electric buses because they are powered only by 

the energy stored in the battery. The battery pack may be rechargeable or may be changed 

when the batteries are depleted. 

 

The drive system for a BEB consists of a battery pack that provides energy storage, an 

electric motor that is powered by that energy and a control system that governs the operation 
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of the vehicle [27]. EV are, from the point of view of the mechanical components layout, 

simpler than the current internal combustion vehicles. The internal combustion vehicle has 

many more components and these are subjected to higher wear and tear. The BEB powertrain 

configuration is shown in figure 1. 

 

 
 

Figure 1. Battery electric bus powertrain configuration [28] 

 

Electric buses offer a number of advantages over conventional buses. First, the efficiency of 

the electric motor is higher, and produces less noise than an internal combustion engine 

(ICE). Electric motors provide the highest torque at low speeds, which leads to better 

accelerations from a stop. The motors used in EVs cover the different existing technologies, 

both DC and AC. However, asynchronous motors have been consolidated as the most 

suitable for electric mobility due to their robustness and simple maintenance. Electric 

vehicles also improve energy efficiency with the addition of regenerative braking, which is 

one of the key benefits of electric drive systems [27]. 

 

Regenerative braking systems (RBS) are braking mechanisms that allow the generation of 

electric energy from the kinetic energy of the vehicle to recharge the batteries [29]. The idea 

is to recover part of the energy involved in braking. In friction brakes of conventional 

vehicles this energy is released as heat, since there is no mechanism to recover it [27]. In the 

case of electric powertrains, the electric motor itself assists in braking, acting as generator 

during this braking process. An electric motor is basically a generator, to which an electric 

current is applied instead of generating it. In electricity generation, the current flow is 

opposite in comparison to what happens when the generator acts as a motor, producing now 

a torque applied in the opposite direction of travel. It is important to notice that the RBS does 

not completely replace the conventional friction brake, since at low speeds it loses 

effectiveness. In addition, the system may fail and it requires a brake backup. Furthermore, 

an emergency may require too much braking above the system capacity that can only be 

achieved through conventional braking [29]. 

 

Battery electric propulsion systems are a relatively new and promising technology. In 

contrast, there is still concern about their energy capacity to feed large city bus throughout 

the day [30]. Until recent years, electric buses have been limited to small capacities (from 7 

to 9 meters long) and with maximum speeds of 40 to 65 km/h because they were conditioned 

by the volume and weight of the on-board battery. Nevertheless, some technological 

innovations have been carried out to reduce the weight of the buses, e.g. the modification of 

the chassis material by a lighter one [30]. On the other hand, the growing development in 

battery manufacturing technology is significantly increasing the range and power of batteries 
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and it is expected to continue to do so in the future. Despite this, battery-powered buses have 

not been able to reach enough scope at a commercially competitive cost. As a result, battery 

electric buses nowadays are mainly found in the medium-duty bus market [27]. In contrast, 

the main advantage of battery electric buses is their independence from fossil fuels and the 

reduction of pollutant emissions. 

2.1.1.1 Battery Technology 

As mentioned above, battery technology improves year by year and can be considered the 

most critical component in the battery electric propulsion system. The batteries contribute to 

a significant part of the weight of the bus and their performance can vary depending on 

several factors [30]: 

 

• Specific energy: the ratio between the battery's energy output and its mass, typically 

measured in watt-hour per kilogram. 

 

• Specific power: the ratio between the battery's power and its mass, expressed in watts per 

kilogram. 

 

• Cycle life: the number of complete discharge-recharge cycles a battery can go through 

before its capacity declines to 80 per cent of its original capacity. 

 

• Calendar life: the amount of time that a battery can provide power and capacity for its uses. 

 

Table 1 shows the characteristics of existing battery technologies for BEBs. 

 

Table 1. Battery technology for battery electric buses (table is based on [30]) 

 

Chemical 

Composition 

Specific Energy 

(Wh/kg) 

Specific 

Power (W/kg) 

Cycle Life 

(number of cycles) 

Relative 

Cost 

Lead Acid 35 200 500-800 $ 

Nickel-

Cadmium 
30 260 1000 $$$ 

Nickel Metal 

Hybrid 
45-75 850 900 N/A 

Sodium Nickel 

Chloride 
995 170 1000 $$$ 

Lithium-ion 100-180 700-1300 1000-4000 $$$$ 

USABC 

Minimum 

Goals 

150 300 1000 $ 

USABC Long-

Term Goals 
200 400 1000 $ 

 

Figure 2 represents a roadmap with the evolution of battery technologies for electric buses 

and their current state, differentiating between mature technologies, new technologies 
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already introduced and promising technologies in development. The strengths and 

weaknesses of each technology are also shown in the figure. 

 

 
 
Figure 2. Evolution of battery technology for battery electric buses (figure based on 

[30]) 

 

Usually, BEBs have a large amount of batteries to reach a sufficient driving range. This leads 

to the increase of bus weight and space required in it. To solve this problem, the 

manufacturers produce electric buses with high-power ultra-fast battery charging systems 

[31]. 

2.1.2 Hybrid Electric Buses 

As noted above, HEB seeks to combine the advantages of electric traction such as quiet 

operation, higher torque and lower emission levels; with the operating range of fuel sources. 

A hybrid system combines propulsion of an electric motor with another source of energy 

such as an ICE engine, a turbine or a fuel cell stack [27]. In the case of hybrid electric transit 

buses, electricity and an ICE are typically the two sources of power [30], and therefore they 

contain two different engines: an ICE engine and an electric motor. 

 

In HEVs the most used fuel for the ICE engine is low-sulphur diesel, although other sources 

of energy can also be used such as gasoline, compressed natural gas (CNG), biofuels or 

biogas [27]. Hybrid transit buses commonly use a diesel engine as well. Gasoline engine and 

CNG have been also introduced in transit buses [30], but they are less frequently used. The 

majority of hybrid transit buses combine these engines with an electric motor and batteries, 

although in some cases hybrid buses replace the battery packs with an ultracapacitor. This is 
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an advanced energy storage system and, unlike a conventional battery, ultracapacitors have 

a longer life and provide a higher power density (while batteries provide a higher energy 

density) but only for a short period of time [27], [31]. 

 

The combination of conventional vehicles and electric vehicles gives hybrid bus operators 

the advantages and disadvantages of both types of vehicle. On the one hand, by having an 

internal combustion engine the operational range of the vehicle is no longer a problem since 

it presents the same refuelling facility as conventional vehicles. Furthermore, the hill-

climbing power is greater than in pure battery electric buses [27]. On the other hand, being 

equipped with an electric motor implies a higher energy efficiency, better acceleration from 

a stop, a significant fuel saving and quieter operation [27].  

 

The most notable feature of plug-in hybrid electric buses (PHEBs) compared to conventional 

hybrid buses is the possibility of recharging the batteries not only by the combustion engine 

(standard hybrids) but also by the connection to the electrical network (plug-in hybrids), 

causing so further increasing of the energy efficiency. The key of PHEBs is the possibility 

to run in electric mode a certain amount of time. The time run in electric mode depends on 

the route characteristics, bus configuration and charging frequency [31]. The majority of 

plug-in hybrids run with batteries while most of the standard hybrids run with 

supercapacitors. This is because the capacitors are electrostatics and they can release charge 

rapidly. Otherwise, batteries are based on a chemical process and the discharge is slower 

[31]. 
 

Therefore, hybrid-electric buses configuration combines the elements of battery electric bus 

described in section 2.1.1 (electric motor, battery packs and control system) with an ICE 

engine coupled to an electric generator [27]. They also include the regenerative braking 

technology that allows them to recover and store part of the energy involved in braking [30]. 

Generally, hybrid buses’ drivetrains can be configured in series or parallel, each one with a 

different mode of operation according to the direction of the energy flow [27]. 

2.1.2.1 Series Hybrid System 

In series hybrids the combustion engine is connected to a generator that transforms the 

mechanical energy produced by the fuel combustion into electric energy. The generator is 

connected to an electric motor and to a battery system being able to supply power to either 

of them. In this configuration the electric motor is in charge of the traction of the vehicle as 

it is connected to the vehicle´s transmission system, while the combustion engine is in charge 

of providing it with energy and recharging the batteries with the surplus, as it is completely 

mechanically decoupled from the drive axle [27]. In figure 3 series configuration is 

illustrated. 
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Figure 3. Series hybrid bus powertrain configuration [32] 

 

PHEBs can operate in the following ways: 

 

• Single energy source: The PHEB's electric motor is supplied either by the battery or by the 

generator. In the event that the generator produces more energy than necessary, the excess 

is derived to the batteries for later use.  

 

• Mixed energy source: The electric motor is fed simultaneously from both the battery and 

the generator. It takes place in situations of high power demand.  

 

• Regenerative braking: In case of deceleration or braking the resulting energy is sent by the 

electric motor to the batteries for storage and subsequent use. 

 

The main advantage of this configuration is that the thermal combustion engine is not 

directly connected to the transmission, which allows the operation at constant speed and at 

the optimum operating point, which is not the case in conventional vehicles [31]. The ICE 

engine can be switched off for a period of time, allowing an all-electric operation [27]. As a 

drawback, it should be noted that in order to provide competitive performance the 

dimensioning of both engines could result in high dimensions machines, which implies an 

increase in the overall cost of the vehicle [30]. Another disadvantage are the losses produced 

by the energy transformations taking place throughout the process. 

2.1.2.2 Parallel Hybrid System 

Parallel hybrid vehicles have two parallel drive systems. According to this configuration, 

both the ICE engine and the electric motor are connected to the transmission system of the 

vehicle. The connections are direct and independent and each of them can provide 

mechanical power to the wheels allowing the movement of the vehicle [27], [30]. The two 

systems can be used independently or simultaneously to obtain maximum power. Parallel 

drivetrain configuration is illustrated in figure 4. 
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Figure 4. Parallel hybrid bus powertrain configuration [32] 

 

Although parallel hybrids are mechanically more complex, this configuration avoids the 

losses inherent to the conversion of mechanical energy into electric energy that takes place 

in series configuration. 

 

Parallel hybrid systems are designed to power the bus using the ICE engine at high, constant 

speeds, and using the electric motor at low speeds and during stop and go traffic [31]. Both 

power sources can operate together during accelerations [27], or in some cases, the electric 

motor only provides supplemental power [30]. 

 

When circulating in city, much power is not needed and the electric motor allows a 

remarkable saving of fuel and zero emissions to the atmosphere as it can be fed with the 

energy stored in the batteries. These batteries can be recharged by connecting the vehicle to 

the electrical network or by the generator coupled to the internal combustion engine. In this 

configuration the regenerative braking is also implemented to recover some of the energy 

lost during braking and charge the battery [31]. The parallel hybrid can operate in the 

following ways: 

 

• Fully electric mode: The vehicle only moves thanks to the action of the electric motor, 

whose power is provided by the batteries. This mode of operation is reserved for situations 

of low power demand. 

 

• Combined mode: Both engines operate simultaneously by pulling the drive wheels, being 

able to operate in situations of high demand of power due to the combined action of both 

motors. 

 

• Regenerative braking: In case of deceleration or braking the resulting energy is sent by the 

electric motor (acting as generator) to the batteries for storage and subsequent use. 

 

Thanks to the possibility that both engines work simultaneously, both the power and the 

dimensions can be lower, being that a significant advantage over the hybrid vehicles in 

series. 
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2.1.3 Fuel Cell Electric Buses 

During the latest years, fuel cell technology has garnered great attention as it offers a clean, 

efficient and fossil fuel independent transportation system [30]. This technology is 

interesting for bus applications as the storage space for hydrogen is not a problem in larger 

vehicles, and they do not need to use such a high level of compression. 

