
OpenID Connect Client Registration API for
Federated Cloud Platforms

Erik Berdonces Bonelo

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Berlin 28.12.2016

Thesis supervisor:

Assoc. Prof. Keijo Heljanko

Thesis advisors:

Prof. Dr. Axel Küpper

M.Sc. Mathias Slawik

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/84757293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aalto university

school of science

abstract of the

master’s thesis

Author: Erik Berdonces Bonelo

Title: OpenID Connect Client Registration API for Federated Cloud Platforms

Date: 28.12.2016 Language: English Number of pages: 5+63

Department of Computer Science

Professorship: Distributed Systems and Services

Supervisor: Assoc. Prof. Keijo Heljanko

Advisors: Prof. Dr. Axel Küpper, M.Sc. Mathias Slawik

Nowadays, information technology is a key driver in our world. Big cloud federations
are aiming to increase their computing power and achieve better results while being
scalable. This huge IT systems are managed by multiple users having di�erent
roles and at the same time, new services deployment automation is needed to be
able to cope with the rising need of resources.
This flexibility in deployment has created concerns on the security and the main-
tainability of these extensive systems. These requisites have led to start CYCLONE
platform, a project focused to provide authentication and authorization services
towards services running under control of federated unions of users. CYCLONE,
at the moment working as a proof of concept, now allows to authenticate and
authorize access to users using one-click-deployment applications against their
federation’s credentials. However, actual SSO systems require registration of the
services against their Identity Providers in order to provide user validation. In this
master thesis, we present two the components of CYCLONE.
The first one is a service registration for clients of the OpenID Connect Single
Sign-On protocol that allows newly deployed services to be registered automatically
against CYCLONE’s SSO component, using RedHat’s Keycloak authentication
solution. Based on the real world scenarios that defined the CYCLONE platform,
we have designed and implemented a solution alternative to the ones provided by
Keycloak, and to evaluate it we have compared it to Keycloak’s alternatives. As
a result we have created a simple API implementation from where it’s possible
to track who is executing this registrations of new clients, in comparison to the
anonymous ones provided by other solutions.
The second one is a module that allows easy SSH authorization through the use of
CYCLONE’s SSO backend as identity provider and that has been evaluated and
tested by one of CYCLONE’s use cases.
Keywords: CYCLONE, federation, OpenID Connect, Keycloak, PAM, SSH

iii

Contents
Abstract ii

Contents iii

Abbreviations v

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Objectives . 2
1.3 Structure of the Thesis . 3

2 Application environment 4
2.1 CYCLONE platform . 4

2.1.1 eduGAIN Federation . 4
2.1.2 CYCLONE Components . 5

2.2 Use Cases . 6
2.2.1 Bioinformatics Use Case . 6
2.2.2 Energy Use Case . 8

2.3 User requirements . 9
2.4 Stakeholders . 9

3 Background 11
3.1 Authentication and Authorization . 11
3.2 Single Sign-On . 11

3.2.1 SSO generic architecture . 12
3.3 OpenID Connect 1.0 and OAuth 2.0 13

3.3.1 OAuth 2.0: Authentication . 14
3.3.2 OIDC Specifications . 14
3.3.3 Scopes and Claims . 15
3.3.4 Authentication Flows . 16

3.4 SAML 2.0 . 16
3.5 Keycloak . 17
3.6 SimpleSAMLphp . 19

4 The service registration API 20
4.1 State of the Art . 20
4.2 Initial Plan . 21
4.3 Architecture . 23

4.3.1 Authentication . 24
4.4 SPI implementation . 26

4.4.1 REST API . 26
4.4.2 JPA Database Entity . 30
4.4.3 SPI Logic . 31

4.5 Limitations . 32

iv

4.6 Deployment . 33

5 SSH login integration 35
5.1 Motivation . 35
5.2 Architecture . 36
5.3 Implementation . 38

5.3.1 PAM Module Implementation 38
5.3.2 Authenticating Against OIDC and Fetching User’s Data . . . 41
5.3.3 Local authentication and authorization logic 42

5.4 Deployment . 44
5.5 Results of the Implementation . 45
5.6 Future Work . 48

5.6.1 Electron Based Desktop Client 48

6 Evaluation 50
6.1 Dynamic Client Registration . 50

6.1.1 Use Cases requirements Validation 50
6.1.2 Comparison with Keycloak’s Version 2.3.0 Registration API . 51

6.2 SSH Login Integration . 55
6.3 Client Registration and SSH Integration 56

7 Conclusion 57
7.1 Limitations and Future Research . 57

References 59

v

Abbreviations
SSO Single Sign-On
IdP Identity Provider
SP Service Provider
UA User Agent
JWT JSON Web Token
OIDC OpenID Connect
SAML Security Assertion Markup Language
JPA Java Persistence API
SPI Service Provider Interfaces
VPP Virtual Power Plant
DER Distributed Energy Resource
UI User Interface
DAO Data Access Object
API Application Program Interface
CLI Command Line Interface
UC Use Case

1

1 Introduction
This thesis presents and implements a solution to authenticate dynamically deployed
services in a federated network of users into an SSO provider. This authentication
solution is divided into two components: one server implementation which allows
to register the clients automatically in the SSO provider and a client that provides
authentication in the distributed services of the federation. Both of them together
provide a solution of authentication and authorization in cloud systems based on
distributed federations. This topic is studied through the di�erent use cases provided
by the CYCLONE platform which this work is built on.

In this introductory section, first the background and motivation of the study
are presented. Second, the research objectives are defined followed with an overview
on the structure of this thesis.

1.1 Background and Motivation
Nowadays, information technology is a key driver in our world. This explosion in web
development has been integrated for example into the Internet of the Things (IoT).
This trend of connecting everything physical has not only a�ected our homes but
is also starting to a�ect private systems and existing structures. The development
of these new technologies is impacting on how new systems are being developed
and how old ones are getting obsolete. Thus, older traditional systems need to be
updated to adapt to new paradigms that exist in the present and didn’t exist in the
past and that actual technologies can solve.

This introduces us to new challenges when creating our systems to manage
complex infrastructures. These new paradigms include among others the location
agnostic cooperation between di�erent entities, where di�erent users can cooperate in
a common objective regardless to their location. However, this online interconnection
has also increased the amount of attacks to steal information from secure services.
Just as an example, it has been revealed that Yahoo got stolen 1 billion accounts
in 2013 and Snowden uncovered NSA’s tracking and gathering of personal data.
These are not the only cases in security that have been relevant to people, but all
together, people’s awareness on data security has risen and governments have started
to regulate data privacy through laws. For example, in the European Union, a new
data protection regulation has been approved since April 2016 (Regulation (EU)
2016/679). This becomes critical in highly distributed systems where security is
essential and that a misuse of the secured resources can enable grave legal implications
and where multiple users can access to these resources.

CYCLONE platform, as one of Europe’s Horizon 2020 projects aims to develop
new systems that will cover our future necessities in terms of security. CYCLONE’s
aim is to provide secure one click deployments of applications and services. These
deployments, usually controlled by an orchestration platform, need to process critical
data such as sequenced genomic data or control or manage high available systems
such as distributed power plants. At the same time, they need to be created easily to
provide scalability for the system. Also, the access to this secure resources needs to

2

be handled by a community of users organized as a federation, which increases the
chances that information can be leaked or hacked. As a result, there is a need to find
a fair trade-o� between security and deployment simplicity where user interaction is
minimally needed.

This dynamic deployment of resources and services needs to be integrated with
CYCLONE’s Single Sign-On (SSO) service which provides authentication and autho-
rization protocols. SSO technologies are a must in CYCLONE platform, as it helps
to centralize all the user credential and permission management in a single service,
essential when working with distributed services so we can avoid having to update
all the individual services when any user’s credentials get updated. CYCLONE’s
SSO technology is based on RedHat’s Keycloak open source identity and access
management solution. Keycloak implements OpenID Connect 1.0 and SAML 2.0
SSO technologies, actual industry standards in SSO technologies. SSO technologies
require to register all the services using them to control the usage of user credentials
and access to resources.

1.2 Research Objectives
As this solution is compounded by a server and its client, in this thesis we want to
provide a solution for both cases. Thus, we want to propose two implementations
that integrate together to provide a solution to the stated problem.

First, we want to analyze, propose and implement an OpenID Connect Client
registration API for CYCLONE, a federated cloud platform. With it, we want
to provide a system to register services against CYCLONE’s SSO provider, so
dynamically deployed services can use secure centralized authentication. Not only
we need to create a system to register the clients automatically, but we also need
to provide a service that may allow users to use this SSO technologies in their
environments.

Second, we want to implement an integration of this SSO authentication into the
actual existing environments provided by CYCLONE’s use cases. Actual existing
environments depend on SSH and X11 technologies to provide user interfaces. With
our implementation, we aim to make this usually locally designed technologies capable
of authenticating federated users in a distributed architecture such as CYCLONE.

The main aim of this thesis is to create a set of tools that can be deployed
dynamically and can secure authenticate any federation’s user into secure servers.

As CYCLONE is a project already in development, we need to study its structure.
CYCLONE depends on eduGAIN federation to gather user credentials from di�erent
sources and proxies them towards the services requesting authentication. CYCLONE,
in turn is also based in a set of use cases, providing real life production scenarios
where the project should solve their given challenges. This use cases provided a
set of user requirements, that define the direction towards our registration solution
needs to evolve. However, CYCLONE’s use cases are not the only ones relevant
when implementing a solution in a federated system. Thus we also analyzed the
requirements of other stakeholders so our platform can be deployed in locations
under regulation. These stakeholders include Technische Universität Berlin, SURFnet

3

national research and education network of the Netherlands and eduGAIN, as we are
using their credentials in our platform. The analysis of the already created structure
of CYCLONE will be the base of our implementation.

Also, we need to understand the technologies being used in CYCLONE and what
are SSO strategies for user verification. For this, we need to analyze the structure of
the platform and how it interacts with the eduGAIN federation to authenticate users
in the deployed services. Furthermore, we need to list the features of Keycloak, and
the di�erent automation and configuration opportunities that the solution provides.
As Keycloak includes two di�erent SSO technologies, OpenID Connect (OIDC)
and Security Assertion Markup Language 2.0 (SAML2.0), we need also to compare
them and define their usage in our implementation. Bot technologies are similar
because both provide authentication and authorization strategies but at the same
time integrate di�erent features and implementations. Thus, we must describe the
di�erent workflows they provide to verify users and compare the characteristics of
each technology to allow access to the user’s sensitive data. After an exhaustive
background research, we can take a proper decision on how to create a dynamic
registration system. To evaluate our results in the registration API, we compare our
implementation with the one provided by Keycloak, as by now, at the end of the
implementation, Keycloak has updated their registration API with new features. We
contrast and discuss the security aspects that both provide and the advantages and
disadvantages of each solution.

In parallel, we study and implement the di�erent possibilities to allow a SSH pro-
tocol login to use CYCLONE’s SSO service as authentication backend. To do so, we
analyze the options we have to customize SSH, such as Keyboard-Interactive sessions
and PAM modules, and how we can integrate the API calls and authentication against
the OpenID Connect endpoint. The main objective of this implementation is to avoid
using SSH RSA keys in favour of SSO authentication. Then, we use the feedback
provided by IFB, one of CYCLONE’s use cases, to evaluate our implementation in
comparison to their requirements.

Finally, we provide an overview on how both component integrate together plus
insights on the future implementations that we can do to improve this project.

1.3 Structure of the Thesis
This thesis is structured as follows. Chapter 2 presents a background review on the
structure of CYCLONE project, which this thesis is based on and that is used to
frame the study. In Chapter 3, we provide a study of the single sign on technologies
used to implement our system that is then used in Chapters 4 and 5 to design the
implementation. The process of development and implementation of the registration
client API is explained in Chapter 4 and the client to use the SSO login from already
existing environments is defined in Chapter 5. Lastly, the evaluations and conclusions
of the study are presented in Chapters 6 and 7.

4

2 Application environment
This chapter describes the environment and use cases in which this thesis has been
based on. First we explain what is the CYCLONE platform and which is its current
status. Then, we outline the di�erent use cases that inspired this project. Finally, we
illustrate the requirements required for this thesis because of related parties needs.

2.1 CYCLONE platform
CYCLONE platform [1][2] is a project part of the Horizon 2020 Programme of the
European Union. Its objective is to create a simple platform that will allow scientists
from di�erent research institutions to share resources in a secure way. Authentication
in the system is done through the validation of the scientists’ credentials provided
by the research institutions. These credentials are obtained through the eduGAIN
federation [3] and proxied through CYCLONE towards the internal cloud services of
the research institution.

The CYCLONE platform depends on a set of previously developed components
which interact together: SlipStream, StratusLab, TCTP, OpenNAAS. These compo-
nents help to deploy and orchestrate the web and authentication services that make
CYCLONE work in each individual private cloud.

2.1.1 eduGAIN Federation

CYCLONE depends on the eduGAIN federation to provide a list of education
institutions and federations Identity Providers. eduGAIN [4] stands for "EDUcation
Global Authentication INfrastructure" and consists of a federation of federations of
education and research institutions. eduGAIN enables an updated list of Identity
Providers metadata of all the members of the federation and allows a trustworthy
exchange of identity, authentication and authorization of the federation’s users to any
of the registered Service Providers. It consists on more than 1,500 Identity Providers,
1,000 Service Providers found through over 40 di�erent federations [5].

Figure 1: Diagram representing the metadata workflow in eduGAIN federation
(from eduGAIN’s wiki https://wiki.edugain.org/Metadata_Flow_in_eduGAIN)

https://wiki.edugain.org/Metadata_Flow_in_eduGAIN

5

eduGAIN uses the SAML 2.0 protocol to grant the authentication and authoriza-
tion to the di�erent Identity Providers of the federation. eduGAIN requires some
procedure to join the federation, including fulfilling declarations of privacy, providing
a Federation Policy and selecting two members as delegates inside the federation.
Also, each of the federations which are part of eduGAIN need to provide an updated
metadata configuration describing how to connect to their SAML 2.0 endpoints, and
need to conform some tests to determine if the federation’s configuration is valid.

Just for a single node in the eduGAIN federation, this can be a feasible set of
requirements [5]. However, in case any institution wants to provide access to the
federation’s data to any of its services, it needs to create a new SAML 2.0 endpoint
and accept the previously fulfilled data. In case of simple services, this means a lot
of time and bureaucracy in order to setup a new service inside the federation.

This is why CYCLONE, tries to become a proxy from where services can interact
with
eduGAIN. Through the use of CYCLONE, we can have multiple services using
eduGAIN’s features while only having to maintain a single registration towards the
eduGAIN federation. This simplifies the deployment of authenticated services in
terms of fastness and complexity.

2.1.2 CYCLONE Components

CYCLONE, in turn, consists on some web services deployed by the previously
described orchestrators:

• Keycloak: provides the authentication and authorization via OpenID Connect
and SAML 2.0to the platform and allows the configuration and management of
users and resources via a web interface. The major characteristics and features
of this software are described in Section 3.5.

• SimpleSAMLphp: proxies SAML requests from Keycloak towards Identity
Providers of the eduGAIN federation. It allows to synchronize the Identity
Providers metadata list via eduGAIN’s JSON API, so CYCLONE is updated
with the latest list of members. The major characteristics and features of this
software are described in Section 3.6.

• Cache Clear: clears the user data from CYCLONE after the user session ends.
This increases the data privacy and avoids storing user data when is not being
used by any other services. Thanks to this CYCLONE can conform to some
strict data privacy regulations.

