
Raghavendra Mudugodu Seetarama

Secure Device Bootstrapping with the
Nimble Out of Band Authentication
Protocol

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 14.05.2017

Thesis supervisor:

Prof. Tuomas Aura

Thesis advisor:

Mohit Sethi, D.Sc. (Tech.)

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Raghavendra Mudugodu Seetarama

Title: Secure Device Bootstrapping with the Nimble Out of Band
Authentication Protocol

Date: 14.05.2017 Language: English Number of pages: 8+63

Department of Computer Science

Professorship: Secure Systems Code: S-55

Supervisor: Prof. Tuomas Aura

Advisor: Mohit Sethi, D.Sc. (Tech.)

The smart personal and business appliances which form the Internet of Things are
expected to become ubiquitous and to make our daily life more convenient. Most
of these devices are connected though wireless networks to cloud-based online ser-
vices. However, such devices may be vulnerable to various attacks which could
compromise the users’ security and privacy and even cause physical harm. There-
fore, securing the network connection for the devices is of utmost importance.
In order to secure the network connections, the devices need to be configured with
the necessary keys and other connection parameters. There is not yet any widely
adopted generic solution for this secure bootstrapping. One proposed solution is
out-of-band (OOB) authentication with a protocol called EAP-NOOB, which is a
new method for the EAP and IEEE 802.1X authentication framework.
The goal of this thesis is to build a prototype of the EAP-NOOB protocol and
deploy the prototype to test it with the real-world scenarios. The protocol requires
no a-priori information either about the device or the user is necessary for the
bootstrapping. Instead, the user’s ownership of the device is established during
the bootstrapping process. The protocol was implemented both by adding support
for the new EAP method into existing open-source software, the commonly used
WPA_Supplicant and Hostapd packages. We also implemented a web interface
for the back-end authentication server, which works in tandem with the AAA
server, and out-of-band channels based on dynamic QR codes and NFC tags.
We used the prototype to test and demonstrate the EAP-NOOB protocol, includ-
ing its usability and authentication latency. The bootstrapping procedure can be
completed in less than a minute in most cases. The main results of the project
are the EAP-NOOB implementation and various improvements and clarifications
to the protocol specification. These results are an essential part of the protocol
standardization process at IETF.

Keywords: IoT, secure bootstrapping, EAP, out-of-band authentication, EAP-
NOOB

iii

Preface
First and foremost, I would like to thank professor Tuomas Aura for providing me
the opportunity to work in his research group. I am grateful for all the guidance
that he provided and my sincere gratitude for taking the team to IETF-96, Berlin.

I would like to thank Mohit Sethi for his continuous support and for all his timely
advice. Most importantly, i am grateful for all the technical guidance that i received.

I sincerely thank my teammate Shiva Prasad Thagadur Prakash for his contri-
bution and hard work towards the project. Working with him had been a great
learning and enjoyable experience.

Finally, this thesis would not have been possible without the encouragement and
support from my family. I will take this opportunity to express my gratitude to
them.

Otaniemi, 14.05.2017

Raghavendra Mudugodu Seetarama

iv

Contents
Abstract ii

Preface iii

Contents iv

Abbreviations vi

1 Introduction 1
1.1 Overview . 1
1.2 Thesis Organisation . 3

2 Background 4
2.1 IoT Security . 4
2.2 Secure Bootstrapping . 6
2.3 Wi-Fi Networks . 7
2.4 Security in Wi-Fi Networks . 8
2.5 Security Protocols in Wi-Fi Security. 9

2.5.1 WEP and WPA . 9
2.5.2 WPA2 . 10

2.6 Authentication in Wi-Fi Networks . 10
2.6.1 WPA2-Personal . 10
2.6.2 WPA/WPA2-Enterprise . 11
2.6.3 IEEE 802.1X . 12
2.6.4 Extensible Authentication Protocol (EAP) 13

2.7 Secure Device Configuration. 14
2.7.1 PKI and Digital Certificates 15
2.7.2 Diffie-Hellman Key Exchange 16
2.7.3 Elliptic Curve Diffie-Hellman (ECDH) 17

2.8 Out-of-band Channel for Authentication 18

3 Protocol Description 20
3.1 Overview . 20
3.2 Protocol Terminology . 21
3.3 State Machine . 21
3.4 Protocol Stages . 23

3.4.1 Initial exchange . 23
3.4.2 OOB Step . 24
3.4.3 Waiting exchange . 25
3.4.4 Key Derivation for Completion exchange 26
3.4.5 Completion exchange . 27
3.4.6 Reconnect exchange . 28
3.4.7 Key Derivation for Reconnect exchange 29

3.5 Error Handling . 30

3.5.1 Error Scenarios . 30
3.6 Security in EAP-NOOB . 32

4 Implementation 34
4.1 Overview . 34

4.1.1 OOB Message Transfer . 36
4.1.2 About Source Packages . 36
4.1.3 Development Environment . 38

4.2 Registering the EAP-NOOB method 38
4.3 Message Sequence Implementation . 39

4.3.1 Cryptographic Library . 40
4.3.2 Persistent Storage . 40

4.4 Web Server . 41
4.5 Automating the Authentication . 42
4.6 Controlling WPA_Supplicant . 44

4.6.1 Wait Time Assignment . 45
4.6.2 Updating Peer State . 46

4.7 Hint Message for User Identification 47

5 Discussion 50
5.1 Results and Analysis . 50

5.1.1 Peer-to-Server . 51
5.1.2 Server-to-Peer . 54

5.2 Use Case Scenario . 54

6 Conclusion 56

Appendices

A EAP-NOOB Parameters 62

vi

Abbreviations

AAA Authentication Authorization and Accounting
AES Advance Encryption System
AP Access Point
API Application Programme Interface
ASCII American Standard Code for Information Interchange
BSD Berkeley Software Distribution
CA Certificate Authority
CCMP Counter-Mode-CBC-MAC
DTLS Datagram Transport Layer Security
EAP Extensible Authentication Protocol
EAPOL EAP over LAN
ECC Elliptic Curve Cryptosystem
ESS Extended Service Set
ESSID Extended Service Set Identifier.
GSM Global System for Mobile Communication
GUI Graphical User Interface
IANA Internet Assigned Numbers Authority
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IOT Internet of Things
IP Internet Protocol
ISP Internet Service Provider
KDF Key Derivation Function
LAN Local Area Network
LTE Long Term Evolution
MAC Message Authentication Code
MIC Message Integrity Check
MIT Massachusetts Institute of Technology
MITM Man In The Middle
NAI Network Access Identifier
NDEF NFC Data Exchange Format
NFC Near Field Communication
NIST National Institute of Standards and Technology
NOOB Nimble Out-Of-Band
OOB Out-Of-Band
PMK Pairwise Master Key
PSK Pre-Shared Key
PTK Pairwise Transient Key
QR Quick Response
RADIUS Remote Authentication Dial-In User Service
RC4 Rivest Cipher 4
RFC Request For Comment
SSID Service Set Identifier

vii

STA Station
TKIP Temporal Key Integrity Protocol
TLS Transport Layer Security
URL Universal Resource Locator.
WECA Wireless Ethernet Compatibility Alliance
WEP Wired Equivalent Privacy
Wi-Fi Wireless Fidelity
WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area Network
WPA Wi-Fi Protected Access
WPA2 Wi-Fi Protected Access 2
WPS Wi-Fi Protected Setup

List of Figures
1 Amazon dash for each consumer product 5
2 A WPA/WPA2-Enterprise network 12
3 A IEEE 802.1X based connection . 12
4 EAP-NOOB state machine . 22
5 Initial-exchange . 24
6 Waiting-exchange . 26
7 Completion-exchange . 27
8 Reconnect-exchange . 29
9 Error notification from server . 30
10 Error notification from peer . 31
11 EAP-NOOB Setup . 35
12 In-band and Out-of-band channels 36
13 EAP architecture . 37
14 Message handling: supplicant vs server 40
15 Example network block . 42
16 Wait time assignment code snippet 46
17 Configuration change code snippet 47
18 Modified Completion exchange . 48

List of Tables
1 Development machine specification 38
2 Authentication latency for URL through NFC 52
3 Authentication latency for URL through QR-code:1 53
4 Authentication latency for URL through QR-code:2 54
5 Authentication latency for server-to-peer 54
6 EAP-NOOB parameters . 63

1

1 Introduction

1.1 Overview

The Internet of things, also known as IoT, is a new paradigm of technology which is
making complex and efficient network of smart devices a reality. The ability to sense
and control an environment with ease from a remote location makes everyday life
more convenient. Furthermore, the convergence of Internet technology, data science,
embedded systems and wireless technology has resulted in creating a solution which
has the potential to change our way of living in the near future [1].

In the era of IoT, each connecting device is getting embed with some intelligence
to interact with the controlling entity. Some credit should also be given to cheaper
memory and microprocessors. It is anticipated that, in the near future IoT will put
more devices onto the Internet. Even the traditional household devices like refrig-
erator and dishwasher will now be part of the Internet. The homes that we live to
clothes that we wear [47], we will be surrounded by a cluster of connected smart
devices. Apart from household environment, IoT also has a diverse set of applica-
tion. From remote health monitoring [24] to industrial automation, application of
IoT can be seen in any area of science. Hence, the network of smart devices will be
omnipresent.

Although the IoT is expected to make our daily life more convenient, security
of IoT devices when connected to Internet should be a topic of concern. Consider a
smart home where appliances like microwave oven and refrigerators can be remotely
controlled. Also, there are provisions to control indoor temperature and door locks
for the smart home. Without the adequate security measures for the devices, an
adversary may gain control over the devices. Now, actions such as unlocking a door
or disabling power supply are possible for an adversary. In a worst case scenario,
people living in the home may get physically harmed. It can certainly be stated that,
irrespective of the deployed environment, adequate measures to secure the Internet
connected devices is an absolute necessity

One of the convenient ways to connect devices to the Internet is through wireless
access network, especially when the numbers of devices to be connected are more.
Both at home and corporate environment, many appliances and devices gain access
to the Internet through Wi-Fi access points. A connection to a Wi-Fi access point
can be of open or secure type. To have a secure type of connection with an access
point, either WPA2-Personal or WPA2-Enterprise security protocols will be used.
However, to use either of the protocols, a user will first have to configure the access
point to host a Wi-Fi network. Additionally, the user is also responsible for config-
uring the devices to have a secure Internet configuration. For an average user, it
will be a challenge to configure each of the devices, considering that the devices will
differ in their user interfaces. Also, after the configuration, monitoring and manag-
ing the device with adequate security will be equally challenging.

2

As part of configuration, each device has to be authenticated and it is done with
the help of credentials. Usually, the credentials used for authentication are method
dependent. In WPA2-Personal, authentication is done based on a pre-shared key,
and the key is same for all the authenticating devices. However, WPA2-Enterprise
inherently supports multiple authentication methods and hence credentials vary
based on the used method of authentication. Unlike WPA-Personal, here, each au-
thenticating device will have its own set of credentials and also offers a centralised
governance for the devices. Hence, WPA2-Enterprise is considered to be more ex-
tensible.

Irrespective of the chosen protocol for authentication, a user will either have to
pre-install or provide credentials at the time of authentication. Pre-installing cre-
dentials requires investment in both time and money, and it is definitely not scalable.
Also, in the case of change of ownership of a device, the new user may not want to
use same set of credentials, as there are no means to find if the existing credentials
are compromised. Although the credentials are important for authentication, man-
aging them for a large set of devices may become tedious.

As an alternative to user credential based authentication, one can use newly
proposed authentication method named EAP-NOOB. The proposed method is a
WPA2-Enterprise based authentication protocol and it is not dependent on any pre-
installed credential or any pre-assigned identity for authentication. Additionally,
the method can also be used to securely configure, monitor and manage all the de-
vices of a user from a single platform. Now, considering the expected growth in the
number of smart devices in the near future [4], a user friendly protocol to securely
configure and manage the devices is expected to be very useful. In this thesis we
will implement the proposed authentication and device management protocol EAP-
NOOB. Also, we will analyze the protocol to verify its adequacy for user’s needs in
the future.

This thesis aims to make the existence of IoT devices on the Internet more secure.
Also, it aims to make the activity of configuring IoT devices and managing them
from a cloud environment user friendly. Activities planned in this thesis to achieve
the set objectives can be listed as:

– Implement a prototype of EAP-NOOB protocol as per the latest specification
[42].

– Confirm all the assumptions made by the specification by deploying the pro-
totype for secure bootstrapping.

– Authenticating and configuring devices using the EAP-NOOB implementation
to gain Internet and cloud connectivity.

– To build a single platform for easy management of all the authenticated IoT
devices.

– Analyse and optimise the authentication latency on the implemented proto-
type.

Specifying the EAP-NOOB protocol is an ongoing research project. The specifi-
cations are based on both theoretical research and practical implementations. This
thesis is done as part of the research group and it has contributed in specifying the
protocol by developing a prototype, which provide means to test and analyse the
protocol. To achieve the set objectives for this thesis, we have used several research
methods on the protocol. The set of methods can be listed as:

– Experimental implementation of the EAP-NOOB protocol.

– Testing each of the protocol functionality.

– Detail analysis on the protocol security offerings.

– Redesigning the protocol message sequences to handle real world authentica-
tion scenarios.

The EAP-NOOB protocol is defined to be a generic protocol and applicable to
IoT devices and appliances of any make. To make the protocol visible to large user
community, and also to make devices interoperable with the protocol, EAP-NOOB
is proposed to be standardized. A draft version of the protocol specification with the
name "Nimble out-of-band authentication for EAP (EAP-NOOB)" [42] has been
submitted to the Internet Engineering Task Force (IETF). This thesis is also done
as part of the same research group which has specified the EAP-NOOB protocol.

1.2 Thesis Organisation

The rest of the thesis is structured as, in chapter 2 we will discuss all the background
topics necessary for understanding the protocol. In chapter 3 we provide a detail
explanation of EAP-NOOB protocol. Next, chapter 4 describes the complete pro-
tocol implementation. Later we will analyze the authentication latency in chapter
5. Finally, the concluding remarks will be mentioned in chapter 6.

4

2 Background
In this chapter, we introduce the protocols and concepts necessary to understand the
EAP-NOOB protocol. At first, we provide a brief introduction about IoT security
and secure bootstrapping. Next, we briefly discuss the available security protocols
in Wi-Fi technology. Later in the chapter, we describe a few technologies related
to secure configuration of a device. Finally, we will end this chapter with a short
explanation of out-of-band channels.

2.1 IoT Security

Smart devices which can operate on the existing infrastructure are now available
for affordable prices. For example, Amazon Dash1, a Wi-Fi connected device avail-
able for less than $10, enables the user to restock their household-supply inventory
just by a button press. With the prospect of our daily life filled with such Internet
connected smart devices, it is absolutely necessary to focus on the security of the
devices [28]. Security for Internet connected devices is always necessary, and now it
is even more important because a security breach for an Internet-connected device
can affect users physically.

The heterogeneous nature of IoT devices makes it difficult to have a single se-
curity solution across all the devices. Hence, ensuring security in IoT is often chal-
lenging. A constrained IoT device will only have limited memory and restricted
computational power to execute large and complex security protocols. This will not
be the case for high-end appliances which are as good as a desktop computer. How-
ever, irrespective of the capabilities of the device, authentication and authorization
of the device should be done to identify the trusted devices and the back-end servers.
Additionally, a secure connection between the device and the back-end cloud ser-
vice should be established to protect the privacy of user data. Therefore, ensuring
security of IoT devices over Internet is an absolute necessity. Out of many aspects
which involves ensuring security of the IoT devices, this thesis only addresses ensur-
ing security through bootstrapping.