  

Fuel cell technology generates electrical energy by combination of hydrogen and oxygen 

(from air) in an electrochemical process. The transformation also generates water (evacuated 

as a vapour) and some nitrogen, which are not polluting emissions [30]. Fuel cell technology 

can be used as the prime power source in an electric drive system (replacing the batteries) or 

as the prime power source in a hybrid drive system (replacing the ICE engine and generator) 

[27]. The electricity produced by the hydrogen stored on the vehicle can be generated 

continuously since fuel cells do not need to be recharged, unlike batteries. The electricity 

generated is then transferred to an electric motor that is connected to the drive axle [30]. The 

drivetrain configuration is shown in figure 5. 

 

 
 

Figure 5. Fuel cell hybrid electric bus powertrain configuration [32] 

 

One of the major problems of this technology is obtaining the hydrogen. On the one hand, 

there is the environmental problem: hydrogen is mainly obtained by the natural gas 

reforming, so the production itself generates emissions. However, it can also be produced 

from clean sources such as wind or solar technologies. On the other hand, there is the 

economic problem: hydrogen cost cannot compete with electricity cost. Furthermore, fuel 

cells’ electrical efficiency cannot compete with the efficiency of a battery [32], and the fuel 

storage, robustness and durability are still many years away from those of other technologies 

[27]. Thus, this technology has substantial room for improvement if it is to compete with 

current transportation technologies.  

 

The US National Renewable Energy Laboratory has compared in a recent report [33] the 

energy efficiency of different buses in real-life applications. The results are the following: 

 

• Diesel buses have a consumption of 56 litres of diesel per 100 kilometres. 
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• Hydrogen fuel cell buses have a consumption of 39.2 litres of diesel equivalent every 

100 kilometres. 

• Natural gas buses have a consumption of 71.28 litres of diesel equivalent every 100 

kilometres. 

• Battery electric buses have a consumption of 13.84 litres of diesel equivalent every 

100 kilometres. 

 

As it can be seen, battery electric bus has no equal in terms of energy consumption. Fuel cell 

bus has an energy consumption 30% lower than a diesel bus and 45% lower than natural gas 

bus. An improvement of 30% compared to a diesel bus is not bad, but there is no comparison 

possible with the battery electric bus, which consumes 75% less energy than the diesel bus. 

 

The components of a fuel cell bus are shown in figure 6. 

 

 
 

Figure 6. Fuel cell electric bus components [30] 

 

Although one of the biggest challenges of this technology is the on-bus hydrogen storage, as 

it requires high pressure, other problems such as infrastructure and maintenance costs make 

it difficult to place fuel cell buses in the market. In spite of this, it is an attractive technology 

for transit bus applications since they have greater efficiency and quieter, smoother and zero 

emission operation [30]. At present, there are no long-term commercial hydrogen fuel cell 

buses in operation: however there are several projects going on and different companies are 

developing prototypes [30]. 
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2.2 Monte Carlo Method 

Monte Carlo method is a powerful technique that allows the solving of physical and 

mathematical problems by means of repeating random sampling to compute the results. It is 

one of the most used computational methods as it helps to solve complex problems which 

are infeasible to compute an exact result with a deterministic algorithm [34]. This method 

was so named because of its clear analogy with the roulette games of casinos, the most 

famous of which is the Monte Carlo one, in Monaco.  

 

Monte Carlo methods are mainly used in three types of applications: optimization problems, 

numerical integration and generating samples for a probability distribution [35]. However, 

due to its stochastic nature, it is used in a wide range of study fields, such as finance [36], 

physics [37], [38] and biomedicine [39], [40]. In addition, Monte Carlo method has also been 

used in engineering, including the electric buses field, mainly for the analysis of energy 

storage systems [41] and electric power systems planning [42]. Thanks to the advance in 

computer design, Monte Carlo simulations that once would have been inconceivable, today 

they are available for the resolution of this kind of problems.  

 

Monte Carlo simulation can also be described as a method for propagating uncertainties in 

model inputs into uncertainties in model outputs. Typically, the model of study depend on a 

number of different input parameters, which are processed through mathematical 

expressions in the model, and the results, which can be one or several outputs, are obtained. 

Taking into account that the outputs of a model with uncertain inputs have to be uncertain 

as well, the model performance can be predicted by representing the inputs as probability 

distributions. Hence, the solution of the model is going to be another probability distribution 

[34].  

 

Therefore, a Monte Carlo simulation is carried out by associating a statistical distribution to 

each one of the input parameters. Then, random samples from each distribution are generated 

and they are taken as the values of the input variables. Subsequently, the inputs are 

introduced in the model and results are obtained, getting a set of output parameters for each 

set of input parameters, which belong to a particular scenario. The results are collected from 

a large number of simulations and a statistical analysis of the output parameters is performed 

and so the output variation can be characterized [43]. 

 

Following the process explained above, three steps are required to perform a Monte Carlo 

simulation [34]. First, the uncertain inputs have to be chosen and modelled. Second, the 

sampling method and the number of iterations that are going to be simulated are selected. 

This has to be determined in order to acquire as accurate results as possible, depending on 

the problem of study and its complexity. The third step is the simulation of the model and 

the collection and statistical analysis of the outputs. The Monte Carlo process is shown in 

the schematic diagram represented in figure 7 and, in the following sections, these three steps 

are going to be more deeply explained. 
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Figure 7. Monte Carlo simulation process with three main steps: modelling the 

uncertain inputs, sampling the model and output analysis. 

2.2.1 Modelling Uncertain Inputs  

The uncertain variables are modelled by probability density functions (PDF), basing their 

characteristics on expert judgements, theoretical knowledge or real data. This first step will 

have a deep impact on the simulation results as it determines the samples that are going to 

be simulated. Thus the PDFs have to represent the full range of possible values of the 

uncertain input, but they also have to highlight the high probability areas as well as the low 

ones [34]. In this way, the risk associated with each input variable is taken into account, 

including the best possible scenario and the worst one.  

 

According to the literature [43], there are different standard statistical procedures to identify 

the most suitable input distributions, often called distribution fitting. Numerical methods are 

used to fit historical data to one theoretical discrete or continuous distribution. The objective 

is to find the probability distribution most suitable for a given set of data. A few standard 

procedures exist, but the most commonly used are Method of Maximum Likelihood (ML), 

Method of Moments (ME) and Nonlinear Optimization. However, the Maximum likelihood 

method is by far the most used for estimating the unknown parameters of a distribution. The 

fundamental idea of this method is to take as an estimate of the studied parameter the value 

that maximizes the probability of obtaining a particular result from a sample [44]. 

 

On the other hand, several probability distributions can be used to fit a dataset, both discrete 

and continuous. Within the discrete distributions, the most common are Binomial, Geometric 

and Poisson. In the case of continuous distributions, the most common are Normal, 

Lognormal, Uniform or Exponential. 

 

For example, as it is shown in figure 8, the historical data can be represented as a histogram 

which visually reveals the primary shape of the distribution. Then, the best-fitting probability 
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distribution is chosen by means of maximum likelihood method which provides an algorithm 

that chooses the parameters that maximize the likelihood function for the data.  In this 

example, four normal curves characterized with different parameters are represented and the 

maximum likelihood algorithm will choose the best-fitting one. 

 

 
 

Figure 8. Maximum likelihood method. Four normal PDFs with different parameters 

try to fit the data. Maximum likelihood method will determine the set of parameters 

that best fit the data. 

 

Furthermore, in this first step the correlation or dependencies between input variables must 

be defined as they may have a significant influence in the model outputs. Large-cross 

correlation reduces the “degrees of freedom” by limiting the value range that the variable 

can acquire [45]. Hence, it is important to include correlations in Monte Carlo simulation 

rather than assuming independent variables. In order to generate correlations among 

stochastically dependent random variables, they can be linked to each other via linear 

combination.   

2.2.2 Sampling Method 

There are different sampling methods, such as hypercube sampling and quasi-Monte Carlo 

sampling, but the most popular of them is Monte Carlo sampling [34]. This method uses 

pseudo-random numbers, between 0 and 1, to approximate a uniform distribution. 

 

The goal of Monte Carlo sampling is to generate samples of the input variables X= (X1, 

X2,…Xn) according to their distributions. For this purpose, two steps are involved [46]:  
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• Step 1: Generation of random variables uniformly distributed between 0 and 1. 

 

The key of this step is that uniform numbers within the range [0, 1] can be turned into real 

values that follow any distribution of interest. Nowadays, any computer has the capability to 

generate random variables uniformly distributed between 0 and 1. Random variables 

generated this way are called pseudorandom numbers. Although this sequence of numbers 

is not truly random sequence, they satisfactorily simulate the behaviour of true randomness. 

Sources of truly random numbers are rare in practice, as they do not produce the number of 

values required for practical purposes, so they have to be replaced by pseudorandom 

numbers. 

 

• Step 2: Transformation of the uniform variable values, obtained previously in step 1, 

to the values of random variables that follow the probability distribution of each input 

variable.  

 

The samples of uniform variable, z = (z1, z2, … , zN), where N is the number of samples, will 

give N random variables through a transformation method. There are several methods to 

carry out this transformation but the most simple and direct is the inverse transformation 

method. By this method, the random variable in given by: 

 

 𝑥𝑖 = 𝐹𝑋𝑖

−1(𝑧𝑖),    𝑖 = 1,2, … , 𝑁 (1) 

 

 

Where 𝐹𝑋𝑖

−1 is the inverse of the cumulative distribution function of the random variable Xi. 

 

After the samples generation, they are introduced in the model and the output variables are 

calculated through the performance function Y = g(X), corresponding to the model 

algorithm. In this way a large number of experiments will lead to a set of output samples and 

the variable Y will be available for statistical analysis. If N samples of each random variable 

are generated, which means N input sets to the model, N output sets of samples will be 

obtained. 

 

In Monte Carlo methods the error is approximately 1 / √N, and therefore gaining a decimal 

figure in precision implies increasing N by 100 times. These methods have an absolute error 

that decreases according to Central Limit Theorem. This theorem practically ensures that if 

the number of iterations (N) is large enough, the output stochastic variable tends toward a 

Gaussian distribution. Furthermore, if the number of iterations approaches infinity, the 

output variable will converge to the true solution [46]. 

 

Therefore, a number of iterations must be performed taking into account the trade-off 

between convergence in the solution and simulation time. The different output sets are 

collected forming a probability distribution, which is the core of Monte Carlo simulation. 

2.2.3 Statistical Analysis of Output Variables 

Finally, the third step of the simulation is tracking the results. The outputs generated are 

stochastic so they can be studied as a statistical distribution [34]. As mentioned before, the 

process is repeated until it has a statistically representative sample and the output values are 

aggregated into groups by size, displaying the values as a frequency histogram [46]. The 
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histogram reveals the approximate shape of the probability density function of the output 

variable. 

 

The histogram data can be used to calculate an empirical distribution itself by means of 

calculating the percentiles and other statistics, or they can be fitted to a theoretical probability 

distribution, as it was explained in section 2.2.1 [43]. With this second possibility, the 

theoretical statistics can be calculated and can be used for determining the mean, variance, 

mode and confidence interval [34]. The mean is the average of all the observations and it 

can be interpreted as the desired result [39]. The mode is the most likely value to occur, i.e. 

the most repeated value in the output set. There may be more than one mode, even though it 

may also not exist if no value is repeated. The confidence interval gives an estimated range 

of values which is likely to contain the parameter of interest [47]. Confidence intervals are 

constructed at a selected confidence level, such as 95 %.  

