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In the recent years, DevOps methodologies have been introduced to extend the
traditional agile principles which have brought up on us a paradigm shift in
migrating applications towards a cloud-native architecture. Today, microservices,
containers, and Continuous Integration/Continuous Delivery have become critical
to any organization’s transformation journey towards developing lean artifacts and
dealing with the growing demand of pushing new features, iterating rapidly to
keep the customers happy. Traditionally, applications have been packaged and
delivered in virtual machines. But, with the adoption of microservices architectures,
containerized applications are becoming the standard way to deploy services to
production. Thanks to container orchestration tools like Marathon, containers can
now be deployed and monitored at scale with ease. Microservices and Containers
along with Container Orchestration tools disrupt and redefine DevOps, especially
the delivery pipeline.
This Master’s thesis project focuses on deploying highly scalable microservices

packed as immutable containers onto a Mesos cluster using a container orchestrating
framework called Marathon. This is achieved by implementing a CI/CD pipeline
and bringing in to play some of the greatest and latest practices and tools like
Docker, Terraform, Jenkins, Consul, Vault, Prometheus, etc. The thesis is aimed
to showcase why we need to design systems around microservices architecture,
packaging cloud-native applications into containers, service discovery and many
other latest trends within the DevOps realm that contribute to the continuous
delivery pipeline. At BetterDoctor Inc., it is observed that this project improved
the avg. release cycle, increased team members’ productivity and collaboration,
reduced infrastructure costs and deployment failure rates. With the CD pipeline
in place along with container orchestration tools it has been observed that the
organisation could achieve Hyperscale computing as and when business demands.

Keywords: DevOps, Continuous Delivery, Docker, Microservices, Containers,
Consul, Jenkins, Marathon, Mesos, Vault
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1 Introduction
In the last couple of decades we have seen a lot of changes in the way organizations
have been delivering software, especially the speed and quality of delivering the
software has always been going up. Traditionally, Software Development Life Cycle
(SDLC) was composed of many stages and for decades this was managed through the
Waterfall Model [20]. Waterfall Model was the only well known and widely accepted
method back in the day, it had many distinct phases like planning was the first in
line, then comes identifying requirements, followed by design, then development of
the whole product, user acceptance testing, launch into production, and finally the
corresponding support and maintenance activities. In the mid 1990’s it was observed
that success rate of software development was woeful. For example, A 1999 review
of failure rates in a sample of earlier Department of Defense projects drew grave
conclusions: Of a total $37 billion for the sample set, 75% of the projects failed or
were never used, and only 2% were used without extensive modification [12]. Similar
experiences were common for many organizations undertaking the development of
large software projects. There were many drawbacks that came to light with the
Waterfall Model like for example most projects rarely follow the sequential flow of
process it defines and as Humphrey’s requirements uncertainty principle states —
requirements will not be completely known until after the users have used it [11]. It
became evident that a change in software development methodology was needed to
help mitigate these problems. In 1996, Barry Boehm published a well-known paper
summarizing failures of the waterfall model [4], he also introduced a risk-reducing,
iterative and incremental approach called the spiral model [3].

With the time it has been seen that organizations moved from Waterfall Model
to Agile methodologies to improve the overall Software Delivery Life Cycle. This is
because the way organizations deliver software is going through a wave of change as
there is more pressure to adapt to market needs and deliver rapidly [26]. Gone are the
days when an organization kept the customer waiting for a release every 6 months, if
you want to be on the top you have to make rapid iterations and able to respond
to continuous feedback. In order cope up with the impatient market a Manifesto
for Agile Software Development was published in 20011 which is embraced by many
IT organizations in today’s world. Over the years organizations have adopted many
agile methods which refine and optimize their software development practices but this
focus has been mainly in software development and operations side of the software
delivery was lagging behind in the race. Eventually, operations team could not keep
up with the rate at at which artifacts and builds are being delivered [26]. This
affected the entire delivery process since.

DevOps [9] is set of practices that is trying to bridge developer-operations gap
at the core of things2 but at the same time is not limited to this development and
operations hand-off instead covers all the aspects which help in speedy, optimized and
high quality software delivery. The two key components of a DevOps methodology

1 https://www.agilealliance.org/agile101/the-agile-manifesto
2"Understanding DevOps-Infrastructure as code - Sanjeev Sharma"

https://sdarchitect.wordpress.com/2012/12/13/infrastructureas-code

https://www.agilealliance.org/agile101/the-agile-manifesto
https://sdarchitect.wordpress.com/2012/12/13/infrastructureas-code
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are Continuous Integration (CI) and Continuous Delivery (CD). CI is a development
practice that requires developers to integrate code into a shared repository several
times a day [10]. This helps in detecting errors quickly and test build every time
someone pushes code to the repository , there by increasing communication among
developers when integrating their code. CD ensures that software always remains
fully deployable without needing to release changes before they are ready, tested,
and approved. CI and CD help us achieve true agility in SDLC. We will discuss
more in detail about CI/CD later in this chapter.

With the advent of Cloud Computing, applications are now decoupled from
the physical infrastructure3 and can be deployed on to public or private clouds.
Trthe application can utilize the elastic nature of the cloud and scale up or down
on demand and these applications are termed as cloud-native. In addition Docker
containers and microservices architecture quickly are becoming standard on cloud-
native applications, this deadly combination simplifies deployment in computing
environments of all types. This transformation of moving from hundreds of VMs
to thousands or tens of thousands of containers and deploying them at hyperscale
requires advanced technologies for container management. In this thesis, we showcase
a state of the art continuous delivery pipeline which deploys containers on to a
mesos cluster using a container orchestrating framework called marathon. Within
the DevOps context containers and microservices disrupt the way any enterprise or
startup builds and delivers applications.

1.1 Cloud Computing
Broadly speaking, cloud computing refers to a distributed system of resources and
services that communicate across boundaries of geographical and ethernet space.
But that said, the cloud is not just a collection of resources because it possesses the
capability to manage them as well. A cloud computing platform is responsible for
provisioning, de-provisioning and monitoring servers and balancing their workload.
Servers in the cloud could be both physical and virtual machines. Other than those,
cloud platforms also provide a slew of applications, storage services, network filters etc.
These offerings are billed on a consumption basis. Everything is offered as a utility,
thus encompassing the traditional pay-as-you-go subscription model for services. A
major characteristic of the cloud is that its services are transparent, meaning, the
user need not be concerned about how the service is made available to him. All he
needs is to know how to use it. And this is usually simplified by interactive User
Interfaces. Most services on the cloud require little or no administrative knowledge
on the part of the customer. An access is simply enabled on the request of a customer.
The latter has a view of only the abstraction of the service he needs- the details of
implementation and accessibility are hidden from him. The cloud is thus a stack of
different services which can be classified as Software as a Service (SaaS), Platform as
a Service (PaaS) and Infrastructure as a Service (IaaS) [17]. Figure 1 shows us the
difference between each of these services and Traditional Enterprise IT.

3https://goo.gl/Z5gNJq

https://goo.gl/Z5gNJq
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Figure 1: Cloud Computing Service Models4

IaaS - Infrastructure as a Service

Cloud providers of IaaS offer infrastructure starting from the simplest and most basic
of resources like physical and virtual machines to complicated storage, network and
operating systems as utilities. A hypervisor node is responsible for the running of
these virtual machines. Clusters of such hypervisors administer the functioning of
hundreds of virtual machines, thus serving the purpose of scaling in cloud services.
Users need to buy access rights to infrastructure components they need, without
having to buy the actual components. Not only does this cut costs, it also rids
them of the pains of infrastructure management. Such a cloud service is ideal for
organizations that have low capital or require temporary infrastructure. IaaS can
further be divided into private and public clouds–the former refers to resources on a
private network while the latter refers to resources on a public network available to
external users. Amazon Web Services is the most renowned instance of IaaS.

PaaS - Platform as a Service

This offers an integrated environment that would allow application developers or
the like to create, deploy and test applications without having to worry about
the cost and complexity of underlying hardware and software infrastructure. A
computing platform would typically include atleast an operating system, programming
language execution environment, database, and web server, mostly with integrated
test and deployment environments. Force.com from Saleforce.com is a renowned
PaaS system that empowers developers to develop multi-tenant applications hosted
on Salesforce.com servers.

4https://goo.gl/UW4GHR

https://goo.gl/UW4GHR
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SaaS - Software as a Service

This brand of cloud computing offers a single application built on a multi-tenant
architecture, over the internet to thousands of customers. The software is provided
on-demand, either free of cost or on a pay-per-use basis. All updates and security
patches are taken care of by the provider. For the customer, this implies no efforts to
support or maintain software, thus reducing significant costs, while for the provider,
this means reduced management effort as it is only one app at a central location,
needing administration. Google Apps is one of the best known SaaS offerings.

1.2 Rise of Cloud-Native Applications
Migrating to the cloud is a natural evolution of the the IT service delivery. Cloud
computing refers to generally an environment in which computing, networking,
and storage resources can be provisioned and released elastically in an on-demand,
self-service manner. A cloud-native application should have an isolated state, is
distributed in its nature, is elastic in a horizontal scaling way, operated via an
automated management system and its components should be loosely coupled [7].
The capacity to operate cloud-native applications can generate enormous business
growth and value to an organization [16]. The most common motivations to move
towards a cloud-native application architecture are

Speed

Speed wins in the marketplace. The sooner a new feature of a software product hits
the market the more competitive advantage the organization gains. High-performing
organizations like Netflix, Amazon, Airbnb, etc are renowned for their practice of
deploying hundreds of times per day. This practice of frequent deployment cycles
helps these organizations to recover form their mistakes instantly which means
they learn and innovate faster from the feedback loop. According to 2016 State of
DevOps Report5 High-performing organizations deploy 200 times more frequently,
with 2,555 times faster lead times6, recover 24 times faster, and have three times
lower change failure rates. The elastic and self-service nature of cloud perfectly
align with the frequent deployment model as we can setup the infrastructure and
application environment via API calls to the cloud service.

Fault-Isolation

Cloud-Native architectures often employ microservices which helps to isolate the
failure to just one component(service) in comparison to monolithic architectures
where the entire system is brought down if there is one component misbehaving.
In order to limit the risk associated with failure, we need to limit the scope of
components or features that could be affected by a failure [1]. For example, a memory

5https://puppet.com/resources/whitepaper/2016-state-of-devops-report
6time elapsed between the identification of a requirement and its fulfillment

https://puppet.com/resources/whitepaper/2016-state-of-devops-report
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leak in one service only affects that service. Other services will continue to handle
requests normally. More about microservice architecture is discussed in Section 2.1.3.

Scaling

With high demand for your service on the market it is very likely that you need
to scale your service to meet the increasing demand and before migrating to the
cloud, companies often bought hardware (physical servers) by scaling vertically.
Although there was capacity planning and forecasting of the peak usage of the
service, there were times when the estimations were wrong. Also, installation and
maintenance of these servers on premise was challenging and most of the startup
capital was used just to maintain the servers. With more public cloud infrastructures
like Amazon Web Services became available, virtualization costs and maintenance
costs were delegated to the cloud provider. Recently, when containers became the
unit of application deployment instead of VMs, it not only improved the speed
of deploying an applications but also reduced the time to respond to changes in
demand. Additionally, cloud-native application architectures keep the application
instance stateless and store the state in persistent external object stores or in-memory
cache stores. Stateless applications can be quickly created and destroyed, as well as
attached to and detached from external data stores. Cloud providers also enable us
to scale up or down these external data stores on-demand.

According to Stine [24] cloud-native application architectures like to deliver
software-based solution quickly, in a more fault isolating way and enable us to scale
the applications horizontally rather than vertically. The twelve-factor app developed
by engineers at Heroku is a collection of patterns for cloud-native application archi-
tectures. For many people, cloud native and 12 factor are synonymous. Section 2.1.4
describes the twelve patterns.

1.3 Key Terminologies
1.3.1 Continuous Integration

Continuous Integration is a software development practice where members of a team
integrate their work frequently, usually each person integrates at least daily - leading
to multiple integrations per day7. It basically refers to integrate early and not to keep
the changes localized to your workspace for long, instead share your changes with
team and validate how code behaves continuously. Not only share within component
teams but integrate beyond component boundaries, at product integration level [26].
This can be further optimized by automating, as soon as a developer delivers a change
the build system detects and triggers a build, carries out sanity and integration tests
and notifies the result to the team. This has to be a repeatable continuous process
all across the development cycle. The goal is to develop a robust build pipeline which
helps us to identify failures as fast as possible (fail fast) so that no change which
breaks the pipeline goes unnoticed beyond that faulty check in, and the build is

7https://www.martinfowler.com/articles/continuousIntegration.html

https://www.martinfowler.com/articles/continuousIntegration.html
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immediately flagged as failed and responsible parties are alerted. A broken build
should always be fixed immediately. A good CI process will help the team to move
fast, with cleaner code and with a high level of confidence in the work they are doing.

1.3.2 Continuous Delivery

Continuous Delivery is a software development discipline where you build a deploy-
ment pipeline in such a way that the software can be released to production at any
time8. CI augments Continuous Delivery and it is just an extension of the CI pipeline.
CI assumes that there are other manual steps to be performed once the pipeline is
executed whereas a successful execution of CD pipeline results in artifacts which
can be deployed to production. The artifact could be a Docker image or a Debian
package, etc.

Figure 2: Continuous Integration vs Continuous Delivery vs Continuous Deployment10

1.3.3 Continuous Deployment

Continuous Deployment pipeline just goes a step forward and automatically deploys
to production every build that passes the testing. Continuous Deployment needs
more confidence when compared to Continuous delivery and Continuous Integration
since there is no human intervention. The pipeline starts when a developer pushes
commit to the code repository and ends with the application being deployed in
production environment. The continuous deployment pipeline can include multiple
stages where one of it could be deploying the application in stage environment and

8https://martinfowler.com/bliki/ContinuousDelivery.html
10https://goo.gl/HYFacQ

https://martinfowler.com/bliki/ContinuousDelivery.html
https://goo.gl/HYFacQ
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running end-to-end testing before deploying in production. Figure 2 shows the basic
differences between each of the pipelines.

While continuous deployment may not be right for every company, continuous
delivery is an absolute requirement of DevOps practices 11. Only when you contin-
uously deliver your code can you have true confidence that your changes will be
serving value to your customers within minutes of pushing the go button.

1.3.4 DevOps

DevOps is a set of principles for streamlining and integrating the software development
process. It is a management philosophy which was originally trying to solve the
communication-gap between the development and operation teams which used to
work in complete isolation. But later on the idea that came out was revised to
improve collaboration between all the departments and this led to the evolution of
few basic principles called the Three Ways [14].

Systems Thinking

The First Way emphasizes the performance of the entire system, as opposed to the
performance of a specific silo of work or department.

