
Containerization of telco cloud
applications

Samu Toimela

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 22.05.2017

Thesis supervisor:

Prof. Jukka Manner

Thesis advisor:

M.Sc. Tero Venetjoki

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/84757228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Samu Toimela

Title: Containerization of telco cloud applications

Date: 22.05.2017 Language: English Number of pages: 7+56

Department of Communications and Networking

Professorship: Communications Engineering

Supervisor: Prof. Jukka Manner

Advisor: M.Sc. Tero Venetjoki

Mobile service providers and manufacturers have moved towards virtualized network
functions, because the amount of mobile data traffic has increased a lot during
the past few years. Virtual machines offer high flexibility and easier management.
They also enable flexible scaling, which makes it easier to respond to the varying
traffic patterns during the day.
However, the traditional virtual machines contain overhead and have reduced
performance in most of the operations. One high performing alternative to a
virtual machine is a Linux container. Linux containers do not contain additional
operating system or any unnecessary services. Containers are isolated user spaces
which share host computer’s kernel. This makes processes inside them perform
almost as well as if they would be running directly on host. Also, the startup time
of containers is extremely fast compared to virtual machines.
This thesis studies, if Linux containers are suitable for telco applications. The
research is conducted via proof-of-concept where parts of an existing telco appli-
cation are moved to containers. First, the container technology and related tools
are discussed. Benefits and requirements of the Linux containers are then studied
based on the proof-of-concept.
In this thesis, it was found out that containers are suitable for running small
parts of the application. For example, the software update and scaling are a much
more efficient processes with containers than with virtual machines. However, the
isolation is weaker in containers than in virtual machines, and at the moment
they are not suitable for applications or environments where strict isolation is a
necessity.

Keywords: Virtualization, Docker, Container, Radio Access Network, Cloud

aalto-yliopisto
sähkötekniikan korkeakoulu

diplomityön
tiivistelmä

Tekijä: Samu Toimela

Työn nimi: Ohjelmistokonttien hyödyntäminen pilvipohjaisen mobiiliverkon
sovelluksissa

Päivämäärä: 22.05.2017 Kieli: Englanti Sivumäärä: 7+56

Tietoliikenne- ja Tietoverkkotekniikan laitos

Professuuri: Tietoliikennetekniikka
Työn valvoja: Prof. Jukka Manner

Työn ohjaaja: M.Sc. Tero Venetjoki

Mobiilidatan määrä on kasvanut voimakkaasti muutaman viime vuoden aikana.
Tämän johdosta mobiiliverkon palveluntarjoajat ja laitevalmistajat ovat alkaneet
virtualisoimaan mobiiliverkon laitteita. Virtualisointi tarjoaa joustavuutta ja hel-
pottaa laitteiden hallintaa. Virtualisoinnin avulla mobiiliverkon laitteita voidaan
skaalata verkon liikennemäärien mukaan.
Virtuaalikoneet sisältävät ohjelmien suorituksen kannalta epäolennaisia palveluita ja
niiden suorituskyky on usein heikompi verrattuna tavallisiin tietokoneisiin. Linux-
kontit tarjoavat kevyemmän ja suorituskyvyltään tehokkaamman vaihtoehdon
virtuaalikoneille. Ne eivät sisällä ylimääräistä käyttöjärjestelmää tai ylimääräisiä
palveluita. Kontit ovat eristettyjä alueita käyttöjärjestelmän sisällä ja ne myös
jakavat käyttöjärjestelmän ytimen. Tämän ansiosta prosessien suorituskyky kontin
sisällä on lähes identtinen kuin ilman kontteja. Konttien käynnistymisaika on myös
huomattavasti lyhyempi kuin virtuaalikoneiden.
Tässä diplomityössä tutkitaan, soveltuvatko Linux-kontit mobiiliverkon sovellusten
suorittamiseen. Tutkimus suoritetaan käytännön esimerkin avulla, jossa erään mo-
biiliverkon sovelluksen osia suoritetaan konteissa. Aluksi tutkitaan Linux-kontteja,
niiden teknologista taustaa sekä niihin liittyviä työkaluja. Tämän jälkeen kont-
tien hyötyjä ja niiden vaatimuksia tutkitaan edellä mainitun käytännön esimerkin
avulla.
Tässä työssä saatiin selville, että kontit soveltuvat pienien sovelluksen osien suorit-
tamiseen. Esimerkiksi sovelluksen päivitys ja skaalaus on tehokkaampaa kontteja
käytettäessä. Konttien eristys on kuitenkin heikompaa kuin virtuaalikoneiden ja
tällä hetkellä ne eivät sovellu sovelluksille tai ympäristöihin, joissa vaaditaan vahvaa
eristystä.

Avainsanat: Virtualisointi, Docker, Linux-kontti, Radioverkko

iv

Preface
This thesis was conducted at Nokia Oyj in Espoo, Finland. I would like to thank
Markku Niiranen for giving me the opportunity to work with this interesting topic.

I would like to thank professor Jukka Manner for supervising my thesis and giving
me valuable feedback. I would also like to thank my thesis advisor Tero Venetjoki
from Nokia for his guidance and support during the thesis.

In addition, I would like to thank all my colleagues at Nokia, especially Jan
Zizka for always being interested in my topic and for providing great feedback. I am
also grateful for all the other thesis workers in my team for their peer support and
proofreading.

Finally, I would like to thank my family for supporting me in my studies and all
my friends in Otaniemi for making the past six years unforgettable.

Espoo, 22.05.2017

Samu A. K. Toimela

v

Contents
Abstract ii

Abstract (in Finnish) iii

Preface iv

Contents v

Abbreviations vii

1 Introduction 1
1.1 Problem statement . 2
1.2 Scope and Methodology . 2
1.3 Results . 2
1.4 Structure of the Thesis . 2

2 Mobile network infrastructure 4
2.1 Radio access network . 4
2.2 Radio access network requirements 5

2.2.1 Latency . 6
2.2.2 Scaling . 6
2.2.3 High availability . 7

2.3 Summary . 7

3 Containers and virtualization 8
3.1 Hypervisor-based virtualization . 9
3.2 Operating system-level virtualization 10

3.2.1 Chroot . 11
3.2.2 Namespaces . 11
3.2.3 Control Groups . 13

3.3 Comparison of container and hypervisor-based virtualization 13
3.3.1 Performance . 15
3.3.2 Isolation . 16
3.3.3 Failure handling . 16

3.4 Container managers . 17
3.4.1 LXC . 17
3.4.2 Systemd-nspawn . 17
3.4.3 Docker . 18

3.5 Summary . 20

4 Distributed container-based applications 21
4.1 Container orchestration . 21

4.1.1 Kubernetes . 21
4.1.2 Docker Swarm . 23

4.2 Microservice-based architecture . 23

vi

4.3 Summary . 26

5 Running telco application in containers 27
5.1 Containerization approach . 27
5.2 Software setup . 29
5.3 Application architecture changes . 30

5.3.1 Load balancer . 30
5.3.2 Database . 30
5.3.3 Application node . 31
5.3.4 UI-node . 33

5.4 Platform services . 33
5.4.1 Orchestration . 33
5.4.2 Service discovery . 34
5.4.3 Logging . 35

5.5 Summary . 36

6 Evaluation 37
6.1 Software update . 37
6.2 Scaling . 38
6.3 Failure handling . 40
6.4 Containerization practices . 41

6.4.1 Containerized applications . 42
6.4.2 Infrastructure . 42
6.4.3 Networking . 43
6.4.4 Container images . 44

6.5 Security . 44
6.5.1 Container capabilities . 45
6.5.2 Using host’s files in containers 45
6.5.3 Docker vulnerabilities . 46
6.5.4 Enhancing security of containers 47

6.6 Future work . 47

7 Conclusions 49

References 50

vii

Abbreviations
API Application programming interface
AuFS Another union filesystem
BBU Baseband unit
BSC Base station controller
CAPEX Capital expenditures
cgroup Control group
CPU Central processing unit
C-RAN Cloud radio access network
I/O Input/Output
IPC Inter-process communications
LXC Linux containers
MME Mobile management entity
OPEX Operational expenses
OS Operating system
PID Process identifier
RAN Radio access network
RNC Radio network controller
RRH Remote radio head
seccomp Security computing mode
VM Virtual machine
VMM Virtual machine monitor
VNF Virtual network function

1 Introduction
Over the past few years, mobile data traffic has increased greatly. Current forecasts
are showing that mobile data traffic will continue to grow rapidly in the future as well.
According to Cisco’s forecast [1], mobile data traffic will increase eightfold during
2015-2020. One challenge with mobile data is that the traffic is varying by its nature.
Mobile phones are mostly used during the daytime, so the mobile network must
be able to respond efficiently to the alternating traffic peaks. Increased data usage
and varying traffic have caused mobile network providers to change their traditional
approach from fixed network devices into more flexible ones.

As a solution, mobile network providers and network device manufacturers have
begun to move towards virtualized, software-based architecture instead of traditional
dedicated hardware. With virtualized software, new instances can be easily launched
whenever they are needed to support high traffic peaks. However, with continuously
increasing mobile data usage, even the traditional virtualization seems to be lacking
effectiveness that is needed. One of the reasons is that virtualization of a software
usually comes with significant overhead. With traditional virtualization techniques,
an operating system needs to be virtualized first and software can be then added on
top of it. When multiple virtualized instances are running on the same hardware,
overhead caused by multiple operating systems will significantly waste computing
resources and thus reduce the performance.

Linux containers, often referred simply as containers, offer a solution for eliminat-
ing overhead caused by traditional virtualization. Container is an isolated area in
host operating system’s kernel, that is created using kernel namespaces and control
groups. Containers are like lightweight virtual machines, but they do not have an
operating system running inside them. Instead, containers utilize host operating
system’s kernel to offer basic operating system services to processes inside them.
From application’s perspective a container acts similarly to a traditional virtual
machine, but it performs faster. By eliminating the additional operating system, the
overhead of virtualization becomes so minimal that the performance is as good as
native.

Containers offer other advantages as well. They will for example make the
software distribution and management easier for the mobile network providers. By
running applications in containers, software manufacturers can offer direct updates
to the specific parts of the software instead of delivering a new version of the whole
application. Traditionally the unit of delivery has been a large virtual machine image,
which contains an additional operating system and all the services and binaries
required by the applications. Updating a distributed application with new virtual
machine image will require recreation of all the virtual machines. In contrast, software
updates for containerized applications do not usually require restarting of the whole
machine. Containers can be recreated using the updated image without restarting
other services.

2

1.1 Problem statement
As mentioned in the previous section, increased mobile data traffic and varying
traffic patterns require flexibility and efficient computing resource usage. Virtual
machines contain unnecessary overhead and suffer from reduced performance in most
of the operations. Also, the scaling and the software update of virtual machine based
application is a slow operation, because the startup time of a virtual machine can
be even several minutes [2]. Linux containers could be one potential solution for
improving the performance and flexibility of telco applications.

This thesis aims to find out what are the key advantages and disadvantages of
using containers in radio cloud infrastructure. This thesis also aims to find out what
kind of mechanisms are needed to operate and manage containers efficiently and what
kind of services are required from the platform. Because containers are introduced
to an existing application, other aim is also to find out what kind of architectural
changes are needed to the current solution. Finally, the thesis also aims to provide
general guidelines that should be followed when developing distributed applications
that are running in containers.

1.2 Scope and Methodology
This thesis is only focusing on telco applications, which normally consist of multiple
instances and are traditionally delivered as virtual machine images. As almost every
telco application is based on Linux, this thesis is only focusing on Linux-based
solutions. Solutions based on Windows or other operating systems are not discussed
in this thesis. Also, other lightweight virtualization technologies, such as unikernels,
are not discussed in a scope of this thesis.

Container technology and related tools are first researched by doing literature
review. Second part of the research is done by a proof-of-concept, which includes
practical implementation of one telco application that utilizes containers. Advantages
and requirements of containers are then studied based on the practical implementation.

1.3 Results
In this thesis, it was found out that containers are suitable for running small parts of
the application. For example, the software update and scaling are much more efficient
processes with containers than with virtual machines, mainly because container images
are very light and they start up quickly. However, the isolation is weaker in containers
than in virtual machines, and at the moment they are not suitable for applications
or environments where strict isolation is a necessity. Also, the process of moving
existing monolithic applications into containers requires a lot of work and it should be
carefully considered if the gained benefits overcome the costs of the transformation.

1.4 Structure of the Thesis
In chapter 2, radio access network and its evolution are discussed. In the same
chapter, basic requirements for radio access networks are presented. Chapter 3

3

focuses on virtualization. First, two main virtualization methods are introduced.
Main focus of the chapter is on operating system-level virtualization and containers.
Introduction of different container managers is also included in this chapter. Chapter
4 discusses distributed container-based applications, container orchestration and
microservice-based architecture. Chapter 5 talks about practical implementation
and requirements of container based application. In chapter 6, the evaluation is
carried out based on the practical work. In the same chapter, basic containerization
guidelines are also presented and future work is discussed. Chapter 7 is a summary
of the thesis.

4

2 Mobile network infrastructure
Mobile networks are a necessity in the modern world where everything is connected.
Because the number of devices and amount of mobile data traffic has increased, the
mobile networks have had to evolve. This chapter presents the structure of radio
access network and discusses its evolution. The requirements and properties of radio
access networks are also presented.

2.1 Radio access network
Radio access network (RAN) consist of multiple mobile technologies such as 1G,
2G, 3G and 4G. Main components of radio access networks are base stations and
their controllers. Base stations offer signal coverage for users in specific area, called
cell. Radio access network is connected to a mobile core network, which in turn is
connected to internet and landline network.

In 1G and 2G, a radio and a baseband unit (BBU) are combined into a base
station, which serves one cell [3]. Base stations are then connected to a base station
controller (BSC). However, this leads to high power consumption because every cell
does the processing separately on the individual sites. Also, the computing resources
might be wasted at the times when the cell is under lower utilization. Illustration of
this base station architecture can be seen in Figure 1(a).

Figure 1: Base station evolution [3]

5

3G made the BBU management easier as it separated BBU and remote radio head
(RRH). This is shown in Figure 1(b). Remote radio head in the base station takes
care of the analog/digital conversions, and for example amplification and filtering.
BBU can be moved away from the base stations into a more accessible location,
so that it can be managed more efficiently. Distance between BBU and the base
station can be a maximum of 40km, after which the processing and propagation
delay becomes too high [3]. Also, the power consumption can be optimized with a
separated BBU. However, occasional under-utilization of the computing resources is
still a problem in this architecture.

In 4G, One BBU can control up to three RRHs [4]. On top of that, BBUs
are clustered into centralized locations called BBU pools. These centralized BBU
pools offer savings in operational expenses (OPEX), because previously each site
had separate rental and air conditioning expenses. Running BBUs in a centralized
data center also makes operation and maintenance tasks much easier, and costs of
operating multiple base station sites are thus reduced.

BBU efficiency and the computing resource utilization can be improved by
virtualizing the BBUs. This architecture is presented in Figure 1(c). The virtualized
BBU pool can be serving multiple cells dynamically. Multiple virtualized BBUs can
be run on a same hardware and that offers savings in capital expenditures (CAPEX).
The architecture, where virtualized BBU pools do not require specific infrastructure
is called Cloud Radio Access Network (C-RAN or cloud-RAN) [3]. Standardization
of cloud-RAN is still underway.