These services are deployed using the CYCLONE platform orchestrators inside a
VM located in the private cloud of the institutions part of the CYCLONE federation.
Inside the Virtual Machine, Docker is used in order to control this web components
and update them with newer versions. Docker provides a simple way to setup the
interconnections between the services and also to deployment. Through the use of
docker compose, Docker can setup the whole environment needed with minimal
configuration and just a couple of commands.

6

Figure 2: UML component diagram representing the di�erent components in CY-
CLONE and the dependencies they have.

2.2 Use Cases
This thesis bases its implementation in a set of use cases provided by CYCLONE
partners. This section describes the background and characteristics of each of the use
cases and how CYCLONE could be a solution for their troubles. Here we summarize
part of CYCLONE use cases, described in [6] and [7]. Note that this whole section
contains extracts and is heavily based on the work done by Domenico Gallico et al.
in [7].

2.2.1 Bioinformatics Use Case

Bioinformatics are concerned with the problem of having huge amounts of data,
usually proceeding from DNA sequencers or laboratory metrics. Actual modern
sequencers can generate terabytes of data; and together with their relative low price,
bioinformatic research teams can easily end with huge amounts of data.

According to CYCLONE’s use cases paper, "Bioinformatics community charac-
terizes on using many di�erent software programs to process and analyze the data.
It is a common practice to use custom environments with their own dependencies to
setup this software and as a result there is a huge fragmentation in the software field,
otherwise incompatibility between dependencies and resources might be a problem.
Because of this issue, the best approach for bioinformatics scientists has been to use
cloud computing, which provides isolation between the di�erent applications and
environments and covers the described needs" [6].

The French Institute of Bioinformatics (IFB) consists of 32 bioinformatics plat-
forms (PF) grouped into 6 regional centers found throughout the entire French

7

territory. The IFB shares a national hub, the "UMS 3601–IFB-core" (also called
IFB-core), which is the representative of CNRS in this project. The IFB maintains
a shared cloud infrastructure in the IFB-core though the future aim is to design a
federated cloud throughout the di�erent nodes of the research network.

The IFB has deployed a cloud infrastructure on its own premises at IFB-core and
aims to deploy a federated cloud infrastructure over the regional PFs. This cloud
infrastructure is devoted to the French life science community, research and industry,
with services for the management and analysis of life science data.

CYCLONE is based on two bioinformatics use cases:

1. UC1 - Secured Human Genome data sequencing: Thanks to the decrease in
the pricing of genome processing, this kind of analysis has become a common
diagnostic practice. Today, according to the CYCLONE use case, "genome
analysis is usually realized in the exome, which represents a 5% of the whole
genome. With this amount of data, we can’t really have problems with revealing
private or unique data of a specific human, because there is still a 95% of the
human genome without processing, where most of the data is ‘stored‘" [6].
However, in the future the objective is to process a full genome sequencing, which
in turn would then needed to be handled by drastic data privacy regulations.
Through this data, we could envoy all the details of a unique person and as a
result the environment where this data is stored and how this data is shared
should be ensured to be as reliable as possible in terms of security.

2. UC2 - Automatizing Microbial Genomes Analysis: Thanks to advancements
in genetics analysis, such as Next Generation Sequencing (NGS), genome
sequencing costs have decreased. As a result, scientists now perform analysis in
large collections of related genomes (strains), rather than in individual genomes.
Even though the cost has decreased, the analysis still take a long time to be
finished, and scientists spend more time in sequencing the data rather than
analyzing it.
Thus, there is a need on automatizing the process so scientists can focus in the
most important step: the post analysis of the sequenced genomes. IF-MIGALE,
one of the bioinformatics platforms in IFB, created an environment to analyze
the synteny (conservation of the gene order along the genomes) and to store
the results into a database. This environment includes a web interface allows
interacting with the analysis and to setup the configuration settings of the
environment.
To set up this environment, create the required database and scale up the
resources (this process has high computing resources consumptions), it is needed
advanced system administration knowledge. In this context, bioinformatics
scientists would have a steep learning curve just to deploy a commonly used
cluster of servers. CYCLONE cloud federation aims to simplify the setup of
this kind environment into something as easy as just one click deployment with
the ability to choose the preferred cloud to where to deploy it.

8

2.2.2 Energy Use Case

Recently, Germany has approved a new law, the "Energiewende", which consists in a
set of climate change mitigation goals that aim to replace the usage of fossil resources
with sustainable, green energy sources. This set of changes in law are focused to
omply with the European Union’s new "202020" legislation.

This means that most of the energy has to come from distributed origins such
as solar panels and wind turbines rather than from centralized systems such as
thermal or nuclear plants. This new grid of Distributed Energy Resources (DER)
need to be monitored and controlled so there are no changes in the energy supply
even if the amount of wind and sun variate. For this to happen, this grid needs to
become smarter and needs integration with the latest ICT and Big Data technologies,
otherwise the system’s e�ciency might decrease without any warning.

Another concern, is that this DER have di�erent characteristics in power genera-
tion, location and amount, which eventually redefines the grid into more complex
heterogeneous system. Thus, for easier management, di�erent parts of the grid are
aggregated in groups of distributed energy resources called Virtual Power Plants
(VPP). This provides s single management point for this group of resources. A VPP
and generates raw data on the usage and generation values and thanks to the fact
that the grid’s global governor system can coordinate di�erent VPPs to cover the
needs of the grid.

The data generated by the system, will be available for applications in the energy
economy field such as energy brokering or dynamic pricing setting based on the
energy usage.

Because of the complexity of the system, it is needed di�erent people with di�erent
roles to take responsibility and to manage the di�erent parts of the grid.

• DER Owner: the owner of the resource. He holds the contract with the energy
grid, thus personal data of the DER Owner is stored in a secure database in
order to contact him in case of problems or incidences. He can authorize other
services to access his data for other matters. Also he can see an overview of
basic usage of his DER.

• DER Operator: the manager of the resource in terms of configuration, and
review of its status. It can be as well the DER Owner. He has access to the
status, and historical data of the DER, plus identification data of the resource,
so it can provide maintenance in case of technical failure.

• VPP Operator: the manager of a Virtual Power Plant. He can see the di�erent
details of the DER resources contained inside the VPP. His task is to manage,
control and overview the energy generation and consumption under an specific
VPP.

All three roles should have a web interface to access the data both from a computer
or a mobile phone.

CYCLONE is based on one energy use case:

9

1. UC3 - Virtual Power Plant: As described previously, a VPP integrates di�erent
distributed energy resources (DER) and combines them into one power plant.
Given the sensitivity of the data managed by a VPP, the platform managing
the energy grid needs to be properly secured in both data storage and data
transmission cases. Also, the platform needs to be deployed into a distributed
cloud environment, in order to support the di�erent applications making use of
the platform. All together access to the di�erent resources need to be secured
via authentication and authorization access control.

2.3 User requirements
Through the di�erent use cases previously exposed, we can detect that there are
common requirements:

• R1: Need to be secure as they contain sensitive data from both the users
accessing the system and data being processed (sequenced genomes and energy
usage and generation data)

• R2: Needs to have multiple interfaces that must be secured via authentication
and authorization: a web interface, an SSH interface and possibly a remote
desktop interface via X11.

• R3: Needs to run in an internal isolated network.

• R4: May need to be deployed across multiple clouds. The di�culty to deploy
a clone of the platform should, thus, be simple and run in any configuration of
the cloud or VM.

• R4: Environment and VPP deployments need to be done dynamically and in
an accessible fashion. The procedure to deploy new nodes in the network has
to be as simple as a button click if possible.

• R5: Needs to support a federation of di�erent entities and individuals. Both use
cases rely on a user federation where di�erent groups of people and resources
associate together. This results on a need to regulate the free access to data
and accept some agreed rules when using the sensitive data.

We can see a diagram depicting the generic usage which defines most of this
requirements in Figure 3.

2.4 Stakeholders
In the previous section, we described the needs of the users, which are the scientists
and energy network managers. However, there are 3rd parties which are also involved
in the requirements of CYCLONE. They can be for example national legislation,
rules imposed by the national or local education and research network or any other
entity that is related to the privacy and user data usage legislation.

10

Figure 3: Diagram representing a generic structure defined by the use cases.

1. From TU Berlin: following the data protection rules of the university, infor-
mation that we gather from the authentication service such as mails, names
and similar cannot be stored in any server. It is only allowed to store data
meanwhile the user has a session open in CYCLONE. This was the main
reason to create the cache cleaner component, which clears the data of users
who’s session is expired.

2. From SURFnet, in The Netherlands: their requirement to use CYCLONE is
that CYCLONE identity provider needs to have a minimum of A rating when
validating the connection security with SSLLabs SSL test tool. Otherwise, they
treat the service as insecure.

3. eduGAIN: CYCLONE needs to fulfill the di�erent requirements of the eduGAIN
federation in order to be part of it make use if its services. This requires having
a SAML endpoint and approving a set of contracts proofing that you will not
misuse the data of the federation.

Thus, in order for CYCLONE to be used by most of potential users, we need to
cover this requirements required by them.

11

3 Background
This chapter explains the basic knowledge needed on Single Sign-On and related
technologies such as SAML 2.0 and OpenID Connect needed to implement this
project. First we define the terms ’authentication’ and ’authorization’ and compare
their meanings and their usages. Then we explain what are Single Sign-On systems
and finally we describe two SSO systems which are being used by the Keycloak
platform (described in below subsection 3.5) in this thesis’ implementation.

3.1 Authentication and Authorization
In any secured system there are two processes that are used in order to determine if
a protected resource is allowed to be accessed: authentication and authorization.

Authentication is the process to determine if a user claiming to be himself is
really saying the truth.

In the other hand, authorization is the process of granting someone or something
to access protected information, resources, data or services. The one requesting
the access does not have to be the owner of the protected information, and can
request access in behalf of the owner of the data. In order to determine the positive
or negative authorization, the services may need access to attributes of the user
credentials so the privileges of the user can be determined and thus process the
authorization.

Authorization heavily depends on authentication in order to provide a proper
authorization. If we have not properly validated the credentials of the service
requesting the authorization, we may be allowing access to restricted data to undesired
users, and thus rendering the whole security system useless.

Both terms meanings are usually confused between each other, even if they define
di�erent concepts.

Authentication and authorization are usually processed per domain to protect the
user against CORS attacks [8], this means that for each web service or resource that
the user wants to access, the user needs to be both authenticated and authorized.
Of course, this would make the user to enter their credentials several times, which
would provide a bad user experience. In order to mitigate this problem, there are
the Single Sign-On technologies.

3.2 Single Sign-On
Single Sign-On [9] is a set of methods which model systems that allow to authenticate
users in multiple environments in a secure and easy way. Their aim is to allow the
user access to multiple computing domains while authenticating himself only once.
These systems do not only provide a friendly access to the user, but also allow
administrators to update authentication and access information for multiple web
services at once. As a result, it avoids users having to authenticate themselves in
each page, and simplifies the management for the domain administrators as the
credentials management is not distributed between multiple sites.

12

3.2.1 SSO generic architecture

SSO systems scenarios usually consist on three main components [10]: a trusted third
party called Identity Provider (IdP), a user agent (UA) who is trying to authenticate
himself and a web service provider (SP) that is requiring authentication.

UA and SP will not share any private information as UA will not authenticate
towards SP but to the IdP instead. IdP is trusted by both UA and SP, which means
that UA has a mean to authenticate himself towards the IdP and the SP trust
validated data issued by the IdP.

Web services act as Clients of the IdP. This Clients usually need to have credentials
against the IdP to demonstrate that they are authorized to receive the user’s verified
sensitive and private data. With this validated data, clients can take a final decision
in authorization to decide if a user can access or not the protected resource for which
they need the authentication.

IdP UA SP

GET

auth_requestauth_request

authentication

token token

Figure 4: Diagram representing a generic overview of an SSO authentication workflow

Each SSO system has its own authentication workflow, however, most of them
share a generic protocol described in Figure 4:

1. The UA requests to access the SP.

2. The SP redirects the UA to the IdP to start the authentication. This redirection
contains an Authentication Request, which includes characteristics from the SP,
such as who is he, which encryption does he accept and similar. This data will
help IdP determine to return the needed validated data and its format that SP
needs.

3. With the redirection, UA starts a strong secured connection with the IdP. A
secure connection is needed as the UA will have to share private credentials to
authenticate with the IdP.

13

4. UA starts the authentication with IdP. It can be done via username and
password, but it can also be done through other kind of data such as One-Time
Passwords, redirecting to another IdP, or using a cookie from UA’s browser to
recall a previous authentication.

5. After authentication, IdP issues a token to UA and redirects him back to the
SP who originally did the request. This token should contain some information
of the UA, and needs to be integrity protected.

6. UA delivers to SP the token, who can validate its integrity using public keys
available from the SP. Also, he can use UA’s data included in the token in
order to take a decision on allowing or not UA to access the protected resource.

This is an example of generic workflow, however, SSOs can have more than one
workflow, allowing di�erent authentication methods which can provide more or less
restrictions depending on the trust relationship with the user and/or the client.

In order to extend the authentication with authorization, there are a couple of
extra steps to be done:

• When authenticating, depending on the trust relationship between the IdP and
the SP, UA might to accept an authorization with which it allows the SP to
access some of its data and private resources.

• The token becomes a set of tokens. It has and Access Token, which is really
short lived and allows to request access in behalf of UA, and a Refresh Token,
which has longer TTL and allows to request new Access Tokens. This tokens
need to be stored securely as it they are the keys that allow access to the
private data of UA.

• With this tokens, IdP can request to SP extra UA’s identity data not included
in the Access Token, such as the address, birth date or any other attributes
that IdP might have from the UA.

There are many SSO frameworks which provide this kind of solutions and are
widely used, for example CAS [3], OpenID [11], OAuth [12], Facebook Connect [13] or
the Security Assertion Markup Language (SAML) [14]. Some of them are SSOs which
only provide authentication OR authorization, they don’t provide both processes.
It’s important to take this in account when deciding which framework to be used.

In this thesis we will focus in two of this SSO architectures: OpenID Connect 1.0
and
SAML 2.0.

3.3 OpenID Connect 1.0 and OAuth 2.0
OpenID Connect (OIDC) [3] is the third generation of the OpenID technology.
OpenID Connect is an evolution of the OpenID 1.0 and 2.0 standards. These last two
protocols provide both provide authentication but no authorization. Nowadays we
also need authorization to take a decision on giving access or not. OIDC implements

14

an evolution of the previous OpenID standards into a new version that includes both
authentication and authorization.

OpenID Connect 1.0 is in general an extension of the extensively used OAuth2.0
protocol, which provides authentication on top of OAuth2.0 authorization thanks to
an inspired validation technology based on the OpenID 2.0 protocol. It allows to SP
to verify the credentials of UA and then perform authorization using this validated
credentials, as well as to obtain user attributes through a REST-like API. With this,
OIDC is fully compatible with the OAuth2.0 standard. However, it is not compatible
with OpenID 2.0 or other previous versions of the OpenID protocol.

3.3.1 OAuth 2.0: Authentication

OAuth2.0 [15] is one of the most extensively used authorization frameworks today.
OAuth2.0 consists on next evolution of the OAuth 1.0 protocol specified by the
IETF in RFCs 6749 and 6750 (published in 2012) which allows multiple workflows of
authorization depending on the trust relationship between the IdP and the SP (called
Clients in OAuth terms). However, people have been mistaking this technology as
an authorization service rather than authentication service. Some implementations
of OAuth2.0, like the one created by Facebook and rebranded as Facebook Connect,
include an Identification Token on top of the OAuth2.0 protocol, in order to provide
an authentication layer for OAuth2.0.

