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Graphical menus perform as vital components and offer essential controls in today’s 

graphical interface. However, few studies have been conducted to modelling the 

performance of a menu. Furthermore, menu optimization methods previously proposed 

have been largely concentrating on reshaping layout of the whole menu system.  

In order to model menu performance, this thesis extends the Search-Decision-Pointing 

model by introducing two additional factors, i.e. the cost function and semantic function. 

The cost function is a penalty function which decreases the user expertise regarding a menu 

layout according to the degree of modification done to the menu. The semantic function is 

a reward function which encourages items with strong relations be positioned close to each 

other. Centered on this menu performance model, several optimization methods have been 

implemented. Each method focuses on improving menu performance by applying 

distinctive strategies, such as increasing item size or reducing item pointing distance.  

Three test cases have been exercised to evaluate the optimization methods in a simulated 

software which displays graphical user interfaces and emulates the menu utilization of real 

users. The results of test cases reveal that the menu performance has been successfully 

improved in all test cases by the fundamental heuristic search algorithm. Moreover, other 

optimization methods have been able to further increase menu performance ranging from 

3% to 8% depending on test cases. In addition, it is identified that increasing the size of an 

item offers surprisingly little benefit. Conversely, reducing item pointing distance has 

greatly improved menu performance. Moreover, positioning items by their semantic 

relations may also enhance group saliency. On the other hand, optimization methods may 

not always succeed in providing usable menus due to design constraints. Hence, menu 

performance optimization shall be carefully exercised by considering the entire graphical 

user interface. 

Keywords: user interface, graphical menu, model-based design and optimization, heuristic 

algorithm, multi-objective function 
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Chapter 1. Introduction 

 

This thesis studies the fundamental aspects regarding menu performance. Furthermore, this 

thesis applies a multi-objective function in order to evaluate performance of menus. In 

addition to this, several optimization methods have been designed based on menu 

performance models for the purpose of evaluating the effects regarding altering essential 

elements of a menu structure. Moreover, this thesis work introduces two simulator software 

on which the experiments of this thesis are performed. The overall goal of the simulators is 

to execute experiments according to predefined parameters in order to evaluate the feasibility 

and performance of optimization methods. 

 

1.1 Research background and motivation 

 

Graphical menus have been performing a vital role ever since the introduction of graphical 

user interface (GUI) for software and applications. Over the last years, applications are 

continuously expanding and providing an increasing amount of features and functionalities. 

In order to resonate in harmony with the rapid advancing applications, graphical menus have 

also been growing regarding various aspects, such as size, complexity and representation style. 

Because of this, utilization of graphical menus have been increasingly becoming difficult. 

Hence, it has been essential to deliver a graphical menu with clear layout and fast access to 

menu items, especially for experts whose work is largely depends on the utilization of 

graphical menus. 

Due to the wide utilization of graphical menu, numerous studies have been conducted 

regarding novel menus [2], however, few researches have been performed to evaluate and 

predict menu performance by changing its layout or structure. In addition to this, these 

researches are largely based on the theoretical study of Fitts’ Law regarding menu item 

pointing time [7]. As a result, various significant menu performance factors are rather 

neglected, such as visual search time, decision time, menu learnability as well as semantic 

relations between menu items [2] [26]. Furthermore, few studies have been performed to 
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improve menu performance by implementing optimization algorithms. Consequently, today’s 

menu layouts are largely constructed based on designer’s point of view without mathematical 

modelling [23]. However, designing an explicit menu system may reveal many challenges 

because the amount of alternative designs for a menu grow as a super-exponential function 

of the number of items in a menu systems [11]. That is, a menu which holds n commands 

may theoretically be organized in n! ways. Because of this, optimization approaches which 

attempt to reorder menu items by relocating them according to their frequency of usages, may 

appear to be rather sufficient for menu system with few items. However, these approaches 

begin to rapidly lose their efficiency for large sized menu systems. [2] [11] [26] 

 

1.2 Research objective 

 

The research objective of this thesis is to improve menu performance of linear menu in an 

editor software. A linear menu is based on linear layout where menu items are linearly 

organized and close to each other. Because of this, linear menu may reduce eye movements 

incurred by utilizing serial search strategy [12] [13]. The editor software here is assumed to 

be the Notepad++ [9]. On the other hand, the study of this thesis may be also applied to other 

software with similar graphical user interface, such as the LibreOffice.  

Concentrating on the research objective, this thesis evaluates and improves menu 

performance based on a multi-objective function composed of the Search-Decision-Pointing 

(SDP) model [2] and a semantic model [11] [26]. More specifically, this thesis aims to design 

and implement menu optimization methods which may decrease the average time expenditure 

for searching and executing a menu item in a menu.  

Ultimately, this thesis evaluates the feasibility of menu optimization methods for the editor 

software based on the objective function of this thesis in simulated environments. 
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1.3 Research approach 

 

In order to accomplish the research goals, this thesis initially studies various menu 

performance factors. Based on these factors, several menu performance models are also 

analyzed. Subsequently, these menu performance models form the objective function of this 

thesis. Centered on the objective function, several optimization methods are designed based 

on a variety of menu optimization strategies. These methods attempt to identify the most 

appropriate menu design by modifying various menu structural factors, such as menu layout, 

item positioning, item size and item saliency.  

Two simulator software are programmed to perform and visualize this thesis work. They are 

referred to as the Background Simulator and Graphical Simulator. Additionally, three 

distinctive test cases are crafted and executed by the simulator software in order to evaluate 

the feasibility and performance of these optimization methods. 

Ultimately, this thesis study is performed centered on model-based design approach by which 

menu performance and optimization methods are evaluated. 

 

1.4 Research scope 

 

Centered on the research objective, this thesis defines the following research scopes, 

 A multi-objective function [8] which is utilized to evaluate menu performance. This 

function differs with the ones in previous studies by considering both the SDP model 

and the semantic model. A weight factor is applied to these models in order to balance 

the overall menu performance.  

 A linear menu where menu items are horizontally positioned as buttons.  

 A graphical user interface simulator which presents a linear menu and holds a similar 

complexity as a medium-sized editor software. For instance, Notepad++. [9] 

 The optimization methods are designed according to menu optimization strategies and 

are able to perform the following operations, 
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o Change the position of items 

o Regroup items 

o Change the display size of items 

o Increase the saliency items 

 

1.5 Outline 

 

 Chapter 2 Related Work discusses some previously conducted researches regarding 

menu performance optimization. 

 Chapter 3 Theoretical Framework discusses the fundamental theory studied. 

Moreover, the objective function of this thesis is also presented. 

 Chapter 4 Software and Optimization Design describes design and operation 

principle of optimization methods. Furthermore, the execution process of simulator 

software is also introduced. 

 Chapter 5 Evaluation performs the evaluation of optimization methods by 

conducting three distinctive test cases. The results of optimization methods are 

analyzed and discusses in detail. 

 Chapter 6 Conclusion and Future Work displays the key findings of Chapter 5 and 

discusses potential future research works.  
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Chapter 2. Related work 

 

Numerous researches have been studied regarding menu performance optimization, including 

item frequency based optimization, pointing time (Fitts’ law) based optimization and 

heuristic algorithm based optimization. This chapter discusses some of the previously 

conducted studies related to this thesis work. 

 

2.1 Item frequency based optimization 

 

In 1994, Sears and Shneiderman have introduce an approach to increase menu performance 

by adapting menus. This approach is defined as split menu. [1] In their research, a menu is 

separated into two partitions by a separator line to improve menu performance. Items that are 

frequently selected are relocated to the top part of menu before the split line for faster access 

while rarely accessed items are positioned in the lower part of menu. This approach results in 

improved menu performance. Furthermore, in later commercially implemented version of 

split menus, promoted items are copied to the top part of menu instead of being moved, hence, 

these items may be accessed from both the top and lower part of menu. As a result, this design 

has further resulted in improved user satisfaction. An example of this kind of improved 

version of split menu may be observed in the “Font” menu in Microsoft Office. [1][13] 

Sears and Shneiderman have modelled the expected benefit offered by the split menu based 

on a log-linear formula which is demonstrated as the following, 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 = 𝑆𝐻𝐹 ∙  ∑ 𝑓(𝑥) ∗ [log2(𝐿𝑇(𝑥)) − log2(𝐿𝑆(𝑥))]

𝐻𝐹 𝑖𝑡𝑒𝑚𝑠

 

                               + 𝑆𝐿𝐹  ∙  ∑ 𝑓(𝑥)𝐿𝐹 𝑖𝑡𝑒𝑚𝑠 ∗ [𝐿𝑇(𝑥) − 𝐿𝑆(𝑥)] 

 

Where, 
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 𝑓(𝑥) is the frequency or probability of being selected of item x. The probability sum 

of all menu items equals 1. 

 𝐿𝑇(𝑥) and 𝐿𝑆(𝑥) represent the location of item x in traditional (lower) part of menu 

and in the split part of menu respectively. 

 𝑆𝐻𝐹 and 𝑆𝐿𝐹 are defined as the slopes of regression equations for items with high 

and low frequency respectively. They are centered on log2(𝐿
𝑇

(𝑥))  and 𝑡𝑇(𝑥) , 

where 𝑡𝑇(𝑥) is the time required to select item x in the lower part of menu. 

An example of the split menu designed by Sears and Shneiderman is demonstrated as the 

following, 

 

Figure 1: Split menu [13] 

Based on the design of the split menu, Sears and Shneiderman have also observed that users 

may quickly memorize the locations of frequently accessed items. This allows them to select 

items without searching for the desired item. Because of this, Sears and Shneiderman have 

suggested that the selection time of familiar items are dominated by the time needed to move 

the cursor to the desired item, which may be estimated by the Fitts’ law. On the other hand, 

items that are infrequently selected require users to iterate through the whole menu from top 

to bottom until the desired item is identified. As a result, the selection time of rarely accessed 
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items may be estimated by a linear function with the length of menu and position of the 

desired item in the menu. [1] [13] 

 

2.2 Fitts’ Law based optimization 

 

Ahlström has proposed another approach which attempts to improve menu selection time. In 

his research, the mouse cursor is attracted to a force field which assists users in navigating 

cascading pull-down menus in item selection tasks. The force field is implemented based on 

a warping algorithm which attempts to pull the cursor to the most appropriate force point 

depending on the item the cursor is currently pointing to. The software which utilizes the 

force fields tracks the movement of cursor and extract event information regarding mouse 

positions. These information is then continuously processed by the warping algorithm to 

generate force fields in real time. The coordinates for new cursor positions influenced by the 

force field may be calculated as the following [7], 

𝑛 = 𝑎 + 𝑠 ∙ ||𝑎 − 𝑝|| ∙  
𝑓 − 𝑎

||𝑓 − 𝑎||
 

Where, 

 𝑛 is the new cursor coordinates influenced by the force field. It consists of 𝑛𝑥  and 𝑛𝑦. 

 𝑎 is the last active cursor position. 

 p is the previous active cursor position before a. 

 f is the force field location. 

 s is the strength of force field. 

In addition to this, Ahlström has introduced a menu performance model which is based on a 

combination of the Fitts’ law pointing requirements and the steering law. The Fitts’ law is a 

well-known performance model studied in information theory and has been wildly applied in 

the field of HCI [1] [2] [4] [11] [12] [13] [27]. Moreover, based on the Fitts’ law, the steering 

law which is introduced by Accot and Zhai, has also been utilized in this research [7]. The 
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menu performance model which estimates the selection time T for selecting an item of a 𝑛𝑡ℎ 

submenu in a cascading pull-down menu may be demonstrated as the following, 

𝑇 = 𝑎 + 𝑏
𝑛ℎ

𝑤
+ 𝑎 + 𝑏

𝑤

ℎ
 

Where a and b are empirically determined variables. Parameters w and h represent the width 

of parent menu and height of menu items respectively. The time incurred by movements 

inside a menu is divided into two parts where the first part of the formula 𝑎 + 𝑏
𝑛ℎ

𝑤
 estimates 

the vertical movements while the second part 𝑎 + 𝑏
𝑤

ℎ
 horizontal movements. [7]  

An example of force field menu may be demonstrated as the following, 

 

Figure 2: Force field menu [13] 

According to Ahlström, the implementation of force field has been able to improve menu 

performance for users by average 18% compared to normal menus. However, the model 

utilized by Ahlström neglects the search time required to identify a desired time. As a result, 

the effect of user expertise has not been taken into consideration in this research. [7] [13] 
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2.3 Heuristic algorithm based optimization 

 

Matsui and Yamada have designed a method to optimize hierarchical menus. Their method 

is based on heuristic algorithms, including simulated annealing and genetic algorithms. In 

their research, menu is mapped by tree structure and menu items are determined as nodes. 

Each node may only hold a finite number of items. The fundamental research problem defined 

in their study is to identify the most appropriate allocation of items in a tree structure which 

may minimize the objective function. The objective function utilized in their research is based 

on the Search-Decision-Pointing model known as the SDP model introduced by Cockburn 

et.al. [2] In addition to the original factors of the SDP model proposed by Cockburn et.al, 

Matsui and Yamada also have also introduced two new factors known as the functional 

similarity and menu granularity. The parameter functional similarity is used to as a penalty 

factor which attempts to minimize the distance between semantically related items. 

