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Due to the increased availability of computational resources, more complex analysis
methods taking advantage of the inherent high dimensionality of the data can be
employed in functional brain imaging, allowing for development and assessment of
intricate models. Models are utilized for both explanatory and predictive purposes
and permits generalization from individual brain responses to the functioning
principles of the brain. Representational similarity analysis (RSA) is a framework
allowing evaluation of the performance of models by comparison to imaging data
via the use of representational distance matrices (RDMs). This type of analysis
also enables finding the linear combination of models that best explains the imaging
data, something that successfully has been applied to functional magnetic resonance
imaging (fMRI) data. In this thesis, RSA is applied to magnetoencephalography
(MEG) data on the sensor level using a spatiotemporal searchlight approach. The
method is validated through simulations based on the forward-inverse modelling
framework of MEG, where complete control over the source activation is exerted.
Non-negative least squares fitting of a linear combination of multiple models is
carried out, with an additional option of performing leave-k-out cross-validation to
prevent overfitting to the simulated dataset. Finally, the method is applied to real
MEG data.
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Tack vare den okade tillgangen till berdkningsresurser kan mer komplexa analysme-
toder som utnyttjar den inneboende hoga dimensionaliteten hos datan anvindas
inom funktionell neuroradiologi, vilket mojliggor utveckling och utvardering av
invecklade modeller. Modeller kan anvandas i bade forklarande och forutsidgande
syfte och tillater generalisering av individuella hjarnresponser till hjarnans funk-
tionsprinciper. Representationslikhetsanalys (RSA) ar ett ramverk som mojliggor
utvéirdering av modellers prestanda genom jamforelse med radiologidata via anvéand-
ning av representationsavstandsmatriser (RDM). Den héar typen av analys gor det
ocksa mojligt att bestimma den linjara kombination av modeller som bést forklarar
radiologidatan, nagot som redan framgangsrikt anvants for funktionell magnetreso-
nanstomografidata. I det hér arbetet tillimpas RSA pa magnetoencefalografidata
(MEG) pa sensorniva med hjilp av ett spatiotemporalt sokljus. Metoden valideras
genom simulationer baserade pa ramverket for forward-inverse-modellering for
MEG, inom vilket fullstandig kontroll 6ver kallaktivationen kan utévas. Anpass-
ning av en linjar kombination av modeller gors med hjalp av den icke-negativa
minsta kvadrat-metoden och innefattar ocksa ett alternativ att utfora utelimna-k
korsvalidering for att forhindra dveranpassning till den simulerade datan. Slutligen
tillampas metoden pa verklig MEG-data.

Nyckelord: magnetoencefalografi, representationslikhetsanalys, korsvalidering,
spatiotemporalt sokarljus
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Notation
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vi

matrix

transposed matrix

column vector

column vector

vector of the values from a to ¢ in steps of b
mean of vector x

standard deviation of vector x

the vector x normalized

L?-norm of the vector x

L?-norm of the vector x weighted by the matrix A
set of real column vectors of length n

set of real matrices with n rows and m columns
correlation between the vectors x and y
covariance of the vectors x and y

Euclidean distance between the vectors x and y
correlation distance between the vectors x and y
Kendall’s rank correlation coefficient

Spearman’s rank correlation coefficient
Pearson’s correlation coefficient

component model weights in fitted model
factorial

binomial coefficient

probability of the stochastic variable X obtaining the value ¢
expected value of the stochastic variable X
letter in an alphabet

computational complexity class



Abbreviations

AP
BEM
CV
EEG
EMEG
EOG
EPSP
EVC
IMRI
ICP
IPSP
IT
LSQ
MEG
MNE
MR
MRI
MSD
PSP
RDM
RMS
RSA
SD
SNR
SQUID
ssRSA
SVM

action potential
boundary element model
cross-validation
electroencephalography

vii

referring to both electroencephalography and magnetoencephalography

electrooculography

excitatory postsynaptic potential

early visual cortex

functional magnetic resonance imaging
iterative closest point

inhibitory postsynaptic potential
inferior temporal cortex

linear least squares
magnetoencephalography

minimum norm estimation

magnetic resonance

magnetic resonance imaging

mean squared deviation

postsynaptic potential
representational distance matrix

root mean square

representational similarity analysis
standard deviation

signal-to-noise ratio

superconducting quantum interference device
spatiotemporal searchlight representational similarity analysis
support vector machine



1 Introduction

While the fundamental challenge of neuroscience is to understand the anatomy and
physiology of nervous systems in general, a large focus lies on the study of the human
brain and corresponding animal models (Manger et al., 2008) and especially on the
human cerebral cortex. For this purpose, noninvasive neuroimaging techniques are
used and have in recent decades made large leaps forward, both in instrumentation
and data analysis. For overviews of different modalities, see e.g., the works by Haacke
and colleagues (1999), by Huettel and colleagues (2004) and by Baillet and colleagues
(2001). To examine the flow and processing of information occurring in the cortex,
anatomical images obtained via for example magnetic resonance imaging are not
adequate. A temporal dimension and some type of measurement of activity must
be included. Two prominent methods of functional brain imaging are functional
magnetic resonance imaging (fMRI) and magnetoencephalography (MEG), both
relying on quite different physiological and physical phenomena for determining brain
activity. fMRI uses nuclear magnetic resonance to identify changes in the blood
oxygen level shown to be related to neural activity (Logothetis et al., 2001), while
MEG detects extracranial magnetic fields arising from the electrical activity in the
brain (Haméaldinen et al., 1993). MEG is therefore a more direct measure of the
actual neuronal activity.

