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Abstract 

Companies select projects to invest in based on uncertain estimates of their performance. Theories 

and empirical evidence suggest that if the uncertain estimates are taken at face value, the true 

performance of the selected projects tends to be lower than estimated, causing the decision makers 

(DMs) to experience post-decision disappointment. Taking prior information into account through 

Bayesian adjustment can result in more realistic estimates of the project performances and thus 

higher expected performance among the selected projects. However, Bayesian adjustment makes it 

less likely to predict extreme outcomes and, consequently, may lead to missing out on big wins.  

This thesis studies the differences in the investment strategies of Bayesian and non-Bayesian 

DMs and outcomes of these strategies. This is done by employing a combined approach of both 

qualitative and qualitative research methodology. The quantitative approach of this thesis is in the 

form of a mathematical model that is used both to derive analytic results and for Monte Carlo 

simulation. The qualitative approach of this thesis is utilized to test theoretical findings empirically.   

The key results reveal that when fewer than 50% of project proposals would truly perform well 

(e.g., have truly positive NPV), a Bayesian DM invests in too few and a non-Bayesian DM to too 

many projects. Moreover, the average ex post performance of the projects funded by a Bayesian DM 

is higher than that of a non-Bayesian DM. However, a non-Bayesian DM will have a higher 

proportion of funded projects that result in big wins, but also a higher proportion of projects that 

result in losses. If, on the other hand, more than 50% of project proposals would truly perform well, 

the roles of a Bayesian and non-Bayesian DM are reversed. The less accurate the performance 

estimates, the more pronounced the differences between the investment outcomes of a Bayesian and 

a non-Bayesian DM.  

These analytic results are testified empirically in the R&D portfolio selection decisions in the 

pharmaceutical industry. Accordingly, the decision-making environment of the pharmaceutical 

industry displays characteristics of an environment with high estimate errors that amplify the 

differences in outcomes of a Bayesian DM’s versus a non-Bayesian DM’s investment decisions. As 

the DMs in this industry show quintessential characteristics of non-Bayesian DMs and the observed 

empirical outcomes perfectly coincide with the theoretical outcomes for non-Bayesian investment 

decisions, our theoretical findings are well-reflected empirically. 

From a theoretical perspective, this thesis contributes novel analytic results on the differences 

between the investment strategies adopted by Bayesian and non-Bayesian DMs and validates these 

results with empirical evidence. From a practitioner’s point of view, this thesis gives insights into 

how estimation uncertainties affect investment decisions and outcomes. Understanding such effects 

can help managers make better-informed decisions. 
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1 Introduction 

“The only certainty is that nothing is certain” 

- Pliny the Elder 

Uncertainty, as a matter of fact, is the only certainty that exists. Uncertainty creates flaws 

and inaccuracies in forecasts and predictions. Especially in this VUCA1 world, uncertainty 

becomes an undeniable part of life that people must cope with when making decisions. 

Consequently, every forecast or estimate, no matter how informed and unbiased it is, is still 

treated with skepticism. While such skepticism is perceived by many DMs as an effective 

counteract to uncertainty, shielding them from post-decision disappointment, is it statistically 

justified? 

1.1 Motivation 

Companies select projects to invest in based on uncertain estimates of their performance. 

DMs usually seek to maximize values by choosing projects with the highest estimated 

performances. Theories and empirical evidence suggest that if the uncertain estimates are 

taken at face value, the true performance of the selected projects tends to be lower than 

estimated, causing the DMs to experience post-decision disappointment. Taking prior 

information into account through Bayesian adjustment can result in more realistic estimates 

of the project performances and thus higher expected values among the selected projects. 

However, Bayesian adjustment makes it less likely to predict extreme outcomes and, as a 

consequence, may lead to missing out on big wins. 

Empirical studies show that there are differences in how much DMs assign weight to 

prior information. At one extreme, there are so-called Bayesian DMs who weigh prior 

information optimally in accordance with Bayes’ theorem. At the other extreme, there are 

                                                                 
1 VUCA: Volatility, Uncertainty, Complexity, and Ambiguity 
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non-Bayesian DMs who neglect prior information and take the uncertain estimates at face 

value. The extent to which a DM adopts a Bayesian state of mind is called Bayesianess. 

This thesis studies the differences in the investment strategies of Bayesian and non-

Bayesian DMs and outcomes of these strategies. From a theoretical perspective, this thesis 

will contribute novel analytic results on these differences and the impacts of different 

problem parameters on these differences by building a mathematical model. Subsequently, 

this thesis will validate theoretical findings with empirical evidence of the differences 

between Bayesian and non-Bayesian estimations in terms of decision-making behavior and 

financial gains and losses from the selected investments. From a practitioner’s point of view, 

this thesis gives insights into how estimation uncertainties affect investment decisions and 

outcomes. Understanding such effects can help managers make better-informed decisions. 

1.2 Research problems and research questions 

Companies often select investment projects based on some threshold value of the project 

performance, measured by, e.g. net present value, return on investment, expected multi-

attribute utility, etc. Evidently, the threshold value varies in practice depending on the nature 

of the investments.  

With that assumption, this thesis will study the differences and the impacts of the 

differences between Bayesian and non-Bayesian project performance estimation on 

investment strategies, their respective theoretical and empirical outcomes, and the variables 

that affect these differences. The investment strategies are studied in terms of the proportion 

of funded projects out of project proposals. The strategies’ impacts will be studied through 

(i) the average performance of funded projects (i.e. expected value of funded projects), (ii) 

the proportion of projects that result in losses (i.e. the true values turn out to be less than the 

threshold), and (iii) the proportion of funded projects with very high ex post performance 

(i.e., higher than 95- or 99-percentile). Besides, this thesis also examines and observes the 

factors that affect these differences. The factors include (i) the accuracy of the value 

estimates, as represented by the ratio of the variance in the projects’ true values and the 
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variance of the estimation error and (ii) the proportion of project proposals with truly positive 

ex post values. Additionally, this thesis also testifies such differences with empirical data. 

Based on the research problems, the research questions are formed as the three 

overarching questions as follows: 

1. What is the difference between a Bayesian and a non-Bayesian DM in terms of: 

a. The proportion of funded projects, 

b. The average ex post value of funded project, 

c. The proportion of funded projects that result in losses, and 

d. The proportion of funded projects that result in very high gains (top 5% or 

1%)? 

2. How are these differences affected by: 

a. The accuracy of the value estimates and 

b. The proportion of project proposals with ex post performance above the 

threshold? 

3. How well are these differences reflected in empirical data? 

The answers to these three questions will provide us with a more thorough grasp of the 

differences between Bayesian and non-Bayesian investment strategies. In addition, this thesis 

will demonstrate the differences between Bayesian and non-Bayesian DMs in terms of 

expected post-decision disappointment and expected portfolio value. Based on this 

understanding, this thesis will develop a framework for better-informed and more accurate 

decision-making processes. 

1.3 Methods and data 

To study the differences between Bayesian and non-Bayesian DMs, a mathematical model 

for the projects’ true and estimated values is built.  In particular, the projects’ true and 

estimated values are modeled as random variables that follow a bivariate normal distribution. 

Based on this model, the Bayesian-adjusted estimates (defined as the projects’ expected true 

values given the value estimates) can be computed. The model is used to obtain analytic 
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results about the differences between Bayesian and non-Bayesian DMs. Specifically, the 

analytic model is expected to answer the questions about the differences between a Bayesian 

and a non-Bayesian DM in questions 1a and 1b and observe the effects of the elements listed 

in question 2. The expected results of the analytic model are illustrated in the following 

hypotheses: 

Hypothesis 1: If the proportion of project proposals with truly positive performance is 

lower than 50%, a Bayesian DM is likely to underinvest, whereas a non-Bayesian DM is 

likely to overinvest. The less accurate the value estimates are, the smaller the share of 

projects funded by the Bayesian DM and the larger the share of projects funded by a non-

Bayesian DM. On the other hand, if the proportion of truly good proposals is higher than 

50%, the roles of Bayesian and non-Bayesian DMs are reversed. 

Hypothesis 2: If the proportion of project proposals with truly positive performance is 

lower than 50%, the projects funded by a Bayesian DM are on average more valuable than 

those funded by a non-Bayesian DM. The less accurate the value estimates are, the more 

valuable the projects funded by a Bayesian DM are compared to those funded by a non-

Bayesian DM. On the other hand, if the proportion of truly good proposals is higher than 

50%, the roles of Bayesian and non-Bayesian DMs are reversed. 

In addition to validating these hypotheses, the analytic model is also used to simulate 

decision-making processes based on Bayesian-adjusted and unadjusted estimates. 

Subsequently, this thesis will compare and analyze the differences between a Bayesian and 

non-Bayesian investment strategies based on the results of those simulations. Like the results 

from the analytic model, the simulation results are also expected to show distinctive 

differences between Bayesian-adjusted and unadjusted estimates. More specifically, the 

simulation results are expected to validate the hypotheses 1 and 2. In addition, the simulation 

results are also expected to answer the remaining of the research questions that are too 

complex for the analytic model (i.e. questions 1c and 1d with regards to question 2). The 

hypotheses for the simulation part are as follows: 
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Hypothesis 3: If the proportion of project proposals with truly positive performance 

is lower than 50%, the funded projects of a Bayesian DM have a lower probability of 

incurring loss than those of a non-Bayesian DM. The less accurate the value estimates are, 

the lower the probability of incurring loss of the Bayesian DM’s funded projects compared 

to that of the non-Bayesian DM’s funded projects. On the other hand, if the proportion of 

truly good proposals is higher than 50%, the roles of Bayesian and non-Bayesian DMs are 

reversed. 

Hypothesis 4: If the proportion of project proposals with truly positive performance 

is lower than 50%, the funded projects of a Bayesian DM have a lower probability of 

resulting in high gains than those of a non-Bayesian DM. The less accurate the value 

estimates are, the lower the probability of resulting in high gains of the Bayesian DM’s 

funded projects compared to that of the non-Bayesian DM’s funded projects. 

In the empirical part, to seek empirical evidence to endorse the theoretical findings, 

this thesis will study R&D investment decisions in the pharmaceutical industry. This 

empirical part aims to explain the natures of R&D investment decisions in the pharmaceutical 

industry by using the theoretical findings and to examine how well the theoretical findings 

are reflected in empirical data. The pharmaceutical industry is selected because of its poor 

estimation accuracy. Such poor accuracy is the result of the lack of quantitative support in 

decision making, the decentralization of decision making causing information asymmetry, 

and the highly disruptive nature of the industry. Consequently, the author expects this 

industry to reflect well the differences between a Bayesian DM and a non-Bayesian DM. 

The empirical part will be conducted through secondary research based on existing 

literature (i.e. academic publications and industry reports) on R&D investment decision in 

the pharmaceutical industry. This thesis will consolidate relevant characteristics of the 

pharmaceutical industry and reflect them to the theoretical findings from the analytic model 

and simulation model. 
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1.4 Structure of the thesis 

This thesis has three primary parts as follows: literature review, mathematical models and 

empirical evidence. These parts are further divided into seven chapters in total. The thesis 

embarks with Chapter One, where the general background and research motivation are 

discussed. This introductory chapter will also position and frame this study, describing the 

significance of the topic and defining the research objectives. Chapter Two will review the 

literature on (i) project selection under uncertainty, (ii) modeling uncertainties in portfolio 

selection, and (iii) Bayesian modeling of estimation uncertainties. The main purpose of this 

chapter is to examine related issues categorically through earlier research. Chapter Three will 

discuss the methodology of the study, which is a combined methodology of quantitative and 

qualitative methods. This chapter aims to provide a thorough understanding of the thesis’ 

methodological approaches and the link between those two seemingly separate 

methodologies. More specifically, the quantitative approach of this thesis is in the form of a 

mathematical model that is used both to derive analytic results and for Monte Carlo 

simulation. The qualitative approach of this thesis is utilized to test theoretical findings 

empirically in the pharmaceutical industry. Chapter Four will be dedicated to building a 

mathematical model to answer the research questions. After Chapter Four, all the research 

questions will be answered. The answers for the research questions will serve as a basis for 

the Empirical part in Chapter Five. 

In Chapter Five, we will scrutinize the findings in the pharmaceutical industry through 

industry reports and existing publications on Research and Development (R&D) Portfolio 

selection in this industry. This chapter aims to validate theoretical findings and how relevant 

they are in a real-life environment. Subsequently, Chapter Six will consolidate and combine 

the findings and their empirical implications to propose actionable strategic 

recommendations for companies in terms of decision-making strategies in portfolio selection. 

In Chapter Seven, the conclusions will be presented. Theoretical contributions, managerial 

recommendations, research limitations, and suggestions for future research will also be 

discussed in this chapter.   
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2 Literature Review 

The literature review part of this thesis is thematically structured, starting from a more 

general topic to a more specific topic. Firstly, it will examine the backdrop where the 

phenomenon takes place, i.e., project portfolio selection under uncertainty. Subsequently, it 

will review literature on the modeling of uncertainties in project portfolio selection. Lastly, 

it will review literature on Bayesian modeling of estimation uncertainties. The ultimate 

purpose of this literature review part is to better understand the environment where Bayesian 

and non-Bayesian DMs make decisions, the externalities that influence their decision-making 

processes, and the existing models that assist DMs in making better decisions. Reviewing 

existing literature also helps build the analytic model and subsequently build the simulation 

model.  

2.1 Project portfolio selection under uncertainty 

In practice, nearly all organizations aim to create value by choosing and executing portfolio 

of actions. The task of selecting project portfolios is a vital and frequent activity in many 

organizations. Those portfolios of actions typically consume resources (e.g., financial, 

human, time, etc.) and are therefore critically constrained by the availability of such resources 

(Kavadias et al., 2004).  

Project selection is a strategic decision problem which is often characterized by 

multiple, conflicting, and incommensurate criteria (Liesiö et al., 2007), while the DM has to 

decide a portfolio of the most attractive alternative by taking into account different aspects 

of the projects’ values (Mavrotas et al., 2003). In other words, in a project selection problem, 

a DM allocates limited resource to a set of competing projects, considering one or more 

corporate goals or objectives (Medaglia et al., 2007). It is very typical in a project selection 

process that analysts identify a set of project proposals, estimate the value of each proposal 

and accordingly recommend the DMs to choose the combination or portfolio of projects that 

has the highest estimated value overall, subject to resource and other constraints. The choice 

of the “right” projects must also consider consequences over multiple periods and uncertain 
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outcomes (Kavadias et al., 2004). Consequently, project selection is a very complex decision-

making process since it is affected by many critical factors, e.g. raw materials availability, 

probability of technical success, market condition, and government regulations (Bard et al., 

1988). Because of such complexity, Archer & Ghasemzadeh (1999) develop an integrated 

project portfolio selection framework that separates the selection process into different stage 

with consequential objectives.  

Besides being highly complex, project portfolio selection processes also faces with 

great uncertainties. As the realizations are uncertain at the time of decision making, 

organizations must make decision based merely on ex ante estimates of the future value 

(Vilkkumaa et al., 2014). According to Lindley et al. (1979) and Lindley (1986), value 

estimates are always uncertain. Estimated values are only “true” if the business executive 

could devote unlimited time, money, and computational resources to make the expected value 

calculation. Due to uncertainty and limited resources, there are no such things as “true” value 

estimates and, consequently, there are no perfect analyses. These value estimates are thus 

subject to error. Therefore, there exists a high level of risk for the uncertainty or 

incompleteness of project information that will consequently make it harder for the DM to 

choose the correct alternatives (Wang et al., 2009). 

A “wrong” decision in portfolio selection has a two-fold effect: (i) direct costs: 

resources are spent on unsuitable projects, and (ii) opportunity costs: the organization loses 

the benefits it could have gained if the resources had been spent on more suitable projects 

(Martino, 1995). Vilkkumaa et al. (2014) present two types of outcomes of project selection 

under uncertainty: (i) suboptimal portfolio and (ii) post-decision disappointment. 

2.1.1 Suboptimal portfolios 

Suboptimal portfolios are portfolio that contains projects that do not belong to the optimal 

portfolios (Vilkkumaa et al., 2014). Due to the inherent uncertainty, some non-optimal 

projects have higher value estimates than do optimal projects, causing DMs to choose 

“wrong” projects to invest in. According to Loch & Kavadias (2002), optimal portfolios are 

difficult to define also because of the combinatorial complexity of project combinations. As 
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uncertainty is unavoidable in practice, the probability of selecting “wrong” projects, 

resulting in a suboptimal portfolio, is always larger than zero.  

2.1.2 Post-decision disappointment 

In a decision-making process, the ex-ante value estimate of a selected alternative serves as a 

reference point, to which the true value is compared when it is realized. Due to estimate 

errors, the ex-ante estimates of costs and benefits are often very different from actual ex post 

cots and benefits (see e.g. Flyvbjerg et al., 2002; Flyvbjerg, 2009; Odek 2004; Jørgensen, 

2013). Yet, in practical applications, it has been noted that the ex post observed values of 

selected projects are lower than estimated ex ante values and/or ex post costs are higher than 

ex ante estimated costs, causing the DM to experience post-decision disappointment, defined 

by Bell (1985, pp. 1) as “a psychological reaction caused by comparing the actual outcome 

of a lottery to one’s prior expectations.” Typically, post-decision disappointment manifests 

itself in terms of cost overruns and benefit underruns. 

2.1.2.1 Empirical evidence of cost overruns and benefit underruns 

Cost overruns in project selection under uncertainty are very pronounced in practice. There 

have been several empirical studies on the issue of cost overruns across different industries. 

According to Flyvbjerg et al. (2002), 90% of transportation infrastructure projects experience 

cost overruns. Odeck (2004) reveals a noticeable discrepancy between actual and estimated 

costs of road construction using data from Norwegian road construction over the years 1992-

1995. Jørgensen (2013) seeks the reason for effort overruns in software projects. The results 

from the statistical model and the experiment demonstrate that selection bias can explain cost 

overruns (e.g. effort overruns). 

In terms of geographic prevalence, cost overrun is a global phenomenon. It is observed 

across 20 nations and 5 continents (Flyvbjerg et al., 2002). Cost overrun has not decreased 

over the past 70 years, proving that development in computation capacity, information 

availability, and data accessibility does not improve cost estimation accuracy. Hence, cost 

underestimation cannot be explained by errors and seems to be best explained by strategic 

misinterpretation (i.e. deliberate lies). Moreover, cost overrun is a ubiquitous phenomenon 
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across all types of projects. Transportation infrastructure projects are not prone to cost 

underestimation than are other types of large projects (Flyvbjerg et al., 2002). 

Benefit underruns can also be observed empirically. An empirical study by Pruitt & 

Gitman (1987) concludes that capital budgeting forecasts are optimistically biased. In their 

study, Pruitt & Gitman (1987) survey executives who confirm that ex post values of large 

projects fell far below their expected values. Consequently, these executives tend to adjust 

project profitability estimates downward in an effort to compensate for the bias. A more 

recent empirical study by Brous et al. (2009) compares the forecasted and actual performance 

of each investment made by one firm from 1996 to 2001 and concludes that in its sample, 

optimism bias leads to significant discrepancies between expected and actual NPVs. 