In addition to the base stations and the BBUs, radio access network also includes
base station controllers. In 2G, a single base station controller (BSC) can serve
multiple base stations. BSC allocates radio frequency channels for the base stations
and controls handovers between them. In 3G, same kind of base station controller is
called radio network controller (RNC). RNC handles for example call processing,
mobility management and handover-control. However, in 4G, the base station
controller is included in the base station called eNodeB. Mobility management and
handover control is then done between the eNodeBs or by using mobile management
entity (MME) in mobile core network. The controllers and other mobile network
elements have also been virtualized into virtual network functions (VNF) to gain
OPEX and CAPEX savings from centralized management and more efficient resource
usage.

2.2 Radio access network requirements
Radio access network has multiple differences compared to the other networks such
as the internet. Because of the nature of the mobile traffic, radio access network has
strict requirements, for example for low latencies and high availability. They also
need to be able to scale according to the current load.

6

2.2.1 Latency

Telecommunication services must offer minimal latencies. Originally, traffic in mobile
networks was almost entirely voice traffic. Latencies in voice calls have to be kept
consistently low, because the voice conversations would not be natural with high
delays. Machine-to-machine communications also benefit from lower latencies, as
machines can process the information a lot faster than humans. Lower latencies are
required for precise automation and communication. In the future, very low latencies
and high reliability are also requirements for virtual reality, health-care systems and
even for self-driving cars [5]. According to GSA’s 5G specification [6], 5G should
have latencies under 1 millisecond.

To provide lower latencies, operators must deploy cells closer to the customers.
Also the content, such as videos and search engine caches can be aggregated closer to
customers. This does not only decrease latency, but also makes the general network
performance better, because large amounts of content are not transferred through
the whole network.

2.2.2 Scaling

Telecommunication traffic varies greatly between the cells during a day. Base stations
near office buildings are gathering huge traffic peaks during the office hours, while
base stations outside the city are at the same time on low utilization and are thus
wasting computational resources [7]. Figure 2 shows the mobile network load during
a day. The combined traffic amount is also a lot higher during the business hours
than during the off-the-peak hours. Also, the high traffic variation in different cells
can be for example caused by public events and spontaneous gatherings.

China Mobile Research Institute 7

2.4 Dynamic mobile network load and low BS utilization rate

One characteristic of the mobile network is that subscribers are frequently moving from one

place to another. From data based on real operation network, we noticed that the movement of

subscribers shows a very strong time-geometry pattern. Around the beginning of working time,

a large number of subscribers move from residential areas to central office areas for work;

when the work hour ends, subscribers move back to their homes. Consequently, the network

load moves in the mobile network with a similar pattern，so called "tidal effect". As shown in

Fig.6, during working hours, the core office area‟s Base Stations are the busiest; in the non-

work hours, the residential or entertainment area‟s Base Stations are the busiest.

Fig. 6 Mobile Network Load in Daytime

Each Base Station‟s processing capability today can only be used by the active users in its cell

range, causing idle BS in some areas/times and oversubscribed BS in other areas. When

subscribers are moving to other areas, the Base Station just stays in idle with a large of its

processing power wasted. Because operators must provide 7x24 coverage, these idle Base

Stations consume almost the same level of energy as they do in busy hours. Even worse, the

Base Stations are often dimensioned to be able to handle a maximum number of active

subscribers in busy hours, thus they are designed to have much more capacity than the

average needed, which means that most of the processing capacity is wasted in non-busy time.

Sharing the processing and thus the power between different cell areas is a way to utilize these

BS more effectively.

2.5 Growing Internet Service Pressure on Operator’s Core Network

With the hyper-growth of smart phones as well as emerging 3G embedded Internet Notebook,

the mobile internet traffic has been grown exponentially in the last few years and will continue

to grow more than 66x in the next 5-6 years. However because of increasingly competition

between mobile operators, the projected revenue growth will be much lower than the traffic

growth. There will be a huge gap between the cost associated with this mobile internet traffic

and the revenue generated, let alone the mobile operators needing to spend billions of dollars

to upgrade their back-haul and core network to keep up with the growing pace. This is a huge

common challenge to all the mobile operators in the wireless industry.

The exponential growth of mobile broadband data puts pressure on operators‟ existing packet

core elements such as SGSNs and GGSNs, increasing mobile Internet delivery cost and

challenging the flat-rate data service models. The majority of this traffic is either Internet

bound or sourced from the Internet. Catering to this exponential growth in mobile Internet

traffic by using traditional 3G deployment models, the older 3G platform is resulting in huge

Figure 2: Mobile network load during a day [7]

7

Radio access network must be able to answer these varying traffic patterns by
allocating resources according to the cell utilization. Clustered and virtualized RAN
makes it easy to do this. The virtualized parts of RAN can be easily scaled out in a
case of traffic peaks. Similarly, the elements in the cells with lower utilization can
be scaled in. Scaling of traditionally virtualized network elements is sufficient when
traffic pattern is known beforehand, for example in a case of the normal work related
traffic variation. However, to respond to a spontaneous traffic growth in certain cells,
scaling of the virtualized elements can be too slow as it can take several minutes [2].
More effective scaling methods need to be researched if optimal service levels are
needed to be offered at all times. One potential solution is a Linux container (see
chapter 3).

2.2.3 High availability

Telecommunication networks have to be operating at extremely high availability. For
example, some telecommunication elements are providing 99,999% availability. The
availability must be guaranteed in a case of element failures, as well as in normal
handover situations when user moves to another cell.

This high availability can be achieved by using redundant computers and con-
nections. Multiple redundancy schemes exist, but most common ones are N+M
redundancy and 2N redundancy. N+M redundancy means that there is N computers
serving the users, and M computers waiting in case of failure. The additional com-
puters are in a cold standby state, but they can be used as hot standby for example
during software updates. 2N redundancy means that there are N computers serving
the users, and a second set of computers waiting in hot standby. The internal state
of these computer pairs is kept synchronized, and computers can be failing without
it affecting the ongoing traffic. Redundancy can be increased by distributing these
replication sets on different sites. This is called geo-redundancy, and it is used to
guarantee availability even if one site gets disconnected.

2.3 Summary
Radio access network consists of base stations and their controllers. The evolution of
the radio access network technologies has led to a separation of remote radio heads
and baseband units. Because of this, BBUs can be clustered into centralized locations
to make their management easier. The clustering has also enabled a possibility to
virtualize BBUs to improve computing resource utilization.

Radio access networks have very tight requirements for example for latency and
high availability. Also, because of the varying traffic patterns of the mobile networks,
the network should be scalable. This means that computing resources can be allocated
to each cell based on their utilization.

8

3 Containers and virtualization
Virtualization technologies have been around for over 50 years [8]. The term "virtual-
ization" was first used by IBM when they researched efficient time sharing methods
for hardware resource usage. Virtualization became popular again around year 2000,
when multiple solutions for x86 virtualization started to emerge. Main motivation
for virtualization was a need for running multiple independent instances with their
own operating systems (OS) and libraries on one physical hardware. The term
virtual machine (VM) refers to a software based computer that acts mostly like a
physical computer. VM runs an operating system and applications on top of it. The
operating system inside the virtual machine is called a guest operating system (guest
OS). Operating system that is running directly on top of hardware is called a host
operating system (host OS).

Major advantage of virtual computing comes from the reduced costs that can
be achieved by running multiple virtual instances on the same hardware, so that
the hardware resource utilization can be improved. This offers direct cost savings,
because fewer physical computers are required. Cost savings can be increased with
more efficient virtualization, for example by running virtual machines on a server
infrastructure that is specifically optimized for them [9]. For example, multiple
infrastructure-as-a-service providers have large and heavily optimized server farms
where customers can run their own virtual machines.

Other advantage is the isolation that virtualization offers. Applications might
require different versions of their dependencies and libraries. Without virtualization,
these conflicting applications cannot be run on the same host and would require a
dedicated host computer. This might lead to the wasting of computational resources,
because the application might only use a fraction of its dedicated hardware resources.
By using virtualization, the application with its dependencies and libraries is running
in an isolated space.

Most common virtualization method is called hypervisor-based virtualization.
Hypervisor is a piece of software (or combination of software and hardware) that runs
and manages virtual machines. Hypervisor can launch multiple virtual machines on
a single host. Sensitive system instructions, such as input/output (I/O) system-calls,
are trapped and translated by the hypervisor. [10]

One alternative for hypervisor-based virtualization is called operating system-level
virtualization. These kinds of virtual instances do not include a guest operating sys-
tem, unlike hypervisor-based virtual machines. Operating system-level virtualization
uses Linux control groups and namespaces to create isolated spaces in host operating
system. These isolated spaces are called containers. Processes inside the containers
cannot see other processes outside them. They can also have a dedicated direc-
tory tree. From application perspective, container does not differ from traditional
hypervisor-based virtual machine.

This chapter focuses on virtualization and is mostly discussing operating system-
level virtualization and containers. First, hypervisor-based virtualization and its main
properties are explained. Then, operating system-level virtualization is discussed
and underlying technologies enabling it are presented. After that, a comparison of

9

hypervisor-based virtualization and operating system-based virtualization is discussed.
Finally, a few popular container managers are introduced.

3.1 Hypervisor-based virtualization
Hypervisor allows multiple virtual machines to run simultaneously on a same host.
It offers a platform where virtual machines can run isolated from each other and
the host. This kind of virtualization is called hypervisor-based virtualization [11].
Hypervisor-based virtualization is the most popular virtualization technique.

Hypervisor, also called virtual machine monitor (VMM), launches, manages
and terminates virtual machines. Hypervisor offers an illusion of dedicated native
hardware to the virtual machines. It is done by trapping a variety of sensitive
instructions between the virtual machine and the host hardware. Instructions that
would access host’s resources, such as the physical disks, are considered sensitive [10].
These instructions are trapped and translated, because they could otherwise break the
illusion of a guest OS not being the only one in the system. This kind of virtualization
is called full virtualization. However, I/O performance of full virtualization is reduced
because of the trapping and translating of the I/O calls.

Para-virtualization is a technique where the virtual computer is aware that it
is running in a virtualized environment [12]. By using para-virtualization, there is
no need for trapping, because both host and guest operating system can cooperate.
However, para-virtualization requires a modified guest operating system.

There are two types of hypervisor-based virtualization, depending on where

© Nokia Solutions and Networks 20153

Confidential

Hardware Hardware

Hypervisor Operating System

HypervisorVirtual Machine

Operating System

Binaries & Libraries

App App

Type 1 Hypervisor Type 2 Hypervisor

Virtual Machine

Operating System

Binaries & Libraries

App App

Virtual Machine

Operating System

Binaries & Libraries

App App

Virtual Machine

Operating System

Binaries & Libraries

App App

Figure 3: Comparison of the hypervisor types

10

the hypervisor is running [13]. These types are illustrated in Figure 3. A native
hypervisor (type 1) is running directly on top of hardware, while a hosted hypervisor
(type 2) is running on the host operating system.

Type 1 hypervisor consists of a small set of software that is required for vir-
tualization. The small set of software is used to manage resources and access to
I/O-devices between virtual machines and the hardware. Type 1 hypervisor provides
better performance, security and availability than type 2 hypervisor [14]. Notable
type 1 hypervisors are Xen [15], KVM [16] and VMWare ESX [17].

Type 2 hypervisor utilizes underlying host OS for its functions. It is often used
on systems, that require support for variety of I/O devices. Examples of type 2
hypervisors are QEMU [18], VMWare Workstation [19] and Oracle VM Virtualbox
[20].

Hypervisor-based virtualization also offers good isolation and security for virtual
machines. Virtual machines are not aware of each other and they can access host
only through the hypervisor [21]. Hypervisor can also emulate multiple different
processor architectures, such as x86 and ARM. Because of this, virtual machines can
run almost any operating system regardless of the host’s hardware and operating
system.

3.2 Operating system-level virtualization
An alternative to traditional hypervisor-based virtualization is operating system-
level virtualization. Operating system-level virtualization has been around for many
years already. Chroot [22], developed in 1982, is considered as the first operating
system-level virtualization tool. Other similar tools, such as Linux-Vserver [23]
and OpenVZ [24], have emerged after chroot. Also, a few Unix-based operating
system-level virtualization tools, such as FreeBSD jails [25] and Solaris Zones [26]
exist. However, their developers have not been active on integrating their tools in
the Linux mainstream kernel.

Virtual instances that are created with operating system-level virtualization are
often called containers. Difference between a hypervisor-based virtual machine and a
container is that the container does not run a guest operating system inside it [27].
Instead, containers share parts of the host’s kernel to provide an operating system-like
functionality for the applications. Container gives the processes an illusion of running
in a separate machine, even though in reality the process is just running in an isolated
area in the host operating system, sharing the host’s resources. Processes inside
the containers can also run native system calls without any translating in between.
However, there are access-control checks for the system-calls to enhance the security
of containers [28]. Some system calls that access the kernel can be harmful and are
prevented by default.

Isolation of container-based virtualization is achieved by using Linux namespaces.
Namespaces can be used for example to control which part of host’s file system
container is allowed to see, and which processes are visible in the container’s process
tree. Resource management of containers is handled by Linux control groups. Control
groups can be used to limit container’s access to the host’s hardware resources, such

11

as CPU, memory and network.
Containers can run isolated system services, such as init, sshd, syslogd and cron.

These kinds of containers are called system containers [29]. System containers are
usually built with a container image that contains multiple tools and libraries. System
containers are in many way similar to the traditional virtual machines. Containers can
be also used to run just a single application. These containers are called application
containers. Application containers are often considered as micro containers, which
means that the container image only contains application binaries, libraries and other
dependencies that are required by the application.

During the past few years, containers have started to gain more popularity.
Developers and system administrators have just now started to realize the advantages
that containers offer compared to the hypervisor-based virtualization. Container
technologies are widely used and developed by the community, but they still are not
as mature as the virtual machines. For example, the security of containers is still a
big issue [30].

3.2.1 Chroot

Chroot (Change root) [22] was one of the first implementation in Unix kernel to allow
processes to run in isolated space inside the host operating system. This isolated
space is called chroot jail. Chroot was introduced in Version 7 Unix in 1979.

Chroot changes root directory for a process, so that the process cannot access or
see files outside this new directory tree. With chroot, it is also possible to allow root
access in an isolated space. Chroot jail is mainly used as an isolated environment
where kernel development can be made without it accidentally affecting the host
kernel. Chroot has also been used to create a secure and isolated space where
malicious software can be safely investigated.

However, chroot has some security vulnerabilities. For example, it is relatively
easy to break out of the chroot jail if a process inside it has root privileges [31]. Other
applications such as FreeBSD jails, Solaris zones and LXC (Linux Containers) [32]
have adopted chroot functionality and improved the security by using for example
namespaces.

3.2.2 Namespaces

Namespaces are used to create multiple isolated user-spaces in a host kernel. Like
chroot, namespaces allow the processes to see an arbitrary directory as their root
directory. Processes can work with root privileges inside the namespace, without
endangering the host system outside it. However, unlike chroot, namespaces expand
similar isolation to the other parts and functions of the kernel as well. The first
namespace (mount namespace) was introduced in Linux kernel version 2.4.19 in
2002 [33]. Currently, Linux has namespaces for process identifiers, inter-process
communications, networking, hostname, mount points, user identifiers and cgroups
[34].

Traditionally, Linux system can only maintain a single process tree. Process tree
consists of parent and child processes. Different processes can have different privileges,

12

© Nokia Solutions and Networks 201511

Confidential

PID 1 (init)

PID 2 PID 3

PID 4 PID 5 (PID 1)

PID 6 (PID 2)

PID namespace

Figure 4: A process tree with a PID namespace

and they can also inspect other processes of the process tree. Each process has an
unique process identifier (PID). When a Linux system starts, the first process gets
PID 1. This process is considered as an init process of the system. The init process
starts and maintains all the other necessary daemons and services [35]. Common init
services in Linux are for example systemd [36] and upstart [37].