One common problem in working with these imaging modalities is that they
generate huge amounts of high-dimensional data. Many common methods of analysis,
e.g., event-related fields in MEG and the general linear model in fMRI, do not
exploit the high dimensionality fully. The assumption that the data contain more
interesting information than what is extracted by these methods does therefore not
seem unfounded. As more computing power becomes available, complex analysis
methods that previously were not viable can now be used (see e.g., the works by
Cichy and colleagues (2014) and by Cox and colleagues (2003)). Computationally
expensive statistical and machine learning inspired methods can be used to extract
information and high-dimensional patterns invisible to the researcher. This in an
ongoing effort in many aspects, and this thesis reviews an existing framework called
representational similarity analysis (RSA) utilizing up to the full dimensionality of
the data (Kriegeskorte et al., 2008). It has successfully been used on fMRI data
(Kriegeskorte and Kievit, 2013), but published applications on MEG data are few.

The emphasis of the RSA framework lies not only on the high dimensionality,
but also on the inherent ability to utilize models. Models can be can be used both
to explain and predict brain responses as a function of stimuli. The eventual goal is
however to draw more broad conclusions about how certain subsystems in the brain
work based on individual brain responses. RSA is very general and can be applied
to in principle any type of measurement where different stimuli give rise to different
quantitative observations, eliminating the need of finding matching units between
modalities. It transforms both models and measured data to data of the same type,
allowing direct comparison and fitting of model parameters, no matter how the model
is constructed or how the measurement is conducted. To add complexity, models
can under certain circumstances be linearly combined and a least-squares fit can



be applied to find the best weights for the linear combination (Khaligh-Razavi and
Kriegeskorte, 2014). This allows for multiple differently modelled phenomena to
explain the observed data. Both the weights and the correspondence of the fitted
model to the data can be of interest. As with all fitting, there is a risk of overfitting
to the observed data. To tackle this issue, cross-validation can be performed.

In testing a novel data analysis method or in applying it to data of a novel type,
simulations are useful for determining how well the method works and for identifying
possible issues. They give the researcher maximal control over the data, not only
enabling identification of boundaries for parameters of the analysis method itself,
but also aiding in the design of upcoming experiments. Owing to the comprehensive
mathematical framework of MEG (Héamaéldinen et al., 1993), simulations can easily
be conducted. The desired activation region and type can be selected and the
measured signals can be modelled on the basis of these. Using the same framework,
the underlying brain activation can also be inferred from the MEG signal.

In this thesis, we will examine possibilities and issues in fitting multiple models
both with and without cross-validation to MEG data within the RSA framework.
The fits are done at the sensor level, i.e. no modelling of the actual brain activity
is performed. Due to the cost of MRI scans required for accurate source modelling,
both money and time could be saved if only the MEG data by itself can be used to
model and at least crudely localize neural activity.



2 Background

In this chapter, we will review the principles of two different topics: measurement
and data analysis. In the case of measurement, we will discuss a specific measurement
technique for observing brain activity. In the case of data analysis, we will on the
other hand present a framework that can be used for analyzing data obtained by a
vast range of measurement techniques.

2.1 Magnetoencephalography

In magnetoencephalography (MEG), miniature fluctuations in the magnetic field
close to the outside of the skull are measured by sensitive detectors. It is notable
that MEG is a noninvasive imaging procedure, which makes it suitable for studying
the human brain. A comprehensive overview of most aspects of MEG can be found
in Hamaldinen and colleagues (1993).

Another closely related measurement technique is electroencephalography (EEG),
where a grid of electrodes is attached to the scalp to measure changes in the electric
potential. The methods of processing and analyzing EEG data are highly similar to
those for MEG data.

2.1.1 Neuroanatomy and -physiology

The neuroanatomy and -physiology required to follow this thesis will shortly be
reviewed here. For a deeper overview of the subject, consult e.g., Bear and colleagues
(2016).

The nowadays widely accepted neuron doctrine states that the nervous system
consists of discrete building blocks, neurons. The whole human brain is estimated to
contain on average 86 billion neurons (Azevedo et al., 2009) and only in the cerebral
cortex, the evolutionary most recent part of the brain, 0.15 quadrillion connections
between these (Pakkenberg et al., 2003). The very high density of neurons imposes
limits on the accuracy with which we can observe neuronal activity noninvasively.