Additionally, menu granularity is used to balance the tree structure of a menu. That is, it 

attempts to prevent a node to have children of very distinctive types, for instance, to place a 

node that has no child together with another node that has many children into the same parent 

node. [2] [27] 

The objective function proposed by Matsui and Yamada may be demonstrated as the 

following, 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑓 = 𝑇𝑎𝑣𝑔 +  𝛼𝑃𝑠 +  𝛽𝑃𝑔 

Where 𝑇𝑎𝑣𝑔 is the average menu selection time. 𝑃𝑠 and 𝑃𝑔 are the penalty functions for 

functional similarity and menu granularity while parameters 𝛼 and 𝛽 are constants use to 

balance the performance for these two functions. 

An example of menu layout comparison before optimization and after may be demonstrated 

as the following, 
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Figure 3: Menu layout comparison before optimization and after optimization [13] 

Matsui and Yamada report that their algorithms have been able to decrease average menu 

item selection time by at least 40%, which is a significant improvement [27]. Furthermore, 

they indicate that their algorithms are suitable for hierarchical menus in other devices as well 

instead of limited to only cell phones. However, the menu performance model utilized by 

them does not consider the cost incurred by switching positions of an items. Additionally, the 

effect of menu structure modification regarding menu learnability is also ignored in their 

research. 
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Chapter summary 

 

This chapter has discussed some of the previously conducted work regarding modelling and 

improving menu performance. Each model and method designed and implemented in these 

researches provide their own advantages as well as disadvantages. Some models focus on 

some of the most significant menu performance factors, such as item access frequency or 

item pointing time requirement. On the other hand, other models attempt to consider a variety 

of design factors, such as the SDP model.  

Previous studies have displayed a huge amount of potential in improving menu performance. 

However, few research has been conducted to study the influence of considering semantic 

relations between menu items in combination with a predictive menu performance model. 

Moreover, the negative effect of modifying menu structure is also not explained. Because of 

these, the model performance model utilized in this thesis work is based on the SDP model. 

In addition to the original factors introduced by the SDP model, this thesis work proposes 

also several other factors, including item cost function and semantic relation function. The 

SDP model, objective function and other related theoretical frameworks are discussed in 

detail in the next chapter. 
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Chapter 3. Theoretical framework 

 

This chapter discusses the theoretical framework of this thesis. The framework is composed 

of several distinctive concepts, including menu performance factors, the menu performance 

models as well as the objective function of this thesis work. 

 

3.1 Menu performance factors 

 

Menu performance are significantly affected by various factors, including menu length, item 

positioning, user expertise, pointing strategy, menu learnability as well as item semantic 

relations. 

1. Menu length: The length of menu is defined by the number of items reside within a menu. 

It is unambiguous that users are naturally quicker at searching and selecting items in menus 

with short length. On the other hand, the search time for a given item increases as the number 

of items in that menu increases. As a result, long menu length may negatively affect user 

performance. [2] [11] [12] 

2. Item positioning: The positioning of item affect both the search and selection time of user. 

That is, it has been studied that items located in the top of menu are easier to be selected 

compared to the ones in the bottom. However, in unfamiliar menus, users may have to iterate 

through whole menu one item a time in order to locate the desired item. Hence, the item 

positioning may significantly affect the search time of an item for users in menus with little 

to no previous experience. On the other hand, users may completely rely on their spatial 

memories regarding item positions in familiar menus. [2] [10] [11] 

3. User expertise: Users increasingly gain experience regarding a menu layout through 

continuous utilization of the given menu. As a result, the performance of such menu is 

improved. On the other hand, users may have to relearn the menu in situations where the 

menu layout rapidly varies. Consequently, user expertise concept is less valuable if the menu 

layout is unstable. [2] 
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4. Pointing strategy: Pointing strategy defines the approach regarding cooperation between 

eye movements and mouse control. In general, users may utilize two distinctive strategies; 

[12] 

1) Users may move the mouse cursor according to their eye movements. That is, 

the mouse cursor is simultaneously moved with the eyes by tracking and 

following the eye movement. 

2) Users may initially attempt to identify and locate desired item, subsequent to 

this, the move cursor is moved in single movement in order to select the given 

item. 

In the first approach, the mouse cursor is located near eye trace during searching phase, hence, 

the pointing time may be relatively decreased. In this thesis project, all item selections are 

performed by a simulator software. Because of this, it is assumed that the second approach is 

utilized. 

5. Menu learnability: The learnability of a menu may be realized as a parameter which 

indicates the degree of modification caused by adjusting the menu layout or structure. A menu 

with high degree of learnability suggests a more immutable menu layout. That is, the menu 

layout has incurred few to no changes compared to a previous one. Conversely, a low degree 

of learnability suggests that the current menu has performed various layout changes, hence, 

the appearance of the current menu is significantly different compared to a recent one. [2] 

Users are continuously acquire knowledge regarding a menu layout while executing menu 

items, as a result, they may eventually remember the entire menu layout. However, some 

menu layouts are rather difficult to be learned compare to others, hence, the menu learnability 

factor serves as a vital role to illustrate the consequence of changing parameters of menu 

items, therefore, it may enhance the precision of the menu performance model. [2] 

6. Semantic relations: The semantic relations between items may largely affect a menu 

performance [11] [27] [30]. More specifically, menu items that are semantically positioned 

offer better performance regarding visual search compared to unordered ones [1] [30]. 

Because of this, the semantic parameter is considered as an influential factor in menu 

performance.  
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3.2 Menu performance model 

 

As discussed, various menu performance models have been proposed in previous studies [1] 

[7] [22]. Indeed, numerous performance factors have been evaluated in these models, 

however, few of them consider different performance factors as a joint function on a 

comprehensive level. Hence, based on the menu performance factors presented in previous 

section, the menu performance model utilized in this thesis work is based on the Search-

Decision-Pointing (SDP) model introduced by Cockburn et.al. [2]. The SDP model is referred 

as a predictive menu performance model which may estimate the selection time of a menu 

item. It consists of a procedure of three steps, defined as search, decision and pointing step. 

Each step contributes a set of mathematical equations which may be utilized to calculate the 

corresponding cost of an item in time unit. In addition, the SDP model has been applied and 

developed in various menu optimization studies, such as hierarchical menus, circular and 

square layouts. [6] [27] Because of these, the SDP model appears to be an appropriate 

candidate regarding menu performance study and is applied as a fundamental theory in this 

thesis work. 

Search is the procedure where users attempt to seek and identify desired items in a menu. 

The items may be located by utilizing serial search approach and by utilizing the spatial 

memory of users. These two strategies may be described as the following, 

 Serial search: is also known as visual search, is a search strategy where users 

attempt to search the desired item by iterating through the whole menu by a 

top-to-bottom approach [2] [5] [10]. Additionally, items subsequent to the 

desired item are not considered. Moreover, the time cost incurred by serial 

search may continuously decrease as users are increasingly gain experience of 

the given menu. On the other hand, a long menu length may negatively affect 

the time cost for serial search strategy as users are more likely to visit more 

items priori to locating the desired one. [2] [3] [11] 

 Directed search: is a search strategy where users attempt to locate an item 

from a cluster of items by the probability of the desired item. This strategy 

requires users to largely rely on their spatial memory instead of serial search. 
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As a result, the effect of directed search is rather weak for novice users as they 

have gained little to no experience yet. However, an expert user may 

fundamentally rely on directed search strategy by utilizing their spatial 

memories, hence completely abandon the procedure of serial search [3] [11] 

[12]. In this thesis work, the directed search procedure is also referred to as 

the decision phase.  

Some researchers have argued that the goals of a user may be multiple when searching in a 

menu. [15] That is, the user would like to access various items or any of the items in one 

search procedure. However, in this thesis study it is assumed that the goal of user consists of 

one item at a time. 

Decision, the decision (directed search) time of an item is estimated by the Hick Hyman law 

which is discussed in the following section. [2] [14] 

Pointing, also known as target acquisition, is referred to as the phase initiated subsequent to 

locating the desired item. This thesis project assumes that the starting location for a pointing 

phase is from the left top corner of the user interface. The time cost of the pointing phase is 

calculated with the Fitts’ law which is discussed in the following section. [2] [11] [26] [27] 

 

3.3 Mathematical formulation 

 

This section discusses several fundamental equations regarding the actual realization of the 

SDP model as well as other relevant mathematical parameters, including search time, decision 

time, pointing time, item probability, user expertise, cost function as well as item semantic 

function. 

 

3.3.1 The Search-Decision-Pointing model 
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The Search-Decision-Pointing (SDP) model [2] is utilized to predict the selection time of an 

item. If i is the desired item, then the selection time for item i may be illustrated as the 

following, 

𝑇𝑖 = 𝑇𝑑𝑠𝑖 + 𝑇𝑝𝑖 

Where 𝑇𝑑𝑠𝑖 and 𝑇𝑝𝑖 are referred to as the search & decision time and pointing time of item i 

respectively. 

Pointing time: As previously discussed, pointing is initiated subsequent to locating of a 

desired item. Hence, the pointing time may be calculated by the Fitts’ law: 

𝑇𝑝𝑖 =  𝑎𝑝𝑖 + 𝑏𝑝𝑖  ∙ 𝑙𝑜𝑔2(1 + 𝐼𝐷),       𝐼𝐷 =  
𝐴

𝑊
 

Where ID is defined as the Index of Difficulty. The term A is referred to as the amplitude of 

movement from cursor to the desired item, and W represents the width of the item. 

Additionally, both 𝑎𝑝𝑖  and 𝑏𝑝𝑖  are empirically defined constants. [2] [11] [27] 

Search & Decision time [2] [11] [12] [13]: Novice users frequently attempt to locate a 

desired item by utilizing the serial search strategy. On the other hand, expert users are 

considerably more familiar with the menu interface, hence, they may rather rely on spatial 

memory locations. As a result, it is suggested that the decision and search time may be 

understood as the sum of serial search (visual search) and Hick-Hyman decisions. Hence, the 

decision and search time may be defined as the following,  

𝑇𝑑𝑠𝑖 =  𝑇𝑠𝑠𝑖 + 𝑇ℎℎ𝑖 

Where 𝑇𝑠𝑠𝑖 is determined to be serial search time and 𝑇ℎℎ𝑖 Hick-Hyman decision time. As 

previously discussed, it is assumed that novice users initiate item searching with a top-to-

bottom search strategy. In addition to that, the search process is immediately terminated 

subsequent to locating the desired item. Hence, the serial search time involves the total 

number of items n in a menu. That is, 

𝑇𝑠𝑠𝑖 =  𝑎𝑠𝑠𝑖 + 𝑏𝑠𝑠𝑖 ∙ 𝑛 
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Where both 𝑎𝑠𝑠𝑖  and 𝑏𝑠𝑠𝑖  are empirically defined constants. On the other hand, when users 

have acquired adequate knowledge regarding the positioning of items in a given menu, the 

search time transforms from linear to logarithmic. As a result, decision time may be presented 

by the Hick Hyman decision model [14], 

𝑇ℎℎ𝑖 =  𝑎ℎℎ𝑖 + 𝑏ℎℎ𝑖 ∙ 𝐻𝑖 

Where 𝑎ℎℎ𝑖  and 𝑏ℎℎ𝑖 are empirically defined Hick Hyman decision constants. Moreover, 

𝐻𝑖 represents the entropy of item i as, 

𝐻𝑖 =  𝑙𝑜𝑔2  ∙ ( 1 𝑝𝑖
⁄ ) 

Where  𝑝𝑖  is referred to as the probability of a given item. 

Item probability: This thesis assumes that the probabilities of items are initially equal. That 

is, it may be calculated by dividing one with the number of items in a given menu, such as  

𝑝𝑖 =  1
𝑛⁄    and ∀𝑖 

However, the probabilities of items may repeatedly vary to resonate with the number of 

selections generated by users. Hence, the probabilities of items are re-calculated subsequent 

to each menu layout modification,  

𝑝𝑖 =  
𝑡𝑖

𝑡⁄   , for every n items selected 

Where 𝑡𝑖and 𝑡 are referred to as number of selections of item i and total number of selections 

respectively at the moment of probability recalculation. 

User expertise [2]: The user expertise term 𝑒𝑖 is utilized in order to balance the weight of 

search & decision item between serial search and Hick Hyman decision model. The user 

expertise term may acquire value range from 0 to 1. A user with experience close to 1 

indicates that such user is an expert concerning the positioning of items. In such 

circumstances, the search & decision time for an item is largely dominated by Hick Hyman 

decision model. Hence, the original search equation may be redefined as the following, 
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𝑇𝑑𝑠𝑖 =  (1 − 𝑒𝑖) ∙ 𝑇𝑠𝑠𝑖 + 𝑒𝑖 ∙ 𝑇ℎℎ𝑖 

Where the user expertise 𝑒𝑖 may be modelled as the following, 

𝑒𝑖 =  𝐿 ∙ ( 1 − 1
𝑡𝑖

⁄ ) 

Where 𝑡𝑖 is referred to as the number of selections of item i while 𝐿 is determined as the 

learnability of a menu. 