Process identifier namespaces (PID-namespaces) are used to virtualize process
trees. Example of a PID-namespace is illustrated in Figure 4. Processes inside the
PID-namespace are isolated from the host processes as well as from the processes
in different PID-namespaces. PID-namespaces are hierarchical, which means that
processes are also able to see all the processes inside its children namespaces. For
example, the host can see the processes of every namespace in its original process
tree. Processes inside the PID-namespace have isolated process identifier number
space, and they can have their own init-process as PID 1. This means that processes
can have multiple PIDs assigned to them, one for the host process tree and one that
is visible inside the namespace.

Processes running inside a namespace might need to communicate with other
processes to function correctly. Inter-process communication namespaces (IPC-
namespaces) allow communications only between the processes belonging to the same
IPC-namespace. This prevents the processes from interfering with other processes in
other namespaces.

By using networking namespaces, different processes can see different networking
interfaces. Network namespaces can provide new network interfaces and virtual
addresses for its processes to see. Host processes and the processes in the other
namespaces, can communicate with each other using these virtual interfaces, just
like they would communicate with external hosts.

Mount namespaces are useful as it is possible to determine which mount points
can be seen inside the namespaces. A process can initially see the same mount points

13

as the host. However, with mount namespaces, processes can mount or unmount
endpoints without it affecting the host’s mount points.

User namespaces are used to run the processes with a different user ID or group
ID. The user namespace also allows the process to have a root privileges in the new
namespace without it having the root privileges outside the namespace.

3.2.3 Control Groups

Control groups (cgroups) [38] can manage the hardware resource usage, such as CPU,
memory, disk and network, of specific process-groups. This is done by assigning a
set of processes into hierarchical groups that have specific rules for the behaviour,
for example to limit how much CPU they can consume.

Cgroup project was started by two Google engineers, Paul Menage and Rohit
Seth, in 2006. Initially cgroups were named process containers [39]. In 2007, the
functionality was merged to the Linux kernel and the name was changed to control
groups. However, some time after that, the Linux community thought that concept
of cgroups should be reworked. Tejun Heo took over the development of cgroups and
an improved version, cgroups v2, was finally merged into the Linux kernel version
4.5 in 2016 [40].

With cgroups, it is possible to ensure that certain process groups are not able
to consume too much computing resources such as CPU time. Cgroups can be also
used to guarantee that a specific process group is able to get enough computing
resources. Cgroups become really useful when they are combined with namespaces in
a form of containers. When cgroups are combined with namespaces, it is possible to
determine how much computing resources each container is allowed to use [27]. This
brings operating system-level virtualization closer to hypervisor-based virtualization,
where computing resource allocations can be assigned to separate virtual machines.
Cgroups also provide metrics for the computing resource usage. These metrics can
be also used for other purposes, such as billing.

3.3 Comparison of container and hypervisor-based virtual-
ization

From the application perspective, both hypervisor-based virtual machines and con-
tainers act similarly [41]. Containers can be rebooted and they can have for example
their own user accounts, processes and file system. However, there are actually
multiple differences that affect the performance and the isolation. Figure 5 illustrates
main architectural differences between hypervisor-based virtualization and operating
system-level virtualization.

Each hypervisor-based virtual machine contains an operating system and all the
binaries and libraries that are needed for running the operating system and the
applications. This causes a lot of overhead and leads to the wasting of computing
resources, especially when multiple virtual machines are run on the same host. In
contrast, containers are isolated areas in the host operating system and they do
not include an additional guest operating system inside them. Instead, to enable

14

© Nokia Solutions and Networks 20156

Confidential

Hardware Hardware

Operating System Operating System

Hypervisor

Hypervisor-based
virtualization

Container

Container

Binaries &
Libraries

Virtual Machine

Operating System

Binaries & Libraries

AppApp

Virtual Machine

Operating System

Binaries & Libraries

AppApp

App App

Binaries & Libraries

App App

Operating system-
level virtualization

Figure 5: Comparison of hypervisor-based virtualization and operating system-level
virtualization

operating system-like functionality, they share parts of the host kernel as well as
the host’s libraries and binaries where appropriate [42]. Containers can also include
application specific binaries and libraries.

In hypervisor-based virtualization, the computing resource control is applied to
the virtual machines by a hypervisor. The hypervisor controls how many CPUs
and how much memory is allocated to a certain virtual machine. Virtual machines
are unaware of the underlying computing resources and can only see the resources,
such as the amount of CPUs and the memory, which are allocated to them. In
operating system-level virtualization, the resource control is implemented by using
cgroups. Cgroups can limit the computing resources that a process group is able
to use, but the processes inside the containers are still able to see the full amounts
of memory and CPU [43]. This might lead to some problems with containerized
applications, that are not aware of cgroup restrictions and are assuming that all the
visible resources are available for use.

Because containers are sharing the host’s kernel, it is not possible to run container
images of different operating systems. For example, it is not possible to run Windows-
based container image on a Linux host. However, hypervisor-based virtual machines
can run almost any operating system inside them.

Containers are more suitable for the applications, that require a good performance
and faster scaling. Containers are also beneficial for the applications, that require
faster startup times and more flexible deployment options. In contrast, virtual
machines are more suitable for applications that require stronger security and isolation.

15

Virtual machines are also the only option for running multiple different operating
systems. Virtual machines are also often used in environments where different users
are sharing the same infrastructure, for example in public clouds [44].

Container images are smaller and lighter than traditional VM-images. Container
images do not contain an operating system. On top of that, some binaries and
libraries can be shared directly from the host computer and do not have to be
included in the container image. Also, the structure of a container image is layered
and modifications can be downloaded just by fetching the missing layers. Old layers
can be mounted for example from other images.

3.3.1 Performance

An operating system, that is running inside a hypervisor-based virtual machine,
requires additional computing resources, which negatively affects the overall perfor-
mance of the host system. Adding multiple virtual machines inside the same host
decreases the host’s performance even more [45].

Reduced performance of hypervisor-based virtualization is not only caused by
the overhead from the additional operating system. Hypervisor is also trapping and
translating all the sensitive instructions from the virtual machine. This will require
additional computing and cause additional latency.

In operating system-level virtualization, the isolation of the user space is achieved
with two lightweight tools, cgroups and namespaces. System calls are not translated
between a container and the host kernel. There is no overhead if multiple containers
are run on same node, because only the application processes inside a container use
the computing resources. Containers are also fast and easy to create and destroy.
Their startup time is fast because unnecessary services are not launched. Shutting
down a container merely terminates the processes that are running inside it.

Resource utilization of containers is effective. If a container is not running
anything, no resources are used. Namespaces and cgroups are just building a frame.
This is different in hypervisor-based virtualization, where a guest OS, that is running
in an otherwise idle VM, still uses computing resources.

According to Xavier’s study of a virtualization performance [27], hypervisor-based
virtualization suffers 4.3% reduction in CPU-intensive processes. Memory usage
overhead was 31%. In contrast, operating system-level virtualization did not affect on
CPU or memory overhead and the processes practically ran with equal performance
as without virtualization.

According to the same study, read and write speeds of the disk were also worse on
hypervisor-based virtualization (65% read and 50% write). In operating system-level
virtualization, disk operations were not practically affected by the virtualization. How-
ever, depending on the chosen container manager, some I/O performance overhead
might occur in operating system-level virtualization as well [46].

Also, the network performance of hypervisor-based virtualization was significantly
worse compared to native. Average bandwidth was 41% worse than on native
hardware. Network performance of operating system-level virtualization was almost
equal to bare metal performance.

16

3.3.2 Isolation

A definition of process isolation is that one workload executing on the system cannot
interfere with other workloads executing on the same system. In other words, process
isolation means that one process group cannot learn anything or affect other processes
by any means [29].

Hypervisor-based virtual machines are more secure than operating system-level
virtual instances [47]. In hypervisor-based virtualization, a virtual machine does
not have direct access to host kernel, but everything goes via the hypervisor. In
operating system-level virtualization, the host kernel is shared between all containers
in the system. System-calls from containers to the host kernel are also run natively
without any translating, unlike in hypervisor-based virtualization. This can cause
serious security issues for containers. Because of this, many container managers use
a Linux kernel feature called security computing mode (seccomp) [28]. Seccomp can
be used to block all the risky system calls, which could harm the host system.

The isolation of containers can be improved by not sharing anything extra from
the host. Inter-container communications can be also disabled when launching
containers, in order to isolate them from each other. However, the kernel is still
shared which might cause some security hazards. If a malicious user is somehow
able to break out from a container, for example by utilizing some kernel exploit, he
will then have access to the host and all the other containers as well. Also, if an
application inside a container causes a kernel panic, the whole host will go down
with all the containers on it.

3.3.3 Failure handling

Failure handling means detecting and correcting possible failures in the software.
In virtual machines, a supervising process, such as systemd, is able to detect the
failures and restart the required processes. A similar approach can be also used with
containers by including a supervising process, for example supervisord [48], in the
container. It will similarly handle the failure detection and the restarting of other
processes inside the container.

However, containers do not necessary include supervising process. In these
situations, only the failures in the initial process of the container can be detected.
When the initial process of a container dies, the container is automatically killed.
The container manager can then detect the terminated containers and relaunch them.

Other part of the failure handling is notifying user about the failures, for example
by logging. On hypervisor-based virtualization, the logging services are implemented
inside a virtual machine. Logging services, such as syslog [49], can be easily run
inside a virtual machine, same way as they would be running in a host. All the
logs are stored inside a virtual machine by default. This approach is suitable for
hypervisor-based virtualization, because virtual machines are able to store data, such
as logs, that persist over the machine reboot.

In contrast, containers are not usually rebooted even though that is possible.
Normally the containers are killed and new containers are launched right when they
are needed. Data inside a container does not persist when the container is killed. This

17

means that containers are not suitable for storing persistent data. Because of this,
the traditional logging approach is not suitable for containers. With containers, it is
possible to redirect logs from the containers to a host computer’s persistent storage.
It is also possible to stream the logs into the standard output of the container, and
have another component in the system that collects and stores them appropriately.

3.4 Container managers
Creating an isolated user space using operating system-level virtualization is a very
complex process and it includes multiple steps, such as setting up the namespaces
and the cgroups for the specific process groups. Container managers, such as LXC,
systemd-nspawn and Docker have been developed to simplify this process. They offer
tools for basic container operations, such as for creating and deleting containers.

3.4.1 LXC

LXC [32] is considered to be the first real containerization method that was included
in the mainstream Linux kernel. There have also been other applications that take
advantage of operating system-level virtualization, for example Linux-Vserver and
OpenVZ. However, these applications have not been active on integrating their
solutions to the mainstream Linux kernel.

LXC uses the same kind of file system isolation as chroot. However, LXC
uses Linux namespaces to expand this isolation, for example to the processes and
networks. LXC also uses control groups for resource management and can utilize
multiple security features, such as seccomp policices and kernel capabilities, that are
offered by the Linux kernel [32].

LXC offers logically complete isolation for the processes running in containers.
Containers are isolated from the host, as well as from other containers. LXC containers
share the underlying host kernel so an additional operating system is not required
inside the containers. By using LXC, it is also possible to share host’s devices and
files with the containers.

LXC offers a set of tools that can be used to manage containers. These include
for example tools for creating, destroying, starting and stopping containers. LXC
also supports taking of snapshots, cloning and monitoring of the containers. However,
LXC is quite low-level technology and not so user friendly as other container managers.
Other container managers such as Docker have been previously using LXC as their
container driver. LXC does not have as big community support as for example
Docker. Also, the support for LXC is mostly focused on Ubuntu.

3.4.2 Systemd-nspawn

Systemd-nspawn [50] is a tool that can be used to create lightweight namespace
containers. Systemd-nspawn isolates the file system hierarchy, same way as chroot
does. However, the improvement over chroot is that with systemd-nspawn, the
isolation is stronger and it is expanded for example to the process tree.

18

One of the biggest advantages of systemd-nspawn is that it is simple and it natively
supports multiple processes in a single container. Systemd-nspawn comes with the
native support for systemd inside a container, and because of that the systemd-
nspawn containers are even capable of running whole operating systems. However,
this is not recommended as it contradicts the generally accepted containerization
principles. Other advantages of systemd-nspawn are that it uses simple command-
line interface commands, and that it does not require any additional daemons if
systemd already exists in the system. As the security might be an issue when using
containers, systemd-nspawn has also taken some actions to eliminate some of the
common security issues. Systemd-nspawn for example disables writing on some of
the inner interfaces, such as /sys, /proc/sys and /sys/fs/selinux [50].

However, systemd-nspawn is only providing the isolation for the containers.
Resource control, for example by using cgroups, is not supported. Systemd-nspawn is
also difficult to manage on a bigger scale, because it does not have a good application
programming interface (API).

3.4.3 Docker

Docker is one of the most popular container managers and it has a large community
support. According to a ClusterHQ’s survey [51], over 92% of the respondents are
using or planning to use Docker to run their containers. One big success factor of
Docker has been its simple container management and a public container image hub,
where the users can easily download and upload container images. Docker provides
a simple toolset and API for managing the kernel-level technologies that enable
containers. [45]

Docker has previously used LXC as its main container driver. It is still possible
to use LXC when launching containers, but nowadays Docker uses libcontainer by
default. Libcontainer for example supports wider range of isolation technologies.
Docker uses Libvirt as its virtualization API.

Similar to the other container technologies, a guest OS is not needed, because
Docker containers share the underlying host kernel. Docker utilizes a full set of Linux
namespaces and cgroups, so it can for example mount host’s devices and create
separate network devices for the containers.

Docker containers are started by using so called entrypoint. A container entrypoint
is a binary or a script, that is executed when a container starts. If an entrypoint
process dies, the container is also killed. Because of this, Docker containers are
best suited for running only a single process, unlike for example systemd-nspawn
containers. However, it is also possible to run multiple processes in a single Docker
container. To manage multiple processes in a single container, a supervising process,
such as supervisord, must be used as an entrypoint [48, 52]. Supervisor will then
launch other processes and handle for example their failures and restarts.

Docker has multiple storage-driver options such as AuFS, OverlayFS and Device
Mapper [53]. Each option supports copy-on-write model for modifying the filesystem.
AuFS (Advanced Multi-layered Unification File System, originally Another Union
File System) was the first storage driver in Docker. AuFS layers multiple file systems

19

© Nokia Solutions and Networks 201510

Confidential

Container image

Base image

Application libraries

Application binaries

Read/Write layer

…

Figure 6: An example of a container image

on top of each other and provides an unified view for the new file system. Docker
uses AuFS for its container images in order to make them more flexible and easier
to modify. OverlayFS is another option for a Docker storage driver. It is similar to
AuFS, because of its layered design. However, OverlayFS is simpler, and it exists in
the Linux mainline kernel, unlike AuFS. When Device Mapper is used as a storage
driver, the file system consists of multiple small virtual block devices, that each
contain a part of the whole file system. Device Mapper also supports copy-on-write,
but unlike in AuFS and OverlayFS, where the copy-on-write operations are executed
in a file-level, Device Mapper operates in a block-level and all the operations are
executed for the blocks instead [53].