Each neuron is a biological cell, whose main parts are the body, the axon and
dendrites. The membrane of the cell separates the inside, containing a fluid called
cytoplasm, from the outside of the cell and is interspersed with channel proteins,
allowing passage of certain ions (mainly K*, Na® and Cl7) depending on the
properties of the electrochemical environment. This possible passage of ions make
neurons excitable cells, which means that they can be polarized. Due to ions pumps
located in the membrane maintaining electrochemical gradients between the inside
and outside of the cell, the resting neuron has a negative membrane potential, called
the resting potential.

Neurons can communicate with each other via electrical or chemical means. The
dendrites can be thought of as the inputs and the axon as the output. The axon
forms connections, synapses, onto the dendrites of other neurons. There is no direct
physical connection between the axon and a dendrite, but a narrow synaptic cleft
between the neurons. When observing a specific synapse, the neuron on the axon



end of the synapse is referred to as the presynaptic neuron and the neuron on the
dendrite end of the synapse is referred to as the postsynaptic neuron.

Figure 1: Illustration of two neurons. The AP travels along the axon to the synapse.
Inset: Magnification of the synapse where neurotransmitter molecules are released
onto receptors of the postsynaptic neuron.

An inflow of positively charged ions, depolarization, can occur as a result of
activated channel proteins. If this depolarization reaches a certain threshold, an
action potential (AP) is generated. The AP is an unstoppable rapid depolarization and
can be seen as a sharp spike in electrical recordings. It travels across the membrane
along the axon of the cell to finally reach the synapse. At the synapse, the arrival of
the electrical AP results in the release of chemical compounds, neurotransmitters,
from the presynaptic neuron into the synaptic cleft. The neurotransmitters diffuse
over the cleft and bind to receptors on the postsynaptic neuron, resulting in channel
openings/closings or more complex behavior. The communication between neurons
is therefore of chemical and not electrical nature (although there are exceptions
to this rule). This activity induces changes in the electrochemical composition of
the cytoplasm of the postsynaptic neuron, and can lead to a local polarization.
This is called a postsynaptic potential (PSP), and can be either excitatory (EPSP,
depolarization) or inhibitory (IPSP, hyperpolarization). If the EPSP is strong enough,
it can trigger an AP in the postsynaptic neuron. Usually, however, spatial and/or
temporal summation of EPSPs must occur to elicit an AP.

The cerebral cortex is a thin folded sheet consisting of six different layers. The main
type of neurons present are the pyramidal neurons, distinguished by a pyramidal cell
body and far-reaching apical dendrites. The orientation of the dendrites is orthogonal
to the actual cortex itself and the dendrites of different neurons run in parallel.

The cortex can be divided into different regions. A broad division can be done
into the temporal lobe, occipital lobe, parietal lobe and frontal lobe. Different lobes



Figure 2: A pyramidal neuron stained with green fluorescent protein (Lee et al.,
2005).

are crudely put specialized at different functions, e.g., the primary visual cortex
responsible for the rudiments of vision is located in the occipital lobe while higher
cognitive functions like planning are located in the frontal lobe.

/=

__/

Figure 3: The lobes of the cerebral cortex illustrated.

2.1.2 The physical basis of the MEG signal

As explained by Biot-Savart’s law, electrical currents give rise to a magnetic field.
Therefore, the flow of ions omnipresent in neuronal activity results in changes in the
magnetic field both inside and outside the brain. There are two main events the give
rise to currents: the AP and the PSP.

When the AP is travelling down the axon, the area in front of the spike is
quickly depolarized, while the area behind the spike is more slowly repolarized.
This behavior can be described by two oppositely aligned current dipoles, forming
a current quadrupole (Hamaldinen and Hari, 2002). On the other hand, the PSP



is the result of ion flow over the postsynaptic membrane, which corresponds to a
current dipole. The magnetic field generated by a quadrupole decreases faster with
distance (proportional to 1/r3) than for a dipole (proportional to 1/r?). In addition,
the time course for the AP is tens of times shorter than for the PSP, resulting in
more prominent temporal summation for PSPs. Combining these insights leads to
the conclusion that the changes in the magnetic field detected mostly arise from
PSPs.

Murakami and colleagues (2006) estimate using simulations that the current
dipole strength associated with a single PSP of a pyramidal cell is on the order of
0.29—0.90 pAm. Based on this data, they approximate that about 50000 synchronized
neurons are needed to generate a measurable signal. As the cortex is highly folded,
there might be cancellation of the magnetic field generated by one part of the cortex
by another part, which means that depending on the geometry, even more neurons
might need to be active to generate a measurable signal.