 

The knowledge of all these characteristics helps with the understanding of simulation results 

and facilitates the decision making about the model studied. The distribution represents the 

forecast of the problem studied and it includes all the possible outcomes taking into account 

all the uncertainties of the model. With all this data, a sensitivity analysis can also be 

performed to find out the input variables that cause more variation in the output parameter. 
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3 Methods 

The generation of the passengers flow is the first step needed in order to proceed with the 

electrical consumption sensitivity analysis. The process to be followed consists of the 

statistical study of the data collected in the bus route and the definition of the probability 

distributions that best describe it. Subsequently, a passenger flow model is developed with 

variations in the number of passengers depending on the driving cycle.   

 

In addition, the electric bus model that is used to perform the simulations is described in this 

chapter. Furthermore, the sampling method, including the number of iterations needed to 

achieve an adequate accuracy in the results, is also presented. 

3.1 Data Processing 

3.1.1 Data Collection and Driving Cycles Generation 

The bus route that is the object of this study is the one corresponding to line 11 in Espoo, 

Finland, with direction from Friisilä to Tapiola. The total length of the route is 10.1 

kilometres but, due to the occurrence of constant interruptions in the GPS signal in each 

measurement and to simplify the data processing, only 3.3 kilometres of the route will be 

analysed in this study. In the figure 9 the total length of the route is shown and the part to be 

analysed is highlighted. It is a section with 8 bus stops and it is characterized by having a 

roundabout, an intersection with a turn and a speed limit of 40 km / h. 

 

 
 
Figure 9. Line 11 bus route in Espoo. The solid blue line represents the 3.3 km section of the route to be 

analysed below [17].  

 

First of all, the data corresponding to the evolution of the bus speed during the time were 

collected in order to analyse the driving cycles in Master´s Thesis [17]. This data were taken 

on three consecutive days and at different times of the day, between noon and evening.  
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Moreover, the measurements were taken in a random way, including both electric buses and 

ICE buses operating on the route studied. The data collection was conducted on ten journeys, 

to characterize the different speed profiles of the route. Once the data were filtered, ten 

different driving cycles were obtained for the same section of the route. The driving cycles 

differ in speed, number of stops, acceleration and duration. 

 

In order to study the uncertainty of the number of bus stops and their influence on the electric 

bus consumption, an algorithm was developed in Matlab [17]. This algorithm generates new 

cycles with a random number of stops and a random combination of actual measured driving 

cycles. Based on the ten driving cycles measured, the algorithm creates new driving cycles 

by randomizing the base cycle that is being used each time the bus stops at each station. 

Thus, the changes in the speed profile are achieved combining different parts of the actual 

driving cycles. The probability of stopping at each stop was set to 50%, so driving cycles 

with different number of stops are created. Therefore, the algorithm can alter the number of 

stops (adding or cutting out a stop) of the driving cycle. 

 

Hence, it was intended to cover all the variations in the number of stops and speed profiles 

and thus perform a robust sensitivity analysis. As the new cycles created were based on 

actual measurements, they reflect situations that may occur in reality on the studied route 

and therefore they are valid for carrying out the study. 

 

The knowledge of the driving cycles is highly important for this study since the passenger 

flows that are going to be generated are based on the characteristics of the driving cycles. 

On the one hand, it will be necessary to know specifically in which stop the bus stops in 

order to be able to associate the corresponding probability distribution. On the other hand, 

knowing the length of the segment between each stop will be useful to determine the time 

that a certain number of passengers remain on the bus. In addition, the driving cycle will be 

necessary when simulating the model of the electric bus in Simulink, as it is an essential 

input variable. 

 

3.1.2 Passengers Data Processing 

Likewise, the number of passengers in the bus was recorded in the complete route, only the 

3.3 km part will be considered. However, in this case passenger’s data were collected from 

a larger number of driving cycles.  Besides the ten driving cycles of the previous study, 

passenger´s data from driving cycles of a different month were collected. This new data were 

taken during all the days of a single week and at different times of the day, with the aim of 

obtaining a greater range of variability and a higher number of measurements. 

 

Table 2 shows the measurements taken, where the first ten rows correspond to the data of 

the first driving cycles measured and the following correspond to the new data recorded: 
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Table 2. Number of passengers in the bus after each stop. 

 

Date 
Departure 

time 

Number of passengers in the bus 

Stop 

1 

Stop 

2 

Stop 

3 

Stop 

4 

Stop 

5 

Stop 

6 

Stop 

7 

Stop 

8 

08/03/2016 14:31 1 0 0 0 0 2 2 2 

08/03/2016 15:46 3 3 1 1 1 3 5 12 

09/03/2016 12:37 1 1 1 1 2 2 4 5 

09/03/2016 13:47 0 0 2 2 2 3 3 5 

09/03/2016 16:15 1 1 2 3 3 3 3 5 

09/03/2016 17:28 0 0 3 3 3 3 7 10 

10/03/2016 11:52 1 2 3 3 3 3 3 3 

10/03/2016 13:02 0 1 2 2 2 4 5 7 

10/03/2016 14:12 1 2 2 2 2 2 3 5 

10/03/2016 15:31 1 1 5 5 5 6 7 7 

03/10/2016 17:52 1 1 1 2 3 3 3 7 

03/10/2016 19:02 0 0 2 2 2 3 3 3 

04/10/2016 14:46 2 2 4 4 4 4 4 3 

04/10/2016 16:02 1 1 5 5 6 6 7 12 

04/10/2016 17:27 0 0 0 1 1 2 3 3 

05/10/2016 15:02 0 0 1 1 3 6 6 8 

05/10/2016 16:46 0 0 1 1 1 2 3 5 

05/10/2016 18:17 1 1 3 4 5 6 6 7 

06/10/2016 13:47 1 0 0 0 1 2 3 4 

06/10/2016 15:16 1 2 4 4 4 3 3 3 

06/10/2016 16:46 2 2 4 4 4 2 4 4 

07/10/2016 10:42 0 0 2 2 4 4 5 8 

 

The measurements taken are the number of passengers inside the bus after each stop. When 

there is no change in this number between two consecutive stops, it could mean that the bus 

did not stop or that the number of passengers getting on and off the bus was the same. In 

order to implement the algorithm that will create the passengers flow in each driving cycle, 

it would be necessary for these collected data to be expressed as passengers boarding or 

alighting the bus at each stop. It should be noticed that to proceed with this calculation, it is 

necessary to know the number of passengers inside the bus before the first stop, which had 

also been collected. The modified data is shown in table 3 where negative values correspond 

to passengers alighting. 

 

Table 3. Number of passengers boarding or alighting from the bus in each stop. 

 

Date 
Dep. 

time 

Passengers 

before first 

stop 

Number of passengers boarding or alighting (-) 

Stop 

1 

Stop 

2 

Stop 

3 

Stop 

4 

Stop 

5 

Stop 

6 

Stop 

7 

Stop 

8 

08/03/2016 14:31 1 0 -1 0 0 0 2 0 0 

08/03/2016 15:46 3 0 0 -2 0 0 2 2 7 

09/03/2016 12:37 1 0 0 0 0 1 0 2 1 

09/03/2016 13:47 0 0 0 2 0 0 1 0 2 

09/03/2016 16:15 1 0 0 1 1 0 0 0 2 

09/03/2016 17:28 0 0 0 3 0 0 0 4 3 

10/03/2016 11:52 2 -1 1 1 0 0 0 0 0 

10/03/2016 13:02 0 0 1 1 0 0 2 1 2 
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10/03/2016 14:12 1 0 1 0 0 0 0 1 2 

10/03/2016 15:31 1 0 0 4 0 0 1 1 0 

03/10/2016 17:52 1 0 0 0 1 1 0 0 4 

03/10/2016 19:02 0 0 0 2 0 0 1 0 0 

04/10/2016 14:46 2 0 0 2 0 0 0 0 -1 

04/10/2016 16:02 1 0 0 4 0 1 0 1 5 

04/10/2016 17:27 0 0 0 0 1 0 1 1 0 

05/10/2016 15:02 0 0 0 1 0 2 3 0 2 

05/10/2016 16:46 0 0 0 1 0 0 1 1 2 

05/10/2016 18:17 0 1 0 2 1 1 1 0 1 

06/10/2016 13:47 1 0 -1 0 0 1 1 1 1 

06/10/2016 15:16 0 1 1 2 0 0 -1 0 0 

06/10/2016 16:46 2 0 0 2 0 0 -2 2 0 

07/10/2016 10:42 0 0 0 2 0 2 0 1 3 

 

These data provide guidance to create the flow of passengers that could exist in this section 

of the bus route. Although it is an uncertain variable, the data will allow to generate 

probability distributions that can reflect what might happen in reality. 

3.2 Mass Algorithm 

The uncertain variable to be studied is the mass of the bus, which fluctuates due to the 

boarding and alighting of passengers. In order to perform the analysis, taking into account 

the actual data of the bus route, an algorithm is generated in Matlab. This algorithm is 

capable of generating a mass flow, depending on the driving cycle that the bus follows. 

However, the mass is not generated as a random variable obtained from a single probability 

distribution, but it is created with a more complex algorithm which can generate a value for 

the number of passengers boarding or alighting at each bus stop on the driving cycle.  

 

To perform a robust electrical consumption sensitivity analysis, the algorithm must cover all 

possible variations in terms of number of passengers within the bus for each driving cycle. 

Therefore, different probability distributions will be used for each stop although they will 

have a correlation relationship between them that has to be modelled. Moreover, it is 

necessary to take into account that the flow of passengers must simulate the actual one in the 

route thus the probability distributions must resemble the data collected.  

 

Instead of a single random variable that corresponds to the total mass inside the bus, nine 

random variables will be analysed. The first one corresponds to the number of passengers 

inside the bus before arriving at the first stop studied. The other eight variables refer to the 

number of passengers that get on or off in each stop of the route section studied. For this 

reason, once the probability distribution is selected, the correlation between the different 

variables must be modelled. 

3.2.1 Selection of the Probability Distributions 

First of all, the probability distributions that best represent the data collected must be chosen. 

To carry this out, the data referring to each bus stop are represented in histograms. The same 

is done with the number of passengers inside the bus before the first stop in the route. The 

histograms reveal the underlying shape of the probability distribution and they are 

traditionally used for estimating the probability density.  They represent the frequency with 
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which the values appear in the data collected. The figure 10 shows the histograms for the 

data of each stop. 

 

 
 

Figure 10. Histograms for each stop in the measured data. 

 

When the objective is to characterize a random variable from the available data it is assumed 

that the observed data is a random sample of a probability distribution that is being identified. 

To begin with, it must be decided whether it is a discrete or continuous variable. The data 

obtained in the sample belong to a discrete random variable, since it takes a finite number of 

values within a range, i.e. the number of people boarding or alighting the bus can only be 

integers (0, 1, 2 ...).  

 

Taking the data of stop 6 as an example, since it is the one that has greater variability in 

values (from -2 to 3), the most suitable probability distribution that best fit the data is going 

to be defined. As a discrete random variable, the probability models commonly used in these 

cases are the Binomial and Bernoulli models. In this specific case, the variable to be studied 

will be fitted firstly to a Poisson model, which is usually used in queuing theory [48], [49].  