Each Docker image consists of layers, regardless of the storage-driver that is used
[54]. Figure 6 illustrates the structure of a Docker image. Each Docker image has a
base image, and the modifications can be committed as layers on top of it. On top
of the image layers, there is a read and write layer, where the local modifications
are stored. The changes in the read and write layer can be saved to the image
just by saving the layer. By layering multiple changes, images can be indefinitely
customized while the information on previous changes is still stored. The layers can
be also removed to roll back the changes. The benefit of this kind of structure is
the re-usability of the layers. Multiple different container images can use the same
underlying layers, and thus they only need to be stored once on the disk. Also, when
downloading a new image, only the layers that do not already exist on the system
are downloaded. This offers a great advantage compared to the hypervisor-based
virtualization, where the VM-images are handled as a whole, and each version of the
image contains everything from the OS to the application services.

Modified container images can be then pushed to a repository called Docker
registry [55]. Docker registry is a public or private image repository, where Docker
images can be easily pushed and pulled. Public Docker registry, called Docker Hub,

20

allows users to upload and share their own images. Developers can download each
other’s images and modify them for their purposes. This also makes the collaboration
between the developers easier.

When operating in corporate environment, it is important that confidential
information, such as custom images, is not leaked to the public. In corporate
environment, it is common to use a private Docker image registry. Docker offers a
possibility to run local Docker repositories for example on the company intranet.
This enables the same advantages as public repository, such as easy downloading of
the images, but the access to it is limited to the intranet. Private registry is also an
optimal way of delivering container images to the container hosts, so that the images
are not needed to be rebuilt on each host separately.

Compared to the other container managers, Docker has a lot more features, but
most of them might be unnecessary for the small and simple applications. Also,
the additional features such as Docker Hub make the attack surface larger. Docker
also suffers from the same limitations as Linux containers in general. Managing a
distributed software requires additional work because of the increased complexity. For
example, managing inter-container communications can be a complex task, especially
when the application consists of tens of containers. Other drawback is that the
management of persistent data is more difficult than in the traditional applications.
Docker containers cannot store persistent data, and all application specific data
inside a container is lost when the container is destroyed. If an application requires
storing of some data, it should be saved to a persistent data volume. Finally, the
weaker isolation of containers makes them unsuitable for certain applications, that
require strong isolation and security.

3.5 Summary
In this chapter, two different virtualization methods, hypervisor-based virtualization
and operating system-level virtualization, were introduced and compared. Both
of these methods are used to optimize the computing resource usage by running
multiple instances on a same physical computer. From application point-of-view,
hypervisor-based virtual machines and operating system-level virtual instances act
similarly. Major differences are that the hypervisor-based virtualization causes some
overhead, because it contains an additional operating system. Hypervisor-based
virtualization also causes some performance loss in most of the operations.

Operating system-level virtualization is more lightweight and its performance is
almost native. On the other hand, operating system-level virtual instances, containers,
can only run applications that are compatible with the host operating system. In
comparison, traditional virtual machines can run almost any operating system. Also,
in the operating system-level virtualization, the host kernel is shared between the
virtual instances so the isolation is weaker.

Multiple container managers have been developed to make the operation of
containers easier. They offer simple tools for basic container operations, such as
for creating and deleting containers. Docker is one of the most popular container
managers.

21

4 Distributed container-based applications
Containers are usually used to manage a large, distributed application because of
their flexibility and isolation. Because the overhead of additional operating systems
does not exist in operating system-level virtualization, multiple containers can be
deployed on a single node. As Docker documentation suggests [56], containers should
only contain a small logical part of the application. Distributed applications can
then consist of multiple small services, which are running in separate containers.

System with multiple containers can be managed by using a container orchestrator,
which centrally manages the containers. This chapter explains container orchestration
and presents a few popular container orchestrators. After this, microservice-based
architecture is presented and it is compared to the traditional monolithic architecture.
Also, the advantages and the disadvantages of both the approaches are explained.

4.1 Container orchestration
Container is a relatively small unit in large distributed applications. These applica-
tions can consist of tens or even hundreds of containers, which are scattered across
multiple nodes. Managing containers one by one is not feasible and centralized
management of containers is required.

Container orchestrator is a centralized management unit, that can operate con-
tainers on multiple hosts. Containers can be clustered and thus multiple containers
can be managed as a single entity. For example launching, deleting, updating and
scaling of the various container clusters can be done with an orchestrator. User
actions are not necessarily required when using orchestrator, because the operations
can be automatically executed using predefined policies. A cluster of containers can
be automatically managed by the orchestrator, and the failures in the containers or
in the host nodes can be also detected by the orchestrator. For example, containers
can be moved to a new node in a case of a host failure. With an orchestrator,
replication rules can be also set for the containers, and parts of the application can
be automatically scaled, for example based on a current load [57].

Multiple orchestrator solutions have emerged as the use of containers has be-
come more popular. Popular orchestrators are for example Kubernetes, Mesosphere
Marathon and Docker Swarm. Orchestrators can be also built-in to the custom
operating systems, that are purely designed to run containers. Examples of these
are CoreOS and RancherOS. In this thesis, I am only focusing on the orchestrator
applications that can be run separately.

4.1.1 Kubernetes

Kubernetes is an open-source container orchestrator developed by Google. It was
released in 2014. For over 10 years, Google has been managing containers at scale by
using their own tool called Borg [58]. Once other developers became more interested
in Linux containers, Google decided to create an open-source container orchestrator
Kubernetes, that was based on Borg. Motivation for this was to get valuable feedback
and improvements from multiple skilled engineers in the field [59].

22

© Nokia Solutions and Networks 201514

Confidential

Worker nodeKubernetes Master

etcd

Kubelet

Flannel

Container Container Container

Controller Scheduler Apiserver

Flannel

Kubelet

Container

Application

Container

Application

Pod

Worker node

Flannel

Kubelet

Pod

Container

Application

Pod

Container

Application

Figure 7: Basic architecture of a Kubernetes cluster

Kubernetes manages for example deployment, updating, monitoring, resource
sharing and scaling of the containers in a distributed environment with multiple hosts.
Kubernetes can monitor a state of the containers in the system, and the containers
can be automatically re-created in a case of a failure. Kubernetes uses a key-value
storage etcd [60] to store the configuration data and the state of the nodes.

Kubernetes organizes one or multiple containers into small groups called pods.
Pod is the smallest managed unit in Kubernetes and it usually contains a small
logical part of the whole application. All the containers in a pod are guaranteed to be
located on the same host. Pod can also specify shared volumes that are automatically
shared with all the containers in it. Kubernetes automatically chooses a host, where
the pods are launched. It can do that for example by checking a host’s load. It is
also possible to label the hosts and deploy the pods only to the hosts with the correct
label.

Basic architecture of Kubernetes cluster can be seen in Figure 7. The cluster
consists of a Kubernetes master node and multiple worker nodes. Worker nodes are
running a node agent Kubelet, which is communicating with the master node to
receive for example workloads. One worker node can contain multiple pods. Master
node can also act as worker node in smaller deployments. Kubernetes uses external
networking component, such as Flannel [61], to provide an overlay network for the
pods. Networking component is included on every Kubernetes node.

Kubernetes is one of the most popular orchestrators. It is widely used in the
industry and it is supported by multiple big organizations. Kubernetes is also pro-
moted by Cloud Native Computing Foundation, which aims to advance and promote
container technologies. Another big company, Red Hat, has selected Kubernetes as

23

the orchestrator for their OpenShift platform [62]. Also, CoreOS recently abandoned
their orchestrator fleet and switched to Kubernetes [63].

4.1.2 Docker Swarm

Docker Swarm is an orchestrator offered by Docker. Docker Swarm is already included
in the Docker package from version 1.12 onwards. It offers native clustering for the
Docker containers. It is also using the same API as Docker, which means that the
same tools can be used with Docker and Docker Swarm.

Similarly to Kubernetes, Docker Swarm also enables deployment, updating and
scaling of the containers. It also offers networking, service discovery and load
balancing [64]. Docker Swarm creates a "swarm" of hosts that can run Docker
containers. Each host is running a swarm agent which is then controlled by a swarm
manager.

Docker Swarm is simpler and easier to use than Kubernetes. Major advantage
of Docker Swarm is that it ships with the Docker package and basically works out-
of-the-box. However, Docker Swarm is usable only for the Docker containers. Also,
because the Docker API is used, functionalities of Docker Swarm are restricted to
that. Other orchestrators could be needed for the most complex applications [65].

4.2 Microservice-based architecture
Microservice-based architecture means that an application consists of multiple inde-
pendent services that perform a single function and communicate with other services
using well-defined interfaces [66]. These services can be developed and deployed
independently. Microservices can be implemented using different technologies and
programming languages.

Opposite of microservice-based architecture is called monolithic architecture.
Monolithic applications are huge and every functionality is built-in to a single appli-
cation. Each component of a monolithic application is required to be able to develop
and deploy the application. For that reason, development of a monolithic application
can be very difficult, especially when the application is large and developers change
during the application life cycle.

Figure 8 illustrates the differences between monolithic and microservice-based
architecture. Scaling of a monolithic application requires that each component is
scaled. In practice, this means that the whole application is duplicated. Single
component of a monolithic application cannot be scaled independently. In contrast, if
an application is built with microservices, each service is isolated and independently
scalable. It is possible to scale just the microservice that is required, without
duplicating any unnecessary services.

One issue with monolithic applications is that it is very hard or practically
impossible to change the technologies used in them. Technology stack of a monolithic
application is very inflexible and it is really hard to change underlying technologies
without a complete rework of the application. Even a gradual adoption of newer

24

Figure 8: Monolithic and microservice-based architecture [67]

technologies is very hard. All components in monolithic applications usually stick
with the technology that was chosen in the beginning of the development.

In microservice-based approach, the services are independent and isolated, so
the technologies they are using are irrelevant. Most suitable technologies and
programming languages can be selected separately for each microservice. Adopting a
new technology for a microservice might require some rework to the service, but the
required work is significantly smaller than with the monolithic applications.

Microservice-based architecture also solves so called "dependency hell" that is
often encountered with monolithic applications [45]. Modern applications are often
built from existing components which require certain dependencies. However, these
components might require different versions of the dependencies, which will cause
conflicts. Monolithic applications have to solve these conflicts, and it might easily
lead to non-optimal solutions. Microservice-based approach does not have this issue,
because each component can have its conflicting dependencies inside its isolated
space.

Microservice-based application can be distributed on multiple hosts. All the
services are able to find each other by using a service discovery protocol, so that their
physical location does not affect the functionality. Parts of the application can be
for example deployed into a public cloud [68]. The distributed architecture can also
make debugging of the application easier, as inter-service communications can be
debugged with existing tools such as tcpdump. However, in monolithic applications,
specific tracing capabilities have to be built-in to the application to be able to debug
the application execution.

25

Microservice-based architecture enables independent development of a single
service. One microservice can be separately changed or updated, without it affecting
other microservices in the system. Because of this, smaller development teams can be
created so that each of them would be responsible of specific microservices. This also
makes it easier for the new developers to start working with the application. They
do not have to have deep knowledge of every single component of the application,
and can just focus on specific services.

A small, one line change in one microservice does not require the compilation of
the whole application. Deployment of a changed service is also faster and more robust.
By using microservice-based approach, smaller releases can be frequently published
during a year. Because of the more frequent and smaller patches, developers can
more easily fix for example security vulnerabilities. In addition to these, normal bug
fixes can be also delivered faster.

Changes to a monolithic application are usually delivered as large releases with
relatively large time intervals. Because of this, even the smallest fixes could be
delayed by weeks or even by months. Other problem with large software releases is
that the releases are often packed with as many new features as possible. This makes
the update process very risky, because many features and functionalities change
during one update. Massive testing is also required and the update process is much
slower. Software update of a monolithic application is a very resource-intensive
process. Also, the monolithic application needs to be always restarted when applying
updates.

Microservice-based architecture enables continuous delivery and deployment [69].
Changes to the services can be done more efficiently because of the smaller dedicated
development teams. On top of that, delivering and deploying the changes to a
production environment will become faster, because only the changed microservices
have to be updated. Continuous monitoring of the microservices will also give
important feedback to the developers.

However, microservice-based approach has its own disadvantages. Microservice-
based architecture introduces additional complexity, because the components of
the application are distributed. Application also needs to handle different service
types. Microservice-based application development and usage will require a lot of
automation to be effective. An effective monitoring system must be also included to
be able to handle all the services efficiently.

Another disadvantage is that there is a need for inter-service communication
between different services. Communication is happening via remote-calls, which will
generate a networking overhead. The bandwidth and latency requirements must be
taken into account when planning microservices [70]. For example, telco applications
have strict requirements for the latency and bandwidths.

There are also some misconceptions about microservices. Some developers think
that a microservice should be as small as possible. However, this will often lead
to the non-optimal solutions with too much communication overhead between the
services. A microservice should just contain one logical entity. Another misconception
is that microservices can be developed however the developers want. However, a
microservice has to be planned so that the interactions with other microservices are

26

taken into account. For example, the interfaces of a microservice have to be well
defined and logical [71]. Otherwise, a microservice-based application can end up as a
big monolith, where single services cannot be easily changed without it requiring a
lot of rework to other services.

Security of microservices must be taken into account in planning. Some services
are designed to be externally accessible, while others have an absolute requirement
of isolation. Firewalls can be implemented to prevent external access to the delicate
parts of the application. Intelligent network planning can also enhance the security
of the application.

4.3 Summary
This chapter focused on distributed applications that are utilizing containers. To man-
age multiple containers efficiently, a container orchestrator is required. A container
orchestrator can centrally manage the containers across multiple hosts. Containers
are most suitable for running small entities, such as microservices. Microservices are
small independent services that perform a single function and communicate with each
other using well-defined interfaces. Microservices can be also developed and deployed
separately. Distributed applications can then consist of multiple microservices.

27

5 Running telco application in containers
To study the benefits and requirements of containers, a practical proof-of-concept
was conducted. In the proof-of-concept, a generic telco application was used as an
example, and plan was to move the application functionality into containers. In this
chapter, the practical implementation is explained. First, the example application
and the containerization approach are discussed. Then, the process of moving the
application services into containers is presented. Finally, the supporting platform
services are explained.

5.1 Containerization approach
To study containers in practice, a generic telco application was used as an example.
The example application consist of four virtual machines: application node, database
node, load balancer node and UI-node. The architectural structure can be seen in
Figure 9. Each of these virtual machines contains an operating system, libraries,
platform services and application services. The application services provide the actual
functionality of the nodes. The platform services contain for example monitoring,
logging and troubleshooting services. All of the virtual machines are managed
by OpenStack [72], which is an open-source platform for virtualization and cloud
computing. OpenStack also offers other services, such as virtual disks for permanent
data storage.

Application node provides the actual functionality of the example application.
Depending on the deployment, the application node can be scaled out to increase
capacity. Database node runs database processes, which manage and store the data

© Nokia Solutions and Networks 201513

Confidential

VM: Database

Binaries &
Libraries

Guest OS

VM: UI

Guest OS

Binaries &
Libraries

UI-processes

Platform Services

Database-service

Platform Services

VM: Load balancer

Binaries &
Libraries

Guest OS

Load balancer

Platform Services

VM: Application

Binaries &
Libraries

Guest OS

Application
processes

Platform Services

Host Operating System

Hypervisor

Hardware

Figure 9: Architecture overview of the example application

28

that is required for the application functionality. The actual data is stored on a
virtual disk that is offered by OpenStack and is mounted to the database node. Load
balancer forwards the traffic from the clients to the application nodes. It divides the
traffic load evenly. The UI-node is used for the operation and maintenance. It also
contains a graphical user interface. All the services on each node are managed by a
supervising process systemd.