Amplify Feedback Loops

The SecondWay is to create feedback loops to make necessary corrections continuously
by responding to both external and internal customers. A defect is not a defect
unless it hits the customer, so creating these short and amplified feedback loops helps
the organization to fix bugs iteratively.

Culture of Continual Experimentation and Learning

The Third Way is to create an environment that fosters experimentation and taking
calculated risks and learn from these failures continuously.

The core values(CAMS)12 of the DevOps Movement define DevOps as means to
adopt a Culture of blame-free communication and collaboration, to break down
barriers between teams, to embrace Automation to allow people to focus on impor-
tant tasks, to introduce continuous Measurements to get feedback on the quality
and to encourage Sharing of these measurements. This underpins the fact that
DevOps is not about standards or tools, it is about enabling communication and
collaboration between departments in an organization. Today DevOps principles
have evolved completely depending on the company’s interests and priorities. Most
of the fundamental principles in agile methodologies, and lean management are now
addressed by DevOps. These principles can broadly be listed as follows :

11https://puppet.com/blog/continuous-delivery-vs-continuous-deployment-what-s-diff
12http://devopsdictionary.com/wiki/CAMS

https://puppet.com/blog/continuous-delivery-vs-continuous-deployment-what-s-diff
http://devopsdictionary.com/wiki/CAMS
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• Deliver more value to your customers - fast.

• Find better and faster solutions continuously.

• Manage risk and uncertainty better.

• Reduce waste continuously.

In order to achieve the above, a company must easily be able to deploy and scale
cloud infrastructure, improve the speed of software delivery, continuously test in a
production like environment, ability to react to change more quickly, etc. There
are many tools, frameworks, design patterns that are used to achieve this DevOps
Philosophy. Efficient DevOps combined with efficient use of resources leads to high
IT performance, which is a must for today’s highly competitive IaaS business. Being
highly agile and lightweight, containers combined with the microservice architecture
have shown great promises in achieving the desired level of efficiency [13].

1.4 Motivation
In early 2016, BetterDoctor13 pivoted from an online doctor search platform to a
data validation company. The online doctor search platform was monolith and was
a big pain to deploy with frequent releases. The new Data Validation service is
comprised of several applications talking to each other in the data-pipeline. The
Data team was very insightful to design these applications around Microservices
architecture. Getting the new product out and receiving immediate feedback on
the service was quintessential and therefore, the need for CI/CD has crawled in. I
took opportunity to build the CI server, we push code every day to our repositories
and CI is playing its part in iterating rapidly. Later on we started dockerizing and
launching these Microservices on to the Mesos cluster and the transition is currently
in progress. It was a great motivation to look at the problem and work towards
designing a continuous delivery pipeline in order to achieve true agility. The journey
to achieve CI/CD following modern state of the art DevOps practices and tools is
showcased in this thesis project.

1.5 Research Questions
Below is a list of questions that needs to be answered in order to be able to understand
the containers impact on continuous delivery, and continuous delivery’s overall impact
on the project:

• What problems or blockers does BetterDoctor have today that prevents them
from achieving continuous delivery?

• How can we solve these issues with the use of containers, Microservices and
container orchestration frameworks?

13BetterDoctor solves America’s provider directory problem https://betterdoctor.com/

https://betterdoctor.com/


• Will containers have the desired impact on the implementation process?

• How will continuous delivery impact the Organization?

The goal throughout this Master’s thesis is to establish a discussion and conclusion
based on the questions presented above. These questions will hopefully give the
reader a better overview of this research, and acts as guidelines and goals during this
study.

1.6 Thesis Structure
This thesis is organized into seven sections.

• Section 1 introduces the project by describing motivation and research termi-
nologies that are common in a continuous delivery pipeline.

• Section 2 gives the context/background for the project by introducing Mi-
croservices Architecture, Containers and Container Orchestration Frameworks.
We also compare and contrast monolithic architecture with microservices. We
understand how microservices and docker fit in the CD pipeline. We also
discuss different deployment models for these microservices.

• Section 3 gives an overview of Configuration Management and Service Dis-
covery. We also discuss Immutability and how does it impact Configuration
Management Tools. We will go through the architecture overview of Consul
and see how does it help microservices to discover each other. We briefly discus
secret management using Vault.

• Section 4 gathers all the requirements for the continuous delivery pipeline.

• Section 5 discusses the design and implementation of the project and the
design choices we made.

• Section 6 evaluates the project based on some learnings.

• Section 7 presents a conclusion along with summary.
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2 Background
This section gives a clear background on the microservices architecture and compares
it with its predecessors. More over we analyze the twelve-factor application patterns
and discusses in detail about technologies like containers and container orchestration
tools which streamline the deployment of these microservices. We also discuss about
immutable microservices and how do they change the way applications are deployed.

2.1 System Architecture
In the last few years web applications architectures have been evolving with a decent
pace. With the rise of Internet services we can notice can see a paradigm shift from
tiered monolith architectures to Service Oriented Architecture, and in turn from SOA
to microservices. Choosing a particular software architecture is totally dependent on
the requirements like scalability, complexity, ease of deployment, etc. Scalability is
one of the most important characteristic of a web application. As you can see in the
Figure 3 the comparison between the three major architecture models considering
scalability and decoupling as parameters. Before we discus about the three major
architecture patterns followed in the software industry, let us understand different
types of scaling. Martin and Michael in their book Art of Scalability [1] describe a
three dimensional scalability model called the scale cube 4.

Figure 3: Monoliths vs SOA vs Microservices14

In this model, the commonly used approach of scaling an application by running
multiple identical copies of the application behind a Load Balancer is represented as X-
axis scaling. The Z-axis Scaling is similar to X-axis scaling but each server which runs

14https://goo.gl/HLsFud

https://goo.gl/HLsFud
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the identical copy of the code is responsible for only a subset of data. Some component
of the system is responsible for routing each request to the appropriate server. One
commonly used routing criteria is an attribute of the request such as the primary
key of the entity being accessed, customer type (high SLA for paying customers).
Both X-axis and Z-axis scaling improve application’s capacity and availability but
increase application complexity and development costs. They represent Monolithic
and SOA architectural scalability models. We can achieve the Y-axis scaling for
applications which follow microservices architecture. Y-axis scaling is also known as
functional decomposition. In contrast to Z-axis scaling which splits things that are
similar, Y-axis scaling splits things that are different. At the application tier, Y-axis
scaling splits a monolithic application into a set of services. Each service implements
a set of related functionality such as order management, customer management etc.

Figure 4: Scale Cube [1]

2.1.1 Monolithic Applications

Monolithic Applications tends to bundle together all the functionalities needed and
are developed and deployed as a single unit. It is the simplest form of architecture
and runs pretty well as long as we keep the complexity low. The problems tend
to arise when the architecture needs to scale up feature-wise. As time passes, we
continuously increase the size of the application and complexity which results in
decrease in development, testing and deployment speed. Even if we just want to
develop a simple feature which would only under different circumstances require
a few lines of code but, due to the complex architecture we created , those few
lines turnout to be thousands thus decreasing the development speed. Testing and
deploying Monoliths with increased number of features requires hours to test, build
and deploy.

Scaling a monolith often results in unbalanced resource utilization. We cannot
scale individual portions of the application as all the application code runs in the
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same process on the server. For instance, let us look at the monolith in Figure 5,
suppose we just want to scale up the order service, the other two services are also
scaled along and duplicated on a new server. If one service is memory intensive and
another CPU intensive, the server must be provisioned with enough memory and
CPU to handle the baseline load for each service. This can get expensive if each
server needs high amount of CPU and RAM, and is exacerbated if load balancing
is used to scale the application horizontally15. Also, we have to redeploy the entire
application every time its updated. There is always a single point of failure and fault
isolation is not achieved.

Figure 5: Monolithic Architecture 16

To summarize Monoliths work well in the early stages of the project but as they
grow they tend to become more complex and difficult to scale. Continuous delivery
and Continuous deployment is difficult to achieve for these applications. They also
have a barrier to adopt new technologies. Since changes in frameworks or languages
will affect an entire application business layer and thus becomes expensive in both
time and cost.

2.1.2 Service-Oriented Architecture

SOA emerged as a way to solve tightly coupled architecture created by the monolithic
applications. SOA architecture can seen as a component based distributed architec-
ture. Componentisation (into services), loose coupling, high performance/throughout,
service lifecycle management (ie managing the services - taking central custody, pro-
moting reuse, managing their lifecycle events through creation to eventual deprecation
and retirement) were essential features of SOA [28].

SOA consists of two roles, a service provider and a service consumer. The
Consumer Layer is the point where consumers (human users, other services or third

15https://goo.gl/H5tzTR
16https://goo.gl/85Sygt

https://goo.gl/H5tzTR
https://goo.gl/85Sygt
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parties) interact with the SOA and Provider Layer consists of all the services which
are loosely coupled. The both layers communicate through ESB or the Enterprise
Service Bus as shown in the Figure 6 which publish business capabilities as a service to
the consumer and routes the messages to back-end with a capability of transforming,
securing and handling delivery exceptions. These ESB’s are themselves very complex
and often contribute to create another big monolith application out ofthe SOA
architecture. This led to the birth of microservices.

Figure 6: Service Oriented Architecture 17

2.1.3 Microservices

The term "Microservice Architecture" has sprung up over the last few years to describe
a particular way of designing software applications as suites of independently deploy-
able services. While there is no precise definition of this architectural style, there
are certain common characteristics around organization around business capability,
automated deployment, intelligence in the endpoints, and decentralized control of
languages and data. The idea is to split the application into a set of smaller, intercon-
nected and independent services instead of building a single monolithic application.
Each microservice is a small application that has its own hexagonal architecture
consisting of business logic along with various adapters and is developed,tested and
deployed separately from each other. These microservices would expose a REST or
message-based API to communicate with different microservices.

Microservices Architecture is often confused with traditional SOA-type services.
Although there’s a great deal of overlap, there are ample differences between them.
According to Martin Fowler microservices are one form of SOA, perhaps service
orientation done right19. We can categorize Microservices as light weight version of
SOA. SOA was more oriented towards IT side of organization, while microservice is

17https://dzone.com/articles/microservices-vs-soa-2
19https://martinfowler.com/articles/microservices.html

https://dzone.com/articles/microservices-vs-soa-2
https://martinfowler.com/articles/microservices.html
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Figure 7: Microservices Architecture18

more inlcined towards SAAS based products. SOA mostly use XML/WSDL whereas
Microservice architecture adopt REST API. The major difference between SOA
and microservices is that the later is more self sufficient and deployed independently.
There are many advantages to choose microservices over monolithic applications.

Scaling

Microservices scale much easier than the monolithic applications. We can scale the
service which needs to be scaled unlike monoliths where we need to scale the whole
application in to a new machine. Also, microservices enable us to group high resource
demanding services to better hardware helping us to distribute services better in our
infrastructure.

Agility and Innovation

Microservices are independent and autonomous which implies that the degree of
freedom for developer to develop and maintain their own codebase and ability to
quickly react to changing scenarios compared to monoliths which due to their nature
are slow to changing things and experimenting is perilous and expensive.

Minimal and Lightweight

Due to their small size and normally a single service does not provide a considerable
complex functionality they are easier to develop and even IDE work faster with
because importing a small project with less dependencies and libraries means less
load on IDE.

19https://goo.gl/85Sygt

https://goo.gl/85Sygt
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Deployment, Rollback and Fault Isolation

We can achieve faster deployment with microservices because of the size. Its easier to
roll back just that one service which is having issues in production to older version.
Until we roll back, the fault is just isolated to that one service. Continuous delivery
and deployment can be easily achieved with microservices.

To summarize, migrating monolithic architectures to microservices brings in many
benefits. In particular, it provides adaptability to technological changes to avoid tech-
nology lock-in and, more important, reduced time-to-market and better development
team structuring around services.

2.1.4 Twelve-factor app

A common methodology known as twelve-factor app20 has emerged with the purpose
of providing an outline for building well structured and scalable microservices. A
twelve-factor app should follow the following principles.

• Codebase - Each deployable app is tracked as one codebase tracked in revision
control. It may have many deployed instances across multiple environments.

• Dependencies - An app explicitly declares and isolates dependencies via
appropriate tooling (e.g., Maven, Bundler, NPM) rather than depending on
implicitly realized dependencies in its deployment environment.

• Config - Configuration, or anything that is likely to differ between deployment
environments (e.g., development, staging, production) is injected via operating
system-level environment variables.

• Backing services - Backing services, such as databases or message bro-
kers, are treated as attached resources and consumed identically across all
environments.

• Build, release, run - The stages of building a deployable app artifact,
combining that artifact with configuration, and starting one or more processes
from that artifact/configuration combination, are strictly separated.

• Processes The app executes as one or more stateless processes (e.g., master/-
workers) that share nothing. Any necessary state is externalized to backing
services (cache, object store, etc.). Port binding The app is self-contained and
exports any/all services via port binding (including HTTP).

• Concurrency - Concurrency is usually accomplished by scaling out app
processes horizontally (though processes may also multiplex work via internally
managed threads if desired).

20https://12factor.net/

https://12factor.net/
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• Disposability - Robustness is maximized via processes that start up quickly
and shut down gracefully. These aspects allow for rapid elastic scaling, deploy-
ment of changes, and recovery from crashes.

• Dev/prod parity - Continuous delivery and deployment are enabled by
keeping development, staging, and production environments as similar as
possible.

• Logs - Rather than managing logfiles, treat logs as event streams, allowing
the execution environment to collect, aggregate, index, and analyze the events
via centralized services.

• Admin processes - Administrative or managements tasks, such as database
migrations, are executed as one-off processes in environments identical to the
app’s long-running processes.

2.1.5 Deployment models

There are two types of deployment strategies which are commonly used today
mutable deployment and immutable deployment . The server which handles mutable
deployments is called a Mutable or Snowflake server and the one which adopts
immutable deployments is called a Immutable or Phoenix server.

Mutable-Snowflake Server

Generally Monolith applications are deployed on a massive mutable server or what
are commonly called as a snowflake server. A snowflake server can be defined as a
production server where application code is updated regularly along with configuration
changes. These keep on changing every release and thus they are called mutable
servers. The main disadvantage of mutable servers is that we cannot replicate or
easily mirror the production environment for testing. When we get production faults,
we can’t investigate them by reproducing the error in a development environment.
Since it is also a monolith monster server, it is not uncommon that after few release
it grows in complexity and size. And then the only way to reproduce any production
issues is to copy the VM it is running on and run it on another server. This snowflake
mutable server needs a restart every time the configuration or the application artifacts
(JARs, WARs, DEBs, etc) and the time this server can be down while restarting
can be considerable and in today’s world businesses need to run 24x7 with any
downtime and in most of these deployment models a team is dedicated to work
during nights and out office hours (weekends). This kind of deployment strategy
fails to adopt continuous deliver and deployment. Apart form this fast roll back
to previous version of code is almost impossible. Its mutable nature induces so
much state in to the running system that its hard to redeploy the previous working
version unless a snapshot of the whole VM was deployed to a new server which is
cumbersome process.



