
Extended features and evaluation of
aggregating OPC UA servers

Karri Kumara

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 17.5.2017

Thesis supervisor and advisor:

Ilkka Seilonen, D.Sc. (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/84757216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Karri Kumara

Title: Extended features and evaluation of aggregating OPC UA servers

Date: 17.5.2017 Language: English Number of pages: 7+37

Department of Electrical Engineering and Automation

Major: Information and Computer Systems in Automation

Supervisor and advisor: Ilkka Seilonen, D.Sc. (Tech.)

OPC United Architecture (OPC UA) is a protocol for data exchange that is based
on a server-client model. OPC UA servers are used in industry to collect and
organize data from devices. An aggregating OPC UA server collects data from one
or more source OPC UA servers and its client serves as the interface to the thus
created OPC UA server network. OPC UA has some advantages to its competitors,
including built-in support for Historical Access (HA) and Alarms And Conditions
(A&C). HA allows storing and reading previous data values, and A&C allows
informing external systems of the states of the server.
This thesis defined requirements for incorporating HA and A&C to an aggregating
OPC UA server and designed how this would be done using software design
principles. The requirements were based on a study of the OPC UA specification
and other relevant literature. The A&C and HA cases chosen to be designed
were based on the aggregating server relaying received requests to source servers.
Extensions based on the designs were implemented to a prototype aggregating
OPC UA server that was run through tests that evaluate its performance both
during configuration and runtime, based on simple use cases. The Prosys Java
OPC UA Software Development Kit was used to create and run the server and the
tests.
The implementation of request relaying-based A&C and HA on an aggregating
OPC UA server was found to be simple. This thesis found the performance of the
aggregating server to be adequate for simple use cases, but possibly inadequate
for multilayer server networks or contexts requiring near real time responses. The
performance evaluation of subscriptions, diversified address space transformations
and improved configuration times were identified as potential targets for further
development.

Keywords: OPC UA, aggregating server, history data, alarms and conditions

aalto-yliopisto
sähkötekniikan korkeakoulu

diplomityön
tiivistelmä

Tekijä: Karri Kumara

Työn nimi: Aggregoivien OPC UA-palvelimien laajennetut ominaisuudet ja
arviointi

Päivämäärä: 17.5.2017 Kieli: Englanti Sivumäärä: 7+37

Sähkötekniikan ja automaation laitos

Professuuri: Automaation tietotekniikka
Työn valvoja: TkT Ilkka Seilonen

Työn ohjaaja: TkT Ilkka Seilonen

OPC Unified Architecture (OPC UA) on tiedonsiirtoprotokolla, joka perustuu
asiakas-palvelin-malliin. OPC UA-palvelimia käytetään teollisuudessa datan ke-
räämiseen laitteista ja sen organisointiin. Aggregoiva OPC UA-palvelin kerää
dataa yhdeltä tai useammalta OPC UA lähdepalvelimelta ja sen asiakas toimii
rajapintana näin luodulle OPC UA-palvelinverkolle. OPC UA:lla on joitain etuja
kilpailijoihinsa nähden, kuten sisäänrakennettu tuki Alarms And Conditionsille
(A&C) ja Historical Accessille (HA). A&C mahdollistaa palvelimen tilojen viestimi-
sen ulkoisille järjestelmille ja HA mahdollistaa aikaisempien arvojen tallentamisen
ja lukemisen.
Tämä työ määritteli, miten aggregoiva OPC UA palvelin voi sisällyttää HA:n
ja A&C:n, ja suunnitteli, miten tämä tehtäisiin käyttäen ohjelmistosuunnittelun
menetelmiä. Vaatimukset pohjautuivat tutkimukseen OPC UA-spesifikaatiosta ja
muusta relevantista kirjallisuudesta. Suunniteltavaksi valitut A&C:n ja HA:n ta-
paukset perustuivat pyyntöjen välittämittämiseen aggregoivilta palvelimilta eteen-
päin lähdepalvelimille. Näiden suunnitelmien pohjalta toteutettiin laajennukset
OPC UA-palvelinprototyyppiiin, jolle ajettiin sekä konfiguroinnin- että ajonaikaista
suorituskykyä arvioivia testejä perustuen yksinkertaisiin käyttötapauksiin. Prosys
Java OPC UA Software Development Kitiä käytettiin sekä palvelimen että testien
luomiseen ja ajoon.
Pyyntöjen välitykseen pohjautuvien A&C:n ja HA:n toteutus aggregoivalla OPC
UA-palvelimella havaittiin yksinkertaiseksi. Aggregoivan palvelimen suoritusky-
ky yksinkertaisissa käyttötapauksissa todettiin riittäväksi, mutta mahdollisesti
riittämättömäksi usean kerroksen palvelinverkkoihin tai lähes reaaliaikaisia vas-
tauksia vaativiin tilanteisiin. Mahdollisiksi lisätutkimusaiheiksi tunnistettiin subs-
kription suorituskyvyn arviointi, monipuolisemmat osoiteavaruusmuunnokset ja
konfiguraatio-aikojen parannukset.

Avainsanat: OPC UA, aggregoiva palvelin, historiadata, hälytykset

iv

Preface

This thesis has been a long time in the making and faced several difficulties. I want
to thank my supervisor Ilkka Seilonen and the people close to me for being patient
with both the thesis and me. I appreciate all of your help, even when it led to
disagreements. I believe it has been for the best.

I also want to thank my predecessors Tomi Tuovinen and Joona Elovaara for
laying in the groundwork for the aggregating server used in this work. Your earlier
work and documentation made this project possible.

One last thanks goes to the customer support staff at Prosys for responding to
my questions about the OPC UA Java Software Development Kit.

Now, full steam ahead to the future!

Otaniemi, 17.5.2017

Karri P. Kumara

v

Contents
Abstract ii

Abstract (in Finnish) iii

Preface iv

Contents v

Symbols and abbreviations vii

1 Introduction 1
1.1 Background . 1
1.2 Objectives . 2
1.3 Research Methods . 2
1.4 Outline of the thesis . 2

2 OPC Unified Architecture 4
2.1 Address Space Model . 5
2.2 Subscription . 8
2.3 Alarms and Conditions . 9
2.4 Historical Access . 10

2.4.1 HA Services . 11
2.4.2 HistoricalDataConfigurationNode 12

3 Aggregating OPC UA server 13
3.1 OPC UA address space transformation 14
3.2 Related research and implementations 15

3.2.1 OPC UA Historian . 15
3.2.2 The aggregating server of Ingolstadt university 15

3.3 Aalto University aggregating OPC UA server 16
3.3.1 Transformation algorithm . 17

4 Alarms and conditions 18
4.1 Requirements . 18

4.1.1 Cases . 18
4.2 Design . 20

4.2.1 Transformation algorithm . 20
4.2.2 Relayed alarms and conditions 21

5 Historical access 22
5.1 Requirements . 22

5.1.1 Cases . 22
5.2 Design . 25

5.2.1 Transformation algorithm . 25
5.2.2 History handling types . 26

vi

6 Performance evaluation 28
6.1 Evaluation system . 28
6.2 Configuration . 29
6.3 Data access . 30

6.3.1 Read . 30
6.3.2 Write . 31

6.4 Historical access . 32
6.4.1 HistoryRead . 32

7 Conclusions 33
7.1 Result analysis . 33
7.2 Further research . 34

References 36

vii

Symbols and abbreviations

Abbreviations
OPC UA OPC Unified Architecture
SCADA Supervisory Control And Data Acquisition
HMI Human-Machine Interface
COM Component Object Model
DCOM Distributed Component Object Model
DA Data Access
HA Historical Access
A&C Alarms & Conditions
UML Unified Modelling Language
API Application Programming Interface
MTL Model Transformation Language

1 Introduction

1.1 Background
Collecting, organizing and analyzing data are important tasks especially for automa-
tion devices. Data gathered from automation devices needs to be accessed in a
form that is comprehensible to both software and to human users. Thus, vertically
integrating different levels of automation networks has gathered a lot of interest and
demand. One way to achieve this integration is using gateways [1]. Automation
gateways are designed to take data from automation devices and represent and allow
managing the data in a software environment.