Other options to fix the authentication not included in OAuth problem are
using the di�erent SSO technologies that provide authentication in conjunction with
OAuth2.0. Example of possible authentication frameworks would be OpenID 1.0,
JASIG CAS. The objective is to provide a token, with which OAuth2.0 can validate
the credentials of the people requesting the authentication.

Through the use of OAuth2.0 as a base, OIDC has compatibility with most of
the implementations of OAuth2.0 and thus simplifies an upgrade from OAuth2.0 to
OIDC.

3.3.2 OIDC Specifications

The OpenID Connect 1.0 specification consists of many components [16]. The most
relevant ones from all the specifications are:

• Core [17] – Defines the core OpenID Connect functionality: authentication
built on top of OAuth 2.0 and the use of Claims to communicate information
about the End-User.

• Discovery – (Optional) Defines endpoints from where clients can dynamically
fetch configuration from OpenID Providers.

• Dynamic Registration [18] – (Optional) Defines how clients can register dy-
namically to use an OpenID Provider.

• OAuth 2.0 Multiple Response Types – Defines several specific new OAuth 2.0
response types.

15

• OAuth 2.0 Form Post Response Mode – (Optional) Defines how to return
OAuth 2.0 Authorization Response parameters using HTML form values that
are auto-submitted by the User Agent using HTTP POST.

Figure 5: Diagram representing the di�erent specifications conforming the OIDC
suite (from http://openid.net/connect/

One of the optional specifications of OIDC is Dynamic Client Registration [18],
which allows to register a new client into the IdP automatically. This registration
can be done through the interaction with OIDC’s API and the use of JSON Web
Tokens (JWT) signature keys [19] or via other means to verify the authenticity of
the new client registrant.

Final OpenID Connect specifications were launched on February 26, 2014. So
OIDC is a quite recent protocol and is not really extensively used. However, it
has high support from big IT companies such as Google, Microsoft, and Deutsche
Telekom between others. For example Google uses OIDC in their SSO systems, in
parallel to SAML 2.0.

A certification program for OpenID Connect was launched on April 22, 2015.
This certification provides assurance that the implementation of the OIDC server
has been created according to the specifications of the protocol.

3.3.3 Scopes and Claims

OAuth2.0 defines the claims as the di�erent attributes of the user that the Relying
Party can request. They can be, for example the email, phone, address of the user.
OIDC provides a set of default claims that should be included in all the OIDC

http://openid.net/connect/

16

implementations [17]. Other custom claims can be included to extend the user
attributes.

This claims are sorted in scopes. A scope is a group of related claims that can be
requested access to by the Relying Party. When the authorization is requested, the
request includes a scope. The User Agent needs to approve the access to this claims
to allow the Relying Party to access the user attributes.

OIDC contains an specific scope openid, which allows the clients to request
authorization to access to the user’s attributes. This is a feature not included in
OAuth2.0 and provided by OIDC allows to manage and authorize the access to the
user’s data via 3rd party clients.

3.3.4 Authentication Flows

OIDC has multiple authentication and authorization [20][17] inspired in OAuth.

• Authorization Code Flow: According to OpenID specifications, "the Autho-
rization Code Flow returns an Authorization Code to the Client, which can
then exchange it for an ID Token and an Access Token directly. This provides
the benefit of not exposing any tokens to the User Agent and possibly other
malicious applications with access to the User Agent. The Authorization Server
can also authenticate the Client before exchanging the Authorization Code for
an Access Token. The Authorization Code flow is suitable for Clients that can
securely maintain a Client Secret between themselves and the Authorization
Server." [17]

• Implicit Flow: According to OpenID specifications, "the Implicit Flow is mainly
used by Clients implemented in a browser using a scripting language. The Access
Token and ID Token are returned directly to the Client, which may expose
them to the End-User and applications that have access to the End-User’s User
Agent. The Authorization Server does not perform Client Authentication." [17]

• Hybrid Flow: The hybrid flow is a combination of the above two. It allows to
request a combination of identity token, access token and code via the front
channel using either a fragment encoded redirect or a form post.

3.4 SAML 2.0
According to its specification [14], "The Security Assertion Markup Language (SAML)
standard defines a framework for exchanging security information between online
business partners. It was developed by the Security Services Technical Committee
(SSTC) of the standards organization OASIS (the Organization for the Advancement
of Structured Information Standards)".

SAML 2.0 is based on XML and uses security tokens with assertions to share
information about a principal (usually a user), between a SAML authority and a
consumer of this data. Its architecture allows web based authentication. It was

17

Table 1: OpenID Connect Workflows Comparison

Property Authorization
Code Flow

Implicit
Flow

Hybrid
Flow

All tokens returned from
Authorization Endpoint no yes no

All tokens returned from
Token Endpoint yes no no

Tokens not revealed to
User Agent yes no no

Client can be authenticated yes no yes
Refresh Token possible yes no yes
Communication in one
round trip no yes no

Most communication
server-to-server yes no varies

approved as standard in March 2005 and replaced SAML 1.1. SAML 2.0 is the merge
of three di�erent technologies: SAML 1.1, Liberty ID-FF 1.2 and Shibboleth 1.3.

SAML is extensively used by many companies and institutions and is a dominant
SSO technology through many internet web services. This allows interoperability
between di�erent di�erent companies SSO systems as they are using the same SAML
protocol. As an example, eduGAIN defines as a requirement having a SAML 2.0
endpoint in order to be part of the federation.

SAML 2.0 is pretty similar to OIDC in terms on how it works [21]. It uses the
redirection of the user between the Service Provider and the Identity Provider in
order to transfer tokens and validated and signed XML assertions.

3.5 Keycloak
Keycloak [22] is an open source Identity and Access Management solution created by
RedHat. Its aim is to provide a simple platform to secure and protect web services
with just basic configuration. It runs on top of Jboss EAP application server (now
known as WildFly), and uses Java as programming language. As a database backend
it can work with MySQL, MongoDB and PostgreSQL databases.

Administration in Keycloak works through a web control panel where all the
settings can be changed. This avoids setting configuration through code and allows
a short learning curve. The interface provides an easy overview of users, clients and
permissions and explanations and tooltips for each of the settings.

Keycloak works with realms, which manage a sets of users, clients, roles, groups
and its own configuration. Each realm is isolated from each other, and can only
manage authenticate users under their control. There is also a master realm which
provides full control over all the other realms and allows advanced operation settings
of the other realms. Users are managed via roles and groups. Roles provide individual

18

Figure 6: Diagram representing a SAML 2.0 transaction workflow (from : https:

//developers.google.com/google-apps/sso/saml_workflow_vertical.gif

permissions to each user, and groups organize users in a hierarchy structure. Each
group has a set of roles which get assigned to the users inside of the group. Users
inherit as well all the roles of the parent groups to which they belong to.

Keycloak provides authentication and authorization through two SSO protocols:
OpenID Connect 1.0 and SAML 2.0 [23], described in previous subsections 3.3 and
3.4. For each client created in a realm, you can choose to use either OIDC or SAML
as the SSO protocol. Keycloak also allows client templates, to use as a base to create
new clients. For each individual client we can setup fine grained authorization to
resources, client specific roles and the scope of claims we want to allow the client to
access.

3rd party Identity Providers can be configured easily, so new users can register
or identify with social networks accounts such as Facebook, Google, Twitter, etc. As
an alternative it also allows to use generic SAML or OIDC providers providing the
custom configuration for the Identity Provider.

Though Keycloak is designed to cover most use-cases without the need of coidng,
Keycloak can be extended and customized via Service Provider Interfaces (SPI)
modules. SPIs provide di�erent functions to Keycloak and extend its functionality.
Keycloak provides in its core two kinds of SPIs: private and public ones. Private
SPIs are part of the core and can’t be extended. Public SPIs can be extended and
used by other SPIs.

Keycloak’s configuration can be exported in XML format. This allows to keep con-

https://developers.google.com/google-apps/sso/saml_workflow_vertical.gif
https://developers.google.com/google-apps/sso/saml_workflow_vertical.gif

19

figuration changes that are stored usually in the database and to share configurations
with other instances.

Currently, Keycloak is in version 2.5.0 and in full development. In their website
there isn’t a clear roadmap of the future features that will be implemented, though
discussions and decisions are taken in their developers mailing list.

Also, Keycloak has been certified as a valid OpenID Connect implementation,
which means that this platform conforms all the requirements of the OIDC protocol.

3.6 SimpleSAMLphp
SimpleSAMLphp [24] is a native implementation of SAML 2.0 written in PHP
which can work both as a Identity Provider or Service Provider. The choice to use
SimpleSAMLphp for CYCLONE comes from the need to synchronize the platform’s
data with eduGAIN’s metadata services. Keycloak, even if you can use a SAML
2.0 endpoint as Identity Provider, per itself it doesn not provide a simple way to
synchronize SAML metadata with a service such as the one provided by eduGAIN. In
order to Keycloak support, a custom SPI extension would be needed to be developed.
This is a rather tedious implementation.

Instead, a simpler solution is to use SimpleSAMLphp as an aggregation proxy
of the IdPs towards Keycloak. SimpleSAMLphp supports the dynamic updates
of metadatada provided from eduGAIN, and allows users to select with which of
eduGAIN’s members he wants to authenticate. Then, the authentication information
is relayed towards Keycloak and can be authenticated in the underlying services.
This means that the endpoint to be registered in eduGAIN’s metadata directory
needs to be SimpleSAMLphp’s one as it will be the one consuming the users data
provided by the federation.

Though SimpleSAMLphp may look a di�erent site than Keycloak, using a common
theme, allows the users to trust that both sites behave as a single web component.

20

4 The service registration API
In subsection 2.3 we described the di�erent requirements that need to be covered so
CYCLONE can provide a complete solution. Specifically requirements R3 and R4
define that users should be able to deploy dynamically their services. This services
need client credentials so they can authenticate users against the SSO server and
fetch their credentials and private data.

In this chapter we first analyze the state of the art and the di�erent options that
Keycloak provides out-of-the-box. Using this as a basis, we defend creating our own
solution as these ready made ones do not cover the needs described by our use cases.
Next, we compare the di�erent options to create our own Keycloak extension, and
finally we provide a detailed description on how we have implemented a Keycloak
SPI module to extend the platform with the required registration functions.

4.1 State of the Art
In Keycloak clients are usually created in a manual fashion via the web interface
where an admin will create the credentials and forward them to the requesting person.
This procedure, though, is quite slow and requires user interaction, something not
fitting when using automatic deployments through a deployment orchestrator. For
CYCLONE to work, there is a need of an automatized system to create clients.

In actual existing use cases of SSO implementations, such as the ones provided
by Facebook Connect or Google Accounts, this kind of credentials can be requested
via a web interface and even using an API. The credentials are then tied not only to
a client but also to the person requesting them and allowing thus to identify who
has the ownership and rights on the dynamically created client credentials.

Keycloak, the SSO platform used by Cyclone, integrates some mechanisms to
create the clients and its credentials:

• Using Keycloak API : Through the API that Keycloak exposes, new clients can
be created. Access to the API can be obtained requesting an access token in
the admin API’s token endpoint using user’s credentials as authentication This
access token can then be used to interact against the API itself.
In order to create a client in the API, the requesting user has to have a "create-
clients" role in the specific realm. However, to edit any of the client settings a
user then needs a "manage-clients" role. The combination of having this two
roles created by Keycloak grants permissions not only to create but also edit
and update any client in the realm. Giving these roles to many people would
result in an easily exposed client management, and users with these roles would
not only be able to edit their own configuration but also configuration relevant
to other clients and services. A user with this rights would be able to give all
the admin roles to the client’s user and then from a client escalate to have
superadmin rights. Thus this system should only be allowed to be used to
sysadmins or people with similar privileges. Another option would be to allow
only creation access to users, but that means that any change that needs to

21

be done to the client (set a consent, scope of users, etc.) needs to be changed
manually by someone who has the proper rights, usually an administrator.

• Using OpenID Connect Client Registration: When planning the implementation
of this thesis, Keycloak in version 2.0 provided an API endpoint implementing
the OpenID Connect Registration specifications defined by the protocol.
The OIDC registration endpoint works using shared registration tokens, which
anonymous people can use in order to register clients by themselves. This
registration tokens have a limited amount of uses and defined lifetime – usually
long – and anyone who has this registration token can register a new client.
The use of this tokens is focused to anonymous non authenticated users. As a
result, there is no way to track who exactly used the token and who is creating
clients. At most the only possibility would be tracking from which IP has the
registration been done. Also, even if the token has long expiration time, it can
still end under ownership of a malicious attacker, who could abuse it to fetch
private data from users.
With this registration token, a new client can be created, and after the successful
request a new token is received. This second token is a "client manager token"
which can be used to update settings of the client. However, as per Keycloak
2.0 specifications it also allows to edit any other client aside of the created one.
This means that any one who can create a client can eventually edit any other
client in the same realm. Not only that, but this "client manager token" needs
to be kept safe somewhere by the client creator in case it is needed to update
the client. Also, after each of the usages of this token to update the client
settings a new "client manager token" will be given replacing the previous one.
So the creator of the client needs to keep safe a token that will get updated
from time to time and that has excessive privileges.
This structure is as it is because as explained previously there is no way to
track who is the people who is using the tokens and thus all this tokens need
to be also anonymously used.

Summarizing, there are two existing solutions to create clients but both of them
provide or require excessive permissions to the users using them. This excess of
permission could eventually cause security issues and possible user data leaking.
According to Keycloak’s developer mailing list there is a plan to implement more
granular permissions in the platform, but there is no final decision on when this
feature will be implemented. Thus, a new solution needs to be implemented that
includes fine grained permissions when creating and managing clients and that tracks
who is creating or using this rights.

4.2 Initial Plan
A new solution that allows fine grained permission and that allows us to track who
is registering the clients needs to be implemented as the existing solutions that

22

Keycloak provides do not suit the user needs. The objective of our implementation
is to have two main characteristics:

• The client registration API should allow us to authenticate ourselves using our
SSO credentials. As it is needed to know who is registering clients.

• Only people with the required privileges should be authorized to create and
edit clients, disallowing to take control of any other client. As we would have a
proper authenticated user, we can define per-user authorization for each client.
In the end we would create owner and resource relationship between a user and
client respectively.

Following this two objectives, there are two main di�erent approaches that we
could use to implement our requirements into Keycloak:

1. Create a wrapper for the existing Keycloak APIs
The first approach would be create a new API that uses the existing APIs
as a backend and that extends them to provide the requirements we need.
For example, we could create a micro service compoenent that would allow
us to authenticate using our SSO credentials, and then it would relay the
creation of the client against the OIDC client registration endpoint. This kind
of implementation is less invasive and as it relies on web APIs it is easier that in
the future there are no breaking changes between Keycloak and the extension.
The main drawback of this approach is that we are creating new relationships
and we would need to store this data somewhere, preferably in a database,
not the same as the one being used by Keycloak, which would add a new
component into the platform. This increments the number of components of
the CYCLONE platform, and also decentralizes the authentication and SSO
data between databases and services, which in turn rises the complexity and
the maintainability of the the whole set of components.