The example application has a monolithic structure, and the deployment of the
application must include all of the components. Also, the development of a single
component requires all the other components to be present. The application can be
deployed with varying amounts of application nodes, but adding and deleting them
afterwards requires restarting of the other virtual machines. All the components are
always expected to be found from the same location, because the application does
not have a service discovery framework.

Before introducing containers to the application, the monolithic structure has to
be broken down into smaller logical pieces, which can be then moved into containers.
It is important to proceed in small logical steps, so that the migration is not done
simultaneously on all parts of the monolithic application. Other possibility for the
migration is to start again from the scratch and build the same application by using
microservices. However, this approach would have required a lot of work, and was
basically out of the question in a context of this thesis.

In this thesis, I decided to begin with the old virtual machine based structure
and to proceed in logical steps towards the container based architecture. My plan
was to first identify different functionalities of the application and their dependencies
on other components. Then, I isolated these smaller pieces by using containers. The
containers were still running on top of the virtual machines.

By taking this approach, only a few modifications were required to the actual
application source code. Also, the identification of the functional pieces was relatively
simple as the virtual machine structure was followed. Because the containers were still
run on top of the original virtual machines, the physical location of the services did
not need to change, and the migration could be done service by service. Functionality
of the whole application was always easy to test, because the application was never
completely broken.

Goal of this practical experiment was to introduce containers into the application,
so that the benefits, issues and requirements of containers could be easily observed.
Dividing the whole application and all of the platform services into microservices
turned out to be an unrealistic task in the context of this thesis, because of the time
constraints. Because of this, I decided to focus only on the application services rather
than the platform services. Figure 10 shows the architectural plan for the practical
implementation, where most of the application services are run in containers. Same
approach can be later used for all the other components of the application. In the
future, all parts of the application, including all of the platform services, could be
running in containers, and they would not have any ties to the underlying host
architecture.

29

© Nokia Solutions and Networks 201515

Confidential

VM: Database

Binaries &
Libraries

Guest OS

VM: UI

Guest OS

Binaries &
Libraries

UI-processes

Platform Services Platform Services

VM: Load balancer

Binaries &
Libraries

Guest OS

Platform Services

VM: Application

Binaries &
Libraries

Guest OS

Platform Services

Host Operating System

Hypervisor

Hardware

container

Database-
service

container

Load balancer

container

Application
processes

VM: Kubernetes

Binaries &
Libraries

Guest OS

container

Docker
Registry

container

Kubernetes

Figure 10: Application architecture with containers

5.2 Software setup
In this proof-of-concept, I decided to use Docker as a container manager. Docker
was selected because it is easy to use and it fits the purpose of this proof-of-concept
very well. Docker is also the most popular solution for containerization, and it has
been already successfully used in multiple applications in the IT world.

Because the example application was already distributed on multiple hosts,
a container orchestrator was needed. Kubernetes was selected as the container
orchestrator, because it offers a wide range of features, such as pods, rolling update
and rollback. Kubernetes is also one of the most popular orchestrators and for example
cloud native computing foundation promotes the use of it [73]. Kubernetes was also
used in another proof-of-concept that was related on the container orchestration, so
it was logical to use it in this thesis as well.

Each container image that was used in this exercise was built with a Dockerfile
[74]. Every container image had Fedora Linux base image [75] and generic company
specific libraries. In addition to these, depending on the service, the container image
also included the application binaries and their dependencies, such as libraries and
other supporting components, such as python and perl. Using Fedora as a base
image resulted in a small increase in size of the container image. However, it made
the first phase of the integration much easier, as all the generic libraries and tools
were already available.

30

5.3 Application architecture changes
The functionality of the example application is provided on multiple application
services, that are divided on four nodes. They consist of a database service, load
balancer and multiple application processes. In order to study containerization, these
were first moved into containers node by node.

5.3.1 Load balancer

The example application uses an open-source load balancer service HAProxy [76]
with custom configuration, to enable the traffic division to each application node.
The HAProxy service is managed by systemd and is started automatically with the
host. HAProxy processes are launched by using a custom start-up script that is tied
to the systemd service. The startup script will create the required directory structure
if it does not already exist. It will also fetch the required certificate-files from LDAP,
which is a directory service that provides access to files, devices and other data in a
distributed system.

HAProxy binaries and the startup script were first moved inside a container.
After this, missing libraries and dependencies were found out by using Linux debug
tools, such as ldd [77] and strace [78]. Ldd is used to print the library dependencies
of some binary. Strace is printing out all the system calls during a binary execution,
so that for example missing files can be detected.

In the first phase, the host’s network was used to guarantee connectivity between
the load balancer and the application nodes. The original HAProxy service had to
be also killed before launching the container. This had to be done, because when the
host’s network is used, both services will try to bind themselves on the same port
with the same IP address, resulting in a conflict.

HAProxy configuration did not need any changes as all the application services
were still using the network of the host. If a separate container network was used
instead, the current load balancer configuration would have to be changed to look
up the application service locations for example from a service discovery framework.

5.3.2 Database

The example application uses an open source database service PostgreSQL [79]. The
database service consists of a watchdog process that launches and monitors the
actual postgres processes and keeps them running. In the original architecture, the
watchdog process has all the postgres processes as child processes and the watchdog
process itself is managed by systemd. Initializing the system and variables for the
database service is done by a startup script.

The approach for containerizing the database service was similar to the load
balancer node. First, the libraries, binaries and a startup script of the postgres service
were moved into container. After this, the dependencies were resolved and moved
inside the container. When the database service was put into a container, process
hierarchy remained almost the same as before containerization. However, after the

31

containerization the postgres processes were running inside a PID-namespace, so
they were not able to see any other processes on the system.

As mentioned earlier, containers are designed to be launched and deleted, and
they are not usually restarted. When a container is terminated, all the data inside it
is lost. Because of this, the database container requires additional persistent storage.
Persistent data can be stored either to the host’s disks or to a Docker data-volume.
I decided to use a virtual disk from the host as a database storage. The virtual disk
was provided by OpenStack and it was mounted to the database node. To enable
persistent storage for the containerized database processes as well, the virtual disk
had to be mounted to the container. The actual virtual disk was still mounted to
the host node, and the mountpoint was just shared with the container.

I also decided to use host’s network for the database container. This was done,
because other services, such as application processes in the application node, are
expecting that the database is always located in the database node. By using the
network of the host, the IP address and the port of the database remained the same.
This approach is required until a service discovery framework is introduced to the
system. Even then, the database container cannot be deployed anywhere, because
the host has to have the virtual disk mounted.

One issue that I encountered during the containerization process was that the
database service status was heavily tied to the host’s init process systemd, which
manages and monitors all the services in the system. Also the alarms, which are
user notifications about system errors, were tied to the database service status in
systemd. When the service was moved to a container, the information about the
database service status was lost and the alarms about database unavailability were set.
However, this issue was mainly cosmetic and the database still functioned correctly
regardless of the active alarms.

5.3.3 Application node

The actual functionality of the example application is done by multiple processes
in application node. In the example application, all the application processes are
managed by systemd. There is also a process that is specifically monitoring the
application processes that provide the actual application functionality. If a failure is
detected on any of these processes, all of them are restarted. This is done so that
the startup order of the processes can be always guaranteed.

Because the application functionality consists of multiple services, I had to test
multiple approaches for the containerization process. First, I tried out an approach
where every application process was running in a separate container. The set of
containers were put into one Kubernetes pod and were managed as a group. The
containerization process was again similar to the previous nodes. Service binaries,
libraries and their dependencies were found and moved into containers. The container
image was based on Fedora and it also contained some basic libraries and binaries.

However, this approach had multiple issues. The first problem that I encountered
was that Kubernetes cannot guarantee a starting order of the containers inside the
pod. Some of the application processes required strict startup order to work properly.

32

© Nokia Solutions and Networks 201517

Confidential

systemd

…

App-process

systemd

…

dockerd

docker-containerd

supervisord

App-process

App-process

App-process

App-process
……

App-process

App-process

App-process

…

Figure 11: Application processes on a host and in a container

For example, one process required an access to a file that was created by another
application process. This problem could have been solved by implementing so called
"launch-and-wait" principle to the processes. The processes could then be launched
in an arbitrary order and the they would be able to wait for the other dependent
services to become available. Another problem with this approach was that some
of the processes were accessing shared files in the host. If the required files were
copied to each container separately, they could not be managed easily. On the other
hand, if the shared files on the host were mounted to the containers, the issue would
not exist. However, this solution would require that the files exist locally on the
container hosts, which would set unnecessary requirements for the container hosts.
Both of these changes would have required a lot of re-designing to the application
processes so I decided to focus on other approaches instead.

Next approach was to put every process into the same container. Processes were
launched by using a simple script, that launched the processes in certain order. This
approach solved the issue with startup order, without requiring any modifications to
the processes themselves. The shared files were also moved to the container, and all
the processes were able to access them when necessary. The issue with this approach
was that the container manager was only able to monitor the state of the first process
that was launched. In this approach, the first process to launch was the startup
script, which means that if any of the application processes die, the system would
not able to detect that, and the process could not be restarted.

The final approach was similar to the previous one. All the application processes
were run in a same container, but the processes were launched and monitored by a
supervising process called supervisord. With supervisord, the startup order of the
processes can be determined. Supervisord also monitors the application processes and
restarts them in a case of a failure. Figure 11 shows how the application processes are
located in the process tree. On the left side, the application processes are just running
on the host without any containers. On the right side, the application processes are
running in the same container with supervisord launching and monitoring them.

33

For the purposes of this proof-of-concept, the approach with a single container
and a supervisor was the most suitable. The approach offered an easy solution for
both failure handling and shared memory. Also, the solution did not require any
changes to the actual source code of the application. On top of that, the management
of a single container was really simple from the orchestrator point-of-view. Until the
processes are able to start regardless of the order, an external supervisor such as
supervisord is required to manage the startup order.

5.3.4 UI-node

UI-node contains operation and maintenance tools and for example the graphical
user interface of the application. It also runs rsyslog [80], which is aggregating logs
from the other nodes. I did not add any containers to this node, because the scenario
would have been really similar to the scenarios of the other nodes and would not
have brought anything new to the thesis. For example, the graphical user interface
could be containerized using the same approach as before, but the practical work
was omitted in a scope of this thesis. In the future, every part of the UI-node should
be containerized so it would not be dependent on the host anymore.

5.4 Platform services
The platform also required some changes to enable containerization. For example,
a container orchestrator, service discovery framework and logging services enable
easier management and add robustness to the system.

5.4.1 Orchestration

Kubernetes was chosen as an orchestrator for this proof-of-concept. All the manage-
ment tasks of the containers are handled through Kubernetes master components,
that are running in Docker containers. Kubernetes master components can be de-
ployed anywhere in the network, as long as there is a connectivity between the
Kubernetes master components and all of the worker nodes. In this proof-of-concept,
I decided to deploy the Kubernetes master components in a separate node in the
same stack as the example application. This was done so that networking between
the master node and the worker nodes functioned without any issues.

Private Docker registry was also deployed in the same node as the Kubernetes
master components. The registry contained all the required container images, includ-
ing the container images for all of the application services as well as the images for
all of the Kubernetes components. As with the Kubernetes master, Docker registry
is also running in a Docker container, and it can be deployed anywhere, as long as
the there is a connectivity between the registry and the Kubernetes worker nodes.
In this proof-of-concept, the easiest way was to deploy the Docker registry in the
same stack and the internal network as the worker nodes.

In the proof-of-concept, three Kubernetes pods were used; one for the database,
one for the load balancer and one for the application processes in the application
node. Each pod consisted of one container. This is a logical approach for example in

34

the load balancer node, where the container runs only one process. However, in the
application node, multiple processes are required for the functionality. I still decided
to run all the application processes in a singe container. I also included supervisord
to the container, because it offers the ability to start processes in a correct order,
and it makes using of the shared files easier for the processes.

In addition to the Kubernetes master node, each virtual machine had kubelet and
etcd installed, making each of them a Kubernetes worker node. When commands,
for example to deploy or to delete a pod, are entered in the Kubernetes master,
it will contact the kubelet in a correct worker node. Kubelet then handles the
communication with the Docker itself. For example, when creating a pod, Kubelet
first instructs Docker to fetch the correct images from an image repository, and
then to launch the containers with flags and options that are defined in the pod
configuration file. Kubernetes chooses a worker node for the new containers based on
the current load on worker nodes, or by using labels. Worker nodes can be assigned
with labels, and the containers can be configured so that they are only launched on
the nodes with certain labels.

To guarantee functionality, every Kubernetes worker node was labeled with the
host’s name. This approach ensured that the containers in this proof-of-concept
were always deployed on the same node as before containerization. For example, the
database container configuration included a rule, that the container could only be
launched on a node that is labeled as "db". This approach is necessary until a service
discovery framework is present and containers can be deployed everywhere. In the
future, labeling of the nodes could be used to ensure that the database containers
are only deployed on worker nodes which contain fast disks, or that the application
containers are only deployed on the high performance worker nodes that contain
more computing resources.

Kubernetes can also offer an overlay network for containers through external
networking components, such as flannel. By using the overlay network, Kubernetes
can provide an individual IP address and a port for each container, so that multiple
identical containers can be run with different IP addresses on a same node. This is a
common practice for example for load balancing and high availability purposes.

In the practical implementation, the host’s network was used for the containers.
The benefit of this approach was that the containers were able to find other services
without an overlay network or a service discovery framework. For example, the
database container and the service inside it were still running on the original database
node with the same IP address and the port as previously. However, by using the
host’s network, multiple identical containers cannot be launched on the same host
because the services bind themselves on the same ports. If a port is already used by
some other service, the service in a new container is unable to start.

5.4.2 Service discovery

If a separate network was used for the containers, the services would not necessarily
have the same IP addresses all the time. Containers usually get the IP addresses
allocated dynamically. In that case, a service discovery framework is required, so that

35

the services are able to find each other. A part of the service discovery framework
is a service registry, which is a database of available services and their network
locations. When a new service becomes available, it registers itself to the service
registry. Similarly, when the service becomes unavailable, it removes itself from
the registry. Registering and de-registering a service is usually done via application
programming interface (API), such as REST API. Popular service registries are
Consul [81], Netflix Eureka [82] and Apache Zookeeper [83].

In this proof-of-concept, a service discovery framework was not implemented
because of time constraints. Also, because the practical implementation was using
a host’s network for the containers, the service discovery framework would not be
really useful, as the services already know where to find each other.

5.4.3 Logging

Originally, the example application collects and stores logs by using journald, which
is a part of a systemd package [84]. Each host is running journald locally, and in
addition to that, the logs are also sent to a centralized storage by using rsyslog.
However, in containerized architecture the services are running in multiple isolated
containers. Because containers should not store any persistent data, the logs should
not be stored inside the container. Otherwise, a failure of the container would also
destroy the logs. Also, adding an additional logging daemon in every container would
result to unnecessary overhead.

Two main approaches for implementing the logging in a containerized application
are to either use host’s logging capabilities, or to start pushing the logs of containerized
processes into a standard output, and then collect them by other means. Docker
offers multiple logging drivers, for example for syslog, journal and fluentd, that make
use of the host’s logging capabilities [85]. The corresponding services have to be
running on the host machine. All the logging calls from containers are then forwarded
to the logging daemon which stores the logs on the host’s disks. The logs can then
be forwarded from the host to a centralized location, for example by using rsyslog.
This is a clean way to implement logging in containers, but it sets requirements for
the container hosts.