Accordingly, 80.41% of investments made between 1996 and 2001 realize an actual NPV 

that fell short of the expected NPV. The actual NPV, on average, is less than 1/3 of the 

expected NPV. 

2.1.2.2 Causes of post-decision disappointment  

Very uncertain value estimates have two effects on project selection. Firstly, uncertain value 

estimates make it more difficult to identify the projects with highest values. Secondly, they 

make it more likely that the values of the selected projects will be systematically 

overestimated. Earlier literature has identified two main sources for post-decision 

disappointment: (i) systematic bias in the projects’ value/cost estimates, and (ii) the 

optimizer’s curse (i.e. the consequences of the optimization-based selection process). 

a. Systematic bias 

Systematic bias refers to the estimation errors that cannot be explained by random noise and 

thus these estimation errors do not average out. According to Flyvbjerg (2009), the difference 

between ex ante estimates and actual ex post values of ventures' costs and benefits are very 

pronounced for large infrastructure projects, where substantial cost underestimates are often 

combined with equally significant benefit overestimates, causing cost-benefit analyses of 

projects not only inaccurate but also systematically biased. By definition, the magnitude of 

such difference is positively correlated with the magnitude of post-decision disappointment. 
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Flyvbjerg (2009) identifies three main types of reasons that cause systematic bias in selecting 

infrastructure projects: (i) technical, (ii) psychological, and (iii) political-economic. The 

causes of systematic bias are illustrated in Figure 1. 

 

Figure 1: Causes of systematic bias (developed from Flyvbjerg, 2009) 

Technical causes of systematic bias encompass of imperfect forecasting techniques 

(e.g. honest mistakes, forecasters’ lack of experience, etc.), inadequate data, and the inherent 

unpredictability of the future values (Ascher, 1978; Flyvbjerg et al, 2002, 2005; Flyvbjerg, 

2009). Thus, technological causes can be overcome by developing better forecast 

mechanism, improving data availability, and hiring more experienced forecasters.  

Psychological causes include planning fallacy and optimism bias. Planning fallacy is 

defined by Kahneman & Tversky (1979) as a phenomenon where predictions about the time 

needed to complete a future task display an optimism bias and underestimate the time needed. 

In decision making, planning fallacy occurs when managers make decisions based on 

delusional optimism rather than on a rational weighting of gains, losses, and probabilities. 

Those managers involuntarily spin scenarios of success and oversee the possibility for errors 

and inaccuracies (Flyvbjerg et al., 2005; Flyvbjerg, 2009). Over-optimism is rooted in 
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cognitive biases, i.e. errors in the way the mind process information. Optimism bias is a 

cognitive bias that causes a person to believe that they are at a lesser risk of experiencing a 

negative event compared to others (O’Sullivan, 2015).  An empirical study of 97 investments 

by Brous et al. (2009) shows that optimism bias can results in substantial discrepancies 

between expected and actual NPVs.  

Lastly, political-economic causes include project planners’ and promoters’ deliberate 

and strategic overestimation of benefits and underestimation of costs to increase the 

likelihood that the projects (and not the competitors’ projects) are approved and funded 

(Wachs, 1989, 1990; Flyvbjerg et al., 2002, 2005; Flyvbjerg, 2009). This strategic 

misinterpretation can be traced back to agency problems and political and organizational 

pressure (i.e. competition for scarce funds or jockeying for position). This deliberate 

misinterpretation thus can be considered as lies by Bok’s (1979, pp. 14) and Cliffe et al.’s 

(2000, pp.3) definition. 

b. Optimizer’s curse 

Even if there is no systematic bias in the value/cost estimates, when projects are selected 

based on the highest value estimates, the values of selected projects are thus more likely to 

have been overestimated than underestimated. Likewise, if projects are selected based on the 

lowest estimated costs, the selected projects are very likely to incur cost overruns. (Brown, 

1974, 1978). This phenomenon is named optimizer’s curse. The optimizer’s curse therefore 

is a consequence of the optimization-based selection process and is one of the two main 

causes of the post-decision disappointment.  

Without behavioral adjustments, higher expected benefits will be associated with 

greater expected disappointments; as an alternative with a relatively high estimated value 

will have, on average, a relatively large positive error associated with it (Pearson, 1897; 

Snedecor, 1946; Harrison & March, 1984; Bell, 1985). Thus, a DM who chooses alternatives 

based only on the face value of her estimates, on average, should expect to be disappointed, 

even if the individual value estimates are conditionally unbiased. In such cases, the inherent 

uncertainty in these value estimates coupled with the optimization-based selection process 
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makes the value estimates for the suggested actions to be biased high (e.g., Miller, 1978; 

Harrison & March, 1984; Miller, 1986; Smith & Winkler, 2006; Vilkkumaa et al., 2014). In 

many aspects, this optimizer’s curse is similar to the winner’s curse (Capen et al., 1971; 

Thaler, 1992). However, the optimizer’s curse affects all kinds of intelligent decision making 

that involves attempts to optimize based on imperfect estimates.  

Research has shown that there are three parameters that influence the magnitude of the 

optimizer’s curse: (i) the signal-to-noise ratio, (ii) the number of alternative considered, (iii) 

the correlation among value estimates, and (iv) the correlation among the true values 

(Harrison & March, 1984; Smith & Winkler, 2006; Vilkkumaa et al., 2014) (See Figure 2). 

 

Figure 2: Elements that affect the magnitude of the optimizer’s curse 

(1) The signal-to-noise effect 

Any selection decision based on noisy estimates (i.e. estimates with relatively large estimate 

errors) will exhibit a structural tendency toward disappointment. Studies have shown that the 

more uncertain the estimates, the more disappointment is to be expected (Harrison & March, 

1984; Vilkkumaa et al., 2014). 

(2) The number of alternatives effect 

The expected level of disappointment is also affected by the number of alternatives 

considered. In selection of a single alternative out of many, the expected disappointment is 

positively correlated with the number of alternatives considered (Hastings et al., 1947; 
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Harter, 1969; Harrison & March, 1984; Smith & Winkler, 2006). Consequently, in portfolio 

selection, the smaller the share of selected projects out of project proposals, the larger the 

disappointment. 

(3) Correlation between value estimates effect 

In some cases, the projects’ value estimates are correlated because the projects share common 

elements, such as common probability for technical success among R&D projects, or 

common probability distribution of the amount of oil available among oil development 

projects). Smith & Winkler (2006) show that if the correlation between the value estimates 

is positive, the expected post-decision disappointment is decreased. On the contrary, if the 

correlation between the value estimates is negative, the expected post-decision 

disappointment is increased. 

(4) Correlation among true values effect 

As the true values are uncertain in practice, one can expect the true values to be positively 

correlated for the same reasons as those for value estimates (e.g. true values for alternatives 

that depend on the same probability for technical success). Harrison & March (1984) and 

Smith & Winkler (2006) show that positive correlation among the true values increases the 

magnitude of expected disappointment. Smith & Winkler (2006) also observe the combined 

effect of the correlation among value estimates and the correlation among true values and 

conclude that increasing both correlations of value estimates and true values at the same time 

leads to a net decrease in the magnitude of post-decision disappointment. 

For the sake of simplicity, the following parts of this thesis will focus on studying the 

case where there is no systematic bias in the projects’ value or cost estimates; thus, post-

decision disappointment is assumed to be entirely caused by the optimizer’s curse. 

2.2 Modeling uncertainties in portfolio selection 

Earlier literature has presented models that incorporate uncertainties into portfolio selection 

process. Among publications on the topic of project selection under uncertainty, Charnes & 

Stedry (1966) present a technique called chance-constrained programming model. In such 
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model, random variables are defined to consider uncertainty for availability of facilities that 

are needed to perform R&D projects. However, this model fails to consider other kinds of 

uncertainties. Li & Sinha (2004) propose a method for highway investment decision making 

under uncertainty that utilizes Shackle’s model for uncertainty-based project benefit analysis 

and system optimization for project selection. With the use of Shackle’s model, the 

limitations of the risk-based life-cycle cost analysis approach are overcome by using degree 

of surprise as a measure of uncertainty associated with possible outcomes of performance 

measures used in project benefit analysis (Shakhsi-Niaei et al., 2011). Li & Sinha (2004) also 

present a case study that reveals substantial differences in project selection results from using 

the proposed method and from using the current risk-based approach. 

Loch & Kavadias (2002) develop a dynamic model of resource allocation, characterize 

optimal policies in closed form, and derive qualitative decision rules for managers. Medaglia 

et al. (2007) scrutinize project selection as a stochastic multi-objective linearly-constrained 

optimization. Consequently, Medaglia et al. (2007) propose an evolutionary method with 

partially funded projects, multiple (stochastic) objectives, project interdependencies (in the 

objectives), and a linear structure for resource constraints. The basis for this method is 

posterior articulation of preferences. This method is therefore capable of approximating the 

efficient frontier from stochastically non-dominated solutions. Additionally, Medaglia et al. 

(2007) compare the method with the stochastic parameter space investigation method and 

demonstrate it with a R&D portfolio problem under uncertainty based on Monte Carlo 

simulation.  

Wey (2008) examines uncertainty of available budget, the chance of success and the 

efficient allocation of the project team in the selection of urban renewal projects with three 

techniques: integer-constrained multi-objective optimization, Monte Carlo simulation, and 

Analytic Network Process where costs are described with a probability distribution. Li (2009) 

examines budget uncertainty in highway investment decision making with a stochastic 

optimization model that addresses explicitly the inherent budget uncertainty. Li & Madanu 

(2009) introduce an uncertainty-based method for highway project level lifecycle benefit-

cost analysis and project assessment, and study project benefits in three approaches: 
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deterministic, risk-based and uncertainty-based. The three sets of estimated project benefits 

are then executed on a stochastic optimization model for project selection. Consequently, it 

is concluded that there are substantial differences when uncertainty is considered versus 

when it is not considered.   

Toppila et al. (2011) present a decision model for resources allocation to a portfolio of 

R&D projects that captures the dynamic structure of the decision problem with decision trees, 

recognizes uncertainties about sales parameters by employing interval estimates, and 

considers possible project interaction. The consideration of project interaction (e.g. mutual 

enabling, incompatibility, competition for the same scarce resources. In such context) is 

emphasized by Kavadias et al. (2004) by promoting the portfolio view in project selection. 

Subsequently, Abbassi et al. (2014) present a binary non-linear mathematical programing 

model for balancing portfolio values and their associated risks and develop a cross-entropy 

algorithm to solve the model.  

Preference programming is another approach to modeling uncertainties in portfolio 

selection. Preference programming an umbrella term for multi-criteria weighting model 

under incomplete information that accommodate incomplete preference information, provide 

dominance concepts and decision rules to generate decision recommendations, and support 

the iterative exploration of the decision maker’s preferences (Salo & Hämäläinen, 2010). 

Liesiö et al. (2007, 2008) present preference programming for robust portfolio modeling and 

project selection that extends preference programming methods into portfolio problems and 

supports project portfolio selection in the presence of multiple evaluation criteria and 

incomplete information (i.e. uncertainty). Subsequently, Liesiö & Salo (2012) develop a 

framework for scenario-based portfolio selection of investment projects that accommodates 

interactive decision support processes where the implications of additional probability and 

utility information or further risk constraints are demonstrated with regard to corresponding 

decision recommendations. 
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2.3 Bayesian modeling of uncertainties 

Bayesian modeling of uncertainties is another type of modeling uncertainty in portfolio 

selection. The concept of Bayesian process essentially is to treat the results of an analysis 

(i.e. value estimates) as uncertain and before choosing an alternative by combining the value 

estimates with prior estimates of the value using Bayes’ rule. More specifically, instead of 

making decision by taking uncertain estimates at face value, DMs explicitly model estimation 

uncertainties by associating a prior distribution with the projects’ values and a conditional 

distribution on the value estimates. As a result, posterior distribution of the projects’ true 

values given the observed value estimates can be obtained from the prior distribution and 

value estimates. Subsequently, this posterior distribution can be used to compute the projects’ 

expected true values given the value estimates. This process therefore recognizes the inherent 

uncertainty and corrects for the upward bias that is associated with the process of 

optimization by adjusting the overestimated values downward. In order to adjust those values 

properly, DMs need to know the degree of uncertainty of both the estimates and the true 

values (i.e. noise and signal, respectively). (Gelman et al., 2014). 

It may be challenging to formulate and assess sophisticated models that illustrate the 

uncertainty in true values and value estimates given by a complex analysis in practice. In 

essence, it is recommended to view the result of an analysis as being analogous to an expert 

report and handle it in the manner way as Morris (1974) suggests. In such context, the 

Bayesian methods for adjusting value estimates can be considered as a disciplined method 

for discounting the results of an analysis to avoid post-decision disappointment (e.g. Gelman 

et al., 2004). Accordingly, the Bayesian methods require the DM to consider her prior value 

estimates and the accuracy of such estimates and subsequently integrate her prior opinions 

into the analysis (Smith & Winkler, 2006). 

Earlier literature in decision analysis has also examined the various levels at which 

different DMs take into account prior information and the effects of these differences in 

decision-making such as post-decision disappointment. According to earlier behavioral 

studies, people tend to underestimate prior information about the base rate of the event when 
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facing such prediction tasks. They instead base their decisions on the most recent evidence. 

Such behavior can result in errors in predicting rare events and extreme realizations 

(Kahneman & Tversky, 1973, 1979). 

Theories suggest that if the true values and estimation errors are normally distributed, 

the Bayesian model results in the shrinkage of value estimates toward a prior mean, toward 

the mean of all value estimates, or toward some type of combination of those two (e.g. 

Gelman et al., 1995; Carlin & Louis, 2000; Smith & Winkler, 2006). Thus, Bayesian-adjusted 

estimates have lower variance than unadjusted estimates. In other words, Bayesian adjusted 

estimates are less likely to be extremely high or low. However, the expected value of a project 

portfolio selected based on Bayesian-adjusted estimates is higher than that of a portfolio 

selected based on unadjusted estimates (Vilkkumaa et al., 2014). To some extent, the 

Bayesian process of interpreting value estimates exhibits, similar characteristics to ambiguity 

aversion or uncertainty aversion (Ellsberg, 1961), in which good alternatives are penalized 

for uncertainty in their value estimates. The magnitude of the penalty is positively correlated 

with the uncertainty. Earlier research has also studied the implication of Bayesian or non-

Bayesian estimation in the context of predicting “the next big thing” (i.e. rare events such as 

breakthrough technologies, radical innovations, disruptive technologies, etc.). According to 

an empirical study by Denrell & Fang (2010), forecasters that have been able to predict some 

unusual event tend to neglect the low base rate of such events, whereby their overall accuracy 

rates are very low. On the other hand, forecasters with good overall accuracy rates tend to 

fail in predicting rare events. 

Bayesian modeling of uncertainties has long been present in financial portfolio 

optimization. Winkler & Barry (1975) introduce general models for portfolio selection and 

revision and utilize Bayesian inferential procedure to formally update probability distribution 

as ancillary information is received. Barry & Winkler (1976) present a Bayesian inferential 

model for forecasting future security prices under nonstationary parameters and compare it 

with a corresponding stationary model. Aguilar & West (2000) develop and explore Bayesian 

inference and computation in an empirical study of the dynamic factor structure of daily spot 

exchange rates for a selection of international currencies. Polson & Tew (2000) conduct an 
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empirical analysis of the S&P 500 index 1970-1996 that describes several statistical issues 

involved in quantitative approaches to portfolio, including predictive Bayesian approach 

using hierarchical models that incorporate parameter uncertainty and nonstationarity, and 

propose a technique for implementing large-scale optimal portfolio by using high-frequency 

data to obtain valuable statistical information in asset returns. Brandt et al. (2005) adopt a 

simulation approach to dynamic portfolio choice with an application to learning about return 

predictability that solve discrete-time portfolio choice problems involving non-standard 

preferences, numerous assets with arbitrary return distribution, and numerous state variables 

with potentially path-dependent or non-stationary dynamics. Soyer & Tanyeri (2006) present 

a simulation-based method to solve the multi-period portfolio selection problems with a 

Bayesian method, assuming the security returns follow multivariate random multivariate 

stochastic variance models. 

Despite the prevalence of Bayesian modeling in financial portfolio optimization, its 

implications in project portfolio optimization have not yet been thoroughly explored. Project 

portfolio optimization and financial portfolio optimization are very similar in many aspects, 

but they are also fundamentally distinctive. Project portfolio selection, to some extent, is 

more complex than financial portfolio selection. According to Vilkkumaa et al. (2014), 

project portfolio selection differs from financial portfolio optimization in three major aspects: 

(i) the value of a project cannot be observed at the time of decision making as in the case of 

financial portfolio optimization, where market prices can be easily observed from the market; 

(ii) project portfolio selection decisions are either selected or rejected, while in financial 

portfolio optimization, an investor can invest any fractional amount of resources in any 

security; and (iii) there is more interdependence in project portfolio selection due to the 

sequel nature of some projects, in financial portfolio selection, although there is some 

correlation in security prices, decisions to invest in securities are logically independent to 

each other. As a consequence, Bayesian modeling of uncertainties in project selection is 

worth studying in more detail. 

In the context of project portfolio selection under uncertainty, Bayesian modeling of 

uncertainty help DMs (i) increase the expected value of future realizations of the selected 
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projects, (ii) increase the number of selected projects that belong to the ex post optimal 

portfolio, and (iii) decrease the expected post-decision disappointment (Vilkkumaa et al., 

2014) (See Figure 3). Thus, a Bayesian DM will have a higher number of selected projects 

that belong to the optimal portfolio and a more realistic expectation about the performance 

of her selected projects, whereas a non-Bayesian DM is more likely to select a suboptimal 

portfolio with overestimated value.  

 

 

 

Figure 3: Benefits of Bayesian modeling of estimation uncertainty in project portfolio 

selection 

2.3.1 Maximization of the expected portfolio value 

The Bayesian modeling of estimate uncertainty are widely used in optimization problems in 

portfolio selection. The aims of such optimization problems include: (i) to maximize the 

expected performance of selected projects or (ii) to maximize the expected number of 

selected projects that belong to the truly optimal portfolio. Vilkkumaa et al. (2014) conclude 

that under very general assumptions, selecting projects based on these Bayesian estimates 

will yield at least as much value as the portfolio which maximizes the sum of value estimates. 

Nonetheless, if the use of Bayesian estimates leads to the selection of a different portfolio 

other than that of the use of value estimates, the expected value of the selected projects based 

on Bayesian estimates is strictly better (Vilkkumaa et al., 2014). 
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2.3.2 Mitigation of post-decision disappointment 

The Bayesian methods are widely recognized as an effective way to overcome the post-

decision disappointment (e.g. Nickerson & Boyd, 1980; Harrison & March, 1984; Lindley, 

1986; Gelman et al., 1995; Carlin & Louis, 2000; Smith & Winkler, 2006; Vilkkumaa et al., 

2014, 2015).  As the Bayesian-adjusted estimates will shrink, both upwards and downwards, 

the expectations from the initial estimates toward the prior mean, the Bayesian-adjusted 

estimates tend to yield more conservative information (i.e. less overestimated information) 

about the value of the selected portfolio. Vilkkumaa et al. (2014) state that, even without 

specific assumptions about the distribution of the true values and the value estimates given a 

true value, or about the problem constraints, using Bayesian-adjusted estimates will eliminate 

the expected discrepancy between the true values and estimated values (i.e. post-decision 

disappointment) of the chosen portfolio. 