 

The Poisson process generalizes in some way the Bernoulli process. It consists in observing 

the number of times that an event occurs in a certain interval (usually of time). In these 

processes it is assumed that there is stability and the number of events per unit of time (λ) 

remains constant [50]. λ (λ> 0) is the parameter of the model and its probability function is: 

 

 𝑃(𝑋 = 𝑥) =
𝑒−𝜆𝜆𝑥

𝑥!
                         𝑥 = 0,1,2, … (2) 

 

 

Although the data collected is not adequate to obtain the passenger rate over time λ (t), an 

attempt to adjust them to a Poisson distribution was made. Therefore, Poisson distribution is 

used in Matlab to model the passengers boarding and alighting in each bus stop, according 
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to the particular passengers flow patterns. For both boarding and alighting of passengers, 

each bus stop has a different arrival rate based on the experimental data.  

 

Poisson distribution becomes attractive for representing count data as it takes on a 

probability value only for nonnegative integers [51]. For this reason it is impossible to model 

with a single probability distribution the passengers that get on and off the bus at each stop. 

Therefore, the data for each stop will be studied separately with two different Poisson 

distributions. Figure 11 show the two distributions for stop number six. 

 

 
 

Figure 11. Poisson distributions fitted to measured data of stop 6. 

 

On the other hand, the data collected correspond to the difference between the number of 

passengers boarding and alighting the bus, which makes it convenient to maintain a single 

probability distribution to model mass fluctuations at each stop instead of separating it in 

two. 

 

While the objective of the algorithm is to cover all possible variations in terms of number of 

passengers that can occur in reality, the possibility to use Poisson probability distribution is 

ruled out. In order to group the data in a single distribution and be able to obtain samples 

with a greater variety of values than those obtained in reality, it was decided to use a 

continuous variable to model each stop. 

 

A random variable, x, is continuous when it can take any value in an interval of the real 

number line with a density function f (x). A probability density function (PDF) is a 

mathematical relationship that describes how the probability density of a continuous random 

variable may vary over a permitted range of values [52]. 

 

The normal distribution is the most used of all probability distributions when modelling 

continuous random variables since a large number of experiments fit the distributions of this 
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family [50]. The density function corresponding to a normal distribution of mean μ and 

variance σ2 is: 

 

 𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

−(𝑥−𝜇)2

2𝜎2               − ∞ < 𝑥 < ∞ (3) 

The normal PDF graph is a bell-shaped curve with very low probabilities in the tails. The 

horizontal axis of a PDF graph represents the possible values of a variable, while the vertical 

axis gives the probability density. Furthermore, the area under a PDF graph between any two 

selected values of the variable is the probability that the variable may take any value within 

the specified interval. Consequently, the total area under a PDF graph has a probability of 

one, since the variable must take some value within its permitted range [52].  

By means of a Matlab function, normal PDFs were fitted to data of each stop, using 

maximum likelihood estimation. Each PDF is characterized by its mean and standard 

deviation, and the results are illustrated in figure 12. 

 

 
 

Figure 12. Normal PDFs fitted to measured data of each stop. 
 

In Figure 13 the PDFs are shown for each of the stops and it can be seen that f(x) is bigger 

than 1 in some cases. This is not a problem since it is not interpreted as a probability. The 

probabilities in this case are the areas under the density function.  
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Figure 13. Normal PDFs for each stop. 

 

In the case of the number of passengers inside the bus before the first stop, it is modelled 

with a normal PDF as well (figure 14). However, when generating a sample of this 

distribution, it must be taken into account that only positive values are valid for the correct 

performance of the algorithm as negative values have no sense.  

 

 
 

Figure 14. Normal PDF fitted to the measured data for the number of passengers inside 

the bus before the first stop analysed. 
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3.2.2 Correlation Definition 

The key to a correct reproduction of the problem is the ability to predict the behaviour of the 

model under certain circumstances and to find appropriate values to simulate each variable 

of the problem. When there are multiple variables involved, the relationship between them 

should be introduced as well [53].  

 

The difficulty of the passenger problem is that the demand for a given route is random and 

it fluctuates throughout the day. Therefore, the correlation between the data of different stops 

depends on the time of the day in which the measurements are taken and the day of the week. 

Correlation conditions restrict random selection, so in order to not distort the results, 

correlation coefficients between variables are defined, considering them a valid estimate. 

 

As each variable was modelled as a normal distribution, their correlation will be studied as 

a multivariate normal distribution.  Normal one-dimensional distribution, as it was noted in 

the previous section, is the most used distribution in statistics. However, its good properties 

are even more evident when studying multidimensional statistical models.  

 

A random vector  X =  (𝑋1, . . . , Xn) is distributed according to an n-dimensional normal 

distribution with mean vector μ and variance-covariance matrix Σ if its PDF has the form 

[50]: 

 

 𝑓(𝑥) =
1

|Σ|
1

2(2𝜋)𝑛/2
· 𝑒𝑥𝑝 {−

1

2
(𝑥 − 𝜇)𝑡Σ−1(𝑥 − 𝜇)}          𝑥 ∈ ℝ𝑛 (4) 

 

In spite of its complexity, it is easily observed that it is a natural generalization of the formula 

for the one-dimensional case. The role of variance is now played by the variance-covariance 

matrix and the vector of means does what the mean did before. The distribution can be 

written as: 

 

 𝑋~𝑁𝑛(𝜇, Σ) (5) 
 

 

A property of multivariate normal distribution is that any vector Y obtained as a linear 

combination of X has multivariate normal law. In particular, any subset of X has multivariate 

normal distribution and the marginal X1, … , Xn have univariate normal distributions.  

 

The conditional distribution in variables with multivariate normal distribution can be 

calculated considering partitions of vector X. Then, the procedure is going to be illustrated: 

 

Considering the partition of the vector 𝐗 = (𝐗𝟏
′ , 𝐗𝟐′)′, where 𝐗𝟏 = (X1, … , Xn1)′, 𝐗𝟐 =

(Xn1+1, … , Xn)′ and n2 = n − n1. Accordingly, μ1 = E(𝐗𝟏) and μ2 = E(𝐗𝟐) are the mean 

vectors. The covariance matrix of X can be portioned as follows:  

 

 

 

(6) 

 

Where:  
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Ʃ11=Var(X1), with size n1 x n1 

 

Ʃ12=Cov(X1, X2), with size n1 x n2 

Ʃ22=Var(X2), with size n2 x n2 Ʃ21= Ʃ12’, with size n2 x n1 

 

 

Then, the distribution of X1 conditional on 𝐗𝟐 = 𝑥2
0 is a multivariate normal distribution with 

mean: 

 

 𝜇(𝑋1|𝑋2 = 𝑥2
0) = 𝜇1 + Σ12Σ22

−1(𝑥2
0 − 𝜇2) (7) 

 

 

And covariance matrix: 

 

 Σ(𝑋1|𝑋2 = 𝑥2
0) = Σ11 − Σ12Σ22

−1Σ21 (8) 
 

 

In order to calculate the conditional distribution in Matlab, these equations have to be 

implemented in the algorithm and, for that purpose, the mean vector and covariance matrix 

have to be calculated. The covariance matrix is calculated directly with a Matlab function.  

 

As an example, the formulas will be described for the most complicated case, which would 

be to calculate the distribution for the variable that corresponds to the number of passengers 

boarding or alighting at stop 8 conditioned to the values that the rest of variables take. These 

other variables refer to the initial number of passengers inside the bus and the passengers 

boarding and alighting at stops 1 to 7. Therefore, there would be 8 variables with known 

value and one (which would be variable X9) whose distribution will depend on the value that 

the other 8 had taken. 

Hence, the covariance matrix can be portioned as follows:  

 

 

 

(9) 

 

 

And the distribution of X9 conditional on 𝐗𝟏 = 𝑥1
0, 𝐗𝟐 = 𝑥2

0, 𝐗𝟑 = 𝑥3
0, 𝐗𝟒 = 𝑥4

0, 𝐗𝟓 = 𝑥5
0, 

𝐗𝟔 = 𝑥6
0, 𝐗𝟕 = 𝑥7

0  and 𝐗𝟖 = 𝑥8
0 is a multivariate normal distribution with mean: 

 

 𝜇(𝑋9|(𝑋1, 𝑋2, … , 𝑋8)′ = (𝑥1
0, 𝑥2

0, … , 𝑥8
0)′) = 𝜇9 + Σ9(1…8)Σ(1…8)(1…8)

−1 (
𝑥1

0 − 𝜇1

⋮
𝑥8

0 − 𝜇8

) (10) 

 

And covariance matrix: 

 

 Σ(𝑋9|(𝑋1, 𝑋2, … , 𝑋8)′ = (𝑥1
0, 𝑥2

0, … , 𝑥8
0)′) = Σ99 − Σ9(1…8)Σ(1…8)(1…8)

−1 Σ(1…8)9 (11) 
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Figure 15 shows the initial PDF for stop 8, represented with dashed line, and five PDFs of 

the same stop conditioned by the different values that the previous variables have taken. It 

can be observed that both the mean and the variance vary due to the influence of the other 

variables values. 

 

 
 

Figure 15. Initial PDF for stop 8 (represented with dashed line) and other five PDFs of 

the same stop conditioned by different values of the other variables. 

 

Once the formulas are implemented in Matlab, the variables of the problem and their 

dependency relationships are already fully defined. In this way, any correlation will have 

been explicitly taken into account after the completion of the Monte Carlo simulation [52]. 

3.2.3 Algorithm Performance 

Finally, it is going to be explained how the algorithm works. First, an initial number of 

passengers inside the bus is randomly generated, according to the probability distribution 

that defines this variable. In this case, since this number cannot be negative, and being the 

variable modelled by a normal distribution with a mean close to zero, random numbers must 

be generated until a positive number is obtained, thus negatives numbers are rejected. 

 

Subsequently, according to the driving cycle introduced, and taking into account the sample 

generated for the previous variables, a value for each stop´s variable is generated following 

the same procedure. Since continuous distributions have been considered for variables 

definition, whenever a sample is calculated it should be rounded to an integer, since it is not 

possible to have a decimal number as the number of passengers. When the bus does not stop 

in a certain bus stop, the value corresponding to the variable of that stop will be directly 0.  

 

Taking into account the initial number of passengers inside the bus and the values of each 

stop variable, the passenger flow inside the bus is obtained. In addition, lower and upper 

limits are introduced, forcing the number of passengers inside the bus to be greater or equal 
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to zero and lower than 45, which is the average passenger capacity for a medium sized city 

bus [54]. 

 

Therefore, the flow of passengers has been created following the driving cycle and the 

variation in the number of passengers is obtained as a function of time. Figure 16 shows a 

driving cycle and one of the possible passenger flows that can be generated for that specific 

cycle.  

 

 
 

Figure 16. Passenger flow generated for a specific driving cycle. 

The algorithm can generate numerous different passenger flows for each driving cycle, 

which allows to cover all possible situations. Figure 17 shows five iterations done with the 

algorithm following the same driving cycle. 
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Figure 17. Five different passenger flows generated for the same driving cycle. 

 

3.3 Electric Bus Model 

In the research environment, it is very important to be able to simulate results before building 

a definitive model. The possibilities offered by the creation of virtual models are infinite 

and, through software programs such as Matlab, the electric vehicle behaviour can be 

modelled. 

 

By means of Matlab and Simulink, an electric bus model was created at Aalto University by 

doctoral students Jari Vepsäläinen and Klaus Kivekäs through macroscopic representation 

of physical systems. The aim is to determine the consumption and operation range that the 

model can have based on the input variables for different driving conditions and driving 

cycles. 
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Figure 18. Electric bus energy flow model main systems.  