An industry-wide common definition and understanding is still to be established
for IoT. The network stack in a typical IoT device will have protocols from multiple
standardization bodies. IEEE (Institute of Electrical and Electronics Engineers),
3GPP (Third generation partnership project), Wi-Fi (Wireless Fidelity) alliance
and Bluetooth special interest group are the prominent standardization bodies or
consortiums, individually developing standards for link layer communication. Each
of these working bodies will include security solution in their link layer standard for
an IoT environment. For example, the Wi-Fi alliance is a group of companies certi-
fying Wi-Fi enabled devices and it is specifying a new Device Provisioning Protocol
(DPP) to securely configure diverse set of devices into a Wi-Fi network [31]. IEEE

1https://www.amazon.com/Dash-Buttons/b?ie=UTF8&node=10667898011

https://www.amazon.com/Dash-Buttons/b?ie=UTF8&node=10667898011

5

Figure 1: Amazon dash for each consumer product

image source : https://www.amazon.com/Dash-Buttons/bie=UTF8&node=
10667898011
http://wnep.com/2015/03/31/amazons-dash-button-lets-you-press-
button-to-order-your-favorite-products/
Accessed : 30/1/2017

in itself has a specific work group, IEEE-P2413 for IoT. A complete list of specifica-
tion from IEEE working group for IoT is still underway. The working group focuses
on defining the architectural framework domains of IoT. Also, it is responsible for
building an abstraction and identification of the commonalities between the defined
domains [25]. Similarly, IETF, a standardization body for IP and transport-layer
protocols, has already rolled out solutions like DTLS [32] to facilitate end-to-end
security in a heterogeneous IoT network. Also, there are many other proposals mak-
ing their way to be a security solution for the IoT environment.

At the same time, researchers at academia have been doing extensive research
for suitable security architectures and security protocols for the IoT environment.
For example, Lian et al. [33] propose a security framework for multimedia devices.
Sanaz et al. [34] have developed a secure and efficient Authentication and Autho-
rization architecture for IoT-based health care. In these early days of IoT, based
on existing and futuristic IoT device use case scenarios, several security protocols
[26], [27], [29] are being developed and tested.

https://www.amazon.com/Dash-Buttons/bie=UTF8&node=10667898011
https://www.amazon.com/Dash-Buttons/bie=UTF8&node=10667898011
http://wnep.com/2015/03/31/amazons-dash-button-lets-you-press-button-to-order-your-favorite-products/
http://wnep.com/2015/03/31/amazons-dash-button-lets-you-press-button-to-order-your-favorite-products/

6

The aspect which differentiates IoT from conventional Internet is scalability. IoT
is expected to host billions of connected devices. When the task is to configure and
connect large numbers of devices, manual configuration of the devices will not be a
convenient option. Especially, configuration involving complex steps will only make
the user impatient and less interested in understanding the configuration. This in
turn may leave many security loopholes. Instead, a transparent and user-friendly
device configuration protocol will improve the chances of being aware of the config-
uration by avoiding pitfalls.

2.2 Secure Bootstrapping

The Oxford English dictionary describes bootstrapping as “the technique of starting
with existing resource to create something more complex and effective” [30]. The
principle remains the same in the context of both computers and network security.
When a computer is started, an existing program named bootloader will bring the
system to a fully functional state by loading and executing the necessary programs.
Similarly, in the case of network security, when a device is connecting to the Internet,
an existing program in the device will take care of establishing a secure connection
from the device.

Several researchers [35], [36] have shared similar if not exactly the same defini-
tion for bootstrapping. There exists multiple ways to configure the security creden-
tials (example, keying material or certificates) necessary for secure bootstrapping
[48], [49], [35]. At the beginning of the life-cycle of a device, the security creden-
tials can be embedded into the device while manufacturing. If not, a device vendor
or a distributor can also install the credentials to the device. Alternatively, the
necessary credentials can be derived by the device during boot strapping. However,
compromise of any credential during the lifetime of a device will make the effect of
bootstrapping and the overlaying security measures ineffective.

The importance of secure bootstrapping is still not widely understood. With the
growing concern over security and privacy over Internet, secure bootstrapping can
be a best practice for configuring a device. Now, in the case of a typical IoT device,
after gaining network access, the device is expected to start data transaction with
the back-end cloud service. The provision to maintain and monitor the IoT device
from cloud service is expected to be part of the IoT framework. Additionally, the
provision to gain access over the IoT device from remote locations can act adversely
if suitable measures are not in place. Also, with billions of connected devices, the
risk of security threats such as sniffing of user critical data and impersonation will
be increased many fold. This makes secure bootstrapping essential than ever before.
An ideal secure bootstrapping solution should finally grant access to Internet with
inherent security features and with minimalistic interaction with the user.

7

2.3 Wi-Fi Networks

The application of Internet is expanding to multiple diverse fields like health moni-
toring, environment protection, road safety and intelligent agriculture [6]. A smart
home is no longer a vision in the future but rather a fact in the present. Incremen-
tally, the devices and appliances from our daily life are gaining Internet connectivity.
This development is not confined to our home or work environment, rather, elab-
orate plans and architectures are getting proposed for smart cities and towns [7]
to make our living most convenient. With all these developments underway, most
convenient ways to join a network for the future devices needs to be analyzed.

Internet connectivity can either be wired or wireless, each being advantageous
in its own way. However, the mobility feature offered by a wireless connection has
been most useful. Many of the personal devices and appliances already have the
facility for wireless connectivity. If not, the newer generation of same devices is at
the verge of getting the wireless connection capability. Smart phone and notebook
computers are the two most familiar electronic appliances with wireless connection
capability. The common technologies used for wireless connections are cellular net-
works, Bluetooth, Zigbee and Wi-Fi. The digital cellular network in itself has three
generation of technologies from GSM (Global System for Mobile communication)
to LTE (Long Term Evolution). The infrastructure to support cellular networks
is omnipresent. However, cost is major factor in using these technologies. This is
because; a connection to any of these technologies requires subscription from a tele-
phone operator. In an IoT scenario, subscription for each Internet connected device
may not be desirable from the perspective of the user.

Bluetooth, Zigbee and Wi-Fi operate in global unlicensed frequency bands. How-
ever, they are still regulated by respective governing bodies and national authorities.
Characteristically, three technologies differ in throughput and coverage area. Blue-
tooth is most suitable for personal area networks. At present, it is one of the effective
ways for inter-device communication. The latest version of Bluetooth, Bluetooth-5,
supports a coverage area of about 240 meters and a maximum throughput of 50
Mbps. Initially, Bluetooth was standardised as IEEE 802.15.1 but currently it is
maintained by the Bluetooth Special Interest Group. Zigbee is also used for close
range communication. It has a limited coverage of up to 100 meters and maximum
throughput of 250 Kbps. Zigbee was standardised as IEEE 802.15.4 specification
and is maintained by IEEE 802.15 working group. Both Zigbee and Bluetooth are
energy efficient solution for wireless communication. Zigbee is mostly used in con-
strained devices. Whereas, Bluetooth can be used in both constrained devices and
able appliances. In the IoT scenario, one topology for connecting Zigbee or Blue-
tooth capable devices to online services is by creating a personal-area network or an
office mesh-network with an Internet-connected device. For example, with a smart-
phone as a hub and using the hub to connect other devices

Wi-Fi is a wireless technology for forming or joining a Wireless Local Area Net-

8

work (WLAN) in the infrastructure mode. The Wi-Fi supported devices can connect
to the Internet through an Access point (AP). Although connection to the Inter-
net through Wi-Fi needs a subscription from an Internet Service Provider (ISP), a
single ISP connection can connect one or more WLAN to the Internet. The major
advantages of Wi-Fi over the Zigbee and Bluetooth can be listed as:

– Higher bandwidth: The latest specification 802.11ac allows 160Mhz of band-
width. This enables to reach higher throughput up to gigabits per seconds.

– Greater coverage: Indoor coverage of about 100 metres and outdoor coverage
of at least 300 meters are achievable [39].

– Easy to deploy and expand: Each AP can host at least a hundred devices. To
host a larger number of devices, a network of APs needs to be installed.

– Cost effective: Infrastructure to host a Wi-Fi network already exists. AWLAN
in infrastructure mode can be easily setup with off-the-shell devices.

– Direct connectivity : In an IoT scenario, devices as part of the WLAN will
already have connectivity to the Internet.

Larger coverage and higher data rates are achieved in Wi-Fi by dissipating more
power than Zigbee or Bluetooth technologies. However, recent advances made in
defining new low power consuming wireless networking standard IEEE 802.11ah
[43], also known as Wi-Fi HaLow, is defining several power efficient use cases for the
Wi-Fi technology.

Nowadays, Wi-Fi networks are ubiquitous, familiar and convenient for users to
connect and share information. Particularly in a home or office environment, users
are already acquainted with Wi-Fi networks. Also, to fulfill the future spectrum
demands on the cellular networks, new solutions are proposed for using the unli-
censed frequency spectrum and co-exist with the Wi-Fi networks [5]. Adapting
such solutions will make Wi-Fi networks an integral part of our daily life.

2.4 Security in Wi-Fi Networks

It is recognized that a WLAN is more prone to attacks than its wired counterpart.
As the data is transmitted over the wireless channel, anyone in the coverage area
of an AP has access to the data. A Wi-Fi connection between a device and an AP
can either be of open type, with no security, or of secured type, with authentication
and data protection. With the growing concern over user and data privacy, a secure
connection for communication is either sought after or at least advised while using
a public Wi-Fi connections. In an open connection, a user is particularly vulnerable
to data the sniffing and security breaches [8].

9

A secure Wi-Fi connection ensures both authentication and data protection over
the wireless link. The authentication confirms the identity of both the parties par-
ticipating in data exchange, and invalidates the chances of an imposter to initiate
or hijack a session. There exist two different methods of authenticating a station
(STA). First, authenticate the STA at the target AP. Usually a pre-installed secret is
used to validate the user at the AP. Second, authenticate the device with a back-end
authentication server. In this case, the AP is connected to the authentication server
with a secure connection and the AP only relays the protocol messages between a
STA and the authentication server. This type of authentication is most common in
corporate or industrial environment. The former method is more suitable for home
environment.

Data protection splits down to two separate responsibilities, integrity protection
and data confidentiality. Data at the receiver end should be able to guarantee that,
over the air, it was not readable to anyone other than the involved parties, and
the data was not modified during transmission. To ensure data integrity, crypto-
graphically generated checksum is embed into every message. At the receiver end,
similar checksum will be generated and compared with the received value. To guar-
antee the data confidentiality, both STA and AP will encrypt the message before
the transmission and will decrypt the message after the reception. Keys necessary
for data encryption, decryption and checksum generation are locally derived at both
the ends of the connection from a shared master key set up during the authentication.

2.5 Security Protocols in Wi-Fi Security.

Security in a wireless network was taken into account even from the initial days
of WLAN. As part of the first IEEE specification for WLAN [9], mechanisms
for authentication and data privacy were already introduced. Since from the first
specification to the latest one, WEP, WPA and WPA2 are the most prominent
security protocols used in a Wi-Fi network.

2.5.1 WEP and WPA

As part of first IEEE specification [9], new data confidentiality protocol named
Wired Equivalent Privacy (WEP) was introduced. As the name itself suggests, the
goal of this new protocol, was to achieve privacy and confidentiality equivalent of a
wired LAN in a wireless network. Soon after the release of WEP protocol, several
attacks on the protocol were published [10]. Also, the protocol in itself had many
design flaws [12]. The Wi-Fi alliance does not recommend the use of WEP, which
is still supported in some legacy hardware. As a quick replacement for the flawed
WEP protocol, Wi-Fi Protected Access (WPA) was introduced in 2003. WPA is
also a security protocol for data confidentiality. However, the replaced protocol
inherited some design flaws from its predecessor WEP and was a subject of several
cryptographic attacks [13], [14] . Considering the limitations of the protocol, Wi-Fi

10

alliance cautions users to not to buy hardware which only supports WPA.

2.5.2 WPA2

WPA2 is the security protocol which replaced WPA. It was introduced in 2004
and Wi-Fi alliance mandated the protocol for its certification in 2006. Any device
which compiles to the Counter-Mode-CBC-MAC (CCMP) algorithm from IEEE
802.11i-2004 amendment, is certified as WPA2 compliant by the Wi-Fi alliance [15].
WPA2 uses the Advance Encryption Standard (AES) algorithm for data security and
discontinues Rivest-Cipher-4 (RC4) based cipher systems. With this algorithm, a
single 128 bit key is sufficient for ensuring data integrity and data confidentiality.
However, adapting this new algorithm requires hardware changes.

2.6 Authentication in Wi-Fi Networks

Authentication is an effective method to implement access control in a network. In
general, authentication can be done for devices or for users. At times, authentica-
tion of a device or a user can be used interchangeably. For example, every device
belonging to a user may share the same credentials for authentication, and hence
authenticating the device authenticates the user. In this thesis, authentication is
done as part of device bootstrapping and it is always specific to a device. Authenti-
cation in the new EAP-NOOB protocol always refers to the device authentication.

There exists two different methods for authentication in both WPA and WPA2.
The personal or PSK (Pre-Shared Key) method of authentication and 802.1X or
commonly known as Wi-Fi Enterprise method of authentication. Methods differ in
type of credentials used for authentication and the location of the registrar. The
registrar is the entity which stores the credentials for the authentication.

2.6.1 WPA2-Personal

In WPA2-Personal, a passphrase is used for authentication. A passphrase is config-
ured in the AP by the owner or administrator of the AP. Any associating STA should
enter the same passphrase to successfully associate with the AP, and the passphrase
is same for all the STAs. In WPA2-Personal, the registrar resides in the access point,
so the authentication process ends in the AP. The encryption/decryption keys for
the protocol will be independently derived at both STA and AP. The derived keys
will be confirmed through a four-way handshake between the STA and AP.

However, there are few shortcomings with WPA2-Personal method. First, the
security of the method completely depends on the strength of the passphrase. A
weaker passphrase can easily be deciphered by a simple dictionary attack. Later,
the encryption/decryption keys for every associated STA can be derived. Second,
changing passphrase mandates a universal update. All the associated STAs should
update the passphrase if the passphrase at the AP gets changed. Finally, the push

11

button feature, which involves the Wi-Fi Protected Setup (WPS) protocol is vul-
nerable to attack [16] and compromises the security of the Wi-Fi network.

The WPA2-Personal is best suited for a small office or home environment. As
there is no provision to individually manage the devices, it is better if this is deployed
where there are only a few devices for the association. An effective level of security
can be achieved by configuring a strong passphrase and turning off the WPS feature.

2.6.2 WPA/WPA2-Enterprise

This method offers a robust, flexible and easily manageable mode of authentica-
tion. A remote authentication server, which is connected to the AP with a secure
connection, authenticates the associating devices. The registrar responsible for stor-
ing the credentials resides in the remote authentication server. The authenticating
user or device will get assigned with a personal set of credentials like username
and password. The Pair-wise Master Key (PMK), which is necessary to derive the
session keys, is created in a cryptographic key-exchange during the authentication
process. This method offers the flexibility to individually manage the device. Also,
the method facilitates a centralized user or device management. In comparison with
WPA2-Personal, this method demands skill and resources to install and maintain
an authentication server. But in return, a more secure and flexible mode of authen-
tication is offered. Thus, this mode of authentication is more suited for corporate
and industrial environment.

Remote Authentication Dial-In User Service (RADIUS) is a networking proto-
col used for communicating between an AP and the Authentication, Authorization
and Accounting (AAA) server. The RADIUS protocol operates from the applica-
tion layer of a network stack. It functions in a client-server model. The client
RADIUS application in an AP communicates with the server RADIUS application
in the authentication server. The information about the RADIUS server should be
configured manually in the AP. The secure connection between the client and the
server RADIUS application is based on a pre-configured passphrase. The authen-
tication servers can also form a hierarchy. The AP will only relay message to the
lowest node in the hierarchy, and then the message will be relayed hop-by-hop to
the correct RADIUS server. The credentials for authentication are on per-user or
per device basis. Thus, during or after authentication, it is possible to exercise in-
dividual access control over a device.

The security features of the WPA2-Enterprise outweigh its counterpart. Further,
WPA2 is more robust and secure than its predecessor. Also, considering that our
goal is not only to provide a user friendly wireless device authentication protocol,
but also to facilitate easy device configuration and management from a remote cloud
platform. Hereafter WPA2-Enterprise will be the method of choice for authentica-
tion in EAP-NOOB.