Accordingly, in the selected portfolio resulting from using Bayesian-adjusted 

estimates, the expected difference between the true value (i.e. realized ex post value) and the 

Bayesian-adjusted estimates is zero. In individual cases of each chosen project, the Bayesian 

estimates help alleviate post-decision disappointment, as it is less probable to have extreme 

Bayesian estimates than extreme non-Bayesian estimates (see e.g. Smith and Winkler, 2006; 

Vilkkumaa et al., 2014).   
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3 Research Methodology  

This chapter will present the methods of the research by explaining what type of data are 

analyzed and how, where, and when they are collected for the study. Furthermore, this 

chapter will also discuss briefly data analysis methods. 

3.1 Overview of methodology 

Amaratunga et al. (2002) classify research methodologies into two categories: quantitative 

and qualitative. Accordingly, the quantitative method relies primarily on numerical data, 

utilizes standardized measurements to test hypotheses and discover distinguishing 

characteristics, or empirical barriers. On the other hand, the qualitative method aims to 

describe, examine, and construct an understanding of culture, social behavior, or other similar 

phenomena. The qualitative method also takes into account the differences between 

individuals (Amaratunga et al., 2002). 

Consequently, a mixed method is appropriate for this thesis as the phenomenon being 

studied in this thesis includes both quantitative and qualitative aspects. On the one hand, it 

concerns about the statistical and analytical differences of a Bayesian and a non-Bayesian 

DM. On the other hand, it also concerns about the empirical relevance of such differences in 

a real-world environment, which involves more social and human factors that would be easier 

to analyze with a qualitative approach. Therefore, a mixed method of both quantitative and 

qualitative would be the best approach to such complex phenomenon. 

The quantitative approach of this thesis will be carried out with a mathematical model. 

The mathematical model encompasses of an analytic model and simulation. The results from 

the analytic models will be used as the basis for Monte Carlo simulations, and the Monte 

Carlo simulations serve as a confirmation and validation for the results derived from the 

analytic model. In addition, the Monte Carlo simulation also allows the author to examine 

aspects of the model for which analytic results could not be derived. 
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The qualitative approach of this thesis will be employed in the empirical evidence part. 

As the portfolio selection decisions are influenced by many sociological factors, such as 

industry characteristics, corporate cultures, organizational structures (centralized decision 

making vs. decentralized decision making), DMs’ preferences, etc., it would be appropriate 

to adopt a qualitative approach. Accordingly, this thesis will analyze the characteristics of 

the decision-making environment of the pharmaceutical industry, hypothesize the different 

outcomes of Bayesian and non-Bayesian investment decisions based on theoretical findings. 

Consequently, this thesis will study the characteristics of DMs in this industry and compare 

their observed investment outcomes with the theoretical outcomes. 

3.2 Quantitative method 

The quantitative method in this thesis is executed in the form of a mathematical model. The 

mathematical research methodology is by far the most popular methodology (Wacker, 1998). 

According to Dym (2004, pp. 6), “mathematical modeling is a principled activity that has 

both principles behind it and methods that can be successfully applied”. The principles are 

either overarching or meta-principles phrased as questions about the objectives, intentions 

and purposes of mathematical modeling. The principles are outlined and visually illustrated 

in Figure 4, which lists the questions asked in a principled approach to building a model 

relate to the development of that model. 
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Figure 4: A first-order view of mathematical modeling that shows how the questions asked 

in a principled approach to building a model relate to the development of that model 

(developed from Carson and Cobelli, 2013). 

3.2.1 Analytic model 

Analytic models are a subset of mathematical models. By definition, analytic models are 

mathematical models that have a closed form solution, meaning that the solution to the 

equations used to describe changes in a system can be expressed as a mathematical analytic 

function. Gershenfeld (1999, pp. 7) defines analytic models as those that “you can at least in 

theory write down with nothing more than a pencil and a piece of paper, hopefully arriving 

at an explicit closed-form solution”. Analytic models are of great significance because of 

their power: where they are appropriate, it can be possible to deduce everything there is to 

know about a system (Gershenfeld, 1999).  

In the beginning of the mathematical part of this thesis, we will define the variables, 

parameters and assumptions. Most of these variables, parameters and assumptions are based 

on those in existing literature. Subsequently, this thesis will utilize widely known 
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mathematical and statistical formulae and transformations to convert those formulae into a 

final form where conclusions that will answer the research questions can be made. The 

general formulae used in this thesis include, but not limited to, calculations of variance, 

covariance, correlation, the inverse Mill’s ratio, etc. 

In a nutshell, the analytic model in this thesis aims to provide answers to the research 

questions. In addition, the analytic model also provides an analytic framework based on 

which the Monte Carlo simulation model is built.  

3.2.2 Monte Carlo simulation model 

When some certain regression assumptions need to be validated, Monte Carlo simulation can 

be a way out. Monte Carlo simulation is a commonly used technique in the probabilistic 

analysis. In an essence, it is a numerical experimentation technique to obtain the statistics 

of the output variables of a system computational model, given the statistics of the input 

(Mahadevan, 1997). Mooney (1997) explains that when the population of interest is 

simulated, from the so-called pseudo population, repeated random samples are drawn. The 

statistic under study is computed under each pseudo-sample, and its sampling distribution is 

examined for insights into its behavior (Mooney, 1997). 

Monte Carlo simulation method has been used for two primary purposes: (i) validation 

of the analytic results, and (ii) solution to the large complex systems when analytic 

approximations are not easy to make (Mahadevan, 1997). Mooney (1997) states that Monte 

Carlo simulation method can offer an alternative to analytic mathematics for understanding 

a statistic’s sampling distribution and assessing its behavior in random samples. In terms of 

mechanism, Monte Carlo simulation operates by using random samples from known 

populations of simulated data to observe a statistic’s behavior (Mooney, 1997). The basic 

concept of Monte Carlo simulation is relatively straightforward: if a statistic’s sampling 

distribution is the density function of the value it could take on in a given population, then 

its estimate is the relative frequency distribution of the values of that statistic that were 

actually observed in many samples drawn from that population (Mooney, 1997). As it usually 

is unfeasible for social scientists to sample actual data multiple times, they use artificially 
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generated data that resemble the real thing in applicable ways. The recent availability of high-

speed computers makes this approach now widely practical. 

In this thesis, the Monte Carlo simulation model is built on the basis of findings from 

the analytic model. It aims to simulate the result of selecting an unlimited number of projects 

out of 1000 alternatives to invest in based on some predefined threshold. Subsequently, it is 

run 1000 times. More specifically, the Monte Carlo simulation in this thesis is conducted on 

Microsoft Excel software, using random number function to draw values from normal 

distribution and using one-way data table to run it 1000 times. 

3.3 Qualitative method 

Liamputtong & Ezzy (2005) argue that in addition to quantitative research method of 

numbers and statistics, there need to be other research methods that are able to explore the 

complexity of human behavior. In such context, qualitative research method is the solution. 

It is the embodiment of the means of eliciting evidence from diverse individuals, population 

groups, and contexts. Owning to its flexibility and fluidity, qualitative research is appropriate 

when researchers seek to understand the meanings, interpretation, and subjective experiences 

of individuals. While the modeling part of this thesis is heavily quantitative, the empirical 

part highly involves numerous human and social factors. Thus, the choice of adopting a 

qualitative method is but appropriate. 

Specifically, this thesis examines the characteristics of the decision-making environment 

of the pharmaceutical industry using earlier literature and industry reports. From such 

understanding, this thesis will devise possible outcomes with regard to whether the DM is a 

Bayesian or a non-Bayesian DM. Subsequently, we will observe empirically the outcomes 

of R&D investments in the pharmaceutical industry, reflect them to the theoretical outcomes, 

and categorize them in terms of Bayesianess. We will then analyze the decision-making 

behavior of DMs in this industry also in terms of Bayesianess and, finally, conclude whether 

or not the Bayesianess of the DMs is reflected in their investment outcomes. 
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The pharmaceutical industry is chosen to study in this thesis due to its complex decision-

making environment. Drug R&D investment decisions are affected by many social and 

political variables and thus is expected to display characteristics of decision-making 

environment with low estimation accuracy. According to our hypotheses, the low estimation 

accuracy will amplify the differences between a Bayesian and a non-Bayesian DM, therefore 

making it easier for the author to categorize DMs in this industry based on their Bayesianess.  
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4 Mathematical Model 

In this section, the author will build a mathematical model to investigate the fundamental 

differences in terms of decision-making behaviors between a Bayesian and a non-Bayesian 

DM, and the outcomes with respect to different parameters values of the model. The 

mathematical model will provide both analytic results and simulated results. 

4.1 Model description 

Consider a DM who wants to select a subset or portfolio out of m project proposals 𝑖 =

 1, … , 𝑚 . The selected portfolio is represented by the binary decision variable 𝑧 =

 [𝑧1, … 𝑧𝑚] such that 𝑧𝑖 = 1 if and only if project 𝑖 is selected. The set of portfolios satisfying 

relevant feasibility constraints (related to, e.g., budget or mutual exclusiveness) is denoted 

by  𝑍. The true values of the selected projects are denoted by 𝑣 =  [𝑣1, … , 𝑣𝑚]’. These values, 

which may represent projects’ net present value, return on investment or multivariate utility, 

are modelled as a realization of a vector-valued random variable 𝑉 = [𝑉1, … , 𝑉𝑚]′~𝑓(𝑣) 

where the joint distribution 𝑓(𝑣) is assumed to be known. 

If the values 𝑣 were known to the DM, she would choose the optimal portfolio 𝑧(𝑣) 

by solving the optimization problem2 (Vilkkumaa et al., 2014) 

    𝑧(𝑣) = arg max
z∈ℤ

𝑧𝑣.      (1) 

However, when making decision in reality, the DM does not know the true values 𝑣 =

 [𝑣1, … , 𝑣𝑚]’ but rather the value estimates 𝑣𝐸 = [𝑣1
𝐸 , … 𝑣𝑚

𝐸 ]’ of the true value 𝑣. These value 

estimates are assumed to be a realization of random variable (𝑉𝐸|𝑣)~𝑓(𝑣𝐸|𝑣) with a known 

distribution function 𝑓(𝑣𝐸|𝑣). Here, we assume that there is no systematic bias in these 

estimates. Technically, this is done by assuming that the estimates are conditionally unbiased 

so that 

                                                                 
2 If there are multiple solutions to the maximization problem, 𝑧(∙) is selected at random 

among these solutions. 
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𝔼[𝑉𝑖
𝐸|𝑉 = 𝑣] = ∫ 𝑣𝑖

𝐸𝑓(𝑣𝑖
𝐸|𝑣)𝑑𝑣𝑖

𝐸 = 𝑣𝑖
∞

−∞
.   (2) 

If the DM were to choose projects based on these value estimates 𝑣𝐸 , she would 

subsequently choose portfolio 𝑧(𝑣𝐸) which satisfies the optimization problem 

     𝑧(𝑣𝐸) = arg max
z∈ℤ

𝑧𝑣𝐸 .   (3) 

To study the average performance of the selection rule in (3) above, we define 

estimator 𝑉𝐸 = [𝑉1
𝐸 , … , 𝑉𝑚

𝐸] (random variable) without conditioning on the true value 𝑣 . 

Then, 𝑉𝑖
𝐸~𝑓(𝑣𝐸) = ∫ 𝑓(𝑣𝐸|𝑣)𝑓(𝑣)𝑑𝑣

∞

−∞
. 

It can be shown that the true value of portfolio 𝑧(𝑣𝐸) selected based on value estimates 

𝑣𝐸 is expected to be lower than its estimated value. This result is formalized in Proposition 

1, which was originally presented and proved by Vilkkumaa et al. (2014). 

Proposition 1 (Vilkkumaa et al., 2014, pp. 774). Let 𝑉𝐸 be a conditionally unbiased 

estimator of V. Then 

𝔼[𝑧(𝑉𝐸)𝑉 − 𝑧(𝑉𝐸)𝑉𝐸] ≤ 0, 

where 𝑧(𝑉𝐸) fulfills (2). Moreover, if ℙ(𝑧(𝑉) ≠ 𝑧(𝑉𝐸)) > 0, where 𝑧(𝑉) fulfills (1), then 

𝔼[𝑧(𝑉𝐸)𝑉 − 𝑧(𝑉𝐸)𝑉𝐸] < 0.   

Proposition 1 indicates that the value of the chosen portfolio 𝑧(𝑣𝐸) will not be more 

than its estimated value on average. Moreover, if there exists a probability of selecting non-

optimal projects, which is highly likely as the estimates are not perfectly accurate, the 

expected discrepancy between the realized and estimated portfolio values is strictly less than 

zero. Even if the value estimates are unbiased, the portfolio value will be systematically 

overestimated so that the DM will experience post-decision disappointment. The magnitude 

of this post-decision disappointment is positively correlated with the uncertainty in value 

estimates. (Smith & Winkler, 2006; Vilkkumaa et al., 2014). 
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To mitigate post-decision disappointment, we can revise value estimates with Bayesian 

methods, i.e. by forming the posterior distribution 𝑓(𝑣|𝑣𝐸) for project values given the 

estimates. The posterior distribution can be obtained from the prior distribution 𝑓(𝑣) and the 

likelihood distribution 𝑓(𝑣𝐸|𝑣)  by using the Bayes’ rule: 𝑓(𝑣|𝑣𝐸) ∝ 𝑓(𝑣)𝑓(𝑣𝐸|𝑣) . The 

posterior distribution can then be used to determine the expected value 𝔼[𝑉𝑖|𝑉
𝐸 = 𝑣𝐸] for 

project 𝑖 given the value estimates, or the probability ℙ(𝑧𝑖(𝑉) = 1|𝑉𝐸 = 𝑣𝐸) with which the 

project 𝑖 belongs to the optimal portfolio. These expected values are the projects’ Bayesian 

estimates 𝑣𝐵 = [𝑣1
𝐵, … , 𝑣𝑚

𝐵 ]′ , which can be computed from the observed estimates 𝑣𝐸 

through 

𝑣𝑖
𝐵 = 𝔼[𝑉𝑖|𝑉

𝐸 = 𝑣𝐸] = ∫ 𝑣𝑖𝑓(𝑣𝑖|𝑣𝐸)𝑑𝑣𝑖
∞

−∞
.   (4) 

The Bayesian estimate for project 𝑖  is thus the mean of the posterior distribution 

𝑓(𝑣𝑖|𝑣
𝐸) . The portfolio that maximizes the expected value is now determined by the 

optimization problem 

𝑧(𝑣𝐵) = arg max
𝑧∈ℤ

𝔼[𝑉|𝑉𝐸 = 𝑣𝐸] = arg max
𝑧∈ℤ

𝑧𝑣𝐵.  (5)  

Bayesian estimates shift expectations from the initial estimates 𝑣𝑖
𝐸 toward prior value 

information 𝑓(𝑣), more specifically, toward the prior mean 𝜇𝑖. Consequently, these estimates 

will yield more conservative and less overestimated forecasts about the true value of the 

selected portfolio. To study the average performance of the selection rule in (5) above, we 

define Bayesian estimator 𝑉𝐵 = [𝑉1
𝐵, … , 𝑉𝑚

𝐵] (random variable), which is obtained from (4) 

by replacing the observed estimates 𝑣𝐸 with the random variable 𝑉𝐸 as follows: 

𝑉𝑖
𝐵 = 𝔼[𝑉𝑖|𝑉

𝐸] = ∫ 𝑣𝑖𝑓(𝑣𝑖|𝑉𝐸)𝑑𝑣𝑖
∞

−∞
.   (6) 

Proposition 2 below shows that Bayesian estimates eliminate the expected post-

decision disappointment. This result is also presented and proved by Vilkkumaa et al. (2014). 

The result is formalized in Proposition 2. 
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Proportion 2 (Originally as Proposition 3 in Vilkkumaa at al., 2014, pp. 775). Let 𝑉, 

𝑉𝐸, 𝑉𝐵 and 𝑧(. ) be as in Proposition 1, then 

𝔼[𝑧(𝑣𝐵)𝑉 − 𝑧(𝑣𝐵)𝑣𝐵|𝑉𝐸 = 𝑣𝐸] = 0 

for all 𝑣𝐸, and thus 𝔼[𝑧(𝑉𝐵)𝑉 − 𝑧(𝑉𝐵)𝑉𝐵] = 0. 

Additionally, Vilkkumaa et al. (2014) also prove that selected portfolios resulting from 

Bayesian estimates will yield at least as much value as the portfolio that maximizes the sum 

of value estimates 𝑣𝐸. This result is formalized in Proposition 3. 

Proposition 3 (Originally as Proposition 2 in Vilkkumaa et al., 2014, pp. 775). Let 𝑉𝐸, 

𝑉 and 𝑧(𝑉𝐸) be as in Proposition 1, then 

𝔼[𝑧(𝑉𝐸)𝑉 − 𝑧(𝑉𝐵)𝑉] ≤ 0, 

where 𝑉𝐵 is given by (6) and 𝑧(𝑉𝐵) satisfies (5). Moreover, if there exists a possibility that 

𝑧(𝑣𝐸)  ≠ 𝑧(𝑣𝐵), then 𝔼[𝑧(𝑣𝐸)𝑉 − 𝑧(𝑣𝐵)𝑉] < 0 and therefore 𝔼[𝑧(𝑉𝐸)𝑉 − 𝑧(𝑉𝐵)𝑉] < 0. 

As from (5), 𝑧(𝑣𝐵) maximizes the expected portfolio performance, this is an intuitive 

outcome. However, if there exists a possibility that the use of Bayesian estimates results in 

the selection of a different portfolio than that of the use of the value estimate 𝑣𝐸, the expected 

value of the portfolio based on Bayesian estimates is strictly higher. 

4.2 Analytic results for normally distributed values and estimate errors 

From this point forward, we will assume that the projects’ true and estimated values are 

normally distributed in order to obtain analytic results. The assumptions are as follows: 

Values:  𝑉𝑖 = 𝜇𝑖 + 𝐸𝑖, with 𝐸𝑖~𝑁(0, 𝜎𝑖
2). Thus, for all 𝑉: 𝑉~𝑁(μ, 𝜎2). 

Estimates: (𝑉𝑖
𝐸|𝑉𝑖 = 𝑣𝑖) = 𝑣𝑖 + Δ𝑖, with Δ𝑖~𝑁(0, 𝜏𝑖

2). Thus, for all 𝑉𝐸, 

   𝑉𝐸~𝑁(μ, 𝜏2 + 𝜎2). 
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This setting is illustrated in Figure 5. 

 

Figure 5: Illustration of value and estimate distributions 

Under these assumptions, it can be proven that the Bayesian estimates also follow a 

normal distribution with the same mean but smaller variance than that of true values. All 

proofs can be found in Appendix A. 