Menu Learnability [2]: The menu learnability 𝐿  is referred to as a parameter which 

indicates the degree of modification. By default configuration, it is calculated by one minus 

movements incurred by switching the positions of items i and j divided by the menu size, it 

is expressed as the following, 

𝐿 = 1 − ( 
∆𝑀𝑖𝑗

𝑀𝑒𝑛𝑢𝑠𝑖𝑧𝑒
) 

Where movement 𝑀𝑖𝑗 is calculated as the absolute value of position of item i minus position 

of item j, that is, 

∆𝑀𝑖𝑗 = | 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑗|    where 

i = 1, 2…, menu size, j = 1, 2…, menu size, and i != j 

By default, the Background Simulator calculates the value of menu learnability priori to each 

modification attempt. On the other hand, the Graphical Simulator also calculates the 

corresponding menu learnability for each method it executes. The Background Simulator and 

Graphical Simulator are discussed in detail in the next chapter. [29] 

Cost function: The cost function is also referred to as the penalty function which is utilized 

to estimate the cost regarding altering the positioning of menu items. More specifically, 

subsequent to repositioning a menu item, user loses a part of knowledge regarding the 

positioning of that particular item. Because of this, the number of selections of that item shall 

decrease according to the amount of movements it has taken times a cost factor. That is, 
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𝐶𝑖 = ∆𝑀𝑖𝑗  ∙ 𝐶𝐹𝑖 

Initially, the cost factor 𝐶𝐹𝑖 is calculated as one divided by total number of items. That is, 

𝐶𝐹𝑖 =  1
𝑛⁄  

This value reflects the fact that an item loses approximately half of its selections if it has taken 

a movement equal to half of the menu length. Similarly, if an item originally located as the 

first item in the menu, has been repositioned to the end of menu (i.e. ∆𝑀𝑖𝑗 = 𝑚𝑒𝑛𝑢 𝑠𝑖𝑧𝑒 −

1), that particular item may lose most of its previous selections. As previously mentioned, 

item probabilities are recalculated after each successful menu optimization, hence, the cost 

function is executed prior to this procedure in order to reflect the cost incurred for modifying 

menu items. [29] 

 

3.3.2 Semantic function 

 

The semantic function is calculated based on predefined semantic table regarding the 

semantic relations between menu items. In contrast to the SDP model, the semantic function 

is defined as a reward function [4] [27] which encourages the grouping of semantically related 

items together in order to achieve high menu performance. The semantic value of a menu 

may be expressed as the following, 

𝑆 =  ∑ 𝑅𝑖𝑗𝑖,𝑗    

𝑖 = 1,2, … 𝑛 − 1    𝑎𝑛𝑑    𝑗 = 𝑖 + 1 

Where 𝑅𝑖𝑗 is the semantic value between item i and j defined in the semantic table.  

The semantic function is implemented together with the SDP model to form a weighted menu 

performance model, which is defined as the objective function in this thesis work. 
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3.4 Objective function 

 

As mentioned above, the objective function is composed of the SDP model and the semantic 

function. On the other hand, these two models also contribute their own objective functions. 

That is, the objective function of the SDP model is illustrated as the following, 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑇𝑎𝑣𝑔 =  ∑ 𝑇𝑖𝑝𝑖

𝑛

𝑖

 

Where 𝑇𝑎𝑣𝑔 is referred to as the average item selection time of the whole menu and 𝑝𝑖 is the 

probability of menu item i. As noticed, the objective function of the SDP model is defined as 

a cost function [4] [11] [18] [23], hence, a better menu performance may be achieved by 

minimizing the average item selection predicted by the SDP model. 

As previously mentioned, in contrast to the SDP model, the semantic function is defined as a 

reward function [4] [27], hence, the goal is to maximize the value of semantic model, as 

illustrated as the following, 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒    𝑆 =  ∑ 𝑅𝑖𝑗

𝑖,𝑗

 

As noticed, the overall objective function consists of two very distinctive objective functions. 

Because of this, a weight parameter is required to balance and adjust the optimization focus 

depending on situation needs. As a result, the overall objective function may be defined as a 

multi-objective optimization function [4] [8] [11] [18] [29], which is illustrated as the 

following, 

𝑃𝐼 = 𝑊𝑠𝑑𝑝𝑇𝑎𝑣𝑔 + 𝑊𝑠𝑆 

Where 𝑃𝐼 is defined as the performance index for the joint objective function while 𝑊𝑠𝑑𝑝 

and 𝑊𝑠 are referred to as the performance weights for the SDP model and the semantic model 

respectively. This objective function appears to be proper, however, a couple of key points 

are noticed. First, the values produced by these two models are in different domains. That is, 
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the value calculated by the SDP model is in time domain while the value of semantic model 

is in a generalized domain (i.e. between 0 to 1). Second, the results these two models are on 

the opposite vectors as the goal is to maximizing the semantic relations between items while 

minimizing the average selection time predicted by the SDP model. Because of these, the 

performance models have to be modified. In order to achieve this, result of the SDP model is 

normalized in order to provide values between the same range as the semantic model. 

Additionally, instead of minimizing the selection time, the multi-objective function attempts 

to maximize the reversed and normalized selection time of the SDP model. As a result, this 

would allow the SDP model to perform on the same vector as the semantic model by retaining 

the original objective. That is, a lower selection time results in higher menu performance. The 

final form of the multi-objective optimization function is illustrated as the following, 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒    𝑃𝐼 = (1 − 𝑊𝑠𝑑𝑝𝑇′
𝑎𝑣𝑔) + 𝑊𝑠𝑆 

Where 𝑇′
𝑎𝑣𝑔 is referred to as the normalized average item selection time. 
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Chapter summary 

 

This chapter has discussed the fundamental concepts of this thesis work, including menu 

performance models, objective functions and menu performance factors. A variety of menu 

performance factors have been presented, including menu length, item positioning, user 

expertise, menu learnability, pointing strategy as well as semantic relations between items. 

Based on these menu performance factors, this thesis extends the SDP model by introducing 

two additional factors known as the cost factor and the semantic parameter. The cost factor 

is applied by a cost function which reduces item selections based on the movement incurred 

for optimizing menu layouts. On the other hand, the semantic parameter is modelled by a 

semantic function which encourages the grouping of items with close semantic relations. 

Based on the extended SDP model and the semantic model, a joint multi-objective 

optimization function is formed. This objective function serves as the fundamental 

framework centered on which all the optimization methods are built. The design and 

operation principles of these optimization methods as well as the programmed simulators are 

discussed in the following chapter. 
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Chapter 4. Software and optimization design 

 

This chapter discusses the Background simulator and Graphical simulator programmed in 

this work. Furthermore, this chapter presents the design and operation principles of 

optimization methods utilized in chapter 5. Both simulators are programmed the Java 

programming language JDK version 1.8. Additionally, The Graphical simulator is based on 

the Swing library in JDK. [25] 

 

4.1 Background simulator 

 

The Background simulator is a background process which executes a series of actions, 

including menu generation, probability table generation, semantic table calculation and real 

user simulation. Additionally, menus are processed by the Background simulator prior to be 

modified by the Graphical simulator.  

The Background simulator consists of a variety of functionalities, its operation principles 

may be demonstrated as the following, 

The initial step of a simulation execution is to configure a viable set of parameters for the 

Background simulator, including simulation duration, optimization frequency, skew of 

Zipfian distribution, cost factor, weight of probability models and menu size. Some 

parameters are utilized in actual optimization process while others are applied as predefined 

variables in early simulation phases. For instance, probability table are generated based on 

the Zipfian distribution. This is because, Cockburn et.al have argued that menu items are 

selected according to a non-uniform manner [2]. In fact, other researches have also indicated 

that the distribution of item selection in a menu follows the Zipfian distribution [13] [21], 

where a large proportion of the probability cluster is dominated by only few items. As a result, 

other low frequency items are left unselected which create a long tail effect [28]. On the other 

hand, menu size which is also referred to as menu length in chapter 3, defines the total number 

of items reside in the menu. The default menu size in the Background simulator is 26, 
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however, the Background simulator fortunately supports a very large menu size, theoretically 

ranges from 1 to any finite number. For instance, a menu size of 1000 is still considered to be 

feasible in the Background simulator. In addition to this, if available, the Background 

simulator reads a semantic table based on the theme package configured in miscellaneous 

settings. If a semantic table is unavailable, the Background simulator skips this process and 

ignores the influence of semantic model in optimization phases.  

 

Figure 4: Background simulator operation process 

The semantic table, menu layout and generated probability table construct a data base which 

is processed in actual optimization phases. Each test case holds its own data base which is 

utilized in all optimization methods. This is particularly important because the data base 

allows different optimization methods to be executed with their own configurations, such as 

a higher optimization frequency or more expensive cost factor.  

The simulation begins by extracting data from the data base. Item selections are being 

generated over time and menu layout is continuously optimized based on an exhaustive 

search algorithm discussed later. This algorithm is implemented as method one in later 

sections. The Background Simulator performs this process until the desired number of 

selections have been generated. Subsequent to this, the Background Simulator produces two 

files, i.e. a menu layout file and a performance result file. The performance result file consists 
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of performance indexes of successful optimization attempts calculated during simulation runs. 

The menu layout file is composed of menu item related information, such as item position, 

item selection, simulator calculated probability table and actual user selection probability. It 

is worth noticing that items are selected based on the user selection probability, which is the 

probability table generated based on the Zipfian distribution in parameter configuration phase. 

On the other hand, the Background Simulator calculates a real-time probability table for 

optimization models. This probability table is continuously being modified to reflect changes 

being made regarding item selections during runtime. The user probability table stays static 

during the whole simulation. 

 

4.2 Graphical interface 

 

This section discusses the operation principles of the Graphical Simulator. The Graphical 

Simulator is initialized by extracting data from menu layout file and performance result file 

delivered by the Background Simulator. Subsequently, the Graphical Simulator constructs a 

graphical representation of a menu based on its original menu layout prior to any optimization 

attempts and the menu theme package. This menu layout is referred to as the basic layout. 

 

 

Figure 5: Graphical simulator operation process 
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Based on the basic layout, the Graphical Simulator attempts to further optimize the menu 

layout by applying several graphical optimization method. These methods are referred to as 

method two, three, four and five. Each method implements at least one of the optimization 

strategies discussed in the following section. However, due to the supplementary 

modifications, menu layout produced by these methods may potentially suffer from 

infeasibility design as well as additional menu learnability losses.  

 

 

4.3 Optimization method design 

 

This section describes the design principles and operation processes of each optimization 

method. In addition to this, menu optimization and adaptation strategies are also presented. 

 

4.3.1 Optimization strategy 

 

Bailly et.al have proposed a structure of taxonomy which attempts to categorize menu 

characteristics based on three dimensions, including menu item, menu and menu system. 

These dimensions may be presented as a hierarchy where menu system is composed of menus 

and menu consists of menu items. Bailly et.al have stated that this hierarch allows menu 

modifications to be performed on different levels. As a result, the flexibility of optimization 

method design is greatly enhanced. For instance, a designer may want to improve menu 

performance on partial level without altering the overall structure of the whole menu and 

menu system, e.g. by changing the characteristics of a menu item. On the other hand, the 

entire menu system may be optimized if desired, e.g. when designing user interface for new 

applications. [13] 

Centered on the concept mentioned and the work of other authors [19], menu performance 

may be increased by focusing on a variety of strategies. In this thesis work, the following 

strategies are utilized, 
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 Increase item size: Analysis of the Fitts’ law suggests that menu performance may 

be increased by enlarging the size of item. Additionally, an item with large size is 

more likely to attract user attention, hence also increases item recognition. [2] 

 Reducing pointing distance: Based on theory of the Fitts’ law. Menu performance 

may be increased by decreasing the amplitude of movement required for pointing to 

an item [26]. Moreover, this optimization strategy may also decrease the time needed 

to search for an item for inexperienced users because they tend to utilize the serial 

search strategy [1] [13]. 

 Increasing saliency: Menu performance may be optimized by enhance the saliency 

of the most significant items [2]. An item’s saliency may be increased by enlarging 

its size. In addition to this, supplementary graphical components, such as item 

transparency and separator lines may also be utilized to increase item saliency. 

 Semantic grouping: The semantic characteristics of items may greatly affect menu 

performance. Because of this, items may be grouped according to their logical 

relationships, thus increasing menu performance. [30] 

 

 

 

4.3.2 Adaptation strategy 

 

McGrenere et.al have conducted researches regarding the comparison between different 

menu variabilities, including adaptive, adaptable and static menu [21]. Based on their 

researches, these menu adaptations maybe explained as the following, 

A static menu is defined as a menu which does not alter its layout during utilization. On the 

other hand, a dynamic menu changes its layout during usage. Additionally, dynamic menus 

may be further divided into adaptive menus and adaptable menus. An adaptive menu is a 

menu where layout modifications are controlled by systems, such as optimization method or 

algorithm. On the other hand, in an adaptable menu, the layout changes are initiated by users. 