2. Create a new API that fulfills all the requirements using Keycloak’s SPI
extensions
This second approach would consist in implementing a whole new API endpoint,
integrated directly into Keycloak’s using its SPI module system [25]. As a
result we have to interact with Keycloak’s core SPI modules to manage the
clients. This makes this implementation more fragile, as internal APIs are
more likely to be changed. However, it also centralized and unifies all the new
logic inside of Keycloak’s container, and thus simplifying the deployment and
maintainability of the system. Also, it is a more e�cient approach in terms
of resources as DB queries can be tailored to the needs of the logic. Other
benefits would be that there are more methods exposed internally that allow
more flexibility when interacting with the client and user entities.

Another parallel discussion is about a possible interface that could be created to
manage the API. Creating a the API using a wrapper, would mean creating a new

23

external component, outside of Keycloak and thus its UI. This results on having two
di�erent UIs where inputting the data, and also increasing the complexity of the
system. In the case of integrating the solution as an SPI inside Keycloak, this allows
us to (if needed) integrate the UI into Keycloak’s UI. This can be achieved through
extending Keycloak’s theme in a plugin and exposing the API internally into the
web interface. This, of course would also increase the security as we are relying in
the secure implementation of Keycloak’s UI and we do not have to proof the security
of a new website from scratch as it would hapeen in the first case.

Out of this two options, our decision was to implement a new SPI in Keycloak.
The main driver was the maintainability of the system, and avoiding to increase
the complexity with more components. Also, integrating the system directly into
Keycloak would allow us to use similar authentication and security systems as the
other API endpoints are using.

4.3 Architecture
To create our own extension module for Keycloak we have inspired ourselves in
Keycloak’s "domain-extension" 1 example. This example contains guidelines to create
an authenticated endpoint and how to integrate calls to the database from within
it. SPI extensions can contain multiple providers inside themselves and use already
existing providers that are part of Keycloak’s core. Service Providers Interfaces
(SPIs) in Keycloak are written in Java and make use of the factory method pattern
to create new providers. This factory pattern "provides an interface with which a
client can obtain instances of classes conforming to a particular interface or protocol
without having to know precisely what class they are obtaining" [26]. Thus, through
the use of this pattern, Keycloak can instantiate the new classes that extend their
own functions.

To implement this pattern in Keycloak, we need to make use of the ProviderFactory
and Provider interfaces. The ProviderFactory interface defines the factory class
and includes the logic to create a new object of an specific class, which implements
the Provider interface. In the other hand, the Provider interface defines a Provider
object, which when extended, contains all the possible methods that we can use to
interact with the provider. This interface also exposes inner methods from where we
can request and intereact with other SPIs.

Also, a Keycloak SPI extension requires a class extending the Spi interface, where
we can define the basic parameters and name of our SPI.

In our SPI we need to at least implement three di�erent Providers, that will cover
the di�erent needs we have. This providers are located in their own sub-packages
inside of the org.cyclone.clientowner package:

• REST API (org.cyclone.clientowner.rest): defines all the API endpoints, exe-
cutes authentication and authorization and forwards the requests to the proper
methods of the resource logic.

1
https://github.com/keycloak/keycloak/tree/master/examples/providers/

domain-extension

https://github.com/keycloak/keycloak/tree/master/examples/providers/domain-extension
https://github.com/keycloak/keycloak/tree/master/examples/providers/domain-extension

24

• Resource logic (org.cyclone.clientowner.spi): defines all the main logic of the
SPI, and calls the methods in JPA entities to update them and update the
database values. It also interacts with other SPIs such as the user, clients and
realms SPI to take decisions in the logic.

• JPA Database Entity (org.cyclone.clientowner.jpa): defines a JPA database
entity interface and how the objects are stored into the database. Principally
it defines the model and the relationship with other items in the database.

The base of our extension is to create an ownership link between the a client and
a user entities. Also, we need to include the realm entity so a relationship cannot
be used outside of a specific realm. In this relationship we can save the information
which indicates which user owns an specific client in a per realm basis. To create
this design we need to use the client, users and realm SPIs, so we can access the
respective database entities of each provider.

Finally, the JSON models used in our implementation are the same as the ones
used by Keycloak Admin REST API 2. The reason is that doing so we keep the same
object formats for all the di�erent requests towards Keycloak. This also simplifies
later on the translation from JSON object towards internal database entity object.

4.3.1 Authentication

To authenticate, using the ’domain-extension’ example as a reference, we can use
the same authentication system as we have in Keycloak’s administration API. This
can be done through the AppAuthManager class, which provides us functions to
validate a bearer token given a context. The bearer token can be obtained through
authentication using JWT or client credentials against Keycloak’s OIDC token
endpoint, which its path is
/auth/realms/master/protocol/openid-connect/token. In general the workflow
to authenticate against our endpoints is based on the Authorization Code Flow
described in subsection 3.3.4:

Figure 7: Represents the workflow required by the registration API implementation
to register or modify a client

2http://www.keycloak.org/docs/rest-api/

25

1. The user authenticates with its credentials against the OIDC Token End-
point. Authentication can be done through JWT or client_id and client_secret
credentials.

2. Keycloak generates OIDC tokens (access and refresh tokens), which allows the
user to authenticate in other endpoints.

3. User gets these access and refresh JWTtokens.

4. User sends the registration data together with a Bearer token (access token) to
authenticate. Registration data is a JSON with format ClientRepresentation.

5. Extension logic.

6. The user gets redirected to the new created resource (with all the information
of the new client), or returns the proper code depending of the REST action.

Then, an example cURL POST call to create a new set of tokens would consist
in a request with the following header and body:

26

1 c u r l ≠X POST
2 ≠H " Accept≠Language : a p p l i c a t i o n / j son "
3 ≠H " Content≠Type : a p p l i c a t i o n /x≠www≠form≠ur lencoded "
4 ≠H " Cache≠Control : no≠cache "
5 ≠d ’ grant_type=password&username=admin&password=admin&

c l i e n t _ i d=admin≠c l i ’ " http :// l o c a l h o s t :8080/ auth/
realms /master / p ro to co l /openid≠connect / token "

Listing 1: cUrl command to generate a new set of OIDC tokens

In this case we are doing a password authentication, using the client_id and the
client_secret. However, we could also authenticate ourselves using JWT authentica-
tion. As the generated access tokens contain encoded data from the user, we later
figure out who is who when requesting access to our implemented endpoints.

Then, afterwards, we can do a call with the provided access token to the wanted
endpoint. This access token will last usually around 60 seconds. This is a configurable
setting in Keycloak’s admin interface. In case of expiration, a new token can be
requested through the token endpoint using the refresh token also obtained when
authenticating against the OIDC token endpoint the first time.

1 c u r l ≠X POST ≠H " Author i zat ion : beare r <acc e s s token
here >"

2 ≠H " Content≠Type : a p p l i c a t i o n / j son "
3 ≠H " Cache≠Control : no≠cache "
4 ≠d ’{
5 \\ body o f the c a l l
6 } ’ " http :// l o c a l h o s t :8080/ auth/ realms /master / c l i e n t ≠

r e g i s t r a t i o n /"

Listing 2: cUrl command to create a new client authenticating with an access token
recived from the OIDC token endpoint.

4.4 SPI implementation
In this subsection we describe each of the di�erent packages that conform our
implementation – REST API, JPA adapter and SPI logic – and we explain how
we implement each of them. Each of the providers that conform the SPI have a
FactoryProvider and Provider classes that interface with Keycloak so we can extend
with our custom code. A general overview of all the di�erent classes that conform
the whole extension can be found in Figure 8.

4.4.1 REST API

To create the REST API for our registration system we use Java API for RESTful
Web Services (JAX-RS), which is the framework that Keycloak uses to create its
REST endpoints. To do so, first we create a a ResourceProviderFactory and we use

27

ClientOwnerEntityProviderClientOwnerEntityProvider

ClientOwnerProviderFactoryImplClientOwnerProviderFactoryImpl

ClientOwnerProviderImplClientOwnerProviderImpl

ClientOwnerResourceProviderClientOwnerResourceProvider

ClientOwnerProviderFactoryClientOwnerProviderFactory

ClientOwnerClientOwner

ClientOwnerRealmResourceProviderFactoryClientOwnerRealmResourceProviderFactory

ClientOwnerRestResourceClientOwnerRestResource

ClientOwnerSPIClientOwnerSPI

ProviderProvider

ClientOwnerProviderClientOwnerProvider

ClientOwnerEntityProviderFactoryClientOwnerEntityProviderFactorySpiSpi

ProviderFactoryProviderFactory

ClientOwnerEntityClientOwnerEntity

Figure 8: Class relationship diagram depicting the relationship between the di�erent
classes that conform the whole registration API extension.

it to create a ResourceProvider object. In the Factory object we define the identifier
of our provider, in our case client-registration. With this set of classes we indicate
to Keyclak, using the factory pattern, that our REST provider is defined in our
ClientOwnerResourceProvider class. In turn, the ClientOwnerResource Provider
class initializes all the API settings and instantiates a ClientOwnerRestResource
object that contains the API. We can see the relationship of these classes in Figure 9.

ClientOwnerRealmResourceProviderFactoryClientOwnerRealmResourceProviderFactory

ClientOwnerRestResourceClientOwnerRestResource

ClientOwnerResourceProviderClientOwnerResourceProvider

ProviderFactoryProviderFactory

RealmResourceProviderFactoryRealmResourceProviderFactory

ProviderProvider

RealmResourceProviderRealmResourceProvider

«create»

«create»

Figure 9: Class relationship diagram depicting the relationship between the di�erent
classes that conform the API in the registration API.

Then, we can create the di�erent endpoints using annotations in functions. With
the annotations (see lines 7 to 11 in Listing 3), we can tell Java which kind of data
we are expecting, which is the path to this endpoint and which is the format of our

28

answer, which in our case we have set it to JSON. We can also define the path
variables in the function’s arguments. The name of the function does not a�ect at
all the endpoint. From inside the function we have access to the session information
and we can call the di�erent functions that we implement in the SPI logic, which are
explained later in subsection 4.4.3.

29

1 /úú
2 ú Endpoint to update c l i e n t s
3 ú auth /realm /{ realm }/ c l i e n t ≠r e g i s t r a t i o n /{ c l i e n t I d }
4 ú
5 ú @return C l i en tRepre sen ta t i on o f the new c l i e n t
6 ú/
7 @PUT
8 @Path(" { c l i e n t I d } ")
9 @Consumes(MediaType .APPLICATION_JSON)

10 @NoCache
11 @Produces (MediaType .APPLICATION_JSON)
12 public Response updateClientOwnerResource (@PathParam("

c l i e n t I d ") S t r ing c l i e n t I d , C l i en tRepre s enta t i on
c l i e n t R e p r e s e n t a t i o n) {

13 checkRealmAdmin () ;
14 checkClientOwnership (c l i e n t I d) ;
15
16 // Logic here
17 }

Listing 3: Example of annotation defining the settings of an endpoint

In all the di�erent endpoints we are executing at first the logic to check the
authentication of the user. With it, first we make sure that the user has the needed
role, which should be fetched thanks to the included bearer token. Then in cases
of edition and deletion, we make sure that a user has ownership over the resource
before giving access to manipulate it. To do so, we use the context information
provided by Keycloak and we use the AppAuthManager class to authenticate the
bearer token. Also, at the end of each endpoint’s logic we handle any possible error
and we construct the requited HTTP errors to inform properly the user. All the
endpoints we have created are under the base path <domain>/auth/realm/{realm}/
which is set by Keycloak. This path allows us to process the calls individually per
realm. We have created 5 di�erent endpoints (see Table 2) to manage all the di�erent
CRUD operations that we might need in our extension.

All this endpoints either return or receive an object with structure of ClientRep-
resenation 3 or an array of this kind of items. None of the attributes is required when
creating a new client as and otherwise it will use the default value or randomize it.
However we suggest to at least set the clientId value for easier management of clients.
We have chosen to use this representation because Keycloak exposes methods in
other SPIs to convert JSON objects to Keycloak models and vice versa in an easy
fashion, which simplifies the implementation. Note that the conversion is to models
and not to entities used in the database.

3
http://www.keycloak.org/docs/rest-api/#_clientrepresentation

http://www.keycloak.org/docs/rest-api/#_clientrepresentation

30

Path HTTP verb Description

client-registration/ GET Get an array of all the clients
available for the actual user

client-registration/ POST Create a new client
with a user ownership

client-registration/{clientId}/ GET Get an specific
client via its ID

client-registration/{clientId}/ PUT Edit a client

client-registration/{clientId}/ DELETE Delete an specific
client-owner resource

Table 2: List of registration API endpoints and a description of their implemented
functions. The base path for all the endpoints is /auth/realm/{realm}.

4.4.2 JPA Database Entity

Keycloak uses the Java Persistence API (JPA) to manage the access, persistence
and structure of data in the database. In Java instead of having to implement the
queries to a database and map the results to objects, we can use frameworks such as
JPA or Hibernate to manage the interactions to the data storage engines.

Keycloak requires entities to manage database objects. Through JPA this entities
are mapped them to their SQL schemas. Though Keycloak supports MongoDB, we
have decided to not to implement the required entity interfaces because of many
reasons reasoned in subsection 4.5.

JPA works with entities. Each entity maps to a table in the database and they
have a primary key to sort the entries. In Keycloak, string UUIDs of 36 bits are
used as keys. Also, we can make use of already existing entities in Keycloak so we
can create relationships between tables. In our case, we will create a new entity,
CLIENT_OWNER, that will have relationships to the user, realm and client entities.
Finally the schema and the required migrations of the database also need to be
recorded in a separate XML file.

To implement our entity we firstly have created a EntityProviderFactory and
its own EntityProvider. Through this classes Keycloak can detect that we have
implemented a new Entity. In the EntityProvider class we have defined the schema
migrations that we need to execute in the database. In our case, we need to create a
table named CLIENT_OWNER which has a primary key column ID and 3 columns:
OWNER, CLIENT and REALM_ID. All this columns are a VARCHAR of length
255 as IDs in Keycloak are strings.

Next, we can use JPA annotations to define the di�erent columns in our entity
and map this columns to attributes of our class.

1 @Id
2 @Column(
3 name = " ID" ,
4 l ength = 36
5)

31

6 @Access (AccessType .PROPERTY)
7 @GeneratedValue (generato r=" system≠uuid ")
8 @GenericGenerator (name=" system≠uuid " , s t r a t e gy = " uuid ")
9 protected St r ing id ;

10
11 @OneToOne(f e t c h = FetchType .LAZY)
12 @JoinColumn (name = "OWNER")
13 private UserEntity owner ;
14
15 @OneToOne(f e t c h = FetchType .LAZY)
16 @JoinColumn (name = "CLIENT")
17 private Cl i en tEnt i ty c l i e n t ;
18
19 @Column(name = "REALM_ID" , n u l l a b l e = fa l se)
20 private St r ing realmId ;

Listing 4: Example of annotation mapping JPA columns to object attributes

To find the related clients and users, we need to find them by their unique ID,
which is saved in our table. There is a one-to-many relationship from the clients,
users and realms to the client_owner entity. To create this relationships we need to
create joined columns. However, this will be a relationship that can only work in
one direction, as we cannot edit the entities provided by Keycloak that there is a
relation. This means that we can only find a user or a client from the client_owner
entity but not viceversa. We could create a migration in the database to enable a two
way relationship, but doing so we put in danger the integrity of the database, as we
would not be sure if Keycloak has plans to update this specific tables. Also, for this
same reason we cannot enable a cascade delete to delete clients or users whenever
we delete a relationship, as we would need to create migrations that could conflict
with Keycloak’s. So, instead of deleting via cascade, we have also decided to not
to delete the users or clients when deleting a relationship because we could create
users that could be used for other means. Instead our decision is to only delete the
relationship, which will eventually forbid the user from edition and viewing access.