Proposition 4. Let 𝑉 , 𝑉𝐸 , and 𝑉𝐵  be as in Proposition 2 and assume that project 

values and value estimates follow the normal distribution as above, then we have 

 Bayesian estimates:  𝑉𝐵~𝑁(μ,
𝜎4

𝜎2+𝜏2), and 

 The closed form expression for Bayesian estimates: 

𝑣𝑖
𝐵 = 𝛼𝑖𝑣𝑖

𝐸 + (1 − 𝛼𝑖)𝜇𝑖, 𝑤ℎ𝑒𝑟𝑒 𝛼𝑖 = (1 +
𝜏𝑖

2

𝜎𝑖
2)

−1

. 

Figure 6 illustrates the normal distribution of true values, value estimates and 

Bayesian-adjusted estimates. The parameters are set as follows: 𝜇 = −0.5, 𝜎 = 0.3, 𝜏 = 0.4.  
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Figure 6: Illustration of value distribution, estimate distribution and Bayesian-adjusted 

estimate distribution. 

By definition, if the values and estimation errors are normally distributed, the Bayesian 

estimates shift expectations from the initial estimates towards prior mean 𝜇𝑖. This shift is 

clearly demonstrated in Figure 6. Proposition 4 is consistent with the findings from previous 

studies on Bayesian estimate, as it proves that the variance of Bayesian-adjusted estimates is 

lower than that of unadjusted estimates. Alternatively speaking, Bayesian-adjusted estimates 

are less likely to be extremely high or low. 

In the following parts, we will examine the case in which all projects with estimated 

values above some predetermined threshold 𝜗 are selected, i.e. 𝑧𝐸 = 1 if and only if 𝑣𝑖
𝐸 > 𝜗 

where 𝜗 is a predetermined threshold. Without loss of generality, we will assume that the 

threshold value is zero (𝜗 = 0) if not specified otherwise. The threshold value of zero can be 

easily observed in practice, as most investors will invest in portfolios that yield positive 

returns. In addition, to get results that do not depend on the number of proposals, we will 

assume that this number approaches infinity. In that case, the shares of funded projects based 

-0.5

0

0.5

1

1.5

2

2.5

-1.75 -1.25 -0.75 -0.25 0.25 0.75

True values Value estimates Bayesian estimates

Threshold 𝜗 = 0 



Mathematical Model 42  

 

 

 

on true values, value estimates, and Bayesian estimates are 𝑃𝑟(𝑉 ≥ 𝜗), 𝑃𝑟(𝑉𝐸 ≥ 𝜗), and 

𝑃𝑟(𝑉𝐵 ≥ 𝜗) respectively. 

When there are fewer than 50% of the project proposals with truly positive ex post 

performance (e.g, truly positive NPVs), the mean of the three normal distributions is smaller 

than zero (𝜇 < 0). In this case, the proportion of funded projects is larger than optimal when 

estimates are used, and smaller than optimal when Bayesian estimates are used. On the 

contrary, if there are more than 50% of the project proposals with truly positive performance, 

then the mean 𝜇 > 0. In this case, the proportion of funded projects is larger than optimal 

when Bayesian estimates are used, and smaller than optimal when estimates are used. This 

result is formalized in Proposition 5. All proofs can be found in Appendix A. 

Proposition 5. Let 𝑉, 𝑉𝐸, and 𝑉𝐵 be as in Proposition 2 and 𝜗 = 0. 

 If 𝜇 < 0, then 𝑃𝑟(𝑉𝐵 > 0) < 𝑃𝑟(𝑉 > 0) < 𝑃𝑟(𝑉𝐸 > 0), and 

 if 𝜇 > 0, then 𝑃𝑟(𝑉𝐵 > 0) > 𝑃𝑟(𝑉 > 0) > 𝑃𝑟(𝑉𝐸 > 0), 

where 𝑉𝐵is given by (6). Moreover, when the threshold is equal to the mean (i.e., 𝜇 = 0), 

then 𝑃𝑟(𝑉𝐵 > 0) = 𝑃𝑟(𝑉 > 0) = 𝑃𝑟(𝑉𝐸 > 0) = 0.5. 

Proposition 5 states that if 𝜇 < 0, the proportion of funded projects of a Bayesian DM 

(i.e. 𝑃𝑟(𝑉𝐵 > 0)) is lower than the proportion of funded projects of a non-Bayesian DM (i.e. 

𝑃𝑟(𝑉𝐸 > 0)). This relation can also be observed from Figure 6. As the variance of the 

Bayesian distribution is lower than that of estimate distribution, if the threshold is to the right 

of the mean, the proportion of funded projects in Bayesian distribution will be lower than 

that of estimate distribution because of the fat-tailed distribution of the estimates. On the 

contrary, if 𝜇 > 0, the proportion of funded projects of a Bayesian DM is higher than the 

proportion of funded projects of a non-Bayesian DM. This relation can be observed from 

Figure 7 with the following set of parameters: 𝜇 = 0.5, 𝜎 = 0.3, 𝜏 = 0.4. 
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Figure 7: Proportions of funded projects when 𝜇 > 0 

The standard deviation 𝜎 of the normal distribution of true values is called “signal” 

and the standard deviation of the estimate error 𝜏 of the true values is called “noise”. The 

signal-to-noise ratio is thus defined as 
𝜎

𝜏
. With the same distribution of true values (i.e. 

“signal” is fixed), the absolute values of the differences among the proportions of funded 

projects using true values, value estimates, and Bayesian estimates decrease in 
𝜎

𝜏
. Simply put, 

the higher the signal-to-noise ratio (i.e., the more accurate the estimates), the less significant 

the differences between the proportions of funded projects are. This result is independent of 

the value of prior mean 𝜇. This result is formalized in Proposition 6 and visualized in Figure 

8 (with 𝜇 < 0) and Figure 9 (with 𝜇 > 0). All proofs can be found in Appendix A. 

Proposition 6.  Let 𝑉, 𝑉𝐸, and 𝑉𝐵 be as in Proposition 2, then 

|𝑃𝑟(𝑉 > 0) − 𝑃𝑟(𝑉𝐵 > 0)|, |𝑃𝑟(𝑉𝐸 > 0) − 𝑃𝑟(𝑉 > 0)|, and |𝑃𝑟(𝑉𝐸 > 0) −

𝑃𝑟(𝑉𝐵 > 0)| will decrease in 
𝜎

𝜏
 with all 𝜇. 

The differences among the proportions of funded projects resulting from true values, 

value estimates and Bayesian estimates decreases in the signal-to-noise ratio with all values 

of prior mean 𝜇. In other words, the differences are more pronounced in noisy environments. 
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Figure 8: Proportion of funded projects at different signal-to-noise ratios 

(𝜇 = −5, 𝜎 = 4, 𝜗 = 0) 

 
Figure 9: Proportion of funded projects at different signal-to-noise ratios 

(𝜇 = 5, 𝜎 = 4, 𝜗 = 0) 

 

Furthermore, when other parameters remain constant, the differences among the 

Bayesian, optimal, and non-Bayesian proportions of funded projects also vary based on the 

value of prior mean. Figure 10 illustrates the proportion of funded projects in relation to 

prior mean. 
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Figure 10: Proportion of funded projects at different values of prior means 𝜇 

(𝜎 = 2, 𝜏 = 4, 𝜗 = 0) 

Given that the variances and the threshold remain constant, it can be observed that the 

proportions of funded projects are essentially the cumulative normal distribution functions 

of 𝑉, 𝑉𝐸 , and 𝑉𝐵 with the moving prior mean being the variable and the threshold being the 

mean. When prior mean is smaller than the threshold, the proportion of funded projects 

resulting from value estimates is higher than optimal and the proportion of funded projects 

resulting from Bayesian estimates is lower than optimal. However, in cases when the 

proportion of projects with truly positive performance is higher than 50%, the proportion of 

funded projects resulting from Bayesian estimates is higher than optimal and the proportion 

of funded project resulting from value estimates is lower than optimal. For instance, with the 

parameter set as in Figure 10, if the prior mean 𝜇 = −2, it would be optimal to fund 15.87% 

of the projects. A Bayesian DM in such situation would only fund approximately 1.27% of 

the projects, while a non-Bayesian DM would fund 32.74% of the projects. 

With the same assumptions as in Proposition 5, the expected value of the portfolio 

resulting from Bayesian estimates is higher than the expected value of the portfolio resulting 

from value estimates. All proofs can be found in Appendix A. 
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Proposition 7. Let 𝑉𝐸 , 𝑉, and 𝑉𝐵as in Proposition 2 and 𝜗 = 0. 

 If 𝜇 < 0, then 𝔼[𝑉|𝑉𝐵 > 0] ≥ 𝔼[𝑉|𝑉𝐸 > 0], and 

 if 𝜇 > 0, then 𝔼[𝑉|𝑉𝐵 > 0] ≤ 𝔼[𝑉|𝑉𝐸 > 0]. 

The equality holds when 𝜇 = 0 or 𝜏 = 0. 

Proposition 7 indicates that with the assumptions above, the expected ex post 

performance of funded projects of a Bayesian DM is higher than that of a non-Bayesian DM 

when fewer than 50% of the project proposals have truly positive performance. On the other 

hand, the expected ex post performance of funded projects of a Bayesian DM is lower than 

that of a non-Bayesian DM when more than 50% of the project proposals have truly positive 

performance. These relations can be observed in Figure 11 and Figure 12.  

 

Figure 11: Expected value of selected projects at different estimate errors 𝜏 

(𝜇 = −3, 𝜗 = 0, 𝜎 = 3) 
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Figure 12: Expected value of selected projects at different estimate errors τ 

(𝜇 = 3, 𝜗 = 0, 𝜎 = 3) 

 

It can be observed in both Figure 11 (with 𝜇 < 0) and Figure 12 (with 𝜇 > 0) that the 

higher the estimate error 𝜏 is, the more pronounced the difference between the expected 

values of selected projects resulting from value estimates and Bayesian estimates is. In other 

words, the difference increases in noise (i.e. the noisier the environment, the higher the 

difference), and thus, decreases in signal-to-noise ratio. This phenomenon is formalized in 

Proposition 8 and can also be observed in Figure 11 and Figure 12. All proofs can be found 

in Appendix A. 

Proposition 8. Let 𝑉, 𝑉𝐸, and 𝑉𝐵 be as in Proposition 2, then 

|𝔼[𝑉|𝑉𝐵 > 0] − 𝔼[𝑉|𝑉𝐸 > 0]| decreases in 
𝜎

𝜏
 with all 𝜇.  

Accordingly, the higher the estimate errors, the more pronounced the difference 

between the expected value. Conversely, when the estimate error is low (i.e. the signal-to-

noise ratio is high), there is a smaller difference between the expected values of Bayesian 

and non-Bayesian funded projects. This is quite intuitive, as the higher the estimate errors 
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consistent with previous finding that the higher the signal-to-noise ratio, the lower the 

expected post-decision disappointment (see e.g. Harrison & March, 1984; Vilkkumaa et al., 

2014), as it can be observed from Figure 11 and Figure 12 that both of the expected values 

decrease in noise (i.e. increase in signal-to-noise). 

4.3 Summary of analytic results 

Proposition 4 shows that Bayesian-adjusted estimates have a lower variance than unadjusted 

estimates, indicating that Bayesian-adjusted estimates are less likely to be extremely high or 

low. Propositions 5 and 7 show that, although the probability of funded projects of a Bayesian 

DM is lower than that of a non-Bayesian DM, these funded projects of the Bayesian DM 

yield higher ex post performance. Proposition 6 indicates that the differences among the 

proportions of funded projects based on Bayesian estimates/ true values/ non-Bayesian 

estimates decrease in signal-to-noise. Proposition 8 indicates that the difference between the 

expected values of the selected portfolios based on Bayesian and non-Bayesian estimates 

decreases in signal-to-noise. Proposition 6 and 8 collectively indicate that the differences 

between Bayesian and non-Bayesian estimates (and their differences compared to the optimal 

one) are more pronounced in noisy environments. 

4.4 Simulation Results 

In this section, the analytic results from the previous sections are demonstrated and validated 

with Monte Carlo simulation. The simulation also allows the author to obtain some new 

results that are too complex to derive from the mathematical model analytically. The 

simulation is done on Microsoft Excel for portfolio selection from 1000 alternatives. The 

result of such selection is subsequently simulated 1000 times. 

4.4.1 Distributions of true values, value estimates and Bayesian estimates 

The Monte Carlo simulation results for portfolio selection from 1000 alternatives are 

summarized in Table 1 and illustrated in Figure 13. The set of parameters used is (𝜇 =

−5, 𝜎 = 5, 𝜏 = 10). 
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Table 1: Summary of simulated results of value distribution of 1000 alternatives 

  True values Estimates Bayesian estimates 

Analytic results 
Average -5.0 -5.0 -5.0 

Standard deviation 5.0 11.180340 2.236068 

Simulated results 
Average -4.80345 -5.06209 -5.01242 

Standard deviation 4.974985 11.22323 2.244646 

 

 

Figure 13: Simulated true value, value estimate, and Bayesian estimate distributions 

As we can observe from Figure 13, the variance of Bayesian-adjusted estimates is 

smaller than the variance of unadjusted estimates. The simulated distributions resemble those 

of the analytic model. Therefore, it again proves that Bayesian-adjusted estimates are less 

likely to be extremely high or low. 

4.4.2 Proportion of funded projects 

The simulation results for the proportion of funded projects resulting from Bayesian 

estimates, true values, and value estimates are summarized in Table 2. The set of parameters 

used for this simulation is: (𝜇 = −5, 𝜎 = 5, 𝜏 = 3, 𝜗 = 0) . The difference among the 
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proportions of funded projects when funding decisions are based on Bayesian-adjusted 

estimates/ true values/ unadjusted estimates can be visually observed from Figure 14.  

Table 2: Summary of simulated results of proportions of funded projects 

 True values Estimates Bayesian estimates 

Analytic results 15.87% 19.56% 12.18% 

Simulated average 15.8% 19.6% 12.1% 

Standard deviation 1.15% 1.22% 1.02% 

 

 

Figure 14: Number of funded projects out of 1000 proposals (Summary from 1000 rounds 

of Monte Carlo  simulation) 

Accordingly, the number of funded projects when funding decisions are made based 

on Bayesian estimates are smaller than optimal, while the number of funded projects based 

on unadjusted estimates are higher than optimal. These results coincide with the analytic 

results from Proposition 5. Figure 15 and Figure 16 summarize the simulated results for 

proportions of funded projects at different 𝜇 and 𝜏. The results coincide with our analytic 

results, that if the prior mean 𝜇 > 0, the roles of Bayesian DMs and non-Bayesian DMs are 

reversed, and the noisier the estimates are, the more significant the difference between 

Bayesian and non-Bayesian DMs, and between them and the optimal one. 
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Figure 15: Simulated proportion of funded projects at different prior means 𝜇 

(𝜎 = 5, 𝜏 = 10, 𝜗 = 0) 

 

Figure 16: Simulated proportion of funded projects at different estimate errors 𝜏 

(𝜇 = −5, 𝜎 = 5, 𝜗 = 0) 
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4.4.3 Average NPV of funded projects 

The average ex post performance of funded projects when using different types of estimates 

to make funding decisions can also be simulated with Monte Carlo simulation. The set of 

parameters used is as follows: (𝜇 = −5, 𝜎 = 5, 𝜏 = 3, 𝜗 = 0). The results are summarized in 

Table 3 and visualized in Figure 17.  

Table 3: Summary of simulated results of expected performance of funded projects 

 True values Estimates Bayesian estimates 

Analytic results 2.625676 1.054875 2.116305 

Average 2.622747 1.048881 2.109116 

Standard deviation 0.178999 0.235639 0.291269 

 

 

Figure 17: Simulated average performance of funded projects (Summary from 1000 rounds 

of Monte Carlo Simulation) 

It can be seen from the simulated results that although using Bayesian-adjusted 

estimates will result in a lower proportion of funded projects, Bayesian funded projects will 

yield higher average ex post performance than that of unadjusted estimates. The average ex 

post performance of funded projects resulting from Bayesian decisions is also closer to the 

optimal ex post performance. This perfectly reflects the analytic findings in Proposition 6. 
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4.4.4 Funded projects that result in loss 

This part presents the simulated results on funded projects that result in loss. There are two 

main aspects that are examined: (i) proportion of funded projects that result in loss and (ii) 

average loss among funded projects that result in loss. 

4.4.4.1 Proportion of funded projects that result in loss 

Firstly, to maintain the generalizability, “loss” is defined as occasions when the ex post 

performance is lower than the threshold. Thus, if the threshold is zero, “loss” would mean 

having a negative return; this is the most popular definition of loss. The simulated average 

proportion of funded projects that result in loss (selection out of 1000 proposals, simulated 

1000 rounds) is summary in Table 4 and visualized in Figure 18. The set of parameters used 

in this simulation is (𝜇 = −5, 𝜎 = 5, 𝜏 = 3, 𝜗 = 0). 

Table 4: Summary of simulated results of proportion of funded projects that result in loss 

 Estimates Bayesian estimates 

Average 7.62% 3.11% 

Standard deviation 0.84% 0.54% 

 

 

Figure 18: Simulated proportion of funded projects that result in loss  
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As can be easily observed from the proportion of funded projects that result in loss in 

the case when 𝜇 < 0, which usually is case in practice, the Bayesian-adjusted estimates not 

only improve the average performance of funded projects, they also alleviate the possibility 

of having funded projects with lower ex post values than the threshold. 

This result is unsurprising, as Bayesian model of estimate uncertainties shrinks the 

value estimates toward prior mean, and in this case prior mean is larger than the threshold, 

the probability of having a project funded with Bayesian estimates that yields a lower ex post 

performance than the threshold is alleviated. In other words, assuming the threshold is larger 

than the prior mean, if a Bayesian estimate is larger than the threshold, the probability of its 

corresponding true value being less than the threshold is lessened. 

Figure 19 and Figure 20 summarize the simulated results for proportion of funded 

projects at different prior means 𝜇 and estimate errors 𝜏. When the prior mean 𝜇 is larger than 

zero, the proportion of funded projects that results in loss of a Bayesian DM is higher than 

that of a non-Bayesian DM. And the higher the estimate error 𝜏, the more significant the 

difference between the results of a Bayesian and a non-Bayesian DM. 