12

Figure 2: A WPA/WPA2-Enterprise network

2.6.3 IEEE 802.1X

IEEE 802.1X is a standard with authentication framework for enhancing the secu-
rity in a LAN or a WLAN. In this standard, the user or device is authenticated
by a central authority. However, the standard does not have its own method for
authentication. Instead it makes use of EAP for authentication in both LAN and
WLAN. This standard defines the rules to encapsulate the messages of the EAP
framework in a LAN or WLAN.

Figure 3: A IEEE 802.1X based connection

The terminology as per IEEE 802.1X is as follows: the authenticating device
is called the supplicant, the device controlling the supplicant network access is the
authenticator, and finally, the backend server responsible for the authentication is
an authentication server. The standard has named the logical link between an AP

13

and an authenticating device as EAPOL, which stands for EAP Over LAN. A typ-
ical network making use of IEEE 802.1X can be seen in Figure 3. RADIUS is the
networking protocol used between the authenticator and authentication server. The
successor for RADIUS is DIAMETER [44]. However, most of the existing infras-
tructure for establishing a WLAN only supports the older RADIUS protocol.

The authentication messages or specifically EAP messages are exchanged be-
tween the supplicant and authentication server. The messages are encapsulated
as EAPOL between supplicant and authenticator. And between authenticator and
AAA server, the messages are encapsulated as RADIUS messages. During the au-
thentication process, the authenticator does not read or modify the EAP messages.
Instead, it encapsulates the EAP message received from the supplicant in RADIUS
message and decapsulate the message received from the authentication server. The
authenticator is at the edge of the WLAN network. Hence, it is also an access con-
trolling entity for supplicants in the WLAN.

2.6.4 Extensible Authentication Protocol (EAP)

EAP is an authentication framework which provides multiple methods for authen-
tication. The EAP protocol operates at the data-link layer of the network stack. It
only defines the message formats necessary for the authentication. It supports both
wired and wireless networks, and is encapsulated within the frame format of the
respective network type. For example in WLAN, EAP messages are encapsulated
in a WLAN frame from a device supporting the IEEE 802.11 specification and en-
capsulated as per the IEEE 802.1X specification.

The terminology of the protocol is similar to IEEE 802.1X terminology. How-
ever in EAP, the supplicant can also be referred to as the peer. The strength of
EAP is the flexibility that it offers. As per the concerned numbering authority,
there are fifty five recognised EAP methods with a valid method identifier. Neither
the authenticator nor authentication server has to pre-negotiate a method with a
supplicant. Also, the authenticator need not understand the EAP methods. The
authenticator can act as a pass-through authenticator [18] and it is how the authen-
ticator is made use of in our EAP-NOOB protocol. When in a pass-through mode,
implementation for any EAP method should only be implemented in the supplicant
and the authentication server. This allows addition of new EAP methods into the
EAP framework without making changes to the existing access network infrastruc-
ture.

After the establishment of EAPOL link between the supplicant and the authen-
ticator, the first EAP message, Identity-request is sent from the authenticator to
the supplicant. The message is to query the identity of the supplicant. The selected
EAP method can sometimes be determined by parsing the identity attribute of the
response Identity-response message. However, information about the selected EAP

14

method will be exchanged in the subsequent EAP messages [18]. Both Identity-
request and Identity-response are transmitted in plain text. The authenticator for-
wards the Identity-response directly to the authentication server. Then, the au-
thentication server initiates the method specific EAP message exchange. A series of
messages are exchanged between the server and the supplicant before concluding the
message exchange. The message exchanging session should always conclude either
with EAP-SUCCESS or EAP-FAILURE. All the messages between an Identity-
request till EAP-SUCCESS/FAILURE belong to a single EAP session.

In all the sessions which end with an EAP-SUCCESS, the master session key
MSK will be derived at both the supplicant and authentication server. The MSK
is derived using the message parameters from the recent EAP session, and possibly
with some method-specific inputs. Using MSK, the Pairwise Master Key (PMK)
will be derived at supplicant and authentication server. Then, the authentication
server will export the PMK to the authenticator. Once the authenticator receives
the PMK, the next task for the authenticator and supplicant is to mutually confirm
that the PMK at both ends are identical. This is done with the help of a four-
way handshake procedure [19]. During the handshake procedure, both sides derive
pair-wise transient key (PTK), a session key which will be divided into five separate
transient keys. The transient keys from PTK will be used for securing the user
identity and data over the wireless network.

As part of the handshake procedure, both the authenticator and supplicant will
generate and exchange a message integrity check (MIC) digest. The MIC digest is
computed using one of the transient key derived at both the ends. Recreating the
MIC digest, same as the received one will confirm that the supplicant and authenti-
cator are having identical PTK and PMK. The lifetime of the PMK will be greater
than PTK. Also, during the lifetime of PMK, multiple PTK can be derived. The
four way handshake confirms that the PMKs are identical without disclosing the
keys. This is critical for the secrecy of the key. Four-way handshakes were intro-
duced as part of IEEE 802.11i-2004 amendment and is extensively used to generate
or renew the keys in a wireless network.

2.7 Secure Device Configuration.

In an environment with multiple IoT devices, the owner or administrator configures
the device to use the functionality of the device. This requires understanding of
the common technologies involved in the configuration of a device. Misconfiguring a
wireless network may create security vulnerabilities to be exploited and may affect
every member of the network [17]. Ideally, each device should have its own set
of credentials to ensure the security of the devices. In this section, we will discuss
the protocols and concepts necessary for secure configuration of a device in a WLAN.

15

2.7.1 PKI and Digital Certificates

Uniquely identifying an entity and validating the received identity are the most im-
portant steps of the authentication process. Digital certificates, username/password,
challenge-based password and digital tokens are some of the most commonly used
credentials in EAP methods for authentication. The level of security for a selected
type of credential depends on various factors. For example, the strength of a pass-
word is a major factor in password based authentication. However, authentication
based on a digital certificate is considered to be the most secure method [20].

Digital certificate is an electronic document which has the inherent characteris-
tics to prove the authenticity of the owner of the certificate. In the real world, it can
be compared with the passport issued by any sovereign country. Digital certificates
are issued by a trusted third party known as the certificate authority (CA). The
CAs issues signed certificate to the requesting entity. The signature from the CA
legitimizes the issued certificate. The attribute named as Subject in a certificate
holds the name of the owner for the certificate. Other attributes of a certificate
include the version, serial number, validity, public key of the owner, algorithm used
for public key, signature from the CA and the algorithm used for signature [21].
Apart from the user or device authentication, digital certificates also can provide
non repudiation, high level of information confidentiality and strong data encryption
[22].

Digital certificates are part of a large system called public key infrastructure
(PKI). The PKI defines the policies and rules necessary to create, distribute and
manage digital certificates. PKI contains four specific authoritative bodies [23]:

– Certificate authority(CA): Is the root of trust, responsible for issuing digital
certificates.

– Registration authority(RA): A subordinate to CA. It verifies the user requests
and recommends CA about issuing the digital certificate.

– Repository : Stores and distributes issued certificates. This could be a single
entity or a collection of distributed entities. Additionally, the repositories are
not commonly part of Internet PKI.

– Certificate revocation list (CRL) issuer: An optional subordinate for CA which
has the authority to issue revocation list for the issued certificates.

In the EAP framework, EAP-TLS, EAP-TTLS and PEAP are the most promi-
nent EAP methods which make use of digital certificates for authentication. Apart
from the EAP framework, digital certificates are extensively used in Internet bank-
ing, e-commerce and secure E-mail. A user can certainly generate a certificate
and sign it. However, self-signed certificates are not very useful, as they cannot be
trusted. A popular practice is to buy certificates from trusted commercial CAs, such

16

as Verisign2. In an IoT environment, the devices which are part of an ecosystem
may own certificates provided by the device manufacturer or vendor. If the device
does not contain a certificate or the CAs of the installed certificates are unknown,
then the user has to buy and install new certificates to each device. Given the long
lifetime of a device, the need for replacing the certificate in its lifetime cannot be
ruled out.

2.7.2 Diffie-Hellman Key Exchange

Some of the key components in this thesis rely on the Diffie-Hellman key exchange.
In this section we briefly describe the key exchange procedure. Establishing a secure
communication on a public network is not a trivial task. Consider two unknown en-
tities that want to have a secure communication over an unprotected network. To
ensure the security, the communicating entities can encrypt their messages and be
rest assured about the secrecy of the messages over the network. The Message en-
cryption and decryption will require shared keys. They can be delivered in two
different ways. First, a trusted independent entity can distribute the keys to both
communicating parties over a secure channel. The independent entity can usually
be used to distribute keys, as it is either too slow or expensive to send user messages
through it. The second method is to derive the same set of keys, independently, at
both the ends. Before the key derivation, both the entities will generate a public
and private key pair. The public keys can be exchanged between the entities in plain
text. Later, cryptographic operations are performed to derive shared secret keys.
For the key derivation, each endpoint’s own private key and the received public key
are used as input parameters. This method of key distribution is generally known
as public-key cryptography.

A detailed explanation of the Diffie-Hellman key distribution is as follows,

Consider the communicating entities as A and B.

– Two prime numbers g and p are selected by one of the entity and communicated
to another in plaintext.

– A selects a random number x and computes m = gxmod p and sends m to B.

– B selects y, a random number, and computes n = gymod p. Then, n is
transferred to A.

– A derives the shared key by operation K = nxmod p. Similarly, B derives the
same key by operation K = mymod p.

– In the end, both A and B will have the shared key K = gxymod p.
2http://www.verisign.com/

17

An eavesdropper can obtain g, p,m and n. However, obtaining x from m will
require discrete logarithm operation on m.

x = logg m mod p

Similarly,

y = logg n mod p

Obtaining x from m and y from n can be difficult for carefully chosen values of p
and g. It requires operations in the order of p1/2 to compute either x or y. Only an
algorithm whose complexity grew at a rate of log2 p can break Diffie-Hellman system
. The security of this technique relies on the difficulty of computing the logarithm
of mod p [37]. The logjam attack [38] made use of a flaw in TLS (Transport Layer
Security), which internally used Diffie-Hellman for key distribution. In it, the TLS
connection is downgraded to make use of a 512-bit p and eventually compromised
the security of the connection. Additionally, the possibility to break the protocol
with a 1024-bit p was also discussed. To avoid the attack, it was advised either
to make use of a 2048-bit prime number for p or use the elliptic curve variant of
Diffie-Hellman, which does not require larger values of p.

The elliptic curve variant of Diffie-Hellman is used for key distribution in our
EAP-NOOB protocol. The decision is based on the fact that shorter keys can be
used which is less computation intensive.

2.7.3 Elliptic Curve Diffie-Hellman (ECDH)

Here, the public key cryptography is applied on a finite field elliptic curve. As in
the original Diffie-Hellman scheme, the security of the elliptic curve variant relies
on the infeasibility to solve the discrete logarithm problem. Here it is referred to
as the elliptic-curve discrete logarithm problem. The shared secret is calculated by
performing finite set operations on the curve, precisely the point multiplication of a
coordinate on the curve with an integer.

Before the start of key distribution, the involved entities agree on the system
parameter: the finite field p, curve constants a and b, and the base point G. It
can also be done by agreeing to a standard set of parameters defined for a curve by
NIST. Now, consider the communicating entities as A and B. The steps to derive
shared key between A and B are as follows,

– At first, the system parameters are shared or agreed on.

– A selects a random integer x and computes m = Gx. Here x is the private key
and m is the public key. Public key is sent to B.

18

– Similarly, B selects a random integer y and computes n = Gy. Then n is sent
to A.

– Shared secret K = nx is computed at A and K = my at B.

– Both A and B have finally derived K = Gxy.

ECDH is only a key agreement protocol and does not authenticate the identity
of the participating entities. This has to be handled by external methods. Authen-
ticating the entities will avoid impersonation and man-in-the-middle attacks. The
public keys in the key agreement can be either static or ephemeral. Static public
keys are undesirable as it reduces the random inputs to the protocol. Moreover, the
use of ephemeral public keys ensures perfect forward secrecy in the protocol.

When compared to popular public key cryptosystems, the Elliptic Curve Cryp-
tography (ECC) needs shorter keys to provide the same level of security. For ex-
ample, an elliptic curve over a 163 bit field is as effective as a 1024 bit modulo p
RSA or Diffie-Helmann. The security increases with larger keys so that the security
offered by a 571 bit field is equivalent to 15,360 bit RSA/ Diffie-Helmann [11]. The
shorter key will be less computation intensive, and hence ECC are especially useful
for constrained wireless devices.

2.8 Out-of-band Channel for Authentication

A logically and physically independent communication channel, other than the ex-
isting channel for data transfer between two communicating entities, can be termed
as an out-of-band (OOB) channel. In research literature, there exist many synonyms
for an OOB channel. They include auxiliary channel, human assisted channel and
manual channel [36]. Conventionally, the OOB channel is used for notifying a state
or an event which cannot be sent over the in-band channel. Now, in the context
of network security, the OOB channel has been extensively used for authentication.
This is because the OOB channel often is robust against attacks. According to Sha-
hab et al. [36], the security properties of an OOB channels may include, proven
identity based authentication, authenticity of the origin of data, data integrity and
confidentiality.

The in-band communication is secured by completing the authentication proce-
dure using the OOB communication. For the user, in comparison with authentica-
tion over PKI infrastructure, there will be a slight increase in the complexity of the
authentication procedure. Also, when the OOB based authentication is used as the
secondary verification method for an existing method (two factor authentication), it
increases the credibility of authentication and in turn enhances the security. When
used as the only method for authentication (single factor authentication), OOB
based authentication still can provide strong and reliable authentication.

19

Based on their nature, OOB channels can be classified into three different cate-
gories: private, public and weak [36]. In a private OOB channel, the confidentiality
of the data is of utmost importance. Special precautions are taken to avoid disclo-
sure of contents of the message while passing it over the OOB channel. An example
of a private channel is a secret string read by the user from one device and typed
manually into another device. Additionally, it must be made sure that the secret
from first device is only read by the user and nobody else. In a public channel, the
message to be passed over the OOB channel is publicly available. An example of
a public channel is scanning a barcode from a public display. A message on the
public channel can be sniffed, blocked and delayed. Finally, a weak OOB channel
contains all the characteristics of a public channel, but additionally, the message
can be stored and replayed. An example of weak channel is passing a voice message
between two devices over wireless interface. Both public and weak channel can only
ensure integrity and authenticity of data. All three categories of OOB channel may
exist on the same physical medium. However, the channels are classified based on
the security feature adhered by the medium while transferring OOB messages be-
tween the two entities.

An OOB channel can introduce flexibility in an authentication process. For ex-
ample existing infrastructure like cellular and Wi-Fi networks can be used for OOB
message passing with the help of familiar user equipments such as smartphones and
smart phones. In the case of constrained devices, there may not be provisions to
host complex security infrastructure for authentication. In such cases, the OOB
channel based authentication can act as a alternative. The OOB channel authenti-
cation prevents difficult to conduct security attacks such as the Man-in-the-middle
attack.

The EAP-NOOB protocol makes use of a user-assisted OOB channel. In this
protocol, the message which is over the OOB channel contains a secret nonce and a
cryptographic hash for integrity protection. Although the cryptographic hash will
confirm the integrity of the message at the receiver’s end, it is recommended not
to revel the secret nonce over the transmitted OOB channel. Thus a private OOB
channel will be most suitable for EAP-NOOB.

20

3 Protocol Description
In this chapter we provide a detail description about the EAP-NOOB protocol. We
start the chapter with an overview of the protocol. Next, we describe the terminology
of the protocol and the protocol state machine. Later in the chapter, we provide a
detailed description about each stage of the protocol. Finally the chapter ends by
discussing the error handling and the security offerings of the protocol.

3.1 Overview

EAP-NOOB is a secure bootstrapping protocol that relies on a user-assisted OOB
channel. It is added as a new authentication method to the EAP framework. The
successful authentication requires message exchange over multiple EAP sessions.
The protocol is responsible for key derivation, authentication and registration of
IoT devices. The protocol is for off-the-shelf devices with limited user interface ca-
pabilities. A display unit or a camera are some example devices that could use the
EAP-NOOB protocol. Devices with limited or no user interfacing capability that
cannot send and receive dynamically generated messages are not the target devices
for this protocol. The protocol is equally effective over devices with or without
pre-registration, pre-installed credentials and pre-provisioned device identifiers. At
the end of the bootstrapping procedure, the device will be registered with an au-
thentication serve, the ownership of the device is established, and the credentials
necessary for secure network access and application-level security has been derived.