Finally, we also need to make complex database queries in an easy fashion. JPA
allows us to create named queries with custom parameters, so we can find easily
records, for example per realm. The actual implemented queries are find by realm,
find by ID, find by client, find by owner (user), find by client and owner and delete
client owner. When searching by client and by owner we do not have to provide the
ID, as JPA requires the whole entity. This is important as this will be relevant when
creating the logic that uses this entity.

4.4.3 SPI Logic

This package includes the main logic of the extension. It relies on the previous
implementation of the API and database entities parts. To implement this logic
we first have to create a the ProviderFactory and its Provider interface. In the

32

Figure 10: Entity relationship diagram depicting the relationship between the di�erent
tables in Keycloak’s database. The USER_ENTITY, CLIENT and REALM entities
have a relationship of one-to-many to the CLIENT_OWNER entity through the use
of their IDs.

Provider interface we need to add all the possible functions that the API can call
and that with the logic and database queries we have to fulfill. Then, in the
ClientOwnerProviderImpl class we implement all this functions that the interface
requires. Implementing this functions using this pattern allows other SPIs to call
this functions if needed.

The implemented functions are CRUD functions to manage ClientOwner entities
and get/set functions used internally to manage the client and owner relationships
of a specific record. This functions we usually receive a model as an argument but
need to map it entities. Models do not contain a method to convert to entities, and
the JPA database interface requires entities to search some records. Thus, we need
to make queries using attributes of the models, such as the ID or the name, in order
to find the related clients and users through the use of name queries. Also, we can
make use of the EntityManager to execute named queries from core providers, such
as users or clients.

Another challenge during the implementation was the fact that sometimes we
want to create a client and then use the ID of this client to create a client_owner
relationship. In this case, as JPA has not processed the first transaction, we do not
have the ID of the client, and thus we have problems when creating records. To
avoid this problems we need to forcefully flush the transactions queue

Finally, before returning the results, we have to check that we are not returning too
many results or that we unexpectedly have multiple records for the same client_owner
relationship. In case we find more than one, we can throw an exception with a message
warning about the inconsistency in the database (which should never happen).

4.5 Limitations
Even though we have carefully designed the implementation of this registration API,
there are a couple of limitations that need to be reviewed in future implementations

33

of this software. The first problem is that the actual implementation only works
with JPA supported databases which are SQL based databases such as MySQL and
Postgres. This means that Mongo, which should be also supported by Keycloak,
would not be compatible with out extension. The reason is the database interface
of our extension. Keycloak, in order to support MongoDB as a database, needs
to have an entity specifically written for this database, aside of the one that we
have already created for JPA databases. This would mean reimplementing all the
entity management and relationship system of the database. Also, Keycloak does
not provide a properly documented procedure on how to implement this MongoDB
entity. And finally the Keycloak community is considering removing MongoDB from
the set of databases that Keycloak supports 4. The main reason is maintainability of
the software and avoiding deduplication when creating database entities. Because all
this reasons, and to avoid implementing a MongoDB interface when it is possible
that will be deprecated soon, we decided not to implement it unless is really required.

4.6 Deployment
After implementing our software, we can use Maven Java builder to compile and
package our extension. To deploy it to a Keycloak server, we need to use then
Keycloak’s admin CLI [27]. Through it we can deploy our newly build module, in
JAR file package inside the Wildfly server on which Keycloak runs. To do so, we can
use the following command:

1 /opt/ jbo s s / keyc loak / bin / jboss ≠c l i . sh \
2 ≠≠command="module add ≠≠name=org . cyc lone . c l i en towner

\
3 ≠≠r e s o u r c e s=/opt/ jbo s s / keyc loak / ta r g e t / cyclone≠

c l i en towner . j a r \
4 ≠≠dependenc ies=org . keyc loak . keycloak≠core ,
5 org . keyc loak . keycloak≠s e r v i c e s ,
6 org . keyc loak . keycloak≠model≠jpa ,
7 org . keyc loak . keycloak≠s e rve r ≠sp i ,
8 javax . ws . r s . api ,
9 javax . p e r s i s t e n c e . api ,

10 org . h ibernate , org . j a v a s s i s t "

Listing 5: Command to add a new custom extension into Keycloak’s Wildfly server.
It requires to list the name of the package and all the other package dependencies.

Then, we can add our module into the list of providers in the Keycloak’s configu-
ration and the platform will load our extension the next time we start the server.
However, executing this, may not be feasible, as we want to provide an easier way to
deploy rather than having to download and install Keycloak and then adding the
custom module. To avoid so, we have created a custom Docker image of Keycloak,

4
http://blog.keycloak.org/2016/12/considering-removing-mongo-from-keycloak.

html

http://blog.keycloak.org/2016/12/considering-removing-mongo-from-keycloak.html
http://blog.keycloak.org/2016/12/considering-removing-mongo-from-keycloak.html

34

which includes inside our custom extension. We have created it extending Keycloak
version 2.2.0 Docker image, just to include our module. To do so, we can create a
simple Dockerfile that will automatize the image craetion This, allows a user to use
a simple docker-compose to start a new CYCLONE service which includes all the
di�erent components. As our project is an open source one, we can upload it to
Docker Hub for free.

However, we are aware that creating the Docker image is not a fast task and it
could be automated. Thus, we have created an automatic build and deployment
to Docker Hub using Travis CI. This continuous integration setup fetches the code
when committed to the master branch of project and then it installs and packages
the extension in a JAR file. Then, using the project’s Dockerfile we create the image
and we upload it to Docker Hub. This, allows us to recreate a new image in terms of
few minutes, just commiting new data to the git repository. For example, we could
create a new updated version of our image with recently released Keycloak version
just updating the version number in the Dockerfile.

All the source code needed to compile the extension can be found in this extension’s
GitHub repository 5. The implementation described in this thesis can be found in
commit 354ae0c.

5
https://github.com/cyclone-project/cyclone-client-registration

https://github.com/cyclone-project/cyclone-client-registration

35

5 SSH login integration
As described previously in UC1 and UC2, scientists require to access their secure
servers via SSH. However, setting up an SSH RSA key is not an easy task and it
is time consuming. In this subsection we introduce a solution that we have called
CYCLONE-PAM where users can log in into a SSH server while using their SSO
credentials from their own institution. The implementation is based on extending
the PAM workflow to allowing to use OIDC as authentication source and the main
objective is to provide a simpler system to login to a terminal. In this subsection we
provide an overview of the motivation to implement this solution together on the
extendability of SSH. Then, we describe what is the objective architecture of our
system. Next, we explain the implementation of the chosen solution using Linux PAM
modules configuration while using CYCLONE’s OIDC as authentication backend.
Finally, we provide some insights on future work, and how is the current work on a
graphical client for the solution is evolving.

5.1 Motivation
As described in the use cases UC1 and UC2 of CYCLONE project, one of the user’s
needs is to be able to access the deployed cloud. This cloud contains the set of tools,
platform or services that the users need to work with. As per the requirements,
this services need to be secured, in this case by the SSO provided by CYCLONE
platform.

One of the possible ways to connect to the server is via SSH. SSH is used in
the provided use cases to setup remote shell connections, virtual SSH tunnels and
initiate X11 remote desktop connections with a server. SSH allows to authentication
in three di�erent manners [28]:

1. Username and Password: a simple username and password connection that is
validated against the internal set of users of the server.

2. Username and SSH RSA Key: a username plus an RSA public key that allows
to encrypt and authenticate a user without the need of a password.

3. Keyboard-Interactive: a generic authentication method that can be extended
to implement custom authentication mechanisms. Any authentication system
that requires the user’s input can be performed using this method. This include:
password, PAM, RSA SecureID and RADIUS.

Even if using an RSA key login has lots of advantages such as high level security
and not having to provide the password every time, the downside is that creating
the key and deploying it in the server dynamically is not so easy, at least for people
without IT background. For the use case of scientists, this is not so feasible, as
you need rather advanced IT skills in order to setup the SSH RSA client in your
computer and create the key, plus command line needs to be used. With CYCLONE
we want to simplify the login process as much as possible, so users can focus in their
work rather than login in into the system.

36

The solution, CYCLONE-PAM, we have devised for this problem is to allow the
users to login into the remote server using their own eduGAIN account through the
use of CYCLONE platform. Through the use of Keyboard-Interactive authentication
method, we can create a custom authentication which can be connected to the
authentication system provided by CYCLONE.

5.2 Architecture
In order to allow users to login with their eduGAIN account, we need to somehow con-
nect and provide authentication through CYCLONE and then forward the validated
user’s data to the secured server. OpenID Connect provides multiple authentication
flows which may or may use a browser to authenticate the user. In our case, and
with the purpose of simplifying the authentication system for the users, we need to
do authentication via browser.

Also, browser authentication is a requirement because of SAML 2.0: the SAML
2.0 IdP from eduGAIN that Keycloak uses can only work using a browser workflow,
as described in the SAML 2.0 protocol definition. As a result, this means that
Keycloak needs to do an OIDC callback to the client with the user’s information
and that requires the secured server to have an HTTP server listening.

A general overview of the authentication process can be seen in Figure 11:
• The users logs in into the server via SSH (1), which triggers the PAM au-

thentication (2) and starts an HTTP server using python in a random port
(3).

• The URL to the HTTP server is forwarded back to the user (4 and 5).

• The User connects to the provided URL, received through the console, (6) and
gets redirected to the authentication login in CYCLONE (7).

• Authentication happens online in the browser. Keycloak saves cookies in the
user’s browser for future use and faster login. OIDC POSTs a callback to the
HTTP server with the validated user data (8).

• The HTTP server then forwards the data to some authorization logic which
will define if the user is authorized to access the secure server or no. The result
is returned to SSH that in turn will allow or not the access to the user.

As seen, we need to extend the SSH server with custom logic to define if the user
is authorized or not using the user’s authenticated data, plus we need to spawn an
HTTP server that will redirect to the specific authentication endpoint of the OIDC
protocol and also receive the POST callback from OIDC. Redirection is the choice
to access to the authentication website because shortens the URL that the users
have to input in their browsers.

We inspired this design on previous work done in crowd_pam module [29], which
allows to login people using Atlassian Crowd as backend. However, we di�ered in
multiple implementations as for example we do not allow to create new clients if
they do not exist.

37

User SSH process
PAM

Python logic
and HTTP server OIDC server

Logs in8

Use
Keyboard-Interactive

Start PAME
authentication

Start Python logic and serverz

HTTP start listening
at random port

Return the URL9
to the HTTP server

Print URLj
in user4s terminal

User needs to press 4enter4
as PAM blocks the python thread
when waiting for an input and
otherwise the Python HTTP server
wouldn4t answer

HTTP request6 Redirect7

Browser
Authentication

Callback8

Evaluate authorization
to access the server

Return authentication result9
Allow or reject
access

Figure 11: UML sequence diagram representing a general overview of the whole SSH
login integration with OIDC

38

5.3 Implementation
Following the motivation found in the previous subsection, we need to find an
extension to SSH so authorization can be done through the use of an external
OIDC backend. After reviewing the di�erent authentication systems provided by
SSH [30][31], it is clear that the most flexible one is using the Keyboard-Interactive
login and using the PAM subsystem for authentication purposes as it allows cus-
tom configuration in the login workflows. However, still there is the challenge to
authenticate using an OIDC server from a PAM module.

The implementation is separated in three main parts, implemented in Python:

1. PAM module interface (subsection 5.3.1).

2. Authentication via OIDC (subsection 5.3.2).

3. Authorization procedure (subsection 5.3.3).

To do so we researched what are and how we can implement PAM modules, as
described in subsection 5.3.1.

5.3.1 PAM Module Implementation

Linux Pluggable Authentication Modules (PAM) [32] provide a plugin framework
which grants custom authentication support to any service or application found
in a Linux or GNU/kFreeBSD environment. The PAM standard is known as
DCE-RFC 86.0 and a copy of this standard along with the System Administra-
tors’ Guide and Module Writers’ Manual and Application Developers’ Manual is
found at /usr/share/doc/pam-version# inside most of the Linux based operating
systems. By using this plugin system we can extend the existing authentication
subsystem with custom features.

By default SSH uses the internal Linux PAM subsystem of user accounts to
authenticate the users trying to use the Username and Password method. By using
Keyboard-Interactive we can choose to still use the PAM system to authenticate
users while setting up a custom form to fetch the data from the users. Then, we can
extend PAM to allow authentication through OIDC, the simplest and clearest way
to implement custom, more complex code is to use pam_exec.so library. pam_exec
allows to execute custom Bash scripts and implement more advanced logic inside
PAM authentication. As PAM depends on boolean results, the custom shell script
only needs to return true or false values. However, there is no existing implementation
of OpenID Connect client in Bash, and creating it for this project would be a huge
overhead.

As implementation of PAM modules is usually done in C and creating a simple
HTTP server in this language is not so easy, we researched other approaches. Other
options in terms of languages were Ruby and Python. Both languages allow to setup
an HTTP server with a minimal amount of code. Also, Python language could be
used to define the advanced authorization logic of the PAM module after successesfuly
authenticating the user via OIDC. Avoid implementing the authentication logic

39

in C together with another language for the HTTPS server would also reduce the
complexity of CYCLONE-PAM.

We analyzed other di�erent solutions to implement a PAM module, using other
languages. We found two possible options:

• pam-python [33]: written in Python, allows to implement custom PAM modules.
Last commit dates from 2016. Also, has some examples and documentation,
plus checking the issues, the main developer still is maintaining the code and
possible issues.

• ruby-pam: written in Ruby, also allows the same features as pam-python.
However, it is not actively maintained and there is barely activity in the
repository since 2012, from when the latest update dates of.

Clearly in terms of maintenance, the Python module is more actively developed,
which gave a clear decision on which of the two options to choose: python-pam
module.

Pam-python module exposes the PAM implementation interface to the Python
interpreter. According to the author of pam-python, "writing PAM modules from
Python incurs a large performance penalty and requires Python to be installed, so it
is not the best option for writing modules that will be used widely". However, our use
cases determine that we do not have many users using the PAM login in parallel too
often, which means that performance is not a critical point of our implementation.

On the other hand, Python secures our implementation against problems caused
by memory allocation or corruption and is also generally shorter to write it in C than
in Python. As the memory corruption would happen in PAM, any corruption could
a�ect any program using the PAM subsystem. This makes pam-python an ideal
solution for basic implementations of the PAM API while minimising the danger of
introducing memory corruption into any program using PAM.

The only drawback found in this module is that as it depends on the PAM
protocol, there are some limitations caused by PAM when executing the script:

• The python scripts freeze when waiting input from the user. For security reasons
and internal workings of PAM, the executed code needs to stop when user
input is requested. This means that python will stop being executed, even if
ran in another thread.

• Notifications and messages require user input in order to be forwarded to the
user’s console. If PAM forwards messages to the user, if they are not followed
by a user input (such as press a button) afterwards, the message won’t be
forwarded to the user.

This means that it is a must for for the user to press a button when information
is shown back to the user, otherwise any python script won’t be executed. This can
be considered as loss in user experience as we require more actions from the user so
the implementation works. However, this also increases the security as we make sure
that no script has started the login in behalf of the users, without their knowledge.