 

Figure 19: Simulated results for proportion of funded projects that result in loss at different 

prior means 𝜇 (𝜎 = 10, 𝜏 = 5, 𝜗 = 0) 
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Figure 20: Simulated results for proportion of funded projects results in loss at different 

estimate error 𝜏 (𝜇 = −5, 𝜎 = 5, 𝜗 = 0) 

4.4.4.2 Average loss among funded projects that result in loss 

Using the same method as the method Smith & Winkler (2006) use to calculate the average 

post-decision disappointment, we can calculate the simulated results for average loss among 

𝑛 funded projects that result in loss as follows: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑜𝑠𝑠 =
∑

𝑣𝑗 − 𝜗
𝜎  𝑛

𝑗=1

𝑛
=

∑ 𝑣𝑗 − 𝜗 𝑛
𝑗=1

𝑛𝜎
 

Accordingly, the magnitude of loss for each of the selected projects that results in 

loss is presented as percentage of true values’ standard deviation. The simulated results are 

summarized in Table 5 and visualized in Figure 21. The set of parameters used in this 

simulation is: (𝜇 = −5, 𝜎 = 5, 𝜏 = 3, 𝜗 = 0) 

Table 5: Summary of simulated results of average loss among funded projects that result in 

loss 

 Estimates Bayesian estimates 

Average -42.01% -34.76% 

Standard deviation 3.92% 5.17% 
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Figure 21: Simulated results for average loss as percentage of 𝜎 among funded projects 

that result in loss  

Figure 21 illustrates the simulated average loss among funded projects that result in 

loss as percentage of the true values’ standard deviation from a Bayesian portfolio and a non-

Bayesian portfolio. The simulated result shows that when 𝜇 < 0, not only the Bayesian 

portfolio has smaller proportion of funded projects that result in loss, those lost projects have 

lower average loss than that of a non-Bayesian portfolio. Bayesian estimates therefore 

decrease the proportion of funded projects that result in loss and simultaneously decrease the 

average loss among those projects when 𝜇 < 0. 
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Figure 22: Simulated results for average loss at different prior means 𝜇 

( 𝜎 = 5, 𝜏 = 10, 𝜗 = 0) 

 

 
 

Figure 23: Simulated results for average loss at different estimate errors 𝜏  

(𝜇 = −5 , 𝜎 = 5, 𝜗 = 0) 
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Figure 22 and Figure 23 summarize the simulated results for average loss at different 

prior means μ and estimate errors 𝜏. Accordingly, when 𝜇 > 0, the relation between the 

average loss of a Bayesian DM and that of a non-Bayesian DM is reversed. Accordingly, 

when 𝜇 > 0, the projects funded by a Bayesian DM will have higher probability of resulting 

in loss and have higher average loss. And the higher the estimate error τ is (i.e. the lower the 

estimation accuracy is), the higher the difference between the losses is. These simulated 

results summarized in Figure 18 to Figure 23 validate our Hypothesis 3. 

4.4.5 Post-decision surprise 

Post-decision surprise indicates the difference between (Bayesian/non-Bayesian) value 

estimates and their corresponding true values. Negative post-decision surprise is called post-

decision disappointment. Post-decision disappointment occurs when an ex post value is 

smaller than its estimate. To calculate post-decision surprise, we use Smith & Winkler (2006) 

method and calculate the difference between (Bayesian/non-Bayesian) estimates and their 

corresponding true values among the funded projects as percentage of the true values’ 

standard deviation. The method aims to maintain the comparability between different value 

distributions thus it calculates post-decision surprise in a relative term. More specifically: 

Post-decision surprise =
𝑣𝑖−𝑣𝑖

𝐸

𝜎
 

 If the result is negative, post-decision surprise is post-decision disappointment. On 

the other hand, if the result is positive, it would be a positive surprise. The results for post-

decision surprise for both Bayesian and non-Bayesian estimates are summarized in Table 6. 

Figure 24 visualizes the post-decision surprise for Bayesian estimates and non-Bayesian 

estimates. The set of parameters used in this simulation are (𝜇 = −5, 𝜎 = 5, 𝜏 = 1, 𝜗 = 0). 

 

Table 6: Summary of simulation results of post-decision surprise 

 Estimates Bayesian estimates 

Average -5.89% 0.03% 

Standard deviation 1.59% 1.62% 
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Figure 24: Simulated post-decision surprise (as percentage of true values’ standard 

deviation) (Summary of 1000 rounds of Monte Carlo simulation) 

 Funding decisions based on non-Bayesian estimates, on average, result in a post-

decision disappointment. This result coincides with earlier literature (e.g. Harrison & March, 

1984; Vilkkumaa et al., 2014). On the contrary, funding decisions based on Bayesian 

estimates result in, on average, zero surprise, as reflected in the simulated results. Such results 

can be explained by the definition of Bayesian modeling of estimate uncertainties. 

Accordingly, Bayesian modeling shrinks value estimates toward the prior mean thus 

eliminates the effects of estimate errors when averaged over a large number of decision 

processes. 

4.4.6 Funded projects that result in high gain 

As from Proposition 4, Bayesian-adjusted estimates have smaller variance than unadjusted 

estimates. They are thus less likely to be extremely high or low. Consequently, while 

Bayesian-adjusted estimates help eliminate post-decision disappointment, they also have 

lower the probability of identifying projects with extremely high gain. Table 7 summarizes 

the simulation results of the percentage of the 50 projects among the truly best 5% get funded. 

Accordingly, the average percentage of Bayesian projects that yield ex post values higher 
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post values higher than 95-percentile value is 93.84%. Figure 25 only visualizes the 

frequency distribution of the percentages of the 50 truly best projects get funded based on 

Bayesian estimates from 1000 rounds of simulation. The set of parameters used in this 

simulation are (𝜇 = −5, 𝜎 = 5, 𝜏 = 5, 𝜗 = 0). 

Table 7: Summary of simulation results of percentage of the 50 projects among the truly 

best 5% get funded 

 Estimates Bayesian estimates 

Average 93.84% 84.16% 

Standard deviation 3.54% 5.73% 

 

 

Figure 25: Percentage of the 50 projects of the truly best 5% get funded 
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Table 8: Summary of simulated results for percenatge of the 10 projects among the truly 

best 1% get funded 

 Estimates Bayesian estimates 

Average 93.94% 72.40% 

Standard deviation 8.05% 14.44% 

 

 

Figure 26: Simulated results for the percentage of the 10 projects of the truly best 1% get 

funded  

The simulated results show that, although using Bayesian-adjusted estimates alleviates 

post-decision disappointment, it also decreases the probability of selecting projects with high 

gains. The simulated results validate our Hypothesis 4. 
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result in high gains (truly best 5%) when more than 50% of the project proposals have truly 
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truly best projects get funded). However, when the estimate error 𝜏 is large in relation to the 

distance between the threshold and the prior mean, a Bayesian DM has higher proportion of 

funded projects that results in high gains. 

 

Figure 27: Simulated results for proportions of funded projects resulting in high gains 

when 𝜇 > 0 at different estimate errors 𝜏 (𝜇 = 5, 𝜎 = 5, 𝜗 = 0) 

4.4.7 Expected portfolio values 

Thus far, we have found that when there are fewer than 50% of project proposals with truly 

positive performance, a Bayesian DM funds fewer but on average better projects. The results 

are reversed when there are more than 50% of project proposals with truly positive 

performance. Therefore, it is interesting to study whether the benefit of funding better 

projects on average offsets the harm of funded fewer projects by comparing the overall 

portfolio values. Portfolio values of a Bayesian and a non-Bayesian DM are the products of 

the proportions of funded projects and the expected values of funded projects: Pr(𝑉𝐵 > 0) ∙

𝔼[𝑉|𝑉𝐵 > 0]  and Pr(𝑉𝐸 > 0) ∙ 𝔼[𝑉|𝑉𝐸 > 0] . Based on our simulations, the expected 

portfolio value of a Bayesian DM is higher than that of a non-Bayesian DM in both scenario 

both when 𝜇 > 0 and when 𝜇 < 0. The simulated results are demonstrated in Figure 28 and 

Figure 29. 
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Figure 28: Simulated results for expected portfolio values when 𝜇 < 0 at different estimate 

errors 𝜏 (𝜇 = −5, 𝜎 = 5, 𝜗 = 0) 

 

 
 

Figure 29: Simulated results for expected portfolio values when 𝜇 > 0 at different estimate 

errors 𝜏 (𝜇 = 5, 𝜎 = 5, 𝜗 = 0) 
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4.4.8 Summary of simulated results 

The simulated results testify our previous analytic results. Moreover, it provides further 

insights on the differences between a Bayesian and a non-Bayesian DM in terms of the 

proportion of projects results in loss, the proportion of projects that results in high gains, and 

how these proportions change at different levels of estimation accuracy and the proportion 

of projects with truly positive performance. 

 More specifically, when fewer than 50% of the project proposals have truly positive 

performance, projects funded by a Bayesian DM have lower probability of incurring loss 

than those funded by a non-Bayesian DM. The average loss incurred among Bayesian 

projects is also lower than that among non-Bayesian projects. Subsequently, it is also 

observed that the expected post-decision disappointment among non-Bayesian projects is 

higher than that among Bayesian projects, which is approximately zero. When more than 

50% of the project proposals have truly positive performance, the relation between a 

Bayesian DM and a non-Bayesian DM is reversed. 

 Furthermore, when fewer than 50% of the project proposals have truly positive 

performance, projects funded by a Bayesian DM have lower probability of incurring loss 

than those funded by a non-Bayesian DM. When more than 50% of the project proposals 

have truly positive performance, the proportions of funded projects that results in high gains 

for a Bayesian and a non-Bayesian DM have two possible outcomes: (i) they can be equal at 

approximately the optimal amount (i.e. 100% of the truly best 5% and 1% projects get 

funded) if the estimate error is small in relation to the distance between the threshold and the 

prior mean, or (ii) a Bayesian DM will have a higher proportion of funded projects that results 

in high gains if the estimate error is high in relation to the distance between the threshold and 

the mean. The expected portfolio value of a Bayesian DM is higher than that of a non-

Bayesian DM in both scenarios. The analytic and simulated results are summarized in Table 

9. 
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Table 9: Summary of analytic and simulated results 

 

 𝝁 < 𝟎 𝝁 > 𝟎 

Bayesian 

- Underinvested 

- Higher average performance 

- Lower probability of loss 

- Lower probability of high 

gains 

- Higher expected portfolio 

value 

- Overinvested 

- Lower average performance 

- Higher probability of loss 

- Equal/higher probability of 

high gain 

- Higher expected portfolio 

value 

Non-

Bayesian 

- Overinvested 

- Lower average performance 

- Higher probability of loss 

- Higher probability of high 

gains 

- Lower expected portfolio 

value 

- Underinvested 

- Higher average performance 

- Lower probably of loss 

- Equal/lower probability of 

high gains 

- Lower expected portfolio 

value 

 

The analytic and simulated results in Table 9 outline the differences between a Bayesian 

and a non-Bayesian DM in both scenarios when there are more and fewer than 50% of the 

project proposals with truly positive performance. However, in practice, it is highly unlikely 

to have more than 50% of the projects proposals with truly positive performance. Even in 

such cases, due to the scarcity of resources, the DMs will increase the threshold 𝜗 above the 

prior mean 𝜇 . In such cases, the results for 𝜇 < 0 still holds true. Owing to its broader 

practical applications, the following parts will only examine the case when 𝜇 < 0.  
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5 Empirical Evidence 

This chapter serves to explore the characteristics of the decision-making environment of the 

pharmaceutical industry using earlier literature and industry reports. From such 

understanding, we will devise possible theoretical outcomes with regard to whether the DM 

is a Bayesian or a non-Bayesian DM. Subsequently, will observe empirically the outcomes 

of R&D investments in the pharmaceutical industry, reflect them to the theoretical outcomes, 

and categorize them in terms of Bayesianess. We will then analyze the decision-making 

behavior of DMs in this industry also in terms of Bayesianess and, finally, conclude whether 

or not the Bayesianess of the DMs is reflected in their investment outcomes. 

5.1 Description of project portfolio selection in the pharmaceutical 

industry 

Project portfolio selection criteria in the pharmaceutical industry are usually financial 

measurements, such as expected net present value (ENPV). The constraints in optimizing 

pharmaceutical portfolio are great in number, ranging from the portfolio level (e.g. budgets), 

to the individual component level (e.g. regulatory, payers) (Antonijevic, 2014). Furthermore, 

as the development of new drugs is long, costly, and risky, and R&D investment decisions 

are of high strategic significance (Miller, 2005). 

The pressure on the pharmaceutical industry to improve the cost effectiveness, 

productivity, and quality of their product development has been increasing in the past few 

years. Such increasing pressure stems from the increasing cost and diminishing returns. The 

cause of such issue is the drug developers’ false focus on the cost and speed of development. 

The most important parameter, the Probability of Success (PoS), has been overlooked 

(Antoijevic, 2014). With such behavior, drugs were developed as if the success was pending. 

Companies not only assume that their drug will be succeed, but they also assume their 

competitors will succeed with certainty (Antoijevic, 2014). 



Empirical Evidence 67  

 

 

 

Besides, there are numerous challenges that pharmaceutical companies need to face 

with, ranging from regulatory challenges (e.g. new safety and efficacy requirement that will 

result in additional clinical trials), delay of submission, increased difficulty to get regulatory 

approval, to challenges caused by increasing costs of drug development. In addition, new 

drugs face more competition and possess less flexibility for extending patent times 

(Antoijevic, 2014).  

The pharmaceutical industry counts on innovations to overcome such challenges. There 

are two main types of innovation: radical innovations and incremental innovation. A radical 

innovation generates major changes in technology, including the discovery of new 

knowledge, substantial technical risk, time and cost, while an incremental innovation 

generates minor changes to existing technology involving small advances based on an 

established foundation of knowledge (Roussel et al., 1991). In the case of the pharmaceutical 

industry, new drugs would be considered as radical innovations. More precisely, these new 

drugs are defined as “new Chemical Entities (NCEs), […] which, in most cases, represent 

significant therapeutic advances” (Cool, 1985, pp. 250). They are also defined by the Food 

and Drug Administration (FDA) as “those products representing new chemical structure 

never previously available to treat a particular disease” (Pharmaceutical Manufacturers 

Association, 1989, pp. 22). On the other hand, incremental innovations, according to FDA 

criteria, are drug enhancements which involve combinations of existing drugs, new dosage 

forms, new indication, and formula changes. Similar definitions of radical and incremental 

definition in pharmaceutical industry are also coined by Abernathy & Clark (1985), Banbury 

& Mitchell (1995), Freeman (1982), and Roussel et al. (1991). 

The degree of radicalness in the output of R&D activities, in general, can vary 

significantly. Unlike mechanical assembled product industries (e.g., disk drives, mainframe 

computers, automobiles, etc.) which have complex systems and numerous components, the 

pharmaceutical industry’s core product concentrates on a molecule (Henderson, 1994). 

Consequently, the degree of radicalness of drug innovation is a function of new technological 

and scientific embedded in the drug (Abernathy & Clark, 1985).  
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5.2 Decision-making environment in the pharmaceutical industry 

In this part, the characteristics of the decision-making environment in the pharmaceutical 

industry will be analyzed and reflected through the lens of project portfolio selection theory. 

According to our analyses, decision-making environment in the pharmaceutical industry has 

low estimation accuracy and high threshold. 

5.2.1 Low estimation accuracy 

Based on existing literature and industry reports, the pharmaceutical industry displays 

characteristics of a decision-making environment with low estimate accuracy. The 

characteristics include: (i) lack of quantitative support, (ii) decentralization of decision-

making processes, (iii) information asymmetry, and (iv) high degree of disruption. 

5.2.1.1 Lack of quantitative support for decision making 

Although the need for a more quantitative decision making based on measurable parameters 

has been recognized in this increasingly challenging environment, the current process of 

decision making in most pharmaceutical companies seriously lacks quantitative support. 

According to Antoijevic (2014), it is due to three main reasons: (i) decision analysis is not 

sufficiently utilized, (ii) inadequate use of statistical resources, and (iii) lack of utilization of 

modeling and simulation. The pharmaceutical industry is, in fact, far behind other major 

industries in terms of utilization of quantitative methods as a basis of decision-making 

process. One possible explanation for a lack of scientific approach in decision making in this 

industry is that in the past, getting marketing approvals was less challenging while revenues 

for approved drugs were enormous. Consequently, the profits in those pharmaceutical 

companies were large, and DMs (e.g. executives) did not have the incentive to change in their 

decision-making process. Another frequently mentioned explanation is that pharmaceutical 

industry executives are not quantitative people, hence they are unfamiliar with and reluctant 

to base decision on quantitative method or simulation outputs. (Antoijevic, 2014). Figure 30 

summarizes the causes of such lack of quantitative decision-making method. 
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Figure 30: Causes of the lack of quantitative project portfolio selection decision making in 

the pharmaceutical industry (Antoijevic, 2014) 

As statistical resources are not sufficiently utilized, the estimate errors in this 

environment is expected to be high. This observation is validated by Kola & Landis (2004) 

in their empirical study. 

5.2.1.2 Decentralization of decision-making processes 

The process of decision making is “siloed” within individual departments and is handled by 

only executive members of these departments (Antoijevic, 2014). Thomas (2011) reveals that 

such decentralization creates a misalignment between the firms’ strategies and the managers’ 

preference, or even conflicts of interest, as the decentralization distances the decision-making 

points from the strategic headquarters of the organizations. Such strategic misalignment 

increases the estimate errors, or even potential systematic bias caused by strategic 

misinterpretation, in the decision-making environment and thus decreases the estimation 

accuracy. 
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5.2.1.3 Information asymmetry 

Schlapp et al. (2015) suggest that there exist information asymmetry and the lack/absence of 

information sharing during product evaluation across different departments. The 

decentralized organizational structure also creates a favorable environment for information 

asymmetry, as it extends the information flow back and forth. This information asymmetry 

reflects a low signal-to-noise ratio, in which the estimate errors are significant compared to 

the standard deviation of the true values (Antoijevic, 2014). 

5.2.1.4 High degree of disruption 

According to Christensen et al. (2009), the pharmaceutical industry is highly disruptive. In 

such disruptive environment, the ability to accurately forecast future performance of a given 

project is highly limited. As a consequence, estimate errors are expected to be high. 

5.2.2 High threshold 

Besides having a noisy decision-making environment, the pharmaceutical industry also has 

a relatively low approval rate in R&D portfolio investment decision (Kola & Landis, 2004, 

Antoijevic, 2014). This means that very few projects are approved. Hence, one can assume 

the threshold is high compared to the prior mean. 

The overall characteristics of the decision-making environment and their 

corresponding reflections to portfolio selection theory are illustrated below. Figure 31 also 

shows the corresponding theoretical investment outcomes of Bayesian and non-Bayesian 

DMs according to our theoretical findings.  
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Figure 31: Reflection of decision-making environment characteristics to project portfolio 

selection theory and possible investment outcomes of the pharmaceutical industry 

According to our findings in Chapter Four, having a decision-making environment with 

low estimation accuracy and a high threshold, the pharmaceutical industry will amplify the 

differences in outcomes between a Bayesian and a non-Bayesian DM. Accordingly, if a DM 

is Bayesian, she is expected to fund a narrow portfolio which results in a relatively high ex 

post return, low post-decision disappointment, and low probability of incurring loss. On the 

other hand, if a DM is a non-Bayesian DM, she is expected to fund a broad portfolio which 

results in a relatively low ex post return, high post-decision disappointment, and high 

probability of incurring loss. In order to validate these theoretical findings empirically, we 

will examine the characteristics of DMs in pharmaceutical industry, observe the outcomes of 

their investment decisions, and reflect these empirical outcomes to our theoretical outcomes 

in Chapter Four. Then, we will analyze the decision-making behavior of DMs in this industry 

and conclude whether or not their Bayesianess is reflected in their investment outcomes. 