OPC Unified Architecture, commonly called just OPC UA, is an attempt at
creating such a platform [2]. Like its predecessor, OPC Classic, it is a specification
of a communication framework based on a client-server architecture. Servers serve
as a gateway by hosting and organizing the data from devices, while clients are used
to access and interact with the servers [1]. While OPC Classic is still popular, its
long use over the years has exposed some of its weaknesses. OPC UA made several
additions and improvements to the original, such as improved modelling capabilities
and support for non-Windows platforms [3]. It is used primarily in industrial settings
like factories to gather data such as sensor readings and internal device data values.

In turn, aggregating OPC UA servers are used for collecting data from other
OPC UA servers much like they collect device data [4]. Aggregating OPC UA servers
themselves are still OPC UA servers and can be aggregated further, potentially
creating a pyramid-like structure of OPC UA servers and clients. The client of the
top-layer aggregating server is typically the main interface of the servers for external
systems and thus well thought-out organization of data on the top-layer aggregating
server is important for ease of access.

OPC UA servers use a standardized data representation, allowing any OPC UA
client to connect to the server and access the data without additional preparation [3].
Each server can determine its way of organizing the data it gathers. In the process
of data aggregation from underlying servers, the data might need to be filtered
and transformed. This process is called address space transformation. Address
space transformation is important for efficient use of aggregating servers in order to
represent the large amount of gathered data in an understandable way.

Two features of OPC UA are focused on in this work: Alarms and Conditions
(A&C), and Historical Access (HA). A&C allows the server to inform its clients of
events in the system. [5]. It is often important to be able to gather and pass on
alarms and condition data from lower-level servers to the aggregating server because
the server network is accessed through the client of the aggregating server. HA is
used to collect logs of previous values and events on the server [6]. While a server
that can access its current values is useful, the addition of HA allows better analysis
of the performance of the devices e.g. through graphs and histograms.

Performance evaluations of OPC UA servers have been done previously, for
example with a server wirelessly integrating agricultural devices such as tractors[7].
There is less research on the performance of aggregating OPC UA servers, and even

2

less of ones using HA or A&C.
Previous research in Aalto University [8] created an aggregating OPC UA server

and its address space transformation algorithm using the Prosys [9] Java Software
Development Kit. These are the starting point of this work.

1.2 Objectives
The research problem of this thesis is designing the addition of Alarms And Conditions
(A&C) Historical Access (HA) features to a previously created aggregating OPC UA
server, as well as the performance evaluation of a prototype server based on those
designs. Currently, no existing designs for A&C on aggregating servers are available.
For HA, some existing designs like the OPC UA Historian [10] are available, but
they are not used as the basis for the requirements or design of HA in this thesis.

The designs of both A&C and HA will incorporate each required feature as defined
by the OPC UA specification [2], such as services and related methods. The designs
are used as basis for implementing extensions to the previously designed aggregating
server prototype[8]. This prototype is run through tests that evaluate its performance.
The aim of these tests is determining the efficiency of the transformation algorithm
and if the algorithm is affected by increasing the size of the modeled system. In
addition, they are used for analyzing how well the aggregating server performs during
runtime in comparison to the source servers it aggregates.

1.3 Research Methods
This thesis studies the OPC UA specification, the existing literature and research
done on the subject of OPC UA and especially aggregating servers. These are used
as the basis for defining the requirements for aggregating servers using Historical
Access (HA) and Alarms and Conditions (A&C).

The Java programming language and the Prosys OPC UA SDK for Java [9] are
used to create and test the OPC UA aggregating server prototype. The starting
point of the prototype will be the aggregating OPC UA server and transformation
algorithm previously used in Aalto University [8], but these will be modified for the
needs of this work.

The performance of the prototype is evaluated using tests using Java and the
Prosys OPC UA SDK for Java. The tests will measure durations taken by different
actions such as reading data and creating the aggregating server address space. For
storing, analyzing and graphically presenting the testing results, LibreOffice Calc[11]
is used.

This thesis uses charts to visually demonstrate design concepts, as well as Unified
Modelling Language [12] sequence diagrams to demonstrate processes in the design.

1.4 Outline of the thesis
Chapter 2 examines OPC Unified Architecture through a literature study. It deals
with the history of OPC UA then continues to summarizing the address space model,

3

as well as the Historical Access and Alarms And Conditions features of OPC UA.
Chapter 3 is the second part of the literature study, concerning the concept of

OPC UA aggregating servers and explaining how and where they have been used, as
well as with the address space transformation process. The chapter also details the
aggregating server and transformation algorithm that serve as the basis of this work.

Chapter 4 discusses the Alarms And Conditions part of the OPC UA specification
in the context of an aggregating server. The requirements and design of an aggregating
server with A&C are detailed.

Chapter 5 defines the requirements of an OPC UA aggregating server using
Historical Access, and details a design based on those requirements..

Chapter 6 uses graphs to present the results of the performance evaluation done
on an aggregating server prototype based on the designs created in chapters 4 and 5.
The testing environment and process are also described.

Chapter 7 contains a summary of what has been discussed in this work, conclu-
sions based on the test results, as well as suggestions for extensions for the aggregating
server and further research.

4

2 OPC Unified Architecture
Both OPC UA and OPC Classic are communication frameworks [2]. They are useful
for collecting and aggregating data from various devices, which has made them
popular for arranging data collection and inter-device communication for automation.
They can be used to gather information from devices such as sensors, or control them
through alteration of operating variables. This allow OPC to be used for complete
control of factories and other such facilities. They are often used to focus device
control and the presentation of data for human users, e.g. in SCADA and Human
Machine Interface (HMI) implementations. OPC or OPC UA Servers collect data
from devices and other servers and present it to clients, allowing them to read and
make changes to the data. Different versions of OPC do this slightly differently.

The original OPC, also known as OPC Classic, uses Microsoft’s Communication
Object Protocol (COM) and Distributed Communication Object Protocol (DCOM)
as the basis of its communication[3]. It also requires the use of the Microsoft Windows
operating system. One of the first OPC specifications and the most commonly used
is OPC Data Access, which allows reading and writing data. Later on, additional
specifications were created, including Historical Access and Alarms And Events.
While very popular, due to its dependance on Microsoft-specific technologies, it is
not suited for the needs of every company. Also, due to its age and how it has been
expanded over time with additional standards, it has some problems. These include
poor integration of some of its extensions and somewhat limited capabilities for data
modeling.

To create a possible solution for these issues, the OPC Foundation began develop-
ment of OPC UA [3] . In comparison to OPC Classic, OPC UA is not restricted to
the Windows platform and can thus be made to work on many kinds of platforms. It
was designed from the beginning to include the functionalities of the OPC extensions
and have them work together in a unified address space.

While its first version was released in 2006, implementations of OPC UA are still
being actively developed on multiple programming languages, such as Java and C++.
In addition to the OPC Foundation, companies such as Prosys [9], [13] , Softing [14]
and Unified Automation [15] are developing their own software development kits for
OPC UA.

5

2.1 Address Space Model
The address space of an OPC UA server means all the data on that server, presented
to the clients according to the address space information model [3]. The address
space has nodes, which are blocks of data on the server, and references, which are the
relations between those nodes. Together, these form a graph. The exact structure of
the node-reference network of the address space is not defined by the specification
and should be defined based on the requirements of the application.

The OPC UA address space model is a meta model: It models how information
is itself modelled in the address space [3]. It establishes node classes and base types
that are used in the address space, which serve as the basis for more specific models.