2.1.3 Measurement device

MEG is as previously mentioned noninvasive, which means that all measurements are
external to the body. The only preparation required is removing magnetic objects
and attaching positioning coils to the head of the subject. Electrooculography (EOG)
can also be measured at the same time to make removal of artifacts easier. The MEG
device used for gathering the data used for analysis in this work is a 306-channel
device produced by Elekta Oy. The lower part of the device is formed like a helmet
to have the sensors as close to the skull as possible.

The sensors are superconducting quantum interference devices (SQUIDs). Due
to their low operating temperature, they have to be cooled down by liquid helium.
By using sets of three SQUIDs arranged in a certain pattern (see Figure 4 for a 2D
version) in 102 locations, the gradients of the magnetic field can be measured in two
directions and the magnitude in one. The gradiometers are not sensitive to uniform
distortions of the magnetic field, since they determine the change in the magnetic
field over two points. The magnetometers however measure the magnitude in one
point and are therefore more susceptible to external noise.

As the currents involved in neuronal activity are quite small and the magnetic
field of the PSPs decreases as 1/r?, the resulting electromagnetic signals outside
of the head are on the order of 1 fT-1 pT. In comparison, the magnitude of the
earth’s magnetic field is on the order of 10 uT. Due to the magnitude of the earth’s
magnetic field and other disturbances, the device is located inside a magnetically
shielded room.

2.1.4 Theoretical framework for analysis

Maxwell’s equations form the basis for understanding MEG measurements. Due to
the slow temporal dynamics, a quasi-static approximation can be used, where the
temporal dependence is ignored (Hamaéldinen et al., 1993). The approach we will be
using here is called distributed source modelling. We assume that the brain activity
can be modelled by a certain number of current dipoles in certain locations. Using
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Figure 4: The spatial layout of channel locations for the flattened MEG helmet.
Channels are later on referred to by their indices in some visualizations of results.

a spherical model for the head, the calculations involved become quite simple and
can be solved analytically. One problem is that radial sources cannot be detected.
Of more practical interest, employing a more realistic geometry obtained from MR
images, the equations can be solved numerically using the boundary element model
(BEM). Using this method, we can determine what activation pattern the SQUIDs
will detect when a certain source is active. However, the number of sources are
usually much larger than the number of sensors, which means that the inverse problem
(estimating the source activations from the detected magnetic signals) is ill-posed.
There are a number of tricks that can be used to constrain the solution; here we will
focus on minimum norm estimation (MNE). In this way, MEG can, as e.g., fMRI,
be used to localize brain activity. The spatial resolution is however much lower than
for fMRI, but the temporal resolution is significantly better (Baillet et al., 2001).

We will here describe the variables and equations used in the MNE solution
(Hamaéldinen and Ilmoniemi, 1994; Wang et al., 1992). We start by assuming that
we have NN spatially distributed current dipole sources inside the brain. The changes
in the magnetic field generated by these sources are detected by M sensors in the
MEG helmet. As previously noted, we can numerically determine the pattern seen
by the sensors as a function of the activation strength for each single source. This
information can be summarized in the gain matrix A € R*¥ where the element a;;
is the proportionality constant between the signal seen by sensor ¢ and the amplitude
of source j. Assuming a linear summation of sources, we can write

y = Ax+n, (1)

where y € RM is the resulting signal pattern, x € R" is the source activation and
n € RM is the sensor noise. Equation 1 is called the forward model. Once the gain



matrix for a system has been determined, the forward model can straightforwardly
be applied.

In practice, the source activation is what interests us and is unknown. Also, the
number of assumed sources is larger than the number of sensors, i.e. N > M. The
inverse problem is underdetermined in this case, since there are more variables than
equations. To formulate the MNE problem, we also have to introduce the source
covariance matrix C, € RV*Y and the noise covariance matrix C,, € RM*M ¢,
can be calculated by measuring an empty room, but C, cannot be determined by
measurement and is usually assumed to be diagonal. The MNE solution is described
by the optimization problem

% = argmin |[x|[¢,  when ||y — Ax|[z, <, (2)

where the Lo-norm with regard to a matrix is defined as
lla|]|} =a’A a.

In other words, we want to minimize the norm of the source activation with respect
to C, with the additional constrain that the forward modelled signal must be very
close to the measured signal. Using the technique of Lagrange multipliers, it can be
shown that the solution to Equation 2 is given by

%= A" (AC,AT +XC,) 'y, (3)

where A is a regularization parameter. This is called the inverse model. The formula
shows that the inverse problem using MNE also is linear.

2.1.5 Common methods of analysis

Although MEG is a much more recent technique than EEG, the data acquired
is similar and can be exposed to similar analysis methods. Therefore, MEG data
analysis has inherited both terminology and methods from EEG data analysis. Except
for the source modelling presented in the previous section, there are two main areas
of interest: evoked responses and frequency analysis.

Usual post-processing procedures include noise removal by low-pass and/or high-
pass filtering, signal space separation and more sophisticated techniques to remove
artifacts arising from different sources (Haumann et al., 2016). Due to the spatial
distribution of the sensors, brain activity can crudely be localized even without
performing any source modelling.