40

pam-python is not just a Python module but also depends on a library that needs
to be installed on the OS and that works as a bridge between Python and the C
implementation of PAM. It can be installed with apt-get or can be compiled from the
source code found in its repository. At the moment, there are only prebuilt packages
for Debian based distros such as Ubuntu or Linux Mint. The default location of the
library after installing it with the DEB package is /lib/security/pam-python.so.
However, as most of the images used in the genomics case are based on CentOS they
are not compatible. We tested doing a build in CentOS and it can be compiled and
executed without any problems in this other family of Linux distros.

Another possible limitation that might be problematic on using pam-python is the
operating system’s Python version. Pam-python is compatible with Python versions
2 and 3, though other packages needed to implement the OIDC authentication may
require a minimal Python version higher than the one shipped with the OS that the
server runs. However, Python can be updated via portback packages or compiling it
from source code and replacing the system’s Python command, as PAM uses the
Python executable loaded by the system.

Now, the next question that arises is how do we load this PAM module into
the PAM configuration of the system. Each PAM enabled service has its own PAM
configuration found in the /etc/pam.d/ folder [34]. According to its description
each of these files "contains a group of directives that define the module and any
controls or arguments with it." In our case we need to extend the authentication
module interface of PAM to update the authentication of the SSH PAM module.

The original workflow for SSH login consists on first checking if there is an RSA
key available. In case it exists, it will authenticate the user using it. Otherwise,
it will try an authentication via username and password using PAM. In the end,
we are only replacing the username and password authentication with our own
custom PAM module, the RSA key login is still available beforehand. SSH’s default
configuration uses the common authorization configuration (username and password)
to authenticate the user:

1 # / etc /pam. d/ sshd
2 # PAM c o n f i g u r a t i o n f o r the Secure S h e l l s e r v i c e
3
4 # Standard Unúx authen t i c a t i on .
5 @include common≠auth

Listing 6: Default configuration provided in SSH’s PAM module. It loads PAM’s
common authorization (username and password) and uses it to authenticate the user.

In our implementation we replaced the common authorization flow with our
custom PAM module:

1 # / etc /pam. d/ sshd
2 # PAM c o n f i g u r a t i o n f o r the Secure S h e l l s e r v i c e
3
4 # Standard Unúx authen t i c a t i on .
5 # @include common≠auth

41

6 # module_inter face con t r o l_ f l ag module_name
module_arguments

7 auth r equ i r ed pam_python . so
cyclone_pam . py

8 s e s s i o n op t i ona l pam_python . so
cyclone_pam . py

Listing 7: Updated configuration in SSH’s PAM module. Now, we are loading our
custom PAM module and settings through the pam_python.so library. Also, we set
it as required as it is a must that this validation goes through in order to approve
the user as authenticated.

As we know, di�erent users will have di�erent needs, and thus di�erent require-
ments in configuration. Global configuration of the module can be loaded via
submitting an extra argument to the module_arguments containing the path to the
configuration file:

1 auth r equ i r ed pam_python . so cyclone_pam . py / l i b / s e c u r i t y /
cyc lone_conf ig

Listing 8: SSH’S custom PAM configuration including custom configuration loaded
into the PAM module.

In our case, we have set up the default configuration location in
/lib/security/cyclone_config, though its path can be customized. The reason is
that it is the same location where the pam_python.so library is located and shortens
the length of the module arguments. By default, if a path to the configuration is not
provided, Python loads the default configuration. At the moment, the configuration
only contains the set of ports that PAM module can use to expose the HTTP server
in, which are used later when setting up the HTTP server in subsection 5.3.2.

With this configuration loaded, PAM executes a Python script to setup an HTTP
server to authenticate the user and fetch data from him.

5.3.2 Authenticating Against OIDC and Fetching User’s Data

A HTTP server is exposed by using Python’s SimpleHTTPServer module, executed
directly from the Python script that evaluates the PAM authentication. The port
to be exposed to is defined by the configuration provided to the PAM module. The
configuration contains an array of ports and/or arrays of ports indicating where the
HTTP server should the service use. As there are server clouds and other locations
where the available ports may be limited, these settings allow to define which are the
possible exposed ports in the firewall so the HTTP authentication login can work
while connecting from the user’s computer.

Also, as multiple users can try to login at the same time, a random port from the
defined set of the available ones to connect is chosen. This allows multiple users to
connect at the same time plus increases the security, as an attacker wouldn’t know
which would be the used port to see the login webpage.

42

The SSO authentication happens in the OIDC server. The first time a users
log into the SSO server they will be prompted to login using their credentials. If
successful, the SSO website will save a token in the user’s cookies, so next time he
logs in, credentials do not need to be entered again. As a result, pasting the given
URL into a browser containing the SSO cookie will validate you automatically and
will log you in into the server. This decreases the amount of interactiosn of the user
with the server and speeds up the login time.

After the authentication is successful in the OIDC server, a callback is received
by the secure server’s HTTP endpoint. The endpoint of the callback is provided
when redirecting the user from the secure server HTML to the OIDC authentication
service. The callback has to be done directly to the secure server, so we need to
provide either an IP or a domain name. An IP is not viable as we cannot be sure
if the IP is public or internal. Otherwise, to use a domain name we need to know
which one to use. By default CYCLONE-PAM uses the hostname of the server. In
the future, this should be a configurable setting of the module configuration.

Within the success callback a JSON Web Token (JWT) with the user’s basic
validated information is included. Then, following the recommendations provided by
the OIDC protocol, we can validate the authenticity of the JWT with the server’s
key and extract the data from it. We use the python-JOSE python package to handle
the JWT. This package depends on the PyCrypto implementation to decrypt the
JWT signing. Also python-jose requires a minimum Python version of 2.6 to work,
which defines one of the minimum requirements of our solution. To validate the data
we need to use the key provided by the OIDC client. At the moment this is achieved
deploying manually the key to the server. In the future, it should be considered to
either create an easy setup to deploy the validation key or to use instead the client
id and client secret to authenticate against the OIDC server.

From the extracted user’s attributes we need the email. In case the email is not
found in the token, we try to fetch it from the OIDC user’s endpoint. eduGAIN does
not enforce a set of attributes for the users as it only recommends to have them, so
some IdPs may not expose them and eve if they do so it is quite possible that the
attributes may use di�erent key values. For this reason, we try with di�erent aliases
of the mail attribute such as ’email’ or ’mail’.

After authenticating the user and (if needed) fetching its information, we need to
validate that this SSO user can login as the requested user in the secure server.

5.3.3 Local authentication and authorization logic

The local authentication and authorization process allows the CYCLONE-PAM to
determine which remote users can login as specific users in the secure server. When
logging into the server via SSH, users need to indicate with which local username of
he wants to log in. However, we may not want users to login as any possible user in
the system, as they could login as root user and this would expose deep security risks.
It is not feasible to create one user per SSO user, as use cases require sometimes that
users share content and access to the data, plus allowing the script to create new
users exposes even more security risks. Having more users in the server would only

43

increase the complexity in terms on how to update the permissions of many users at
the same time.

What is needed to avoid this problem is to create a system which can allow us to
map the users login in via SSO to the local users of the secure server. This approach
needs to be simple and flexible, so it adapts to the needs of access of each deployment.

To do the mapping we need to rely on a constant attribute of the user that can
allow us to track who is that user. In CYCLONE, we cannot store the data of the
user in the Keycloak server because of stackeholders requirements and we need to
delete all the user’s data from the Keycloak database. That stops us from creating a
unique local ID in Keycloak that could be used to track the user and forces us to use
the user’s attributes to track who is that user. Also eduGAIN, as explained before,
does not enforce SAML attributes so we need to rely on the most used ones. This is
why we chose the ’email’ attribute, as it is unique, not so critical to share and allows
us to identify each of the users individually.

Having chosen which attribute we want to use to identify our user, now we
need to define where to store this value securely. Our storage decision consists in
adding a simple .edugain file in each of home folder of the local users of the server
– /home/username/ –. In case of the root user, it is found in the root user’s home
folder in /root. This file is a JSON formatted file which contains a list of mails that
are allowed to login in as the folder’s owner.

The structure of the .edugain file is as follows:
1 {
2 " u s e r s " : [
3 " mail1@example . com " ,
4 " mail2@example . com"
5]
6 }

Listing 9: Structure of a .edugain file, containing a JSON which defines the di�erent
mails of the users that can login.

The authentication logic steps in Python, also depicted in Figure 12 are then:

1. John Doe wants to login as user ’randomuser’ so he does ssh randomuser@host.

2. When doing SSH he logs into the provided URL with his EduGain account.

3. CYCLONE-PAM fetches John Doe’s mail from his EduGain account data.

4. CYCLONE-PAM opens the file /home/randomuser/.edugain and checks that
the mail provided by EduGain matches with the one found in the file. This
data is used to evaluate a match between the user’s mail found in the .edugain
configuration and his validated mail.

If at any moment the file does not exist or the mail is not in the file, the
authentication is rejected. A mail can be contained in configuration files of di�erent
users, meaning that with your SSO account you can login as multiple users of the

44

Figure 12: UML activity diagram representing the decision steps in the authorization
process within the Python script

secure server. Configuration files are structured in a way that they can be extended
with future settings and attributes in an easy and flexible way.

5.4 Deployment
In the previous subsections, we have detailed the decisions and inner workings of
CYCLONE-PAM. However, we need an easy deployment which includes all the
configuration needed for it to work. As a prototype and in order to do a fast deploy, we
have created a Bash shell script that deploys the needed software by itself. The script
install all the required dependencies of the system and also the modules required by
the python script. Also, it updates the configuration and deploys the scripts, key and
configuration to /lib/security. Finally, it does a cleanup and reconfigures SSH PAM
configuration to use our custom authentication system. As sysadmins may would
like to revert back the changes, it creates a backup of the replaced configuration in a
new file in the same folder.

The script has been tested to work properly under Ubuntu 14.04. Newer versions
of Ubuntu are still not supported but some basic changes in the script should allow
using the software in them. In Fedora based systems such as CentOS, the location

45

of the files to be updated need to be changed in order to make it compatible with
the OS.

This script can be executed from a one liner bash command that downloads it and
executes the whole installation for easier deployment. Even though the best solution
would be creating a DEB or RPM package which would automatically install the
files in their proper locations, this simple script allows us to deploy easily this proof
of concept.

5.5 Results of the Implementation
After the analysis and implementation of this solution, the result is an easy to setup
and use authentication system that can allow users to login using SSO technologies.
Even if the logic can make look this system slow and tedious for the user, it is in fact
a fast and secure system. The procedure to login for the user is the following one:

1. User starts SSH connection to the secure server and secure server answers with
an URL into the users terminal (Figure 13).

2. User opens the URL and logs in with his eduGAIN SSO account (Figure 14).
Also needs to approve the consent that allows us to fetch the user’s mail
(Figure 15).

3. User gets notified about the successful login and gets access to the server’s
shell (Figure 16).

Figure 13: Screenshot showing the notification shown to the user after starting SSH
login

Figure 14: Screenshot showing the CYCLONE login page after the redirect

46

Figure 15: Screenshot showing the consent approval in OIDC

Figure 16: Screenshot showing the successful authorization notification in the browser

47

Figure 17: Screenshot showing the approved login terminal in OIDC

When logging in through the browser, the SSO token is stored as a session
cookie. OIDC can load automatically the cookie if found in the browser session, and
automatically authenticate the user towards the secure server without the need of
him entering again the credentials. This allows to decrease even more the login time
and improve the user experience. In this case, the behaviour of the OpenID Connect
token would comparable with the one of a RSA key when logging in via SSH.

However, the main di�erence is that the OIDC cookie has expiry date, and will
need to be recreated after the browser is closed or the session expires. Also, the
token is not stored in the cookie and is given directly by the SSO server to the client
in the secure server. As this token is generated and signed dynamically every time
the user logs in into the browser and has expiration date, we could say that this
increases the security of the login. Another benefit is that we are not storing the
token in the user’s computer and it is instead hosted in a server that is trusted by
other services and secure enough to host the data of many users.

Another advantage is that our solution does not require the user trying to access the
server and the one authenticating being the same person. As the SSO authentication
happens in parallel, a user (U1) would be able to login in behalf of another one with
access to the secure server (U2), just sharing the URL to the HTTP server provided
in the terminal. U1 would be able to login in behalf of U2, without knowing any
credentials. Also, U1 wouldn’t be able to login again without another authentication
of U2.

Yet this creates a new problem because of Cross Scripting issues: if a malicious
user achieves an authorized user to open the login URL, the authentication might
get automatically approved via the SSO and the unwanted user would get access to
the server without the user even knowing so. Still, this problems are usually covered
by CORS security implementations in the browser and in the server, that avoids
unknown links being loaded without the user’s consent.

Another security concern is that in secure data centers the ports available are
limited, usually by strict security rules in the firewall. This makes the set of ports
where the HTTP server can be exposed quite limited. As a result, with a reduced
number of ports a malicious user would be able to easily find in which port the
HTTP server is running and attack it. Of course, this doesn’t really expose directly
a security problem, but can be an easy entry point for future attacks.

Finally, another problem is the compatibility with actual SSH agents. Because

48

we are using Keyboard-Interactive input for SSH, usual SSH clients may not work as
expected. Even though SSH will still accept SSH RSA keys, login via username and
password is not possible after integrating CYCLONE-PAM into a server. This, for
example will a�ect and break X11 clients that rely on the SSH protocol to sign in
into the remote server.

The code of the implementation described in this subsection can be found in its
own public GitHub repository 6. All the implementation described for this component
are committed as per commit 707266e.

5.6 Future Work
Future work of this implementation generally tries to cover the issues described in the
previous subsection in an attempt to improve even more the security of the module
but also is required to improve the usability of it.

First, CYCLONE-PAM only supports JWT client authentication. One simple
way to extend it is with the use of client_id and client_secret which can be used
to authenticate the client. This would also simplify the deployment as this will
eliminate the need to deploy a key to validate the JWT.

Another needed improvement would be using HTTPS in the SSO callback. At
the moment the callback is done via plain HTTP, and it includes private data of the
user. To do so, a HTTPS certificate should be deployed in each of the servers, which,
increases the maintenance di�culty. It could be at least a self signed certificate, that
is added to the trusted certificates store of the SSO server. Another possible solution
would be using a reverse proxy that would de-encapsulate HTTP to HTTPS.

One of the problems in the previous subsection, describes how a user could
trigger an authentication in the secure server without knowing thanks to CORS
vulnerabilities. This situation could be easily prevented with a timeout in the login.
Setting that users have to login in under 60 seconds, gives no time to a malicious
user to force someone else to use the link and reduces the threat.

Finally distribution of the software should be improved. For starters, CYCLONE-
PAM should be packaged in a DEB or RPM bundle to improve its upgradability.
Also, the locations of configuration files should be rethought so they are found in
the proper locations of the filesystem. Also, one possibility to improve the user
experience would be to add an extra step during user creation in the server to allow
to introduce then which are the allowed emails that can login into the account using
CYCLONE-PAM.

As a summary, there are many possible improvements in the software to increase
its reliability, but providing that the actual implementation is a proof of concept, it
is easy to find so many ways to extend its functions and security.

5.6.1 Electron Based Desktop Client

As Keyboard-Interactive SSH logins are not so common, we have found out that
usage of desktop clients which rely on the default SSH protocol configuration using

6https://github.com/cyclone-project/cyclone-python-pam

49

username and password pair may not work after applying our solution. Specifically,
this is troublesome when dealing with X11 clients.