Another possibility is to forward the logs of containerized processes to the con-
tainer’s standard output. This can be done by either modifying the application to
push the logs to the standard output automatically, or by including a logging service
such as rsyslog in the container, and configuring it to push the logs to the standard
output. There are multiple ways of collecting the logs from the standard output.
With Docker, it is possible to save the standard output of the containers into a
json-file. It is also possible to use some third party application, such as logspout [86],
to collect the container output logs. This way, the host infrastructure does not have
any requirements regarding the logging.

For this proof-of-concept, I decided to use the first approach and implement
logging using host’s journald. The approach was selected, because currently the
example application is still running on top of virtual machines, and each host is
already running a journald. Also, the logs from each node are already automatically

36

sent to a centralized location by rsyslog, so additional aggregation of the logs was not
required. However, the selected approach sets requirements for the container hosts,
and the standard output based logging should be investigated and implemented when
designing a fully containerized application.

5.5 Summary
This chapter discussed practical implementation of a telco application, that was
utilizing containers. For this implementation, Docker was selected as a container
manager and Kubernetes was selected as a container orchestrator. Basis of the
practical implementation was an existing telco application, which was modified to
utilize containers. Functional parts of the application were moved into containers,
which were running on top of the old virtual machines. In addition, a separate virtual
machine was deployed to the stack and it contained a Kubernetes and Docker registry.
Orchestrator was used to make management of multiple containers easier.

37

6 Evaluation
This chapter discusses the advantages and considerations related to telco application
containerization. The practical implementation in the previous chapter is used as an
example. First, the containerization advantages such as software update, performance
and scaling are discussed. Then, general guidelines for container-based application
design are presented, and container security is discussed. Finally, the future work is
presented.

6.1 Software update
An update of a service is a slow and heavy process in the old virtual machine based
architecture. In the old method, user has to first download large virtual machine
image from software manufacturer’s server. Size of the image is usually from few
hundred megabytes to one gigabyte, mostly because the VM-image also contains an
operating system. When a modification is made to the VM-image, user needs to
download the whole image again regardless of the modification’s size. In addition,
the application might consist of multiple different VMs, and each of them might have
a different VM-image.

After downloading the image, user has to launch a new VM with it. Startup of
the new VM is really slow, because the guest OS needs to be started first. After that,
all the platform services and finally the application specific services are launched.
VM startup times can be even several minutes [2]. While the new VM is deploying,
an old VM has to be still running to avoid service interruption. This will cause some
unnecessary computing overhead. After the new VM is started, all the other services
in the system must be instructed to use it. Only after all the other services are
communicating with the new VM, the old VM can be killed. The whole process is
really slow and will introduce challenges in the environments where high availability
is required.

In contrast, the update process with containers is very light. The user needs to
download a new container image the same way as in older VM-based architecture.
However, the container image is much smaller than a full VM-image, because it
does not contain an operating system or any other unnecessary services. It only
contains the functionality that is required to run a service inside a container. Another
advantage of the container images is that they are layered, and only the missing
layers are downloaded. Other layers can be mounted from the images that already
exist in the system.

Container startup time is really fast compared to a VM startup, because only
application specific services are launched. In practice, this means that the container
startup times are usually only a few seconds. This also makes the update process
really fast. If other services can recover from the short interruption in a service
that is updated, no special precautions are needed. If the service is critical and no
interruptions are accepted, a new container can be launched next to the old one like
in VM update. Traffic is similarly directed to the new container before updating the
original service. When containers are used, this is still a very fast process. Updating

38

containerized services does not usually require rebooting of the underlying machine.
It is often enough just to launch the updated container again.

The container orchestrator makes the update of a containerized service easier for
the user. Only one command is entered and the orchestrator handles downloading,
launching and terminating of all the required containers automatically. An example
command for updating database containers in the database deployment would be:

kubectl set image deployment/database-deployment database-container=database-
image:v2

The command will update every container named "database-container" in "database-
deployment" with the new image. In a normal scenario, where the deployment only
contains one database container, the old container is simply killed and a new container
is launched with an updated image. If the database deployment is scaled or if it
contains multiple database containers, there is an option to select an update policy.
By using an update policy called recreate, the orchestrator will just kill and relaunch
all the database containers in parallel. If the update policy is set to RollingUpdate,
the orchestrator will keep at least one database container running at all times. It
will first kill one container and relaunch it with an updated image. Only after the
new container is deployed, the other containers are updated one by one.

6.2 Scaling
Scaling out means adding more components in parallel to share workload between
multiple instances. In contrast, scaling in means reducing the number of the parallel
components. Scaling out is a common way to increase capacity of an application.

In the example application, the application node can be scaled out to increase
capacity. If the application needs to serve a large number of requests simultaneously,
new application nodes can be launched to share the load. A load balancer is then
responsible for dividing the traffic into each application node. In the old VM-based
architecture, a smallest unit of scaling is a VM. However, scaling a whole VM causes
a lot of overhead, and the scaling process is really slow.

In this proof-of-concept implementation, Kubernetes can be told to scale out
an existing pod. It will then proceed to launch identical pod somewhere in the
environment based on the predetermined rules. For example, it is possible to define
that application pods are only launched on the nodes with a specific label, such as
"application". Kubernetes will select a node for the new pod by using its scheduler-
module, which for example examines the current load of each node [87]. As with
the VM-based architecture, a load balancer divides the traffic evenly to the parallel
services.

It was noticed that the scaling out process of the example application failed if
the new container was created on a node that already had identical container or
the same application processes running on the host. The scaling out process failed,
because the processes in the new container were still using host’s network and tried
to bind themselves on the ports that were already bound to the original processes.

39

4,86

2,06

0,00

1,00

2,00

3,00

4,00

5,00

6,00

Scale out Scale in

T
im

e
 (

s)

Figure 12: Application container scale-out and scale-in times

In the current solution where the host’s network is used, scaling cannot work within
the same node.

The problem was avoided by creating a place where Kubernetes can safely launch a
scaled container. In this proof-of-concept, I decided to add one idle worker node to the
stack. This idle worker node was always running, but it did not have any application
services running to avoid conflicts. The new node was configured as a new Kubernetes
worker node and it was labeled as "application", similar to the first application-node.
Load balancer configuration was also changed to use this additional worker node as
an application node. If the new application node was not running any application
services, the load balancer just used the original application node. This approach
simulated a situation, where application container can be freely scaled, without
conflicts for example in port bindings. However, if the practical implementation had
separate network for the containers with service discovery framework, the additional
VM would not be required. The two application containers could be just run on the
same node, but they would be using different IP addresses.

A command that was used for the scaling was:

kubectl scale deployment/application-deployment –replicas=2

where "application-deployment" was the name of the deployment. The deployment
consisted of one pod, that contained one application container. Kubernetes then
detected that the new worker node had no application containers running, and it
launched the new pod there. Scaling times can be seen from Figure 12. Scaling
out took approximately 4,9 seconds and scaling in only 2,1 seconds. Scaling out is
a slower process, because all the application services have to be started inside the

40

container. In contrast, scaling in only deletes the container and all the processes
inside it.

6.3 Failure handling
To investigate recovery time of a single service in the application node, four test
scenarios were created:

1. No containers in use

2. One container with multiple services and supervisord

3. All services in separate containers

4. All services in separate containers managed by Kubernetes

All the tests scenarios were carried out in the application node, that was running
all the necessary services. Same service was killed in every scenario and time was
measured until the service was back up. The service was killed with SIGKILL-signal
and it was brought back by the infrastructure.

In the first situation, recovery is handled by host’s systemd. It does not only
restart the killed process, but it also restarts other relevant application processes. In
the second scenario, supervisord inside a container detects the failure of the service
and restarts it. It does not restart any other processes. In the third scenario, the
Docker container exits, because the entrypoint process is killed. Docker then proceeds
to launch the container again. In the fourth scenario, entrypoint process inside a
container is killed and the container exits. Container orchestrator Kubernetes will
detect that container exited and will launch a new one. Results can be found from
Figure 13.

First scenario was significantly slowest: a killed service was restarted after 8,2
seconds on average. Reason for the slower restart was that the original supervising
process on the host restarts all the relevant application processes if one of them dies.
This is done so that the services are always launched in a correct order, and that no
unknown complications are caused by an interruption in one service. However, this
also means that failure in one service will make the whole application unusable until
the services are restarted.

In the second scenario, recovery time was 1,0 seconds on average. Supervisor
detected the failure of a service inside the container and restarted it. Other services
and the container itself were not restarted. However, restarting only the failed
service might cause errors in other services if they are not developed to handle these
interruptions. Also, if services are relying on a specific starting order, restarting a
single service might break functionality of other services.

In the third scenario, all the services were in separate containers, so that each
service was an entrypoint of a container. Restart=Always option was defined on
container launch to enable automatic restart when a container exits. In this test

41

8,22

1,04

0,26

1,53

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

No containers Container with
supervisor

Container without
supervisor

Container with
Kubernetes

Ti
m

e
(s

)

Figure 13: Recovery times on process failure

scenario, failure of the service terminated the container right away. Docker then
detected that the container was terminated and proceeded to launch it again. This was
the fastest scenario and restart happened on average within 0,26 seconds. However,
the problem is the same as in the second scenario, because only a single service was
restarted.

In the fourth scenario, the container terminated because the entrypoint service
was killed. Kubernetes then detected this and launched a new container. Average
recovery time of a killed service was around 1,5 seconds. With Kubernetes, it is also
possible to launch containers with Restart=Always option selected. By using that
option, restart is handled by Docker itself, same way as in the third scenario.

The test script required some modifications for the fourth scenario, because
Kubernetes includes a feature called CrashLoopBackOff. It will double the time
between each container restart if it detects frequent crashes in some container. That is
why the measurements were run once every 15 minutes to prevent CrashLoopBackOff
from increasing restart times.

6.4 Containerization practices
When designing a container based application, general guidelines should be followed.
For example, it is important to design the application so that the containers are kept
as logical entities, and that the application is independent of the host infrastructure.

42

6.4.1 Containerized applications

Containerized application should work regardless of the order in which the containers
are launched. Traditionally, the processes are started by using systemd or other
supervisor, and the start-up dependencies can be easily specified. However, the
container environment cannot usually guarantee the start-up order of containers. For
example, Kubernetes cannot guarantee the order of which containers are started
inside a pod. I encountered this problem when the application processes of the
example application were put in separate containers. As a workaround, I had to
put all the application processes in a single container that also had a lightweight
supervisor process to manage the processes and their start-up order. However, this
approach is not recommended for truly containerized applications. Instead, the
services in the containers should be able to wait for other services to become available.
Services can still have dependencies on other services, but their startup order should
not affect the deployment of the containers. Suggested solution would be to redesign
services to apply continuous retry, so that a missing service-dependency would not
terminate the application right away.

Containers can be used to run either a single process or multiple processes. In
the proof-of-concept, the HAProxy load balancer was running a single process inside
a container, whereas in the application node, multiple application processes were
run inside the same container. It is recommended to run multiple processes in the
same container only when the processes are heavily related, and are for example
utilizing shared memory and shared files. For example, in the proof-of-concept, some
of the application processes were using shared memory so it was logical to put these
processes in a same container. Other solution would be to share an IPC-namespace
between the containers that access shared memory. For example, Kubernetes pods
automatically share an IPC-namespace between its containers. However, unnecessary
coupling of processes will lower manageability and introduce unnecessary complexity
to container images.

If multiple processes are run inside the same container, the container should also
have a supervising init process, such as supervisord or systemd. This is not only
the case with multiple different processes, but supervisor should also be used if a
single process inside a container launches additional child processes. The scenario
would then be similar to launching multiple processes initially. Supervisor must be
configured so that failures in one process can be resolved by restarting it. Other
processes in a container must be developed so that they can recover from that
failure, or that the supervisor knows to restart all the required processes. In addition
to process restarting, supervisor can also clear hanged zombie processes and reap
orphaned processes [88].

6.4.2 Infrastructure

Containerized application should not have any expectations from host software and
services. For example, containerized applications should not be expecting that the
host has a systemd that would handle the dependencies. Also the other parts of the
application, such as alarms, cannot rely that a status of a containerized service is

43

tied to any host service. In addition, the containerized services should not expect
that host has for example syslog or journald, that would handle logging. Logs from
the containerized service should be pushed to a standard output and then collected
by the infrastructure.

Also, the service inside a container should not be dependent on the host in-
frastructure. For example, an application should work regardless of the container
orchestrator that is used. The application should be able to function on any kind
of infrastructure, as long as containers are supported. The container infrastructure
must take care of container re-creation in a case of container failure. Services inside
containers should not crash if another container momentarily goes offline. Instead,
they must wait for the required services to become available. Also, in a case of a
host node failure, container orchestrator must be able to move all the containers
from the broken host to a functional one. The host should then be able to recover
automatically, for example by initiating a restart.

New applications should also be developed to be as stateless as possible, because
persistent data storage in containers is problematic. However, in some cases, persistent
storage is required and it should be then offered for example by the host. For example,
the host’s data volumes can be mounted to containers. In this case, containers must
be only placed on the hosts that have these data volumes.

All containers should be managed in a logical and centralized way. If the ap-
plication consists of multiple containers, a container orchestrator should be used.
This is especially true when containers are divided to multiple hosts. By using an
orchestrator, failure handling, software update and scaling can be instructed from
one centralized point. Otherwise, all of these operations would have to be done
separately to each container.

The containerized application can have two different delivery models based on the
deployment. In an embedded deployment, all container related software components
are delivered and deployed as a part of the application. Both the application and the
supporting container infrastructure are delivered by the telco application provider. In
a provided deployment, only the containerized application is delivered. The operator
offers container management and orchestration. In the beginning of containerization
process, using an embedded deployment is a safer option because the container
technology is still transforming rapidly. By delivering an embedded and properly
tested solution, the application is guaranteed to work as intended, regardless of the
environment. In the future when container technology matures and operators start
to have their own container infrastructure, delivering only the application containers
is an option.

6.4.3 Networking

Containers should have a separate network, that is offered by the container manager
or the orchestrator. The network is needed so that multiple containers in a same node
would not have conflicting IP addresses and ports. For example, the database service
cannot be scaled out within the same host, because the initial database service is
still bound to the original port. However, at the initial phase of containerization,

44

host’s network can be used to maintain connectivity to the original services, that are
still running on other hosts.

In fully containerized architecture, both IP addresses and IDs are assigned
dynamically to the containers. Container cannot be guaranteed to launch with a
specific ID. When a container is killed and launched again, its container ID changes.
The application must not rely on fixed IP addresses or IDs. Services of the distributed
application can be found by using a service discovery framework instead. The service
discovery framework should be offered by the container infrastructure. When a
service becomes available, it should register itself to the service discovery framework.
Same way, a service should remove itself from the service discovery framework when
it becomes unavailable. Services can locate each other by polling the service discovery
framework.

6.4.4 Container images

When designing container images, the layered structure of container images should
be utilized as much as possible. Existing layers should be reused between different
images. For example, one layer could include a base OS and another layer could
include python. The container image layers should be used as basic building blocks,
so that only the new layers are needed to be downloaded between different versions.
Developers should not use different base images in their container images unless
absolutely necessary. Using the same base image in tens of container images will
only take disk space for one base image. Because each modification adds a new layer
to the image, it can be useful to combine layers when the amount becomes too high.