An evoked response is the MEG signal during a time window following some
kind of stimulus. The time for the presentation of the stimulus itself is recorded to
provide zero point and the subsequent activation can later be analyzed channel by
channel. The time series of the signal usually shows some characteristic features,
like consistent peaks at certain times, depending on the nature of the stimulus. The
different peaks can be associated with different neural processes (Coles and Rugg,
1996).



Frequency analysis involves observing the dynamics of the frequency content of
the MEG signal by applying the Fourier transform to it. In the resting and working
brain, oscillations at different frequencies are naturally present. Using MEG, the
source of oscillations can be localized and connectivity between different regions of
the cortex established. (Jenson et al., 2014)

Many aspects of the methods described above rely on a channel-by-channel
approach, which means that the dimensionality of the data is reduced to only one
dimension. As noted in the introduction, working with the full dimensionality of the
data could lead to new insights. There are recent studies utilizing machine learning
methods applied to the high-dimensional MEG data (see e.g., the work by Cichy and
colleagues (2014)).

2.2 Representational similarity analysis

Representational similarity analysis (Kriegeskorte et al., 2008) is a framework taking
advantage of patterns in the high-dimensional data obtained in neuroimaging. One
notable strength of the framework is that comparisons can be made across individuals,
species and even experimental methods. It also provides a natural way of evaluating
and fitting models to the often limited amount of brain imaging data, something
that can be arduous using other methods.

2.2.1 Background

Neuroimaging data is inherently high-dimensional. In the case of MEG, the number
of dimensions is determined by the number of channels in the MEG device. However,
the underlying activation in the brain requires a much higher dimensionality to be
complete characterized. Generally, a stimulus gives rise to a certain spatiotemporal
activation pattern in the brain. This pattern can be thought of as the representation
of the stimuli by the brain and can momentarily be regarded as a point in a high-
dimensional space (Kriegeskorte and Kievit, 2013). This “real” activation pattern
could be envisioned as a point with the same number of dimensions as the number
of neurons. The pattern we observe in imaging has a reduced dimensionality, but
preserves some of the structure of the original pattern.

The representations of other stimuli correspond to other points in this space.
The similarity (or dissimilarity) of the representations of two different stimuli can
be measured by calculating the distance between the corresponding points. There
are many distance functions that can be used, but we will focus on the correlation
distance, since it ignores the actual amplitudes and determines similarity on the basis
of the overall pattern. The correlation distance is defined as 1 —r, where r is Pearson’s
correlation coefficient. In other words, a correlation distance of 0 indicates perfectly
correlated vectors, 1 indicates no correlation and 2 indicates perfectly anti-correlated
vectors. It can be shown (see Appendix A) that the correlation distance is equivalent
to the squared Euclidean distance for normalized patterns, which will turn out to be
a useful property (Khaligh-Razavi and Kriegeskorte, 2014).

The pair-wise distances can be calculated for all representations of stimuli we are
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interested in and summarized in a representational distance matrix (RDM). An RDM
has two important properties. Firstly, since the distance metric used is commutative,
the RDM is a symmetric matrix, and secondly, since the distance between a stimulus
and itself is zero, the diagonal consists of zeroes. An example of an RDM and the
underlying data it represents can be seen in Figure 5.

1

057

0 05 1

Figure 5: Left: Points in a two-dimensional space. Right: RDM calculated using the
Euclidean distance for the points seen to the left. By visually inspecting rows of the
RDM, one can determine that e.g., point 7 lies far away from all points, except for
point 3. In this case, where points are only two-dimensional, this could as well be
seen from the left image, but in a high-dimensional case, this kind of visualization
becomes more useful.

The strength of RSA is that any type of measurement involving different stimuli
can be summarized in an RDM. In this way, we can abstract away from the specifics
of a method and avoid the question on how to define a mapping between units
of different modalities. RDMs can also be calculated for models, which allows for
a natural way to determine how well models explain the observed representations
(see e.g., the work by Mur and colleagues (2013)) and to fit model parameters, no
matter how the models are constructed. Another way of utilizing RDMs is by using
multi-dimensional scaling. This allows the distance between RDMs to be visualized
in two dimensions, which helps to create an intuitive picture of how similar different
measurements and/or models are to each other.

RDMs are compared to each other using some kind of distance metric. Usually,
the Spearman rank correlation coefficient is used, since it does not require the
relationship between the RDMs to be linear to yield a good result. For cases where
there are many tied ranks, Kendall’s 7, is recommended (Nili et al., 2014). We will
shortly look at the technical details of both coefficients.

An overview of the whole procedure as applied to MEG data is shown in Figure 6.
This example shows using the signal from two different sensors (shown in red on the
flattened MEG helmet) when determining the RDM. The data from all channels used
are concatenated into a long vector, and the distances (usually correlation distances as
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mentioned before) between these concatenated vectors arising from different stimuli
are put in the RDM. A model RDM is also representing the dissimilarity between
all pairs of stimuli can be correlated against the data RDM to arrive at a measure
of correspondence. More advanced types of analysis, like fitting parameters for a
computational model or combining multiple models (more about this in Section
2.2.4), can also be performed.
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Figure 6: An illustration of the application of RSA to MEG data on the channel
level. See the text for more details.