To avoid this kind of problems and simplify the usage of CYCLONE-PAM, we
are currently developing a desktop client based on GitHub’s Electron platform which
allows to create SSH console connections, SSH tunnels and also X11 remote desktop
connections using XPra. This client is currently in development and at the moment it
can already create all the di�erent SSH connections needed and X11 remote desktop
connections secured via SSH tunnel, only in Microsoft Windows, though.

One of the advantages of using this client rather than directly copying the given
URL in the console, is that we can do the login directly in the client. Because the
electron framework is based on Chromium web browser, we can directly open the
login URl for the user in the same window. Also, we can keep the cookies in the
browser window as long as the client desktop is running, so having it running as one
of the operating system’s services, we can allow the user to authenticate in di�erent
secure servers just signing in into the SSO login page just once.

50

6 Evaluation
In this chapter we evaluate the results of the implementations described in Chap-
ters 4 and 5. We first evaluate each of the solutions implementations individually
and finally analyze the result of the integration between both components.

6.1 Dynamic Client Registration
To validate the implementation we have achieved as described in Chapter 4, first,
we individually validate that each of the requirements of the use cases is covered
through the use of our extension. Next, as it has not been tested by our use cases, we
compare our implementation to the updated version of the OpenID Connect client
registration API that Keycloak 2.4.0 includes.

6.1.1 Use Cases requirements Validation

In subsection 2.3, we listed a summary of all the di�erent requirements that we would
need to fulfill when creating our solution. In this subsection we analyze that we
cover each of the requirements previously described:

• R1 : During all the design of these solutions we have focused on security. To
do so, we have based our implementations in existing frameworks and relied on
industry standard SSO technologies. The only thing that should be analyzed
is to secure the connection of the PAM module properly using SSL certificates.

• R2 : We have covered the need of securing di�erent interfaces through the use
of the PAM module. With it we can secure not only the web interfaces, which
can be simply protected using OIDC or SAML, but also SSH connections and
with it tunneled connections through SSH such as X11 remote connections.

• R3 : In the PAM module configuration we allow settings to make sure that
isolated networks with strict firewalls can be compatible with our system.

• R4 : To allow our system to be compatible across multiple clouds, we have
implemented our software using Docker as a a base. This allows to run
CYCLONE platform in any cloud independently of the operating system.
CYCLONE-PAM, we have the source code and we can compile the required
libraries in any unix SO, which even if it is some extra work, it would allow to
make it run in any platform. Login into the platform can be done as long as
the user has a SSH client.

• R4 : This has not been totally implemented, as we still require the logic to
integrate our deployments with Slipstream, the virtual machine and services
orchestrator that CYCLONE uses. The results are discussed in subsection 6.3.

• R5: This regulation is easily done through the use of mails to validate the
authorization in the PAM module. Also, as CYCLONE provides us access to

51

eduGAIN’s federation login credentials, we can allow access to anyone using
this federation in our sytems. Further federations could be added including
them in the SimpleSAMLphp proxy or either adding them into Keycloak as
Identity Provider.

6.1.2 Comparison with Keycloak’s Version 2.3.0 Registration API

In our background analysis of the registration API, we analyzed the di�erent features
that Keycloak’s version 2.0.0 (released on 30th June 2016). At that moment in time,
the registration API was already functional but in early stages in terms of features.
It basically provided a system to create clients, but without the availability to set
restrictions on the new clients or any sort of configuration aside of the amount of
times that the initial access token can be used.

Since version 2.3.0 [22], Keycloak’s client registration API provides a more
granular configuration set than in previous versions. This new configuration settings
allow to define the policies that limit who can create a new client and which settings
a user can set when creating a new client. It also introduces two di�erent workflows
to authenticate a user before being allowed to register a new client in comparison to
the one single anonymous access in previous versions. Each workflow can have its
own set of policies. This two workflows are:

• Anonymous Access
Anyone, without the need to authenticate using a Bearer Token or Initial Access
token can create a client. The trust relationship is nearly non-existent in this
workflow, thus, this client creation method is quite restricted and limits the
usage to a set of trusted hosts and incorporates many other policies.

• Authenticated Access
The user creating a new client needs to be authenticated using either an Initial
Access Token or a Bearer Token. An Initial Access token is an anonymous
token that allows to create clients and behaves in the same way the Initial
Access Token in version 2.0.0 worked. A Bearer Token, is a token that can
be obtained from the token endpoint of the SSO, and is issued in behalf of a
user or Service Account. In order to be able to create a client using a Bearer
Token, the user needs to have a "create-client" role specific to the realm that
wants the client to be in. However, this only allows to create clients, again
limited by by the set of policies for this workflow. This same role allows users to
create clients through Keycloak’s administration API. However, to edit clients,
a user requires a "manage-clients" role. This role allows complete access to
change settings in any client of the realm. As discussed before in subsection 4.1,
granting the "manage-clients" privileges to someone would allow to a user to
escalate and get superadmin rights. Another similar role is the "view-clients"
which would allow you to see any of the attributas and settings of any client.
this includes the secrets, JWT and any information that would allow you to use
the client in behalf of someone else. Also, not allowing to edit client permissions

52

would decrease the self-service and require the administrator’s help to change
basic changes. In general this roles, even if provide the needed access, they can
provide a too wide access to the system and thus drastically increase security
concerns. Otherwise, we are only limited to create a client, and see the result
of our creation, without ability to change settings.

Both of this workflows include a set of configurable policies that allow or disallow
a user to create users, including: list of Trusted hosts, if a Consent approval is
required, the allowed scope of users that the client can authenticate, the maximum
of clients that can be created, the allowed SSO protocols that can be set and which
client templates can new registered clients use. Thus, this new version provides an
extra collection of settings that improve the user experience and flexibility of the
registration API.

Still, we need to compare the advantages and disadvantages of using each of the
solutions to evaluate our system against Keycloak’s new implementation. To do so,
we have compared both APIs in di�erent aspects:

• Authentication workflow(s): comparison of the di�erent methods that allow
us to authenticate against the API

– Keycloak API: there are multiple workflows. Either we can authenticate
with a Bearer Token, with an Initial Access Token or directly without
authentication. This allows that mostly anyone could create a client
without many problems in an easy and flexible way. However many
authentication workflows also means multiple kinds of tokens that can be
issued and more complexity.

– CYCLONE-API: there is only a single workflow, which is equivalent to the
Bearer Token Workflow in Keycloak’s registration API implementation.
This provides less flexibility but at the same time increases the simplicity,
as it is exactly the same flow used to login into Keycloak’s administration
API.

Both solutions include a Bearer Token workflow. However, Keycloak’s API
allows more workflows and other kind of users to be able to login.

• Security during authentication: comparison on how we make sure that
authentication credentials are valid that its implementation is flawless.

– Keycloak API: provides an implementation developed by Red Hat and
has multiple tests and an open source community validating the security
of the platform. Relies on Jboss’ Firefly platform under the hood to secure
all the transactions.

– CYCLONE-API: uses exactly the same authentication code as Keycloak’s
administration API, which results in an implementation as secure as
Keycloak’s. Tests are not implemented against this endpoint but can be
implemented using Keycloak’s as inspiration.

53

• User tracking: mechanisms that allow to track who is creating each client or
who has rights in each client.

– Keycloak API: as the workflows can be anonymous, there is no real way to
check who is registering a client or who has a token that allow to manage
a client. One only possibility would be matching API calls with tokens
requested somehow from the logs that Keycloak exposes.

– CYCLONE-API: because the only authentication workflow requires an
authenticated account, all the users need credentials in the SSO platform.
Thus, we can track who is who when requesting new clients. The client
registration events could be exposed into the UI interface in the log
subsection thanks to the events that get executed whenever someone
interacts with the API endpoints. Also, our implementation includes an
owner-client relationship, where all the clients created through this API
can be mapped to someone responsible for it.

Keycloak’s implementation does not provide any form to track who is who,
while our implementation focus is to exactly solve this problem. Thanks to this,
we can distribute responsibilities throughout a set of users without handling
them access to all the possible client resources.

• User roles required: which roles and privileges a user needs to have in order
to handle CRUD operations with the clients.

– CYCLONE-API: the role can be customized. Having this chosen role
allows users to create, view and edit clients. However, they can only view
an edit the clients under their ownership. Also, it is disallowed to edit the
roles given to the service account.

– Keycloak API: to create clients, user requires the realm’s "create-client"
role. To view and edit a user needs to have the "view-client" and "manage-
clients" respectively. However, this both roles provide full access to all the
roles in the realm.

Our implementation provides more rights but limited to the set of clients that
the user owns. In contrast, Keycloak’s implementation requires too wide access
if wanting to edit a client, and it’s only useful to create clients.

• Policy Management: availability of settings that can allow us to limit which
users and remote hosts can create clients and how many clients can be created.

– CYCLONE-API: at the moment there is no policy management imple-
mented. The only available setting is to change to which role is the API
available to. As a user with the proper role you can change any setting of
a client but the service account roles and create as many clients as needed.

54

– Keycloak API: provides an interface from where to set di�erent policies
and its details. Through it we can define limits of the amounts of clients
and which settings are allowed in new clients.

Keycloak API provides a more granular privilege selection, and allows to set
limits on how many clients can be created and from where and who. However,
this is a requisite for them as they use anonymous authentication. In our
implementation, all privileges are given as authentication allows us to make
sure they are reliable users.

• User Interface: possibility to manage the di�erent settings of the API through
the use of a web UI.

– Keycloak API: provides an integration of the API settings with Keycloak’s
administration console web UI. With it, all the di�erent policies can be
managed in a simple manner. Also, new Initial Access Tokens can be
created or disabled.

– CYCLONE-API: does not provide any kind of user interface to manage
the settings. Could be integrated in the future with Keycloak’s UI using
a theme to exten its functions.

Keycloak’s implementation provide basic configuration management through the
administration console, and tries to cover the objectives of Keycloak platform:
to be easily configurable without the need of coding configuration. In our
implementation there is no interface available, though it would be possible to
create integration with Keycloak’s UI creating a custom theme.

• OIDC Standard: status of compliance with the OpenID Connect Dynamic
Client Registration 1.0 (OIDC DCR) specifications. This allows ready made
clients to automatically register themselves in any SSO that is implements this
standard.

– Keycloak API: Keycloak fully supports the OIDC DCR standard and it
has been certified by the OpenID Foundation certification process.

– CYCLONE-API: after analyzing the requirements from OIDC DCR, we
can say that it supports the metadata response and request models and
the authentication workflow requirements provided in the specification.
However, it does not fulfill the requirements of the client endpoint URL.
One of the reasons is that Keycloak already uses the suggested path to
locate the API’s endpoint in. Also, testing the API requires paying a fee,
which is out of the scope of this thesis.

Keycloak fulfills the specifications and is built and certified to be approved by
the standard. In our implementation, we succeed in completing most of the
requirements in terms of authentication workflow but we are missing some part
of the specifications when building and parsing the URL arguments. Though

55

it is not certified it should work with most of the cases when creating a new
client.

As a summary, Keycloak’s implementation objective is to fulfill all the require-
ments of the OIDC standard and focuses on allowing anonymous services to create
clients, thus broadening the scope of services that can register a new client. Also,
they provide a better integration with the UI. Furthermore it also has the advantage
that is created as part of the core of Keycloak and can easily make all the changes
needed in other SPIs to fit properly in the platform. Also it has a properly tested
security suite.

In the other hand, our implementation focuses on being able to track the client
registrants and diminishes the scope of users in favour of more privileges to the
possible users. It might be less integrated into Keycloak as it is not part of the
core modules of the platform and also it lacks UI integration for easy management.
However it relies on the same tools that Keycloak’s implementation does and thus
can provide a similar security level. Also, it fits with the set of user requirements
that CYCLONE requires and allows to o�oad support of the administrator in
behalf of more rights to the client owners. As an objective it tries to distribute
the responsibilities of a client to the owner rather than centralizing them into the
administrator figure.

In conclusion, our implementation is really similar to the updated Keycloak API,
but provides a better fit to the use cases of CYCLONE. It’s quite probable, at least
according to the discussions in Keycloak’s developer mailing list that there will be a
more fine grained permission system that will overlap with the implementations done
by our extension, but as there is no actual solution providing our needed requirements,
ours is the only implementation fitting this specifications.

6.2 SSH Login Integration
To validate our implementation we have relied on the feedback provided by one of
the CYCLONE use cases after using a prototype. This has provided us essential
data on how to improve the client based on the real experience of the solution. The
review has been provided by the French Institute of Bioinformatics (IFB) and they
tested the software in both Ubuntu 14.04, used to develop the software and fully
supported and also in one of their custom images based on CentOS.

In the test performed in Ubuntu 14.04, they have found that installation through
the automatic installation script provides an easy deployment. It still should support
some parameters to define a path to the custom configuration. In terms of config-
uration, the first limitation has been that to generate the URL to the server, the
module used the hostname. However, in their cloud there is no possibility to reach
the virtual machine from the outside using it. Instead they suggested using the fully
qualifiyed domain name (FQDN). In future version it should be considered to allow
the user to choose what URI base to use from the module’s configuration.

In terms of usability, there were some di�culties in the user experience. The first
one is the need to press any button to run the server and unblock the python script.

56

This, as explained in subsection 5.3.1, is a limitation by the software and created by
requirements of the PAM specifications.

Another UX issue includes the naming of attributes of the user’s validated data,
where in our implementation we look for the "email" key and in some implementations
of the eduGAIN federation the email data of the user is found under the "mail" key.
After this feedback we are now looking for both keys, though, this should be a
requisite defined by the usage requirements of CYCLONE platform. Otherwise, there
is no way to predict which attribute is used by all the possible identity providers of
the eduGAIN federation.

Also, their cloud limits the usable ports to ports 80 and 443, thus limiting the
amount of people that can login at the same time to only 2. Still, the configuration
settings of the module allow to set this ports to the ones to be used to expose the
HTTP server.

Finally, the module should be extended to support client_secret and client_id
authentication aside of the JWT one. This would make the system compatible to the
configured settings of their client. Still, it has a simple fix, and requires requesting
an Access Token via an HTTP call using this parameters as authentication instead
of the JWT.

In general, the feeling they have is that this system simplifies the login and
provides control on the user credentials with minimal access to the server, and
reliability on the user verification. Also, it increases the security as there is no need
to transmit new credentials to new users neither to have them registered in a new
system, as they can use their personal credentials and an already existing account.

6.3 Client Registration and SSH Integration
Until now we have described the implementation of two separate solutions. However,
they together need to integrate with each other in order to provide a SSO platform
to authenticate any service dynamic deployed. The integration would be that we
can create a client via the registration API and automatically configure a server
provisioned with the CYCLONE-PAM module. However, to do so, we need some
external logic. This logic that would create the client and configure the PAM module
would preferably be execute in the orchestrator that deploys the set of VM of the
new service, in CYCLONE’s case, in SlipStream. There, we can create a simple shell
script that would do the needed calls and setup the configuration.

For easier configuration of the PAM module, we should improve its installation
so we can provide configuration variables for example through the ENV variables or
either create a CLI that would generate the needed configuration file having an input
with the di�erent setting gathered during the creation step of the virtual machine in
Slipstream.

57

7 Conclusion
The objective of this study was to implement a set of tools that allow to dynamically
register SSO clients in user federations. The study was descriptive, focusing on
background analysis and use cases with the intention to take proper decisions to
fulfill the requirements of CYCLONE platform. We centered our attention on
extracting the core requirements of CYCLONE use cases and defining the existing
problem that we solved in this study. Existing solutions were considered for this
study and inspired the implementation design of the resultant one.