For the successful completion of bootstrapping, an OOB message exchange be-
tween the device and the authentication server is mandatory. As part of the boot-
strapping, Diffie-Hellman key exchange is performed over an open channel. The
message from the OOB channel establishes the ownership, authenticates the key
exchange and completes the shared key derivation. It is difficult to launch a Man-
in-the-middle attack on the protocol, as it requires contents of messages from two
independent channel to complete the attack. Also, the OOB message is dynamically
generated. Compared to static messages, the dynamic code is more secure against
dictionary and social engineering attacks. The OOB channel is expected to be par-
tially automated. This grants the freedom to keep the message size in the order of
tens of bytes. Also, it avoids manual operations such as, memorising and typing a
message. An example OOB message passing scenario is scanning a QR code from a
display unit through a smart phone.

The EAP-NOOB is specified as an open standard and a protocol for secure
bootstrapping of IoT devices. The protocol is considered to be generic as it does
not rely on any single OOB channel. Not depending on pre-installed credentials and
identifiers enables easy transfer of device ownership. Also, the ability to support
different types of user interfaces makes the protocol applicable to heterogeneous
environment.

21

3.2 Protocol Terminology

The following are the important terminology that are used to explain the protocol.

– authenticator: Common entity in both EAPOL and RADIUS links. In this
protocol, the entity functions in pass-through mode

– peer/client/supplicant: The IoT device under bootstrapping.

– authentication server/AAA/EAP server : EAP session terminating entity. It
is also referred to as server in this section.

3.3 State Machine

The EAP-NOOB is a manifestation under client-server modeled EAP protocol. A
peer will contain client side EAP-NOOB and the authentication server will have the
server side EAP NOOB. The protocol consists of five distinctive states, and follows
event based state transition. The states are named as: Unregistered(0), Waiting
for OOB(1), OOB received(2), Registered(4) and Reconnecting(3). Both peer and
server have similar state machines. Also, the state changing event affects alike on
both the state machines. The state machine and state transitions can be seen in
Figure 4.

A server side EAP-NOOB can interact with multiple peers and it maintains a
state machine for each peer. Similarly, a peer may interact with multiple authenti-
cation servers initially. However, as the bootstrapping is completed with only one
of those server, the peer side EAP-NOOB will only have a single state machine
transitioning till Registered state. At the beginning of bootstrapping, both peer and
server should be at Unregistered state. Also, in the event of loss of persistent infor-
mation, the state machines should be reset to Unregistered state. Always, the peer
will initiate the EAP-NOOB method. Later, based on the received EAP-NOOB
message at the server and the current state of both peer and server, the server will
decide the next message and next state transition.

Once at Unregistered state, the peer can do Initial exchange with multiple servers.
Initial exchange is a parameter negotiation session for identifying the suitable server.
Completion of Initial exchange will change the state from Unregistered to Waiting
for OOB state. Waiting exchange, a probing session for an OOB message is done at
Waiting for OOB state and it will not result in a state transition. Initial exchange
andWaiting exchange will always end with an EAP-FAILURE, terminating the EAP
session. Then, based on the negotiated OOB message direction, the OOB message
sender (OOB output sender) will remain in the Waiting for OOB state. However,
the receiver of the OOB message (OOB input receiver) will transit to OOB received
state. The states Waiting for OOB and OOB received are considered ephemeral.
Initial exchange in the OOB received state will change the state to Waiting for OOB
state. However, Initial exchange in Waiting for OOB state will not result in a state

22

Figure 4: EAP-NOOB state machine

transition. Although a peer can do Initial exchange with multiple servers, the OOB
message is sent to or received from a single server with which the user has an account.

An OOB message exchange between the server and peer should only happen
once for each peer. At the end of a successful Completion exchange, a shared se-
cret derivation and confirmation procedure, the OOB output sender will directly
transit from Waiting for OOB state to Registered state. Next, the OOB message
receiver will transit from OOB received state to Registered state. Later, the state
machines will toggle between Registered and Reconnect state, unless the device is
reset or either of the entities losses the persistent information. Falling back from
the Registered state on either side should only happen with user intervention.

It requires a minimum of two EAP sessions to successfully complete the EAP-
NOOB method. Also, the protocol requires mandatory user assistance to success-
fully complete the authentication. The total time and the complexity of user as-
sistance depend on the chosen OOB channel. Therefore, one cannot pre-estimate
the total authentication time. Although, an EAP session does provide timer based
waiting mechanism for receiving a message. In case of EAP-NOOB, a fixed time
bound approach to complete the user assistance is not a feasible solution. Hence,

23

the method is completed using multiple EAP sessions. Also, it helps to segregate
the method into three distinctive steps: peer interaction with all the relevant servers
through Initial exchange, Waiting for OOB message through Waiting exchange and
finally, shared key confirmation through Completion exchange. After successful reg-
istration, every re-keying is done in a separate EAP session.

3.4 Protocol Stages

In this section of the thesis, we describe the messages and their contents for all the
stages of EAP-NOOB protocol. Every EAP-NOOB message will bear a message
identifier (ID) as part of the message. The identifiers span from 0 to 7. Message ID
0 is reserved for error messages and rest are used at different stages of the protocol.
Characteristics of each of the message parameter are covered in Table 6 of Appendix
A.

3.4.1 Initial exchange

The EAP-NOOB supporting device will initiate the bootstrapping procedure with
the Initial exchange. It is started by responding to the EAP-Request/Identity mes-
sage from an authenticator. The server need not have to have any prior information
about the peer. Instead, the peer will use a generic network access identifier (NAI)
string noob@eap-noob.net in its reply with every server. The receiving server will
allocate a unique identifier, named peerID, for each interacting peer. The peerID
is used to uniquely identify the client for the complete duration of association and
it is also helpful for maintaining the peer context in the server. In case of Ini-
tial exchange from any ephemeral state, the NAI will be specific and will have the
peerID and the current state information of the peer. The NAI follows the format
peerID+sX@eap-noob.net. Here, s is a character delimiter for state and X refers to
current peer state. In every Initial exchange, the reply to EAP-Request/Identity
will only contain the current NAI of peer.

After exchanging identities, negotiation of parameters will take place. The peer
and server parameter sets containing: protocol version, OOB message direction
and supported cryptographic algorithms are exchanged over Type 1 EAP-NOOB
message. Type 1 EAP-NOOB Request from server will contain information about
supported cryptographic algorithm (Cryptosuites), supported OOB message direc-
tion (Dirs) and Supported EAP-NOOB protocol versions (Vers). The peer will then
match the received parameters with its own and will reply with a Type 1 EAP-
NOOB-Response message. The reply message contains selected cryptographic algo-
rithm (Cryptosuitep), supported version (Verp) and OOB message direction (Dirp).
Also, specific set of information about the server and the peer are exchanged as pa-
rameter serverInfo and peerInfo. The values from these parameters are essential to
identify or access either a server or a peer from the application layer. When the se-
lected OOB message direction is peer-to-server, a user will select the relevant server
based on the serverInfo. Similarly, when the selected direction is server-to-peer, a

24

user will look for the device information at server side based on peerInfo.

Next, nonces (Ns and Np) and ECDH Public keys (Pks and Pkp) from both
server and peer are exchanged over the Type 2 EAP-NOOB messages. The ex-
changed public components should be based on the negotiated cryptosuite and are
later used for deriving the shared key. Finally, the server will end the session by
sending a EAP-FAILURE. Initial exchange with its parameters as represented in
[42] can be seen in Figure 5.

Figure 5: Initial-exchange

3.4.2 OOB Step

Based on the negotiated message direction in the Initial exchange, an OOB message
is sent either to the peer or the server. When the negotiated direction is peer-to-
server, based on the OOB channel and the peer side user interface capability, a peer
may generate more than one OOB message, i.e one OOB message for every com-
pleted Initial exchange. Then, the user will select the relevant server by selecting the
corresponding OOB message generated for that particular server. However, when
the negotiated direction is server-to-peer, there will only be one OOB generated.

25

This is because the server can directly look up for the relevant peer context in its
own database and can generate the OOB message for the retrieved peer context.
As the OOB message is transferred over an user assisted channel, the OOB mes-
sage will not contain a message type. Instead, the OOB message will always have
three parameters: server assigned peer identifier (peerID), an OOB message nonce
(Noob) and a cryptographic finger print (Hoob). The Hoob is generated using the
parameters from Initial exchange.

(Hoob = H(Dir,Vers,Verp,peerId,Cryptosuites,Dirs,serverInfo,
Cryptosuitepp,Dirp,peerInfo,PKs,Ns,PKp,Np,Noob).

The cryptographic hash generating function H is selected based on the negotiated
cryptographic algorithm from Initial exchange. The input parameter Dir used for
Hoob generation is the negotiated OOB message direction. When the negotiated
direction is three, both OOB input and OOB output should be delivered. At the
receiver’s end, the integrity of the received OOB message should be verified by
computing the Hoob using same inputs, and comparing it with the received value.

3.4.3 Waiting exchange

Although an OOB message is sent over an OOB channel, confirmation of reception
of OOB message over the in-band-channel is necessary. A server will have to service
multiple peers during its up-time, and continuous probing for the confirmation of
reception will utilize the server resources unnecessarily. Instead, a Waiting exchange
will be done. Irrespective of the OOB message direction, a Waiting exchange will
always originate from a peer. Each Waiting exchange is done over a separate EAP
session. Right after the Initial exchange, when the peer and server are at Waiting for
OOB state, the peer will respond to EAP-Request/Identity with its current NAI.
The server then assigns a wait time in seconds to the peer. Till the end of the
assigned time, a peer should refrain itself from probing the server. The server will
assign the wait time over a Type 3 EAP-NOOB-request. To which, the peer will
respond with a Type 3 EAP-NOOB-response containing the peerID as a acknowl-
edgment. Finally, the server will end the session with an EAP-FAILURE. A Waiting
exchange message sequence as represented in EAP-NOOB specification [42] can be
seen in Figure 6.

When the OOB message is received either at a server or a peer, the next probing
EAP-Response/Identity will lead to Completion exchange. The automatic transition
from Waiting for OOB state to OOB Received state itself is the confirmation of
reception of an OOB message. Waiting exchange also helps to set an upper time
limit for the number of OOB message exchanges. When a peer completes Waiting
exchange for a certain number of times without an OOB message, then the server
will send Unwanted peer error message to the peer. After receiving the error, the
peer should refrain from probing for a long interval. As it is the responsibility of the
peer to probe and confirm the reception of an OOB message, Waiting exchange in

26

Figure 6: Waiting-exchange

server-to-peer direction may not seem necessary. However, with the help of Waiting
exchange, the concept of setting a maximum time duration for OOB step can be used
in server-to-peer direction. So the procedure is carried out in both the directions.

3.4.4 Key Derivation for Completion exchange

After receiving the OOB message, both server and peer will derive the shared key Z
based on the ECDH algorithm. The Ephemeral Unified Model or C(2,0,ECC,CDH)
scheme from NIST specification [40] is used for key derivation. Under this scheme,
two ephemeral keys and two static keys are derived. The hash function H used for
concatenation key derivation function (KDF) is from the negotiated cryptographic
algorithm. The input parameters for the KDF are: shared key between the entities,
eight byte ASCII string "EAP-NOOB" as AlgorithmID, Np as PartyUInfo, Ns as
PartyVInfo and Noob as SuppPrivInfo. The parameter SuppPubInfo from NIST
specification is not provided for key derivation during Completion exchange. The
input parameters: Np, Ns and Noob should be 16-byte byte strings.

The derivation will yield 192 byte shared key Z. Later, the shared key is divided
into five separate sub keys. The sub keys are MSK (byte 0-63), EMSK (byte 64-127),
KMs (byte 128-143), KMp (byte 144-159) and Kz (byte 160-191). MSK and EMSK
are used by EAP as keying materials for deriving transient keys. KMs, Kmp and
Kz are used internally by EAP-NOOB for computing message authentication codes
(HMAC).

27

3.4.5 Completion exchange

After the reception of an OOB message, either server or peer will first reach the
OOB received state. The next EAP-Identity/Response from peer will trigger the
Completion exchange from server. The server will prepare a Type 4 message con-
taining server message authentication code (MACs) and will send it to the peer.

MACs = HMAC(Kms; 2,Vers,Verp,peerId,Cryptosuites,Dirs,serverInfo,
Cryptosuitep,Dirp,peerInfo,PKs,Ns,PKp,Np,Noob).

The parameters from the Initial exchange, OOB message nonce (NOOB), server
part of the shared Key (KMs) and a character ‘2’ are provided to the HMAC func-
tion to generate the MACs. After receiving Type 4 EAP-NOOB request, the peer
will also generate MACs with the same set of inputs and will compare it with the
received value. The peer will respond with an error message if the comparison for
MACs fails, else a Type 4 EAP-NOOB response with the peer message authentica-
tion code (MACp) will be sent.

MACp = HMAC(Kmp; 1,Vers,Verp,peerId,Cryptosuites,Dirs,serverInfo,
Cryptosuitep,Dirp,peerInfo,PKs,Ns,PKp,Np,Noob).

Figure 7: Completion-exchange

The HMAC function at peer will use parameters from Initial exchange, OOB
message nonce, peer part of the shared key (KMp) and character ‘1’ for computing
MACp. After receiving the MACp over Type 4 EAP-NOOB response, the server will
compute its own MACp with the same set of input parameters and will compare

28

it with the received value. An error message will be sent if MACp comparison
fails, else, the server will respond with an EAP-SUCCESS, which will also end the
EAP session. The EAP-SUCCESS message confirms the derivation of same shared
secret at both the ends. Later, the MSK and EMSK part of the shared secret are
exported from server to the authenticator. Then, the authenticator will perform a
four-way handshake with peer to derive the transient keys. The keys are used for
data confidentiality and integrity protection over the wireless network. Successful
completion of an EAP session will grant network access permission to the client
device (EAP peer). At the end of a Completion exchange, both peer and server will
move to the Registered state.

3.4.6 Reconnect exchange

If the PMK at AP expires, or the Master key at either entity is lost either due to
a hardware or a software failure, a Reconnect exchange is performed. Upon dis-
covery of either of the events, the state machines at both entities will transit to
Reconnecting state. After the state transition, the next EAP-Identity/Request will
be responded with the current NAI of the peer. This will trigger the Reconnect
exchange. When in Registered state, the peer should never initiate the Reconnect
exchange. The Reconnect exchange involves fast reconnect feature from the EAP
specification [18]. An important thing is, the OOB message exchange is not neces-
sary for the Reconnect exchange.

In Reconnect exchange, three pairs of EAP-NOOB messages are exchanged. The
procedure will start by exchanging the Type 5 EAP-NOOB Request/Response mes-
sages. Wherein, the peer and the server will once again negotiate the cryptosuite.
Optionally, the peerInfo and serverInfo parameters can also be included in the Type
5 Request/Response message. Next, in the Type 6 EAP-NOOB Request/Response
message, fresh nonces (Ns2 and Np2) and ECDH public keys (PKs2 and PKp2) are
exchanged. If the negotiated cryptosuite is same as the cryptosuite from the Initial
exchange, then the public key components (PKs and PKp) are not exchanged.

Similar to Completion exchange procedure, the server and peer will exchange
message authentication codes (MACs2 and MACp2) for confirming the derivation
of same shared secret. The message authentication codes are computed using the
newly derived server and peer part of the shared keys (Kms2 and Kmp2). The codes
are exchanged over the Type 7 EAP-NOOB Request/Response. Successful compar-
ison of message authentication codes will confirm the derivation of same shared key
at both the entities. The server will then terminate the EAP session with an EAP-
SUCCESS message. Also, the newly derived MSK and EMSK are exported from
the server to the authenticator. This will initiate a four-way handshake between
the authenticator and the peer. After successful Reconnect exchange, both server
and peer will move back to the Registered state. In case of mismatched MACs2
or MACp2, an error message will be sent from the message receiver to the sender,
followed by an EAP-FAILURE from the server. A Reconnect exchange message

29

Figure 8: Reconnect-exchange

sequence as represented in EAP-NOOB specification [42] can be seen in Figure 8.