5.2.3 Observed outcomes of the R&D investments in the pharmaceutical industry 

The outcomes of R&D investments in the pharmaceutical industry have been well 

documented in earlier literature and industry reports. Accordingly, R&D investments in the 

pharmaceutical industry result in (i) overly broad product selection, (ii) high attrition rate and 

low success rate, and (iii) low productivity and significant inefficiency.   
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5.2.3.1 Overly broad product selection 

Schlapp et al. (2015) state that pharmaceutical companies often have overly broad product 

portfolios. Thomas (2011) suggests that one of the causes for such overly broad project 

selection is the decentralized decision-making process pharmaceutical firms. The overly 

broad product portfolio represents the high proportion of funded projects.  

5.2.3.2 High attrition rate and low success rate 

Although R&D investment decisions usually result in overly broad product selection, the rate 

of projects being terminated before hitting the market is noticeably high (Kola & Landis, 

2004). According to Kola & Landis (2004), only one in nine compounds makes it through 

developments and gets approved by the European and/or the US regulatory authority. 

Roughly one in four compounds fails at the registration stage. Those failed compounds incur 

a significant loss in terms of both monetary (discovery and development costs) and 

opportunity costs (averagely 12 years 10 months). Some of the causes that are identified 

include costs overruns and commercial failure (Kola & Landis, 2004). 

The alarmingly high attrition rate and low success rate indicates a high proportion 

funded projects that are terminated midway due to their unprofitable prospects. Among the 

projects that make it to the end, there is still a significantly low success rate. These 

phenomena prove that the proportion of funded projects that result in loss in this industry is 

extremely high. The low success rate and low productivity also project the high post-decision 

disappointment.  

5.2.3.3 Low productivity and significant inefficiency 

Grabowski (1997) presents an empirical study proving that for most marketed drugs, NPV 

revenue is less than average development costs. Kola & Landis (2004) also discuss about the 

low productivity and the acute inefficiency of R&D investment in the pharmaceutical 

industry; specifically, after the high attrition rate, there are only three out of ten drugs that 

made it to the market recover the original investment made in them. The low productivity 

and high inefficiency from R&D investment characterize the low ex post returns. 
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5.2.4 Comparing the observed outcomes with the theoretical outcomes 

These observed outcomes perfectly coincide with the expected outcomes based on our 

theoretical findings in Chapter Four for a non-Bayesian DM in Figure 31. In other words, 

the analytic results of the outcomes of investment decisions based on non-Bayesian estimates 

with a low signal-to-noise ratio is well-reflected in the outcomes of R&D investment 

decisions in pharmaceutical industry. 

5.2.5 Decision-making behavior of DMs in the pharmaceutical industry 

DMs in the pharmaceutical industry display quintessential non-Bayesian characteristics. 

Antoijevic (2014) reveals that DMs in the pharmaceutical industry make their decisions 

merely based on “gut feel” and many DMs in the pharmaceutical industry are against 

adopting a more quantitative approach to decision making. Besides implying high estimate 

errors, such random decision-making process ignore analytic data, specifically the base rate 

(i.e. prior mean). This characteristic perfectly corresponds with the outcomes observed from 

the R&D investments in the pharmaceutical industry. 

5.3 Recommended strategies to improve the performance of R&D 

investments in the pharmaceutical industry 

Earlier research recommends numerous strategies to improve the performance of R&D 

investments in the pharmaceutical industry. Those strategies can be classified into two 

categories: (i) creating a more favorable decision-making environment (e.g. increasing the 

signal-to-noise ratio, increasing success rate, etc.) and (ii) adopting a more Bayesian 

approach when making R&D investment decisions. 

5.3.1 Create a more favorable decision-making environment 

Our analytic results show that in an environment with lower estimate error (i.e. higher 

estimate accuracy/ higher signal-to-noise ratio), the differences a Bayesian and a non-

Bayesian strategy, and the differences between each of them and the optimal strategy are 

smaller. Thus, in order to alleviate the gaps between both strategies with the optimal one, we 



Empirical Evidence 74  

 

 

 

recommend creating a more favorable environment for decision-making processes (i.e. 

increase the signal-to-noise ratio). 

Increasing the signal-to-noise ratio can significantly increase the performance of 

project portfolio selection decisions. Increasing the signal-to-noise ratio can be done by 

increasing the transparency and democracy of the decision-making process. A recent study 

of Held et al. (2009) of eight big pharma firms shows that those companies have attempted 

to increase the transparency and democracy in the product emulation process and 

consequently they outperform their competitors across multiple metrics of R&D 

productivity. Flyvbjerg (2009) also states that increasing transparency and democracy in 

decision making will improve average performance of the investment decisions. Besides, 

such transparency and democracy also help avoid political-economic issues (i.e. agency cost 

and organizational pressure) with can further bias the estimates. 

Increasing the signal-to-noise ratio can also be done by increasing information 

availability for DMs. Thomas (2011) suggests that increasing information sharing will lower 

information asymmetry and consequently have a positive impact on the outcomes of R&D 

investments in the pharmaceutical industry. Kola & Landis (2004) and Thomas (2011) 

demonstrate that pharmaceutical companies with better information sharing and lighter 

organizational structures will yield better R&D performances than those with redundant 

information flows. More specifically to the pharmaceutical industry, Kola & Landis (2004) 

suggest improving pre-clinical testing. Such practice would improve the signal-to-noise ratio 

as it allows companies to observe and collect more information about the products before 

making decisions. 

Miller (2005) proposes five techniques to improve R&D performance in the 

pharmaceutical industry. Among these five, there are four techniques that will increase the 

signal-to-noise ratio: (i) clinical trial simulation: estimate efficacy and tolerability profiles 

before clinical data are available, (ii) option pricing: can show the value of different clinical 

program designs, sequencing of studies and stop decisions, (iii) investment appraisal: 

compare ENVP of different product profiles and study design, (iv) threshold analysis: 
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understand development drug profile requirements given partial data. Such analyses will 

continually provide more information about the process and consequently increase the signal-

to-noise ratio. Additionally, it also increases the availability of information and analytic data 

to the DMs. 

5.3.2 Adopting a Bayesian approach 

The analytic results in Chapter Four prove that investments made based on Bayesian 

estimates, on average, yield higher ex post returns than those of non-Bayesian estimates. 

These results coincide with many other literature on R&D investment decisions in the 

pharmaceutical industry. More specifically, this section will focus on the two main types of 

recommendations regarding the use of Bayesian modeling: (i) increase the use of 

pharmacoeconomic analysis and (ii) evaluate more conservatively (as a Bayesian DM 

would). 

5.3.2.1 Use pharmacoeconomic analysis 

Owing to the significance of R&D investment decisions in the pharmaceutical industry, 

pharmacoeconomics has an essential role in decision-making during drug research and 

development.  Pharmacoeconomics can enhance the efficiency of R&D resource use and 

consequently increase commercial success significantly (Miller, 2005). Pharmacoeconomics 

analysis reflects the use of Bayesian modeling of estimate uncertainty that is enabled by 

information availability and estimate accuracy. The Bayesian analytic framework is proven 

to be well-suited to pharmacoeconomics in R&D since it explicitly acknowledges the purpose 

of data from clinical trials and experiments is to update knowledge (O’Hagan & Luce, 2003; 

Miller, 2005). As the Bayesian modeling of estimate uncertainty enables the synthesis of 

different information, it is of great value in the drug development process as pieces of 

information about the drug come from various sources, at various points of time, and in 

various forms; such synthesis of information is highly beneficial for DMs to stay informed 

about their value estimates. Thus, Bayesian methods offer DMs in pharmaceutical industry 

the efficiency of information and allow them to use such information in a systematic manner 

(O’Hagan & Stevens, 2001, 2002; Briggs, 2003; O’Hagan & Luce, 2003; Shih, 2003; Miller, 

2005). Generally, the Bayesian analytic model of estimate uncertainty can be utilized in 
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practice to aid drug R&D decision-making processes. 

Besides Bayesian modeling of estimate uncertainties, Miller (2005) suggests the use of 

other forms of pharmacoeconomic analysis in earlier stage of the R&D process, such as value 

of information analysis (i.e. assisting risk management by quantifying uncertainty and 

assessing the economic viability of gathering further info on the development drug). Such 

analysis also reflects the Bayesian approach in taking into account the base rate and prior 

information with a more quantitative method than the gut feel method that most 

pharmaceutical companies currently employ. In one way or another, it is proven that adopting 

a more Bayesian approach is an effective way for DMs in the pharmaceutical industry to 

overcome the current unproductivity of R&D activities. 

5.3.2.2 Evaluate more conservatively 

Earlier literature also encourages a more conservative evaluation process. Kola and Landis 

(2004) states that the pressure to improve R&D productivity calls for a stricter evaluation of 

all elements that influence R&D process; thus, companies that invest in a smaller product 

portfolio yield higher results than those with expansive product portfolios. Thomas (2011) 

claims that increase product range standardization would also reduce cost overruns and 

increase profits. These recommendations and their corresponding outcomes reflect a more 

Bayesian approach to making project portfolio investment decisions; as it is proven in 

Chapter Four that a Bayesian DM would invest in a smaller portion of project proposals yet 

yield a higher average return. 

In a nutshell, adopting a more Bayesian approach is proven to be an effective way to 

solve the current inefficiency, unproductivity, and unprofitability of R&D investment in the 

pharmaceutical industry. It is observed that companies who adopt a Bayesian decision-

making strategy will increase their average ex post return and outperform those who do not. 

The recommended strategies from earlier literature and their observed outcomes perfectly 

coincide with and well reflect the analytic results from Chapter Four. 
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6 Managerial Recommendations 

Based on our findings, in practice, using Bayesian estimates as a basis for project portfolio 

selection results in higher average project value and eliminates expected post-decision 

disappointment. On the other hand, using non-Bayesian estimates would help ensure that 

truly best projects get funded. The less accurate the projects’ value estimates, the greater the 

differences between Bayesian and non-Bayesian investment decision outcomes. However, if 

the estimates are highly accurate, Bayesian and non-Bayesian decisions make no difference. 

Thus, the extent to which a DM should adopt a Bayesian state of mind on depends on 

estimation accuracy and the DM’s preferences, i.e., whether (s)he finds it important to have 

better projects on average or to seek big wins. Thus, this chapter of the thesis will propose 

managerial recommendations based on only two parameters: (i) the accuracy of the estimate, 

and (ii) the preferences of the DMs. 

6.1 Preferences of the decision makers 

In cases where fewer than 50% of the total project proposals have truly positive performance, 

or more generally, the threshold is higher than the prior mean, it is proven that adopting a 

Bayesian approach will improve the average performance of the selected projects. However, 

adopting a Bayesian approach will lower than chance of successfully predicting “the next big 

thing” (e.g. breakthroughs in technology). This characteristic is demonstrated with the 

simulation results in Chapter Four and in an empirical study by Denrell & Fang (2010). 

Denrell & Fang (2010) state that “success [in predicting the next big thing] is a sign of poor 

judgement” as most successful forecasters of the next breakthroughs tend to ignore the base 

rate and make decisions arbitrarily. 

The Propositions in Chapter Four also prove in cases where more than 50% of the total 

project proposals have truly positive performance (i.e. threshold is lower than mean), the 

results mentioned in the previous paragraph will be reversed. In such cases where the 

expected performance of the alternatives is higher than the threshold, adopting a non-

Bayesian approach results in a smaller proportion of funded projects and improves the 
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average performance of those funded projects. However, the probability of having such 

favorable project proposals is relatively low in practice. Additionally, due to the scarcity of 

resources (e.g. financial resources, human resources, etc.), it is highly unlikely that DMs will 

set the threshold lower than the prior mean. 

Thus, in practice, when a DM aims to maximize average ex post performance, it is 

recommended to adopt a Bayesian approach, as it is proven that investment decisions based 

on Bayesian estimates will yield higher expected performance and lower post-decision 

disappointment. However, in cases where it is crucial to capture big wins, a non-Bayesian 

approach is recommended. Vilkkumaa et al. (2015) suggest a hybrid approach that allows 

DMs to utilize the strengths of both Bayesian and non-Bayesian approach. Accordingly, DMs 

are recommended to start with an overly broad portfolio (as a non-Bayesian DM would) and 

subsequently, when more information becomes available, abandon underperformed projects. 

The latter part of this approach displays Bayesian characteristics, as it takes into account prior 

information. Abandoning underperformed projects also results in a narrower portfolio, which 

is also a Bayesian characteristic. 

The pharmaceutical industry is a quintessential example of environments where the 

non-Bayesian approach showcases its strengths. As the drug development process is long and 

highly unpredictable, and the threshold is extremely high, it is crucial for DMs in this industry 

to capture big wins. In such case, the choice of adopting a non-Bayesian approach can be 

justified. 

6.2 Estimation accuracy 

The estimation accuracy in our portfolio selection model is represented by the signal-to-noise 

ratio which reflects the magnitude of the standard deviation of the true values in relation to 

the estimate errors. It is proven that estimation accuracy is an element that amplifies the 

differences between a Bayesian and a non-Bayesian investment strategy. The lower the 

estimation accuracy is (i.e. the lower the signal-to-noise ratio is, the noisier the estimates are), 

the more pronounced the differences are. Thus, in environments with high estimation 



Managerial Recommendations 79  

 

 

 

accuracy, the differences between a Bayesian and a non-Bayesian investment strategies are 

subtler. 

As a consequence, the Bayesianess of the optimal strategy depends on the decision-

making environment and the preferences of the DMs. In noisy environments, the Bayesianess 

versus non-Bayesianess are more distinct in nature. More explicitly, if the DMs prefer to 

maximize average performance in a noisy environment, they should adopt a comprehensively 

Bayesian approach. However, if they want to have a higher probability of capturing the next 

big things, they should adopt an approach with a high degree of non-Bayesianess. 

On the contrary, the distinction of Bayesianess versus non-Bayesianess is less 

pronounced in environments with higher estimation accuracy. As estimates are accurate, the 

estimate error 𝜏 is insignificant. Thus, the posterior distribution of Bayesian estimates is 

significantly similar to those of the non-Bayesian estimates. The optimal strategies in “quiet” 

environments with regard to different set of priorities are also slightly different. In a “quiet” 

environment, the optimal strategy for maximizing average performance display low degree 

of Bayesianess while the optimal strategy for capturing more big wins display low degree of 

non-Bayesianess. 
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Figure 32: Conceptural framework for optimal decision-making strategy with regard to 

decision makers’ preference and estimation accuracy 

The optimal strategy for project portfolio selection decision therefore depends largely 

on the environment in which the decisions are made and the preferences of the DMs. Figure 

32 illustrates the framework for optimal decision-making strategy with regard to DMs’ 

preference and estimate accuracy. Different settings of the environment (e.g. estimation 

accuracy, proportion of project proposals with truly positive performance, etc.) and different 

preferences (e.g. maximize average performance or capture big wins) will result in different 

optimal strategies. The DMs thus are recommended to understand the accuracy of their 

estimates in order to decide what degree of the base rate (i.e. prior mean) they should need 

to take into account. They are also recommended to identify their priorities prior to making 

decisions so that they can choose the appropriate approach (i.e. Bayesian or non-Bayesian). 
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7 Conclusion 

This chapter serves as a synopsis of the entire thesis. Firstly, this chapter will consolidate the 

key findings by summarizing the answers for each of the research questions. Secondly, it will 

present the theoretical and managerial contribution of this research. And lastly, it will 

evaluate the research limitations and suggestions for future research. 

7.1 Summary of key findings 

This thesis seeks to study the differences between a Bayesian and a non-Bayesian DM 

in terms of investment strategies and the outcomes resulting from their strategies. The key 

results reveal that when fewer than 50% of project proposals have truly positive performance, 

a Bayesian DM invests in a lower proportion of proposals than a non-Bayesian DM does. 

Nevertheless, the average ex post performance resulting from the funded projects of a 

Bayesian DM is higher than that of a non-Bayesian DM. Thus, without psychological 

adjustments, a non-Bayesian DM will experience higher post-decision disappointment. 

Although the selected project portfolio resulting from non-Bayesian estimates yields a lower 

average ex post performance in this case, a non-Bayesian DM will have a higher proportion 

of funded projects that result in big wins. Furthermore, when more than 50% of project 

proposals have truly positive performance, all the results are reversed. However, the result 

for proportions of funded projects that results in high gains is only reversed when the estimate 

error is relatively high in relation to the distance between the threshold and the prior mean. 

Otherwise, the result in proportions of funded projects resulting in high gains are mostly 

equal between a Bayesian and non-Bayesian DM and are equal to the optimal one. However, 

in practice, the case where more than 50% of project proposals have truly positive 

performance is extremely unlikely due to the scarcity of resources, the harsh competition, 

and other constraints. 

Furthermore, the differences between the investment outcomes of a Bayesian and a 

non-Bayesian DM decrease when estimation accuracy increases. The lower the estimation 

accuracy is, the higher the differences are. 
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The analytic results are testified empirically in the R&D portfolio selection decisions 

in the pharmaceutical industry. The characteristics of the decision-making environment of 

the pharmaceutical industry are analyzed with the theoretical lens of decision making under 

uncertainty. Accordingly, the decision-making environment of the pharmaceutical industry 

displays characteristics of a noisy environment with high estimate errors. The low estimation 

accuracy in this industry will amplify the differences in outcomes of a Bayesian DM’s versus 

a non-Bayesian DM’s investment decisions. As the DMs in this industry show quintessential 

characteristics of non-Bayesian DMs (i.e. ignore the base rate, make decisions by gut feel) 

and the observed empirical outcomes perfectly coincide with the theoretical outcomes of non-

Bayesian investment decisions, our theoretical findings are well-reflected empirically. 

In short, the answers to the research questions are as follows: 

1. What is the difference between a Bayesian and a non-Bayesian DM in terms of: 

Parameter Summary of answer 

a. The proportion of 

funded projects 

When fewer than 50% of the project proposals have 

truly positive performance, a non-Bayesian DM will 

have a higher proportion of her alternatives funded than 

that of a Bayesian DM. The result is reversed when more 

than 50% of the projects proposals have truly positive 

performance.  

b. The average 

performance of funded 

project 

When fewer than 50% of the project proposals have 

truly positive performance, the funded portfolio of a 

Bayesian DM will yield higher average performance 

than that of a non-Bayesian DM. The result is reversed 

when more than 50% of the projects proposals have truly 

positive performance. 
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c. The proportion of 

funded project that 

result in loss 

When fewer than 50% of the project proposals have 

truly positive performance, the proportion of funded 

projects that results in loss of a Bayesian DM is lower 

than that of a non-Bayesian DM. The result is reversed 

when more than 50% of the projects proposals have truly 

positive performance. 

d. The proportion of 

funded projects that 

result in very high 

gains 

When fewer than 50% of the project proposals have 

truly positive performance, the proportion of funded 

projects that results in very high gains of a Bayesian DM 

is lower than that of a non-Bayesian DM. When more 

than 50% of the project proposals have truly positive 

NPVs, the proportions of funded projects that results in 

very high gains of a Bayesian and a non-Bayesian DM 

have two possible results: (i) when the estimate error is 

relatively small in relation to the distance between the 

threshold and the prior mean, the proportions of funded 

projects that result in high gains are equal for a Bayesian 

and a non-Bayesian DM at near optimal level, (ii) when 

the estimate error is relatively large in relation to the 

distance between the threshold and the prior mean, the 

proportion of funded projects that results in high gains is 

higher for a Bayesian DM. 

 

2. How are these differences affected by: 

a. The accuracy of the value estimates. 