Nodes can have several attributes and values as well references with other nodes
[16]. The actual data of the system is stored in the attributes of nodes. Each node in
an OPC UA address space has a unique NodeId attribute which is used to identify
the node. The node also typically has other attributes, based on its type. A node
can be one of several NodeClasses. The NodeClass of a node defines what attributes
and references the node should have. There are seven different NodeClasses: Object,
ObjectType, Variable, VariableType, Method, MethodType or View.

Objects do not have value attributes themselves, but are used to contain Variables
and Methods [16]. They can represent physical or non-physical elements of the system.
They are the primary way of organizing the address space, since they can contain
other types of nodes. One type of object is the folder, which is a tool for organizing
other nodes, much like a computer folder.

Variables contain values, which have a DataType such as integer or boolean. A
simple variable simply contains one data value as an attribute, but a complex one
might have any number of child variables, each with their own values and possible
child Variables of their own, which could themselves be complex [16] .

A reference is always between two nodes and can be one- or two-directional [16]
. The node containing the reference is called the source node and the referenced
one is called the target. The ReferenceType of a reference is used to define the kind
of relation that the two nodes have. For example, the type Organizes is used to
portray a hierarchical relation between two nodes. If the relation is hierarchical, that
reference cannot lead to a cycle. The nodes connected by a reference are not always
in the same address space. In the case of this kind of remote reference, the remote
node is identified with the name of the server and the name of the node on that
server.

The type-nodes are used to make a new type definition, setting requirements for
future node instances of that particular type [16] . For example, the VariableType
”CounterType” could define a kind of variable that is used as an integer counter going
from 0 to some maximum value. The user can then instantiate a variable directly
as a CounterType without needing to create the functionality from scratch. The
CounterType in this example is a TypeDefinitionNode, linked to the node with the
HasTypeDefinition Reference. The TypeDefinitionNode contains the actual metadata
about what attributes a node of the presented type should have. TypeDefinitionNodes
can also inherit from supertypes using the HasSubType reference. Inheritance works

6

similarly to inheritance in programming languages, e.g. Java. Subtypes inherit the
characteristics of the supertype and nodes of the subtype can be used where the
supertype is expected.

A subtype of objects, events are the occurrences such as data value changes and
errors within the address space, which generate event notifications [16]. For clients to
be informed of event notifications, they have to subscribe to an EventNotifier node
on the server. An example of an EventNotifier would be one that provides events
related to a particular sensor, such as alarms and value changes. Subscription and
the special Event subtypes Alarms and Conditions are explained in greater detail
later.

A Method is a software function that, as previously mentioned, is a part of the
address space model and is always a component of an Object [17]. They are called
to execute some procedure, can be given additional arguments for that purpose and
thus resemble functions in programming languages like C. Methods are typically
used for simple operations such as calculations. For longer, more ongoing operations
on the server, programs are used. Programs in OPC UA are derived from finite state
machines and run continuously, changing from state to state as necessary.

Figure 1 depicts an OPC UA server and shows how the address space relates
to other parts of the server. The server itself has its own subcomponents [2]. The
address space typically models some external objects, such as industrial devices. Also
seen in the address space is a view, which is a subset of the address space that has
been limited according to some specific interest [16], such as a subset containing only
the alarms for monitoring purposes. The server Application Programming Interface
(API) manages the address space and accesses the data in it. The communication
stack is responsible for communication between the server and the OPC UA client.
The client is used as an interface to the server by other servers or software, or human
users.

7

Figure 1: The structure of an OPC UA server [2].

Request messages, such as for Read and Write, are sent from the OPC UA client
to the server and processed in the OPC UA server API. The API accesses the address
space and retrieves or modifies some of its contents, and sends a response message to
the client. Monitored items and subscriptions are a way for the client to continuously
keep track of values in the address space.

8

2.2 Subscription
A subscription is a way for a server to automatically transmit data changes and event
notifications between server and client [3]. There are three different items that can
be monitored with a subscription: Variable values, events and aggregate values. In
this case, aggregate values refer to values derived from raw data in some fashion,
such as averages, minimums and maximums over a given time period [18].

Each subscription has a unique SubscriptionId used to identify it, as well as a
processing priority relative to the other subscriptions created by the same client.
PublishInterval determines how often the server sends forth queued notifications of
changes to the client. A shorter publishing interval will allow observation of the
server to be closer to real-time, but can be demanding for the hardware to process.
PublishEnabled determines simply whether the notifications get delivered to the
Client at all. If set to false, the monitored item can still generate notifications, but
they are not published.

Each subscription can have multiple monitored items. Monitored items also have
important subscription-related parameters, which can be seen in figure 2.

Figure 2: Subscriptions and monitored items. [3]

MonitoringMode determines whether the monitoring for the item is currently
active or not. Turning monitoring off for one item does not affect the monitoring
of the other items in the subscription. SamplingInterval determines how often the
monitored item is checked for changes, or how often an aggregate value is calculated.
This setting depends heavily on the monitored item. The level measurement of a
liquid tank could be checked updated often, but something like an outside temperature
measurement might only need to be updated once per hour. QueueSize determines
how many notifications from the monitored item can wait to be published at any
given time. This setting depends greatly on the publishing interval of a server. If the
server is slow to publish notifications to the client, a longer queue might be necessary
to ensure that relevant information is not lost.

9

2.3 Alarms and Conditions
Alarms and Conditions (A&C) are ways that parts of an address space communicate
their current state and possible risk or error states to clients and the rest of the
system [5]. The OPC UA specification defines a condition as a sort of permanent
event that always has a defined state, rather than occurring once and being disposed
of after acknowledgment. Conditions represent the state of a system or a subset of
a system. These are typically physical and practical, such as informing of a need
for maintenance or other user action, or a value exceeding a defined limit. Thus,
conditions are very important for communicating the states of the system to the
user. A condition has two base states: "enabled" and "disabled". "Enabled" can be
split into more specific sub-states, such as "value approaching dangerous level" and
"value reached dangerous level" for a condition tracking a sensor value. When the
condition is disabled, no event notifications will be generated for it. To be informed
of changes in condition states, a client must subscribe to the condition. As seen in
figure 3, conditions are attached to nodes with the HasCondition reference.

Figure 3: A typical use of a condition. A real sensor is modelled in the address space
of the server, and a condition is created to monitor it and report to the client.

All conditions have a ConditionType, a ConditionClass and a ConditionSource [5].
Existing subtypes for conditions includes AcknowledgeableConditions, which have to
be acknowledged by the user when their state becomes enabled, and dialogs which ask
the user for input on behalf of the server. ConditionClasses classify which purpose the
condition is intended for, e.g. ProcessConditionClassType for representing the state
of a process and MaintenanceConditionClassType for representing a maintenance-
related state. The ConditionSource determines what element, typically a variable or
an object, the condition is based on or related to. Conditions have a severity, which
tells how important the condition is for the overall performance and safety of the
system. For instance, a condition that indicates whether temperature has reached a
dangerous level should have a high severity.

Alarms are a specific kind of AcknowledgeableCondition that have additional
states [5]. These states are active, shelved and suppressed. If the alarm is active,
what the condition represents is currently happening, e.g. a value is beyond a safe
limit. Active can be split further into sub-states. Shelved and suppressed both
prevent the alarm from sending acknowledgment requests to the user. The difference

10

between the two is that suppressed is set by the server internally, whereas shelved is
set by the user themselves. Their purpose is to prevent the user from being flooded
with acknowledgment requests when the system encounters a problem and allows
them to focus on solving the issue.

2.4 Historical Access
The part of the OPC UA standard that deals with past values is Historical Access
(HA) [6]. HA is a feature that logs changes made in an OPC UA server address
space. The historical data in HA can be stored in temporary memory buffer, or
in a more permanent location such as a database. Different implementations store
data at different rates and in different amounts, and typically vary depending on the
context. Some values need more detailed archival than others. For instance, liquid
level in an important tank might be recorded several times in a minute, but some
values might be recorded only once per day.