2.2.2 Correlation coefficients

Spearman’s rank correlation coefficient is essentially Pearson’s correlation coefficient
applied to the ranks of the data. Determining the rank involves sorting, which results
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in a complexity of O(NN log N) for the whole calculation. If there are repeated values
in the data, ranks become tied, which adds an element of arbitrariness in the sense
that tied ranks can be permuted. This problem is solved by using fractional ranks
(Hays, 1973). For example, in the case of ranking the vector [3 3 2 4], we first perform
ranking normally, which could give [2 3 1 4] or [3 2 1 4] depending on the sorting
algorithm used. For repeated values, the average rank is used instead, resulting in
[2.5 2.5 1 4]. This is equivalent to averaging over all possible permutations of ranks
(see Appendix D).

To compute Kendall’s 7,, pairs (z,,ys) and (z., yq) of points from both datasets
are compared to each other (Nelsen, 2011). Two pairs are said to be concordant if
e > x. and y, > y4 (increasing function) and discordant if x, > x. and y, < yg
(decreasing function). Denote the number of concordant pairs by ¢ and the number
of discordant pairs by d. Kendall’s 7, is defined as

c—d c—d

Ta = (¥) -2

where n is the number of points. The value in the numerator is the total number of
pairs. Here, it can be noted that if all pairs are concordant, we have that 7, = 1,
and if all pairs are discordant, 7, = —1, in complete agreement with Pearson’s and
Spearman’s correlation coefficients. Due to the forming of pairs, the complexity of
calculating Kendall’s 7, is O(N?).

2.2.3 Spatiotemporal searchlight

Brain activity related to a specific stimulus is often localized. Therefore, we are not
interested in including signal from locations irrelevant to the task at hand in our
analysis. Also, using all available data for determining the RDM dismisses spatial
information. Instead, we can utilize a searchlight. This procedure was introduced in
the work by Kriegeskorte and colleagues (2006), where a type of multivariate effect
statistic was used instead of RDMs. For the fMRI data used, a spherical searchlight
with a radius of 4 mm seemed to be optimal. In the case of RDMs, the distances
between representations are calculated using a subset of all dimensions. In the case
of fMRI, this refers to a subset of voxels and in MEG a subset of either sensors or
sources.

Su and colleagues (2012) applied a similar searchlight to EMEG data (referring
to both EEG and MEG), adding a temporal aspect, called spatiotemporal searchlight
(ssRSA). They proposed performing source modelling and applying the searchlight in
the source space. Spatially, hexagonal cortical patches with a radius of 20 mm were
used, and temporally, overlapping time windows with a length 20 ms and step of 5
ms. Further experiments employing this method for tonotopic mapping are described
in Su and colleagues (2014) and are described more in detail in Section 2.2.7.

2.2.4 Multiple models

In the original version of RSA, RDMs are compared pair-wise. Models used for
brain activity data are however usually too simple by themselves to explain all of the
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variance in the data. Combining multiple models might therefore lead to improved
results. To do this, we express the target RDM as a weighted sum of model RDMs.
There are however some theoretical considerations that must be taken into account
when doing this.

The weighting of features should be done in the original space, and not on the
RDM level (Khaligh-Razavi and Kriegeskorte, 2014). This is due to the fact that
different distance metrics will bend the space in different ways, which cannot be
accounted for in the linear combination. However, using the squared Euclidean
distance when calculating the RDMs abolishes this problem. This is not a serious
limitation, since the correlation distance and the squared Euclidean distance are
equivalent when using normalized patterns (see Appendix A).

The squared Euclidean distance has two useful properties. First, as long as
the features can be assumed to be orthogonal to each other, adding a dimension
corresponds to adding a term. Assume that x,y € R™ and that X = [x z,,1,]7 € R**!
and ¥ = [y yn41]T € R*"L. Now we have that

d]%)uc(&v y) = d]25)uc<xv Y) + (xn-f—l - yn+1)2'

Note that the Euclidean distance itself does not have this property because of the
square root.

The second useful property is that it does not matter if weighting is done in the
original space or on the distance level. Say that the extra dimension introduced into
X and ¥ is weighted by w € R. We then get

d%uc(ﬁﬂ S’) = dI2*]uc(X7 Y) + (wxn-i‘l - wyn+1)2 = d]%luc<x7 y) + U)2($n+1 - yn+1)2‘

In other words, weighting at the level of RDMs is exactly the same as weighting at
the level of features. We can see that distance-wise, the added dimension is weighted
by w?. This implies that fitting must be performed using a non-negative linear least
squares method.