The higher the accuracy of the value estimate, the less pronounced these 

differences are. 
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b. The proportion of project proposals with truly positive performance 

Most of the answers, with two exceptions, are reversed when there are more 

versus when fewer than 50% of the proposals have truly positive performance. 

The first exception is the proportions of high gains which can be equal 

between a Bayesian and non-Bayesian DM when more than 50% of the 

project proposals have positive performance. The second exception is the 

expected portfolio values, as they are independent of the proportion of 

projects proposals with truly positive performance.  

 

3. How well are these differences reflected in empirical data? 

The differences are highly well-reflected in the pharmaceutical industry. As the 

pharmaceutical industry has an inherent high estimate errors due to various reasons 

(e.g. lack of statistical support, information asymmetry, etc.), the industry reflects well 

the differences between a Bayesian DM and a non-Bayesian DM. As DMs in this 

industry display distinctive characteristics of non-Bayesian DMs, theoretical findings 

suggest that the R&D investment decision outcomes in this industry would display the 

characteristics of non-Bayesian outcomes. As it is observed that the R&D investments 

in the pharmaceutical industry result in severe losses, low productivity, high attrition 

rates, and low success rates, our theoretical findings are validated. Earlier literature 

also recommends DMs in this industry to adopt a more Bayesian approach to improve 

the performance of R&D project portfolio selection. 

7.2 Theoretical and managerial contributions 

The theoretical contributions of this thesis include constructing a mathematical model that 

provides novel analytic results on the differences and the impact of various problem 

parameters in such differences. These analytic results are subsequently validated empirically.  

In terms of managerial contributions, this thesis provides insights into how estimation 

uncertainties affect investment decisions and their corresponding outcomes. Based on those 

insights, this thesis constructs a conceptual framework for practitioners to identify 
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appropriate optimal decision-making strategy in project portfolio selection. More 

specifically, due to a variety of different variables and the complex nature of decision making 

under uncertainty, the optimal strategy for project portfolio selection decisions differs 

depending on the context of the decision-making environment and the preferences of the 

DMs. 

7.3 Limitations and suggestions for future research 

In terms of research limitation, this thesis is based on the assumption that proposals will be 

funded as long as their estimates are higher than the threshold. Although this assumption 

allows the author to examine the differences between Bayesian and non-Bayesian DMs in a 

more general level without being limited to some certain constraints, it ignores the scarcity 

of resources and other constraints. 

Secondly, due to the scope limit, part of the research questions needs to be answered 

with simulation. Furthermore, empirical testing proves to be extremely challenging due to 

the lack or even the absence of data availability. Companies do not usually publish records 

of failed projects or failed investments; thus, it is extremely difficult to examine the 

performance of their project portfolio selection process in a thorough and unbiased manner. 

It is also problematic to compare portfolio selection strategies across different industries due 

to the different parameters and the lack of standardized methods. 

For future research, it would be interesting to study the impact of Bayesian model of 

estimate uncertainty in other industries. It would also be useful to develop a more thorough 

mathematical model that captures all aspects of the differences between a Bayesian and a 

non-Bayesian DM to increase the generalizability of the model in this thesis. Furthermore, it 

is also necessary to examine those differences under different constraints, such as financial 

constraint or time constraint. Additionally, with more time and financial resources to collect 

data, it would also be worthwhile to conduct a quantitative empirical study on the differences 

between a Bayesian and non-Bayesian DM in R&D project portfolio selection decisions. 
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Appendix A. All Proofs of the Propositions 

Proof of proposition 4. Normal distributions of true values, estimates and Bayesian-

adjusted estimates. 

As we define in the model description, we have the following: 

 True values:  𝑉 = μ +  𝐸,         𝐸~𝑁(0, 𝜎2) 

    Hence, 𝑉~𝑁(μ, 𝜎2) 

 Estimates:  (𝑉𝐸|𝑉 = 𝑣) = 𝑣 + ∆,             ∆~𝑁(0, 𝜏2)  

  for all 𝑣’s (𝑉𝐸) = 𝑉 + ∆ = μ + 𝐸 + ∆ 

    Hence, 𝑉𝐸~𝑁(μ, 𝜏2 + 𝜎2) 

 Bayesian estimates: 𝑣𝐵 = 𝔼[𝑉|𝑉𝐸 = 𝑣𝐸] 

  for all 𝑣𝐸’s 𝑉𝐵 =  𝔼[𝑉|𝑉𝐸] 

In order to observe the distribution of Bayesian estimates, we have to calculate the 

covariance and correlation of 𝑉 and 𝑉𝐸. 

1. Calculate the covariance of 𝑽 and 𝑽𝑬. 

General formula for calculating the covariance of 𝑋1 and 𝑋2: 

𝐶𝑜𝑣(𝑋1, 𝑋2) = 𝔼[(𝑋1 − μ1)(𝑋2 − μ2)] 

In this case:  𝑋1 = 𝑉,      𝜎1 = 𝜎,                     μ1 = μ 

   𝑋2 =  𝑉𝐸 ,   𝜎2 = √𝜎2 + 𝜏2,     μ2 = μ  

Therefore, we have the following: 
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   𝐶𝑜𝑣(𝑉, 𝑉𝐸) =  𝔼[(𝑉 − μ)(𝑉𝐸 − μ)] 

Because 𝑉𝐸 = 𝑉 + ∆ and 𝑉 = μ + 𝐸, the previous equation becomes: 

  𝐶𝑜𝑣(𝑉, 𝑉𝐸) =  𝔼[(μ + 𝐸 − μ)(μ + 𝐸 + ∆ − μ) 

  𝐶𝑜𝑣(𝑉, 𝑉𝐸) =  𝔼[𝐸 ∙ (𝐸 + ∆)] 

  𝐶𝑜𝑣 (𝑉, 𝑉𝐸) =  𝔼[𝐸 ∙ 𝐸 + 𝐸 ∙ ∆]     (i) 

As E and ∆ are independent (i.e., 𝑐𝑜𝑣(𝐸, ∆) = 0), we have the following: 

  𝔼(𝐸 ∙ ∆) = 𝑐𝑜𝑣(𝐸, ∆) + μ𝐸 + μ∆ 

  𝔼(𝐸 ∙ ∆) = 𝑐𝑜𝑣(𝐸, ∆) + 0 + 0 

  𝔼(𝐸 ∙ ∆) = 0        (ii) 

Plug the result calculated from (ii) to (i), we can continue to calculate 𝐶𝑜𝑣 (𝑉, 𝑉𝐸) 

  𝐶𝑜𝑣 (𝑉, 𝑉𝐸) =  𝔼[𝐸2] +  0 

  𝐶𝑜𝑣 (𝑉, 𝑉𝐸) =  𝔼[(𝐸 − 0)2] 

  𝐶𝑜𝑣 (𝑉, 𝑉𝐸) = 𝐸[(𝐸 − 𝜇)2] 

By definition, square of the difference between observed values and mean is 

covariance. Therefore, the previous equation becomes: 

  𝐶𝑜𝑣 (𝑉, 𝑉𝐸) = 𝜎2 

2. Calculate the correlation of 𝑽 and 𝑽𝑬. 

General formula for calculating the correlation 𝜌 of 𝑋1 and 𝑋2: 

𝜌 = 𝑐𝑜𝑟𝑟(𝑋1, 𝑋2) =
𝑐𝑜𝑣(𝑋1, 𝑋2)

𝑠𝑡𝑑(𝑋1) ∗ 𝑠𝑡𝑑(𝑋2)
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In this case:  𝑋1 = 𝑉, 𝑋2 =  𝑉𝐸 

    𝐶𝑜𝑣(𝑋1, 𝑋2) = 𝐶𝑜𝑣 (𝑉, 𝑉𝐸) = 𝜎 

    𝑠𝑡𝑑(𝑋1) = 𝑠𝑡𝑑(𝑉) = 𝜎 

    𝑠𝑡𝑑(𝑋2) = 𝑠𝑡𝑑(𝑉𝐸) = √𝜎2 + 𝜏2  

Therefore, we have the following: 

    𝜌𝐸 = 𝑐𝑜𝑟𝑟(𝑉, 𝑉𝐸) =
𝜎2

𝜎√𝜎2+𝜏2
=

𝜎

√𝜎2+𝜏2
  

3. Calculate 𝑽𝑩 =  𝔼[𝑽|𝑽𝑬 = 𝒗𝑬] using bivariate conditional expectation 

The general bivariate conditional expectation formula of 𝑋1 given 𝑋2 is as follows: 

𝔼(𝑋1|𝑋2 = 𝑥2) = μ1 + 𝜌
𝜎1

𝜎2
(𝑥2 − μ2) 

In this case:   𝑋1 = 𝑉,     𝑋2 = 𝑉𝐸 ,    𝑥2 = 𝑣𝐸 

     μ1 = μ,      μ2 = μ    

From the previous step: 𝜌 = 𝜌𝐸 =
𝜎

√𝜎2+𝜏2
  

Plugging the data into the general bivariate conditional expectation formula, we 

have the following: 

  𝑣𝐵 =  𝔼[𝑉|𝑉𝐸 = 𝑣𝐸] 

  𝑣𝐵 = μ +
𝜎

√𝜎2+𝜏2 
∙

𝜎

√𝜎2+𝜏2 
∙ (𝑣𝐸 − μ) 

  𝑣𝐵 = μ +
𝜎2

𝜎2+𝜏2
(𝑣𝐸 − μ) 

  𝑣𝐵 = (1 −  
𝜎2

𝜎2+𝜏2) μ +
𝜎2

𝜎2+𝜏2 𝑣𝐸  
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𝑣𝐵 = ( 
𝜏2

𝜎2+𝜏2) μ + (
𝜎2

𝜎2+𝜏2) 𝑣𝐸    (3) 

Let 𝑣𝐸 be random 𝑉𝐸: 

  𝑉𝐵 = (
𝜏2

𝜎2+𝜏2) μ +
𝜎2

𝜎2+𝜏2
(μ + 𝐸 + ∆) 

  𝑉𝐵 = (
𝜏2

𝜎2+𝜏2) μ + (
𝜎2

𝜎2+𝜏2) μ + (
𝜎2

𝜎2+𝜏2) (𝐸 + ∆) 

  𝑉𝐵 = (
𝜏2+𝜎2

𝜎2+𝜏2) μ + (
𝜎2

𝜎2+𝜏2) (𝐸 + ∆) 

  𝑉𝐵 = μ +
𝜎2

𝜎2+𝜏2
(𝐸 + ∆)  (μ: fixed, 

𝜎2

𝜎2+𝜏2
(𝐸 + ∆): random) 

If 𝑉𝑎𝑟(𝑋) = 𝜎2, 𝑉𝑎𝑟(𝑎𝑋), with 𝑎 being a constant, can be calculated as follow: 

𝑉𝑎𝑟(𝑎𝑋) = 𝑎2𝜎2 

Therefore, with 𝔼[𝑉𝐵] = 𝜇, the variance of 𝑉𝐵 can be calculated from the previous 

result: 

  𝑉𝑎𝑟(𝑉𝐵) = 𝑉𝑎𝑟 (
𝜎2

𝜎2+𝜏2
(𝐸 + ∆)) 

  𝑉𝑎𝑟(𝑉𝐵) = (
𝜎2

𝜎2+𝜏2)
2

𝑉𝑎𝑟(𝐸 + ∆) 

  𝑉𝑎𝑟(𝑉𝐵) = (
𝜎2

𝜎2+𝜏2)
2

∙ (𝑉𝑎𝑟(𝐸) + 𝑉𝑎𝑟(∆)) 

  𝑉𝑎𝑟(𝑉𝐵) =
𝜎4

(𝜎2+𝜏2)2
∗ (𝜎2 + 𝜏2) 

  𝑉𝑎𝑟(𝑉𝐵) =
𝜎4

𝜎2+𝜏2 

                                                                 

*3 This is the closed form expression of Bayesian estimates 
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Hence, we can prove that: 

𝑉𝐵~ 𝑁 (μ,
𝜎4

𝜎2 + 𝜏2
) 

In short, the values of the three distributions are as follow: 

   𝑉~𝑁(μ, 𝜎2) 

   𝑉𝐸~𝑁(μ, 𝜏2 + 𝜎2) 

   𝑉𝐵~𝑁(μ,
𝜎4

𝜎2+𝜏2) 
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Proof of Proposition 5. Comparing 𝑷𝒓(𝑽𝑩 > 𝟎), 𝑷𝒓(𝑽 > 𝟎), and 𝑷𝒓(𝑽𝑬 > 𝟎) 

In order to compare 𝑃𝑟(𝑉𝐵 > 0), 𝑃𝑟(𝑉 > 0), and 𝑃𝑟(𝑉𝐸 > 0), we first have to standardize 

𝑉𝐵, 𝑉, and 𝑉𝐸 into standard normal distribution. 

1. Standardize 𝑽~𝑵(𝝁, 𝝈𝟐) to 𝑿 ~ 𝑵(𝟎, 𝟏) 

First, we have to convert V to X. In order to convert a value to standard score (i.e., “X-

score”), we first subtract the mean and then divide by the standard deviation. Accordingly, 

we have the following: 

𝑋 =
𝑉 − 𝜇

𝜎
 

Subsequently, 𝑉 can be illustrated in terms of 𝑋 as follow: 

𝑉 =  𝑋𝜎 + 𝜇  

The threshold 𝑉 > 0 can then be standardized into: 

𝑉 > 0 ⇔  𝑋 >  
−𝜇

𝜎
 

Thus, 𝑃𝑟(𝑉 > 0) can be rewritten and calculated as follows: 

  𝑃𝑟(𝑉 > 0) = 𝑃𝑟𝑉 (𝑋 >
−𝜇

𝜎
) 

  𝑃𝑟(𝑉 > 0) = 1 − Φ (
−𝜇

𝜎
) 

  𝑃𝑟(𝑉 > 0) = Φ (
𝜇

𝜎
) 

In order to simplify the expression, we set =
𝜇

𝜎
 . The previous expression hence 

becomes: 

𝑃𝑟(𝑉 > 0) = Φ(𝑡) 
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Standardize 𝑽𝑬~𝑵(𝝁, 𝝈𝟐 + 𝝉𝟐) to 𝑿𝑬~ 𝑵(𝟎, 𝟏) 

Similarly, we first subtract the mean and then divide by the standard deviation. 

Accordingly, we have the following: 

𝑋𝐸 =
𝑉𝐸 − 𝜇

√ 𝜎2 + 𝜏2
 

Subsequently, 𝑉𝐸 can be illustrated in terms of 𝑋𝐸 as follows: 

𝑉𝐸 = 𝑋𝐸√𝜎2 + 𝜏2 +  𝜇 

The threshold 𝑉𝐸 > 0 can then be standardized into: 

𝑉𝐸 > 0 ⇔  𝑋𝐸 >
−𝜇

√ 𝜎2 + 𝜏2
 

Thus, 𝑃𝑟(𝑉𝐸 > 0) can be rewritten and calculated as follows: 

  𝑃𝑟(𝑉𝐸 > 0) = 𝑃𝑟𝐸 (𝑋𝐸 >
−𝜇

√𝜎2+𝜏2
) 

  𝑃𝑟(𝑉𝐸 > 0) = 1 − Φ (
−𝜇

√𝜎2+𝜏2
) 

  𝑃𝑟(𝑉𝐸 > 0) = Φ (
𝜇

√𝜎2+𝜏2
) 

In order to simplify the expression, we set 𝑡𝐸 =
𝜇

√𝜎2+𝜏2
 . The previous expression 

hence becomes: 

𝑃𝑟(𝑉𝐸 > 0) = Φ(𝑡𝐸) 

2. Standardize 𝑽𝑩~𝑵(𝝁,
𝝈𝟒

𝝈𝟐+𝝉𝟐) to 𝑿𝑩~ 𝑵(𝟎, 𝟏) 

We can find 𝑋𝐵 with the same formula as when we standardize 𝑉 and 𝑉𝐸: 
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𝑋𝐵 =
(𝑉𝐵 − 𝜇) √𝜎2 + 𝜏2

𝜎2
 

Subsequently, 𝑉𝐵 can be illustrated in terms of 𝑋𝐵 as follow: 

𝑉𝐵 = 𝜇 +
𝑋𝐵𝜎2

√𝜎2 + 𝜏2
 

The threshold can also be standardized in the same way as in the previous two 

sections: 

𝑉𝐵 > 0 ⇔ 𝑋𝐵 >  
−𝜇 √𝜎2 + 𝜏2

𝜎2
 

Thus, 𝑃𝑟(𝑉𝐵 > 0) can be rewritten and calculated as follow: 

  𝑃𝑟(𝑉𝐵 > 0) = 𝑃𝑟𝐵 (𝑋𝐵 >
−𝜇 √𝜎2+𝜏2

𝜎2 ) 

  𝑃𝑟(𝑉𝐵 > 0) = 1 − Φ (
−μ √σ2+τ2

σ2 ) 

  𝑃𝑟(𝑉𝐵 > 0) = Φ (
𝜇 √𝜎2+𝜏2

𝜎2 ) 

In order to simplify the expression, we set 𝑡𝐵 =
𝜇 √𝜎2+𝜏2

𝜎2  . The previous expression 

hence becomes: 

𝑃𝑟(𝑉𝐵 > 0) = Φ(tB) 

3. Comparing 𝑷𝒓(𝑽𝑩 > 𝟎), 𝑷𝒓(𝑽 > 𝟎), and 𝑷𝒓(𝑽𝑬 > 𝟎) 

In summary, from the previous three steps, we find the following: 

 𝑃𝑟(𝑉 > 0) = Φ(t), with 𝑡 =
𝜇

𝜎
 

 Pr (𝑉𝐸 > 0) = Φ(tE), with 𝑡𝐸 =
𝜇

√𝜎2+𝜏2
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 Pr (𝑉𝐵 > 0) = Φ(tB), with 𝑡𝐵 =
𝜇 √𝜎2+𝜏2

𝜎2  

As Φ(t), Φ(tE) and Φ(tB) are strictly increasing in 𝑡, 𝑡𝐸  and 𝑡𝐵 respectively, we can 

compare 𝑃𝑟(𝑉𝐵 > 0), 𝑃𝑟(𝑉 > 0), and 𝑃𝑟(𝑉𝐸 > 0) by comparing 𝑡𝐵, 𝑡, and 𝑡𝐸 . In order to 

compare 𝑡𝐵, 𝑡, and 𝑡𝐸 , we will first compare 𝑡𝐸  and 𝑡, and then we will compare 𝑡𝐵  and 𝑡. 

a. Comparing tE and t 

𝑡𝐸 − 𝑡 =
𝜇

√𝜎2 + 𝜏2
−

𝜇

𝜎
=

𝜇(𝜎 − √𝜎2 + 𝜏2)

𝜎√𝜎2 + 𝜏2
 

As 𝜏 > 0 and 𝜎 > 0, we have the following: 𝜎2 < 𝜎2 + 𝜏2 

Since both sides of the inequality are larger than zero, we can square root the two sides of 

the inequality without changing the direction of the inequality: 

𝜎 < √𝜎2 + 𝜏2 ⇔ 𝜎 − √𝜎2 + 𝜏2 < 0 

 If 𝜇 < 0, then 𝑡𝐸 − 𝑡 > 0 ⇔ 𝑡𝐸 > 𝑡 

 If 𝜇 > 0, then 𝑡𝐸 − 𝑡 < 0 ⇔ 𝑡𝐸 < 𝑡 

 

b. Comparing tB and t 

We can compare tB and t by observing the sign of the difference between tB and t. 