17

Immutable-Pheonix Server

An Immutable Server is a server that once deployed, is never modified, merely
replaced with a new updated instance21. With this approach we know that whenever
we deploy a new image or container to the production server, we know for sure that it
was the same one we built and tested in the continuous delivery pipeline. The main
idea behind this model of deployment is that instead of updating the server with new
application code, configuration, etc., we deploy another server with the immutable
package (application code, configuration, etc.) which is packed as a container or
image and can run in parallel with the old version of the application on a different
node. Immutable deployments gain immediate benefits especially with zero downtime
by using a reverse proxy that points to this self-sufficient immutable package or the
application image (run as container or a VM).

Figure 8: Proxy being routed to the new release of the application image22

All the traffic is passed through this reverse proxy, and whenever a new version
of the application image is deployed on a separate server or the same server (if it s
not using high resources), we then have two instances of the application running an
older and a new version. We can hold of traffic to the new server until the final set
of tests are passed(health checks and sanity checks) on the new instance and then let
the proxy point to the latest application image as pointed out in Figure 8. Later we
can remove the older version which does not serve the traffic anymore. This is called
blue green deployment and can be achieved by a immutable deployment model.

2.1.6 Immutable Microservices

Immutable deployments can be even faster and easily manageable if the applications
follow a microservices architecture since bigger applications take up lot of resources,

21https://martinfowler.com/bliki/ImmutableServer.html
22https://leanpub.com/the-devops-2-toolkit/read

https://martinfowler.com/bliki/ImmutableServer.html
https://leanpub.com/the-devops-2-toolkit/read
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testing time and deployment time. With microservices we have small independent
services which allow us deploy, scale and test easily. They even can be deployed
on the same machine. The same immutable deployment model works well for the
microservices but instead of a serperate server we can deploy the latest release of the
microservice in the same node. The mciroservice can be spread across the network
on multiple hosts.

Figure 9: Proxy being routed to the new release of the microservice23

But soon as the architecture scales out, the number hosts grow faster than
it will in a monolithic architecture and results in over provisioning and increased
costs. If services are implemented in different programming languages, this means
the deployment of each service will require a completely different set of libraries
and frameworks, making deployment to a server complex. Linux containers24 can
help mitigate many of these challenges with the microservices architecture. Linux
containers make use of kernel interfaces such as cnames and namespaces, which allow
multiple containers to share the same kernel while running in complete isolation from
one another25. Microservices are generally packaged as docker containers which are
self sufficient and lightweight. We will learn about containers in the next section.

2.2 Containers
Cloud computing has offered a large amount of computational resources on an
unprecedented scale and to deal with this abundance of customers from many fields
with different resource needs, Cloud providers have used resource-sharing by leveraging
virtualization to consolidate multiple customers onto the same hardware [27]. Until
recently, only hypervisor-based systems (VMs) were popular with IaaS model but

23https://leanpub.com/the-devops-2-toolkit/read
24https://linuxcontainers.org/
25https://goo.gl/3XEDWd

https://leanpub.com/the-devops-2-toolkit/read
https://linuxcontainers.org/
https://goo.gl/3XEDWd
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today due to their light impact on performance, container-based systems, such as
LXC26, have gained space and becoming very popular under PaaS/IaaS Clouds with
the emergence of Docker [25].

There are two main categories of virtualization, namely hypervisor-based vir-
tualization and container-based virtualization. While containers provide OS-level
virtualization, hypervisor-based virtualization is more at the hardware level. In VM
based virtualization the host machine’s resources are controlled by the hypervisor
(Virtualbox, VMware Workstation) at Hardware-level In virtual-machine-based vir-
tualization (Figure 10). In a container-based virtualization, also known as OS-Level
virtualization the physical machine resources are partitioned, creating multiple iso-
lated user space instances on the same OS. Despite this, users in these instances
have the illusion they are working on their own independent subsystem of network,
memory, and file system. For this reason, container-based systems are supposed
to have a weaker isolation compared to hypervisor-based systems. However, from
the point of view of the users, each container looks and executes exactly like a
stand-alone OS [27]. Container based systems use LXC (Linux Containers)27 which is
an operating-system-level virtualization method for running multiple isolated Linux
systems (containers) on a host using a single Linux kernel.

Figure 10: VMs vs Containers

Compared with hypervisor-based virtualization, container-based virtualization
offers a completely different approach to virtualization. Instead of virtualizing with
a system in which there is a complete operating system installation, container-based

26https://linuxcontainers.org/
27https://linuxcontainers.org/

https://linuxcontainers.org/
https://linuxcontainers.org/
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virtualization isolates containers to work from within a single OS 28. For example, a
physical server running five virtual machines would have five operating systems in
addition to a hypervisor that is more resource demanding than lxc. Five containers,
on the other hand, share the operating system of the physical server and, where
appropriate, binaries and libraries. As a result, containers are much more lightweight
than VMs. With monolithic applications this is not so big of a difference, especially in
cases when a single one would occupy the whole server. With microservices however,
this gain in resource utilization is critical considering that we might have tens or
hundreds of them on a single physical server. Put in other words, a single physical
server can host more containers than virtual machines29.

In order to achieve the isolation between the operating system and the top layer,
container based virtualization uses Linux kernel functionalities namely namespaces
and cgroups. These functionalities are usually wrapped into a more user friendly
framework like Docker which is discussed in Section 2.2.3.

2.2.1 Namespaces

Since containers should not be able to interact with things outside and each container
should be independent, the global host resources are wrapped in a layer of namespace
that provides the illusion that the container is its own system. There are six different
types of namespaces30.

• Mount namespace: Isolates filesystem mount points seen by a container, in
such way that processes in different containers might have different views of
the file system hierarchy.

• UTS namespace: Allows each container to have its own hostname and NIS
domain name.

• IPC namespace: Isolates the inter-process communication, meaning that
processes containing in a containers have its own message queues, and they are
completely independent from the others.

• PID namespace: Isolates the global PID space per containers, in such a way
that might have processes with the same PID number running onto different
containers. It allows containers to be migrated between hosts while keeping
the same applications’ PID number.

• Network namespace: Isolates the network subsystem, such as firewall tables,
devices, IP address and IP route tables. Each container maintains its own
networking configuration and the applications running on that can bind to
the per-namespace port number space. This allows multiple web servers, for
instance, to be hosted onto different containers with each server intensive to
port 80 in its (per-container) network namespace.

28https://goo.gl/mFs4Ch
29https://leanpub.com/the-devops-2-toolkit/read
30https://lwn.net/Articles/531114/

https://goo.gl/mFs4Ch
https://leanpub.com/the-devops-2-toolkit/read
https://lwn.net/Articles/531114/
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• User namespace: Isolates groups and users IDs from the host and other
containers running on. It means that the user root (ID 0) has full privileges
within a container, but without any privileges outside, ensuring safety and
reliability.

2.2.2 Cgroups

Control groups, or cgroups for short, are a way to isolate shared resources. These
resources include block IO, memory, CPU, and so on. Cgroups provide a mechanism
for aggregating/partitioning sets of tasks into hierarchical groups with specialized
behaviour31. A hierarchy is a set of Cgroups arranged in a tree, such that every task
in the system is in exactly one of the Cgroups in the hierarchy. For example we can
limit the resource usage for an application and all its child processes by adding it to
one hierarchy. Cgroups make the containers running on the host machine use a fair
share of CPU relative to the other containers. This prevents one or more containers
use up all the resources and leave no computing resources to the others.

2.2.3 Docker

Docker rekindled the container technology which has been already known for many
years but rarely used because of the complexity of building a container that is
stable. Docker acts as an additional layer which abstracts away the complexity
for the container execution environment for the users by utilizing a server-client
architecture. Since version 0.9, Docker includes the libcontainer32 library as its
own way to directly use virtualization facilities provided by the Linux kernel, in
addition to using abstracted virtualization interfaces via libvirt, LXC and systemd-
nspawn33. Libcontainer is considered to be a tighter integration with the Docker
framework where the execution environment is developed by the community in GO.
The comparison between LXC and Docker are shown in Figure 11

Figure 11: Comparing LXC and Docker [6]

The core component of the Docker framework is the Docker Engine which is
sometimes also refered as docker daemon synonymously. The engine is basically a

31https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
32https://goo.gl/obXl0t
33https://github.com/docker/libcontainer

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://goo.gl/obXl0t
https://github.com/docker/libcontainer
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daemon which is a long running program on the operating system that manages
containers with the use of an execution environment. External Programs can talk to
the daemon by using the REST API and instruct it what to do . These instruction
are mostly given through the Docker CLI (Command Line Interface). he daemon
creates and manages Docker objects, such as images, containers, networks, and
volumes. Docker Images which are the building blocks of containers (also known
as read-only containers) have intermediate layers that increase reusability, decrease
disk usage, and speed up the image building process. The underlying technology
behind these images is called UnionFS. Docker Engine can use multiple UnionFS
variants, including AUFS (advanced multi layered unification filesystem), btrfs, vfs,
and DeviceMapper. For instance if you have two images based on the same Linux
distribution but two different programming language say Ruby and GO. These two
images will point to the same base layer (the linux base image), and then put another
layer on top of that (which is the programming language).

Figure 12: Docker and its Interfaces34

Docker Architecture

Docker uses a client-server architecture. The Docker container needs a host(a bare
metal physical machine or a VM). The Docker client talks to the Docker daemon,
which does the heavy lifting of building/pushing images to the registry, running,
starting/stopping and inspecting containers, etc. The client and the server (docker
daemon) communicate via API over UNIX sockets or a network interface. Docker
Registry are used to store images built from the dockerfiles. There are many know
registries available online where we can push our images. At BetterDoctor we use
quay.io but we are in transition to moving towards an internally hosted private
registry.

34https://goo.gl/NxOD8n

https://goo.gl/NxOD8n
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Figure 13: Docker Architecture Diagram35

2.3 Container Orchestration
The container ecosystem has become a very crowded space. Increasing rates of con-
tainer adoption and usage in production have introduced new tools in the container
management and orchestration space. While the container runtime APIs meet the
needs of managing one container on one host, they are not suited to manage multiple
containers deployed on multiple hosts. For example the Docker Command Line
Interface (CLI) supports many container activities like pulling the image from the
registry, building a new docker image from the docker file, uploading the image to
the registry, terminating a running container, etc. But when it comes to managing
multiple containers deployed on multiple hosts, docker CLI falls short and is not suit-
able for handling multiple containers. Therefore, the need for container orchestration
tools crawled in.

Before we get in to details further about container orchestration tools, let us
find out what a distributed cluster scheduler does which is the core component of a
container orchestrating tool.

2.3.1 Scheduler

A distributed systems scheduler or a cluster scheduler takes an application by request
of a user and places it on one or more of the available machines. In a docker world
this means that the respective application image should be available on the host and
also the local docker daemon must be present on the host to launch the application
container. For example, a user might request the scheduler to deploy three instances
(containers) of an application container. The scheduler then decides on which host
the application should be deployed on the cluster based on its knowledge of the state
of the cluster and resource utilization. It takes into account the necessary resources
and constraints (launching an app on public facing host for example) required to
launch the application on the host.

35https://www.oreilly.com/learning/docker-networking-service-discovery

https://www.oreilly.com/learning/docker-networking-service-discovery
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Figure 14: A distributed system scheduler36

A cluster scheduler has myriad of objectives which include efficient usage of cluster
resources, working with user-supplied placement constraints, scheduling applications
rapidly to not let them in a pending state, having a degree of “fairness”, being robust
to errors and always available 37. According to the white-paper concerning Omega
[21], a scalable scheduler for large compute clusters developed by Google there are
three main types of schedulers.

Figure 15: Overview of the Scheduling Architectures [21]

2.3.2 Monolithic Schedulers

Monolithic schedulers use a single, centralized scheduling algorithm for all jobs. All
workload is run through the same scheduler and same scheduling logic. Swarm,

37http://armand.gr/static/files/htise.pdf-ComparisonofContainerSchedulers
37https://www.oreilly.com/learning/docker-networking-service-discovery

http://armand.gr/static/files/htise.pdf - Comparison of Container Schedulers
https://www.oreilly.com/learning/docker-networking-service-discovery
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Fleet, Borg and Kubernetes adopt monolithic schedulers. Kubernetes improvised on
basic monolithic version of Borg and Swarm schedulers. This type of schedulers are
not suitable for running heterogeneous modern workloads which include Spark jobs,
containers, and other long running jobs, etc.

2.3.3 Two Level Schedulers

Two-level schedulers address the drawbacks of a monolithic scheduler by separating
concerns of resource allocation and task placement. An active resource manager
offers compute resources to multiple parallel, independent “scheduler frameworks”.
The Mesos cluster manager pioneered this approach, and YARN supports a limited
version of it. In Mesos, resources are offered to application-level schedulers. This
allows for custom, workload-specific scheduling policies. The drawback with this
type of scheduling architecture is that the application level frameworks cannot see
all the possible placement options anymore38. Instead, they only see those options
that correspond to resources offered (Mesos) or allocated (YARN) by the resource
manager component. This makes priority preemption (higher priority tasks kick out
lower priority ones) difficult39.

2.3.4 Shared State Schedulers

Shared State Schedulers grant full access to the entire cluster resources by removing
the central resource allocator. Each application level scheduler will have access to
the entire cluster. The state of the cluster is shared between all the schedulers. An
example for this type of scheduler is Omega and Nomad. By supporting independent
scheduler implementations and exposing the entire allocation state of the schedulers,
the architecture can scale to many schedulers and works with different workloads
with their own scheduling policies. The major drawback with this architecture is
that the schedulers must work with stale information (unlike a centralized scheduler),
and may experience degraded scheduler performance under high contention.

Having briefly discussed about schedulers we can now move on to know more
about the various container management tools. Container Orchestration tools extend
lifecycle management capabilities to complex, multi-container applications deployed
on a cluster of machines. These tools can treat an entire cluster as a single entity
for deployment and management40. Container orchestration tools can automate all
aspects from initial placement, scheduling and deployment to updates and health
monitoring functions that support scaling and failover of the containers. The most
common features of a container orchestrating framework are:

38It is referred to as Information Hiding in Omega paper [21]
39In an offer-based model, the resources occupied by running tasks aren’t visible to the upper-level
schedulers
40https://thenewstack.io/containers-container-orchestration - Janakiram MSV

https://thenewstack.io/containers-container-orchestration
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Declarative Configuration

The container orchestration tools allow the DevOps teams to declare a blue print for
an application either in a JSON or YAML file before deploying it on to the cluster.
The blue print (JSON file) includes information such as the application configuration,
docker image repositories, networking and port configuration on the host, storage
information (mounting volumes), etc. This also allows them to provide different
configuration for application running in different environments (staging, development,
production).