The development of both components was based on the provided user requirements
defined in the objectives of this study. The registration API reasons the need of a
tailor-made solution and provides a solution integrated with existing components
of the CYCLONE platform. An analysis of the updatability and maintainability
gives reliability to the the created module. The SSH PAM module provides a new
method of authentication for SSH users, providing novelty in terms of token and
key management and trying to provide a similar user experience given by RSA keys
through the use of web browsers, cookies and Single Sign-On technologies. This
includes innovation in the authentication services in servers, centralizing data needed
for authentication and authorization of users in a single server and securing the
workflows through the use of industry standard technologies.

The result provided is a set of two components provide a single solution which
can interact and that can be integrated into existing environments, focusing in
providing a painless user experience to non technical people. The registration API is
comparable in usability to the actual existing alternatives, and relies on the use of
existing implementations of the Keycloak platform.

There is also uncertainty in the future expansion and development of the regis-
tration API as it is quite possible that future versions of the Keycloak platform will
integrate similar options in its core. According to discussions inside of the developer
community of the project one of the focuses in version 3.0 is to provide a more
granular role management in the di�erent aspects of the platform.

In general the combination of this two tools has a great development potential in
terms of new possible features and innovation.

7.1 Limitations and Future Research
A major limitation of this study is the lack of final user testing in the registration API.
This limitations happened because of the long time invested in the implementation
caused by the lack of documentation and examples to implement a Keycloak SPI.
This then a�ected on the available time to test the implemented software. Instead
we have had to compare our results with the actual implementation done in parallel
by the Keycloak community. In future time there should be a proper user testing of
the API that should give insights of the improvements needed on it.

One of the main requirements for future production use is to provide a better
deployment interface for both components, thus increasing the integration between
them. At the moment, part of the configuration is coded as constants in both

58

implementations, and would be needed to expose them to flexible tuning of the
system administrator and to the variables of the deployment orchestrator platform.

A security analysis would be needed to proof the security status of environments
created using the tools created in this study. In the case of the registration API
it would be enough expending the existing tests for Keycloak to also target the
newly created enpoints. For the SSH case, a proper modeling of possible exploits
and security holes with professional tools should be performed to provide a reliable
security validation to users. However, as this kind of tools would be used internally
in a cloud, the firewall and secure connections inside of the federation should cover
most of the use cases.

Actual deployment is done manually, at least the one done during development.
The next step in this implementation should be providing an implementation with
the cloud orchestration platform used by CYCLONE, "Nuv.La". This would provide
a proper production case for the CYCLONE project with total integration within
the platform.

Finally, the electron based client created for the CYLONE-PAM module, should
be extended properly to work in the mainstream operating systems aside of Windows,
including MacOS and Linux systems. Still, there is support for CYCLONE-PAM
in the other OSs via the user of browser authentication. This electron client also,
should need proper code cleaning and user testing feedback to make sure it is up to
the standards use cases providers require.

59

References
[1] Y. Demchenko, C. Blanchet, C. Loomis, R. Branchat, M. Slawik, I. Zilci,

M. Bedri, J.-F. Gibrat, O. Lodygensky, M. Zivkovic et al., “Cyclone: A platform
for data intensive scientific applications in heterogeneous multi-cloud/multi-
provider environment,” in Cloud Engineering Workshop
(IC2EW), 2016 IEEE International Conference on. IEEE, 2016, pp. 154–159.

[2] M. Slawik, B. I. Zilci, Y. Demchenko, J. Aznar-Baranda, R. Branchat,
C. Loomis, O. Lodygensky, and C. Blanchet, “CYCLONE unified deployment
and management of federated, multi-cloud applications,” CoRR, vol.
abs/1607.06688, 2016. [Online]. Available: http://arxiv.org/abs/1607.06688

[3] F. Holzschuher and R. Peinl, “Approaches and challenges for a single sign-on
enabled extranet using jasig CAS,” in Open Identity Summit 2013, September
9th - 11th 2013, Kloster Banz, Germany, ser. LNI, D. Hühnlein and
H. Roßnagel, Eds., vol. P-223. GI, 2013, pp. 106–117. [Online]. Available:
http://subs.emis.de/LNI/Proceedings/Proceedings223/article20.html

[4] J. Howlett, V. Nordh, and W. Singer, “Deliverable ds3. 3.1: edugain service
definition and policy initial draft,” Project Deliverable, May, 2010.

[5] eduGAIN technical site. [Online]. Available: https://technical.edugain.org/
joining_checklist

[6] Cyclone newsletter - first edition. [Online]. Avail-
able: http://www.cyclone-project.eu/assets/images/newsletters/CYCLONE%
20Newsletter%20first%20edition.pdf

[7] D. Gallico, M. Biancani, C. Blanchet, M. Bedri, J. Gibrat, J. Aznar-Baranda,
D. Hacker, and M. Kourkouli, “CYCLONE: A Multi-cloud Federation Platform
for Complex Bioinformatics and Energy Applications (short paper),” in 5th
IEEE International Conference on Cloud Networking, Cloudnet 2016, Pisa,
Italy, October 3-5, 2016. IEEE, 2016, pp. 146–149. [Online]. Available:
http://dx.doi.org/10.1109/CloudNet.2016.44

[8] W. Maes, T. Heyman, L. Desmet, and W. Joosen, “Browser protection against
cross-site request forgery,” in Proceedings of the first ACM workshop on Secure
execution of untrusted code. ACM, 2009, pp. 3–10.

[9] A. Pashalidis and C. J. Mitchell, “A taxonomy of single sign-on systems,” in
Australasian Conference on Information Security and Privacy. Springer, 2003,
pp. 249–264.

[10] F. Feldmann, “Binding credentials: Securing (SSO) authentication,”
Ph.D. dissertation, Ruhr University Bochum, 2016. [Online]. Available:
http://nbn-resolving.de/urn:nbn:de:hbz:294-45159

http://arxiv.org/abs/1607.06688
http://subs.emis.de/LNI/Proceedings/Proceedings223/article20.html
https://technical.edugain.org/joining_checklist
https://technical.edugain.org/joining_checklist
http://www.cyclone-project.eu/assets/images/newsletters/CYCLONE%20Newsletter%20first%20edition.pdf
http://www.cyclone-project.eu/assets/images/newsletters/CYCLONE%20Newsletter%20first%20edition.pdf
http://dx.doi.org/10.1109/CloudNet.2016.44
http://nbn-resolving.de/urn:nbn:de:hbz:294-45159

60

[11] D. Recordon and D. Reed, “Openid 2.0: a platform for user-centric
identity management,” in Proceedings of the 2006 Workshop on Digital
Identity Management, Alexandria, VA, USA, November 3, 2006, A. Juels,
M. Winslett, and A. Goto, Eds. ACM, 2006, pp. 11–16. [Online]. Available:
http://doi.acm.org/10.1145/1179529.1179532

[12] D. Fett, R. Küsters, and G. Schmitz, “A comprehensive formal security
analysis of oauth 2.0,” CoRR, vol. abs/1601.01229, 2016. [Online]. Available:
http://arxiv.org/abs/1601.01229

[13] S. Egelman, “My profile is my password, verify me!: The privacy/convenience
tradeo� of facebook connect,” in 2013 ACM SIGCHI Conference on Human
Factors in Computing Systems, CHI ’13, Paris, France, April 27 - May 2,
2013, W. E. Mackay, S. A. Brewster, and S. Bødker, Eds. ACM, 2013, pp.
2369–2378. [Online]. Available: http://doi.acm.org/10.1145/2470654.2481328

[14] E. Maler et al., “Assertions and protocols for the oasis security assertion markup
language (SAML),” OASIS, September, 2003.

[15] D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC Editor, Tech. Rep.
RFC6749, Oct. 2012. [Online]. Available: https://www.rfc-editor.org/info/
rfc6749

[16] OpenID Foundation. OpenID Connect | Welcome to OpenID Connect. [Online].
Available: https://openid.net/connect/

[17] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore, “Openid
connect core 1.0,” The OpenID Foundation, p. S3, 2014.

[18] N. Sakimura, J. Bradley, and M. Jones, “Openid connect dynamic client regis-
tration 1.0,” 2011.

[19] M. Jones, B. Campbell, and C. Mortimore, “JSON Web Token (JWT)
Profile for OAuth 2.0 Client Authentication and Authorization Grants,”
RFC Editor, Tech. Rep. RFC7523, May 2015. [Online]. Available:
https://www.rfc-editor.org/info/rfc7523

[20] Y. Goland, B. Campbell, M. Jones, and C. Mortimore. Assertion Framework for
OAuth 2.0 Client Authentication and Authorization Grants. [Online]. Available:
https://tools.ietf.org/html/rfc7521

[21] B. Campbell, C. Mortimore, and M. Jones, “Security Assertion Markup
Language (SAML) 2.0 Profile for OAuth 2.0 Client Authentication and
Authorization Grants,” RFC Editor, Tech. Rep. RFC7522, May 2015. [Online].
Available: https://www.rfc-editor.org/info/rfc7522

[22] [KEYCLOAK-3666] Dynamic client registration policies - JBoss Issue Tracker.
[Online]. Available: https://issues.jboss.org/browse/KEYCLOAK-3666

http://doi.acm.org/10.1145/1179529.1179532
http://arxiv.org/abs/1601.01229
http://doi.acm.org/10.1145/2470654.2481328
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://openid.net/connect/
https://www.rfc-editor.org/info/rfc7523
https://tools.ietf.org/html/rfc7521
https://www.rfc-editor.org/info/rfc7522
https://issues.jboss.org/browse/KEYCLOAK-3666

61

[23] Keycloak | Server Administration Guide. [Online]. Available: https:
//keycloak.gitbooks.io/server-adminstration-guide/content/v/2.4/

[24] SimpleSAMLphp. [Online]. Available: https://simplesamlphp.org/

[25] Keycloak | Server Developer Guide. [Online]. Available: https://keycloak.
gitbooks.io/server-developer-guide/content/v/2.4/

[26] B. Ellis, J. Stylos, and B. Myers, “The factory pattern in api design: A usability
evaluation,” in Proceedings of the 29th international conference on Software
Engineering. IEEE Computer Society, 2007, pp. 302–312.

[27] Keycloak | Server Installation and Configuration Guide. [Online].
Available: https://keycloak.gitbooks.io/server-installation-and-configuration/
content/v/2.4/

[28] SSH: Pluggable Authentication Module (PAM) Submethod. [Online].
Available: www.ssh.com/manuals/server-admin/44/Pluggable_Authentication_
Module__PAM__Submethod.html

[29] crowd_pam bitbucket repository. [Online]. Available: https://bitbucket.org/
atlassian/crowd_pam/overview

[30] F. Cusack and M. Forssen, “Generic message exchange authentication for the
secure shell protocol (ssh),” Tech. Rep., 2005.

[31] SSH: User Authentication with Keyboard-Interactive. [Online]. Avail-
able: https://www.ssh.com/manuals/server-admin/44/User_Authentication_
with_Keyboard-Interactive.html

[32] Linux-PAM O�cial Page. [Online]. Available: http://www.linux-pam.org/

[33] Rusell Stuart. pam-python - write PAM modules in Python. [Online]. Available:
pam-python.sourceforge.net/

[34] RedHat | PAM Configuration Files. [Online]. Avail-
able: https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_
Linux/6/html/Managing_Smart_Cards/PAM_Configuration_Files.html

[35] A. Juels, M. Winslett, and A. Goto, Eds., Proceedings of the 2006 Workshop on
Digital Identity Management, Alexandria, VA, USA, November 3, 2006. ACM,
2006.

[36] W. E. Mackay, S. A. Brewster, and S. Bødker, Eds., 2013 ACM
SIGCHI Conference on Human Factors in Computing Systems, CHI ’13,
Paris, France, April 27 - May 2, 2013. ACM, 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2470654

https://keycloak.gitbooks.io/server-adminstration-guide/content/v/2.4/
https://keycloak.gitbooks.io/server-adminstration-guide/content/v/2.4/
https://simplesamlphp.org/
https://keycloak.gitbooks.io/server-developer-guide/content/v/2.4/
https://keycloak.gitbooks.io/server-developer-guide/content/v/2.4/
https://keycloak.gitbooks.io/server-installation-and-configuration/content/v/2.4/
https://keycloak.gitbooks.io/server-installation-and-configuration/content/v/2.4/
www.ssh.com/manuals/server-admin/44/Pluggable_Authentication_Module__PAM__Submethod.html
www.ssh.com/manuals/server-admin/44/Pluggable_Authentication_Module__PAM__Submethod.html
https://bitbucket.org/atlassian/crowd_pam/overview
https://bitbucket.org/atlassian/crowd_pam/overview
https://www.ssh.com/manuals/server-admin/44/User_Authentication_with_Keyboard-Interactive.html
https://www.ssh.com/manuals/server-admin/44/User_Authentication_with_Keyboard-Interactive.html
http://www.linux-pam.org/
pam-python.sourceforge.net/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Managing_Smart_Cards/PAM_Configuration_Files.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Managing_Smart_Cards/PAM_Configuration_Files.html
http://dl.acm.org/citation.cfm?id=2470654

62

[37] D. Hühnlein and H. Roßnagel, Eds., Open Identity Summit 2013, September 9th
- 11th 2013, Kloster Banz, Germany, ser. LNI, vol. P-223. GI, 2013. [Online].
Available: http://subs.emis.de/LNI/Proceedings/Proceedings223.html

[38] 5th IEEE International Conference on Cloud, Cloudnet 2016, Pisa,
Italy, October 3-5, 2016. IEEE, 2016. [Online]. Available: http:
//ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7774976

[39] I. Raicu, O. F. Rana, and R. Buyya, Eds., 8th IEEE/ACM International
Conference on Utility and Cloud Computing, UCC 2015, Limassol, Cyprus,
December 7-10, 2015. IEEE Computer Society, 2015. [Online]. Available:
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7430473

http://subs.emis.de/LNI/Proceedings/Proceedings223.html
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7774976
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7774976
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7430473

	Abstract
	Contents
	Abbreviations
	Introduction
	Background and Motivation
	Research Objectives
	Structure of the Thesis

	Application environment
	CYCLONE platform
	eduGAIN Federation
	CYCLONE Components

	Use Cases
	Bioinformatics Use Case
	Energy Use Case

	User requirements
	Stakeholders

	Background
	Authentication and Authorization
	Single Sign-On
	SSO generic architecture

	OpenID Connect 1.0 and OAuth 2.0
	OAuth 2.0: Authentication
	OIDC Specifications
	Scopes and Claims
	Authentication Flows

	SAML 2.0
	Keycloak
	SimpleSAMLphp

	The service registration API
	State of the Art
	Initial Plan
	Architecture
	Authentication

	SPI implementation
	REST API
	JPA Database Entity
	SPI Logic

	Limitations
	Deployment

	SSH login integration
	Motivation
	Architecture
	Implementation
	PAM Module Implementation
	Authenticating Against OIDC and Fetching User's Data
	Local authentication and authorization logic

	Deployment
	Results of the Implementation
	Future Work
	Electron Based Desktop Client

	Evaluation
	Dynamic Client Registration
	Use Cases requirements Validation
	Comparison with Keycloak's Version 2.3.0 Registration API

	SSH Login Integration
	Client Registration and SSH Integration

	Conclusion
	Limitations and Future Research

	References