Fitting multiple models is especially valuable when working with MEG data on
the channel level, i.e. when no source modelling is made. Contrasting the situation
to fMRI data, where the dimensions easily can be spatially separated to account
for different anatomically defined brain areas, illuminates the problem: the signal
picked up by one MEG sensor is spatially limited only by the position of the sensor
in relation to the head of the subject. In other words, one MEG channel contains a
mix of signal from areas close to the channel. Combining models when analyzing
MEG data is a natural way of accounting for this diverse activity, while separate
models straightforwardly can be tested for separate brain areas using fMRI.

2.2.5 Cross-validation

The process of fitting a model to data is usually mechanical. However, the resulting
fit must also be evaluated in some way, since there are some issues that can arise
(Alpaydin, 2014). The model used might be underfitting the data, which means
that it does not have the power to accurately explain the underlying phenomenon
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generating the data. This is a problem with the model that can only be fixed by
making necessary corrections to it. If the model is powerful enough (or too powerful)
to explain the data, we may on the other hand face the risk of overfitting. This
means that the fit looks good for our dataset, but the generalization performance is
poor.

In machine learning, when e.g., training a classifier, this problem is usually solved
by artificially dividing the original data into two different sets, a training set and a
test set. The training set is used to train the classifier, while the performance of the
classifier is evaluated on the test set. During learning, performance on the training
set continues to increase, but at some point, performance on the test set will start to
decrease. After this point, overfitting occurs. Using some type of regularization can
remedy this problem.

Cross-validation (CV) refers to methods systematically and repeatedly dividing
the available data into training and test sets. One example is k-fold CV. The data
is divided into k folds of equal size and k — 1 of the folds are used for fitting, while
the performance is tested on the left-out fold. This procedure is repeated leaving out
each fold in turn and the average performance over folds is determined.

Cross-validation can also be employed when fitting RDMs (Khaligh-Razavi and
Kriegeskorte, 2014), and pseudocode for the algorithm is presented as Algorithm 3
in Section 3.3.3. When fitting multiple model RDMs to a target RDM, a specified
number of stimulus are left out when fitting. The fitted model is then evaluated for
these left-out stimuli, and the resulting values are put in the CV-fitted RDM. This
procedure is repeated until the whole CV-fitted RDM is filled. In this way, most of
the entries in the fitted RDM will result from fits with different weights, so this is a
procedure for determining a CV-fitted RDM, not the weights.

2.2.6 Application to fMRI data

RSA has successfully been applied to fMRI data (see Kriegeskorte and Kievit (2013)
for a review). We will present a few more recent examples here of how it has been
employed, focusing on using multiple models.

Khaligh-Razavi and Kriegeskorte (2014) used previously obtained RDMs for the
inferior temporal (IT) cortex associated with object recognition both from monkeys
and from humans and compared them to a wide range of model RDMs. The
tested models included neurally realistic models, filters, more complex models used
in computer vision and even the different layers of a deep convolutional network.
Fitting with cross-validation was performed, showing that a combination of models
explained the I'T RDM in both the human and monkey case significantly better than
individual models.

Jozwik and colleagues (2016) let subjects judge the category membership and
absence or presence of features on a set of images. Separate RDMs were then created
for each category and for each feature. All of these RDMs (total of 234) could then
be fitted to the data RDM (human IT, EVC and similarity judgements) using non-
negative linear least squares with cross-validation. The fitted RDMs had significant
correlations with the data RDM in the case of I'T and similarity judgements, but not
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high enough to be classified as the true underlying model.

2.2.7 Application to MEG data

As previously mentioned, there has not been many studies employing RSA on MEG
data. One previously mentioned example is the work by Su and colleagues (2014)
where tonotopic mapping was examined using ssRSA. Here, subjects listened to
spoken words in English while having their EEG and MEG measured. Source
modelling was performed, and ssRSA was employed to hexagonal cortical patches
of a radius of 20 mm and a sliding time window with length 30 ms and step 10 ms.
For the modelling part, the words were filtered using a Gammatone filter bank, to
produce a representation better corresponding to the cochlear representation than
the original sound. The hearing range was divided into 16 frequency bands and
RDMs were calculated for each band and for each time window based on the average
power of the stimulus. These 16 RDMs per time window were then fitted to the
corresponding data RDM using a general linear model. Each weight corresponds
to the contribution of a certain frequency band, and so, a Gaussian was fit to the
weights. This allowed determination of the center frequency and selectivity (standard
deviation) for each searchlight.

Wingfield and colleagues (2016) used a similar kind of analysis as described above,
comparing representations in speech recognition performed by humans and machines.
A general linear model was used fitting phonetic model RDMs to the data RDMs.
In this way, the activation for different groups of phonemes could be localized in the
brain.