[21] 
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Based on the design and operation processes of the Background simulator and Graphical 

simulator, method one and four are executed centered on the theory of the adaptive menu 

whereas method two, three and five follow the concept of the adaptable menu. All 

optimization methods are evaluated according to the objective function discussed in previous 

chapter.  

 

4.3.3 Method design 

 

Method one 

The method one is executed by the Background Simulator and its operation is based on the 

exhaustive search algorithm. The exhaustive search algorithm is a search algorithm which 

iterates through all possible solution candidates. Each candidate is verified by the objective 

function. In this thesis work, the method one applies exhaustive search algorithm [11] [13] 

[23] in such way that it attempts to form new menu layouts by considering all the possible 

swaps between items. Each swap creates a new layout and its corresponding menu 

performance is calculated according to the objective function discussed in previous chapter. 

The highest menu performance index is logged to the result file and is used for comparison 

in the following optimization attempts. The menu layout with the highest performance index 

estimated by method one serves as basic result and is transferred to method two, three and 

five for further optimization. 

The overall operation process of method one may be demonstrated as the following, 

1. Initial parameter definitions, including simulation duration, optimization frequency, 

skew of Zipfian distribution, cost factor, weight of probability models and menu size. 

2. While elapsed simulation time is less than target simulation duration, perform the 

following on each execution loop, 

 Generate item selection according to predefined user probability table 

 Based on optimization frequency, perform exhaustive search algorithm to 

identify new menu layouts with superior performance index than the current 

menu in usage. 
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 If better menu layouts are determined, log information regarding the menu 

with the best performance index of the current execution loop to the result file, 

including the number of optimization attempt and its performance index.  

 Subsequently, this menu layout is presented to user  

3. Continue the execution loop from step 2 

 

Method two 

Method two attempts to improve menu performance by utilizing the reducing pointing 

distance strategy. As a result, method two may shorten both item search and pointing time. 

As discussed in previous chapter, performance of menu is modelled as the following, 

𝑇𝑖 =  𝑇𝑑𝑠𝑖 + 𝑇𝑝𝑖 

Where 𝑇𝑑𝑠𝑖represents search and decision time while 𝑇𝑝𝑖represents item pointing time which 

is governed by the Fitts’ law,  

𝑇𝑝𝑖 =  𝑎𝑝𝑖 + 𝑏𝑝𝑖  ∙ 𝑙𝑜𝑔2(1 + 𝐼𝐷),       𝐼𝐷 =  
𝐴

𝑊
 

Where ID is referred to as the Index of Difficulty and A as amplitude of movement and W 

item width. The ID may be reduced by two strategies, i.e. either to reduce the amplitude of 

movement or increase the size of item. Method two utilizes the first strategy. That is, to reduce 

the pointing distance required to click an item. Method two realizes this strategy by dividing 

the menu into two parts and relocating the second part of menu to the beginning of menu 

layout on a parallel row with the first part. As a result, the pointing time of relocated items 

are greatly reduced, hence increases menu performance. Furthermore, novice users tend to 

search desired items by utilizing the serial search strategy. Because of this, by separating 

menu into two rows may potentially decrease the time incurred for locating an item, thus 

reduce average selection time. However, method two is limited by the following design 

constraints, 
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1. The second part of menu (i.e. relocated items) does not violate the overall user 

interface. That is, a sufficient amount of space must be available for relocating items 

in order to prevent overlapping. 

2. The outcome (i.e. menu layout) is feasible to users regarding usability. That is, the 

final layout shall hold balanced rows where each row contains an equal or close to 

equal number of buttons. 

A new design variable is implemented in method two, it is referred to as the separator. The 

separator is utilized by method two in deciding the appropriate position from which the menu 

is divided into parts. More specifically, the separator attempts to separate menu layout by 

balancing the amount of selections of items reside on each row. The separator is calculated 

and applied as the following, 

1. Configure initial separator value, the default value is 0.1. That is, the amount of 

selections of items on the first row is 0.1 of the total amount of selections of all items. 

Hence, the initial overall ratio of selections between first and second row is 1:9. 

2. Configure step value, also referred to as cumulative value, the default value is 0.1. 

That is, the separator is moved (increased) by 0.1 on each step, up to 0.99. Each time 

the separator is moved, the performance index of current menu layout is calculated 

and compared to a previous (best) one. The menu layout with higher performance 

index is marked as the best layout for next comparison. 

3. Configure maximum separator value, the default is 0.5. That is, the movement of 

separator is terminated upon reaching this value. The menu layout with highest 

performance index is then presented on the Graphical simulator. 

As previously mentioned, method two may produce infeasible designs. A feasible design may 

be illustrated as the following, if the original menu layout is, 

 

 

A feasible modified menu layout may be, 
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                                                        Balanced                               

    

Or  

 

                                                                   Slightly unbalanced 

 

An infeasible menu layout may be, 

 

                                                                                     Unbalanced 

 

These graphs demonstrate an example regarding defining the feasibility of a menu layout, 

however, the final outcome may also be decided by actual designers. 

In fact, the separator may be configured according to another convention. That is, the 

separator may be adjusted primarily based on raw button index, e.g. separate menu into two 

parts from the 12th button index. As a result, it is much easier to achieve a balanced menu 

layout, however, this may decrease the benefit of method two. This is because, method two 

attempts to further optimization the result of method one. As previously discussed, method 

one utilizes exhaustive search algorithm, however, due to limited simulation duration, 

method one may hardly process through every possibilities. As a result, some important items 

which holds a significant number of selections, are positioned in undesired locations which 

may potentially decrease menu performance index, such as in the middle of menu. Because 

of this, method two attempts to identify the locations of these items by evaluating with 

movements of the separator and relocate them on a separate row. Indeed, this may also be 

achieved by shifting menu layout based on raw item index, however, the efficiency of this 

approach is greatly reduced for menus with large size. 
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Method three 

Method three attempts to improve menu performance by utilizing several strategies, including 

increasing item size, reducing pointing distance as well as enhancing saliency. These 

strategies are implemented as the following, 

 Items are grouped into chunks based on the basic result obtained from method one, 

separator lines are added between chunks to increase saliency between groups [12] 

[13]. 

 The first item of each group has its size enlarged for better recognition. 

 For each chunk, items of normal size are relocated onto two balanced rows for 

reducing pointing time. 

Based on these strategies, method three essentially creates a new menu layout, hence, the 

overall menu learnability is relatively low compared to other methods. Because of this, 

method three shall be considered when the following requirements are satisfied, 

 The menu layout provided by method two is infeasible 

 Semantic model holds a relative low performance weight 

 Method five offers few improvements without violating its design constraints 

Furthermore, method three is limited by similar design constraints as method two. That is, a 

sufficient space must be available for relocating items on another row and for enlarging the 

size of items.  

The method three is executed as the following, 

1. Configure the group size parameter n. This value is defined to be 5 in this thesis for 

testing purpose. A valid value for this parameter may be n = 2, 3, … (menu size – 1). 

2. Extract information from the result file produced by method one 

3. Separate items into groups based on parameter n 

4. Enlarge the size of the first item in each group 

5. Locate the rest of items onto two rows 

A sample result of method three (n = 3) is demonstrated as the following, 



33 
 

 

 

 

 

Method four 

Method four attempts to optimize menu layout by focusing on item semantic relations. 

Because of this, method four is only applicable if information regarding semantic relations 

between items are available. 

As discussed in previous chapter, if a semantic table is present, the overall menu performance 

model may be illustrated as the following, 

𝑃 = 𝑊𝑠𝑑𝑝 ∗ 𝑃𝑠𝑑𝑝 + 𝑊𝑠𝑒 ∗ 𝑃𝑠𝑒 

Where in method four the performance weight of semantic model 𝑊𝑠𝑒 largely dominates the 

one of the SDP model 𝑊𝑠𝑑𝑝. 

Similar to method one, the operation of method four is also based on the exhaustive search 

algorithm. Moreover, method four utilizes the same data base of method one and is executed 

as a parallel process by the Background Simulator. Subsequently, the result of method four 

is transferred to the Graphical Simulator. Based on the semantic rating of items, the 

Graphical Simulator attempts to further optimize menu performance by adding separator 

lines between items to strengthen the saliency between distinctive groups [13].  

A sample menu layout of method four may be illustrated as the following, 

 

Where groups are represented by different colors. 
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Method five 

As previously mentioned, menu performance may be increased by decreasing the index of 

difficulty introduced by the Fitts’ law. Hence, method five attempts to improve menu 

performance by applying the increasing item size strategy. An item is enlarged if the item is 

considered to be a significant item. An item is significant, if its number of selections is equal 

or greater than a percentage of the total number of selections. This percentage parameter is 

referred to as acceptance. In addition to this factor, it is understood that by increasing item 

size also increases the menu length in pixel, hence, the menu shall not exceed the maximum 

resolution of the Graphical Simulator. Based on the predefined parameter of the Graphical 

Simulator, the maximum number of enlarged item is eight. 

Method five is execute as the following, 

1. Define the value of acceptance, the default value is 0.05. That is, the size of item is 

enlarged if it holds equal or more than 5% of the total number of selections. 

2. Extract data obtained from method one. 

3. Identify the most significant items. 

4. Attempt to enlarge the size of the most significant items without violating design 

constraint 

A sample menu layout may be illustrated as the following, 

 

 

Similar to method two, the objective of method five is to reduce the index of difficulty 

introduced by the Fitts’ law. The different is that instead of reduce the amplitude of movement, 

method five increases the target size. As a result, method five may contribute less 

improvement compared to method two. However, method five rarely suffers from infeasible 

menu layout and retains the highest menu learnability of all other methods. Because of this, 

method five may be considered in most situations.  
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Chapter summary  

 

This chapter has explained the fundamental operation principle regarding the Background 

Simulator and Graphical Simulator. Additionally, several optimization strategies presented 

by Bailly et.al have been discussed. Moreover, menu adaptation strategies proposed by 

McGrenere et.al have also been described. Based on these optimization and adaptation 

strategies, five optimization methods have been designed. For instance, method one is 

processed by the Background simulator as the initial optimization process. Moreover, its 

result serves as basic result to be further modified by several other methods applied by the 

Graphical Simulator. For instance, method two attempts to improve menu performance by 

focusing on decreasing movements required to reach an item by relocating items onto another 

parallel row. Moreover, this action may also potentially reduce the search time incurred by 

serial search strategy for novice users. However, method two may frequently suffer from 

infeasible menu designs, thus shall be carefully considered. On the other hand, method five 

attempts to increase menu performance index by enlarging the size of the most significant 

items. This method may contribute less compared to other methods, however, it holds the 

highest menu learnability and suffers little from infeasible menu designs. Method three on 

the other hand, attempts to improve menu performance by utilizing various strategies 

introduced by Bailly et.al. It may indeed provide great menu performance benefits, however, 

method three suffers from high menu learnability loss, thus shall only be considered when 

desired situations are satisfied. In addition to these methods, method four is executed in 

parallel with method one by using the same data base and algorithm. However, it focuses 

more on the semantic relationships between items instead of general menu performance. As 

a result, the semantic meanings are more prominent between items compared to other 

methods. The performance results of these optimization methods are evaluated by several test 

cases introduced in the nest chapter. 
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Chapter 5. Evaluation 

 

This chapter evaluates the performance of optimization methods discussed in Chapter 5. 

Initially, a variety of essential simulator runtime parameters are presented. Subsequently, the 

simulation environment, hardware specifications and simulation assumptions are displayed. 

After which, several simulation test cases are conducted in order to perform the evaluation. 

Furthermore, a short review is provided in each test case for assessing the feasibility of the 

optimization methods.  

 

5.1 Simulation parameter 

 

The optimization algorithm supports a variety of distinctive and adjustable factors. Factors 

belong to the Background Simulator are presented as the following, 

 Simulation duration: limits the duration of simulation by counting the number of 

items generated. This value is set to be 1000 by default. That is, a total amount of 

1000 selections are generated during experiment. 

 Optimization frequency: defines the rate of execution of optimization attempts. The 

default value is 1. That is, the simulator attempts to perform optimizations subsequent 

to each item selection. 

 Semantical table: defines whether the semantic table is utilized or not. A vital factor 

that reveals the effect of semantic meaning regarding menu performance. The default 

value is TRUE; 

 Performance model weight: determines the weight of influence between the SDP 

model and semantic table. The default value is 0.5 to 0.5. 

 Cost factor: determines the cost incurred by changing the position of menu items. 

The default value is calculated as one divided by menu size. Note, this parameter 

requires the movement factor to calculate the final cost of changing the position of 

an item. The movement factor is discussed in Chapter 3. 



37 
 

 Skew of Zipfian distribution: This parameter defines the shape of probability curve 

generated by Zipfian distribution discussed in chapter 4. A large skew value may 

produce a significant long tail effect where few items possess a high probability rate 

while other items close to the minimal possible number. The default value of this 

parameter is set to be 0.8.  

Several other factors are introduced in the Graphical simulator, they are displayed as the 

following, 

 Separator: determines the position of where the menu is divided into two 

representation rows. The default value is set to be 0.1. This parameter is implemented 

in optimization method II and is valid between 0.1 to 0.5. 

 Cumulative value: defines the increment the Separator receives during each 

optimization attempt. This parameter is applied along with Separator in method II. Its 

default value is 0.1. 