An important aspect of historizing is the timestamp [6]. In a node it tells the time
when its value was changed and for an event it tells when the event was generated.
Variables have two timestamps: The source timestamp and the server timestamp.
The idea is that the source timestamp comes from whichever device first generated
the value first and will not be changed by the server, and the server timestamp is
determined on the server itself [19].

A data node that the server can collect history for is called a HistoricalDataNode
[6]. They are always a part of other nodes, typically as a property or a variable. A
HistoricalDataNode has its Historizing attribute defined and can refer to a Histori-
calDataConfigurationType object, which is explained in chapter 2.4.2. These can be
seen in figure 4. The AccessLevel attribute of a node determines whether the history
can be read or changed. The UserAccessLevel attribute determines the same for the
currently connected user. The historizing attribute determines whether the history
storing is currently enabled.

Figure 4: How an OPC UA server uses Historical Access. History values are read
from and written to storage, typically as requested by a client.

11

In addition to data nodes, HA also allows the recording of events [6]. When a
historizable event is generated, it can be stored with a HistorizedEventNode, which
the server identifies by checking their EventNotifier attribute. As they are a subset
of events, conditions can also be historized.

2.4.1 HA Services

As shown in figure 4, the client can make history service requests to the server. These
services include reading, updating or deleting historical data.

Historized data is accessed and updated through the HistoryRead and HistoryUp-
date services, respectively [20]. The same HistoryRead service is used for different
purposes by changing the historyReadDetails parameter. By changing the parameter,
HistoryRead can be used to either read recorded events from the database, raw
(unmodified) history values, modified history values, aggregate values or interpolated
values. Structured history data, such as annotations, are structures that in addition
to a data value also contain a unique identifier for the data value. Some systems and
cases allow a data node to have more than one value with the same timestamp, in
which case the unique identifier is used to differentiate them.

If the number of historical values or events matching a HistoryRead request
exceeds the maximum number defined in the request, the response to the request will
return a continuation point for that can be used as the starting point for a further
request [20]. A continuation point is also returned if the request handling has to be
stopped prematurely due to taking too much time, buffer space or processing power.

HistoryUpdate is used to insert, modify, replace and delete stored values or events
[20]. Similarly to HistoryRead, the same service is used for different purposes by
changing the historyUpdateDetails parameter.

12

2.4.2 HistoricalDataConfigurationNode

A HistoricalDataConfigurationNode is a node that contains information on how
history is stored for a particular node [6] and can be used by both the server
internally as well as to inform the human user. It is linked to its node with the
HasHistoricalConfiguration reference, as shown in figure 4,.

The structure of a HistoricalDataConfigurationNode is presented in figure 5. The
node has one mandatory variable, Stepped, a boolean which defines whether the
unknown value between two known data points should be estimated and graphically
presented with a sloped interpolation (smooth lines between data points) or a stepped
interpolation (flat horizontal lines between data points) [6].

Figure 5: The structure of the HistoricalDataConfigurationType.

Its other, optional, variables are Definition, MaxTimeInterval, MinTimeInterval,
ExceptionDeviation, ExceptionDeviationFormat, StartOfArchive and StartOfOnlin-
eArchive [6]. Definition is a human-readable string that defines how the value of the
associated node is calculated, typically in a form of an equation. MaxTimeInterval
and MinTimeInterval are Duration variables that define the minimum and maximum
times between two data points in value history, regardless of whether the value
changes or not. This means that if the MaxTimeInterval is set, the server will store
a value into history even if it did not change, and if MinTimeInterval is set, the
server will not store a value until at least MinTimeInterval has passed since the
storage of the last node. Similarly, the ExceptionDeviation variable defines the
minimum amount that the value of the associated node has to change before it is
recorded and ExceptionDeviationFormat specifies whether the ExceptionDeviation is
absolute, a percentage of the previous value, a percentage of the value ranges defined
by the instrument or the operation type, or unknown. StartOfArchive determines
the earliest DateTime that the archive has values for either online or offline, and
StartOfOnlineArchive determines the same specifically for the online archive.

13

3 Aggregating OPC UA server
Being able to access several different automation servers through a single software
allows managing the data of a large number of devices and locations at once, which
has led to the development of several technologies [1]. In a comparison between
technologies allowing this kind of automation data aggregation [1], OPC UA was
found to have several advantages, such as its built-in support for historical access,
alarms and different communication protocols, such as a customized form of TCP
and HTTP.

To achieve such vertical integration, OPC UA servers can be connected and
organized in a layered architecture, as described in the OPC UA specification [2].
Higher-layer servers collect and organize data from the lower layer servers, and the
client can access and interact with the total system through the highest layer. This
kind of architecture is called the aggregating server architecture [4]. Aggregating
servers can themselves be aggregated, so the structure can have more than two layers.

Figure 6 depicts an aggregating OPC UA server. It interfaces with source servers
through their clients, and external systems access the data of the source servers
through the client of the aggregating server.

Figure 6: An example of an aggregating OPC UA server that aggregates three source
servers.

14

3.1 OPC UA address space transformation
The OPC UA standard defines an information model as an organizational framework
that defines, characterizes and relates information resources of a given system or
set of systems” [21]. An information model is one representation of the structure
of the information in a system or a set of systems [22]. However, it is not the only
possible representation of that data. Information model transformation is taking the
data represented by one information model and restructuring it to match another
information model. This means that while the first model and second model are based
on the same data but are structured differently. It could be as simple as changing the
relations or hierarchies between objects, but sometimes the new information model
demands different types of objects.

Consider an environment like a factory, with hundreds to thousands of devices,
each consisting of multiple parts, and a server collecting data from all of them. If all
the data is left as it is, the resulting server is very difficult to manage. What is needed
is an information model transformation. In the case of OPC UA, an address space
transformation can be used to transform the address spaces of the source servers
into the aggregating server address space [4]. Transforming one OPC UA address
space into another can help show and gather exactly the information that the client
accessing the server needs.

When data is collected from a lower-layer system to a higher-layer one, there is a
chance to change the structure of the data in some fashion. For example, If a client
only needs data from some of the sensors on the lower-layer servers, the higher-layer
servers should only take the sensor data from the lower layers and organize it in
some readable fashion. From the perspective of the client accessing the highest layer,
there is only one server.

An address space transformation in aggregating servers is not necessarily one-
to-one. What this means is that what would be portrayed by several nodes in one
model might be portrayed by just one in another. For instance, some group of nodes
on lower-level servers might only be represented by the calculated average of their
data values on the aggregating server [10]. Some transformations could also require
more complicated m-to-n transformations, where values and references from m source
nodes are used to create n nodes in the target address space. Thus, references are
also valuable information for the transformation process.

The structure of an OPC UA address space can contain cycles, as not all References
are hierarchical [3]. Depending on the algorithm used for browsing the address space,
this can lead to revisiting Nodes or even infinite loops. As the NodeId of each node
is unique, storing visited NodeIds in e.g. a list and comparing the NodeId of the
current node to them is a possible if potentially time-consuming way to avoid loops.

An OPC UA address space transformation will have to take into account that
things are represented differently on different servers. Type mapping rules translate
one type to its equivalent on another server, or identify semantically equivalent types
on different servers [4]. As Types can inherit from other Types, the transformation
process needs to make decisions of which rules are applied to which types. Instance
mapping rules deal with the handling of objects on servers. One example of this is if

15

several source servers each have an identical object instance, of which the aggregating
server only needs one [4].

As a simple example, consider an aggregating server that aggregates two source
servers, A and B, representing different parts of the system but in the same environ-
ment. As seen in Figure 7, The valves of servers A and B are slightly different and
are thus modelled as ValveAType and ValveBType, but for the aggregating server
and the end user the type differences do not matter and both are mapped as simply
ValveType. Also, both A and B have included the same room temperature sensor,
but the aggregating server does not need the same information twice and only maps
it once.

Figure 7: An example of address space transformation dealing with different typing
and redundant nodes on source servers.