Rules and Constraints

Workloads often have special policies or requirements for host placement, performance
and high availability. It is not rational to scale an application in a way that all the
containers of that application are on the same host. Similarly, it may be a good idea
to place in-memory cache on the same host as the web server. Orchestration tools
support mechanisms for defining the affinity and constraints of container placement.

Provisioning

Container orchestration tools provide API calls to provision or schedule containers
within the cluster and launch them. The orchestration framework will determine
the right placement for the containers by selecting an appropriate host based on
the specified constraints such as resource requirements, location affinity etc. The
underlying goal is to increase utilization of the available resources. Most tools will
be agnostic to the underlying infrastructure provider and, in theory, should be able
to move containers across environments and clouds.

Discovery

In a distributed deployment consisting of containers running on multiple hosts as
microservices, it is often very difficult to discover other microservices running in
the cluster. Therefore, service discovery becomes a critical function. In most of the
orchestration frameworks it is provided by a light weight DNS or proxy-based, etc.

Health Monitoring

Container orchestration tools will be responsible for tracking anf monitoring the
health of the containers (mostly by polling the health-check endpoint) and hosts in
the cluster. In case if a container crashes, a new one can be spun up quickly. If one
of the slaves or hosts fail then the orchestration framework relocates the container to
another host. It will also run specified health checks at the appropriate frequency and
update the list of available nodes based on the results. Orchestration tools ensure
that the deployment always matches the desired state declared by deployer in the
blueprint (JSON).
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There are many container orchestrating tools out in the market right now and its
always a tricky situation to choose the right container orchestration tool to deploy and
manage cloud-native applications. At BetterDoctor, we adopted Mesos/Marathon as
our container orchestration framework. One of the main reasons was that Mesos was
already production grade cluster management platform. Also, being a data company
we could also benefit from running multiple frameworks on the cluster like Spark
and other big data frameworks which could share the same cluster resources. The
three widely used container orchestration platforms are Docker Swarm, Kubernetes
and Mesos. We will go through Mesos more in depth while briefly covering the other
two players.

2.3.5 Docker Swarm

Docker’s native clustering tool Swarm is tightly integrated with the Docker API,
making it well-suited for use with Docker. Swarm architecture is very simple and
straightforward. Each host runs a Swarm agent and one host runs a Swarm manager.
The sawrm manager is responsible for the orchestration and scheduling of containers
on the hosts41. Swarm agents are just nodes having docker engine installed on each
one of them. The Docker remote API available on these hosts is available for Swarm
manager when starting the Docker daemon.

Figure 16: Docker Swarm Architecture42

Swarm mode43 uses single-node docker concepts and extends them to Swarm.
For example, to run a Docker cluster, we use the command run docker swarm init
to switch to swarm mode. For adding more nodes under the manager, run docker
swarm join44. Swarm has a YAML based deployment model inheriting Docker

41https://www.oreilly.com/ideas/swarm-v-fleet-v-kubernetes-v-mesos
42https://www.oreilly.com/learning/docker-networking-service-discovery
43https://docs.docker.com/engine/swarm
44https://goo.gl/lNLJzd

https://www.oreilly.com/ideas/swarm-v-fleet-v-kubernetes-v-mesos
https://www.oreilly.com/learning/docker-networking-service-discovery
https://docs.docker.com/engine/swarm
https://goo.gl/lNLJzd
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Compose. Auto-healing of clusters, overlay networks with DNS, adding constraints
(Filters)45, strategies (random, bin packing, spread) to distribute containers on the
cluster, High availability through multiple masters are some of the core features
of swarm. Swarm still does not yet support native auto-scaling or external load
balancing. Scaling must be done manually or through third-party solutions. One
thing to note about Swarm is that the scheduler is replaceable. We can, for example
use Apache mesos scheduler instead of the default included scheduler. For discovering
containers on each host, Swarm uses a pluggable backend architecture just like its
scheduler. It supports different backends: etcd, Consul, and Zookeeper.

2.3.6 Kubernetes

Kubernetes is an opinionated open source container orchestration tool built by Google
which claims that it generates, manages, and tears down 2 billion containers a week.
It was first released in June of 2014, and is written in Go. Let us go through the
Kubernetes architecture briefly. The architecture is made up of several components
which are listed below

Figure 17: Kubernetes Architecture46

Master Components

The server that runs the Kubernetes management processes, including the API
service, replication controller and scheduler. The API server is the only Kubernetes

45https://www.slideshare.net/rajdeep/docker-swarm-introduction
46https://www.oreilly.com/learning/docker-networking-service-discovery
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component that connects to etcd; It validates and configures the data for pods,
services, and replication controllers. It also assigns pods to nodes and synchronizes
pod information with service configuration. The controller manager server watches
etcd for changes to replication controller objects and then uses the API to enforce
the desired state. Some examples of controllers are replication controller, namespace
controller, endpoints controller, etc. The scheduler assigns workload to specific
worker nodes (minions) in the cluster. Etcd is a distributed, reliable, and consistent
key-value data-store for shared configuration and service discovery. Kubernetes stores
all its cluster state in etcd. This state includes what nodes exist in the cluster, what
pods should be running, which nodes they are running on, and a whole lot more.
Etcd follows the principle of raft47[19] consensus algorithm to operate as a data-store.

Node (Minion) Components

Each Kubernetes node has an agent called Kubelet runs, which is responsible for
controlling the Docker daemon, informing the Master about the node status and
setting up node resources. The Master exposes an API, collects and stores the current
state of the cluster in etcd, and schedules pods onto nodes. The unit of scheduling
in Kubernetes is a pod. Essentially, this is a tightly coupled set of containers that is
always collocated. The number of running instances of a pod (called replicas) can
be declaratively stated and enforced through Replication Controllers. Proxy service,
available on each minion which is used to make applications available to the external
world. This service forwards requests to the correct container by providing primitive
load balancing.

Kubectl

kubectl is a command line interface for users to run commands against Kubernetes
clusters48. Kubectl talks to the API server just like the docker CLI and is used to
scale, delete list modify pods, do rolling updates, etc.

Service

A service is a grouping of pods that are running on the cluster. Services are cheap
and you can have many services within the cluster. Kubernetes services can efficiently
power a microservice architecture. The service definition, along with the rules and
constraints, is described in a JSON file. For service discovery, Kubernetes provides a
stable IP address and DNS name that corresponds to a dynamic set of pods. When
a container running in a Kubernetes pod connects to this address, the connection is
forwarded by a local agent (called the kube-proxy) running on the source machine to
one of the corresponding backend containers.

Although kubernetes has a high learning curve, it is still one of the widely adopted
container orchestration tools today because of its great community and supported

47https://raft.github.io/
48https://kubernetes.io/docs/user-guide/kubectl-overview
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features like self-healing, secret and configuration management, scaling, rollbacks,
service discovery, etc.

2.3.7 Apache Mesos and Marathon

Apache Mesos49 is a general-purpose cluster resource manager that abstracts the
resources of a cluster (CPU, RAM, etc.) in a way that the cluster appears like one
giant computer to you, as a developer. We can say that Mesos acts like the kernel
of a distributed operating system. It is hence never used standalone, but always
together with so called frameworks, such as Marathon (for long-running stuff like a
web server), Chronos (for batch jobs) or Big Data frameworks like Apache Spark or
Apache Cassandra. Mesos began as a research project in the UC Berkeley RAD Lab
by then PhD students Benjamin Hindman, Andy Konwinski, and Matei Zaharia, as
well as professor Ion Stoica50.

Figure 18: Apache Mesos Architecture51

As you can see from the architecture diagram 18, A Mesos cluster consists of one
or more mesos-masters that manages slave daemons running on each cluster node,
and frameworks that run tasks on these slaves. Each agent or slave is registered
with the master to offer resources [8]. The master communicates with deployed
frameworks to forward tasks to slaves. The master implements fine-grained sharing

49http://mesos.apache.org/
50https://en.wikipedia.org/wiki/Apache_Mesos
51https://www.oreilly.com/learning/docker-networking-service-discovery
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across frameworks using resource offers. Each resource offer is a list of free resources
on multiple slaves. If the Mesos master is unavailable, existing tasks can continue to
execute, but new resources cannot be allocated and new tasks cannot be launched.
Therefore, its very critical to make the master fault-tolerant. To achieve this, the
cluster is run in high availability mode that uses multiple Mesos masters. There is
only one active master running at a time which is elected as the leader with help of
apache Zookeper, while the other masters will become followers. All the nodes in the
system, including masters and slaves, communicate with ZooKeeper to determine
which master is the current leading master.

As discussed earlier, about different types of scheduling, mesos comes under
the two-level scheduler. In the first level, the master determines the free resources
available on each node, groups them, and offers them to different frameworks based
on organizational policies, such as priority or fair sharing. Organizations have the
ability to define their own sharing policies via a custom allocation module as well.
In the second level, each framework’s scheduler component that is registered as
a client with the master accepts or rejects the resource offer made depending on
the framework’s requirements. If the offer is accepted, the framework’s scheduler
sends information regarding the tasks that need to be executed and the number
of resources that each task requires to the Mesos master. The master transfers
the tasks to the corresponding slaves, which assign the necessary resources to the
framework’s executor component, which manages the execution of all the required
tasks in containers. When the tasks are completed, the containers are dismantled,
and the resources are freed up for use by other tasks.

Figure 19: An example of resource offering

Figure 19 shows an example of how the resources are offered to the frameworks. In
step (1) the mesos slave advertises its free resources to the master that it has 8 CPUs
and 16 Gb of memory free. The master then invokes the allocation module which
according to its fair-share or priority policy offers the resources to framework A (step
2). In step (3) the framework A’s scheduler replies to the master with information
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about a task to run on the slave, using half of the advertised resources. The master
then allocates the appropriate resources to the frameworks executor on the slave
which launches the task. In step(4) the master advertises the remaining resources to
the Framework B. Mesos also provides frameworks with the ability to reject resource
offers. A framework can reject the offers that do not meet its requirements. This
allows frameworks to support a wide variety of complex resource constraints while
keeping Mesos simple at the same time. A policy called delay scheduling [29], in
which frameworks wait for a finite time to get access to the nodes storing their input
data, gives a fair level of data locality albeit with a slight latency trade-off.

Marathon

Marathon is a production-grade container orchestration platform for Mesosphere’s
Datacenter Operating System (DC/OS) and Apache Mesos.

Figure 20: Some interactions between Marathon, apps and Mesos52

It is a framework that is designed to launch long-running applications which
serves as a replacement for a traditional init system. It has many features that

52https://mesosphere.com/wp-content/uploads/2017/03/Application_Delivery_with_
Mesosphere_DCOS.pdf
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simplify running applications in a clustered environment, such as high-availability,
node constraints, application health checks, an API for scriptability and service
discovery, and an easy to use web user interface. It is well known for its scaling and
self healing capabilities. For example, if a Marathon app fails or the node that it is
running on is lost, Marathon will automatically deploy a replacement task to Mesos
and thus helps in maximizing up-time and reduce service interruption of the service.

Marathon can also be used to run other Mesos framework Scheduler as a Marathon
app. Since it is designed for long-running applications, it will ensure that framework
(running as a Marathon application) it has launched will continue running, even
if the slave node(s) they are running on fails. Figure 20 illustrates the interaction
between Marathon, its applications and Mesos. The framework scheduler in this
case Cassandra is launched and monitored by Marathon. Now its up to Cassandra
scheduler to request Mesos Master to launch its tasks.

2.3.8 Marathon LB

Marathon LB is one of the core component of DC/OS. Its main functionality is to
manage HAProxy. It does that by connecting to the marathon API to retrieve all
running apps and then generates HAProxy config and reloads HAProxy. By default,
marathon-lb binds to the service port of every application and sends incoming requests
to the application instances.

Figure 21: Marathon Load Balancer53

Services are exposed on their service port as defined in their Marathon definition
JSON. It is also used to create virtual hosts for applications by exposing ports 80
and 443, in addition to their service port. As you can see from the Figure 21 it

53https://mesosphere.com/wp-content/uploads/2017/03/Application_Delivery_with_
Mesosphere_DCOS.pdf
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also is used to perform auto-scaling based on the amount of traffic hitting it from
Internet. Marathon LB also plays an important role in performing the Blue Green
Deployments.

2.3.9 Marathon Pods

A pod in Marathon links multiple apps together into a group of tasks that are
executed together on a single agent. Pods allow interdependent tasks to be deployed
together and to share certain resources. Tasks within a pod share a network interface.
Pods allow quick, convenient coordination between applications that need to work
together. Pods are particularly useful for transitioning legacy applications to a
microservices-based architecture54. Listing 6 shows an example of a Pod with 2
containers.

DC/OS

DC/OS is a an opensource distributed operating system based on the Apache Mesos
distributed systems kernel. It enables the management of multiple machines as if
they were a single computer, pooling distributed workloads and simplifying rollout
and operations. As a datacenter operating system, DC/OS is itself a distributed
system, a cluster manager, a container platform, and an operating system55. As a
distributed system, DC/OS includes a group of agent nodes that are coordinated by
a group of master nodes. It uses Marathon framework for container orchestration
and Mesos for cluster management.

Figure 22: DCOS Architecture56

54https://dcos.io/docs/1.9/deploying-services/pods
55https://dcos.io/docs/1.9/overview/what-is-dcos/
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To sum up DC/OS is a system made up of different software components, written
in a range of programming languages, running on multiple Linux nodes in an appro-
priately configured TCP/IP network. There are many different DC/OS executables
(components) running on each of the nodes along with their dependencies. Each of
these DC/OS components provides some specific function or service (for example
internal load balancing). DC/OS is the system that results from the combination of
these individual services working together. The modern application, composed of mi-
croservices, containers, and stateful big data services, is key for startups/enterprises
to capture new value chains in the fast paced market. The DC/OS model facilitates
the adoption of microservices, big data and containers.

56https://mesosphere.com/blog/2016/09/16/dcos-1-8-networking-container-security
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3 Service Discovery & Configuration Management
Configuration management and Service Discovery are two very well known problems
which arise when we are dealing with modern application architectures which scale
up and down according to our business needs. Often these microservices need to
discover other microservices and data sources on which they are dependent on. When
we need a urgent update to software on existing servers, logging into each one
and making those updates is not the right solution as it is very manual and time
consuming. Configuration management allows your servers to be configured in bulk,
reducing labor, reducing operator error and improving overall management of your
infrastructure. On the other hand, service discovery is important because in cloud
and container based environments, static mapping of a service to IP address and
port is no longer viable and as we scale up our business, we need better tools which
can register and locate services which our microservices need to function.