 

As it can be seen in figure 18, the model is divided into three main systems: Motor and 

Control (where motor and regenerative braking blocks are defined as well as multiple 

controllers), Energy Storage (which consist on the battery model) and Driver and Mechanics 

(where vehicle dynamics are modelled). The three systems are interrelated via the input and 

output variables. Each one of these systems is explained in the following sections.   

 

3.3.1 Motor and Control System 

In this system the motor torque (Tx) required to move the bus is calculated as well as the 

battery current needed (ia). The inputs in this system are the battery voltage (V), the battery 

SOC (state-of-charge), the real vehicle velocity (v) and real vehicle acceleration (a). It 

contains three main blocks: the driver, the regenerative braking and the AC-motor. 

Moreover, there are two control blocks: PID speed control and PID current control. In figure 

19, it is shown the general view of the system. 
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Figure 19. Motor and control system of the electric bus model. 

 

The first inner block configured is the driver block that contains the predefined driving cycle 

which is considered as the reference vehicle velocity. This velocity is the one that the vehicle 

must follow and therefore, the electric motor has to supply a mechanical torque that allows 

the vehicle to acquire this desired velocity. Consequently, the reference vehicle acceleration 

and motor angular velocity can be calculated.  

 

Then, the PID speed control block compares the real vehicle velocity, which is an output of 

driver and mechanics system, with the reference one. The control is done by calculating the 

reference motor torque and the brake torque needed to acquire the desired vehicle velocity 

at each instant. 

 

Next block, regenerative braking, contains a Matlab function with the regenerative braking 

algorithm that controls when the regeneration should be done, knowing the values of the 

SOC, deceleration and speed. Depending on the values of these parameters, the algorithm 

has three types of breaking modes: no regeneration, partial regeneration and full 

regeneration. The three modes are explained in table 4. Also, this function limits the current 

in the motor, obtaining the reference current value.  
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Table 4. Modes of braking system. 

 

No regeneration mode 

SOC > 90 % 

Deceleration > 4 m/s^2 

speed < 5.4 m/s 

Partial regeneration mode 

SOC < 90 % 

Deceleration < 4 m/s^2 

speed > 5.4 m/s 

Full regeneration mode 

SOC < 90 % 

Deceleration < 1 m/s^2 

speed > 10.8 m/s 

 

Some parameters are needed to carry out the calculations and therefore the input parameters 

are shown in the table 5. These parameters were selected based on default values in paper 

[55]. 

 

Table 5. Regenerative braking model parameters. 

 

Regenerative braking 

Parameter Value 

Max. Battery voltage (V) 750 

Max. regeneration current (A) 150 

Max. Discharge current (A) 260 

Battery SoC regeneration limit (%) 90 

Partial reg. velocity threshold (km/h) 5 

Full reg. velocity threshold (km/h) 10 

Partial reg. deceleration threshold (m/s^2) 4 

Full reg. deceleration threshold (m/s^2) 1 

 

After this block, another PID controller is used to ensure that the motor current follows the 

desired value, which is the reference value calculated in regenerative braking block. The 

output in this case is the reference voltage. 

 

Finally, the Alternating Current motor block is implemented. The motor absorbs electrical 

energy from the battery and transforms it into mechanical torque and rotation. The battery is 

responsible for generating the proper voltage to power the motor. Thus, this block has as 

inputs the reference voltage supplied by the battery and the required angular velocity in the 

motor, both previously calculated. By means of the pertinent computations, the 

electromagnetic torque generated by the motor is calculated, and adding it to the brake torque 

obtained with the friction brakes, they constitute the mechanical torque that causes the 

vehicle movement. The AC motor model is initiated with the parameters shown in table 6. 
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Table 6. AC-motor model parameters. 

 

AC-motor 

Parameter Value 

Internal resistance (ohm) 0.5 

Stator armature inductance (H) 5e-3 

Number of pole pairs 6 

Flux induced by magnets (Vs) 0.96 

Inverter efficiency (%) 97 

 

3.3.2 Energy Storage System 

This system implements the battery model of the electric bus and it is responsible for 

supplying the power to the electric motor. The system has one input, the battery current, and 

three outputs: the battery voltage, the battery SOC (state of charge) and the ambient 

temperature (Ta). 

 

Figure 20 shows the blocks that constitute the energy storage. It is composed by a main 

block, the battery model, which has been performed as a Lithium-ion battery. Different 

variables related to battery behaviour are obtained from this block: voltage, SOC, current 

and temperature. With this data, the total energy consumption required by the electric bus 

can be calculated. Multiplying the voltage and the current generated by the battery, the total 

power needed to move the bus is obtained. If it is integrated over time, the total energy 

consumption of the electric bus is calculated. In order to obtain the electric consumption per 

km, it is divided by the distance travelled.   

 

 
 

Figure 20. Energy storage system of the electric bus model. 

 

First of all, a brief theoretical explanation of the Li-ion battery is going to be done and 

afterwards, the battery model in Simulink is presented.  

3.3.2.1 Lithium-Ion Battery 

Nowadays, Lithium-ion batteries are the most widely used in electric vehicles due to their 

great potential. Their main features are high energy density, high power density, 

environmental friendliness, and long lifecycle [56]. However, this is not the perfect 

technology for energy storage as it has several defects in terms of safety, uniformity, cost 

and durability. These problems limit the wide application of Li-ion batteries in vehicles. Not 

being a fully mature technology, and being in continuous development, they still have room 
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for improvement and they could be the great promise for energy storage that will lead to the 

electric vehicle revolution [57].  

 

Li-ion batteries are composed of several cells that store electrical energy as chemical energy 

in two electrodes: the anode (reductant) and the cathode (oxidant). The electrodes are 

separated by an electrolyte which conducts the ionic component of the chemical reaction 

that occurs inside the cell and forces the electricity to flow outside the battery. The battery 

outputs are an external current I and a voltage V, which together constitute the output power. 

A rechargeable battery has a reversible chemical reaction at the two electrodes. [58] 

3.3.2.2 System Description 

Inside the Li-ion battery block, there are two main blocks: Heat losses and SOD calculation. 

Both of them can be seen in figure 21. 

 

 
 

Figure 21. Energy storage system of Li.ion battery in the electric bus model. 

 

Heat losses block consist on a thermal model that calculate the power loss by heat generation 

during charge and discharge process. Thus, the outputs of this block are the power loss (Ploss) 

and the internal temperature of the battery (T).  

 

On the other hand, the SOD calculation block implements the equations to calculate the 

battery state of discharge (SOD) and consequently the state of charge (SOC). The battery 

state-of-charge is measured as a percentage: for a fully charged battery, the SOC is 100% 

and for an empty battery is 0%. Along with the SOC, the other output of this block is the 

battery open circuit voltage (Voc). 

 

With the knowledge of these new variables and implementing the corresponding equations, 

the battery voltage is calculated. Subsequently, the battery power and efficiency are 

calculated as well. Other internal parameters are needed to proceed with the calculations, 

thus the battery model is initiated with the parameters shown in table 7, based on the default 

values described in paper [55]: 
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Table 7. Li-ion battery model parameters. 

 

Lithium-ion battery 

Parameter Value 

Number of cells in series 168 

Number of cells in parallel 38 

Nominal cell capacity (Ah) 2.1 

Max. Voltage of a cell (V) 4.2 

Internal resistance of a cell (mOhm) 150 

Capacitance of a Cell (F) 4 

State of charge (%) 85 

Cell star temperature (ºC) 23 

Ambient temperature (ºC) 25 

Weight of a cell (kg) 0.0410 

Surface area of a cell (m2) 0.0043 

Specific heat (J/kgK) 925 

Heat transfer coefficient 40 

Number of cycles to N% aging 500 

Capacity remained after N% aging 80 

Number of cycles used 0 

Self-discharge (%/month) 4 

 

3.3.3 Driver and Mechanical System 

Performance and specifications, among other characteristics of the vehicle, determine the 

energy requirements, thus the mechanical properties required for driving a vehicle are 

considered in this block. 

 

In this system, the speed and acceleration of the vehicle are calculated. To carry out this 

calculation, the dynamic equations of the vehicle are implemented, so a brief theoretical 

explanation about vehicle dynamics is going to be done before the system description. 

3.3.3.1 Linear Motion Dynamics 

In order to understand the behaviour of a vehicle, whether electric or conventional, it is 

convenient to know the forces involved in its movement. In this case, the model is simplified 

considering only the action of longitudinal forces. The main acting forces can be easily 

interpreted through the corresponding equations based on physical laws. The equivalent 

forces acting on a vehicle in motion are represented in figure 22. 
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Figure 22. Longitudinal forces acting on a bus in motion (based on [25]). 

 

The total resistance to motion effort that the vehicle must overcome is the sum of rolling 

resistance, gradient resistance, aerodynamic drag and acceleration resistance. In order to 

overcome this resistance, a sufficient quantity of traction force has to be applied.  

 

 Rolling resistance 

It is the equivalent force related to the resistance of the wheels to rotate due to a deformation 

processes, which occur when the tire is in contact with the road [59]. Moreover, the rolling 

coefficient, and subsequently the rolling resistance, vary according to type of road surface. 

 

 𝐹𝑅 = 𝑓𝑟𝑟 · 𝑁 (12) 
 

Where frr is the rolling coefficient and N is the normal force which can be expressed as: 

 

 𝑁 = 𝑀 · 𝑔 · cos 𝛼 (13) 
 

Where M is mass, g the gravitational field strength and α is the angle forming the surface 

with the horizontal. 

 

 Gradient resistance 

It is the force due to gravity necessary to raise a body of a certain mass along an inclined 

plane with an angle α to the horizontal. 

 

 𝐹𝑔 = 𝑀 · 𝑔 · sin 𝛼 (14) 
 

Where M is mass, g the gravitational field strength and α is the angle forming the surface 

with the horizontal. 

In this study an angle of 0 degrees has been considered (horizontal profile), but it could be 

modelled for different driving profiles. 

 

 Aerodynamic drag 

The aerodynamic drag is the force that opposes vehicle movement when it travels through 

the air. Vehicles have to set aside a significant amount of air in order to advance. The 
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pressure of the air against the front side and the vacuum (suction) generated in the back are 

combined to generate a force opposite to the movement. The aerodynamic drag is calculated 

with the following formula: 

 

 𝐹𝑎𝑒𝑟𝑜 =
1

2
· 𝜌 · 𝐴𝑑 · 𝐶𝑑 · 𝑣 (15) 

 

Where ρ is the air density, Cd is the drag coefficient, Ad is the vehicle’s frontal cross-

sectional area and v is the driving speed (taking into account the headwind speed which in 

this study is going to be considered 0 m/s) [59]. The drag coefficient depends on crosswind 

effects and vehicle speed and requires detailed data of regional wind statistics [60]. In this 

study it is considered as a constant. 

 

 Acceleration resistance 

In addition to the driving resistance that occurs in steady state motion, inertial forces also 

occur during acceleration and braking, and they have to be taken into account. This resistance 

can be divided in two components: the acceleration resistance of the total mass of the vehicle 

and the inertial resistance of the rotating parts. According to Newton's second law of motion, 

the vehicle acceleration can be expressed as: 

 

 𝐹𝑎𝑐𝑐 = 𝑀 ·
𝑑𝑣

𝑑𝑡
 (16) 

 

 

Where v is the vehicle speed and M is the vehicle total mass. 

 

On the other hand, inertial resistance of the rotating parts is the equivalent force necessary 

to have a torque that gives the angular acceleration. The rotating components need a certain 

force to overcome the moment of inertia and produce the necessary rotation. This force can 

be calculated with the following formula: 

 

 𝐹𝐼 =
𝐽

𝑟2
·

𝑑𝑣

𝑑𝑡
 (17) 

 

Where J is the total moment of inertia at the driven axle and r is the dynamic radius of the 

tire.   