 Acceptance: determines the most significant items for which the size is enlarged. The 

default value is set to be 0.05, i.e. items which contributes more than 5% of the total 

amount of item selections are considered to be significant items. This parameter is 

applied in optimization method V and is valid between 0.01 to 0.99. 

Factors discussed above perform as the most vital parameters in both Background and 

Graphical simulator. On the other hand, several other factors may also affect the result of 

simulations, such as simulator window size and space between buttons. However, these 

parameters are considered as static parameters thus altering their value contributes little to 

the study of actual menu performance model. Because of this, these values are preferably 

defined by user interface designers. 
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5.2 Simulation environments 

 

Experiments are conducted on a laptop which hold the following specifications, 

Operating System Windows 10 Home 64-bit 

System Manufacturer Hewlett-Packard 

System Model HP ENVY 17 Notebook PC 

Processor Intel® Core™ i7-4710MQ CPU_2.50GHz 

(8 CPUs) 

Memory 12GB 

 

Furthermore, simulators assume that mouse cursor is always moved from the top corner of 

the screen. Moreover, the simulator is locked at a resolution of 1920 * 1080, i.e. resizing is 

not enabled. Additionally, the default size of buttons is 50 pixels and space between buttons 

is 5 pixels. Furthermore, theoretical constants utilized in this thesis are fetched from the 

previous research conducted by Cockburn et.al, including the empirically determined 

constants of the Fitts’ law, Hick-Hyman law and visual search model [2]. 

 

5.3 Experiments 

 

As previously discussed, the simulator offers five methods to optimize menu layouts. Each 

method is designed to improve the general menu performance while aiming to provide at least 

one of the following advantages, including short pointing distance, strong semantic relations 

between items and enhanced item saliency. In order to evaluate the advantages as well as 

disadvantages of these optimization methods, this section performs several experiments in 

simulated environments. 
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5.3.1 Test case I: Theme Office 

 

Office like software are not strange to anyone, especially to engineers. Every engineer has 

used some kind of office software in his or her careers, such as Microsoft Office® or 

LibreOffice®. However, not every office software provides users with an optimized user 

interface. On the other hand, an optimized user interface may greatly enhance the usability of 

the software as well as the working efficiency of users. 

This test case consists of three purposes. First, it aims to evaluate both the efficiency and 

stability of the Background Simulator. This is executed by setting the skew of Zipfian 

distribution to extremely high (i.e. 0.8). As a result, the generated user probability table shall 

be dominated by only few items. Second, this test case attempts to identify the influence of 

cost factor. In addition to this, the third purpose of this test case is to observe the effect of 

prolonged simulation as well as the effect of infrequent optimization attempts. In order to 

achieve these purposes, a secondary simulation is executed in parallel with the first one by 

utilizing the same data base.  

The buttons used in test case I are displayed as the following, 

 

Figure 6: Buttons, test case I 

It is obvious that these buttons may be categorized into several groups, such as documents, 

pencils and digital tools. However, in order to focus on the results of the Background 

Simulator, optimization methods are disabled which heavily rely on the Graphical Simulator. 

Moreover, the influence of semantic table is also ignored. Because of these, the result of 

method three and method four are neglected in test case I. On the other hand, both test cases 
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II and III are constructed for both simulators and also offer their own distinctive semantic 

tables in later sections. Hence, the results of these methods are analysed in those test cases. 

As mentioned above, two simulation runs are executed in parallel in test case I by using the 

same data base. However, their simulation runtime parameters are somewhat different. Thus, 

two sets of parameter tables are defined, they are expressed as the following, 

Simulation duration 1000 

Optimization frequency 1 

Performance model weight (SDP : 

Semantic) 

1 : 0 

Cost factor 0.04 

Skew of Zipfian distribution 0.8 

Table 1: Simulation parameter, Run 1, test case I 

 

Simulation duration 10000 

Optimization frequency 10 

Performance model weight (SDP : 

Semantic) 

1 : 0 

Cost factor 0.08 

Skew of Zipfian distribution 0.8 

Table 2: Simulation parameter, Run 2, test case I 

Several points are worth noticing from the parameter tables. 

The weight of performance models is rather irrelevant due to the absence of semantic table 

in test case I. Hence, objective function solely considers the result of the SDP model. 

The skew of Zipfian distribution has been adjusted to be 0.8. Because of this, the generated 

user probability table is dominated by only few items. This reflects the fact that buttons are 

most likely been selected according to the Zipfian distribution in an office software [2] [21]. 

The sorted probability table of items are illustrated as the following, 
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Figure 7: Item probability distribution sorted, test case I 

The simulation duration and optimization frequency are set to be 10000 and 10 

respectively in Run 2. Because of this, the duration of Run 2 is much longer but optimization 

attempts are infrequently executed compared to Run 1. With this configuration, users are 

more likely to learn the menu layout. Thus, it is interesting to observe the potential advantage 

as well as disadvantage received by several key factors in a prolonged simulation run, such 

as the user expertise and optimization frequency. Additionally, it is also worth noticing that 

both runs process the same amount of optimization attempts (i.e. 1000) despite having 

different simulation durations. 

The cost factor is 0.08 in Run 2 which is doubled compared to Run 1. Consequently, a double 

amount of selections is removed from the selection history of the modified button. Hence, 

this change may further discourage the frequency of successful optimization attempts. An 

optimization attempt is considered successful if it has improved menu performance by 

executing optimization methods. 

Based on the parameters given in test case 1, the following hypothesizes are presumed: 

1. The results of Method one are somewhat similar in both runs 

2. Method two offers significant improvements compared to Method one in both runs 

3. Method five provides better result in Run 2 than Run 1. 

Prior to execute test case 1. The button probability distribution and initial menu layouts for 

both runs are illustrated as the following, 
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Figure 8: Button probability distribution, test case I 

 

Figure 9: Initial menu layout, test case I 

A first observation displays that button ID-Card  holds the highest probability while 

button Writing Tools  holds the second highest. Moreover, buttons are not placed in any 

sorted order. Hence, no previous optimization has been performed for this menu. 

 

Method one 

According to the Background Simulator, performance index of the initial menu layout is 

0.075 in both runs. Furthermore, successful optimization attempts are displayed as the 

following, 
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Figure 10: Successful optimization attempts, test case I 

It is observed that, despite having both runs be optimized for the same amount of attempts 

(i.e. 1000), a total amount of 70 optimization attempts have been successful in Run 1, however, 

only 23 attempts have succeed in Run 2. This may indicate that optimization attempts are 

largely affected by both the cost factors as well as optimization frequency. As a result, only 

few attempts have been successful in Run 2. The button selection distribution and the menu 

layout of Run 1 is illustrated as the following, 

 

Figure 11: Selection distribution Run 1, test case I 
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Figure 12: Method one, Run 1, test case I 

Based on Figure 11, it is noticed that buttons ID-Card  and Writing Tools  which hold 

the highest amount of selections, have been positioned as the first and second button in menu. 

Furthermore, other buttons also have their positions modified primarily according to their 

corresponding number of selections. The Background Simulator reports a performance index 

of 0.927 for Run 1.  

The button selection distribution and menu layout of Run 2 are displayed as the following, 

 

Figure 13: Selection distribution Run 2, test case I 

 

Figure 14: Method one, Run 2, test case I 

It is obvious that the menu layout of Run 2 is rather different compared to Run 1. Moreover, 

fewer buttons have been positioned according to the selection history, such as ID-Card  

or Computer  . The positioning of other items, such as Writing Tools , has been far 

from optimal. As a result, the menu layout of Run 2 appears to be rather incomplete. However, 

according to the Background Simulator, Run 2 has achieved a performance index of 0.907, 
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which is only slightly lower than Run 1 and with less than half of the successful optimization 

attempts executed in Run 1. Several points exist which may explain the reasons behind this 

phenomenal and they are related to the following fundamental concepts,  

1. Menu learnability. As discussed in previous chapters. Menu learnability is a factor 

which estimates the degree of menu layout modification. That is, a low degree of 

menu learnability is received if layout of the menu is rapidly being modified. 

Conversely, a menu yields high menu learnability if its layout remains static. Because 

of this, the overall menu learnability is higher in Run 2 compared to the one in Run 1. 

2. User expertise. The user expertise factor is utilized to balance the weight between 

visual search model and directed search model. Additionally, expert users may 

completely rely on their spatial memories regarding button positioning instead of 

visual search tactic. In Run 2, simulator user has generated ten times the selections of 

Run 1. Moreover, Run 2 has executed only 23 menu modifications, i.e. 23 successful 

optimization attempts. Thus, fewer selections have been removed from history due to 

cost factor. Because of these, simulated user holds a higher degree of user expertise 

in Run 2 than in Run 1. 

 

Figure 15: Optimization attempts, test case I 

Based on Figure 15 it is noticed that the performance index of Run 1 is actually lower than 

Run 2 in early simulation phases. This is caused by the rapid changes done to menu layout, 
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which results in lower menu learnability as well as user expertise. On the other hand, both 

runs receive little benefits in later optimization phases as optimization results are becoming 

closer to optimal, hence menu layouts have been rather static. Consequently, this increases 

the menu learnability and user expertise of simulated user in Run 1, which ultimately results 

in better performance compared to Run 2. However, the Background Simulator has executed 

a finite number of optimizations, thus, the results of both runs are in fact Approximately 

Optimal [4] and results beyond this simulation is unknown. Hence, it is likely that Run 2 may 

in fact performs better than Run 1 in extended simulation runs. 

As previously mentioned, the Graphical Simulator attempts to further optimize the menu 

layout generated by the Background Simulator with several other methods. However, method 

three and four are not evaluated in test case I. The analysis for these methods are performed 

in test case II and III. 

 

Method two 

Method two attempts to increase menu performance index by dividing menu into two parts 

from an appropriate point. As a result, a proportion of menu items are relocated onto a 

secondary row for quick access. The modified menu layout of Run 1 is displayed as the 

following, 

 

Figure 16: Method two, Run 2, test case I 

The Graphical Simulator indicates that the performance index of this menu layout is 

approximately 5.7% better compared to the one in Method one. However, the ratio between 

two rows is 1:9 which is extremely unbalanced. Because of this, the menu layout constructed 

by Method two for Run 1 is infeasible and shall not be considered.  

The modified menu layout of Run 2 is illustrated as the following, 
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Figure 17: Method two, Run 2, test case I 

According to the Graphical Simulator, this layout offers a performance index of 0.958 which 

is 5.6% better compared to Method one. Furthermore, Figure 17 shows the ratio between two 

rows is 7:3 which is slightly more balanced than in Run 1.  

 

Figure 18: Row ratio, Run 2, test case I 

Because of this, this menu layout may be considered. 

 

Method five 

Method five attempts to increase menu performance index by enlarging the most significant 

buttons without grouping or modifying the positioning of buttons. The modified menu layout 

of Run 1 is displayed as the following, 

 

Figure 19: Method five, Run 1, test case I 
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The Graphical Simulator reports a performance index of 0.96 for this menu layout which is 

improved by 3.5% compared to method one. Additionally, method five allows the size of 

eight buttons to be enlarge without violating design constraints. Hence, method five may still 

improve performance index in longer simulations. 

The modified menu layout of Run 2 is illustrated as the following, 

 

Figure 20: Method five, Run 2, test case I 

The Graphical Simulator indicates that the performance index of this menu layout is 0.943, 

which is 4% better compared to method one. Moreover, more buttons have their size enlarged 

in Run 2 compared to Run 1 which results in more performance gain. This indicates method 

five benefits from long simulation duration as well as infrequent menu layout modifications. 

 

Summary: test case I 

This section discusses the hypothesizes presumed in the beginning of test case 1 and conclude 

results obtained from simulation runs. The overall results of both runs are illustrated as the 

following, 

 

Figure 21: Overall results, test case I 
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1. The results of method one are somewhat similar in both runs 

The menu layouts produced by method one are rather different for both runs. That is, the 

menu layout of Run 1 appears to be more optimized compared to Run 2. This is caused by the 

high cost factor as well as infrequent optimization attempts configured in Run 2. In addition 

to this, Run 2 holds only less than half of the successful optimization attempts performed in 

Run 1, which further proves that modification of menu layout has been greatly discouraged 

in Run 2. On the other hand, the performance index of Run 2 is only slightly lower than the 

one of Run 1 in method one. This indicates that simulated user retains higher grade of user 

expertise in Run 2. Because of these, the menu layouts provided by method one for these two 

runs are rather different. 

2. Method two offers significant improvements compared to Method one in both runs 

Indeed, method two are able to offer over 5% improvements in both runs. However, the menu 

layout of Run 1 is rather unbalanced, hence it may be considered infeasible in real user cases. 

On the other hand, the menu layout of Run 2 appears to be much more balanced, thus, the 

menu may be usable in real user cases. 

3. Method five provides better result in Run 2 than Run 1 

Method five provides no better result for Run 2 than Run 1, however, method five is able to 

provide better improvements for Run 2 (4%) compared to Run 1 (3.5%), however, Run 1 still 

holds a better performance index, which is approximately 1.7% higher than Run 2. On the 

other hand, method five has decreased the overall performance gap between Run 2 and 1 by 

around 0.5%, which indicates that method five may offer more benefits for prolonged 

simulation runs. 