Overall size of the container image should be kept as small as possible. Developers
should avoid adding unnecessary packages to the container images. Container image
should include only the components and libraries that are required for the functionality.
This will ensure that images stay compact, and that the attack surface is minimized.
Image size can be also greatly reduced by deleting a packet manager cache after
installing the required tools. To confirm this, I built two similar Docker images. Both
images were based on Fedora and had both python and perl, which were installed
using a package manager. Without clearing the package manager cache, the resulted
image was 474.4 MB. By removing the package manager cache, image size was
reduced to 311.6 MB.

6.5 Security
The process isolation and security is weaker in containers than in virtual machines.
However, with careful planning, the security hazards can be minimized. Two major
security principles were specified over 40 years ago, and they are still valid for the
applications in containers. The two principles are [89]:

1. "Least privilege: Every program and every user of the system should operate
using the least set of privileges necessary to complete the job."

45

2. "Least common mechanism: Minimize the amount of mechanism common to
more than one user and depended on by all users. Every shared mechanism
(especially one involving shared variables) represents a potential information
path between users and must be designed with great care to be sure it does
not unintentionally compromise security."

6.5.1 Container capabilities

Processes inside the containers are assigned to capability groups which in turn manage
access rights and capabilities of the processes in the host system. The safest way of
running containers would be just to run them without any dangerous capabilities.
However, this would make the applications in containers quite minimal, as most of
the useful processes require at least some capabilities that are considered dangerous.
For example, a web server requires binding to a port 80, which would not be possible
without extra capabilities. Docker fully supports adding and removing capabilities
for the processes. It is advised to remove every capability that the service does
not require. With careful capability and permission planning, risks associated with
containers can be minimized.

By default, most container managers launch the containers in unprivileged mode.
Unprivileged containers are running with limited capabilities to minimize the risks
to the host system. An unprivileged container uses so called whitelist approach and
drops all but the required Linux kernel capabilities [90]. For example, processes
in the unprivileged containers cannot access host’s devices by default. All mount
operations are disabled as well. However, to work properly, containers still require
access to certain devices of the host. To mitigate potential risks related to that,
devices can be mounted as read-only.

Some host directories, such as /sys/ and /proc/sys/ are required for the container
functionality. To minimize the security hazards, Docker can prevent writing on them
as well. Unprivileged containers disable writing capabilities to these risky directories
by default. Mount operations on these locations are also disabled by default [47].
Unprivileged containers also prevent access to the Docker daemon, because otherwise,
an user could launch an additional, fully privileged container.

Privileged containers give its processes same capabilities as if the processes were
running directly on host. Processes in the privileged containers are able to access all
the devices on the host, use mount operations and access for example SELinux and
AppArmor settings. Privileged containers should not be used in real life products,
because one vulnerability in these containers could compromise the whole system.
An unprivileged container is a more secure option, and it is suggested to use them
whenever possible. If system admin wants to offer containers where user is able to log
in or otherwise send commands to, container must be always running in unprivileged
mode.

6.5.2 Using host’s files in containers

Users are able to share host directories to containers on container launch. By default,
processes in container can interact with the shared directory without any restrictions.

46

All modifications to the shared directory in container are also affecting that directory
on the host, and thus the sharing must be planned so that serious harm cannot
be done. For example, system critical or risky directories should not be shared to
containers at all. However, if they are absolutely needed, a better approach would
be to copy them to a container image, so that the possible modifications would not
affect the files on host. Similarly, mounting of host’s folders should be limited to
separate directories that are created for that purpose.

Regardless of whether an unprivileged or a privileged container is used, processes
inside a Docker container are running as root by default. This might lead to some
security issues, for example if a system admin accidentally shares confidential root
protected files from the host to a container. This means that any process, that
is running as root inside the container, is also able to access these shared objects.
To address this problem, Docker version 1.10 enabled user namespaces. By using
them, it is possible to run processes inside a container as a less-privileged user of the
host. Processes that are running with less-privileged user are not able to access root
protected files inside the container.

Sharing of these critical directories is possible, because Docker daemon has to
always run with root privileges. In practice, nothing prevents users of Docker daemon
from sharing the whole root directory of the host to a container. If user is able to
access Docker daemon, meaning that he is able to launch new containers, he is at the
same time able to mount everything to these new containers, including for example
/etc/shadow that contains encrypted passwords. He is then able to access them
through the container, even though the user would not normally have root privileges
on host system. In practice, this means that user accounts, which belong to the
Docker group, should be also considered as root users of the system. Because of this,
access to the Docker daemon should be restricted to the system admins only. Also,
when designing a service with user input, careful parameter checking must performed
to make sure that no malicious commands or parameters can cause creation of new
containers. This is dangerous because the newly created container could be running
with more privileges than initially intended, making it possible for the attackers to
access the system.

6.5.3 Docker vulnerabilities

Because containers are using namespaces, they cannot see or interact with anything
outside their namespace. However, primary security issue with containers are system-
calls that are not tied to any namespace by their nature. These could be abused and
used to break user free from the container. One example of this was published in
June 2014 [91]. In this published exploit, attacker was able to access any file in the
host file system. This certain exploit was found in Docker version 0.11 and is since
patched in Docker version 1.0 and forward. However, new exploits for breaking out
of containers have been found since [92]. This clearly shows that breaking out of a
container is a serious risk that has to be taken into account when containers are used
in production. Even though this particular exploit was fixed, there might still be
similar exploits where vulnerabilities of a host kernel are used to break out from the

47

container.
Extra care must be taken when downloading Docker images from Docker public

repository called Docker Hub. It is possible that malicious image is uploaded to
the Docker Hub or delivered to an unsuspecting system admin by other means. For
example, even some of the most popular images in Docker Hub are containing major
security vulnerabilities [93]. Other problem with pulling Docker images is that the
pull command itself can be dangerous. Pulling an image using docker pull command
also automatically unpacks the image and malformed packages might compromise
the system [94]. Safer approach is to download the image manually and add it to
Docker by using docker load command.

6.5.4 Enhancing security of containers

Security in container systems can be increased by using additional security features,
such as AppArmor, seccomp and SELinux, that are offered by Linux kernel [47].
SELinux uses labels to enhance security. Processes inside a container are assigned a
label, and can only access files that are labeled accordingly. Docker has also taken
some actions to prevent malicious activities against containers. For example, API
endpoint now uses Unix-sockets instead of TCP sockets bound on localhost. Because
the API can also be exposed over HTTP, admins need to carefully configure it so
that the API is only reachable from an internal network or for example by using
virtual private network.

Many bugs related to namespaces still exist in Linux system call API. Security
hazards can be reduced by white-listing some harmless system calls and denying
the rest. However, the trade-off will then be the functionality of the containerized
application. If specific functionality can only be gained with unsafe system-calls,
those applications are not suited to run in containers and should be run in a more
secure environment such as a hypervisor-based VM [47]. In general, it is advised to
handle containerized applications as if they would be running without containers.
Virtual machines are still the suggested approach for applications that require stronger
security.

6.6 Future work
The practical implementation in this thesis focused mostly on the actual application
services and their containerization. However, the example application also contains
multiple platform services, that are required for the application functionality. The
next logical step towards fully containerized application would be to move these
platform services to containers as well. The goal would be to have everything running
in containers, even if the host’s network was still used to make this implementation
easier.

After both the application services and the platform services are running in
containers, a separate network for the containers should be implemented. For this,
a research on different networking tools, such as Flannel, Calico and Nuage VSP,
should be conducted. When separate network is used for the containers, a service

48

discovery framework is also required, so that the services are able to find each other.
Different service discovery frameworks, such as Consul, Eureka and Zookeeper, should
be researched and implemented with the networking. A separate network and a
service discovery framework will make containerized application less dependent on
the hosts. A separate proof-of-concept, where containers are running directly on
hosts without virtual machines, could be also done after this step.

In the current implementation, all of the container images contained overhead,
that was a result from using Fedora base image. Most of the tools, that are provided
by the base image are not needed for running the processes. More lightweight
base images, such as busybox and alpine, could be used to create smaller images.
Using these lighter images might require some changes to the application processes.
However, using lighter container images is a necessity for the efficient software delivery
and deployment, and it should be researched.

Comprehensive performance measurements should be conducted for the container-
ized application before introducing containers into the production. It should be
measured, how the containers affect latency of the application and how do different
storage drivers affect the performance. Also, a separate research on container security
must be conducted before using them in production, especially if containers would
be running directly on top of host.

Finally, a big topic that was not discussed in this thesis is continuous deployment
and delivery. A research on different delivery methods should be conducted. Also,
the usage of different deployment models, such as testing a new version in parallel to
the running deployment, needs more research.

49

7 Conclusions
Because mobile data amounts keep growing also in the future, more effective virtual-
ization methods are needed for the telco applications. In this thesis, Linux containers
were introduced and proposed to be one possible solution for the problem. Con-
tainerization technology was compared to the traditional virtualization and benefits
and disadvantages were discussed. Also, a popular container manager Docker was
introduced.

This thesis also researched an idea of distributed telco applications, which would
be built using microservices that are running in containers. A practical proof-of-
concept was conducted, where functional parts of an existing telco application were
moved in containers. Also, the requirements for this kind of architecture, such
as a container orchestrator, were studied. The practical implementation was then
evaluated in regard of software update, scaling, failure handling and security.

Benefits of containers are clear, for example in the software update, when com-
paring to the previous method. In the old architecture, even the smallest updates to
some service require compiling of new virtual machine image. On top of that, the
deployment process of a large virtual machine contains a lot of overhead and the
startup can even take minutes. Another benefit of containers is their fast startup
time. It enables extremely fast scaling that is required in environments, where traffic
amounts vary a lot during a small time window.

Failure handling of containerized services can be done in multiple different ways,
such as with a container manager, container orchestrator or by a supervising process.
The biggest change compared to the previous architecture is that the containerized
services and processes are not managed by host supervisor, such as systemd.

Because containers are sharing the host kernel, some additional security hazards
might exist. These are often related to kernel capabilities, or shared directories and
devices between the host and the container. That is why careful planning is required,
and only the required capabilities should be given to containers. In the past, there
has been a couple incidents where user has been able to break out from the container
by exploiting a kernel vulnerability. The known vulnerabilities have been fixed, but
many unknown exploits might still exist. Because of this, containers are not yet
suitable for applications or environments where strict isolation is required.

Transforming existing monolithic applications to microservice-based containerized
applications might require huge amounts of work. This includes re-architecturing
and developing, and might even require changing of organizational structures. When
investigating if old monolithic application should be transformed, careful analysis must
be conducted to determine if the gained benefits overcome the amount of required
work. However, when new applications are developed, it should be considered that
the application could be running in containers in the future. That is why a new
application should be designed so that it can be run in containers as it is, or at least
so that the transformation process is easy.

50

References
[1] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,

2015–2020 White Paper. http://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/mobile-
white-paper-c11-520862.html. Accessed: 31.08.2016.

[2] Ming Mao and Marty Humphrey. “A performance study on the vm startup time
in the cloud”. In: Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference on. IEEE. 2012, pp. 423–430.

[3] Aleksandra Checko et al. “Cloud RAN for mobile networks—A technology
overview”. In: IEEE Communications surveys & tutorials 17.1 (2015), pp. 405–
426.

[4] Kimio Watanabe and Mamoru Machida. “Outdoor lte infrastructure equipment
(enodeb)”. In: Fujitsu Sci. Tech. J 48.1 (2012), pp. 27–32.

[5] Nokia. 5G use cases and requirements, White Paper 2016. http://resources.
alcatel-lucent.com/asset/200010. Accessed: 10.04.2017.

[6] Global mobile Suppliers Association. The Road to 5G: Drivers, Applica-
tions, Requirements and Technical Development. http://www.huawei.com/
minisite/5g/img/GSA_the_Road_to_5G.pdf. Accessed: 15.12.2016.

[7] China Mobile. “C-RAN: the road towards green RAN”. In: White Paper, ver
2 (2011).

[8] Nectarios Koziris. “Fifty years of evolution in virtualization technologies:
from the first IBM machines to modern hyperconverged infrastructures”. In:
Proceedings of the 19th Panhellenic Conference on Informatics. ACM. 2015,
pp. 3–4.

[9] Chee Shin Yeo et al. “Utility computing and global grids”. In: arXiv preprint
cs/0605056 (2006).

[10] John S Robin and Cynthia E Irvine. Analysis of the Intel Pentium’s ability to
support a secure virtual machine monitor. Tech. rep. DTIC Document, 2000.

[11] Paul Barham et al. “Xen and the art of virtualization”. In: ACM SIGOPS
Operating Systems Review. Vol. 37. 5. ACM. 2003, pp. 164–177.

[12] Shannon Meier et al. “IBM Systems Virtualization: Servers, Storage, and
Software”. In: IBM Redbooks (2008).

[13] Peng Li. “Centralized and decentralized lab approaches based on different
virtualization models”. In: Journal of Computing Sciences in Colleges 26.2
(2010), pp. 263–269.

[14] L YamunaDevi et al. “Security in virtual machine live migration for kvm”.
In: Process Automation, Control and Computing (PACC), 2011 International
Conference on. IEEE. 2011, pp. 1–6.

[15] The Xen Project. https://www.xenproject.org/. Accessed: 22.11.2016.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://resources.alcatel-lucent.com/asset/200010
http://resources.alcatel-lucent.com/asset/200010
http://www.huawei.com/minisite/5g/img/GSA_the_Road_to_5G.pdf
http://www.huawei.com/minisite/5g/img/GSA_the_Road_to_5G.pdf
https://www.xenproject.org/

51

[16] Kernel Virtual Machine. http://www.linux-kvm.org/page/Main_Page.
Accessed: 22.11.2016.

[17] vSphere ESXi Bare-Metal Hypervisor. http://www.vmware.com/products/
esxi-and-esx.html. Accessed: 22.11.2016.

[18] QEMU - Open Source Processor Emulator. http://wiki.qemu.org/Main_
Page. Accessed: 22.11.2016.

[19] VMWare Workstation. http://www.vmware.com/products/workstation.
html. Accessed: 22.11.2016.

[20] Oracle VM Virtualbox. https://www.virtualbox.org/. Accessed: 22.11.2016.
[21] Stephen Soltesz et al. “Container-based operating system virtualization: a

scalable, high-performance alternative to hypervisors”. In: ACM SIGOPS
Operating Systems Review. Vol. 41. 3. ACM. 2007, pp. 275–287.

[22] Chroot - Linux Programmer’s Manual. http : / / man7 . org / linux / man -
pages/man2/chroot.2.html. Accessed: 02.11.2016.

[23] Linux-VServer Homepage. http://www.linux-vserver.org/. Accessed:
30.11.2016.

[24] OpenVZ Homepage. https://openvz.org/. Accessed: 30.11.2016.
[25] Poul-Henning Kamp and Robert NM Watson. “Jails: Confining the omnipotent

root”. In: Proceedings of the 2nd International SANE Conference. Vol. 43.
2000, p. 116.

[26] Daniel Price and Andrew Tucker. “Solaris Zones: Operating System Support
for Consolidating Commercial Workloads.” In: LISA. Vol. 4. 2004, pp. 241–
254.

[27] Miguel G Xavier et al. “Performance evaluation of container-based virtualiza-
tion for high performance computing environments”. In: 2013 21st Euromicro
International Conference on Parallel, Distributed, and Network-Based Process-
ing. IEEE. 2013, pp. 233–240.

[28] Seccomp security profiles for Docker. https://docs.docker.com/engine/
security/seccomp/. Accessed: 13.03.2017.