 

The vehicle tractive force (FT) is a sum of all the resistive forces: rolling resistance (FR), 

gradient resistance (Fg), aerodynamic drag (Faero), acceleration resistance (Facc) and inertial 

resistance (FI) [60]. 

 

 𝐹𝑇 = 𝐹𝑅 + 𝐹𝑔 + 𝐹𝑎𝑒𝑟𝑜 + 𝐹𝑎𝑐𝑐 + 𝐹𝐼 (18) 
 

Substituting the values of all the forces in equation 18, it leads to: 

 

 𝐹𝑇 = 𝑓𝑟𝑟 · 𝑀 · 𝑔 · cos 𝛼 + 𝑀 · 𝑔 · sin 𝛼 +
1

2
· 𝜌 · 𝐴𝑑 · 𝐶𝑑 · 𝑉 +

𝑑𝑉

𝑑𝑡
· (𝑀 +

𝐽

𝑟2
) (19) 
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3.3.3.2 System Description 

The driver and mechanical system consists of the elements that can be seen in figure 23. The 

system has two inputs: the ambient temperature and the motor torque. The ambient 

temperature is used to calculate the air density and the motor torque is needed to obtain the 

motor force.  

 

 
 

Figure 23. Driver and mechanics system of the electric bus model. 
 

This block contains the bus longitudinal dynamics model and it calculates all resistive forces 

and, based on them and the force provided by the motor, the acceleration is obtained. To 

compute the resistive forces, the vehicle total mass is needed, and it is implemented adding 

the mass of the passenger flow generated in Matlab to the curb weight of the vehicle (m). A 

new passenger flow is generated in each simulation and it is multiplied by 70 kg which is 

assumed to be the standard weight of a person [61], [62], [63].  

 

Finally, the system has two outputs: the real acceleration and real speed of the bus. The 

values of the block parameters are shown in the table 8. 

 

Table 8. Driver and mechanics model parameters. 

 

Driver and Mechanics 

Parameter Value 

Gear ratio 4.93 

Tire diameter (m) 0.43 

Vehicle mass (kg) 12345 

Motor inertia (kgm2) 0.63 

Tire inertia (kgm2) 8 

Head wind (m/s) 0 

Road angle (degrees) 0 

Coefficient of drag  0.493 

Vehicle frontal area (m2) 6.2 

Rolling resistance coefficient 0.008 
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3.4 Electric Bus Model Simulation and Validation 

Before proceeding with the Monte Carlo simulation, it is necessary to guarantee that the 

Simulink model represents adequately the actual electric bus performance, thus the electric 

bus Simulink model has to be validated. To carry this out, the results of the model will be 

compared with the electrical consumption measured on an actual bus in the same route. 

These measurements were taken with a chassis dynamometer, and were presented in study 

[64]. 

 

The same driving cycle measured in the actual bus is simulated with the Simulink model. 

Also, the same bus mass was introduced (12345 kg) and no additional mass corresponding 

to the passengers was taken into account. The results obtained are presented in table 9. 

 

Table 9. Comparison between electrical consumption in actual measurements and in 

model simulation. 

 

 Electric consumption (kWh/km) 

Actual bus measurement 0.581 

Electric bus model simulation 0.5867 

Relative error 0.98 % 

 

The value obtained with the simulation model is quite similar to the measured one. The 

relative error is less than 1% and therefore, the simulation model is valid to reproduce the 

actual bus behaviour. 

 

Therefore, the bus model is repeatedly simulated with Matlab (with the driving cycles and 

passenger flows generated), obtaining enough representative results. The number of trials 

has to be settled first. Figure 24 represents the simulation process. 

 

 
 

 

Figure 24. Simulation process diagram. First, the uncertain inputs are sampled with driving cycle 

generator algorithm and passenger flow generation algorithm. Second, the driving cycle and passenger 

flow are introduced in the electric bus model, and it is simulated. Third, the output variable is collected. 

This process is repeated a determined number of trials. 
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Every Monte Carlo simulation requires the development of a model that closely resembles 

the real scenario, and thereby to be able to analyse meaningful results. In this thesis the 

analysis focuses on one of the outputs of the model:  the electrical consumption. 

3.5 Monte Carlo Sampling 

Monte Carlo Method is applied to ensure the reliability of the model. The Monte Carlo 

method procedure generates a random value for each input, and through mathematical 

relations, they are used to produce a probability distribution as output. However, one 

disadvantage of Monte Carlo method is that a single simulation (or trial) is not enough to 

produce a reliable result [52]. 

 

Therefore, when designing Monte Carlo simulations, two considerations must be taken into 

account. First, the random component must be introduced reflecting the interdependence that 

needs to be evaluated. And second, the number of simulations performed has to be enough 

to achieve an accurate estimation of the output probability distribution [45]. This second 

consideration is going to be analysed in Monte Carlo sampling chapter. 

3.5.1 Uncertain Inputs 

First, the number of inputs that are going to be sampled has to be defined, as it is a crucial 

factor for the number of simulations needed to get an accurate estimation. The uncertain 

inputs of the model are the number of stops in the driving cycle, the number of passengers 

inside the bus before the first stop and the number of passengers boarding or alighting in 

each stop. Thus, ten uncertain inputs are involved in this model. 

 

In the case of the number of stops, the actual distribution was unknown, so the uncertainty 

was modelled with a normal distributed PDF, represented in figure 25, and the probability 

of stopping at each stop was set to 50% [17]. 

 

 
 

Figure 25. Normal PDF that model the number of stops in a driving cycle. 

 

On the other hand, normal PDFs were obtained for describing the number of passengers 

boarding and alighting in each stop, fitting the actual data to normal distributions. Through 

random sample generation, the following histograms (figure 26) for each distribution can be 
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obtained and they can give an idea of the probability of each value. The same process is 

performed to model the uncertain number of passengers inside the bus before the first stop. 

 

 
 

Figure 26. The number of passenger boarding or alighting at each stop is sampled from 

normal PDFs. 

 

In every simulation cycle, each uncertain input is randomly sampled taking into account the 

dependency relationships between them, and a value for each input is obtained generating 

sets of inputs. This means that a passenger flow is going to be created for each set of samples 

and for each driving cycle. Consequently, the electric bus model is going to be simulated a 

specific number of times obtaining as a result an aggregate probability distribution which 

gives the uncertain output values. 

3.5.2 Number of iterations required 

Working conveniently with the random variables, a complete study of the reliability of the 

electric bus model can be made, as well as the sensitivity of each of the variables can be 

extracted. To carry this out as it was mentioned before, the number of simulations performed 

has to be determined.  

 

The simulation process is repeated a large number of times in order to obtain a sufficient 

amount of results as output. Considering that the larger the sample size, the greater the fit 

between the sample distribution and the theoretical distribution on which the sample is 

based, it is decided to simulate the model 1000 times and verify its convergence. This is a 

sufficient number to get an output PDF with constant mean and variance [34]. However, if 

the number of iterations is not high enough, it is possible to over-sample some segments of 

the distributions and to sub-sample other segments. Hence, as the number of simulations 

increases, the error decreases. 

 

The simulation was run for 1000 iterations and the estimated mean was computed after each 

iteration. The obtained results are illustrated in figure 27. This graph will converge towards 



 

44 

 

a specific value, the true mean, and will eventually reach a point at which any additional 

iterations will not result in a significant change to the estimated mean. The number of 

iterations required is the one that leads to an acceptable error interval around the simulation 

results. 

 

 
 

Figure 27. Convergence of electrical consumption mean depending on the number of 

iterations performed. 
 

Based on the convergence graph, it can be defined the number of iterations to reach a 

particular accuracy. The greater the number of iterations, the more stable will be the output 

mean. It can be seen that the forecast mean for 1000 iterations is 0.548 kWh/km, achieving 

less than 1% error after 200 iterations and less than 0.5% error after 500 iterations. 

 

Depending on the model complexity (number of uncertain variables and range of values 

accepted), the number of iterations and error percentage accepted can vary [34]. It is crucial 

to achieve a proper compromise between the estimation accuracy and the simulation time. 

As it is a model with 10 uncertain variables, the solution variability is higher as well as the 

error bound accepted. Thus, an error bound of 0.5% is considered acceptable and at least 500 

simulations are required in this case to provide accurate results with Monte Carlo Method. 
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4 Results 

Every Monte Carlo simulation requires the development of a model that closely resembles 

the real scenario. In this case the electric bus model done in Simulink was used. 

Mathematical relationships that transform the input parameters into the desired output 

parameters were applied. In this thesis the analysis focuses on one output of the model:  the 

electrical consumption. 

 

To proceed with the analysis, 500 simulations were carried out and the electrical 

consumption value was collected for each set of inputs. In addition, as he results depend on 

several inputs, the values of other parameters of interest were collected, such as the number 

of passengers in the bus, the speed, the number of stops, and the time in which a certain 

number of passengers remain inside the bus. 

 

In this section, the samples obtained in the simulations are evaluated, presenting the 

electrical consumption distribution, its variation with the number of passengers and the 

influence of passenger load, speed and number of stops on electrical consumption. 

4.1 Electrical Consumption Distribution 

For estimating the electrical consumption forecast, given the uncertainties of all the inputs 

considered, the output results are gathered in a distribution histogram. The histogram is 

illustrated in figure 28 and the mean, mode and 80 % confidence interval are plotted in it.  

 

 
 

Figure 28. Electrical consumption histogram. 

 

The mean of the sample, illustrated in blue, is defined as the sum of the observations divided 

by the total number of them. While the mode, represented in red, is the most frequent value 

in the output results. It is a single mode forecast and it indicates that the most frequent value 

for electrical consumption is located in the zone of values below the mean.  
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In addition, the 80% confidence interval is also shown. It was calculated assuming that the 

probabilistic distribution follows the law of normal distribution. The lines that limit the 

interval represent the 10% and 90% distribution percentiles and they define the 80% 

confidence interval on the results, considering the uncertain inputs. This means that there is 

an 80% probability for the electrical consumption to occur within this interval. 

 

Moreover, table 10 includes some information of the results obtained, where numerical 

values that describe the basic features of the output distribution can be observed. 

 

Table 10. Numerical values of the output distribution, considering a normal PDF. 

 

Distribution characteristics Electrical Consumption (kWh/km) 

Mean 0.549 

Mode 0.536 

Median 0.546 
80% confidence interval 0.485-0.613 26.37% of variation 

Minimum value 0.335 -39.01% of difference to the mean 

Maximum value 0.749 +36.43% of difference to the mean 

Absolute difference between 

minimum and maximum 
0.414 75.44% of difference 

 

Although the obtained histogram indicates that the distribution of the results could resemble 

a normal one, and the information obtained was calculated assuming a normal PDF, the 

validity of the normal distribution to represent the results is analysed in greater depth. In a 

normal distribution, mean, mode and median have the same value, and this is not the case, 

even though mean and median are very similar. To proceed with the analysis, a Kernel PDF 

estimation of the electrical consumption was done with Matlab, based on the forecast. Then, 

it is compared with the normal distribution fitted to the forecast as well. 

 

The non-parametric estimation of density functions using the Kernel method is an ingenious 

way of estimating a PDF that does not follow a known model (Normal, Binomial, 

Exponential, etc.). Furthermore, it is very useful in Monte Carlo simulation [65], [34]. A 

kernel estimation for the outcome data was carried out by means of a Matlab function.   