Due to decent improvements and high menu learnability, the result of method five may be 

considered as the final design for both runs in test case I. 
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5.3.2 Test case II: Theme Pokémon 

 

Pokémon game has been a childhood dream for many of us, in fact, some of us still actively 

play it every day. Pokémon is designed and published by Nintendo® back in the 90s. It is a 

video game crafted around a kind of fictional companions called Pokémon and players 

perform as the role of trainers who catch, live and train with Pokémon for great achievements.  

This test case consists of two purposes. Firstly, it is designed to observe and analysis the 

effect caused by decreasing the degree of skew of Zipfian distribution. Because of this, the 

user probability table is generated in such way that the distribution of item selections is 

slightly more even compared to the one in test case I. Secondly, this test case aims to validate 

the feasibility of optimization method four which focuses on the strategy of semantic 

grouping of items discussed in Chapter 4. In order to perform this, the buttons of user 

interface are categorized into 6 + 1 types. Moreover, Bailly et al. have argued that a logical 

group averagely contains 4 items [12], hence, each type is composed of four buttons 

belonging to the same category with the exception of the Trainer category, which only has 

two buttons, i.e. a pair of male and female trainer. The buttons and their classification are 

displayed as the following, 

Pokémon 

 

Poke ball 

  

Medicines 

 

Battle badges 

 

Poke eggs 

 

Tools 
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Trainers 

  

Figure 22: Buttons and categories, test case II 

Centered on the classification, the relationships between buttons are described by different 

grades. Each grade is defined by a number range from 0 to 1. Two buttons possess poor 

relations if the grade between them is close to 0. Conversely, a grade close to 1 indicates a 

strong relation between two buttons, such as Pikachu and Snorlax. Furthermore, each button 

is strongly associated with other buttons in its own category, however they behave naturally, 

weakly or poorly with other categories. 

For the sake of clarify, this test case defines four relationship grades, including strong (S = 

0.8), natural (N = 0.4), weak (W = 0.2), and poor (P = 0.1).  

In addition to this, the trainer category has a special grade (T = 0.5) which is slightly better 

than the natural grade and is also constant towards all other categories. This is done to reflect 

the fact that trainers are in the center of other categories and all other items are connected via 

trainers.  

The semantic table may be demonstrated as the following, 

 Pokémon Poke 

ball 

Medicine Tools Badges Poke 

egg 

Trainers 

Pokémon S N W P P N T 

Poke ball N S P P P P T 

Medicine W P S P P P T 

Tools P P P S P P T 

Badges P P P P S P T 

Poke egg N P P P P S T 

Trainers T T T T T T T 

Table 3: Semantical table, test case II 

 

In test case 2, simulator runtime parameters are defined as the following, 
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Total simulated selections 1000 

Optimization frequency 1 

performance model weight (SDP : 

Semantic) 

8:2 

Cost factor 0.04 

Skew of Zipfian distribution 0.6 

Table 4: Simulation parameters, test case II 

As previously discussed, test case II aims to evaluate the influence of the skew of Zipfian 

distribution. Hence, the Background Simulator attempts to generate a more evenly distributed 

selection of items by reducing the value of skew to 0.6 from 0.8 of test case I. The sorted 

probabilities of items generated in test case II are illustrated as the following,  

 

Figure 23:Item probability distribution sorted, test case II 

It is noticed that the generated probability table appears to be less dominated by few items, 

instead, several items have obtained a decent amount of probabilities. Furthermore, the 

highest probability is perceived to be 0.145 which is significantly lower compared to the one 

in test case I.  

The weight of performance models is chosen to be 8:2 in optimization methods one, two, 

three and five. That is, in these methods, the performance weight for the SDP model is 0.8 

while the performance weight for semantic model is 0.2. On the other hand, in method four, 
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the performance weight for semantic model is 0.8 while the SDP model holds a performance 

weight of 0.2. The weights of models are chosen in this convention to facilitate the 

performance models to their extreme points. Because of this, test case II may more 

appropriately fulfill its original purposes. 

The simulation duration and optimization frequency are adjusted to their default values 

which are 1000 and 1 respectively. As previously mentioned, one of the objectives of test 

case II is to evaluate the effect of semantic table compared to menu performance model. 

Hence, a longer duration of simulation run may yield incorrect result. This is because, the 

semantic model receives little benefit subsequent to a point of optimization attempt due to 

predefined and fixed value of the semantic table. However, the SDP model constantly gains 

improvements as more items are being selected due to the learning effect. In addition to this, 

the SDP model may continuously be optimized for a tremendous amount of times as a menu 

with 26 items may be ordered in 26! different ways. The Background Simulator may still be 

able to process this, however, the hardware utilized in this thesis is incapable to compute such 

large number of simulation runs. Hence, the values of simulation duration and optimization 

frequency are selected in this convention in order to reduce the likelihood of inappropriate 

result as well as balance the variance of performance models. 

The cost factor is reversed to its default value which is 0.04. This adjustment may encourage 

optimization methods to more frequently execute optimization attempts, e.g. change the 

position of items. Similar to Run 1 in test case I. The purpose of this change is twofold. First, 

it also attempts to reduce the negative effect caused by long simulation duration. Second, it 

causes the Background Simulator to produce more optimization results which enhance the 

accuracy of experiments. 

Based on the purpose and simulation parameters of test case 2, the following hypothesizes 

are presumed: 

1. Method two offers a significant improvement compared to Method one 

2. The performance of Method three is considerably worse than Method four 

3. Method five performs better than Method three 
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Prior to execute test case II. The initial menu layout and item probability distribution are 

illustrated as the following, 

 

Figure 24: Item probability distribution, test case II 

 

Figure 25: Initial menu layout of theme Pokémon, test case II 

A rough observation indicates that the button Star Badge holds the highest probability. 

Additionally, no items with strong relationships are located close to each other. Moreover, 

items are not positioned in any sorted order, hence this menu layout has not been optimized 

previously. 

 

Method one 

Optimization method one is able to improve menu performance index from initial value 0.077 

to 0.8305. Furthermore, runtime result indicates that method one has successfully improved 

menu performance in 54 optimization attempts of 1000. The menu layout optimized by 

method 1 may be displayed as the following, 
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Figure 26: Selection distribution, test case II 

 

Figure 27: Method one, test case II 

Based on Figure 27, it is observed that Star Badge  which has the highest probability and 

received the most selections, has been positioned as the first item in menu. On the other hand, 

several items which also hold a considerable amount of selections, such as  and , 

have not been placed to the top of menu for quicker access, instead they have been located 

close to another related button in order to achieve semantic improvements, such as  

and . However, due to the low weight adjusted to semantic table, method one has 

primarily optimized menu according to the SDP model, hence, not all items hold close 

relationships with each other. 

In order to analyze further, probabilities of buttons calculated by simulator during test case II 

runtime are illustrated as the following, 
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Figure 28: Comparison of probability distributions, test case II 

From Figure 28, it is observed that two probability tables appear to be similar to each other. 

However, a couple of key points are identified. For instance, Poke Badge   the second 

button in menu, holds probabilities of 0.067 in user selection table but 0.082 in simulator 

calculated table. This indicates that the position of Poke Badge has not been frequently 

changed. As previously discussed, each modification done to menu layout (e.g. position of 

button) would incur a cost which is governed by the cost function, hence reduce a 

corresponding amount of selections from modified buttons. Because of this, it is understood 

that the position of button Poke Badge may likely be static subsequent to its related 

optimization modification. Additionally, button Star Badge  shares similar fate as 

observed from Figure 28. On the other hand, Grape  positioned as the forth button in menu, 

holds an opposite outcome as its probabilities are 0.034 and 0.018 in user and simulator 

probability table respectively, which implies the fact that its position has been changed 

various times during simulation runtime. 

As previously mentioned, a total amount of 54 optimization attempts have gained 

improvements regarding menu performance, these attempts and their corresponding menu 

performance index are illustrated as the following, 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

17 7 5 2 3 4 6 11 8 9 12 10 15 13 16 14 1 18 20 21 19 22 23 25 26 24

P. simulator P. user



57 
 

 

Figure 29: Optimization attempts, test case II 

A couple of key points may be noticed from Figure 29. First, a large amount of successful 

optimization attempts are performed during early part of simulation runtime. Additionally, 

algorithm has provided less improvement as the simulation keeps running. Hence, 

optimization algorithm has achieved the highest performance index during test case II at 

optimization attempt 348, and its corresponding value is 0.8305. Second, the optimization 

process has demonstrated several “climb up” phases (e.g. from attempt 100 to 120) as 

successful optimization attempts are more densely performed during these phases. This may 

be partially explained by the fact that the optimization algorithm has determined a superior 

menu layout based on semantic performance. However, it is competing with the previous 

menu layout as their related performance indexes are also continuously influenced by the 

SDP model. Hence, a temporary conflict is arisen between two performance models. 

However, one menu layout would ultimately defeat the other one, thus, the optimization 

algorithm would continue from these “climb up” phases. It is worth noticing that the 

simulation is limited to 1000 selections, hence, the optimization algorithm has not achieved 

a genuine Optimal result, but rather Approximately optimal results [4]. 

As previously discussed, the Graphical Simulator attempts to further optimize the menu 

layout by several other approaches based on the data generated and received from the 

Background Simulator. 
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Method two 

As previously, Method two attempts to optimize menu layout by dividing current menu into 

two. Consequently, buttons belong to the second part of menu are relocated from the 

beginning of menu. As a result, these buttons may be more quickly accessed. The menu layout 

modified by Method two is illustrated as the following, 

 

Figure 30: Method two, test case II 

Additionally, the amount of selections contained in each row are displayed as the following, 

 

Figure 31: Row ratio, test case II 

Where both row equally contain 454 selections.  Method two yields a performance index of 

0.878 which is approximately 5.7% better compared to Method one. Moreover, the amount 

of buttons reside in both rows appear to be very well balanced. Hence, the outcome of method 

two may be indeed feasible for real users. 

 

Method three 

As discussed, method three attempts to further optimize menu performance based on the 

result of method one by utilizing a variety of strategies, including increasing item size, 

454 454

0

100

200

300

400

500

First row Second row



59 
 

reducing pointing distance and enhance group saliency. Additionally, for testing purpose, 

buttons are always positioned as a group of five in this thesis. The modified menu layout of 

Method three is illustrated as the following, 

 

Figure 32: Method three, test case II 

According to the Graphical Simulator, Method three yields a performance index of 0.875 

which is around 5.4% better than method one.  

 

Method four 

The selection distribution and menu layout constructed by method four is illustrated as the 

following, 

 

Figure 33: Selection distribution, Method four, test case II 

 

Figure 34: Method four, test case II 
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As opposite to other methods, method four is executed on a parallel process as method one 

by utilizing the same data base. Moreover, method four aims to group items by their semantic 

relationships and a separator is drawn between each group for enhancing group saliency. As 

a result, the SDP model contributes little regarding the modification of menu layout in method 

four. Furthermore, the weight for method four in test case II is adjusted to be much higher 

compared to the one in test case III. Hence, the outcome of method four in test case II may 

be much more prominent. 

Based on Figure 34, it is observed that the menu layout has been fundamentally crafted with 

semantic relations considered. Indeed, the menu layout is divided into 9 chunks while 5 of 

them may be understood as optimal chunks. That is, all buttons reside in these chunks possess 

strong relations between each other, thus provide a high semantic performance index. On the 

other hand, method four largely neglects the influence of the SDP model which may be 

noticed in Figure 34, where the amount of selections of buttons have rather little effect 

regarding button positioning compared to the one in method one.  

According to the Graphical simulator, method four offers a performance index of 0.932 

which is approximately 12% higher than method one. 

 

Method five 

The method five aims to improve menu performance index by attempting to enlarge the most 

significant buttons based on the data received from method one. Hence, method five shall 

naturally offer a better performance index compared to method one if no design constraint is 

violated. The modified menu layout of method five is illustrated as the following, 

 

Figure 35: Method five, test case II 

As noticed from Figure 35, six buttons have their sizes enlarged by method five. According 

to the design constraints of method five, a total amount of eight buttons may be enlarged 

without altering the sizes of other buttons. Because of this, Method five may still offer 

improvements if the simulation may be executed for a longer duration. According to the 
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Graphical Simulator, the performance index of method five is 0.86 which is 3.6% better than 

method one. 

 

Summary: test case II 

This section concludes the results obtained from all five methods in the light of the original 

hypothesizes of test case II. The overall results of test case II are displayed as the following, 

 

Figure 36: Overall result, test case II 

1. Method two offers a significant improvement compared to method one 

Indeed, method two offers a 5.7% improvement over method one. Additionally, its menu 

layout appears to be very well balanced compared to the ones in test case I. Because of this, 

if design constraints are not violated, the result of method two shall be considered in real use 

cases.  