3.2 Related research and implementations
3.2.1 OPC UA Historian

The OPC UA Historian [10] is an aggregating OPC UA server developed by Prosys.
It is used as to collect and access the current and historical data of other OPC UA
servers that do not implement Historical Access themselves. The historical data
is stored in an SQL database. The OPC UA Historian allows the user to select
which nodes are to be historized, and also allows later removal of nodes. However,
it currently does not allow fully changing how the source server address space is
transformed and mapped to the aggregating server.

3.2.2 The aggregating server of Ingolstadt university

Researchers in Ingolstadt university in Germany[4] proposed a manner of address
space transformation where mapping rules are integrated into OPC UA information
model extensions. In this transformation model, source servers are responsible for

16

mapping which source server node types match which aggregating server source types,
and how aggregating server NodeIds are mapped to source server NodeIds.

An aggregating OPC UA server using this model was made. The server could
relay some service calls, such as reading and writing, from the aggregating server to
the source servers using its mapping [4].

3.3 Aalto University aggregating OPC UA server
The Ingolstadt university aggregating OPC UA server model served as a basis for
an aggregating OPC UA server developed in Aalto University in Finland, using the
Prosys Java SDK for OPC UA [23].

For each server this server aggregates, it creates a NodeManager, which is in
charge of relaying service calls from aggregating server nodes to the source server
nodes they correspond to. NodeManagers do this by keeping a record of which source
server they are associated with, as well as a hashmap-based mapping of aggregating
server NodeIds to source server NodeIds. For example, as seen in Figure 8, a Read
call at a node on the aggregating server would be caught by an IoManagerListener,
relayed by a NodeManager as a Read call to the client of the aggregated server
containing the original node, and the result response of that server would be relayed
back to the original client. None of this is visible to the external system asking data
from the client, all it can tell is that it made a read call and received a result.

Figure 8: How the Aalto University aggregating OPC UA server relays a read call.
The NodeManager is used to find the original source node and its server.

In addition to the aforementioned NodeManager and IoManagerListener, the
aggregating server developed at Aalto University relies on the NodeManagerListener
of the server and the MonitoredDataItemListener of its internal client to use sub-
scriptions to notice changes made to values on the aggregated server and update the
values on the aggregating server accordingly. This is discussed in more detail in the
master’s thesis of the developer [23].

The transformation algorithm used by the server was influenced by Extensible
Stylesheet Language Transformations (XSLT), the Backus-Naur Form (BNF) and

17

regular expressions. The algorithm is capable of transforming one address space into
another, but is limited to regular Data Access, and one-to-one transformations [8].
It is thus able to alter the reference structure of a model and leave elements out, but
it is currently not capable of combining nodes.

3.3.1 Transformation algorithm

The address space transformation method used in this work is based directly on
the previous version of the aggregating server [8], but expanded to deal with e.g.
history handling. The configuration of this aggregating server is based on going
through the source server(s) and using a pattern-recognition algorithm based on
regular expressions. This finds node-reference structures and maps them to different
structures on the aggregating server.

Information model transformation rules have two parts: The left-hand side (LHS),
representing the original source model, and the right-hand side (RHS), representing
the target model. In the scope of this thesis, it is enough to understand that a
transformation algorithm takes the source model as an input and rearranges it into
the target model based on the difference between LHS and RHS.

The model transformation algorithm uses a regular expression-like combination
of string patterns and variables on both LHS and RHS and the algorithm uses those
for mapping the transformation [8]. The rules are contained in a file separate from
the rest of the source code, allowing the rules to be changed in a modular fashion
without affecting the software itself. A rule manager is used to parse the rule strings
and instruct the software on how to enact them. Consider the following rule as an
example:

• LHS: [BoilerType]#1/FT1001#2

• RHS: #1/[PipeType]Pipe1001/[FTType]FT1001/#2(BrowseName=DataItem,
DisplayName=DataItem)

The algorithm is browsing the source address space, using Organizes and HasCom-
ponent references to find new nodes, chosen because of how commonly they are used
and because when properly used, they should not cause loops while browsing the
address space. On the LHS, the algorithm recognizes a BoilerType node with a
child node named FT101 and assigns them as variables #1 and #2, respectively.
On the RHS, the algorithm creates a slightly different structure where it copies
and rearranges the data, creating a PipeType and FTType node in between the
BoilerType and FT1001 nodes. The transformation algorithm and its syntax are
explained in more detail elsewhere [8] .

18

4 Alarms and conditions

4.1 Requirements
As the aggregating server serves as an interface to the servers it aggregates, it should
be able to pass on information about the conditions and alarms of the system to its
clients. This is implemented by having conditions on the aggregating server that are
triggered by changes on the source servers. An aggregating server can even be made
primarily for condition notifications, e.g. notifying a factory monitor of situations
requiring manual intervention. Higher-layer conditions can possibly use lower-layer
conditions as inputs. This would allow further customization of the information
presented to the user.

The aggregating server needs to fulfill the requirements set by the OPC UA
Alarms And Conditions (A&C) specification [5], such as A&C-related methods.

4.1.1 Cases

There are three possible scenarios for condition generation on the aggregating server.
Each has different requirements, advantages and disadvantages.

The first case is that the source server has a condition which is transformed and
mapped to the aggregating server as a proxy condition. The new condition is then
connected to the source server condition via subscription. Figure 9 illustrates this
case. An example of this scenario would be an aggregating server that aggregates all
the different conditions from across the system for monitoring purposes. Regardless
of the source server condition they are based on, the function of the aggregating
server conditions can be the same, as they simply need to be triggered by the original
condition, thus only serving as proxies for the original conditions. As such, this is a
simple and light solution, as all conditions can be treated in the same way.

Figure 9: An aggregating server with proxy conditions.

19

Proxy conditions have no internal logic of their own, merely tracking the state
of the source server condition they subscribe to. The alternative of copying the
functionality of a source server condition through its client is not feasible, as it would
require replicating another piece of software during its runtime. Even if there was a
way to do that reliably, there is no guarantee that the source server condition is not
itself reliant on some external software such as a database or a third server. Because
of these factors, this possibility was not explored in this work.

Dialogs are conditions that prompt the user for input. As the dialog prompts are
sent to the user through the server client, relaying prompts from the source server to
the aggregating server would require a way to detect when they occur and then send
the prompt to the aggregating server client. The user would then respond to the
prompt and the response would be relayed back to the source server client.

The second case is that the aggregating server generates a local condition based
on source server values, but no equivalent condition exists on a source server. In the
proxy condition case, it was enough for the transformation algorithm to notice a
condition-type node on the source server. In the case of local condition-handling,
the transformation algorithm instead needs to search the server for nodes and
variables that require conditions to track them. Upon finding such a variable, the
transformation algorithm creates an equivalent aggregating server variable and a
condition and connects the two. The result is shown in figure 10.

Figure 10: An aggregating server with its own local conditions. Local conditions do
not interact with source servers directly, only indirectly through local variables.

An example of this kind of use would be an aggregating server that aggregates
a source server representing a device, designed by a third party. On that source
server is a variable, e.g. a flow measurement. For the source server, the value of
the variable is not critical, but to the larger system it might be. Other devices in
the system might be incapable of handling very fast flows. So, a condition to track
the flow is necessary, and it is created on the aggregating server and connected to a
variable on the source server.

20

One advantage of local conditions is that A&C-methods can be used exactly as in
a single-server solution, since the required condition nodes and logic are are all on the
aggregating server. This also centralizes the A&C-logic to one server, meaning that
troubleshooting and modifying the A&C can be done entirely on the aggregating
server.

The third case is that the aggregating server has both relaying proxy conditions
and local conditions. This case is shown in figure 11 This requires the aggregating
server to keep track of which condition is local and which is a proxy, so that method
calls can be handled correctly. This case would be used when source servers have
A&C, but it is insufficient for the larger system and requires local conditions to
supplement the proxy conditions.

Figure 11: An aggregating server with a combination of relayed and local conditions,
a hybrid of the previous two designs.