[29] Wes Felter et al. “An updated performance comparison of virtual machines
and linux containers”. In: Performance Analysis of Systems and Software
(ISPASS), 2015 IEEE International Symposium On. IEEE. 2015, pp. 171–172.

[30] Theo Combe, Antony Martin, and Roberto Di Pietro. “To Docker or Not
to Docker: A Security Perspective”. In: IEEE Cloud Computing 3.5 (2016),
pp. 54–62.

[31] How to break out of a chroot() jail. http://www.unixwiz.net/techtips/
mirror/chroot-break.html. Accessed: 23.11.2016.

[32] LXC Homepage. https : / / linuxcontainers . org / lxc / introduction/.
Accessed: 16.12.2016.

http://www.linux-kvm.org/page/Main_Page
http://www.vmware.com/products/esxi-and-esx.html
http://www.vmware.com/products/esxi-and-esx.html
http://wiki.qemu.org/Main_Page
http://wiki.qemu.org/Main_Page
http://www.vmware.com/products/workstation.html
http://www.vmware.com/products/workstation.html
https://www.virtualbox.org/
http://man7.org/linux/man-pages/man2/chroot.2.html
http://man7.org/linux/man-pages/man2/chroot.2.html
http://www.linux-vserver.org/
https://openvz.org/
https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/engine/security/seccomp/
http://www.unixwiz.net/techtips/mirror/chroot-break.html
http://www.unixwiz.net/techtips/mirror/chroot-break.html
https://linuxcontainers.org/lxc/introduction/

52

[33] Rami Rosen. “Linux containers and the future cloud”. In: Linux J 2014.240
(2014).

[34] Eric W Biederman and Linux Networx. “Multiple instances of the global linux
namespaces”. In: Proceedings of the Linux Symposium. Vol. 1. Citeseer. 2006,
pp. 101–112.

[35] Yvan Royon and Stéphane Frénot. “A Survey of Unix Init Schemes”. In: arXiv
preprint arXiv:0706.2748 (2007).

[36] systemd - Linux man-pages. http://man7.org/linux/man-pages/man1/
init.1.html. Accessed: 03.05.2017.

[37] Upstart homepage. http://upstart.ubuntu.com/. Accessed: 03.05.2017.
[38] cgroups, Linux Control Groups. https://www.kernel.org/doc/Documentation/

cgroup-v1/cgroups.txt. Accessed: 13.12.2016.
[39] Paul B Menage. “Adding generic process containers to the linux kernel”. In:

Proceedings of the Linux Symposium. Vol. 2. Citeseer. 2007, pp. 45–57.
[40] Cgroup v2 Documentation. https://github.com/torvalds/linux/blob/

master/Documentation/cgroup-v2.txt. Accessed: 23.11.2016.
[41] Andrey Mirkin, Alexey Kuznetsov, and Kir Kolyshkin. “Containers checkpoint-

ing and live migration”. In: Proceedings of the Linux Symposium. Vol. 2. 2008,
pp. 85–90.

[42] Roberto Morabito, Jimmy Kjällman, and Miika Komu. “Hypervisors vs.
lightweight virtualization: a performance comparison”. In: Cloud Engineering
(IC2E), 2015 IEEE International Conference on. IEEE. 2015, pp. 386–393.

[43] Fabio Kung. Memory inside Linux containers. https://fabiokung.com/
2014/03/13/memory-inside-linux-containers/. Accessed: 14.03.2017.

[44] Marcus K Weldon. The future X network: a Bell Labs perspective. Crc Press,
2016.

[45] Dirk Merkel. “Docker: lightweight linux containers for consistent development
and deployment”. In: Linux Journal 2014.239 (2014), p. 2.

[46] Moritz Raho et al. “Kvm, xen and docker: A performance analysis for arm
based nfv and cloud computing”. In: Information, Electronic and Electrical
Engineering (AIEEE), 2015 IEEE 3rd Workshop on Advances in. IEEE. 2015,
pp. 1–8.

[47] Thanh Bui. “Analysis of docker security”. In: arXiv preprint arXiv:1501.02967
(2015).

[48] Supervisor: A Process Control System. http://supervisord.org/. Accessed:
14.03.2017.

[49] syslogd - Linux man-pages. https : / / linux . die . net / man / 8 / syslogd.
Accessed: 06.03.2017.

[50] Systemd-nspawn man page. http://man7.org/linux/man-pages/man1/
systemd-nspawn.1.html. Accessed: 16.12.2016.

http://man7.org/linux/man-pages/man1/init.1.html
http://man7.org/linux/man-pages/man1/init.1.html
http://upstart.ubuntu.com/
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://github.com/torvalds/linux/blob/master/Documentation/cgroup-v2.txt
https://github.com/torvalds/linux/blob/master/Documentation/cgroup-v2.txt
https://fabiokung.com/2014/03/13/memory-inside-linux-containers/
https://fabiokung.com/2014/03/13/memory-inside-linux-containers/
http://supervisord.org/
https://linux.die.net/man/8/syslogd
http://man7.org/linux/man-pages/man1/systemd-nspawn.1.html
http://man7.org/linux/man-pages/man1/systemd-nspawn.1.html

53

[51] ClusterHQ and DevOps.com. The current state of container usage. Identifying
and eliminating barriers to adoption. https://clusterhq.com/assets/pdfs/
state-of-container-usage-june-2015.pdf. Accessed: 08.03.2017.

[52] Use Supervisor with Docker - Docker documentation. https://docs.docker.
com/engine/admin/using_supervisord/. Accessed: 14.03.2017.

[53] Docker storage drivers - Docker documentation. https://docs.docker.com/
engine/userguide/storagedriver/. Accessed: 16.12.2016.

[54] Docker: Understand images, containers, and storage drivers. https://docs.
docker.com/engine/userguide/storagedriver/imagesandcontainers/.
Accessed: 16.12.2016.

[55] Docker Registry. https://docs.docker.com/registry/. Accessed: 16.12.2016.
[56] Best practices for writing Dockerfiles - Docker documentation. https://

docs . docker . com / engine / userguide / eng - image / dockerfile _ best -
practices/. Accessed: 03.03.2017.

[57] Kubernetes Documentation - Horizontal Pod Autoscaling. https://kubernetes.
io/docs/user-guide/horizontal-pod-autoscaling/. Accessed: 27.02.2017.

[58] Brendan Burns et al. “Borg, omega, and kubernetes”. In: Communications of
the ACM 59.5 (2016), pp. 50–57.

[59] From Google to the world: the Kubernetes origin story. https://cloudplatform.
googleblog.com/2016/07/from-Google-to-the-world-the-Kubernetes-
origin-story.html. Accessed: 27.02.2017.

[60] Etcd Documentation. https://coreos.com/etcd/docs/latest/. Accessed:
14.03.2017.

[61] Flannel documentation. https : / / coreos . com / flannel / docs / latest/.
Accessed: 14.03.2017.

[62] Openshift Homepage. https://www.openshift.com/container-platform/
kubernetes.html. Accessed: 04.05.2017.

[63] Container orchestration: Moving from fleet to Kubernetes - CoreOS Blog.
https://coreos.com/blog/migrating-from-fleet-to-kubernetes.html.
Accessed: 03.03.2017.

[64] Docker Swarm. https://docs.docker.com/engine/swarm/. Accessed:
28.02.2017.

[65] Rancher OS. Kubernetes, Mesos, and Swarm: Comparing the Rancher Or-
chestration Engine Options. http://rancher.com/comparing- rancher-
orchestration-engine-options/. Accessed: 27.02.2017.

[66] Dmitry Namiot and Manfred Sneps-Sneppe. “On micro-services architecture”.
In: International Journal of Open Information Technologies 2.9 (2014).

[67] Martin Fowler and James Lewis. Microservices. http://martinfowler.com/
articles/microservices.html. Accessed: 22.02.2017.

https://clusterhq.com/assets/pdfs/state-of-container-usage-june-2015.pdf
https://clusterhq.com/assets/pdfs/state-of-container-usage-june-2015.pdf
https://docs.docker.com/engine/admin/using_supervisord/
https://docs.docker.com/engine/admin/using_supervisord/
https://docs.docker.com/engine/userguide/storagedriver/
https://docs.docker.com/engine/userguide/storagedriver/
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
https://docs.docker.com/registry/
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://kubernetes.io/docs/user-guide/horizontal-pod-autoscaling/
https://kubernetes.io/docs/user-guide/horizontal-pod-autoscaling/
https://cloudplatform.googleblog.com/2016/07/from-Google-to-the-world-the-Kubernetes-origin-story.html
https://cloudplatform.googleblog.com/2016/07/from-Google-to-the-world-the-Kubernetes-origin-story.html
https://cloudplatform.googleblog.com/2016/07/from-Google-to-the-world-the-Kubernetes-origin-story.html
https://coreos.com/etcd/docs/latest/
https://coreos.com/flannel/docs/latest/
https://www.openshift.com/container-platform/kubernetes.html
https://www.openshift.com/container-platform/kubernetes.html
https://coreos.com/blog/migrating-from-fleet-to-kubernetes.html
https://docs.docker.com/engine/swarm/
http://rancher.com/comparing-rancher-orchestration-engine-options/
http://rancher.com/comparing-rancher-orchestration-engine-options/
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

54

[68] Claus Pahl. “Containerisation and the PaaS cloud”. In: IEEE Cloud Computing
2.3 (2015), pp. 24–31.

[69] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. “Microservices
Architecture Enables DevOps: Migration to a Cloud-Native Architecture”. In:
IEEE Software 33.3 (2016), pp. 42–52.

[70] Introduction to microservices on Azure - Microsoft Docs. https://docs.
microsoft.com/en-us/azure/service-fabric/service-fabric-overview-
microservices. Accessed: 08.05.2017.

[71] Chris Richardson. Building Microservices: Inter-Process Communication in
a Microservices Architecture. https://www.nginx.com/blog/building-
microservices-inter-process-communication/. Accessed: 16.03.2017.

[72] Openstack homepage. https://www.openstack.org/. Accessed: 04.05.2017.
[73] Cloud Native Computing Foundation - Projects. https://www.cncf.io/

projects. Accessed: 23.02.2017.
[74] Dockerfile reference. https : / / docs . docker . com / engine / reference /

builder/. Accessed: 14.03.2017.
[75] Fedora Linux homepage. https://getfedora.org/. Accessed: 17.03.2017.
[76] HAProxy homepage. http://www.haproxy.org/. Accessed: 06.03.2017.
[77] ldd - Linux man-pages. http://man7.org/linux/man-pages/man1/ldd.1.

html. Accessed: 06.03.2017.
[78] strace - Linux man-pages. http://man7.org/linux/man- pages/man1/

strace.1.html. Accessed: 06.03.2017.
[79] PostgreSQL homepage. https://www.postgresql.org/. Accessed: 06.03.2017.
[80] rsyslogd - Linux man-pages. http://man7.org/linux/man-pages/man8/

rsyslogd.8.html. Accessed: 07.03.2017.
[81] Consul homepage. https://www.consul.io/. Accessed: 06.04.2017.
[82] Eureka - Github. https : / / github . com / Netflix / eureka. Accessed:

06.04.2017.
[83] Apache Zookeeper Homepage. https://zookeeper.apache.org/. Accessed:

06.04.2017.
[84] systemd-journald - Linux man-pages. http://man7.org/linux/man-pages/

man8/systemd-journald.service.8.html. Accessed: 07.03.2017.
[85] Configure logging drivers - Docker documentation. https://docs.docker.

com/engine/admin/logging/overview/. Accessed: 04.05.2017.
[86] Logspout - Github. https://github.com/gliderlabs/logspout. Accessed:

07.03.2017.
[87] The Kubernetes Scheduler. https://github.com/kubernetes/community/

blob/master/contributors/devel/scheduler.md. Accessed: 15.03.2017.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices
https://www.nginx.com/blog/building-microservices-inter-process-communication/
https://www.nginx.com/blog/building-microservices-inter-process-communication/
https://www.openstack.org/
https://www.cncf.io/projects
https://www.cncf.io/projects
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://getfedora.org/
http://www.haproxy.org/
http://man7.org/linux/man-pages/man1/ldd.1.html
http://man7.org/linux/man-pages/man1/ldd.1.html
http://man7.org/linux/man-pages/man1/strace.1.html
http://man7.org/linux/man-pages/man1/strace.1.html
https://www.postgresql.org/
http://man7.org/linux/man-pages/man8/rsyslogd.8.html
http://man7.org/linux/man-pages/man8/rsyslogd.8.html
https://www.consul.io/
https://github.com/Netflix/eureka
https://zookeeper.apache.org/
http://man7.org/linux/man-pages/man8/systemd-journald.service.8.html
http://man7.org/linux/man-pages/man8/systemd-journald.service.8.html
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/admin/logging/overview/
https://github.com/gliderlabs/logspout
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md

55

[88] Docker and the PID 1 zombie reaping problem - Phusion Blog. https://
blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-
problem/. Accessed: 03.05.2017.

[89] Jerome H Saltzer and Michael D Schroeder. “The protection of information in
computer systems”. In: Proceedings of the IEEE 63.9 (1975), pp. 1278–1308.

[90] Docker security - Docker documentation. https://docs.docker.com/engine/
security/security/. Accessed: 03.11.2016.

[91] J. Turnbull. Docker container Breakout Proof-of-Concept Exploit. https:
//blog.docker.com/2014/06/docker-container-breakout-proof-of-
concept-exploit/. Accessed: 02.11.2016.

[92] National Vulnerability Database. Vulnerability Summary for CVE-2014-9357.
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-9357.
Accessed: 16.01.2017.

[93] Jayanth Gummaraju, Tarun Desikan, and Yoshio Turner. Over 30% of Official
Images in Docker Hub Contain High Priority Security Vulnerabilities. Tech. rep.
tech. rep., BanyanOps, 2015.

[94] Before you initiate a "docker pull" - Red Hat Blog. https://access.redhat.
com/blogs/766093/posts/1976473. Accessed: 06.04.2017.

https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/
https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/
https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://blog.docker.com/2014/06/docker-container-breakout-proof-of-concept-exploit/
https://blog.docker.com/2014/06/docker-container-breakout-proof-of-concept-exploit/
https://blog.docker.com/2014/06/docker-container-breakout-proof-of-concept-exploit/
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-9357
https://access.redhat.com/blogs/766093/posts/1976473
https://access.redhat.com/blogs/766093/posts/1976473

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Abbreviations
	Introduction
	Problem statement
	Scope and Methodology
	Results
	Structure of the Thesis

	Mobile network infrastructure
	Radio access network
	Radio access network requirements
	Latency
	Scaling
	High availability

	Summary

	Containers and virtualization
	Hypervisor-based virtualization
	Operating system-level virtualization
	Chroot
	Namespaces
	Control Groups

	Comparison of container and hypervisor-based virtualization
	Performance
	Isolation
	Failure handling

	Container managers
	LXC
	Systemd-nspawn
	Docker

	Summary

	Distributed container-based applications
	Container orchestration
	Kubernetes
	Docker Swarm

	Microservice-based architecture
	Summary

	Running telco application in containers
	Containerization approach
	Software setup
	Application architecture changes
	Load balancer
	Database
	Application node
	UI-node

	Platform services
	Orchestration
	Service discovery
	Logging

	Summary

	Evaluation
	Software update
	Scaling
	Failure handling
	Containerization practices
	Containerized applications
	Infrastructure
	Networking
	Container images

	Security
	Container capabilities
	Using host's files in containers
	Docker vulnerabilities
	Enhancing security of containers

	Future work

	Conclusions
	References