3.4.7 Key Derivation for Reconnect exchange

Based on the parameters exchanged as part of Type 5 and Type 6 EAP-NOOB mes-
sages, a shared key can be derived using two separate methods. In the first method,
if the negotiated cryptosuite in the Type 5 message is different from the existing
cryptosuite, then a new shared key is derived. It is done using the hash function
from the concatenation key derivation function of the new cryptosuite. The KDF
output Z is derived with a new MSK (byte 0-63) and EMSK (byte 64-127). The sub
key Kms2 and Kmp2 are 32 byte long and are formed by concatenating the values
from the newly derived Z (byte 128-143 and byte 144-159) and the stored Kms and
Kmp. Finally, the newly derived Kz (byte 160-191) will directly replace the old one.

The second method is only applicable when the negotiated cryptosuite is same as
the cryptosuite from Initial exchange. In this case, new set of ECDH public keys are
not exchanged through Type 6 EAP-NOOB messages. Now, for key derivation, the

30

concatenation key derivation function will take Kz as the input instead of previously
derived ECDH shared key. The rest of the inputs for the function are: ASCII string
EAP-NOOB as algorithm ID, Np2 as PartyUInfo and Ns2 as PartyVInfo. Similar to
the Completion exchange, the out of band nonce (Noob) is not used in this method
of key derivation. This method of re-keying is less computationally intensive, but,
it does not provide any forward secrecy.

3.5 Error Handling

In this protocol, error conditions are notified by sending a Type 0 error message.
Every error message must contain an error code. However, the parameter describing
the error (ErrorInfo) is optional. An error message can either be sent from a server
or from a peer. After sending or receiving an error message, the server should always
terminate the session with an EAP-FAILURE message. Error message transfers can
be seen in Figure 9 and Figure 10.

Figure 9: Error notification from server

3.5.1 Error Scenarios

Here, we provide descriptions for the scenarios where either a peer or a server can
end up in an erroneous state.

– Invalid message: If the message structure, message length or content of the
received EAP-NOOB message is invalid, then an EAP-NOOB message with
a suitable error code is sent out. The error code 1001 is used when the NAI
or the structure of the NAI is incorrect. The protocol uses JSON scheme of
message encoding and decoding. If the received message with a JSON object
cannot be parsed or if the object does not contain certain parameter, then
error code 1002 is sent. If any of the JSON object member has an invalid

31

Figure 10: Error notification from peer

length, then error code 1003 is sent out. The error code 1004 is sent if the
message type for the received message is invalid. If the peerID in the message
is invalid, then error code 1005 is sent. Similarly, If the ECDH Public key
component is invalid, then error code 1006 is sent.

– Unwanted peer: To avoid persistent polling for an OOB message, the server
assigns a wait time for the peer. The assignment of wait time is limited to
implementation specific number of times. Then, for subsequent polling, the
server replies with a 2001 error code. After receiving the error code, the
peer should stop probing the server. However, the peer is still allowed to try
associating with the same server but not immediately. Both server and peer
are recommended to notify the error to the user.

– State mismatch : For all the EAP-NOOB messages sent outside the defined set
of state machine transitions, error code 2002 is sent. For example, receiving a
Type 5 EAP-NOOB request in the Unregistered state. As part of recovering
from this error, device reset may be necessary. Hence, upon receiving this
error, user should be notified about the error.

– Negotiation Failure: The error scenarios relating to the parameter negotiation
in both Initial exchange and Reconnect exchange are handled here. In both
the message exchange sequences, the peer has to match and select values from
the received set of parameters from the server. Therefore, negotiation failure
errors are only sent from the peer. The error code 3001 is sent when there is
no common protocol version. The error code 3002 is for no common crptosuite
and error code 3003 is sent when there is no common OOB direction. A peer
may not be able to recover from negotiation failure without a hardware or
software upgrade. Hence, it is recommended to notify the user when there is
a negotiation failure.

32

– Cryptographic verification failure: In case of a verification failure of a message
authentication code (Hoob, MACp, MACs, MACp2 and MACs2), error code
4001 is sent as a reply. Same error code can be used, if the content of the
received OOB message is incorrect. In server-to-peer direction OOB message
transfer, if the peerID in the OOB message is incorrect, then it is likely that, a
user has unintentionally selected the wrong device for authentication. In that
case, it is recommend to notify the error to the user. This is to indicate a user
to retry for authentication. During the Completion exchange, when there is a
verification failure, both the peer and server should remain in their previous
state. Similarly, when there is a verification failure during a Reconnect ex-
change, both the entities should move to Reconnecting state. To retry for the
authentication with a new OOB message, a user may have to reset the device.

3.6 Security in EAP-NOOB

The EAP-NOOB protocol provides two fold authentication features. First, the OOB
message nonce (Noob) used for generating a shared key will also mutually authen-
ticate the involved parties. Apart from generating the shared key, the nonce is also
used for generating the message authentication codes (MAC) on each side. Mutual
verification of MAC will confirm the presence of same shared key. However, the
Noob alone can not confirm the participating in-band entities to the out-of-band
entities. Eavesdropping on the OOB channel can compromise the Noob and can
make Man-in-the-middle(MITM) attack possible on in-band channel.

The cryptographic fingerprint in the OOB message (Hoob) for integrity check is
the second authentication feature in EAP-NOOB. Altering the contents of a user
assisted OOB channel is more difficult than just eavesdropping for the content of the
OOB channel. The inclusion of Hoob in the OOB message can confirm the integrity
of ECDH key exchange at the receiving side. This will also avert the MITM attack
on the in-band channel. If at all an adversary was successful in launching a MITM
attack on the in-band channel, and was also able to alter the OOB message, the
receiver will still reject the message because of the mismatching Hoob. The confir-
mation about the integrity of the OOB message is only in one direction. Therefore,
in case of a failure, the OOB message sender will be still believe that it has been
associated. However, after delivering the OOB message, a user can check for failure
by monitoring the protocol stages of both the entities. In case of a failure, the user
will notice the single sided association. Then the user can reset the device to reat-
tempt for association. Any explicit mechanism to confirm the integrity of an OOB
message to the OOB sender is not included in EAP-NOOB.

The protocol relies on uniquely identifying a device. The contents of parame-
ters, peerInfo and serverInfo will aid a user to identify a server or a peer. As both
the parameters are exchanged in plain text, it is recommended not to include any
important information such as credentials or device properties as part of the param-
eter. Rather, include the contents which will help to identify the device. Typical

33

examples include Manufacturer name, Serial number or a web server URL. A fake
peer may include false information as part of its peerInfo. Therefore, before moving
the peerinfo into persistent storage, it is recommended to have user approval over
the collected peerInfo.

Identifier squatting attacks are ineffective in EAP-NOOB. The pseudo-random
peerId assigned by the server to a peer, is only valid and confined to the associated
server. Association with different server will yield different peerIds. In the case of an
OOB message accidentally getting delivered to multiple peers, only the peer which
has built up a context with the server by doing Initial exchange will complete the
authentication procedure, rest of the peers will be unaffected.

In EAP-NOOB protocol, forward secrecy is optional. During the Reconnect ex-
change, if only a new cryptographic algorithm is negotiated or new ECDH public
keys for an existing cryptographic algorithm is exchanged, then new set of master
keys are derived. Deriving a new key ensures the perfect forward secrecy. However,
while negotiating a new cryptographic algorithm, it is recommended that both server
and peer should look for downgrading attacks related to weaker cryptographic al-
gorithms, and should not renegotiate into a deprecated or vulnerable cryptographic
algorithms.

34

4 Implementation
In this chapter, we will describe the EAP-NOOB protocol implementation process.
The chapter starts with an overview of the protocol implementation. Next, we
explain the procedure to register a new EAP method. This is followed by an expla-
nation of the message sequence implementation. Later in the chapter, we describe
the web server implementation and automation of the authentication process. This
is followed by a description of the code changes done for controlling the source pack-
age. Finally, we will end this chapter by mentioning a design change made in the
protocol to solve a user identification problem.

4.1 Overview

The EAP-NOOB protocol is developed and integrated into well tested open-source
projects. There exist two well known open source supplicant implementations,
WPA_Supplicant from the HostAP project and Xsupplicant from the Open1X
project. Both the projects have focused on UNIX like operating systems and are
licensed under the BSD and GNU general public license. Also, most of the existing
802.1X/EAP authentication methods are supported by both projects. Upon consid-
ering the frequency of updates, number of users and size of the support community,
we chose WPA_Supplicant as the source project for our EAP-NOOB peer implemen-
tation. Along with the WPA_Supplicant, we also selected Hostapd. The Hostapd
is an open source implementation of the back-end authentication server. It was cho-
sen for our EAP-NOOB server side implementation. It is also managed by HostAP
project, and hence the same factors which influenced in selecting WPA_Supplicant
were considered when selecting Hostapd.

The authenticator in EAP-NOOB is only used in pass-through mode and also no
part of the EAP-NOOB implementation includes modification of the authenticator.
Thus, any EAP-Enterprise supporting authenticator can be used in the EAP-NOOB
development environment and in eventual deployment. The components involved in
implementing the EAP-NOOB protocol can be listed as:

– WPA_Supplicant: Support for the EAP-NOOB method on the peer side will
be implemented as extensions to this software package. The existing support
for the wireless network association and EAPOL requires no change.

– Hostapd: The EAP-NOOB server will be implemented as extensions to this
software package. The core part of the RADIUS authentication server and
EAP server already exists in the Hostapd package.

– Web server: The web server works in tandem with the EAP-NOOB server
and also shares a database with it to maintain the EAP-NOOB peer contexts.
The user can track the authentication process through the web server. Also,
it acts as one end of the OOB channel; the OOB message directed towards
the EAP-NOOB server will reach the web server first, and the OOB messages

35

Figure 11: EAP-NOOB Setup

originating from the EAP-NOOB server will be delivered through the web
server.

– OOB device: A device which assists in passing a message over the OOB chan-
nel. The selected device should contain the tools and applications necessary
to send and receive the OOB message. In this implementation, a smart-phone
was used as an OOB device. A smart-phone is commonly available and it can
automate the message passing process through its inherent features such as
scanning barcodes through a camera, displaying a message or connecting to a
web server over the Internet.

The OOB device is considered an optional component for the protocol specifica-
tion. However, considering the familiarity of Smartphone to any average user, we
included the OOB device as one of the components int the EAP-NOOB implemen-
tation. Then, we defined the OOB message format as a Universal Resource Locator
(URL) with base64url encoded Hoob, Noob and peerID parameters.

The EAP-NOOB setup in figure 11 can be further extended by introducing a
local AAA server. Typically access network has a local AAA server. This new
component will be placed between the authenticator and the back-end AAA server.
It will either handle the authentication procedure on its own or relay the messages
between the authenticator and the back-end Hostapd server. Introducing an in-
termediate AAA server extends the hierarchy in the authentication process and is
useful in scenarios involving supplicant roaming. Considering the current version
EAP-NOOB specification [42], extending the authentication hierarchy may not be
necessary in this implementation. Hence a local AAA server in not included as a
component. Alternatively, when the back-end AAA server is operating in the cloud,
authentication request from the access network will arrive first at the local AAA

36

Figure 12: In-band and Out-of-band channels

server. The forwarding rules in the local AAA must be set to relay the messages to
the back-end authentication server.

4.1.1 OOB Message Transfer

In the current protocol implementation, we use URL as the OOB message format. It
is transferred either by encoding it as a QR-code or as a NDEF record through Near
Field Communication (NFC). Our implementation supports three different methods
of passing an OOB message and, they can be listed as:

– peer-to-server with QR-code.

– peer-to-server with NFC.

– server-to-peer with QR-code.

4.1.2 About Source Packages

The WPA_Supplicant is designed to be a daemon program, which is used to con-
figure the wireless network interface at client station side. The software package
contains the WPA supplicant component and can perform WPA key negotiation and
EAP based authentication. It works across different platforms, including UNIX-like
and Windows operating systems. The software supports a variety of WLAN drivers
(MadWifi, Hostap, Atmel, Broadcom, .etc) and has both command line and graph-
ical user interface (GUI) for managing the supplicant. WPA_Supplicant supports
both EAP-PSK and EAP-Enterprise based authentication. However, in our imple-
mentation only EAP-Enterprise authentication is used.

37

Figure 13: EAP architecture

Now, looking at the architecture of WPA_Supplicant, each EAP method is
considered as a separate module and the methods are implemented on top of the
EAP state machine. The EAP state machine resides on top of the EAPOL layer,
which maintains its own state machine to track message transfer over the EAPOL.
Each EAP method packet will be encapsulated in an EAP packet which in turn
will get encapsulated in an EAPOL packet. Figure 13 only covers a part out of
WPA_Supplicant architecture. As the supplicant is a full-fledged wireless network
configuration system supporting both open and secure wireless connection establish-
ment, we have only considered the part of the architecture which involves 802.1X
components.

Similarly, the Hostapd is also designed to be a daemon programme and usu-
ally acts as a back end component for controlling the authentication procedure. It
contains the implementation for 802.1X/EAP authenticators, RADIUS client, EAP
server and RADIUS authentication server. Similar to WPA_Supplicant, Hostapd
also supports both EAP-PSK and EAP-Enterprise authentication, and it contains
implementations for the WPA/WPA2-PSK authenticators. In this implementation,
we use Hostapd only for the 802.1 X/EAP authentication. The Hostapd can be
configured either through GUI or using command line interface. As both Hostapd
and WPA_Supplicant are from the same project, the EAP parts of the architecture
at both the entities are similar. Hence the EAP architecture from Figure 13 is also
relevant for Hostapd. For the sake of simplicity, the complete architecture of both
the projects is not explained here; instead only the relevant parts are presented.

38

4.1.3 Development Environment

Linux is the most commonly used operating system for embedded smart devices.
Also, both Hostapd and WPA_Supplicant are more focused on supporting the Linux
platform. Although WPA_Supplicant does support the Windows platform, only the
Linux version of the software package has a large user community. Considering the
popularity of Linux among IoT smart devices and also the support from the selected
software packages, the complete implementation of our EAP-NOOB protocol is done
on the Linux platform.

Operating system Ubuntu 16.04
Primary memory 8 Gigabytes

HDD 320 Gigabytes
Processor Intel Core i5 vPro

Table 1: Development machine specification

The source package WPA_Supplicant and Hostapd are implemented in the
C programming language; therefore our implementation of EAP-NOOB peer and
server were also done in the same programming language. We have developed the
web server on Node.js3. Node.js was chosen because it is fast and often used for
developing real time applications [46]. It also has an easy-to-use package manager
(npm4). Later, we automated the complete peer authentication process, including
two directions of OOB message passing in Python35. The specification of wire-
less work stations (laptops) used for implementation and testing the EAP-NOOB
protocol is given in Table 1.

4.2 Registering the EAP-NOOB method

In both Hostapd and WPA_Supplicant, we have developed the new EAP method
as a separate module over EAP. In both the source packages, there exist a common
interface between all the EAP methods and the EAP state machine. The inter-
face allows us to implement any new EAP method without modifying the underly-
ing EAP state machine. Initially, the new EAP method is expected to implement
the functions defined in the interface struct eap_method in eap_i.h. The struc-
ture only contains pointers to the necessary functions. The new method should
implement the relevant functions from the structure and assign the pointers in
an explicit registration function. In our implementation of EAP-NOOB, function
eap_peer_noob_register() is defined to register the method name and type, and also
to initialize the EAP interface. Also, the EAP-NOOB method registration function

3https://nodejs.org/en/
4https://www.npmjs.com/
5https://www.python.org/

39

should be included into the EAP function eap_register_methods(), which is respon-
sible for registering the EAP-Method during program execution. Additionally, the
method name should also be included in the supplicant Makefile to build the new
method while compiling the supplicant executable. The common interface for the
EAP methods is defined in section 4.4 of RFC 4137 for implementing EAP state
machines [41].