 

Kernel distribution is defined by a smoothing function and a bandwidth value that controls 

the smoothness of the resulting density curve [66]. The kernel algorithm is: 

 

 𝑓ℎ̂(𝑥) =
1

𝑛ℎ
∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

;     −∞ < 𝑥 < ∞ (20) 

 

Where n is the number of samples, h is the bandwidth and K is the kernel smoothing function.   

The shape of the curve used to generate the PDF is determined by the kernel smoothing 

function. The Matlab function compiles the probability distribution based on the output 

samples and it sums the smoothing functions component for each value to generate a smooth 

and continuous probability curve.  

The electrical consumption kernel estimation was computed using the default bandwidth, 

which is theoretically optimal for estimating densities for the normal distribution [66]. Figure 
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29 illustrates the comparison between the kernel PDF estimation and the normal one. Also, 

the distribution histogram is represented. 

 
 

Figure 29. Kernel PDF estimation (black line) and Normal PDF (red line) both fitted 

to output distribution histogram. 

 

It can be observed that the kernel estimation fits the histogram shape more closely than the 

normal PDF estimation, and consequently Kernel PDF provides a more accurate description 

of the output. The deviation of the mode towards values below the mean makes that the 

normal PDF peak does not fit to the one of the outcome histogram. 

4.2 Electrical Consumption Mean by Number of Passengers 

Knowing the values for each parameter and inputs of the model, the influence of the 

passenger load on electrical consumption can be analysed according to the number of 

passengers that are inside the bus during each driving cycle. In order to carry out this 

analysis, it has been necessary to calculate the average number of passengers on the bus in 

each driving cycle. This has been done by taking into account the time that the passengers 

remain inside the bus. The highest number obtained was 5.6 and the lowest 0, so the average 

number of passengers was divided into 6 bins, in the following way: 

 

Table 11. Average number of passengers divided into bins. 

 

Bin name 
Range of values 

(number of passengers) 

1 0-1 

2 1-2 

3 2-3 

4 3-4 

5 4-5 

6 5-6 
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Then, the mean and standard deviation of the electrical consumption were calculated for 

each bin. Both values are illustrated in figure 30. 

 

 
 

Figure 30. Electrical consumption mean and deviation by number of passengers. 

 

As expected, the electrical consumption of the bus increases with the number of passengers, 

i.e. they are directly proportional.  Regarding the standard deviation, the electrical 

consumption variation can be explained by the different speed profiles and number of stops 

in each driving cycle performed. Moreover, the number of samples in each bin is not the 

same, as high numbers of passengers (5 and 6) are not very frequent in the driving cycles 

simulated.  

 

4.3 Influence of Passenger Load on Electrical Consumption 

The effect of passenger load on the electrical consumption was further studied. The 

consumption strongly depends on two other parameters that are the bus speed and the 

number of stops. Then the results were analysed in a combined way: on the one hand, average 

number of passengers combined with number of stops and on the other hand, average number 

of passengers combined with average speed. 

4.3.1 Electrical Consumption at Different Passenger Load and Number of 
Stops 

With the previous divisions realized for the average number of passengers and taking into 

account the number of stops done by the bus in each driving cycle, a three-dimensional chart 

is constructed (figure 31). 
 



 

49 

 

 
 

Figure 31. Electrical consumption at different passenger load and number of stops. 

 

It can be observed in figure 31 that, with certain exceptions, electrical consumption shows a 

significant increasing trend when increasing the number of stops and passenger load. Hence, 

electrical consumption is directly proportional to both parameters. Consequently, the highest 

value for electric consumption will occur for the highest number of passengers and highest 

number of stops. 

 

 
 

Figure 32. Number of stops influence on electrical consumption. 

 

Figure 32 shows how the effect of the number of stops on electrical consumption is more 

pronounced than the one caused by the number of passengers. The data have been divided 

into 4 groups, depending on the number of stops. The light blue circles represent driving 

cycles with 0 or 1 stops, the dark blue circles represent driving cycles with 2 or 3 stops, the 
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green circles represent driving cycles with 3 or 4 stops and the red circles represent driving 

cycles with 6 or 7 stops. It can be observed that electrical consumption increases as the 

number of stops increases. However, the number of passengers has influence as well, causing 

an increase in electrical consumption. 

4.3.2 Electrical Consumption at Different Passenger Load and Average 
Speed 

To evaluate the effect of speed on electrical consumption, the average bus speed of each 

driving cycle was calculated.  Thus, an average value for each simulation performed was 

obtained, and then they were divided into six bins depending on the following intervals: 

 

Table 12. Average speed divided into bins. 

 

Bin name 
Interval 

m/s km/h 

25.2 6-7 21.6-25.2 

28.8 7-8 25.2-28.8 

32.4 8-9 28.8-32.4 

36 9-10 32.4-36 

39.6 10-11 36-39.6 

43.2 11-12 39.6-43.2 

Electrical consumption as a function of passenger load and average speed is illustrated in 

figure 33. 

 

 

Figure 33. Electrical consumption at different passenger load and average speed. 
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In this case, it can be observed that the electrical consumption of the bus is higher when the 

average number of passengers is bigger and the average speed is lower. This is logical as the 

average speed is lower when more stop-go events are performed, i.e. when it does more 

stops. Therefore, electrical consumption is directly proportional to passengers and inversely 

proportional to speed.  

 

Figure 34 shows that electrical consumption has a higher dependence on speed than in the 

number of passengers. This may be because there is not much variation in the number of 

passengers. Values with greater variability will produce greater changes in consumption. 

 

 

Figure 34. Speed influence on electrical consumption. 
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5 Discussion 

First of all, this section summarizes the steps taken for the development of the study. 

Furthermore, the main conclusions are formulated as well as the limitations of the study and 

the recommendations for further research. 

5.1 Research Summary 

In this thesis a study about the influence of passenger load on electrical consumption of an 

electric city bus was performed, providing a reliable energy consumption forecast. To 

address reliability and accuracy to the results, Monte Carlo Method was utilized. 

 

An algorithm for the calculation of the passenger load was created in Matlab, based on 

driving cycles generated randomly (with a random number of stops and different speed 

profiles). This algorithm calculates the number of passengers inside the bus during each 

driving cycle introduced, creating a passenger flow. The algorithm was computed based on 

actual bus data of the studied route. Monte Carlo method allows the introduction of 

uncertainty in the algorithm inputs. Therefore, passenger data for each bus stop were 

represented by a normal probability distribution and they were related to each other using a 

multivariate normal distribution. Thus, these are the uncertain inputs of the model, as well 

as the number of stops which was modelled previously by another normal distribution. 

 

An electric bus model created in Simulink was simulated with a real urban cycle and constant 

mass to conduct the validation of the model. Once it was validated, Monte Carlo simulation 

was performed by varying in each iteration the driving cycle and the introduced passenger 

flow.  

 

The number of iterations performed was analysed based on the convergence of the electrical 

consumption mean. Finally, it was determined that 500 simulations would yield an accurate 

output estimation. 

 

The results obtained were analysed with different input values, taking into account the 

variation in the electrical consumption caused by the passenger load impact. 

5.2 Conclusions 

Based on the results obtained in the different scenarios simulated, the following conclusions 

can be drawn. 

 

First of all, it should be noted that the possibility of simulating with random numbers 

provides quality to the study. The consistent and reasonable results obtained confirm that the 

Monte Carlo method provides an efficient tool for estimating the consumption of an electric 

city bus. By means of this method, the amount of information obtained to describe the 

possible behaviour of the bus is greater, since it allows the introduction of uncertainty in the 

inputs of the model which enable to obtain results for the different possible scenarios and 

cover all the variations. 

 

In order to increase the precision in the estimation, a larger number of simulations must be 

performed. However, more simulations involve more time so a compromise between 

accuracy and time must be found. Finally, 500 simulations were carried out to provide 
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stability and robustness, and a sufficiently reasonable estimate was obtained for electrical 

consumption. 

 

On the other hand, in the analysis of the actual data used to create the mass algorithm, it was 

observed that the number of passengers in the bus depends on the time of the day and day of 

the week. Therefore, the introduction of the correlations between the different variables was 

of great importance to bring realism to the model. 

 

The results described as a probability distribution define an electrical consumption with an 

average of 0.549 kWh/km. It is also possible to assure with an 80% of probability that the 

electrical consumption will be between 0.485 kWh/km and 0.613 kWh/km. These results 

obtained with the Monte Carlo method are an estimation of the bus electrical consumption 

depending on the number of stops performed and the number of passengers boarding and 

alighting at each stop. The results are valid for the estimation of the consumption of a battery 

electric bus that circulates in the 3.3 km section of the line 11 route in Espoo (Finland), 

which was the one studied. 

 

Moreover, the analysis of the results indicates that the passenger load has a clear influence 

on the bus electrical consumption. This is because the mass of the bus plays an important 

role in the consumption, since it affects the necessary force that is required to accelerate the 

vehicle. The rolling resistance is determined by the weight of the vehicle and the pressure of 

the tires. The weight of the bus itself and the one of its occupants directly influences 

consumption, especially in the start and acceleration phases. At low speed the component of 

mechanical resistance is higher than aerodynamic one, so the influence of mass is also 

greater.  

 

The results obtained confirm that the electrical consumption of the bus increases with the 

number of passengers.  Furthermore, it has been observed that variations in the speed and 

number of bus stops affect electrical consumption more than mass variations. This may be 

due to the fact that there were no big differences in the average mass between the different 

driving cycles (there were variations from 1 to 6 passengers, which is 70 to 420 kg), which 

leads to a slighter variation in consumption. 

 

The average speed of the driving cycle and the number of stops are related to each other. 

Since more stops lead to more stop-go events and therefore, the average speed is lower 

leading to a higher electrical consumption of the bus. It can be concluded that when there is 

a driving cycle that combines the highest number of passengers and the largest number of 

stops (and therefore lower average speed), the maximum electrical consumption will be 

obtained. 

 

Comparing the results obtained in the present study with those obtained in previous study 

[17], where the uncertain input was the number of stops, it is verified that the mean of the 

electric consumption, which in study [17] was 0.609 kWh/km, differs slightly from the one 

obtained in this present study (0.549 kWh/km). This may be due to the use of different bus 

models with different parameters and assumptions. In addition, in the previous study [17] 

the difference between the minimum and maximum consumption obtained in the histogram 

was 49.4%, while in the present study it was 75.44%. The same occurs with the confidence 

interval which in the present study varies by 26.37%, and in study [17] it varies by 14.4%. 

This can be explained by the fact that when considering a larger number of uncertain inputs, 
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a higher variation in the output is obtained, since a larger number of scenarios are considered. 

Furthermore, a greater number of simulations are necessary to achieve accuracy in the 

results. Therefore, the present study is more complete and represents better the possible 

actual behaviour of the bus on the analysed route, as it covered more possible scenarios. 

 

The introduction of several uncertainties adds sensitivity to the analysis. Introducing the 

possibility of different scenarios improves the estimation as more realistic values are 

obtained. Obtaining an accurate estimation of the consumption of an electric bus is important 

for transport planning. Estimating the possible load scenarios can solve the uncertainties 

related to when and where the bus should be charged. Furthermore, it can help with 

establishing route schedules. In addition, the battery size can be designed more accurately. 