2. The performance of method three is considerably worse than Method four 

As observed, due to the clearly defined relations between buttons and appropriate weights 

adjusted to performance models, method four is able to offer a significant performance 

improvement compared to method three (i.e. 6.5%). Hence, this hypothesis is proven to be 

true. Additionally, due to the clear layout provided by method two and strong semantic model 

performance weight, method three shall not be considered in real user cases. 

3. Method five performs better than method three 
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It is obvious that method five has offered a weaker performance index compared to Method 

three (i.e. 1.7%) despite providing better menu learnability. Hence, this hypothesis is proven 

to be false. This may be partially explained by the fact that method five benefits from long 

simulation durations since menu modifications are performed infrequently in later 

optimization phases. Because of this, items with high probability are likely to regain their 

selections which are reduced due to menu modifications occurred in early optimization phases. 

Conversely, method three receives less benefits from extended simulation duration. 

Depends on the favor of designers, two final designs may be considered in test case II. If short 

item access distance is preferred, then the result of method two shall be utilized. On the other 

hand, if semantic grouping provides more value to users, then the layout of method four shall 

be considered. 
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5.3.3 Test case III: Theme Restaurant 

 

Restaurant has been one of the most famous places to visit for many people. Everyone has 

probably enjoyed dinners with their families in restaurant. Goods and services of restaurant 

are mostly delivered via menu to its customers. Hence, this test case is designed based on the 

theme of a restaurant menu. 

This test case consists of three purposes. First, the skew of Zipfian distribution has been 

decreased to a lower degree in order to further analyze the reaction of the Background 

Simulator. Second, test case III attempts to identify the key factors which hold the most 

influence regarding the performance of semantic model, thus, the semantic table provided in 

test case III has been increased to eight categories. Furthermore, each category contains 

different number of items instead of four items per group configured in test case II. Third, a 

“catch up” feature has been implemented into the performance weight factors of method one. 

This feature modifies performance models in such way that it may reflect an actual restaurant 

operation strategy. That is, restaurants tend to sell the most profitable goods in the beginning 

of a supply cycle. Conversely, superfluous goods should be sold with high priority in the end 

of a supply cycle in order to minimize wastes. This “catch up” feature is referred as 

cumulative weight which is discussed later. The buttons utilized and their corresponding 

classification are displayed as the following, 

Vegetables 

 

Tools 

 

Dishes 

 

Drinks 

 

Seafood 
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Flavors 

 

Fruits 

 

Desserts 

 

Figure 37: Buttons and categories, test case III 

As previously mentioned, the relationships between categories are represented by different 

grades. The grading system utilized in test case III is somewhat identical to the one in test 

case II. That is, four relationship grades are available for each button, including strong, natural, 

weak and poor. No category is considered as special category, hence, a total amount of eight 

categories are configured. The semantic table is illustrated as the following, 

 Vegetable Drink Tool Seafood Fruit Dessert Dish Flavor 

Vegetable S P P P N P W N 

Drink P S P N W P N P 

Tool P P S W P N N P 

Seafood P N W S P P P N 

Fruit N W P P S N P P 

Dessert P P N P N S P W 

Dish W N N P P P S P 

Flavor N P P N P W P S 

Table 5: Semantical table, test case III 

 

In test case III, simulator runtime parameters are defined as the following, 

Total simulated selections 1000 

Optimization frequency 1 

performance model weight (SDP : 

Semantic) 

6:4 

Cost factor 0.04 
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Skew of Zipfian distribution 0.4 

Cumulative weight Enabled 

Table 6: Simulation parameters, test case III 

As noticed, the Skew of Zipfian distribution has been reduced to 0.4 in test case III. This 

should result in a more uniformed probability table compared to previous test cases. The 

sorted probabilities of items are displayed as the following, 

 

Figure 38: Item probability distribution sorted, test case III 

It is noticed that the long tail effect still exists, however, the curve of probability distribution 

appears to be less sharp. Furthermore, a rough observation indicates that at least 7 items have 

achieved a significant amount of probabilities. 

The weight of performance models is defined as 6:4 in all five methods including method 

four. On the other hand, the cumulative weight is applied to method one, hence the 

performance model weights in method one may be referred to as target performance model 

weight. As previously mentioned, the cumulative weight factor creates a “catch up” effect 

for models. That is, initially one model holds a weight of 1 while the other 0. As more items 

are continuously being selected. The cumulative weight increases for the other model, until 

it reaches the target performance model weight. The parameter describes the fact that 

subsequent to each item selection, the number of the corresponding item is reduced in the 

storage of restaurant. As a result, items located in the end of menu receive less attention which 
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ultimately create waste. The cumulative weight attempts to minimize this effect. It is 

calculated as the following, 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑊𝑠𝑒

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛
 

where target selection is the number of selections required to reach the target performance 

weight. The valid value for this parameter is between one and simulation duration. In test 

case III, the cumulative weight is implemented in method one. 

The simulation duration and optimization frequency are defined as 1000 and 1 respectively 

according to similar reasons in test case II. Moreover, cost factor has also been adjusted to 

0.04 in order to facilitate the frequency of optimization attempts. 

Based on the simulation parameters in test case III, several hypothesizes are presumed as the 

following, 

1. Method one and four provide different results 

2. The result of method two is somewhat more feasible compared to previous test cases 

3. Method five provides better result than method three 

The initial menu layout and item probability distribution are displayed as the following, 

 

Figure 39: Item probability distribution, test case III 
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Figure 40: Initial menu layout, test case III 

Initial observation indicates that several buttons hold superior probabilities, including tomato 

, shrimp and pancake . Additionally, the initial menu layout is not in a sorted 

order. Furthermore, no items are grouped close to another item of the same category. Hence, 

the performance of this menu is in its initial state. 

 

Method one 

The cumulative weight parameter is applied to the semantic model. That is, the performance 

weight of the SDP model largely dominates in the early optimization phases. Because of this, 

despite having a rather balanced ratio in both models (6:4), the semantic model receives less 

attention in the beginning of the simulation. However, the performance weight is 

continuously being increased for the semantic model, hence, some relation patterns may be 

identified. The menu layout as well as the item selection distribution of method one is 

displayed as the following, 

 

Figure 41: Selection distribution, method one, test case III 
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Figure 42: Method one, test case III 

Based on Figure 42, it is observed that the menu layout appears to be somewhat similar to the 

one in test case II. This indicates that several buttons which hold decent amount of selections, 

have their positions located close to another button for semantic improvement, such as water 

and cabbage . It is worth noticing that the weight of semantic model is extremely 

low in the beginning of simulation. Because of this, users are more likely to have already 

become experienced with the menu layout prior to semantic model begins to influence the 

menu layout. Despite the fact of this, the semantic model has been able to motivate method 

one to modify the menu layout in later simulation phases. Several relation patterns may be 

identified, for instance drinks , vegetables , seafood and tools 

. It may be slightly ambiguous, however, the second half of the menu holds a rather 

high overall semantic performance, their relationships may be demonstrated as the following, 

 

S S N P S S P N S N P S 

Figure 43: Semantical relationships, method one, test case III 

On the other hand, the first half of menu layout has not been primarily optimized based on 

the semantic model. This phenomenon expresses two points. First, the first half of menu 

layout has been processed by the SDP model for a somewhat long duration prior to the 

semantic model. Second, buttons with significant amount of selections are discouraged to be 

modified due to the high user expertise in later optimization phases, unless the modification 

receives superior benefits regarding semantic relations which may diminish the negative 

effect of the cost function. Because of this, the second half menu holds relatively superior 

semantic grades compared to the first half menu. The Background Simulator reports the 

performance index is 0.826. 
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Method two 

As previously, method two attempts to optimize menu layouts by dividing it into two rows. 

A feasible solution would result in quick access for menu items, thus increases the 

performance of menu layout. In test case III, method two decides to modify the menu layout 

as the following, 

 

Figure 44: Method two, test case III 

The Graphical Simulator indicates a performance index of 0.869 for this menu layout, which 

is 5.2% improvement compared to method one. However, it is obvious that the menu layout 

is rather unbalanced, hence this menu layout is very well infeasible in real user cases. 

 

Method three 

Similar to test case II, method three attempts to group buttons by the overall results of method 

one. In the light of testing, buttons are positioned in a group of five. The modified menu 

layout is illustrated as the following, 

 

Figure 45: Method three, test case III 

Based on the Graphical Simulator, method three offers a performance index of 0.836, which 

is approximately improved by 1.2% compared to method one. Hence, method three shall be 

considered in real user cases where the result of method two appears to be infeasible. 
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Method four 

In contrast to method one, method four attempts to group items based on their semantic 

relations. That is, the semantic model in method four holds more performance weight than 

the SDP model in normal situations. However, in test case III the performance weights are 

identical in both methods (i.e. SDP (6) : Semantic (4)). On the other hand, the cumulative 

weight parameter is applied in method one, hence affects its overall performance. Because of 

this, the results of method one and four shall be different despite utilizing the exact same data 

base and holding the same performance model weights. The item selection distribution and 

the menu layout constructed by method four are illustrated as the following, 

 

Figure 46: Selection distribution, Method four, test case III 

 

Figure 47: Method four, test case III 

Despite still having a higher performance weight in SDP model, the menu layout represents 

few to no similarities compared to the one in method one. This is because the cumulative 

weight parameter is absent in method four. Consequently, the semantic model begins to 

influence the menu layout immediately from beginning of the simulation. On the other hand, 

menu performance model contributes less due to the lack of data in very early simulation 

phases. Because of these, the menu layout of method four appears to be more influenced by 

semantic model instead of performance model. 
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The Graphical Simulator reports a performance index of 0.8317 which is approximately 0.7% 

higher than method one. 

 

Method five 

As previously mentioned, method five attempts to improve menu performance by enlarging 

the sizes of the most significant buttons. The total amount of enlarged buttons is defined as 

eight in order to prevent design constraint violation. On the other hand, it is also possible to 

reduce the size of insignificant buttons to allow more significant buttons to be enlarged. The 

menu layout crafted by method five is illustrated as the following, 

 

Figure 48: Method five, test case III 

As noticed, a total of seven buttons have their size enlarged, hence, one more button may still 

be enlarged if the duration of simulation is extended as method five benefits from longer 

simulation runs. According to the Graphical Simulator, the performance index offered by 

method five is 0.8477 which is 2.7% higher than method one. 

 

Summary: test case III 

1. Method one and four provide different results 

Indeed, method one and four provide completely different menu layouts despite utilizing the 

same data base. This is caused by the cumulative weight parameter applied in method one. 

As previously mentioned, cumulative weight is utilized in order to delay the effect of another 

performance model. Consequently, this reflects the fact that restaurants typically would like 

to offer their customers different goods at different supply cycle. For instance, goods with 

high profitability are sold in early supply cycle while supplementary goods are better to be 

sold in late supply cycle in order to minimize wastes. Because of this, the menu performance 

weight for a restaurant shall be flexible to perform this strategy. 
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The overall results of test case III are displayed as the following, 

 

Figure 49: Overall result, test case III 

2. The result of method two is somewhat more feasible compared to previous test cases 

It may be assumed that the menu layout of method two shall be more feasible due to a more 

uniformly distributed item probabilities in test case III. However, method two still failed to 

provide a feasible solution because of unbalanced menu layouts. 

3. Method five provides better result than method three 

Indeed, the result of method five is slightly better than method three. This may be explained 

by the fact that the most significant buttons are already very well optimized by method one. 

Conversely, in other test cases, enlarged buttons are located all over the menu layout instead 

of in the beginning of menu, hence, the effect of enlargement is much stronger in method five, 

test case III, thus provides better performance than method three. Because of this, the result 

of method five shall be considered as the final design in test case III. 

 

 

 

 

0.826

0.869

0.836
0.8317

0.8477

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

Method one Method two Method three Method four Method five



73 
 

Chapter summary 

 

As discussed, method one has been able to improve menu layout in all test cases. On the other 

hand, method two has provided only one feasible menu layout despite offering superior 

performance index in most situations. Conversely, method three is able to provide usable 

menu layouts in all test cases although having a lower performance index compared to method 

two. On the other hand, due to the superior performance index gain, method four shall be 

considered if semantic table is available. Moreover, designers may force the simulator to 

produce menu layouts completely based on semantic model. This feature may be useful in 

circumstances similar to test case restaurant. However, if semantic table is absent, method 

five may always improve menu performance by enlarging the most significant buttons. 

However, the number of buttons enlarged shall not exceed the maximum amount configured 

by its design constraints. 

Several key points are discovered based on the test results, 

 Optimization attempts are more successfully performed in early phases than in later 

phases. This may be caused by the fact that users have already gained relatively high 

user expertise in later phases, thus reducing the needs to further improve menu 

performance by modifying menu layout.  

 Cost factor greatly reduces the likelihood of successful optimization attempt. This 

phenomenon is observed in test case I where the cost factor for Run 2 is of the twice 

of Run 1. As a result, Run 2 has performed less than half of the amount of successful 

optimizations compared to Run 1. Because of this, the cost factor is a highly important 

variable which shall be carefully defined.  