4.3 Message Sequence Implementation

To comply with the protocol specification, we form the EAP-NOOB messages as
unicode (UTF-8) encoded JSON objects. To encode and decode EAP-NOOB mes-
sages, APIs from Jansson6 are used. Jansson is a JSON library for C programs and
provides full unicode support. It is an open source library licensed under the MIT li-
cence. In both EAP-NOOB peer and server, we have defined a separate functions for
encoding and decoding messages. Also, the parameters Vers, Dirs, Cryptosuites and
contents of serverInfo from Type 1 EAP-NOOB request are made configurable by
introducing a configuration file eapnoob.conf at the server side. Similarly, a config-
uration file with the same name at peer side is introduced to make parameter Verp,
Dirp, Cryptosuitep and peerInfo configurable. The respective message encoding
functions will read the configuration file before encoding Type 1 Request/Response
messages. Rest of the parameters in EAP-NOOB are non-configurable or are calcu-
lated internally during the course of the authentication

In WPA_Supplicant, the decapsulated EAP payload from the EAP-state ma-
chine is transferred to the respective EAP method through a designated func-
tion. The function assigned to the function pointer process from interface struct
eap_method will receive the EAP payload from the EAP state machine. At the
peer side, eap_noob_process() is our designated function to receive messages, and
after processing the received message a suitable response is sent from same function.

Similarly in Hostapd, the de-capsulated EAP payload is transferred to a desig-
nated function. However, the message handing at the server side is different from
the peer side implementation. The EAP state machine at server side first invokes
the EAP-NOOB function eap_noob_check(). Here, the validity of the messages
with respect to the EAP-NOOB state machine is verified. A successful validation of
the message will make EAP state machine to call the function eap_noob_process()
and the function will decode and handle the received EAP-NOOB message. Also,
the next message to be sent will be decided here. Finally, after successful message
processing, the EAP state machine will prompt function eap_noob_buildReq() to
build next message from the EAP method. Although, the EAP-NOOB state ma-
chines at the server and peer are the same, the underlying EAP state machine is
different at both the sides. At the peer side, if EAP-peer state machine is in use
and at the server side, EAP makes use of EAP-backend-authenticator state machine

6http://www.digip.org/jansson/

http://www.digip.org/jansson/

40

[41]. This difference in state machines makes the server and peer use different exe-
cution paths for handling the EAP-NOOB messages. However, the functionality of
the before-mentioned three EAP-NOOB server-side functions is covered by a single
function eap_noob_process() at the EAP-NOOB peer side. This is essential in or-
der to match the EAP-NOOB server and peer state transitions. A representation of
message handling at both the entities is presented in Figure 14.

Figure 14: Message handling: supplicant vs server

4.3.1 Cryptographic Library

In our implementation, we have used the application programming interfaces (API)
from the OpenSSL7 library for all the cryptographic operations, including:

– Generation of Private-public key pair

– Derivation of shared key

– Generation of Nonces

– Calculating cryptographic fingerprints

– Calculating message authentication codes

OpenSSL is a general purpose open source library, licensed under its own OpenSSL
and SSLeay licenses. It is a popular and well tested cryptographic library. It offers
commercial-grade and full featured support for developing software solutions which
involve cryptographic operations.

4.3.2 Persistent Storage

At both sides, the received and the calculated values as parameters are stored to
a database. As EAP-NOOB spans multiple EAP session, at the end of each EAP
session, the data stored in the EAP-NOOB memory will be freed. Hence, moving

7https://www.openssl.org/

41

data to a database before the end of every EAP session is essential. In our imple-
mentation, the Sqlite38 database is used for storing data. Sqlite3 is an in-process
library containing a transactional database engine. The library provides interfaces
for C/C++ programs and is renowned to be fast and reliable.

4.4 Web Server

A device performing 802.1X authentication is only expected to exchange EAP mes-
sages with the authentication server. However, in the EAP-NOOB protocol, an
out-of-band message should me transferred to complete the authentication. There-
fore, in our protocol there is the need for an entity interfacing with real world to
send or receive the out-of-band message. As part of our server-side protocol im-
plementation, we developed a web server module. The primary objective of the
web server is to act as a mediator between the EAP-NOOB server and the OOB
channel in the real world. In the peer-to-server direction of the out-of-band message
passing, the user will deliver the OOB message to the web server, which transfers
the contents of the message to the EAP-NOOB server. Similarly, in server-to-peer
direction of message passing, the web server will read the OOB message from the
EAP-NOOB server and will present it to the user for delivering it to the peer device.

Apart from authentication, the protocol EAP-NOOB also involves maintaining
and managing the associated devices. In order to do that, it is essential to establish
the ownership of devices. Apart from being a mediator for the server, the web
server also help to establish the ownership of the authenticating device. Without
the web server, any Wi-Fi enabled device can get associated with the EAP-NOOB
server. So, always an EAP-server will work in tandem with a web server. Also,
any user attempting to associate a device with a EAP-NOOB server will first have
to have an account with the web server. After the authentication, the devices are
always registered under a user account. Irrespective of the selected OOB direction,
the ownership of the authenticating device is always established during the OOB
message transfer. The ownership establishment procedure in each direction can be
listed as:

– peer-to-server: Initially, the OOB message is received at the user device. The
URL from the OOB message will lead the user to the web server. Here, a
user should have a valid user account, without an account, the web server will
reject the OOB message. After delivering the message to a valid user account,
the authenticating device will be associated to the account through which the
OOB message is delivered.

– server-to-peer: First, the correct device which has completed the Initial ex-
change should be identified from a user account. The identification is based
on the unique device identifier shared through the peerInfo parameter. The
user will search for the device and will add it to the user account. Adding the
device and completing the OOB step will confirm the ownership of the device.

8https://www.sqlite.org/

42

The web server introduces a level of transparency into the authentication pro-
cess. During authentication, a user can see every state transition at the EAP-NOOB
server from the web server. Also, errors during authentication are notified through
the web server.

The web server is developed in Node.js with embedded Javascript views. The
EAP-NOOB server and the web server use a common database to maintain user and
device related information. However, other than accessing and reading a common
database, there exist no other means of communication between the server and
the web server. A web server should always have a trusted third party certificate to
prove its authenticity to the user and to the OOB devices. The serverInfo parameter
passed in the Initial exchange contains the URL of the web server and the same will
be used while forming the OOB message. If it is identified that the URL does
not lead to a web server with a secure HTTP connection, the peer will consider
both the EAP-NOOB server and the web server as untrusted and will terminate
the authentication procedure by sending an error message (Error number 1003). If
a self-signed certificate or certificates issued by an untrusted root are used by the
web server, the user will be notified by the web-browser while transferring the OOB
message.

4.5 Automating the Authentication

Conventionally, the WPA_Supplicant attempts to associate with APs based on the
network block information. Each AP is represented as a network block and the con-
figuration information necessary to associate with the AP is grouped in a network
block. The supplicant can receive the network block information either through the
command line using wpa_cli or by reading a designated configuration file. If more
than one network block is received at the supplicant, the association with each of
the network block is attempted sequentially until the supplicant gets associated with
one of the APs. An example network block can be seen in Figure 15.

Figure 15: Example network block

The EAP-NOOB protocol is applicable to devices with variable user interface ca-
pabilities. Now, either due to limited user interface capabilities of the device or due

43

to the nature of the selected source packages, configuring devices using the current
implementation originally required a few manual operations. Instead, automating
the complete authentication procedure will enhance the usability of the protocol
implementation.

As part of our implementation, we have automated the authentication procedure
from the EAP-NOOB peer side. After the automation, the user will just deliver
the OOB message and need not do any other manual operation. The automation
includes support for authentication in both directions. As part of automation, a peer
device will be first initialized. The lists of activities done as part of the initialization
is as follows:

– Scanning to identify the nearby access points (AP)

– Identifying WPA2-Enterprise supporting APs and sorting them by the received
signal strength

– Creating a new configuration file with a network block for each of the member
from the list

– Starting WPA_Supplicant with the configuration files.

The supplicant will perform the Initial exchange with all the APs which are
connected to an EAP-NOOB supporting backend authentication server. Based on
the selected OOB direction, the peer will be prepared to either deliver or receive
the OOB message. When the selected OOB direction is peer-to-server, an OOB
message can be delivered either as a QR-code or as a URL through NFC. Now, if
the selected OOB message is a QR-code, then the peer displays a QR-code for every
EAP-NOOB server with which the peer has performed an Initial exchange.

As the WPA_Supplicant attempts for AP associations sequentially, it is hard
for our implementation to obtain a complete array of QR-codes instantaneously.
Therefore, the user will have to wait a short amount of time to see all the QR-codes.
When all the QR-codes are displayed, the user will then scan the appropriate one
to authenticate the device with the configuring network and server. Transferring a
valid OOB message to the correct server will initiate the Completion exchange. A
QR-code as the OOB message can be used with the device which only has output
interface capability. A display unit can be considered as an example device.

Similarly, when the selected OOB message is a URL through NFC, our imple-
mentation only supports transferring OOB messages for a single server. Therefore,
there should only be a single AP in the vicinity which is connected to an EAP-
NOOB supporting backend server. The NFC channel is included as an alternative
to scanning or reading OOB message from an output device. However, this alterna-
tive method of message transfer still need to be enhanced to make it as fully fledged
as QR-Code based OOB message transfer.

44

When the selected OOB message direction is server-to-peer, the peer is expected
to receive the OOB message. In our implementation, at the peer side, a QR-code
code scanner will be activated. In this implementation, an open source application
named Zbarcam 9 is used to read QR-codes at the peer side. The application will
start the camera unit of the device and will be waiting to read any QR-code mes-
sage. When the user holds the OOB device with QR-code sufficiently close to the
camera unit, the Zbarcam application will read the OOB message from the OOB
device. Then, a valid OOB message will initiate the Completion exchange.

In both the OOB message directions, if the authentication procedure ends with
EAP-SUCCESS, the peer is prompted to check for a new IP address for its wireless
network interface. Obtaining the IP address from an AP confirms that the peer
device is part of a WLAN. In our implementation we use Linux system call dhclient10

to obtain the IP address. Finally, to test the Internet connectivity, we play a video
from a popular video-sharing website, Youtube11. The successful reception of the
video content confirms the peer device’s network connectivity. In WAP_Supplicant,
the complete source code for automating the authentication procedure is placed in
a Python3 script named wpa_auto_run.py.

4.6 Controlling WPA_Supplicant

WPA_Supplicant is a well structured software package written by a long list of
contributors12. The software architecture is modular and the inter-module commu-
nication is well defined. The existing EAP methods were designed to have no control
over the supplicant behavior. However, to implement certain functionality required
by our EAP-NOOB protocol, the supplicant is expected to receive commands from
the new EAP method.

Now, considering the segment of the supplicant relevant for introducing a new
EAP method, the interface between the EAP module and the new EAP method is
strictly confined to struct eap_method. Additionally, the new method is only allowed
to access common utility functions. This arrangement is for reducing the burden of
any new method and also to encourage code modularity and re-usability. However,
while implementing the EAP-NOOB peer, we discovered that certain features of the
protocol cannot be implemented without making previously defined inter-module
references. This mainly involves, accessing or modifying data structures and calling
functions from modules with which there previously existed no direct connection.
In the next section, we will describe all the inter-module references made in the
protocol implementation.

9http://manpages.ubuntu.com/manpages/wily/man1/zbarcam.1.html
10https://linux.die.net/man/8/dhclient
11https://www.youtube.com/
12https://launchpad.net/wpasupplicant/+topcontributors

45

4.6.1 Wait Time Assignment

When the EAP-NOOB server assigns a wait time to a peer in the Waiting exchange,
the peer should probe only after the assigned wait time has elapsed. For example,
if the server assigns 60 seconds as the wait time, and then the peer should at least
wait for 60 seconds before starting the next Waiting exchange. However, this fea-
ture could not be implemented just with the existing interface to the EAP state
machine. There exists no function in the struct eap_method with which a peer
can be stalled for a time equivalent to wait time. Architecturally, stalling the EAP
method by implementing a waiting loop is not the right solution. A peer may have
to do the Waiting exchange with multiple servers at the same time, and stalling a
peer will prevent that. Therefore, an alternate way for implementing the wait time
was needed.

WPA_Supplicant On the other hand, has a provision to temporarily disable as-
sociation attempts to a service set identifier (SSID). The supplicant data structure
struct wpa_ssid holds the network configuration data for each SSID. It has a mem-
ber named struct os_reltime disabled_until. The member variable can be assigned
a time stamp. The SSID will be considered unavailable until that time. Each of the
network blocks from the designated configuration file is mapped to an instance of
struct wpa_ssid. This arrangement can be used to temporarily disable associations
with any of the network, if at all it is necessary. The contexts maintained for each
SSID is in a struct WPA_Supplicant data structure. The data structure also holds
the configuration and run time variable data for the WPA_Supplicant interface.
The WPA_supplicant context is not directly related to a new EAP method. In
fact the supplicant context holds a context for EAPOL, and the EAPOL context
maintains the EAP state machine. Finally, the EAP state machine will have the
context for the EAP method. Because of the many layers of abstraction, the EAP
method is not expected to control the WPA_Supplicant data. Nevertheless, to have
a working prototype, we access the relevant member of struct wpa_ssid to assign
the waiting time.

The data structure for the EAP state machine (struct eap_sm) is already ac-
cessible from any EAP method. The data structure contains pointers to both the
EAPOL and WPA_Supplicant context. To assign the wait time, the pointer to sup-
plicant data is accessed. Now, from the supplicant data structure, one can access
the data structure of the current SSID. Later, we calculate the time stamp as the
sum of the current time and the wait time received from the server in the Type
3 EAP-NOOB request. We assign the time stamp to the member disabled_until
from current SSID context. After the assignment, the supplicant does not try for
an association utill the end of the wait time.

46

Figure 16: Wait time assignment code snippet

4.6.2 Updating Peer State

In EAP authentication, when a supplicant is initially queried for its identity through
EAP-Identity/Request message, the supplicant responds with an EAP-Identity/Response
containing its own identity. Each network block in the supplicant configuration file
may specify an identity for the network. If there is no identity specified, anonymous
identity is assumed for the network. In case of EAP-NOOB, initially, every network
block will have noob@eap-noob.net as the supplicant identity, this is the generic NAI
used by the protocol. However, when the peer EAP-NOOB state machine transits to
a different state, the identity for the respective network should also be changed. The
current NAI in EAP-Response/Identity helps the EAP-NOOB server to be aware
of the EAP-NOOB peer state. Knowledge of the peer state is essential for deciding
the next state transitions.

Now, at peer side, the identity for each network is stored in an instance of the
data structure struct wpa_ssid. The instance is allocated for the each network block
in the configuration file. All the allocated instances reside in the main supplicant
data structure named struct WPA_Supplicant. As there is no predefined interface
between an EAP method and the WPA_Supplicant module, the identity of a net-
work block cannot be directly accessed from the EAP-NOOB context. Therefore we
made an indirect inter-module reference to update the identity of a network

As was the case with wait time assignment, the current SSID context present
in the data structure struct WPA_Supplicant is accessed through the EAP state
machine data. The member struct eap_peer_config present in the current SSID
context holds the supplicant Identity for the network through its member variable
u8 * identity. After every state transition in the EAP-NOOB peer, the identity is
changed to the format peerID+sX@eap-noob.net, where s is the current peer state
and X is a number between 0 and 4. Changes made to the variable u8 * identity will

47

Figure 17: Configuration change code snippet

only modify the supplicant identity in the process memory. However, updating the
identity parameter of a network block, present in the supplicant configuration file
would enable the peer to continue the authentication process inspite of restarting of
the the WPA_Supplicant. To achieve this we used the function wpa_config_write()
defined by the WPA_Supplicant module. The function is meant for rewriting the
network configuration into a configuration file. The code snippet used to change the
identity at both the process memory and the configuration file can be seen in Figure
17.