3.1 Infrastructure as code
Infrastructure as code (IAC) is an approach to infrastructure automation based on
practices from software development. It emphasizes consistent, repeatable routines
for provisioning and changing systems and their configuration [18]. The motive
behind IAC is that you write and execute code to define, deploy, and update your
infrastructure. This represents an important shift in mindset where you treat all
aspects of operations as software even those aspects that represent hardware [5]
(e.g., setting up physical servers). In fact, a key insight of DevOps is that you can
manage almost everything in code, including servers, databases, networks, log files,
application configuration, documentation, automated tests, deployment processes,
and so on.

Adopting IAC means the infrastructure is in source files that anyone can read
rather than a sysadmin’s head and one can always roll back to previous version with
the help of version control system. The infrastructure code can be reviewed and tested
before the infrastructure change is applied. IAC is a very powerful methodology,
by converting the manual practices to code one can improve the overall software
delivery. According to the 2016 State of DevOps Report, organizations that use
DevOps practices, such as IAC, deploy 200 times more frequently, recover from
failures 24 times faster, and have lead times that are 2,555 times lower57.

3.1.1 Configuration Management in an Immutable World

Configuration Management system is an IAC tool. It was considered as a revelation
for the system administrators a decade ago. Since the IT systems never remain static
and typically have countless dependencies that make up the entire system, even a small
unnoticed configuration change can cause havoc on an entire infrastructure. To control
the chaos of frequent releases, configuration managers like Chef, Ansible, Puppet,
Salt, etc. provide the needed visibility and granular control of the performance,

57https://puppet.com/resources/whitepaper/2016-state-of-devops-report
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functions, and physical aspects of IT infrastructure, thereby giving systems team
the ability to standardize and sufficiently document the entire lifecycle of a given
platform. This in turn facilitates effective change management, increases system
predictability and scales the speed and agility of software deployments according
to demand. As you can see in the Figure 23 configuration management tool like
Ansible can execute the required code across a large number of servers.

Figure 23: Configuration Manager in action58

Today, it is interesting to see where CM’s stand, with advent of Immutable
infrastructure, provisioning a new server with required updates is not tedious task
anymore. Configuration management tools such as Chef, Puppet, Ansible, and
SaltStack typically default to a mutable infrastructure paradigm. For example, if
we tell Chef to install a new version of Apache, it will run the software update on
your existing servers and the changes will happen in-place. Over time, as we apply
more and more updates, each server builds up a unique history of changes. This
often leads to a phenomenon known as configuration drift [5], where each server
becomes slightly different than all the others, leading to subtle configuration bugs
that are difficult to diagnose and nearly impossible to reproduce. The alternative
is immutable infrastructure. We can achieve this by either baking the AMI (using
packer) into the VM or with Docker. In fact, Docker makes it even easier. Docker
images are immutable and creating them is easy, fast and painless. Replacing the
old containers with new ones is also easy to do with the help container orchestration
tools. Moreover, In a container world, the ability of tools like Chef and Puppet to

58https://www.oreilly.com/learning/why-use-terraform
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do convergence59 is becoming less exclusive, when we don’t really have to converge
anymore, and one can essentially just settle for a simple script that bakes the Docker
images right up for you, and can even roll back changes on demand. Never upgrade
a server again. Instead, create new servers, and throw away the old ones.

CM’s are also an anti pattern in a way. The major motive behind IAC is to
improve DevOps methodology by promoting self-service infrastructure where a team
of developers can deploy their code to the servers without the help from the Ops
team. But the Ops team is responsible for all the changes in the production and only
they have the commit access to the configuration management repository. This is
again more like everything is in the sysadmin’s head. This is the anti-devops way of
doing things. We also do not expect developers to run configuration management on
the clusters that they are responsible for because CM’s have a high learning curve.

Configuration management had its great days and it really did change the way
we managed our infrastructure and allowed us to scale our infrastructure in ways
we never had before. The advantages it brought us in reliability and consistency
should not be understated, but it is also a technology, that like the hand-crafted perl
scripts that came before it, who’s time has come. With the adoption of the cloud
and application containers, we can now do better than configuration management,
we can run with immutability. This will make infrastructure more consistent, more
reliable, more secure and more scalable than ever before60.

3.2 Terraform
While there are many CM tools like Chef, Puppet, Ansible which are designed to
install and manage software on existing severs, IAC tools like CloudFormation and
Terraform are designed to provision infrastructure (servers). They are often known
as Orchestration or Provisioning tools which can be used along side other CM tools
which can configure the provisioned servers. Today, for a enterprise or a startup
adopting technologies like Docker and Packer, CM tools no longer play an important
role in their technology stack. With Docker and Packer, you can create images (such
as containers or virtual machine images) that have all the software your server needs
already installed and configured. Once you have such an image, all you need is a
server to run it which can be provisioned by an orchestration tool like Terraform. It
can provision infrastructure across many different types of cloud providers, including
AWS, Azure, Google Cloud, DigitalOcean, etc. At BetterDoctor, we provision our
Mesos (DC/OS) cluster on AWS infrastructure using terraform and an example code
for the same is shown in the Listing 8 and Listing 7.

Terraform stores state about your managed infrastructure and configuration. This
helps terraform to keep track of your infrastructure and lets you update or destroy
the infrastructure you manage. This state is stored by default in a local file named
"terraform.tfstate", but it can also be stored remotely, which works better in a team
environment. This helps in sharing this state across the team enabling the team

59CM’s identify a fixed point that is, the final condition desired and then configuring the process
by which to achieve that condition. this process is called convergence

60https://hackernoon.com/configuration-management-is-an-antipattern-e677e34be64c
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members to modify the existing infrastructure or destroy them when they do not
need the environment anymore. For example you can bring up a QA environment on-
demand. At BetterDoctor, we bring up an on-demand Mesos Spark Cluster and tear it
down when we no longer need it. By adopting Immutable infrastructure, redeploying
all servers even for a minor change is not a pain anymore. As the modern DevOps
principle says If it hurts, do it more frequently61. Which means frequent deployments
will need significant automation to keep up with the number of deployments per day
and setting up this automation for immutable infrastructure takes a fair amount of
work, but it helps to maintain and understand our infrastructure better.

3.3 Why do we need Service Discovery?
Building cloud-native applications that live in ephemeral environments has lot of
advantages but it has few new problems that need to be addressed and service
discovery is at the top of this list. When deploying docker microservices on marathon
each deployment will result in instance or container of a service being instantiated on
different machines in the cluster. We no longer have static set of servers to which we
deploy our applications too. Therefore we need to have service discovery mechanism
so that applications can find each other at any given point. It is not uncommon
to find people using Chef, Puppet, and other configuration management tools to
build service discovery mechanisms. This is usually done by querying global state
to construct configuration files on each node during a periodic convergence run.
Unfortunately, this approach has a number of pitfalls. The configuration information
is static and cannot update any more frequently than convergence runs. Generally
this is on the interval of many minutes or hours. Additionally, there is no mechanism
to incorporate the system state in the configuration: nodes which are unhealthy may
receive traffic exacerbating issues further.

The most common service discovery mechanism is using DNS62 (Domain Name
System). But DNS is not suitable for discovery in applications where multiple hosts
are behind a single record. It is more suitable where we access to individual hosts is
required since DNS cannot be used for load balancing except for simple round-robin.
Additionally, many applications have no way of reloading cached DNS entries to
pick up changes. Then we have proxy-based solutions like HAProxy63 which again
introduce a single point of failure. Therefore a service discovery tool should be able
to provide the following

• Discovery - Services need to discover each other to get IP address and port
detail to communicate with other services in the cluster.

• Health check - Only healthy services should participate in handling traffic,
unhealthy services need to be dynamically pruned out.

61http://enterprisedevops.org/article
62https://en.wikipedia.org/wiki/Domain_Name_System/
63http://www.haproxy.org/
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• Load balancing - Traffic destined to a particular service should be dynamically
load balanced to all instances providing the particular service.

• KV Store - Applications can make use of hierarchical key/value store for
any number of purposes, including dynamic configuration, feature flagging,
coordination , etc.

3.3.1 Consul

Consul is a highly opinionated64 tool for service discovery and configuration. It is
distributed, highly available, and extremely scalable. Consul is built to be datacenter
aware, and can support any number of regions without complex configuration. It also
has a key/value store in place to support dynamic application configuration. The
key/value store can be nicely paired with envconsul65 which is also a HAashicorp tool
which allows applications to be configured with environment variables, without having
knowledge about the existence of Consul. It lets you choose how the application can
be restarted, what values from Consul are going to be injected into the application
and what the behaviour should be if something fails. This makes it especially easy
to configure applications throughout all the environments: development, testing,
production, etc.

3.3.2 Architecture

Every host that provides services to Consul runs a Consul agent. The agent is
responsible for checking the health of the services on the node as well as for the
node itself. Any unhealthy host is deregistered from the Consul service. Agents
communicate with other agents and servers via specific ports and use both TCP
and UDP protocols. The Consul servers store and replicate the data. Consul is
also highly fault tolerant. If the whole service cluster for Consul goes down then
this doesn’t stop discovery. It does this by using a Gossip66 Protocol to manage
membership and broadcast to the cluster. This makes Consul not only a typical
client-to-server system but also a client-to-client system. In addition the server nodes
use the Raft consensus algorithm to provide consistency for leader election. While
Consul can function with one server, three to five servers are recommended to avoid
failure scenarios leading to data loss. A diagram of the interaction between the
Consul agents and servers is shown below in the Figure 24.

The following steps take place in the life-cycle of an application with a running
consul agent on the host.

• At startup, the service or container registers itself as a member of a given
service with the consul cluster.

64Opinionated software does things in the right way (software development best practices) and
trying to do it differently will be difficult and frustrating.

65https://github.com/hashicorp/envconsul
66https://www.consul.io/docs/internals/gossip.html
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Figure 24: Consul Architecture67

• Introspects itself to determine whether it is healthy and send periodic heartbeat
messages to consul to knows whether it is healthy.

• Check-in periodically with the consul agents which forward the request to the
consul masters to see if changes have been made to upstream services.

• Any changes to the configuration cause the application to reload its configura-
tion or otherwise respond properly to changes in the upstream services.

3.3.3 Secret Management

Secret Management is one the most neglected areas in an IT organization. Having
secret keys spread around the organization’s digital space is always dangerous. Some
of the problems include

• Sensitive credentials and keys are stored (pushed) in certain code repositories
(Github) .

• Sensitive credentials and keys are stored in plain text.

• Shared credentials and keys are used in numerous places.

• No scheduled key rotation.
67https://www.consul.io/docs/internals/architecture.html
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BetterDoctor being a healthcare company had to take up this project for handling
secrets and sensitive data properly to be compliant. Any good solution will have to
follow security best practices, such as encrypting secrets while in transit; encrypting
secrets at rest; preventing secrets from unintentionally leaking when consumed by
the final application, etc. The best solution in the market right now is Vault - A
secret manager developed by Hashicorp.

3.3.4 Vault

Vault68 is the current gold standard in secret management and provisioning. The
documentation is robust and have decent tutorials on how to set it up. At Better-
Doctor, Consul is the storage backend for Vault which provides high availability.
Vault tokens (e.g. 9cfced14-91ae-e3ad-5b9d-1cae6c82362d) are the core method for
authentication. Tokens bind to a list of Vault policies and are immutable. The secrets
can be fetched from Vault API or via Consul if one has access to the application
namespace. Every team member is assigned a vault token by which he can have
access to allowed secrets. Even applications are assigned their own tokens through
which they can access their secret keys like db passwords, API tokens etc. As you
can see from Figure 25 myapp-name and another-app are two different applications
storing their secrets in their own namespaces.

Figure 25: Vault Tree and Node69

68https://www.vaultproject.io/
69http://engineering.nike.com/cerberus/docs/architecture/vault

https://www.vaultproject.io/
http://engineering.nike.com/cerberus/docs/architecture/vault
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4 Requirements
Before designing the new Continuous Delivery pipeline the requirements for the
same were gathered during a series of architectural meetings. In this section we go
through the various requirements collected based on the suggested methodologies and
architecture of the proposed CD pipeline. Apart form the underlying requirements
which are implicit for building a CD pipeline, we also gathered specific set of require-
ments from developers and new requirements which arise due to the introduction
latest technologies and frameworks. Eventually these requirements can be classified
into functional or non-functional and also prioritize them as mandatory or optional
requirements.

4.1 Underlying Requirements
Integrate with the existing technology stack

Analyzing existing technology stack and determine which components of the CD
pipeline can be smoothly integrated with the existing stack and justify replacement
for components which do not fit in the pipeline. The best case scenario for the CD
pipeline is an add on to existing technology (Github, Jenkins, Slack, Chef, AWS).

Automated Testing on CI server

Analyze the need for automated testing of the feature branches and justify the need
for CI server. Using a dedicated Jenkins Ci server which is close to production system
is preferable. Not having the integration environment as production-like as possible
inheres the risk that tests passing in the former could fail in the latter because of
the differences.

Achieving Immutability

Why do we need immutability? Justify technology going to be used to achieve the
Immutability. Although Docker seems to be the perfect candidate, can Immutability
only be achieved via containers?

Deploy/Deliver the Same Way to Every Environment

It is essential to use same pipeline to deploy to every environment whether to staging
or production. The difference between the environments have to be as small as
possible also in the deployment and integration pipeline. This way, we test the
deployment process many, many times before it gets to production, and again, we
can eliminate it as the source of any problems.

Support Dynamic Runtime Configuration for Docker Containers

Analyze existing ways to configure a Docker container and come up with a centralized
configuration management tool which can load environment variables in to application
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at run-time. Consul key/value store seems to be the top contender with envconsul
driving the dynamic configuration changes.

Enable push button releases

This requirement comes from Continuous Delivery paradigm perform push-button
deployments [10] of any version of the software to any environment on demand. This
requirement makes it easy for developers to release the latest code into stage or
production.

Enable Rollback

Being able to automatically revert to previous release easily. This helps in reducing
the tension for deployment and encourages developers to deploy more frequently and
thus pushing new features out to users quickly.

Mimic AWS auto-scaling for container environment

Since Marathon is capable of horizontal scaling - Ability to deploy multiple instances
of the application and run a load balancer to route the traffic to the instances. It
also needs to auto scale the application containers based on custom triggers. Since
we no longer deploy applications to EC2 instances and Marathon does not provide
features to auto-scale, a tool which mimics AWS auto-scaling is needed. For example,
some of the applications in the data-pipeline use sidekiq queue length as a custom
trigger to scale up the web and worker instances/containers.