 Based on the comparison between method five and two, button size enlargement 

appears to contribute less than reducing the movement required to reach a button. This 

may be explained by the fact that the increment of button size is insufficient in these 

test cases due to design constraints. On the other hand, the amplitude of movement of 

buttons have been greatly reduced by method two despite providing infeasible menu 

layouts. Hence, these two parameters shall equally contribute if not limited by design 

constraints.  
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 Pointing time and semantic model are not affected by user expertise. As a result, 

designers may be able to exploit this fact by forcibly locating buttons with strong 

semantic relations to the beginning of menu for quicker access and superior semantic 

menu performance. This action may potentially increase search time for novice users, 

thus decrease general menu performance. However, this may greatly improve menu 

performance once user have become experienced with the menu layout. This may be 

explained by the fact that the performance indexes of semantic model and pointing 

time have been maximized in early phase while the decision and search time may be 

improved overtime by user expertise. However, this approach requires further work 

to be verified. 
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6. Conclusion and future work 

 

This thesis has studied the fundamental aspects regarding menu performance. Centered on 

these aspects, a predictive menu performance model has been proposed to evaluate the 

performance of menu designs in this thesis. This model is based on the Search-Decision-

Pointing model introduced by Cockburn et.al in previous works. In addition to the original 

parameters defined in the SDP model, the model of this thesis has taken consideration of two 

additional parameters, i.e. the cost of modifying an item and the degree of semantic relations 

between items. Moreover, the exhaustive search algorithm has been implemented to explore 

the design space of the simulator software programmed in this thesis. The simulator software 

emulates the user interface of a famous editor application known as Notepad++. There, 

buttons are horizontally organized on a linear layout. Centered on this user interface, several 

optimization methods have been designed. The performance of these methods vary depends 

on the test cases where they are executed. Based on the result of the evaluation chapter, the 

optimization methods introduced in this thesis have improved menu performance in all test 

cases. In fact, the results indicate that the improvement is rather significant depends on 

methods and test cases. Hence, it may be concluded that optimization methods proposed in 

this thesis are able to improve to menu performance in general. On the other hand, several 

key points and limitations have also been identified, 

 The user expertise parameter in the objective function is calculated in the same 

convention regardless of menu properties. However, the process for novice users to 

become experts should vary depends on the characteristics of a menu system. For 

instance, a user is likely to require more practices to become familiar with a menu of 

many items [2]. 

 Furthermore, the cost for changing the position of an item shall scale with other 

parameters, including item probability and utilization duration. For instance, 

modifications should cost significantly more for an item that is frequently selected 

compared to an item that is rarely selected. 

 The search algorithm implemented is a variation of the exhaustive search algorithm. 

This algorithm is sufficient only for menu with few items. Its efficiency greatly fails 
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for larger menus. Hence, the exhaustive search algorithm should be replaced by other 

heuristic algorithm, such as the simulated annealing or genetic algorithm. [11] [22] 

 The simulator assumes that all users are initially novices. Moreover, the learning 

curve and process are also considered to be the same for all users. However in reality, 

users may be defined by three distinctive groups, such as neophyte user, inexperienced 

user and expert user [13]. Each user group has its own learning curve, thus shall be 

provided with different objective functions and optimization methods. 

 Only one modality is considered in this study, i.e. items are executed by mouse. 

However, other modalities, such as shortcuts and mnemonics have been widely 

applied in commercial applications. These modalities are often utilized by expert 

users and offer significant menu performance improvements. [16] [20] 

 Increasing the size of items offers surprisingly little benefit compared to other 

strategies. This point has also been proved in the study conducted by Cockburn et.al. 

[2]. 

Overall, this thesis has been able to improve menu performance on a linear menu layout by 

implementing a variety of optimization methods centered on the SDP model introduced by 

Cockburn et.al and optimization strategies proposed by Bailly et.al in a simulated 

environment. Centered on the findings of this study, some possible future work could be 

performed. For instance, McGrenere et.al has proposed a study regarding the performance 

comparison between static, adaptive and adaptable menus. In their research, users have 

favored the static and adaptable menu instead of the adaptive menu. Moreover, they have 

concluded that the static and adaptable menus perform significantly better than the adaptive 

menu where menu optimizations are executed automatically by the system [21]. Because of 

this, the menu performance models and optimization methods of this thesis shall be evaluated 

in real user cases on a commercial software in addition to be performed on a simulator. 

The optimization methods have largely concentrated on improving menu performance 

regarding item access speed and selection accuracy. On the other hand, other criteria have 

been determined to be as vital as speed and accuracy, such as interface satisfaction and menu 

learnability [13] [22]. In addition, the item selections are performed by simulated users in this 

study, hence, a more appropriate learning model shall be considered in real user cases. [17] 
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Moreover, user preference shall also be considered when designing optimization methods 

[22] [24]. Furthermore, the influence of item semantic relations may be further studied to 

better balance the weight between performance models. Because of these, a more 

comprehensive menu performance model is required to balance the focus between different 

criteria depending on the user profile and application in question. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



78 
 

References 
 

[1] Andrew Sears and Ben Shneiderman. 1994. Split menus: effectively using selection 

frequency to organize menus. ACM Trans. Comput.-Hum. Interact. 1, 1 (March 1994), 27-

51. 

 

[2] Andy Cockburn, Carl Gutwin, and Saul Greenberg. 2007. A predictive model of menu 

performance. In Proceedings of the SIGCHI Conference on Human Factors in Computing 

Systems (CHI '07). ACM, New York, NY, USA, 627-636.  

[3] Anthony J. Hornof and David E. Kieras. 1997. Cognitive modeling reveals menu search 

in both random and systematic. In Proceedings of the ACM SIGCHI Conference on Human 

factors in computing systems (CHI '97). ACM, New York, NY, USA, 107-114.  

[4] Antti Oulasvirta, Andreas Karrenbauer. 2017. Combinatorial optimization for interface 

design. 

 

[5] BAILI LIU, GREGORY FRANCIS, GAVRIEL SALVENDY, Applying models of 

visual search to menu design, International Journal of Human-Computer Studies, Volume 

56, Issue 3, 2002, Pages 307-330 

 

[6] David Ahlström, Andy Cockburn, Carl Gutwin, and Pourang Irani. 2010. Why it's quick 

to be square: modelling new and existing hierarchical menu designs. In Proceedings of the 

SIGCHI Conference on Human Factors in Computing Systems (CHI '10). ACM, New York, 

NY, USA, 1371-1380. 

 

[7] David Ahlström. 2005. Modeling and improving selection in cascading pull-down 

menus using Fitts' law, the steering law and force fields. In Proceedings of the SIGCHI 

Conference on Human Factors in Computing Systems (CHI '05). ACM, New York, NY, 

USA, 61-70. 

 

[8] D.F Jones, S.K Mirrazavi, M Tamiz, Multi-objective meta-heuristics: An overview of 

the current state-of-the-art, European Journal of Operational Research, Volume 137, Issue 

1, 16 February 2002, Pages 1-9 

 

[9] Don Hu. Notepad++. Available: https://notepad-plus-plus.org/ 

 

[10] Eric Lee and James Macgregor. 1985. Minimizing User Search Time in Menu 

Retrieval Systems. Human Factors. Pp. 157 - 162 

 

[11] Gilles Bailly, Antti Oulasvirta, Timo Kötzing, and Sabrina Hoppe. 2013. 

MenuOptimizer: interactive optimization of menu systems. In Proceedings of the 26th 

annual ACM symposium on User interface software and technology (UIST '13). ACM, New 

York, NY, USA, 331-342. 

[12] Gilles Bailly, Antti Oulasvirta, Duncan P. Brumby, and Andrew Howes. 2014. Model 

of visual search and selection time in linear menus. In Proceedings of the SIGCHI 



79 
 

Conference on Human Factors in Computing Systems (CHI '14). ACM, New York, NY, 

USA, 3865-3874. 

[13] Gilles Bailly, Eric Lecolinet, and Laurence Nigay. 2016. Visual Menu Techniques. 

ACM Comput. Surv. 49, 4, Article 60 (December 2016), 41 pages. 

 

[14] Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of 

Experimental Psychology, 4, 11-26. 
 

[15] Hollink, V. & van Someren, M., 2006. Validating Navigation Time Prediction Models 

for Menu Optimization.   14. GI-Workshop "Adapitivität und Benutzermodellierung in 

interaktiven Softwaresystemen".  

 

[16] Joey Scarr, Andy Cockburn, Carl Gutwin, and Philip Quinn. 2011. Dips and ceilings: 

understanding and supporting transitions to expertise in user interfaces. In Proceedings of 

the SIGCHI Conference on Human Factors in Computing Systems (CHI '11). ACM, New 

York, NY, USA, 2741-2750. 

[17] Jussi P. P. Jokinen, Sayan Sarcar, Antti Oulasvirta, Chaklam Silpasuwanchai, Zhenxin 

Wang, and Xiangshi Ren. 2017. Modelling Learning of New Keyboard Layouts. In 

Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI 

'17). ACM, New York, NY, USA, 4203-4215. 

[18] Kashyap Todi, Daryl Weir, and Antti Oulasvirta. 2016. Sketchplore: Sketch and 

Explore with a Layout Optimiser. In Proceedings of the 2016 ACM Conference on 

Designing Interactive Systems (DIS '16). ACM, New York, NY, USA, 543-555. 

 

[19] Krzysztof Z. Gajos, Mary Czerwinski, Desney S. Tan, and Daniel S. Weld. 2006. 

Exploring the design space for adaptive graphical user interfaces. In Proceedings of the 

working conference on Advanced visual interfaces (AVI '06). ACM, New York, NY, USA, 

201-208. 

[20] Lane, D., Napier, A., Peres, C., and Sandor, A. The Hidden Costs of Graphical User 

Interfaces: The Failure to Make the Transition from Menus and Icon Tool Bars to Keyboard 

Shortcuts. INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION, 

2005, 133 – 144. 

[21] Leah Findlater and Joanna McGrenere. 2004. A comparison of static, adaptive, and 

adaptable menus. In Proceedings of the SIGCHI Conference on Human Factors in 

Computing Systems (CHI '04). ACM, New York, NY, USA, 89-96. 

 

[22] Luigi Troiano, Cosimo Birtolo, Roberto Armenise, and Gennaro Cirillo. 2008. 

Optimization of menu layouts by means of genetic algorithms. In Proceedings of the 8th 

European conference on Evolutionary computation in combinatorial optimization 

(EvoCOP'08), Jano Van Hemert and Carlos Cotta (Eds.). Springer-Verlag, Berlin, 

Heidelberg, 242-253. 

 



80 
 

[23] Mikhail V. Goubko and Alexander I. Danilenko. 2010. An automated routine for menu 

structure optimization. In Proceedings of the 2nd ACM SIGCHI symposium on Engineering 

interactive computing systems (EICS '10). ACM, New York, NY, USA, 67-76.  

[24] Mikhail Goubko and Alexander Varnavsky. 2016. Users' preference share as a criterion 

for hierarchical menu optimization. In Proceedings of the 8th ACM SIGCHI Symposium on 

Engineering Interactive Computing Systems (EICS '16). ACM, New York, NY, USA, 305-

310 

 

[25] Oracle. Java Documentation Standard Edition (Java SE) 8. Available: 

http://docs.oracle.com/javase/8/ 

 

[26] P. M. Fitts, “The Information Capacity of the Human Motor System in Controlling the 

Amplitude of Movement,” Journal of Experimental Psychology, Vol. 47, No. 6, 1954, pp. 

381-391. 

 

[27] Shouichi Matsui and Seiji Yamada. 2008. Optimizing hierarchical menus by genetic 

algorithm and simulated annealing. In Proceedings of the 10th annual conference on 

Genetic and evolutionary computation (GECCO '08), Maarten Keijzer (Ed.). ACM, New 

York, NY, USA, 1587-1594. 

 

[28] Xiuli Chen, Gilles Bailly, Duncan P. Brumby, Antti Oulasvirta, and Andrew Howes. 

2015. The Emergence of Interactive Behavior: A Model of Rational Menu Search. In 

Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems 

(CHI '15). ACM, New York, NY, USA, 4217-4226. 

 

[29] Simon Fraser University. What is Mathematical Modeling? Chapter 1. Available: 

https://www.sfu.ca/~vdabbagh/Chap1-modeling.pdf 

 

[30] Tim Halverson and Anthony J. Hornof. 2008. The effects of semantic grouping on 

visual search. In CHI '08 Extended Abstracts on Human Factors in Computing Systems 

(CHI EA '08). ACM, New York, NY, USA, 3471-3476. 

 

[31] FLATICON. Pokémon go. Available: 

http://www.flaticon.com/search?word=pokemon%20go 

 

[32] FLATICON. Food and Restaurant. Available: http://www.flaticon.com/packs/food-

and-restaurant-3 

 

[33] FLATICON. Office Supplies. Available: http://www.flaticon.com/packs/office-

supplies 

 

 

 

 

 

 

https://www.sfu.ca/~vdabbagh/Chap1-modeling.pdf
http://www.flaticon.com/search?word=pokemon%20go
http://www.flaticon.com/packs/food-and-restaurant-3
http://www.flaticon.com/packs/food-and-restaurant-3
http://www.flaticon.com/packs/office-supplies
http://www.flaticon.com/packs/office-supplies


81 
 

Appendix 

 

Simulator runtime screenshot 
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