4.2 Design
The A&C design in this work uses proxy conditions as described in section 4.1.1. This
means that during the configuration of the aggregating server, the transformation
algorithm will try to find conditions on the source server and then create aggregating
server equivalents and connect the two through subscription.

4.2.1 Transformation algorithm

Variables are connected to conditions associated with them through HasCondition
references. When browsing through a source server, the transformation algorithm
checks the references of each Variable it visits for HasCondition references, thus
finding the conditions of the source servers. For each of these alarms, a function
called CreateCondition is called.

21

CreateCondition creates a condition node with the same parameters as the
source condition, such as messages, severity and triggering limits. The string value
ActiveState of the new aggregating server condition is set to Subscribe to the
ActiveState of the source condition. This means the state of the aggregating server
condition will follow that of its source server equivalent.

4.2.2 Relayed alarms and conditions

The designs of how A&C-related methods for proxy conditions are described in
table 1. As long as a mapping exists between the aggregating server condition and
its source server equivalent, method calls such as Acknowledge, Confirm, Disable
and Refresh can be relayed to the source condition. The source condition can then
change its status, leading the the aggregating condition following suit. The Shelve
and AddComment methods deal with what the user perceives regarding the condition
and should be focused on higher-layer servers rather than lower-layer servers that
the user does not directly interact with.

Table 1: A table about the different methods and features related to A&C and how
they work with proxy condtions.

22

5 Historical access

5.1 Requirements
An aggregating server that implements Historical Access (HA) should follow the
OPC UA Historical Access specification. As such, it should implement HA services
and methods as instructed in the specification [6]. Regardless of how the HA is
implemented, the server should be able to write and read historical data, recording
changes to the values. Chapter 5.1.1 examines these services in more detail, as well
as how their implementation depends on the type of history storage used.

The history manager referred to in this chapter is not a part of the OPC UA
specification itself. However, each aggregating server that has HA-features should
have some part of its software dedicated to managing HA requests. That part is
called the history manager in both the C++ by Unified Automation [15] and Java
software development kits for OPC UA by Prosys [9] and was adopted for this work
as well, though this work is not exclusively about those implementations of OPC
UA.

5.1.1 Cases

There are three basic forms of HA on aggregating servers, which place different
requirements on the system. The historizing process and historical data storage
of HA can be performed on the on the aggregated source server, the aggregating
server or on both. Each of the three cases places different requirements for the
implementation.

The first case is relayed history storage on source servers. It is shown in Figure 12.
Rather than having its own history database, the aggregating server outsources its
history storage to the source servers. While the image has the source server with its
own history database, the server itself might similarly outsource its history storage
to another server. The details of how the source server handles its own history
management are not relevant to the aggregating server. When the aggregating server
client makes a history request such as HistoryRead for a specific node, the request is
relayed to the source server the node was aggregated from. As this solution has no
requirements on a history database, it is the simplest and lightest option.

23

Figure 12: History data storage on the source server.

Relayed history operations have difficulties that local history operations do not.
The core issues are the handling of interpolation and aggregate values, as those
are server-specific [6]. Relaying ReadProcessedDetails and ReadAtTimeDetails calls
can lead to severe inconsistencies as each source server calculates interpolated and
aggregate values in their own way. Performing the interpolation on the aggregating
server is difficult, as it has no direct access to the history databases of the source
servers, which means searching for the closest earlier and later values is not trivial.
Another potential problem with ReadProcessedDetails is that it can be used to
request historical aggregate values based on nodes originating from different source
servers. Thus, ReadProcessedDetails cannot be implemented with a simple relayed
request. A possible solution is retrieving the required raw data from the different
source servers with relayed ReadRawModifiedDetails calls, calculating the requested
aggregate values on the aggregating server and returning them.

24

The second case is local history storage on the aggregating server, as depicted
in Figure 13. If HA is only on the aggregating server, nodes and events on the
aggregating server based on lower-layer data save their values into some sort of
historical database. This type of history storage has been examined in some detail.
Examples of these kinds of solutions include the OPC UA Historian [10] and a the
OPC UA History Gateway [24]. In these implementations the aggregated server does
all the historizing in the system, keeping an extensive database of past values. This is
a way to centralize the history management and allow easy access to data for analysis.
If the values that the are meant to be historized are updated on the aggregating
server in a timely fashion, this approach should not differ from implementing HA on
a single non-aggregating server.

Figure 13: History data storage on the aggregating server.

The third case is a hybrid of the previously explained local and relayed history
storages, as shown in Figure 14. If historizing is done both on aggregating and
aggregated servers, each server might implement it differently. For example, different
layers might store values at different rates or have a different buffer size for historical
values. An example of this would be a case where the aggregated server stores detailed
history data from a shorter period, such as the last 24 hours, but the aggregating
server might have data from a longer period but only a few values per day. Another
case of differing HA implementations on the server would be simply storing history
values for data that is not historized on the aggregated servers. For instance, if the
aggregated servers are ready-made commercial solutions, some might have their own
history databases while others might not, and the aggregating server can provide
history storage for the latter.

25

Figure 14: Hybrid history data storage, with history data on both the aggregating
server and the source server.

History operations in hybrid implementations will require accessing history data
on both the aggregating server history database as well as on the source servers.
HistoryRead requests require the combination of data from both the aggregating
server and the source servers. HistoryDelete operations should be done on both
aggregating and source servers to ensure deletion. In the case of modifying or updating
a historized value, the aggregating server history database should be checked for
a value with the given timestamp. If it exists, the operation is done to that value.
Otherwise, the HistoryUpdate or HistoryModify request is relayed onto the source
server.

5.2 Design
5.2.1 Transformation algorithm

History handling options were added to the transformation rule system of the previous
aggregating server[8], in addition to the previous parameters LHS (Left-Hand Side)
and RHS (Right-Hand Side). The history handling parameters are optional. If the
rule has missing history handling instructions, the server default settings are used.

The first history handling parameter is the history storage location, the most
important one. There are three different string options: "local", "relay" or "none".
The design for the hybrid case is not explored in this section.

In all cases, the history storage type is written into the HistoryConfiguration
node of the created node. In addition, if the parameter is "local", the HistoryMan-
agerListener of the aggregating server is called to create a local history for the node.
If the user defines the history storage as "local", they can also add the parameters
minTime and maxTime, which are respectively the minimum and maximum times
that can pass before the server records the value of the node into history. These

26

are written into the HistoryConfiguration of the node as well. The minTime- and
maxTime-parameters allow different nodes to have different history storage intervals.

As in the previous version of the rule system, each aggregating server node only
has a maximum of one corresponding node on a source server. This means that
that processed values such as averages or sums of multiple source server node values
are currently not supported. This also simplifies the history handling system, as
any history request on the aggregating server can only result in one history request
on a source server. A many-to-one transformation would require significantly more
mapping information and a more elaborate rule system.

5.2.2 History handling types

Figure 15 depicts how the aggregating server determines how it chooses how to
handle history calls for a node. During runtime, the server recognizes whether nodes
have their history access enabled by checking their AccessLevel attribute [6]. The
AccessLevel has eight bits that each describe whether a procedure is allowed for the
node. If the bit for HistoryRead is marked as 1, HistoryRead is allowed for the node,
and similarly for HistoryWrite.

When a call of that type is made for the node, the history manager checks the
HistoricalDataConfiguration of the node: If the history storage for the node is marked
as "local", the history manager will perform the action in the history database of
the aggregating server. If the history storage of the node is marked as "relay", the
HistoryManagerListener must then determine which node on which source server
corresponds to the aggregating server node.

27

Figure 15: UML sequence diagram of how the aggregating server handles a Histo-
ryRead call. The process depends on whether the history storage of the node is local
or relayed.

In the relayed case, the getOriginalNodeId-function consults the mapping of the
aggregating server to find the source server the node was transformed from, as well
as the original NodeId of the source node. A new history service call with the same
parameters is then made to the source server, using the found original NodeId.