Blue-Green Deployments

Blue-green Deployment70 is a key feature of the continuous * . It enables the product
team to launch releases without causing any outage to users. This release technique
reduces downtime and risk by running two identical production environments called
Blue and Green. At any time, only one of the environments is live, with the live
environment serving all production traffic. This ensures zero-downtime strategy for
deployments resulting in no interruption of the service even during deployment of a
new release.

4.2 Developer Requirements
Empower teams with self-service application deployments

Enable developer/tester to deploy applications through self-service portal (Jenkins)
with push-button provisioning. This enables team members to deploy to an envi-
ronment for reproducing production bugs. It also Empowers the team to be able to
deploy to staging and productions environments. Robust permission system should
be setup to confine each team to deploy/configure its own application.

70https://martinfowler.com/bliki/BlueGreenDeployment.html

https://martinfowler.com/bliki/BlueGreenDeployment.html
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Notify on build success/failed

Notify team the status of the build/integration/deployment on the slack channel.
keep the pipeline transparent to every team.

4.3 Optional Requirements
These are the requirements which fall out of the current project scope but are related
very closely.

Automate the provision of the Cluster

Automate the creation of the Mesos Cluster which host the containers. This also
helps to recreate the whole cluster in case of Disaster Recovery or Cluster upgrades.

Container Logging and monitoring

Analyze and Discover tools which can monitor containers just like EC2 machines.
Ingest container application logs to existing ELK stack.

Notify on image pushed to docker registry

Notify the team on slack channel whenever a new image is pushed to the docker
registry.

4.4 Classification of Requirements
Having gathered the various requirements let us classified them in terms being
functional or non-functional and further prioritize them as mandatory and optional.

Functional Non-Functional
Mandatory Integrate with the existing technology stack. Automated Testing and CI server

Deploy/Deliver the Same Way to Every Environment Enable Rollback
Achieving Immutability

Support Dynamic Runtime Configuration for Docker ContainersMimic AWS auto-scaling for container environment
Notify on build success/failed
Empower teams with self-service application deployments
Enable push button releases
Blue-Green Deployments

Optional
Notify on image pushed to docker registry
Automate the provision of the Cluster
Container Logging and monitoring

Table 1: Overview and classification of requirements
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5 Design and Implementation
In this section we first evaluate the status quo of the delivery and deployment process
at BetterDoctor and understand the pain points in the process. Having discussed
about various technologies and frameworks in the previous sections lets us see how
do they fit in the proposed delivery and deployment model.

5.1 Analyzing Existing Setup
It probably is a good idea to consider that the first requirement is to integrate into
current delivery process and therefore we need understand the status quo of the
existing setup. This also gives us a clear picture of what other requirement are
already fulfilled and the ones which are not by the status quo enabling us to build
upon the existing setup.

5.1.1 Source Code Management & Git Branching Model

At BetterDoctor we use git as the source code management system and a standard
branching model is followed71. It is important to understand the the current branching
model because it defines the delivery and deployment pipelines. The pipeline begins
when the local developer checks in the new code (feature) to the SCM. The current
branching scheme dedicates a distinct feature branch for each new feature or a bug-fix
while holding the current development mainline in a branch named “develop” and
the version currently in production in a branch named “master”. The names of the
development branches are by convention constructed from the ID of the corresponding
bug report/feature request in JIRA72 and a short, descriptive title, mostly also taken
from JIRA.

Merging back of a branch to mainline, i.e. the “develop” branch, then requires
the creation of a pull request and approval/code-review of another developer or the
repository owner. A release tag might be created against a develop branch or a
release branch which will be merged back to master. This git work-flow also suits
pretty well for the proposed system.

5.1.2 Automated Testing and Building

The existing setup at BetterDoctor did not have any CI server to perform automated
testing of the feature branches whenever a local developer checks in new code to SCM.
The feature branch was tested locally and then if all the tests (unit and integration)
pass, a pull request is created for the review/approval from peers or the repository
owner. Although test-driven development was followed at BetterDoctor it was not
leveraged to its full extent. Implementing a CI server will help in many ways. Some
are listed below .

71http://nvie.com/posts/a-successful-git-branching-model/
72bug tracking and feature tracking software https://www.atlassian.com/software/jira

 http://nvie.com/posts/a-successful-git-branching-model/
https://www.atlassian.com/software/jira
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• Running tests immediately for every change helps us tho know if something is
broken right away. If you are going to fail, then fail early, fail fast, fail often [10].
It is not so much the successful builds that are important, but the unsuccessful
ones.

• Continuous Integration paves way towards Continuous Delivery/ Continuous
Deployment by frequently building the software.

• Acceptance/Integration/End to End/Really long running tests may be run on
the CI server that would not be run on a developer box usually.

• A developer may make a tiny change before pushing/committing to SCM and
not run tests thinking its a safe change.

• Everyone can see whats happening - CI server displays lights that glow green
when the build works, or red if it fails. This also helps in faster code review.

• The CI server is closer to the production system which can eliminate ’But it
works on my machine’ [22] syndrome.

There are several reasons for implementing CI, but the main point of CI is to get an
idea what the state of the code is over time. The main benefit (out of several) this
provides, is that we can find out when the build breaks, figure out what broke it,
and then fix it immediately thus improving the software health and quality. Thus,
building a new CI server was a major requirement for a continuous delivery pipeline.

5.1.3 Deployment

The systems team at BetterDoctor uses Jenkins to build, package and deploy latest
releases to stage and production environments. A Jenkins job is manually triggered
to pull the latest code for the release tag from the respective git repository. The
deployer can select from a list (git tags) of releasable code and submit the job for the
deployment to happen. Behind the scenes the job packages the code in to a debian
binary (.deb) and then uploaded to AWS S3 storage 73. Then the Chef Client is run
on the respective application boxes (VMs) which then pulls the debian package and
sets up the environment for the application to run. The current deployment model
is illustrated in the Figure 26.

A dedicated chef role 74 for both stage and production environment is assigned for
each application which performs all of the steps that are required to bring the node
into the expected state when the chef client is run. For our proposed deployment
model we replace chef with immutable containers and consul key value stores.

73Highly-scalable object storage https://aws.amazon.com/s3/
74A role in Chef is a categorization that describes what a specific machine is supposed to

do. What responsibilities does it have and what software and settings should be given to it.
https://docs.chef.io/roles.html

https://aws.amazon.com/s3/
https://docs.chef.io/roles.html
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Figure 26: current deployment model.

5.2 Design choices
Continuous delivery could have also been accomplished with the existing setup
but immutability cannot be achieved and Configuration management tools such
as Chef typically default to a mutable infrastructure paradigm. This often leads
to a phenomenon known as configuration drift. Moreover, with time Chef scripts
and configurations turn into a enormous pile of cruft75 and become a nightmare to
maintain them.

Immutability can be achieved if the application processes are stateless. Their
state is stored in a service outside of the “immutable infrastructure”. It would be
completely possible to deploy new VMs for every new version of your application
(which can be automated) by baking your VM images for every release using tools

75unnecessarily complicated, or unwanted code or software
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like Packer76. The objective is to be able to deploy new application nodes from
scratch without upgrading your application in place which may induce some state
over time causing the application to break or behave in an unexpected way. Attaining
Immutability through VMs is a tedious task which is not ideal due to the fact that
the artifact is very large (snapshotting a VM) and makes the process cumbersome. It
is also important note that slow deployment process of the AMI (Amazon Machine
Images) and vendor locking are the major frustration points. The AMI can be only
used with Amazon Cloud vendor making it less portable and rigid.

Containers on the other hand were born to be immutable. They are much
faster to build, test and deploy than VMs or running scripts to configure servers.
"Immutable" containers model by rebuilding Docker images containing the application
code and spinning up new containers with every application update. As soon as your
application image has been built, tested and tagged, deploying it is a very efficient
process. The two major advantages of using immutable containers are

Portability

Since the container will be self-sufficient, we need not worry about the underlying
configuration of the OS. We build once and run them anywhere as the docker image
is packed with all the necessary environment for the application to run.

Predictability

With immutable images, you can be sure that a given tag of that given image will
always have the same behaviour because the code is contained in the image. This
will also aid in rollback.

5.2.1 Jenkins

At BetterDoctor we are already familiar with Jenkins for automating daily manual
tasks and deployment purposes. It also fits as a suitable platform to host a continuous
delivery pipeline. Jenkins has become the most-used orchestrator for the different
phases of the product lifecycle [2]: from the checkout of the code and the unit-tests,
to the static code-analysis, to the performance tests, to the release of the binaries
until the deployment into test/staging/production. It quickly transitioned from
being a Continuous Integration tool to a Continuous Delivery one: thanks to the
development of new plugins which also embrace docker. With many features and
huge community support it manages to be positioned as the hub of CD pipelines.

5.2.2 Containerization

Containerizing or Dockerizing an application is the process of encapsulating an
application with its operating system environment (a full system image) using

76Packer is an open source tool for creating identical machine images for multiple platforms from
a single source configuration https://www.packer.io/intro/index.html

https://www.packer.io/intro/index.html
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container software like docker and similar technologies. This helps in making the
application’s architecture more "cloud-friendly".

Benefits of Containerization:
• Streamlines deployment process and makes it easy to automate deployments,

even having them driven completely from a CI system.

• Easy rollbacks on Production environment by just switching to older image
version.

• The same container image can be tested in a separate test environment, and
then deployed to the production environment. You can be sure that what you
tested is exactly the same as what is running in production.

• Makes application portable and achieve cloud interoperability.

• Developers can also run containers locally to test their work in progress in a
realistic environment.

• Hardware can be used more efficiently, by running multiple containerized
applications on a single host that ordinarily could not easily share a single
system.

• Containerizing is a good first step toward supporting no-downtime upgrades,
canary deployments, high availability, and horizontal scaling.

At BetterDoctor all of the applications are developed in ruby. So, we needed
a base ruby image which can access the custom gems from github repositories.
Listing 3 shows the base ruby image which also has an envconsul binary copied.
Envconsul helps in dynamic configuration management of the container. To run tests
on container we need the following files to be available in the code repository

Application Image Docker file

The Docker-File 5 encapsulates the whole code repository including the env-consul
and docker-compose files.

Env-Consul Configuration file

This configuration file enables env-consul to talk to consul api to retrieve key value
pairs (environment variables) for respective application . The consul token restricts
the application to only read keys from its path. Similarly the vault token also allows
the application only to read secrets on its path. Listing 4 shows the file for reference.
A template env-consul file shown in the Figure 4

Docker-Compose file

The Docker-Compose file executes the test inside the container. Docker Compose
makes it easier to configure and run applications made up of multiple containers.
You can see an example docker-compose file below on Listing 2.



51

Figure 27: Env-Consul Configuration File

5.3 Building a CI/CD Pipeline with Docker
The workflow for the CI pipeline.

1. Developer makes a pull request on the feature branch on Github.

2. GitHub uses a webhook to notify Jenkins of the pull request.

3. Jenkins pulls the GitHub repository, including the Dockerfile describing the
image, as well as the application and test code.

4. Jenkins builds a Docker image on the Jenkins slave node

5. Jenkins instantiates the Docker container on the slave node, and executes the
appropriate tests

6. The status of tests are then communicated back to developer/team on the slack
channel. The status is also updated on the Github pull-request page.

Listing 1 shows the shell script on Jenkins which is executed every time a pull
request is made to the application repository on github. Jenkins automatically loads
the the entire Pull Request in to Jenkins job workspace.

1 #bin/bash −−l o g i n
2

3 s e t −e
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Figure 28: Continuous Integration with Docker

4

5 # Build Pro j e c t
6 echo −e "\033 [34 mBuilding Pro j e c t . . . \ 0 3 3 [ 0m"
7 docker bu i ld .
8

9 # Run Tests
10 echo −e "\033 [34mRunning Tests . . . \ 0 3 3 [ 0m"
11

12 docker−compose −f docker−compose−t e s t s . yml bu i ld
13 docker−compose −f docker−compose−t e s t s . yml run −d mongo ;
14

15 echo \$?
16

17 docker−compose −f docker−compose−t e s t s . yml run −−rm e t l ; echo \$?

Listing 1: Jenkins CI Execute Shell

5.4 Drafting the Continuous Delivery Pipeline
The CD pipeline had to be just an extension of the CI pipeline. It is implemented
with use of continuous integration tools, in our case it was Jenkins. The pipeline
would generally consist of different types of jobs in Jenkins which are linked together
or will be linked together as the process matures. By linking these jobs together we
construct a chain of events and thus creating our customized continuous delivery and
deployment pipelines. Although chaining jobs together involves high maintainability,
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thanks to the version control for Jenkins job configuration which helps us to rollback
to previous configuration in the event of any issue.

A CD pipeline practicing DevOps methodology is not only responsible for releasing
artifacts but also providing various tools for team members to help them deploy,
monitor and search logs for their respective applications. The Jenkins deploy job
deploys the respective container on to the Mesos Cluster. The Mesos Cluster is
brought up by Terraform. Each Mesos slave is configured with user data. In our
environment a typical Mesos Slave is made up of some default services which run on
initial boot as a systemd77 service. The Figure 29 shows the default services on a
typical Mesos Slave. The services shown in the picture each have a specific use case.

1. CAdvisor78 is a container running as daemon on the host (Mesos slave) that
collects, aggregates, processes, and exports information about all the running
containers on specific host. It gives a clear understanding of the resource usage
and performance metrics of the running containers.

Figure 29: Mesos Slave running default services

2. Newrelic Agent79 also collects server metrics and performance data to New
Relic, whcih then is populated on to New Relic dashboards.

3. Consul Agent80 is the core process of Consul. The agent maintains mem-
bership information, registers services (mostly docker containers), runs health-
checks, responds to queries, etc.

77https://coreos.com/os/docs/latest/getting-started-with-systemd.html
78https://github.com/google/cadvisor
79https://docs.newrelic.com/docs/agents/manage-apm-agents/agent-data/

agent-attributes
80https://www.consul.io/docs/agent/basics.html

https://coreos.com/os/docs/latest/getting-started-with-systemd.html
https://github.com/google/cadvisor
https://docs.newrelic.com/docs/agents/manage-apm-agents/agent-data/agent-attributes
https://docs.newrelic.com/docs/agents/manage-apm-agents/agent-data/agent-attributes
https://www.consul.io/docs/agent/basics.html
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4. Registrator81 helps the runnig containers to register themselves. It is a docker
container whose responsibility is to make sure that new containers are registered
and deregistered automatically from our service discovery tool (consul). It
teams up very well with consul agent.