4.7 Hint Message for User Identification

To authenticate a device with server-to-peer as the OOB message direction, the user
will first have to identify the device at the web server portal. The device identifi-
cation can only be based on the information shared by the peer as part of peerInfo
parameter. Until the user delivers the OOB message through a valid user account,
the identification and selection of a device at web server is not bound to any user. In
a scenario where multiple users are authenticating a device at the same time, more
than one OOB message may be sent to the peer, and the peer will only accept the
first one. The server will be aware that more than one OOB was sent to the peer.
However, the server cannot determine which OOB message in use at the peer side.

48

In the current version of the protocol, the Completion exchange is initiated soon
after an OOB message is received at either of the entities. During this phase,
the message authentication codes relating to only one OOB message can be veri-
fied. Failure of the verification will not allow trying verification for other sent OOB
messages. Therefore, we modified the Completion exchange for the server-to-peer
direction to resolve the issue when there are multiple users trying to associate with
the same device.

Figure 18: Modified Completion exchange

To rule out the ambiguity of choosing the owner of a device, we have introduced
a new hint message in our implementation. At the beginning of the Completion ex-
change, the server will request for a hint from the peer to identify the OOB message
parameters in use. The hint is requested through a separate Type 8 EAP-NOOB
message. The peer will generate a cryptographic hash using the Noob parameter
and a static salt value. The hint is sent over the Type 8 EAP-NOOB response.

When the selected direction is server-to-peer, for every OOB message generated
for a device, the web server will also generate the hash of Noob along with the same
salt value as peer side. Therefore, at the beginning of the Completion exchange, the
server will already have a list of hash values based on all the OOB messages. When
the hint message is received from the peer, the server will compare the received hint
with its own list of cryptographic hashes. Then, the peer will be associated with
the context which holds same cryptographic hash as the received hint. Finally, after
identification of the owner, the Completion exchange will complete with the mutual

49

authentication procedure

The hint message is not necessary in the peer-to-server direction as the user will
have to be in the vicinity of the device to obtain the OOB message from the peer.
Presence of more than one user for authenticating the same device can be easily
detected in this case. However, in the case of server-to-peer direction, any user
can select and try to add the device from the web server portal. This creates the
possibility to send more than one competing OOB message to a peer. The modified
Completion exchange message sequence can be seen in Figure 18.

50

5 Discussion
In this section, first we will discuss the security offerings from the protocol. Later,
we will discuss the authentication latency for the protocol. Finally, the section will
end by presenting a use case scenario for the protocol.

5.1 Results and Analysis

The major factor influencing the usability of the EAP-NOOB protocol is the amount
of time necessary to complete the authentication procedure. The protocol involves
user assistance at a precise step in the state machine. It is expected that the device
will complete the Initial exchange procedure and will be ready to either send or
receive the OOB message in a short time. This will make a user to believe that the
device is ready for registration with the server right after the device is powered on.
However, the OOB message delivery is expected to take variable amount of time, as
it is dependent on the complexity of using the OOB channel. With a simpler OOB
channel and familiar methods of OOB message transfer, the device authentication
can be completed in just few seconds. In our protocol implementation, we have
used scanning QR-code or NFC transfer as the OOB channels. Message transfer in
either of the channels can easily be done using a smart phone. Now, considering the
familiarity of smart phones to most modern day IoT device users, authenticating a
device using our implementation of EAP-NOOB protocol should not be difficult.

The total time for authenticating a device using our implementation can be
coarsely estimated. It is equal to the cumulative sum of time necessary for in-band
message exchanges with the sum of wait time assigned during each Waiting ex-
change. As the user assistance time overlaps with the wait time, it is not accounted
individually. It is seen in the state machine, a device may transit to Registered state
either fromWaiting for OOB state or OOB received state. Hence, one cannot expect
the in band message exchanges to be completed at a constant time. Similarly, user
assistance for delivering the OOB message cannot be expected to be completed in
a fixed time duration. Therefore, one can only estimate the range of time duration
necessary for completing the authentication with the EAP-NOOB protocol.

In this part of the thesis, we will analyze the authentication time for the current
protocol implementation. The analysis is based on the authentication time deter-
mined by collecting the timestamps at different protocol stages. The time stamps
are only collected at the WPA_Supplicant. The protocol testing environment used
for collecting timestamps included:

– An authentication server (Hostapd).

– A web server.

– A personal computer with WPA_Supplicant.

– A smart phone.

51

– Five access points.

– A NFC reader device.

The authentication time is collected for all the supported OOB direction and for
all the implemented OOB message types. The total time for authenticating a device
is determined based on,

Total time = Method initialization time + in-band message exchange time + out
of band message transfer time

Here, the Method initialization time refers to the time between the start of the
WPA_Supplicant and until EAP-NOOB method is called for the first time. When
there are more than one SSID to be attempted for authentication, the in-band mes-
sage exchange time is calculated by adding two separate time durations. First, the
duration from the first Type one EAP-NOOB message till the generation of the
last OOB message is collected. Then, the time duration from the reception of Type
four EAP-NOOB messages until the MSK is exported from the method is calculated
and added to the first value. Finally, the time duration between the generations of
last OOB message until the reception of Type four EAP-NOOB request messages is
accounted as the out-of-band message transfer time.

Now consider a scenario where user is authenticating IoT device using our EAP-
NOOB implementation. The automation script at the peer side will try association
with every EAP-Enterprise supporting APs. When there are more than one EAP-
Enterprise supporting AP in the vicinity, a user may not be able to select the relevant
SSID until it is prompted either at web server or as at peer side. Then, the authen-
tication latency will depend on number of AP in the vicinity. To simulate such an
environment in our test setup, we used up to five SSIDs while attempting for de-
vice authentication. The SSID NOMAD, EAP_NOOB_1 and EAP_NOOB_2 are
connected to same authentication server, which support EAP-NOOB. eduroam and
aalto are the other two SSIDs which support EAP-Enterprise kind of authentication
but not EAP-NOOB.

5.1.1 Peer-to-Server

The current implementation supports two kinds of OOBmessage transfer in the peer-
to-server direction: URL as a QR-code and URL through NFC. For URL through
NFC, the protocol implementation can only carry out authentication when there
is only one EAP-NOOB supporting AP in the vicinity. While testing this mode
of message transfer, EAP_NOOB_1, eduroam and aalto were kept active. Out of
three active SSIDs, the device can get authenticated with only EAP_NOOB_1.
The collected reading can be seen in Table 2.

As there are three SSIDs for the device, the automation script will create three
separate network blocks in the supplicant configuration file. Then, upon reading the

52

SSID list initialize time in-band out-of-band total time
EAP_NOOB_1 eduroam
aalto

32.584 0.788 27.697 61.069

Table 2: Authentication latency for URL through NFC

configuration file, the WPA_Supplicant attempts for association sequentially. The
sequence of appearance of network block in the configuration file is based on the
received signal strength. Instances where the signal strength of SSID eduroam and
aalto are greater than the signal strength of EAP_NOOB_1, the supplicant will
attempt the association with the SSIDs in the order eduroam, aalto and finally with
EAP_NOOB_1. As both eduroam and aalto does not support EAP-NOOB, the
association attempt with both the SSIDs will end with a failure. This will actually
delay the authentication procedure. It can be seen from table 2 that the method
initialization time is recorded as 32 seconds. It is for the same reason that method
EAP-NOOB is only called after the association attempt with the first two SSID
ends with a failure.

Initially, while listing the SSIDs, the supplicant will have to consider all the
SSIDs which support the EAP-Enterprise mode of authentication. This is because,
based on the result from WPA_Scan, the supplicant can only know about the sup-
ported mode of authentication by each of the SSID. Therefore, using the available
information, supplicant will have to communicate with each of the authentication
server connected to the APs in the vicinity to inquire for the support for the EAP-
NOOB protocol.

For URL through QR-code method of OOB message transfer, the current im-
plementation supports displaying of QR-code for multiple SSIDs. While collecting
authentication time for this method of message transfer, up to five SSIDs were used.
Table 3 and Table 4 shows authentication time for scenarios with variable number of
SSIDs. Authentication times for the scenarios involving SSIDs which are connected
to a backend authentication server supporting EAP-NOOB are covered in Table 3.
Similarly, scenarios involving SSIDs with or without EAP-NOOB support are cov-
ered in Table 4.

When every AP in the vicinity is connected to an authentication server with
EAP-NOOB support, irrespective of the order of appearance of network blocks in
supplicant configuration file, the method EAP-NOOB at supplicant side is called
soon after starting the WPA_Supplicant. This also means that, the current proto-
col implementation quickly starts the authentication procedure when there are only
APs connected to EAP-NOOB supporting authentication server. This argument is
supported by the recorded initialization time from Table 3. Where, in each case, the
EAP-NOOB method is called under three seconds. However the time necessary to
display all the OOB messages grows linearly with the number of SSIDs. The in-band

53

SSID list initialize time in-band out-of-band Total time
EAP_NOOB_1 2.505 0.572 15.492 18.569
EAP_NOOB_1,
EAP_NOOB_2

2.988 4.561 12.384 19.933

EAP_NOOB_1,
EAP_NOOB_2, NO-
MAD

2.849 11.3295 73.0671 87.245

Table 3: Authentication latency for URL through QR-code:1

message exchange time is recorded as half a second for a single SSID and it steadily
grows to reach twelve seconds for three SSIDs. The recorded out-of-band message
transfer time also covers the waiting time assigned during the Waiting exchange. For
anyone who is familiar with using a smart phone, scanning a QR-code is relatively a
simple method for transferring OOB message. Hence, a user is expected to complete
the OOB message transfer in just few seconds and the same can be seen in the first
two cases in Table 3. However, in certain cases, even after the delivery of the OOB
message, the supplicant may not start the Completion exchange immediately. This
is because the supplicant can get assigned with an arbitrary wait time after a Wait-
ing exchange and the SSID will be disabled in the supplicant at-least till the end
of an arbitrary wait time. For the same reason, the out of band message transfer
time is recorded with a higher value of seventy three seconds when authentication
is attempted with three SSIDs.

Now, we will consider the scenarios involving SSIDs without the EAP-NOOB
protocol support. The method initialization time depends majorly on the order of
appearance of SSIDs as network blocks in the supplicant configuration file. Appear-
ance of SSID aalto and eduroam at the beginning of configuration file will delay the
EAP-NOOB initialization and in turn will the delay the authentication. This can
be seen from the first two scenarios of Table 4. After the method initialization, the
in-band message exchange time grows linearly with the number of SSIDs. Also as
explained for Table 3, larger values for the OOB message transfer is because of an
arbitrary wait time assigned during a Waiting exchange.

It can be seen that, the authentication time is more than a minute for half
of the scenarios. This may affect the usability of the protocol. However, as per
the current control flow of the WPA_Supplicant, aspects concerning to each SSID
is handled sequentially and this increases the method initialization time and also
handling an assigned wait time. Changing the control flow of the supplicant to
obtain an optimum authentication latency needs complete understanding of the
WPA_Supplicant architecture and also it is beyond the scope of defining a new
EAP method.

54

SSID list initialize time in-band out-of-band Total time
EAP_NOOB_1,eduroam,
aalto

30.914 0.751 19.596 51.261

EAP_NOOB_1,
EAP_NOOB_2, eduroam,
aalto

32.030 5.843 27.696 65.569

EAP_NOOB_1,
EAP_NOOB_2, NO-
MAD, eduroam, aalto

9.069 10.043 58.777 77.889

Table 4: Authentication latency for URL through QR-code:2

SSID list initialize time in-band out-of-band Total time
EAP_NOOB_1 eduroam
aalto

32.865 0.682 43.285 76.832

Table 5: Authentication latency for server-to-peer

5.1.2 Server-to-Peer

Similar to peer-to-server direction of authentication, the method initialization time
depends on the order of occurrence of a SSID as a network block in the supplicant
configuration file. Apart from the initialization, the Initial exchange with server is
also decided based on the order of occurrence. Completion of the Initial exchange will
allow the user to generate and deliver the QR-code. Our protocol implementation
makes use of an open source package Zbarcam to read a QR-code from the web-cam.
Absence of auto focus facility in the web-cam makes it challenging for a user to show
the QR-code. This will increase the OOB message transfer time and will affect the
total authentication time. A sample reading for server-to-peer direction can be seen
in Table 5.

5.2 Use Case Scenario

A sample use case scenario where our EAP-NOOB protocol is most useful is pre-
sented here. Consider, an administrative secretary from Aalto University is supposed
to install ten smart display units in Aalto University’s new building. Every one of
those device will connect to the network with their wireless interface. The secretary
would like to establish secure connection with all the devices once they are config-
ured. Also, he/she would like to monitor and control all the devices from a single
platform.

For devices that support EAP-NOOB protocol, all that secretary has to do is to
switch on each of those devices. Every incoming device authentication requests at a
Wi-Fi access point will be forwarded to EAP-NOOB server which is operating from

55

the university’s cloud infrastructure. The only pending job for the secretary is to
deliver the respective out-of-band message from the display unit to the web server.
This is done by simply scanning a QR-code.

The secretary’s Aalto user account, for example secretary@aalto.fi will be used
to associate the authenticated device. The same user account will be used to fetch
or deliver the OOB message during the authentication procedure. In our scenario,
the secretary will scan a QR code from each of the display unit. The QR-code will
decode into an URL and one click on the URL will deliver the OOB message. Once
the OOB message gets delivered, the device gets authenticated automatically and
now it is listed under the personnel’s user account. Thereafter, all the devices can
be monitored and controlled from the user account.

It should be noted that apart from delivering the out-of-band message, the sec-
retary is not expected to do any other activity for authenticating a device and no
proprietary solutions are used for completing the authentication.

56

6 Conclusion
In this thesis, we have addressed the security aspects of Wi-Fi connected IoT devices
by implementing a secure bootstrapping method. We implemented the EAP-NOOB
protocol and briefly analyzed it. The main motivation to consider the security aspect
of IoT devices being, the appliances from our daily life are gaining Internet connec-
tivity and will also be controlled remotely. Therefore, compromising the security of
those devices can cause harm to the users. The primary objective of this thesis was
to build a prototype of EAP-NOOB protocol for authenticating and connecting IoT
devices to an access network. Additionally, the authenticated device is associated
with a user account to enable remote monitoring and supervision.

In this thesis, we first presented the problem statement and research goal in chap-
ter 1. Next in chapter 2, we introduced all the technologies and topics necessary to
understand both the IoT device security problem and the proposed solution, EAP-
NOOB. The complete description of the EAP-NOOB protocol, including the security
was presented as part of chapter 3. The thesis project focused on implementing the
EAP-NOOB protocol. We discussed the development environment, source packages
and applications developed for implementing the protocol in chapter 4. Finally, we
did an authentication latency analysis over the implemented EAP-NOOB prototype
in chapter 5.

In this thesis, we have successfully implemented a prototype to authenticate de-
vices in both directions. Also, the prototype currently supports two kinds of OOB
message passing: QR-code and NFC. The prototype was able to confirm the feasi-
bility of deploying the formulated EAP-NOOB protocol over a real world network.
The implemented prototype was tested on a sample smart device (Laptop). Using
EAP-NOOB as the EAP method, the device was able to authenticate and associate
with a user account in the online server and was also able to join a secure Wi-Fi
network. Thus, it can be said that, this thesis has successfully implemented and
tested the EAP-NOOB protocol. Additionally, defining the EAP-NOOB protocol is
an ongoing process. The protocol specification and its implementation are done by
our research group. The EAP-NOOB prototype developed in this thesis has helped
in specifying the protocol as it provided means to test and analyse the protocol.
Currently, the protocol is undergoing the standardisation process with the IETF
and developing the EAP-NOOB prototype has directly contributed to improve the
protocol.

The usability of new technology makes a big difference to its adoption. Com-
pleting the authentication with the current implementation only requires performing
familiar tasks such as scanning a QR-code or tapping a tag to read through NFC.
To assess the ease of usage, the prototype usability study should still be undertaken.
The authentication time analysis from chapter 5 shows that the time necessary for
the completion of the authentication in certain scenarios is in the order of minutes.
For such scenarios, feedback from users should be collected to see if waiting a few

57

minutes would affect the deployment of the protocol. The protocol specification
considers many most known attacks and security vulnerabilities. However, it is still
possible to have unforeseen vulnerabilities, which may be exploited after the deploy-
ment of the protocol. Therefore, a formal analysis on EAP-NOOB would help to
check the robustness of the protocol and to highlight any weaklinks in it.