Historical Access services are handled differently in each of the three cases. In the
case where history data is stored on the source servers, most services are done through
relaying the requests. ReadProcessedDetails and ReadAtTimeDetails require the
aggregating server to request the needed raw data from the source servers and then
perform the necessary calculation or interpolation locally. For ReadAtTimeDetails,
if no raw data is found for the given timestamp, new requests for raw data are made
with an earlier starting time and later ending time until one earlier and one later
stored value are found for the interpolation. In the case where history is stored
locally on the aggregating server, all services are handled as in a single-server case.

28

6 Performance evaluation

6.1 Evaluation system
The server setup used for all tests uses one or more source servers and one aggregating
server. The source servers are based on the concept of an industrial setting with one
or more boiler-devices. These Boiler servers are based on the ones used in previous
work on this aggregating server [8], with some differences. As the new Boiler servers
are used for testing HA and A&C, they now have a basic alarm for each boiler device
as well as a working historizing implementation. In addition, a basic method was
added for testing method call relaying from aggregating server to source server. An
example of the transformation of a one-boiler source server address space to the
aggregating server address space is shown in figure 16. Each boiler-object in the
source server address space is transformed into a smaller object with fewer child
nodes in the aggregating server address space.

Figure 16: Comparison of the address spaces of the source server (left) and the
aggregating server (right).

The task of the transformation algorithm in these tests is to transform multiple
Boiler servers into one aggregating server containing the relevant data from all the
boiler-devices on the source servers. During runtime, the transformed values on the
aggregating server will continuously be updated through subscriptions as their source
value equivalents change. The aggregating server interacts with the source servers as
necessary during runtime, e.g. to read current or historical data.

All tests in this chapter were programmed and executed with the Java program-
ming language and the Prosys OPC UA Java Software Development Kit. The
software used for running the actual Java OPC UA servers was Eclipse Java Mars
version 4.5.2.

29

The same desktop PC was used to run all the servers and the tests in this work.
Its specifications were:

• Operating System: Windows 7 Home Premium, 64-bit

• Processor: AMD Phenom(tm) II X4 945 Processor, 3.00 GHz

• RAM: 4,00 GB

6.2 Configuration
Aggregating server configuration tests were run for a scenario with a single source
server of varying size as well as one with multiple source servers. For testing
aggregating multiple source servers, several identical instances of a source server were
started. Each of these source servers has 8200 nodes. An aggregating server was
started and the time it took to map and transform the source servers was measured.
This process was repeated for 10 iterations for each number of source servers. The
average transformation times are shown in figure 17. The transformation time rises
linearly with the number of servers at roughly the same rate as in the single-server
aggregation.

Figure 17: Aggregating server transformation times in relation to number of nodes
on the source server.

Increasing the number of source servers seems to be less demanding for the
transformation algorithm than increasing the size of a single source server. Increasing
the number of source servers increases the transformation time linearly, but increasing
the number of nodes on the source server in the single server case begins slowing
down the transformation process at the 16400 node mark.

Attempts to test larger source servers failed due to hardware capacity-related
errors halting the testing process.

30

6.3 Data access
Testing the Data Access performance was done by running Data Access service
requests to a server multiple times and measuring the time taken for each request.
The times taken were measured separately on both a source server and an aggregating
server that had aggregated it. The size of the address space on the tested servers
was varied to find how address space size affects data access efficiency.

Requests made to nodes on the aggregating server are relayed forward to equivalent
nodes on the source server, if they exist. This means that the time taken by each
request to a transformed node on an aggregated server also includes the time taken
by the corresponding request that has to be made to the source server.

6.3.1 Read

The testing process of the Read service was done by measuring the time it took for
the server to read 100 Double type variable values. This process was repeated 100
times. The resulting times were saved into a table file. To increase efficiency, the
Read requests were sent to the server for batches of 100 nodes rather than sending a
separate request for each node.

Figure 18 shows the average times taken relative to address space size. In the
tests, the aggregating server was 25-30 ms slower at all address space sizes. On the
source server, the time taken did not increase relative to the address space size. The
aggregating server performance is more uneven, but still does not increase consistently
with server size.

Figure 18: Average time taken by the read service on both source and aggregating
servers, in relation to number of source server nodes.

31

6.3.2 Write

The Write service testing process was done by measuring the time it took for the
server to write 100 Double type variable values. This process was repeated 100
times. The resulting times were saved into a table file. To increase efficiency, the
Write requests were sent to the server for batches of 100 nodes rather than sending a
separate request for each node.

As seen in figure 19, the aggregating server is again noticeably slower, with slight
unevenness. In comparison, the times taken on the source server remain almost
exactly the same. The aggregating server is shown to be around 25-40 ms slower
than the source server with the tested address space sizes.

Figure 19: Average time taken by the write service on both source and aggregating
servers, in relation to number of source server nodes.

32

6.4 Historical access
6.4.1 HistoryRead

To set up the HistoryRead tests, directly after the configuration of the source server,
each of the 100 variable values to be tested were written over 10 times with a random
Double value to create a history to read. The HistoryRead service testing process
was done by measuring the time it took for the server to read the histories of 100
variable values. This HistoryRead was repeated 100 times. The resulting times were
saved into a table file. Unfortunately, the Prosys OPC UA Java SDK did not allow
making HistoryRead requests in batches, so the service was instead called separately
for each tested variable.

In a setup with a single source server, the number of nodes on the source servers
was varied to examine how the number of nodes in an address space affects the time
required to read the history data. The testing was performed both directly on the
source server and through relayed write requests on the aggregating server.

Figure 20: Time costs of reading history data on both source and aggregating servers,
in relation to number of source server nodes.

33

7 Conclusions
This thesis set out to examine how aggregating OPC UA servers could incorporate
Historical Access (HA) and Alarms And Conditions (A&C), as well as evaluating the
performance of an aggregating server prototype. The thesis started with a literature
study in chapters 2 and 3 about relevant OPC UA concepts as well as the concept of
aggregating servers in general. After that, the requirements and designs for Alarms
And Conditions (A&C) and Historical Access (HA) on aggregating OPC UA servers
were studied and explained in chapters 4 and 5, respectively. Finally, the performance
of a prototype aggregating OPC UA server was tested and evaluated.

Based on the design for proxy conditions, implementing A&C on an aggregating
server should not be difficult. Thanks to the proxy condition subscribing to the state
of the source condition, emulating the functionality of the original condition was
not necessary for tracking the state. A&C methods, such as acknowledging, can be
done by relaying the call to the original source condition. Unfortunately, complete
testing of the A&C design was not possible due to unresolved errors when creating
condition nodes on the aggregating server. However, basic testing was done using a
node with the attributes and properties of a condition, but not the type. These tests
proved that a node on the aggregating server could track the state of a condition on
the source server.

The relayed historical access design detailed in this thesis works well for simple
reading and updating of historical data. Most calls to nodes on the aggregating server
can simply be relayed to the original source nodes. The ReadProcessedDetails and
ReadAtTimeDetails services require special attention due to different servers handling
aggregate values and interpolation differently. To ensure that they are calculated
consistently, they need to be calculated on the aggregating server. This means the
aggregating server needs to retrieve each raw value required by the calculations from
the source servers, which takes much more time than a simple relayed service call or
a local service call. Thus, an aggregating server using relayed history access is likely
slower at those services than one using local history handling. The hybrid history
storage case would be complicated to implement, with each service requiring the
aggregating server to determine where the history data should be stored. As such,
the hybrid case should probably not be considered unless the relayed or local history
options by themselves are insufficient.