5. Filebeat82 helps to forward logs of the containers running on the host to our
ELK (Elastic Search, Logstash and Kibana)83 stack. This helps to send our
logs to a centralized repository.
By using these services each of the container deployed on to the Mesos cluster
is monitored, registered and logged. All of the metrics can be visualized via
the respective dashboards

5.4.1 Deploying the Containers

The containers can be deployed via a POST API call to Marathon API. To make
this task easier for any member to configure, run, investigate containers which are
going to deployed or running, we developed an internal Docker deployment tool called
Duncan. Duncan talks to Marathon, Consul and Vault API under the hood. Using
Duncan one can set secrets and environment variables for a running application
dynamically which then triggers the env-consul process. They can also spin up a
local docker container to debug an issues that crawled in. Some of the use cases of
this tool are show in the Figure B1 and Figure B2.

5.4.2 Auto Scaling

Although Marathon offers auto-scaling based on resource utilization like memory,
CPU 84 or also based on current RPS (requests per second)85 for your apps based on
HA-Proxy stats, we needed auto-scaling based on queue depth or size of the queue
for our Sidekiq86 workers. Therefore, the need for Slythe cropped up which monitors
the Sidekiq queues of our applications and scales them up or down as needed. This
tool also talks to Marthon API under the hood. More about this tool is shown in
the Figure B3.

5.4.3 Monitoring and Centralized Logging

This was considered to be an optional requirement but it turned out to be a very
important requirement for developers to troubleshoot and debug either in the pipeline
or in any environment (production or staging).

81https://github.com/gliderlabs/registrator
82https://www.elastic.co/products/beats/filebeat
83https://www.elastic.co/products
84https://github.com/mesosphere/marathon-autoscale
85https://github.com/mesosphere/marathon-lb-autoscale
86https://github.com/mperham/sidekiq

https://github.com/gliderlabs/registrator
https://www.elastic.co/products/beats/filebeat
https://www.elastic.co/products
https://github.com/mesosphere/marathon-autoscale
https://github.com/mesosphere/marathon-lb-autoscale
https://github.com/mperham/sidekiq
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Prometheus

Prometheus is a tool, initially built by soundcloud87 to monitor their servers, it is
now open-source and completely community driven. It works by scraping "targets"
which are endpoints that post key-attribute machine parseable data. Prometheus
then stores each scrape as a frame in a time series database allowing you to query the
database to execute graphs and other functions like alerts. Prometheus servers scrape
metrics from instrumented jobs (exporters), either directly or via an intermediary
push gateway for short-lived jobs. The exporters88 are long running jobs which collect
metrics for a particular service and report it to a URL reachable by the Prometheus
server. Once the exporter is running it’ll host the parseable data on port 9100 and
http://<your-device-ip>:9100/metrics end point gives you all the metrics captured.
Prometheus can also use consul for service discovery and alert if any of the service
registered becomes unhealthy. The metrics stored in the Prometheus server are then
queried from Web UI like Grafana89. The Alert manager is responsible for notifying
alerts to Slack or Pagerduty90. Figure 30 shows you the architecture of Prometheus
monitoring system. Also, Figure B5 shows an example dashboard for Grafana.

Figure 30: Internal Monitoring - Prometheus Architecture

87https://soundcloud.com/
88https://prometheus.io/docs/instrumenting/exporters/
89https://grafana.com/
90https://www.pagerduty.com/

https://soundcloud.com/
https://prometheus.io/docs/instrumenting/exporters/
https://grafana.com/
https://www.pagerduty.com/
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5.4.4 ELK (Elasticsearch,Logstash,Kibana) Stack

The ELK Stack is a collection of three open-source products — Elasticsearch, Logstash,
and Kibana — from Elastic91. Elasticsearch is a NoSQL database that is based on
the Lucene92 search engine. Logstash is a log pipeline tool that accepts inputs from
various sources, executes different transformations, and exports the data to various
targets. Kibana is a visualization layer that works on top of Elasticsearch. These
three different open source products combined together are most commonly used
in log analysis in IT environments and also help in achieving centralized logging.
Filebeat on the other hand is a light weight shipper which forwards the logs to the
logstash service from various hosts. As shown in the Figure 31 Logstash then sends
the data to elastic search via REST protocol. We can also index the data based
on the labels to segregate logs form each container. The logs can later be accesed
and queried via Lucene syntax from the web UI called Kibana. Figure ?? shows the
dashboard for Kibana.

Figure 31: Containers forwarding the logs to the ELK stack

5.4.5 Continuous Delivery Workflow

Figure 32 shows the series of events involved in a deployment pipeline. Let us go
through each one of them.

1. Developer makes a release tag on a branch after the feature passes CI.

2. GitHub uses a webhook to notify Jenkins of the new release tag.

3. Jenkins pulls the GitHub repository, including the Dockerfile describing the
image, as well as the application and test code.

4. Jenkins builds a Docker image on the Jenkins slave node. Although testing the
code again is not necessary, just to be on the safer side we do another round of
testing on the new tag. Jenkins instantiates the Docker container on the slave
node, and executes the appropriate tests.

91https://www.elastic.co/
92https://lucene.apache.org/

https://www.elastic.co/
https://lucene.apache.org/
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5. The status of tests are then communicated back to developer/team on the slack
channel. If tests are successful, the image is then pushed to the quay.io private
Docker repository.

6. Update slack with a message of the latest release tag which was pushed to quay
along with the link which show the change or addition in code compared to
previous release.

7. This step could be automated and just be part of a single Jenkins job but we
are still not ready for continuous deployment and our requirement is to have
a push button release. Using this deploy job we can deploy the application
container on to stage or production environment on our Mesos Cluster.

8. The Jenkins deploy job posts the Json payload to Marathon API which in turn
talks to the Mesos master regarding resources and constraints to launch the
long running marathon task (container). An example of the json payload is
shows in the Listing 6. An internal deployment tool called Duncan written
in GoLang does the heavy lifting of posting this Json to the Marathon API.
More about this tool discussed below.

9. The Mesos Master then launches the task on the Mesos slave. The Mesos agent
then runs the Docker Executor which then pulls the docker image from the
quay.io repository. After successfully pulling the image the executor runs the
container.

10. Public facing applications which are used by external users on the Internet
are accessible via Marathon-lb93 which is a HAProxy based load balancer. It
provides proxying and load balancing for TCP and HTTP based applications.

5.4.6 Blue Green Deployments

Blue Green and Canary Deployments are supported by Marathon LB. This
makes it very easy to implement in the CD pipeline. A newer version of
application is only registered with the Marathon LB if it passes all the required
health checks. If the health checks doesn’t pass then Marathon will rollback the
deployment. If everything goes fine then the older version of docker containers
are replaced by the latest ones. This will enable users a smooth transition
to the newer version of the application since there will zero downtime during
deployments.

93https://mesosphere.com/blog/2015/12/04/dcos-marathon-lb/

https://mesosphere.com/blog/2015/12/04/dcos-marathon-lb/
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Figure 32: Series of events in the Continuous Delivery Pipeline
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6 Learnings and Evaluation
This section tries to evaluate Continuous delivery pipeline based on the requirements
defined in Section 4. We then list out all the learnings positive and negative during
the implementation of this pipeline. It is worth mentioning that during the point
in time in which this report was originally written, only half of our services where
migrated to production Mesos cluster but all of the applications were running in a
staged environment. So, these findings and learnings are just the first impression of
the whole pipeline.

6.1 Improved Cycle time
Manual deployment which are considered to be an anti-pattern make it difficult to
measure the cycle time accurately. The cycle time can be considered as the time from
when work begins on a customer’s request until a releasable artifact us produced
through the continuous delivery pipeline. The major improvements in cycle time are
seen for the bug-fixes. For example, a single line code-fix can be really benefit from
the CD pipeline because there won’t be any bottleneck in deployment and operations.
As soon as the developer checks the latest code and makes a release tag, automated
testing and artifact building is kicked off. Also, the respective team member no
longer need to wait for a deployment expert to deploy the artifact on production since
the developers can now deploy their application with their access-privileges. With
continuous delivery in place it can be seen that it has vastly improved cycle time for
smaller iterations and bug-fixes. Bigger code changes and features required some
manual auditing and collaboration between team before deploying to production
environments which made it difficult to analyze the cycle time.

6.2 Increased Productivity
Increased productivity is one of the main documented benefits of CD. CD helped in
identifying issues earlier and enable fast feedback loops. By automating the building
and testing of artifacts and providing easy tools to deploy the artifacts to production,
developers could focus more on the actual development of the applications and less on
menial, repetitive tasks related to operations and testing. However, it has to be noted
that much effort has gone into establishing the new tools and practices. Developers
agreed that some changes have required more time and effort than initially expected,
mostly due to the fact that many of the tool (Docker, Mesos, etc) and techniques
were unfamiliar to them when adoption started. But in the end it lead to a great
development workflow which gives them enough confidence to make changes to their
system at anytime. If a recent change did not break anything on production, the
developer gets a moral boost for releasing to production often and early, which in turn
improves speed of innovation and developer’s productivity. Even when something
breaks there are enough tools in the developers vicinity to act on the issue without
seeking the help of any systems personnel which would cost time for both parties.
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6.3 Breaking Down the Silos
Silo driven development is a barrier to the kind of large-scale cultural change that’s
required to build an effective DevOps process and fully realize the potential benefits
of everyone’s talents. The continuous delivery pipeline bridged the gap between
development and operations, creating shared responsibility and ownership. Everyone
now works together to get the code live. With improved end-to-end visibility (via slack)
the team can now create a shared focus on the end result, and it encourages everyone
to collaborate and work out how to tackle bottlenecks and mitigate production issues.

6.4 Impact of Docker on CD
As discussed in earlier sections the CD pipeline would also have been achieved if
containers were replaced by VMs, but the big difference is the flexibility that comes
with the light weight framework. Containers can start, stop and can be moved
around different hosts, public clouds and private clouds within seconds which is not
possible in case of VMs. This makes Docker perfect for quicker deployments and also
highly scalable with high resource utilization. According to [6] and [15] container
technology has better performance, scalability, and usability than hypervisor-based
virtualization. In many cases, VM’s performance tends to be inferior, whereas Docker
containers perform equally to native performance of bare metal servers [23].

6.5 Moving to Immutability Infrastructure
One of the major advantages of moving to Immutable infrastructure is to get away
from Chef (Configuration Manager). Why would we fix a faulty virtual server when
we can create a new one in a matter of seconds. Our infrastructure provisioning
tool terraform understands cloud better than any other CM or provisioning tool. It
enabled us to write reusable scripts and it gave us better visibility on infrastructure
updates. We now no need to worry about wasting our time fixing a VM when its
faulty.

6.6 Achieving Dynamic Configuration Management
Envconsul has helped us to drive dynamic configuration changes from the Consul
KV store and restart our application to take the values in a seamless way. Earlier
we had to rebuild our Debian package by baking the configuration or via a Chef
Role94, even a single character mistake could have made us redeploy. It enabled us
to achieve dynamic configuration in our services without taking them down to make
the changes. We can now change configuration like the port number of any service,
db password, access keys, etc. on run-time and don’t have to worry about the service
downtime.

94https://docs.chef.io/roles.html

https://docs.chef.io/roles.html
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6.7 Reduced risk of deployment failure
Manual steps in any part of the development process introduce risk of failure due to
human error. The automatic testing of all changes has been proven to significantly
reduce the risk of uncovering bugs in the applications after production deployments.
Developers now have access to environments quite similar to those in production,
which has maintains the dev-prod parity to reduce the risk of errors that can be
discovered only once the software is running in the production environment. Not to
forget the complexity and errors induced via Chef (configuration manger), which is
great relief for sysops team. Apart from these, the deal breaker was the blue green
deployment and self healing capability of the Marathon Framework.

6.8 Reducing Infrastructure Costs
By moving just half of the applications from VMs to containers and running them
on Mesos Cluster, an estimated 25-30 % savings on AWS infrastructure costs was
observed. The overall resource utilization and optimization of the infrastructure has
drastically improved. We have also noticed a significant decrease in VM sprawl or
EC2 instance sprawling because we can now run staging and production environments
in the same cluster and save resources and money. Although we had to be careful to
set up resource limits so that our staging environment doesn’t starve production for
CPU, memory, or disk resources which was a bit time consuming due to testing.

6.9 Achieving Hyper-scale
Running containers at a large-scale is just a step away with help of Docker, Marathon
and Mesos. Its now easy to run 100’s and 1000’s of Docker containers across 10, 50 Or
even 10,000 hosts with help of the container orchestration and cluster management
tools in place. Scaling our services to more than 15x or 20x is not at all tedious task
anymore. We could see the true potential of the DC/OS platform when we needed
to scale up our services to meet the client SLA. To achieve the same amount of
scalability via VM’s involves higher time and cost. This is really a game changer
with regards to scaling your services instantaneously based on client demands.

6.10 Testing and Fine tuning Docker Environment
The most difficult phase in the project was to test and tune the Docker environment
to match the VM production environment in terms of capacity, performance and
acceptance. A large portion of developers time was required to team up with
operations team in testing and fine tuning their respective applications in docker
environment. The developers were already busy in their sprint tasks and couldn’t
dedicate enough time for testing their applications in docker stage environment.
Later, a dedicated sprint task was allocated for each developer just to test and fine
tune the applications in docker. Once all the acceptance criteria for each application
was achieved, migration to production was kicked off.
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Figure 33: Scaling up to 100’s (DAPI) of containers with ease

6.11 Developer Concerns
The developers were very accommodating in regards to the implementation of the
CD pipeline. Although, there was a substantial learning curve involved to adjust
to a new way of thinking and perhaps be trained in new technologies and practices.
There were no major changes in regards to how they integrate code. They were
already following a Test Driven Development model which made CD even easier.

6.11.1 Allow to Debug inside the containers

The developers were used to debug production and stage issues by logging on to the
server using ssh. This practice is considered as an anti-pattern because the developers
might induce state in to the server which may cause it to behave unexpectedly in the
future. By providing enough tooling to bring up a local docker container which is
running the same code as in production helped them to debug the issue locally. But
occasional exec’ing into production containers is still performed. Old habits die hard.

6.11.2 Learning curve for Docker and Mesos

It’s hard to deny that there was a significant learning curve for technologies like
Docker and Mesos for everyone on the team. Docker was completely different to
what it was in development environment compared to its production run. Scheduling
a biweekly training session on Docker and Mesos along with architecture meetings
to plan the release of the container migration helped the team members to get a
grasp on the technologies and the delivery process. Building stateless dockerized
server-based applications and launching them on Mesos (Marathon) was never so
easy (at the cost of a steeper learning curve).
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"I first had not enough confidence moving containers in to production and was
not very comfortable with the technology stack. But, two weeks in to running the
containers in production it made more sense to move everything to containers. It
just made everything easy deploying, scaling and provisioning."