 𝑡𝐵 − 𝑡 =  
𝜇√𝜎2+𝜏2

𝜎2 −
𝜇

𝜎
 

 𝑡𝐵 − 𝑡 =
𝜇√𝜎2+𝜏2−𝜇𝜎

𝜎2  

 𝑡𝐵 − 𝑡 =
𝜇(√𝜎2+𝜏2−𝜎)

𝜎2
 

In the previous steps, we already proved that √𝜎2 + 𝜏2 > 𝜎. Thus, we have the 

following: 
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√𝜎2 + 𝜏2 > 𝜎  

⇔ √𝜎2 + 𝜏2 − 𝜎 > 0 

 As and 𝜎2 > 0, if 𝜇 < 0, we have the following: 

𝜇(√𝜎2 + 𝜏2 − 𝜎)

𝜎2
< 0  

⇔ 𝑡𝐵 − 𝑡 < 0  

⇔  𝑡𝐵 < 𝑡 

 if 𝜇 > 0, we have the following: 

𝜇(√𝜎2 + 𝜏2 − 𝜎)

𝜎2
< 0  

⇔ 𝑡𝐵 − 𝑡 > 0  

⇔  𝑡𝐵 > 𝑡 

c. Comparing 𝑡𝐵 and 𝑡𝐸 

We can compare 𝑡𝐵 and 𝑡𝐸  by observing the sign of its difference: 

 𝑡𝐵 − 𝑡𝐸 =
𝜇√𝜎2+𝜏2

𝜎2 −
𝜇

√𝜎2+𝜏2
  

 𝑡𝐵 − 𝑡𝐸 =
𝜇(𝜎2+𝜏2)−𝜇𝜎2

𝜎2√𝜎2+𝜏2
 

 𝑡𝐵 − 𝑡𝐸 =
𝜇𝜏2

𝜎2√𝜎2+𝜏2
 

 If 𝜇 < 0, we have the following: 

 𝑡𝐵 − 𝑡𝐸 < 0 

⇔ 𝑡𝐵 < 𝑡𝐸 . 

 If 𝜇 > 0, we have the following: 

𝑡𝐵 − 𝑡𝐸 > 0 

⇔ 𝑡𝐵 > 𝑡𝐸 . 
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d. Comparing 𝑡𝐵, 𝑡, and 𝑡𝐸  

From a, b, and c, we can conclude that: 

 If 𝜇 < 0: 𝑡𝐵 < t < tE 

 If 𝜇 > 0: 𝑡𝐵 > t > tE 

e. Comparing 𝑃𝑟(𝑉𝐵 > 0), 𝑃𝑟(𝑉 > 0), and 𝑃𝑟(𝑉𝐸 > 0) 

As Φ(t), Φ(tE) and Φ(tB) are strictly increasing in 𝑡, 𝑡𝐸  and 𝑡𝐵 respectively, we can 

conclude that: 

 If 𝜇 < 0, Pr (𝑉𝐵 > 0) < Pr (𝑉 > 0) < Pr (𝑉𝐸 > 0) 

 If 𝜇 > 0, Pr(𝑉𝐵 > 0) > Pr(𝑉 > 0) > Pr (𝑉𝐸 > 0). 
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Proof of Proposition 6. Observing the effect of signal-to-noise ratio (𝜶 =
𝝈

𝝉
) on the 

difference among 𝑷𝒓(𝑽𝑩 > 𝟎), 𝑷𝒓(𝑽𝑬 > 𝟎), and 𝑷𝒓(𝑽 > 𝟎) 

Plugging 𝛼 =
𝜎

𝜏
  into the difference between 𝑡𝐵and 𝑡𝐸, we have the following: 

 𝑡𝐵 − 𝑡𝐸 =
𝜇𝜏2

𝜎2√𝜎2+𝜏2
 

 𝑡𝐵 − 𝑡𝐸 =
𝜇

𝜎2

𝜏2
√𝜎2

𝜏2 +1

 

 𝑡𝐵 − 𝑡𝐸 =
𝜇

𝜶𝟐√𝜶𝟐+𝟏
 

As the signal-to-noise ratio increases (i.e. the “signal” gets stronger and/or the “noise” 

gets weaker), the denominator increases. 

 If 𝝁 < 𝟎, then (𝑡𝐵 − 𝑡𝐸) < 0. 

o As the fraction is negative, increases in denominators will increase the 

fraction. 

o Thus, (𝑡𝐵 − 𝑡𝐸) < 0 and increases in 𝛼 if 𝜇 < 0. 

o Thus, |𝑡𝐵 − 𝑡𝐸| decreases in 𝛼 if 𝜇 < 0. 

 If 𝝁 > 𝟎, then (𝑡𝐵 − 𝑡𝐸) > 0. 

o As the fractions is negative, increases in denominators will decrease 

the fraction. 

o Thus, (𝑡𝐵 − 𝑡𝐸) > 0 and decreases in 𝛼 if 𝜇 > 0. 

o Thus, |𝑡𝐵 − 𝑡𝐸| decreases in 𝛼 if 𝜇 > 0. 

 As 𝑡 is in the middle of 𝑡𝐵 and 𝑡𝐸  in both senarios, the smaller the difference 

between 𝑡𝐵  and 𝑡𝐸  means the smaller the differences between 𝑡 and 𝑡𝐸  and 

between 𝑡 and 𝑡𝐵. 

In both cases, if the signal-to-noise ratio increases, the differences among 𝑡, 𝑡𝐵, and 𝑡𝐸  in 

terms of absolute values decrease in 𝛼 =
𝜎

𝜏
. 
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We also have the following: 

|Pr(𝑉 > 0) − Pr(𝑉𝐵 > 0)| = Φ(t) − Φ(tB) 

|Pr(𝑉 > 0) − Pr(𝑉𝐸 > 0)| = Φ(t) − Φ(tE) 

|Pr(𝑉𝐵 > 0) − Pr(𝑉𝐸 > 0)| = Φ(tB) − Φ(tE) 

As Φ(t), Φ(tB), and Φ(tE) increase in 𝑡, 𝑡𝐵, and 𝑡𝐸  respectively and the differences among 

𝑡, 𝑡𝐵, and 𝑡𝐸 decrease in 𝛼 =
𝜎

𝜏
. Consequently, the differences among Pr(𝑉 > 0), Pr(𝑉𝐵 >

0), and Pr(𝑉𝐸 > 0) decrease in 𝛼 =
𝜎

𝜏
. 
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Proof of Proposition 7. Using Mill’s inverse ratio to compare 𝔼[𝑽|𝑽𝑩 > 𝟎]  and 

𝔼[𝑽|𝑽𝑬 > 𝟎] 

In this section, the author will use Mill’s inverse ratio to calculate 𝔼[𝑉|𝑉𝐵 > 0]  and 

𝔼[𝑉|𝑉𝐸 > 0] in relative terms and subsequently compare them. 

1. Calculate 𝔼[𝐕|𝐕𝐄 > 𝟎] using Mill’s inverse ratio 

From Proposition 4, we have the following conjugate normal distributions of values and 

estimates: 

Values:  𝑉 ~ 𝑁(𝜇, 𝜎2) 

Estimates:  𝑉𝐸~𝑁(𝜇, 𝜎2 + 𝜏2) 

Similar to what we did in the Proof of Proposition 5, we have to standardize 𝑉 and 

𝑉𝐸. Detailed steps of the standardization can be found in Proof of Proposition 5. 

Values: 𝑧 =
𝑉− 𝜇

𝜎
, and 𝑉 =  𝑧𝜎 + 𝜇. The threshold becomes: 𝑉 > 0 ⇔ 𝑧 >

− 𝜇

𝜎
 

Estimates: 𝑧𝐸 =
𝑉𝐸−𝜇

√𝜎2+𝜏2   
, and 𝑉𝐸 = 𝑧𝐸√𝜎2 + 𝜏2  + 𝜇. The threshold becomes: 

  𝑉𝐸 > 0 ⇔ 𝑧𝐸 >
−𝜇

√𝜎2+𝜏2
   

We can also find the standardized real expected value of 𝑉 as follow: 

𝔼[𝑉] = 𝔼[𝑧𝜎 + 𝜇] 

𝔼[𝑉] =   𝜎𝔼[𝑧] + 𝜇 

Adding the conditional into the previous expression, we can calculate 𝔼[𝑉|𝑉𝐸 > 0] 

using Mill’s inverse ratio: 

 𝔼[𝑉|𝑉𝐸 > 0] =  𝔼[𝑧|𝑉𝐸 > 0]𝜎 + 𝜇 
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 𝔼[𝑉|𝑉𝐸 > 0] = 𝔼 [𝑧|𝑧𝐸 >
−𝜇

√𝜎2+𝜏2
] 𝜎 + 𝜇 

 𝔼[𝑉|𝑉𝐸 > 0] = [𝜌𝐸
𝜑(

−𝜇

√𝜎2+𝜏2
)

1−Φ(
−𝜇

√𝜎2+𝜏2
)
] 𝜎 + 𝜇 

 𝔼[𝑉|𝑉𝐸 > 0] = [𝜌𝐸
𝜑(

𝜇

√𝜎2+𝜏2
)

Φ(
𝜇

√𝜎2+𝜏2
)
] 𝜎 + 𝜇   

2. Calculate 𝔼[𝑽|𝑽𝑩 > 𝟎] using Mill’s inverse ratio 

Also from Proposition 1, we have the following conjugate normal distributions of values 

and estimates: 

Values:  𝑉 ~ 𝑁(𝜇, 𝜎2) 

Bayesian estimates: 𝑉𝐵~𝑁(𝜇,
𝜎4

𝜎2+𝜏2) 

The next step is to standardize 𝑉 and 𝑉𝐵: 

Values:    𝑧 =
𝑉− 𝜇

𝜎
, 𝑉 =  𝑧𝜎 + 𝜇, threshold: 𝑉 > 0 ⇔ 𝑧 >

− 𝜇

𝜎
 

Bayesian estimates:  𝑧𝐵 =
(𝑉𝐵−𝜇)√𝜎2+𝜏2  

𝜎2 , 𝑉𝐵 = 𝜇 +
𝑧𝐵𝜎2

√𝜎2+𝜏2
, 

threshold:  𝑉𝐵 > 0 ⇔  𝑧𝐵 >
−𝜇√𝜎2+𝜏2  

𝜎2
  

In a similar manner as in the previous section, we can calculate 𝔼[𝑉|𝑉𝐵 > 0] using 

Mill’s inverse ratio: 

  𝔼[𝑉|𝑉𝐵 > 0] = 𝔼[𝑧|𝑉𝐵 > 0]𝜎 + 𝜇 

  𝔼[𝑉|𝑉𝐵 > 0] = 𝔼 [𝑧|𝑧𝐵 >
−𝜇√𝜎2+𝜏2  

𝜎2  ] 𝜎 + 𝜇 
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  𝔼[𝑉|𝑉𝐵 > 0] = [𝜌𝐵
𝜑(

−𝜇√𝜎2+𝜏2

𝜎2 )

1−Φ(
−𝜇√𝜎2+𝜏2

𝜎2 )

] 𝜎 + 𝜇 

  𝔼[𝑉|𝑉𝐵 > 0] = [𝜌𝐵
𝜑(

𝜇√𝜎2+𝜏2

𝜎2 )

Φ(
𝜇√𝜎2+𝜏2

𝜎2 )

] 𝜎 + 𝜇 

𝔼[𝑉|𝑉𝐵 > 0] = [𝜌𝐵
𝜑(

𝜇√𝜎2 + 𝜏2

𝜎2 )

Φ(
𝜇√𝜎2 + 𝜏2

𝜎2 )

] 𝜎 + 𝜇 

3. Calculating 𝝆𝑩 and 𝝆𝑬 

In order to compare 𝔼[𝑉|𝑉𝐵 > 0] and 𝔼[𝑉|𝑉𝐸 > 0], we first need to calculate 𝜌𝐵 and 𝜌𝐸 . 

From Proof of Proposition 1, we have: 

𝜌𝐸 = 𝑐𝑜𝑟𝑟(𝑉, 𝑉𝐸) =
𝜎2

𝜎√𝜎2 + 𝜏2
=

𝜎

√𝜎2 + 𝜏2
 

To calculate 𝜌𝐵, we will follow the exact steps we did to find 𝜌𝐸 . Firstly, we will 

find the covariance of 𝑉 and 𝑉𝐵. Then, we will find the correlation of 𝑉 and 𝑉𝐵. 

To begin with, we will calculate covariance of 𝑉 and 𝑉𝐵. 

 𝐶𝑜𝑣(𝑉, 𝑉𝐵) =  𝔼[(𝑉 − μ)(𝑉𝐵 − μ)] 

 𝐶𝑜𝑣(𝑉, 𝑉𝐵) = 𝔼[(𝜇 + 𝐸 − 𝜇) (𝜇 +
𝜎2(∆+𝐸)

𝜎2+𝜏2
− 𝜇)] 

 𝐶𝑜𝑣(𝑉, 𝑉𝐵) = 𝔼[𝐸 ∙
𝜎2(𝐸+∆)

𝜎2+𝜏2 ] 

 𝐶𝑜𝑣(𝑉, 𝑉𝐵) = (
𝜎2

𝜎2+𝜏2
) ∙ 𝔼[𝐸 ∙ (𝐸 + ∆)] 

From Proof of Proposition 4, we have 𝔼[𝐸 ∙ (𝐸 + ∆)] = 𝜎2. Hence, the previous 

expression becomes: 
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 𝐶𝑜𝑣(𝑉, 𝑉𝐵) = (
𝜎2

𝜎2+𝜏2) ∙ 𝜎2 

 𝐶𝑜𝑣(𝑉, 𝑉𝐵) =
𝜎4

𝜎2+𝜏2 

As we found 𝐶𝑜𝑣(𝑉, 𝑉𝐵), we can now proceed to finding the correlation between 𝑉 

and 𝑉𝐵. 

 𝜌𝐵 = 𝑐𝑜𝑟𝑟(𝑉, 𝑉𝐵) 

 𝜌𝐵 =
𝑐𝑜𝑣(𝑉, 𝑉𝐵)

𝑠𝑡𝑑(𝑉)∙𝑠𝑡𝑑(𝑉𝐵)
 

 𝜌𝐵 =
𝜎4

𝜎2+𝜏2 ∙
1

𝜎
∙

√𝜎2+𝜏2

𝜎2  

 𝜌𝐵 =
𝜎

√𝜎2+𝜏2
 

Therefore, we can conclude that: 𝜌𝐵 = 𝜌𝐸 =
𝜎

√𝜎2+𝜏2
= 𝜌 

4. Comparing 𝔼[𝑽|𝑽𝑩 > 𝟎]  and  𝔼[𝑽|𝑽𝑬 > 𝟎] 

As the two correlations are the same, the expected values can be compared by comparing 

the following two values: 

For estimates:  
𝜑(

𝜇

√𝜎2+𝜏2
)

Φ(
𝜇

√𝜎2+𝜏2
)
      (iii) 

For Bayesian estimates: 
𝜑(

𝜇√𝜎2+𝜏2

𝜎2 )

Φ(
𝜇√𝜎2+𝜏2

𝜎2 )

      (iv) 

Recall from Proof for Proposition 5, we set 𝑡𝐸  and 𝑡𝐵 as follow: 

  𝑡𝐸 =
𝜇

√𝜎2+𝜏2
  

  𝑡𝐵 =
𝜇√𝜎2+𝜏2

𝜎2  
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(iii) and (iv) will then become: 

For estimates:  
𝜑(𝑡𝐸)

Φ(𝑡𝐸)
 

For Bayesian estimates: 
𝜑(𝑡𝐵)

Φ(𝑡𝐵)
 

According to Sampford (1953, equation 4), 
𝜑(𝑡𝐸)

Φ(𝑡𝐸)
 and 

𝜑(𝑡𝐵)

Φ(𝑡𝐵)
 are decreasing in 

𝑡𝐸 and  𝑡𝐵 respectively. Therefore, we can compare 𝔼[𝑉|𝑉𝐵 > 0]   and  𝔼[𝑉|𝑉𝐸 > 0]  by 

comparing 𝑡 and 𝑡𝐸 .  

We have: 𝑡𝐵 − 𝑡𝐸 =
𝜇𝜏2

𝜎2√𝜎2+𝜏2
 

 If 𝜇 < 0: 𝑡𝐵 − 𝑡𝐸 < 0 ⇔ 𝑡𝐵 < 𝑡𝐸   

 If 𝜇 > 0: 𝑡𝐵 − 𝑡𝐸 > 0 ⇔ 𝑡𝐵 > 𝑡𝐸  

As 
𝜑(𝑡𝐸)

Φ(𝑡𝐸)
 and 

𝜑(𝑡𝐵)

Φ(𝑡𝐵)
 are decreasing in 𝑡𝐸and 𝑡𝐵respectively, we can conclude the 

following: 

 If 𝜇 < 0: 𝔼[𝑉|𝑉𝐵 > 0] > 𝔼[𝑉|𝑉𝐸 > 0] 

 If 𝜇 > 0: 𝔼[𝑉|𝑉𝐵 > 0] < 𝔼[𝑉|𝑉𝐸 > 0] 
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Proof of Proposition 8. Observing the effect of signal-to-noise ratio (𝜶 =
𝝈

𝝉
)  on the 

difference between 𝔼[𝑽|𝑽𝑩 > 𝟎] and 𝔼[𝑽|𝑽𝑬 > 𝟎] 

|𝔼[𝑉|𝑉𝐵 > 0] − 𝔼[𝑉|𝑉𝐸 > 0]| = |[𝜌
𝜑(𝑡𝐵)

Φ(𝑡𝐵)
] 𝜎 + 𝜇 − [𝜌

𝜑(𝑡𝐸)

Φ(𝑡𝐸)
] 𝜎 − 𝜇| 

⇔  |𝔼[𝑉|𝑉𝐵 > 0] − 𝔼[𝑉|𝑉𝐸 > 0]| = |𝜌𝜎 (
𝜑(𝑡𝐵)

Φ(𝑡𝐵)
−

𝜑(𝑡𝐸)

Φ(𝑡𝐸)
)| 

Recall from Proof for Proposition 7, we have: 
𝜑(𝑡𝐵)

Φ(𝑡𝐵)
 decreases in 𝑡𝐵  and 

𝜑(𝑡𝐸)

Φ(𝑡𝐸)
 

decreases in 𝑡𝐸 . Recall from Proof for Proposition 6: |𝑡𝐵 − 𝑡𝐸| = |
𝜇

𝜶𝟐√𝜶𝟐+𝟏
|  decreases in 

𝛼 =
𝜎

𝜏
. 

Thus |𝔼[𝑉|𝑉𝐵 > 0] − 𝔼[𝑉|𝑉𝐸 > 0]| decreases in 𝛼 =
𝜎

𝜏
. 
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