7.1 Result analysis
The aggregating server consistently takes multiple times longer than its source server
to fulfill service requests during runtime. However, the performance of neither server
seems to be affected by the size of their address spaces. This is useful to know, as
thus the scaling issues of aggregating servers are concentrated in the configuration
phase. Most servers do not need to be configured often, so even a large aggregating
server will only rarely take up extra time. When fulfilling a service request, the
aggregating server relays the request to a source server and waits for its response.
Test times measured on the aggregating server therefore also include the time taken

34

by the source server, so the aggregating server is always slower than the source server.
The services tested were Read, Write and HistoryRead. The aggregating server

was 7.01 times slower than the source server at Reading, on average. With Writing,
the aggregating server was 12.44 times slower on average, while HistoryRead was
only 1.58 times slower. However, HistoryRead was also nearly ten times slower than
either Read or Write on the source server itself. Therefore, even a slight proportional
slowdown results in a delay of several seconds, as the HistoryRead service is already
slow.

Reading and writing on the aggregating server seem fast enough for most uses. A
delay of 20-40 ms is not a major issue, unless the aggregating server is expected to
provide near real time responses. When reading or writing historical data, a delay of
2-3 seconds should also be acceptable, as the history data generally does not change
in the meantime. In the tested scenario with one aggregating server, the performance
is sufficient. However, if the aggregating server itself would be further aggregated,
the performance of the higher server would be even slower. Thus, the aggregating
server prototype could use further optimization if it were to be used in OPC UA
server networks with multiple layers of aggregation.

Overall, the testing results in this thesis show that the aggregating server prototype
has room for improvement. The transformation slowing down as source servers
increase in size and the outright failures to properly configure very large servers
shows that the configuration process is insufficient for practical applications, where
source server sizes can vary greatly.

7.2 Further research
Aggregating servers are reliant on subscriptions for presenting up-to-date data and
evaluating the performance of subscriptions would be worth further study. For
example, how quickly a subscription relays a value change to an aggregating server
condition reliant on it determines how quickly the condition can change its state to
the correct one and inform its client. One way to test subscription performance is by
changing a source server value and measuring how long it takes for a corresponding
aggregating server value to be notified of the change.

A more thorough testing and evaluation of time usage during service calls would
allow identifying which parts of the process are the slowest. Improvement and
optimization efforts could then be focused on these. For instance, it would be useful
to know how time-consuming it is to find the original source node when relaying
service calls.

Not designed in this work were the two other A&C cases, local conditions and
a hybrid solution combining both relayed and local conditions. The difficulty with
local conditions is adding a functionality to the transformation algorithm that adds
conditions to some transformed nodes based on some given criteria. There are many
possible situations where a condition could be needed, so a full rule system for the
criteria would be complicated to create.

The source server address spaces in this work were static: No nodes were added
or removed during use. The aggregating server prototype and its predecessor [8] do

35

not address the issue of what happens if nodes were to be created or removed on
aggregated source servers. This is a possible use case for aggregating servers and
should be examined.

Configuring the aggregating server prototype is currently fairly slow and does
not scale well as the number of nodes on the source servers increases. A more
optimized browsing method should be looked for. In addition, the transformation
process currently only supports one-to-one transformations: Each node on the
aggregating server can only have one or zero corresponding source server nodes,
and vice versa. A many-to-one transformation process would allow features such as
a combined condition that triggers if any of its many corresponding source server
conditions trigger, or simple sums or averages of values from different source servers.
Implementing many-to-one transformations offers multiple different options and
should be examined carefully.

36

References
[1] Thilo Sauter and Maksim Lobashov. How to access factory floor information

using internet technologies and gateways. Industrial Informatics, IEEE Transac-
tions on, vol. 7, pages. 699–712, November 2011.

[2] OPC Foundation. OPC UA specification part 1: Overview and Concepts.
Technical report, OPC Foundation, 2015. OPC UA Specification Release 1.03.

[3] Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm. OPC Unified
Architecture. Springer Publishing Company, Incorporated, 1st edition, 2009.

[4] Daniel Großmann, Markus Bregulla, Suprateek Banerjee, Dirk Schulz, and
Roland Braun. OPC UA server aggregation - the foundation for an internet of
portals. In Antoni Grau and Herminio Martínez, editors, Proceedings of the 2014
IEEE Emerging Technology and Factory Automation, ETFA 2014, Barcelona,
Spain, September 16-19, 2014, pages 1–6. IEEE, 2014. OPC Foundation.

[5] OPC Foundation. OPC UA specification part 9: Alarms & Conditions. Technical
report, OPC Foundation, 2015. OPC UA Specification Release 1.03.

[6] OPC Foundation. OPC UA specification part 11: Historical Access. Technical
report, OPC Foundation, 2015. OPC UA Specification Release 1.03.

[7] Pyry Piirainen. OPC UA based remote access to agricultural field machines.
Master’s thesis, Aalto University School of Electrical Engineering, 2014.

[8] Tomi Tuovinen. OPC UA Address Space Transformations. Master’s Thesis,
Aalto University School of Electrical Engineering, 2015.

[9] Prosys OPC. https://www.prosysopc.com/. Accessed: 26.1.2016.

[10] Prosys OPC UA Historian. https://www.prosysopc.com/products/opc-ua-
historian/. Accessed: 11.2.2016

[11] LibreOffice. https://www.libreoffice.org/. Accessed: 28.4.2017

[12] Unified Modeling Language. http://www.uml.org/. Accessed: 28.4.2017

[13] MatrikonOPC. http://www.matrikonopc.com/. Accessed: 26.1.2016.

[14] Softing. http://industrial.softing.com/en/. Accessed: 26.1.2016.

[15] Unified Automation. https://www.unified-automation.com/. Accessed:
26.1.2016.

[16] OPC Foundation. OPC UA specification part 3: Address space model. Technical
report, OPC Foundation, 2015. OPC UA Specification Release 1.03.

[17] OPC Foundation. OPC UA specification part 13: Aggregates. Technical report,
OPC Foundation, 2015. OPC UA Specification Release 1.03.

37

[18] OPC Foundation. OPC UA specification part 10: Programs. Technical report,
OPC Foundation, 2015. OPC UA Specification Release 1.03.

[19] OPC Exhange: 6. Where do OPC timestamps come from? Ma-
trikonOPC. http://blog.matrikonopc.com/index.php/ask-the-experts-opc-
questions-and-answers/6-where-do-opc-timestamps-they-come-from/ . Accessed:
28.11.2016

[20] OPC Foundation. OPC UA specification part 4: Services. Technical report,
OPC Foundation, 2015. OPC UA Specification Release 1.03.

[21] OPC Foundation. OPC UA specification part 8: Data Access. Technicalreport,
OPC Foundation, 2015. OPC UA Specification Release 1.03.

[22] OPC Foundation. OPC UA specification part 5: Information Model. Technical
report, OPC Foundation, 2015. OPC UA Specification Release 1.03.

[23] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation
approaches. In 2nd OOPSLA’03 Workshop on Generative Techniques in the
Context of MDA, Anaheim, CA, USA, 2003.

[24] Joona Elovaara. Aggregating opc ua server for remote access to agricultural work
machines. Master’s thesis, Aalto University School of Electrical Engineering,
2015.

[25] Jukka Asikainen. OPC UA Java History Gateway with Inherent Database
Integration. Master’s Thesis, Aalto University School of Electrical Engineering,
2013.

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Symbols and abbreviations
	Introduction
	Background
	Objectives
	Research Methods
	Outline of the thesis

	OPC Unified Architecture
	Address Space Model
	Subscription
	Alarms and Conditions
	Historical Access
	HA Services
	HistoricalDataConfigurationNode

	Aggregating OPC UA server
	OPC UA address space transformation
	Related research and implementations
	OPC UA Historian
	The aggregating server of Ingolstadt university

	Aalto University aggregating OPC UA server
	Transformation algorithm

	Alarms and conditions
	Requirements
	Cases

	Design
	Transformation algorithm
	Relayed alarms and conditions

	Historical access
	Requirements
	Cases

	Design
	Transformation algorithm
	History handling types

	Performance evaluation
	Evaluation system
	Configuration
	Data access
	Read
	Write

	Historical access
	HistoryRead

	Conclusions
	Result analysis
	Further research

	References