As the processors and memory are getting cheaper, appliances and devices from
our daily-life are becoming more intelligent. Smart home solutions from major home
appliance vendors are already on the market. With time, these solutions will make
their way to our household and work environment. Everyday life from our future is
expected to be lot more convenient with these smart solutions around. However, it
is not necessary to wait for an unfortunate security incident to realize the degree of
control and the level of closeness the devices have over our daily life. As a famous
saying suggests, "Prevention is better than cure". It will be wise to investigate and
be ready with security solutions which can make our home and work environment
secure. In this thesis, we have implemented and analyzed one such solution, which
aims to secures the Internet connect IoT devices through secure bootstrapping.

58

References
[1] In Lee and Kyoochun Lee. "The Internet of Things (IoT): Applications, invest-

ments, and challenges for enterprises", in Business Horizons vol. 58, is. 4, pp.
431–440, 2015.

[2] Umesh Hodeghatta Rao and Umesha Nayak, "Current Trends in Information
Security", inThe InfoSec Handbook pp. 325-330, 2014.

[3] Karolis Vilius, Lu Liu, John Panneerselvam and Thomas Stimpson, "A Critical
Analysis of the Efficiencies of Emerging Wireless Security Standards Against
Network Attacks", in Intelligent Networking and Collaborative Systems, Taipei,
Taiwan, Sep. 2-4, 2015.

[4] Dave Evans, "The Internet of Things How the Next Evolution of the Internet
Is Changing Everything", Cisco white paper, Apr. 2011.

[5] Haijun Zhang, Xiaoli Chu, Weisi Guo and Siyi Wang, "Coexistence of Wi-
Fi and heterogeneous small cell networks sharing unlicensed spectrum", IEEE
Communications Magazine, vol. 53, is. 3, pp 158-164, Mar. 2015.

[6] Ji-chun Zhao, Jun-feng Zhang, Yu Feng and Jian-xin Guo, "The study and
application of the IOT technology in agriculture", In IEEE ICCSIT 2010, 9-11
Jul. 2010.

[7] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista and Michele
Zorzi, "Internet of Things for Smart Cities", In IEEE Internet of Things Jour-
nal, vol. 1, is. 1, pp 22-32, Feb. 2014.

[8] P.S. Henry and Hui Luo, "WiFi: what’s next?", in IEEE Communications
Magazine, vol. 40, is. 12, Dec. 2002.

[9] IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications, IEEE 802.11-1997,1997.

[10] Martin Beck and Erik Tews, Practical Attacks Against WEP and WPA, Wireless
network security 09, Zurich, Switzerland, Mar. 2009.

[11] Vipul Gupta, Sumit Gupta Sheueling Chang and Douglas Stebila , "Perfor-
mance Analysis of Elliptic Curve Cryptography for SSL", in Proceedings of the
1st ACM workshop on Wireless security, pp. 87-94, Atlanta, GA, USA, Sep.
2002.

[12] Nancy Cam-Winget, Russ Housley, David Wagner and Jesse Walker, "Security
flaws in 802.11 data link protocols", in Communication of ACM - Wireless
Networking Security, vol. 46 is. 5, pp. 35-39 May 2003

[13] Kenneth G. Paterson, Bertram Poettering, Jacob C. N. Schuld, "Plaintext Re-
covery Attacks Against WPA/TKIP", in Fast Software Encryption, Springer
Link, vol. 8540, pp 325-349, 19 Apr. 2015.

59

[14] Avishai Wool, "A Note on the Fragility of the "Michael” Message Integrity
Code", in IEEE Transaction On Wireless Communications, vol. 3, is. 5, Sep.
2004.

[15] Gunther Lackner, "A Comparison of Security in Wireless Network Standards
with a Focus on Bluetooth, WiFi and WiMAX ", in International Journal of
Network Security, vol. 15, no. 6, pp. 420-436, Nov. 2013.

[16] Dimitris Zisiadis, Spyros Kopsidas, Argyris Varalis and Leandros Tassiulas,
"Enhancing WPS security", in Wireless Days (WD), 2012 IFIP, Ireland, Nov.
21-23, 2012.

[17] Amirali Sanatinia, Sashank Narain and Guevara Noubir, "Wireless spreading
of WiFi APs infections using WPS flaws: An epidemiological and experimental
study" , in IEEE Conf. Communications and Network Security 2013, Washing-
ton, DC, USA, 14-16 Oct. 2013.

[18] Extensible Authentication Protocol (EAP), RFC3748, IETF, Jun. 2014.

[19] IEEE Standard for information technology-Telecommunications and informa-
tion exchange between systems-Local and metropolitan area networks-Specific
requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) specifications: Amendment 6: Medium Access Control (MAC)
Security Enhancements, 802.11i-2004, 2004.

[20] Khidir M. Ali and Ali Al-Khlifa, "A Comparative Study of Authentication
Methods for Wi-Fi Networks", in IEEE Computational Intelligence, Commu-
nication Systems and Networks, Bali, Indonesia, 26-28 Jul. 2011.

[21] Internet X.509 Public Key Infrastructure Certificate and CRL Profile,
RFC2459, IETF, Jan. 1999.

[22] Sapna Sejwani and Sarvesh Tanwar, "Implementation of X.509 Certificate for
Online Applications ", in International Journal of Research in Advent Technol-
ogy, Vol.2, No.3, PP. 250-254 Mar. 2014.

[23] Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile, RFC3280, IETF, Apr. 2002.

[24] Moeen Hassanalieragh, Alex Page, Tolga Soyata, Gaurav Sharma, Mehmet Ak-
tas, Gonzalo Mateos, Burak Kantarci and Silvana Andreescu, "Health Monitor-
ing and Management Using Internet-of-Things (IoT) Sensing with Cloud-Based
Processing: Opportunities and Challenges", 2015 IEEE International Confer-
ence on Services Computing (SCC), San Fransisco USA, Jun. 2015.

[25] Roberto Minerva, Abyi Biru and Domenico Rotondi, "Towards a definition of
the Internet of Things (IoT)", IEEE Internet Initiative, Rev. 1, 27 May 2015.

60

[26] Rodrigo Roman ,Pablo Najera and Javier Lopez,"Securing the Internet of
Things", in Computer, vol. 44, is. 9, pp. 51-58 Sept. 2011.

[27] Qi Jing, Athanasios V. VasilakosJiafu Wan and Jingwei LuDechao Qiu, "Secu-
rity of the Internet of Things: perspectives and challenges", in Wireless Net-
works, Springer Link, Vol. 20, Is. 8, pp 2481–2501, Nov. 2014.

[28] Tuomas Aura and Dieter Gollmann, "Communications security on the inter-
net", in Software Focus, vol. 2, is. 3, pp. 104-111, Sep. 2001.

[29] Antonio J. Jara Valera, Miguel A. Zamora, and Antonio F. G. Skarmeta, "An
Architecture Based on Internet of Things to Support Mobility and Security in
Medical Environments", IEEE 7th Consumer Communications and Networking
Conference (CCNC), Las Vegas, Nevada USA, Jan 2010.

[30] Definition of bootstrap in English, "bootstrap", Internet: https://en.
oxforddictionaries.com/definition/bootstrap [Nov. 4 2016]

[31] Wi-Fi Device Provisioning Protocol (DPP) Technical Specification, version
0.0.23, 2016.

[32] Datagram Transport Layer Security Version 1.2, RFC6347, IETF, 2012.

[33] Liang Zhou and Han-Chieh Chao, "Multimedia traffic security architecture for
the internet of things", in IEEE Network, vol. 25, is. 3, 23 May 2011.

[34] Sanaz Rahimi Moosavi, Tuan Nguyen Gia, Amir-Mohammad Rahmani,
Ethiopia Nigussie, Seppo Virtanen, Jouni Isoaho and Hannu Tenhunen, "SEA:
A Secure and Efficient Authentication and Authorization Architecture for IoT-
Based Healthcare Using Smart Gateways", in Procedia Computer Science, vol.
52, pp. 452-459, 2015.

[35] Behcet Sarikaya and Mohit Sethi, "Secure IoT Bootstrapping: A Surve
draft-sarikaya-t2trg-sbootstrapping-01",
Internet: https://tools.ietf.org/html/draft-sarikaya-t2trg-
sbootstrapping-01, Jul. 1 2016 [Nov. 11 2016].

[36] Shahab Mirzadeh, Haitham Cruickshank and Rahim Tafazolli, "Secure Device
Pairing: A Survey", IEEE Communications Survays and Tutorials, vol. 16, no.
1, Q1 2014.

[37] Whitfiled Diffie and Martin E Hellman, "New Directions in Cryptography",
IEEE Transaction on Information Theory, vol 22, no. 6, Nov 1976.

[38] Kristin Lauter, "The Advantages Of Elliptic Curve Cryptography For Wireless
Security", in IEEE Wireless Communications, pp. 62-67, Feb. 2004.

https://en.oxforddictionaries.com/definition/bootstrap
https://en.oxforddictionaries.com/definition/bootstrap
https://tools.ietf.org/html/draft-sarikaya-t2trg-sbootstrapping-01
https://tools.ietf.org/html/draft-sarikaya-t2trg-sbootstrapping-01

61

[39] Li Li, Hu Xiaoguang, Chen Ke and He Ketai, "The applications of WiFi-based
Wireless Sensor Network in Internet of Things and Smart Grid", IEEE Con-
ference on Industrial Electronics and Applications, Beijing, China, 21-23 June
2011.

[40] Recommendation for Pair-Wise Key Establishment Schemes Using Discrete
Logarithm Cryptography, NIST Special Publication 800-56A, Mar. 2007.

[41] State Machines for Extensible Authentication Protocol (EAP) peer and authen-
ticator, RFC4137, IETF, Aug. 2007.

[42] Tuomas Aura and Mohit Sethi, "Nimble out-of-band authentication for EAP
(EAP-NOOB) draft-aura-eap-noob-01", Internet: https://datatracker.
ietf.org/doc/draft-aura-eap-noob/?include_text=1, Jul. 2016 [Nov. 29
2016]

[43] Weiping Sun, Munhwan Choi and Sunghyun Choi, "IEEE 802.11ah: A Long
Range 802.11 WLAN at Sub 1 GHz", Internet: IEEE 802.11ah: A Long Range
802.11 WLAN at Sub 1 GHz, May. 2013 [Jan. 6 2017]

[44] Diameter Base Protocol, RFC6733, IETF, Oct. 2012.

[45] Xing Zhang, Shaohua Ma, Dong Han and Wei Shi,"Implementation of elliptic
curve Diffie-Hellman key agreement scheme on IRIS nodes", International Con-
ference on Intelligent Computing and Internet of Things, Harbin, China, Jan.
2015.

[46] Kai Lei, Yining Ma and Zhi Tan, "Performance Comparison and Evaluation of
Web Development Technologies in PHP, Python, and Node.js", 2014 IEEE 17th
International Conference on Computational Science and Engineering, Chengdu,
China, Dec. 2014.

[47] Smart shirt, "Ralph Lauren Launches Wearable IoT Smart Shirt",
http://www.machinetomachinemagazine.com/2015/08/29/ralph-lauren-
launches-wearable-iot-smart-shirt/ [12.01.2017]

[48] Mohit Sethi, Pranvera Kortoci, Mario Di Francesco, and Tuomas Aura, "Secure
and low-power authentication for resource-constrained devices", 5th Interna-
tional Conference on the Internet of Things (IOT), IEEE, Seoul, South Korea,
Oct. 2015 .

[49] Mohit Sethi, Elena Oat, Mario Di Francesco, and Tuomas Aura, "Secure boot-
strapping of cloud-managed ubiquitous displays", International Joint Confer-
ence on Pervasive and Ubiquitous Computing, ACM, Seattle, Washington, pp.
739-750, Sep. 2014.

https://datatracker.ietf.org/doc/draft-aura-eap-noob/?include_text=1
https://datatracker.ietf.org/doc/draft-aura-eap-noob/?include_text=1
http://www.machinetomachinemagazine.com/2015/08/29/ralph-lauren-launches-wearable-iot-smart-shirt/
http://www.machinetomachinemagazine.com/2015/08/29/ralph-lauren-launches-wearable-iot-smart-shirt/

62

A EAP-NOOB Parameters

Vers, Verp Supported protocol versions. Vers is a JSON array of unsigned
integers and Verp is an unsigned integer. The current supported
values are [1] and 1.

PeerID Peer identifier assigned by the server. The identifier should be
utf8 characters and maximum 60 characters. Until Completion ex-
change, the assigned identifier is ephemeral. One way to generate
the identifier is by generating upto 60 digit random lower-case hex-
adecimal string.

Type EAP-NOOB message type ranging from 0-7. The parameter is of
integer type.

PKp, PKs peer and server public component of the generated ECDH key. Pa-
rameters are sent in JSON webkey format

Cryptosuites,
Cryptosuitep

Supported peer and server cryptographic algorithms and ECDH
curve.

Dirs, Dirp Supported peer and server directions. The possible values for the
parameters are: 1=peer-to-server, 2=server-to-peer and 3=both.
The parameters are of unsigned integer type.

Ns, Np peer and server nonces for Initial exchange. The parameter should
be of 16 byte length and should be encoded in base64url format.

ServerInfo Information particular to EAP-NOOB server and web server en-
coded as a JSON object. A user identifies the server based on the
information shared as part of this parameter. The total length must
not exceed 500 bytes

PeerInfo similar to ServerInfo, the parameter carries information particular
to the client device. A user can identify the peer device at the web
server portal using the information shared as this parameter. The
total length must not exceed 500 bytes

Minsleep Wait time in minutes assigned by server during Waiting exchange.
Parameter is of unsigned integer type and the value ranges from
0..3600.

noob a 16 byte nonce value for OOB message. The parameter should be
encoded in base64url format.

hoob A 16 byte cryptographic fingerprint calculated using Initial ex-
change parameters. The parameter should be encoded in base64url
format.

Np2, Ns2 peer and server nonces for Reconnect exchange. The parameter
should be of 16 byte length and should be encoded in base64url
format.

MACp, MACs peer and server message authentication code for Completion ex-
change. The parameter should be of 16 byte length and should be
encoded in base64url format.

63

PKp2, PKs2 peer and server public component of the generated ECDH key. The
parameters are exchanged only if a new cryptosuite is negotiated.
Parameters are sent in JSON webkey format

MACp2, MACs2 peer and server message authentication code for Reconnect ex-
change. The parameter should be of 16 byte length and should
be encoded in base64url format.

Table 6: EAP-NOOB parameters

	Abstract
	Preface
	Contents
	Abbreviations
	Introduction
	Overview
	Thesis Organisation

	Background
	IoT Security
	Secure Bootstrapping
	Wi-Fi Networks
	Security in Wi-Fi Networks
	Security Protocols in Wi-Fi Security.
	WEP and WPA
	WPA2

	Authentication in Wi-Fi Networks
	WPA2-Personal
	WPA/WPA2-Enterprise
	IEEE 802.1X
	Extensible Authentication Protocol (EAP)

	Secure Device Configuration.
	PKI and Digital Certificates
	Diffie-Hellman Key Exchange
	Elliptic Curve Diffie-Hellman (ECDH)

	Out-of-band Channel for Authentication

	Protocol Description
	Overview
	Protocol Terminology
	State Machine
	Protocol Stages
	Initial exchange
	OOB Step
	Waiting exchange
	Key Derivation for Completion exchange
	Completion exchange
	Reconnect exchange
	Key Derivation for Reconnect exchange

	Error Handling
	Error Scenarios

	Security in EAP-NOOB

	Implementation
	Overview
	OOB Message Transfer
	About Source Packages
	Development Environment

	Registering the EAP-NOOB method
	Message Sequence Implementation
	Cryptographic Library
	Persistent Storage

	Web Server
	Automating the Authentication
	Controlling WPA_Supplicant
	Wait Time Assignment
	Updating Peer State

	Hint Message for User Identification

	Discussion
	Results and Analysis
	Peer-to-Server
	Server-to-Peer

	Use Case Scenario

	Conclusion
	EAP-NOOB Parameters