-developer XYZ

To conclude, there aren’t really any disadvantages by moving towards a Continuous
Delivery paradigm. We were manually building and deploying artifacts anyway.
Instead, now Continuous Delivery as a process helps us streamline it. It definitely
has far more benefits than disadvantages.
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7 Discussion

7.1 Summary
Cloud Native Applications are the latest trend in IT that promises to develop and
deploy applications in a rapid and cost-efficient way by leveraging cloud services. It
drastically improves the pace of innovation among teams as they are able to focus
more on functionality rather than worrying about underlying infrastructure. This
helps the organisations to bring their innovations and capabilities to the market
faster than ever before. Continuous delivery, DevOps and Microservices go hand
in hand to fully implement a cloud-native strategy. All three aspects are required
to achieve a successful low risk software-delivery process. CD helps in shipping
software faster to reduce the time of your feedback loop. DevOps helps us to bring
about the cultural and technical changes required to fully implement a cloud-native
strategy. microservices is the software architecture pattern used most successfully to
expand your development and delivery operations and avoid slow, risky, monolithic
deployment strategies.

Containers revolutionize the way microservices are packaged. Their lightweight
nature and tight resource management aligns well with the cloud native application
approach, adding speed and resource efficiency. To use containers effectively they
must be orchestrated. Container Orchestration tools like Marathon and Kubernetes
can start, stop and distribute containers across a cluster of nodes. Some orchestrators
like marathon for example are also responsible for providing functionalities like
rollback and blue-green deployments which help reducing downtime for a cloud-
native application.

Heavy-duty configuration management tools like Chef, Puppet, Ansible and Salt
can decommissioned with the adoption of containers. Although you can still use
these tools in conjunction with Docker to provision containers, the reality is you
probably will not. The power, simplicity and speed of provisioning containers natively
in Docker eliminates the need for configuration management tools. As discussed in
earlier chapter why try to revive an faulty VM when you can re-deploy a new one.
Provisioning tools like Terraform and CloudFormation help in achieving immutable
infrastructure which reduces the potential for configuration drift and inducing state
in the system. This increases predictability, since there is little variance between
development, testing and production.

Service Discovery for microservices presents new challenges, which arise from
the flexible and scalable nature of the infrastructure. Service Discovery tools like
Consul help solve these challenges help the microservices to communicate to each
other via API calls. Hashicorp tool Env-Consul which uses Consul KV store to load
the environment variables in to the containers dynamically is a real game changer.

Monitoring and Centralized Logging are necessary for distributed services running
on a cluster. By embracing microservices, containers and clusters, the number of
deployed containers will rapidly increase at a great speed which makes it difficult
look at logs for each service (by logging into a container or a node). By aggregating
and visualizing these logs and monitoring metrics we can easily track down the
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production incidents and find patterns from the historical information.

7.2 Conclusion
Research in the field of continuous delivery is scarce and very recent. Thus, the validity
of prior work has not been proven through years of scrutiny, and the opportunities
for reflecting the results of this study against existing literature are limited. The
organization has achieved and adopted CD pipeline which is very similar to that
described by many authors in books and online material. The tools and practices
adopted through out the project are current trending technologies which show a lot
of promise in improving the maturity of the pipeline.

Introducing continuous delivery into an organization requires careful thought and
planning. The transition is rarely something that can be done overnight, and usually
involves a number of intermediate and incremental steps in order to shift away from
the current development methodology. To succeed in building this CD pipeline the
communication between business, development, QA and operations should take place
on many different levels, which often leads to confusion and long wait times due to
hand-offs between different people and groups. Continuous Delivery is not just about
implementing a new workflow and pipeline for delivery. We cannot just automate
the pipeline and expect to achieve a true agile development workflow. It has more to
do with a getting everyone think in a DevOps manner to bring about the cultural
change. The philosophy of you build it, you run it should be applied. Every team
should be able to develop and deploy their code. The gap between development and
operations can be bridged inducing a culture of collaboration. Share the tools and
infrastructure code, accept and review pull requests, etc. The true potential of a
continuous delivery pipeline is only realized when you have an operationally mature
platform and when we move away from custom scripting, manual work and late-night
outages. Developers and Operations personnel should transparently work together
to plan, build, release and deploy.
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A Configuration Files

A.0.1 Continuous integration

1 e t l :
2 bu i ld : .
3 command : envconsul−c on f i g env−consul−t e s t . hc l no s e t e s t s−2 . 7 −v

importer_test /
4 l i n k s :
5 − mongo
6
7 mongo :
8 image : mongo : 3 . 0 . 9
9 por t s :

10 − " 27017 : 27017 "
11 command : −−sm a l l f i l e s

Listing 2: Docker-Compose

1 FROM ruby : 2 . 2 . 5
2

3 RUN apt−get update −y && apt−get upgrade −y
4 && apt−get c l ean
5 && rm −r f / var / l i b /apt/ l i s t s /∗ /tmp/∗ /var /tmp/∗
6

7 RUN mkdir −p / root / .
8

9 ADD id_docker / root / . ssh / id_rsa
10

11 ADD envconsul / usr / l o c a l / bin / envconsul
12

13 RUN chmod 600 / root / . ssh / id_rsa
14

15 RUN echo " Host github . com\n\ tStr ictHostKeyChecking no\n " >>
16 / root / . ssh / c on f i g

Listing 3: Base Ruby Docker Image

1 consu l = " consul−api . b e t t e rd r . net : 8500 "
2

3 token = "634 das184s sd f67 f−fb213219a−d2cc−97ee−c6dasdc8bb49c9123123a8 "
4

5 # max_stale = "10m"
6 t imeout = "5 s "
7 r e t r y = "10 s "
8 s a n i t i z e = true
9 sp lay = "5 s "

10 k i l l _ s i g n a l = "SIGUSR2"
11

12 vau l t {
13 address = " https : // vau l t . b e t t e rd r . net "
14 token = " cd f d s f d s 2 g f e f e f −3a7d−ewrer7fa1−cf3462 −43c6af56991a "
15 renew = true
16
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17 s s l {
18 enabled = true
19 v e r i f y = true
20 }
21 }
22

23 p r e f i x {
24 path = " env/ e t l / s tage "
25 }
26

27 s e c r e t {
28 path = " s e c r e t / e t l / s tage "
29 no_pref ix = true
30 }

Listing 4: env-consul-test.hcl

1

2 FROM quay . i o / be t t e rdoc to r /ruby : 2 . 2 . 5
3

4 WORKDIR /tmp
5

6 COPY Gemfi le ∗ /tmp/
7

8 RUN bundle i n s t a l l
9

10 COPY . /app
11

12 WORKDIR /app

Listing 5: Application Dockerfile

A.0.2 Marathon Configuration file

1 {
2 " id " : " e t l−product ion " ,
3
4 " apps " : [
5 {
6 " id " : "web" ,
7 " i n s t an c e s " : 1 ,
8 " cpus " : 1 . 0 ,
9 "mem" : 1024 ,

10 " u r i s " : [
11 " https : // s 3 . amazonaws . com/ bet te rdoc to r−operat ions−

qhtumyvauxvxorwmeujn/Conf igs / docker . ta r . gz "
12 ] ,
13 " conta ine r " : {
14 " type " : "DOCKER" ,
15 " docker " : {
16 " image " : " quay . i o / be t t e rdoc to r / e t l : r e l e a s e −1 . 43 . 4 " ,
17 " network " : "BRIDGE" ,
18 " fo rcePul l Image " : t rue ,
19 " portMappings " : [
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20 {
21 " conta ine rPort " : 3000 ,
22 " hostPort " : 0
23 }
24 ]
25 }
26 } ,
27 " env " : {
28 " environment " : " product ion " ,
29 " instance_type " : "web" ,
30 "RAILS_ENV" : " product ion " ,
31 "SERVICE_NAME" : " e t l−product ion " ,
32 "SERVICE_TAGS" : " e t l , product ion , web"
33 } ,
34 " healthChecks " : [ {
35 " path " : " / " ,
36 " portIndex " : 0 ,
37 " p ro to co l " : "HTTP" ,
38 " gracePer iodSeconds " : 300 ,
39 " i n t e rva lSe conds " : 30 ,
40 " t imeoutSeconds " : 5 ,
41 " maxConsecut iveFai lures " : 3 ,
42 " ignoreHttp 1xx " : f a l s e
43 } ] ,
44 " l a b e l s " : {
45 "HAPROXY_GROUP" : " ex t e rna l " ,
46 "HAPROXY_0_VHOST" : " e t l . b e t t e rd r . net " ,
47 "HAPROXY_0_BACKEND_HTTP_OPTIONS" : " a c l is_proxy_https hdr (X−

Forwarded−Proto ) https \n r e d i r e c t scheme https un l e s s { s s l_ f c }
or is_proxy_https \n "

48 }
49 } ,
50
51 {
52 " id " : " worker " ,
53 " i n s t an c e s " : 1 ,
54 " cpus " : 1 . 0 ,
55 "mem" : 512 ,
56 "cmd" : " supe rv i s o rd −c / e tc / supe rv i s o r / conf . d/ superv i sord−worker .

conf " ,
57 " u r i s " : [
58 " https : // s 3 . amazonaws . com/ bet te rdoc to r−operat ions−

qhtumyvauxvxorwmeujn/Conf igs / docker . ta r . gz "
59 ] ,
60 " conta ine r " : {
61 " type " : "DOCKER" ,
62 " docker " : {
63 " image " : " quay . i o / be t t e rdoc to r / e t l : r e l e a s e −1 . 43 . 4 " ,
64 " network " : "BRIDGE" ,
65 " fo rcePul l Image " : t rue
66 }
67 } ,
68 " env " : {
69 " environment " : " product ion " ,
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70 " instance_type " : " worker " ,
71 "RAILS_ENV" : " product ion "
72 }
73 }
74 ]
75 }

Listing 6: marathon JSON

A.0.3 Terraform IAC template

1
2 − "name" : " f i l e b e a t . s e r v i c e "
3 "command" : " s t a r t "
4 " enable " : ! ! bool |−
5 t rue
6 " content " : |
7 [ Unit ]
8 Desc r ip t i on=ELK: F i l eb ea t c o l l e c t s l o g s and sends them to

Logstash
9 Requires=f i l e b e a t −download . s e r v i c e

10 After=f i l e b e a t −download . s e r v i c e
11 After=docker . s e r v i c e
12 [ S e rv i c e ]
13 StandardOutput=jou rna l+conso l e
14 StandardError=jou rna l+conso l e
15 ExecStart=/opt/ f i l e b e a t / f i l e b e a t −e −c / e tc / f i l e b e a t / f i l e b e a t . yml

−d " pub l i sh "
16 [ I n s t a l l ]
17 WantedBy=multi−user . t a r g e t
18 − "name" : " cadv i so r . s e r v i c e "
19 "command" : " s t a r t "
20 " enable " : ! ! bool |−
21 t rue
22 " content " : |
23 [ Unit ]
24 Desc r ip t i on=Google Container Advisor
25 Requires=docker . s e r v i c e
26 After=docker . s e r v i c e
27 [ S e rv i c e ]
28 Restart=always
29 RestartSec=5
30 StandardOutput=jou rna l+conso l e
31 StandardError=jou rna l+conso l e
32 ExecStartPre=−/usr / bin /docker rm cadv i so r
33 ExecStart=/usr /bin /docker run −−rm −−volume=/ : / r o o t f s : ro −−volume

=/var /run : /var /run : rw −−volume=/sys : / sys : ro \
34 −−volume=/var / l i b / docker / : / var / l i b / docker : ro −−pub l i sh=8888 : 808

0 −−name=cadv i so r goog l e / cadv i so r : l a t e s t \
35 −−docker_env_metadata_whitel ist=environment , instance_type
36 ExecStop=/usr /bin /docker stop cadv i s o r
37 [ I n s t a l l ]
38 WantedBy=multi−user . t a r g e t
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39 − "name" : " newre l i c−sysmond . s e r v i c e "
40 "command" : " s t a r t "
41 " enable " : ! ! bool |−
42 t rue
43 " content " : |
44 [ Unit ]
45 Desc r ip t i on=Newre l i c Server Monitoring
46 [ S e rv i c e ]
47 EnvironmentFile=/etc / environment
48 TimeoutStartSec=20m
49 Restart=always
50 StandardOutput=jou rna l+conso l e
51 StandardError=jou rna l+conso l e
52 ExecStartPre=−/usr / bin /docker rm newre l i c−sysmond
53 ExecStart=/usr /bin /docker run −−rm −−name newre l i c−sysmond −e

NEW_RELIC_LICENSE_KEY=${NEW_RELIC_LICENSE_KEY} \
54 −e HOSTNAME=mesos−$${COREOS_PRIVATE_IPV4} −v / sys / f s / cgroup : /

sys / f s / cgroup : ro −v /var /run/docker . sock : / var /run/docker . sock quay .
i o / be t t e rdoc to r / newre l i c−sysmond : 2 . 3 . 0 . 132

55 ExecStop=/usr /bin /docker stop newre l i c−sysmond
56 [ I n s t a l l ]
57 WantedBy=multi−user . t a r g e t
58

Listing 7: Terraform user data file

1 r e s ou r c e " aws_launch_conf iguration " "Mesos−Production−
MasterLaunchConfig " {

2 name_prefix = "Mesos−Production−MasterLaunchConfig "
3 image_id = " ${ lookup ( var . coreos_ami , var . r eg i on ) } "
4 instance_type = " ${var . master_instance_type } "
5 key_name = " ${var . key_name} "
6 secur i ty_groups = [ " ${aws_security_group . Mesos−Production

−AdminSecurityGroup . id } " , " ${aws_security_group . Mesos−Production−
MasterSecurityGroup . id } " ]

7 assoc iate_publ i c_ip_address = f a l s e
8 user_data = " ${ t emp la t e_ f i l e . user_data_master .

rendered } "
9 i am_instance_pro f i l e = " ${ aws_iam_instance_prof i le . Mesos−

Production−Mast e r In s t anc ePro f i l e . id } "
10
11 ebs_block_device {
12 device_name = "/ dev/xvdb "
13 volume_type = " gp2 "
14 volume_size = 100
15 delete_on_termination = true
16 }
17
18 ephemeral_block_device {
19 device_name = "/ dev/sdb "
20 virtual_name = " ephemeral 0 "
21 }
22
23 l i f e c y c l e {
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24 create_before_destroy = true
25 }
26

Listing 8: Terraform Amazon EC2 template file
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B Miscellaneous

Figure B1: Duncan - get set environment variables from consul

Figure B2: Duncan - get set secrets to vault
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Figure B3: Slythe - Autoscaling based on queue length

Figure B4: Kibana Dashboard - Lucene Search Query
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Figure B5: Grafana Dashboard Showing Container Metrics
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