 

Lastly, it is evident that the influence of the passenger load is different when studying the 

total consumption or the consumption per passenger. When the consumption is divided by 

the number of passengers inside the bus, it is obtained that there is a lower consumption per 

capita when the number of passengers is higher. Therefore, there exists an inverse correlation 

between the consumption per passenger and the passenger load. This indicates that when the 

bus is in low load, the consumption per passenger can be very similar to that of a private 

vehicle, henceforth it can be concluded that a reasonable planning for transit bus routes is 

important to reduce the consumption. This can be achieved by adjusting the schedule to the 

passenger demand, and also the punctuality of the buses will help. 

5.3 Limitations 

However, this study has some limitations that will be listed in this section. 

 

First, the size of the sample could be expanded. The actual data measured in the route 

analysed shows a bus line with a low number of passengers, with the maximum number of 

passengers inside the bus being 12. This fact limits the study since it makes the passenger 

load very low and there is not much variation between the average passenger load in different 

driving cycles. This causes that the fluctuations in electrical consumption due to passenger 

load were not very strong. 

 

Secondly, the data measured on the route does not correspond to the number of passengers 

that get on or off at each bus stop, but it corresponds to the number of passengers inside the 

bus after each stop. This means that when performing the probability distributions for each 

stop in the mass algorithm, the number of passengers getting on or off at each stop was 

calculated as the absolute difference between the passengers inside the bus before and after 

each stop. Therefore, it is not known the exact number of passengers boarding and alighting 

at each stop, only the absolute difference. 

 

Third, the mass algorithm used to calculate the number of passengers inside the bus is not 

totally accurate, since normal (continuous) distributions have been used to model the 

boarding and alighting of passengers on the bus at each stop, which is a discrete variable. 

However, the algorithm reproduces with sufficient accuracy the approximation of the 

passenger load fluctuation on the route.  

 

On the other hand, although the obtained results correctly estimate what the actual 

consumption of the bus would be, only the influence of the passenger load and the number 

of stops were taken into account. However, not all the parameters that affect the electrical 
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consumption of the bus have been considered in the model, since the traffic and road grade 

have not been analysed and they are influential factors as well. 

 

In the electric bus model only longitudinal dynamics were taken into account, excluding all 

lateral effects. Also, some simplifications were taken, such as the headwind speed that was 

considered 0 m /s and the road angle that was considered 0 degrees (horizontal profile). 

 

Finally, the results are valid only for the specific fragment of the route studied and the bus 

configuration modelled. For other types of buses or routes another sensitivity analysis would 

have to be carried out since the characteristics of the route would vary, as well as the traffic 

or the passenger demand of the line. Thereby, more size accurate batteries can be designed, 

depending on the bus and the route that it follows. 

5.4 Suggestions for Further Research 

As mentioned before, this study does not include all the parameters that affect the electrical 

consumption of the bus, hence in future studies, other influential parameters could be 

incorporated. The objective would be to obtain more accurate forecasts, closer to what could 

happen in reality. Some of the parameters that could be included in future studies are the 

level of traffic congestion, the road grade, the driver behaviour (accelerations and abrupt 

braking) and the stops due to traffic lights or signals. Although some parameters are difficult 

to define, such as traffic or driver behaviour, they modify the driving cycle, which 

undoubtedly affects the bus electrical consumption. 

 

This study has proved the importance of developing tools that allow you to predict possible 

scenarios and therefore, possible behaviour of electric buses, as they can improve the current 

transport planning system. In this way, transport operators would have a better knowledge 

of the impact of several factors in the electrical consumption and consequently in the battery 

life time, which allows the optimization of the charging points on the route. 

 
Finally, another suggestion would be to include the existing relationship between the number 

of passengers boarding or alighting the bus with the dwell time at each station. In this way, 

the driving cycle would change because the time in which the bus was stopped at each station 

would be different, being greater when a higher number of passengers is involved in the 

getting on and off actions. The dwell time would therefore affect the total route time and it 

could also be analysed in order to establish the route schedules. 
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Appendix 1: Mass Algorithm with Matlab  

%Load the data from excel datasheet 
 Load ('C:\Users\ASUS\Desktop\master 

thesis\simulink_model_def\passengersdata_multivariate.mat') 
%load data for passengers boarding and alighting 
passengers_stop=passengersdataS1; 
%initial number of passengers, this is before arriving at the first stop 

studied 
passengers_before=passengersbefore; 

  
%create the normal distribution acording to data 
pd_normal_in = fitdist(passengers_before,'normal');  
mu(1)=mean(pd_normal_in); 

  
%generate normal distribution for passengers boarding or alighting in 

each stop  
for i=1:8 
pd_normal=fitdist(passengers_stop(:,i),'Normal'); 

  
%record mu and sigma of each one 
mu(1,i+1)=mean(pd_normal); 
sigma(1,i+1)=std(pd_normal); 

  
%Plot histogram and normal PDF for each stop 
figure 
hist(passengers_stop(:,i)) 
hold on 
x_values = -4:0.1:10; 
y = pdf(pd_normal,x_values); 
scale = 10/max(y); 
plot(x_values,y.*scale) 
end 

  
%calculate covariance matrix: C=cov(A);If A is a matrix whose columns 

represent random variables and whose 
%rows represent observations, C is the covariance matrix with the 

corresponding column variances along the diagonal. 
multinorm_data=cat(2,passengers_before,passengers_stop);%matrix with 

passengers before (first column) and passengers stop data 
covar=cov(multinorm_data);  

  
%create the probability density of the multivariate normal distribution 
%with mean the vector mu and covariance sigma 
F = mvnpdf([multinorm_data(:,1) multinorm_data(:,2) multinorm_data(:,3) 

multinorm_data(:,4) multinorm_data(:,5)... 
     multinorm_data(:,6) multinorm_data(:,7) multinorm_data(:,8) 

multinorm_data(:,9)],mu,covar); 

  
%Create passenger flow for each driving cycle introduced 
%simulaatiot = number of driving cycles generated 
%nr_passengers = number of passengers after each stop 
for zz=1:simulaatiot  
load(strcat('Cycle_combined_nr',num2str(zz),'.mat')); %load the driving 

cycle generated previously 
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%initialitation 
stop=sch_stops; %stops of the driving cycle 
nr_passengers=zeros(1,8); 
sch_passengers=zeros(size(sch_cycle)); 

  
%generate a random number from the normal distribution, this is going to 
%be used as the number of passengers in  the bus when it arrives at the 

first stop 
%the normal distribution has negative values, and only positive values 

are 
%taken 
initial_passengers=random(pd_normal_in); 
while initial_passengers<0 
initial_passengers=random(pd_normal_in); 
end 
initial_passengers=int16(initial_passengers) %integer 

  
%conditional distribution. Each variable correspond with the passengers 
%boarding and alighting in each bus stop. the conditional distribution of 
%each variable is done knowing the values of the previous variables. 

  
%x= vector with the value of each variable 
%the first variable x1=initial_passengers 
x(1)=initial_passengers; 

sum_pass=0; 

  
%knowing the first value variable, the conditional distribution of the 
%following variables are created 
%variables x2.....x9= number of passengers boarding or alighting in each 
%bus stop 
for i=2:9 

sum_pass=sum_pass+x(i-1); 
 if stop(i-1)==1 
    for j=1:i-1 
        a(j)=x(j)-mu(j); 
    end 
    a=double(a); 

    
    %calculate the expectation (E) and variance (var) values of 

conditional normal 
    %distribution 
    E=mu(i)+covar(i,1:i-1)*inv(covar(1:i-1,1:i-1))*a(1:i-1)'; 
    var=covar(i,i)-covar(i,1:i-1)*inv(covar(1:i-1,1:i-1))*covar(1:i-1,i); 

     
    %create the conditional normal distribution of variable x(i), knowing 
    %the values of the previous variables 
    pd_condnormal=makedist('Normal','mu',E,'sigma',var); 
    x(i)=int16(random(pd_condnormal));%integer 

 

% avoid that when there are 0 passengers on the bus, they remain 0 after 

a stop 
while (sum_pass==0) && (x(i)<=0) 
        x(i)=int16(random(pd_condnormal)); 
    end 

  
 else 
    x(i)=0; 
 end 
  



Appendix 1 (3/4) 

    

 

 

 %Calculate number of passengers after each stop  
 nr_passengers(1,1)=x(1)+x(2); 
 for z=3:9 
nr_passengers(1,z-1)=nr_passengers(1,z-2)+x(z); 
 end 
 

%limit the bus capacity 
%minimum limit 
if nr_passengers(1,i-1)<=0 
    nr_passengers(1,i-1)=0; 
end 
%maximum limit 
if nr_passengers(1,i-1)>=45; 
    nr_passengers(1,i-1)=45; 
end   

  
end 

  
%create the passengers flow following the driving cycles.  
%passengers in the bus during driving cycle time 
% sch_cycle(:,1)= time vector for the driving cycle 
%passengers = passengers vector for the driving cycle 
[m,n]=size(sch_cycle); 
passengers=zeros(m,1);  
passengers(:,1)=initial_passengers; 

  
%record the positions when the bus start movement after a bus stop 
ii=1;  
positions_zero=find(sch_cycle(:,2)==0);  %find the positions in which the 

velocity =0 
siz=size(positions_zero); 
sx=siz(1,1); 
for i=1:(sx-1) 
if (positions_zero(i+1)-positions_zero(i))>100  
    start_movement(ii,1)=positions_zero(i); %vector with the positions in 

which the bus start movement after each stop 
    %the vector dimension is equal to the number of stops in the driving 
    %cycle 
ii=ii+1; 
end 

  
if sch_stops(8,1)==1 
    start_movement(ii+1,1)=positions_zero(sx); 
end 
end 

  
%create passengers flow 
jj=1; 
for k=1:8 
if sch_stops(k,1)==1 
        for kk=1:m 
         if kk>start_movement(jj,1) 
        passengers(kk,1)=nr_passengers(1,k); 
        end 
        end 
     jj=jj+1; 
end 
end  
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%plot passengers flow against driving cycle 
figure 
subplot(2,1,1); 
plot(sch_cycle(:,1),passengers(:,1)) 
grid on; 
hold on 
xlabel('Time [s]'); 
ylabel('Passengers [nr]'); 
subplot(2,1,2);  
plot(sch_cycle(:,1),sch_cycle(:,2)) 
hold on 
xlabel('Time [s]'); 
ylabel('Velocity [m/s]'); 

  
%create matrix with time and passengers 
sch_passengers(:,1)=sch_cycle(:,1); 
sch_passengers(:,2)=passengers(:,1); 

  
%simulate the simulink model 
 stop_time=max(sch_cycle(:,1));  
 loc=stop_time/0.01+1; %0.01 is the sample time. with this we can 

calculate the consumption at the end of the driving cycle 
 %initial condition for integrator, initial speed of the driving cycle 
    v0=zeros(loc,2); 
    v0(:,1)=0:0.01:stop_time; 
    v0(:,2)=sch_cycle(1,2);  
 %simulate electric bus model eBus_V2 
 simOut = 

sim('eBus_V2','StopTime','stop_time','ReturnWorkspaceOutputs','on') 
  %save the consumption of each sample (it is in kwh/km) 
 output = simOut.get('Batconsumption'); 
 consumption(zz)=output(loc); 
 %save other data 
 consumption_sim=consumption(zz); 
 nr_stops(zz)=sum(sch_stops(:) == 1); 
 average_passenger_load(zz)=mean(sch_passengers(:,2)); 
 average_speed(zz)=mean(sch_cycle(:,2)); 
 name=strcat('sim',num2str(zz)); 
save(name,'sch_stops','sch_cycle','sch_passengers','nr_passengers','consu

mption_sim') 

  
end 
save('results.mat', 'consumption','nr_stops', 

'average_passenger_load','average_speed') 

 