Tyler and colleagues (2013) studied the flow of information in listening to locally
syntactically ambiguous sentences, which are characterized by that the meaning
of the sentence becomes fully clear at some point. They used functionally defined
regions of interest in the source space for calculating RDMs, a very similar procedure
to how RSA generally is used in fMRI studies. Every time point included data from
a 50 ms window. The resulting RDMs were correlated against models and time
series of correlations were examined in order to draw conclusions about the flow of
information.

Wardle and colleagues (2016) showed circular images with differently oriented
elements to subjects. The data RDMs were calculated separately for each time point
using the total MEG signal. Time-series of correlations between the data RDM and
various model RDMs (simple feature models and ratings) were determined. This
study also employed linear SVMs to determine the decodability of pairs of stimuli.
Decodability of the MEG signal is also done in the works by Cichy and colleagues
(2014), by Carlson and colleagues (2013), by Redcay and colleagues (2015) and by
Peters and colleagues (2016). Note that the analysis in these studies is done in sensor
space and no inverse modelling is conducted.

Ramkumar and colleagues (2014) combined the spatiotemporal searchlight with
decoding in studying scene perception, but did not use RSA per se. They showed
grayscale natural images to the subjects while recording MEG. Source modelling
was performed and the parameters for ssRSA were spatial neighborhoods consisting
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of 25 sources each and time windows of 20 ms. For each searchlight, linear SVMs
were using for decoding. Cross-validation was employed in determining the classifier
accuracy.

Even though some studies previously have used the RSA approach for MEG data
at the sensor level, and even fewer employed a spatiotemporal searchlight in source
space, a fusion of these methods into a spatiotemporal searchlight in sensor space has
to our knowledge previously only been used in the work by Henriksson and colleagues
(2016).
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3 Methods

Most of the simulations and analysis were run on a desktop computer in MATLAB
R2016a (The MathWorks, Inc.) on CentOS 6 using the MNE software package
(Gramfort et al., 2014) for forward and inverse modelling. For some more computation
intensive simulations (especially those containing CV), a distributed computing cluster
was used. The actual parameters used for individual simulations are presented in
connection with the corresponding results in Chapter 4.

3.1 Overview of simulations

A significant part of this work consisted of validating the RSA approach for MEG
data at the sensor level. While the validation was performed using both simulated
and measured data, more emphasis was put on the simulations, since they allowed
maximum control over the experimental situation. In addition to validation of the
main goal of this thesis, fitting multiple models, more basic properties like correlation
dependence on activation region depth and model RDM to signal RDM correlations
were also examined. This is done to both validate the approach used in the work
by Henriksson and colleagues (2016) and further advance the understanding and
possibilities of using a spatiotemporal searchlight in sensor space.

The basis for the simulations were the forward and inverse models presented in
Section 2.1.4. While the forward model is more of theoretical interest when analyzing
data, it has a prominent role in simulations. Usage of the forward model allowed
the exact location, extent and type of activation in the brain to be preset and the
corresponding sensor patterns to be generated. The activations in the simulations
were always located in the cerebral cortex and quite often in the occipital lobe, where
the sensors of the MEG helmet are very close to the brain.

The simulations were based on data from 10 subjects. This data included the
forward and inverse operators for the MEG data, a noise covariance matrix and
a distribution of sources based on previously acquired MR images. The resulting
data were always averaged over subjects and single subject data were never explicitly
examined, as this also is the usual approach in experiments of this kind.

The work flow of simulations can be divided into two main parts: data generation
and correlation and fitting. The substeps of these parts will be explained in the
following sections. A general overview is also shown in Figure 7, where the major
steps in the simulation process are visualized. An RDM can be determined for every
step and for example have a model (not necessarily the generating model) evaluated
against it or a set of models fitted to it.

3.2 Data generation

The data generation part of most simulations are more or less variations on the same
basic pattern:

1. Selection of regions (sources) of the cortex to be activated.
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generation forward inverse
model —> source activation ——> MEG signal —> source modelling

Figure 7: The data generation part of the simulation process. An RDM can be
determined for every step depending on the purpose of the specific simulation. Part
of figure from the work by Woods and colleagues (2010).

2. Selection of activation model(s).
3. Simulation of source activation according to the activation model(s).
4. Generation of MEG signal data using the forward model.

5. Modelling of source activation using the inverse model.

3.2.1 Definition of activation regions

MR images had previously been acquired for the subjects used for the simulations.
Based on these, the cortices had been triangularized with a mean of 294000 patches
(SD = 23800) per subject. The distribution of sources used for modelling was sparser
than this and the actual number of sources was on average 11500 (SD = 911) per
subject.

Since the simulations were based on real anatomical data from subjects, all
source distributions were different. To more precisely make sure that an activation
occurred in the same location relative to the MEG helmet for all subjects, the source
distributions were all registered to the source distribution of a particular subject. This
was done using the iterative closest point (ICP) algorithm, presented as Algorithm 1.
We used an affine transformation, i.e. a translation vector ¢ € R and an arbitrary
transformation matrix R € R3*3. Although registration of image data usually is
confined to rotation and translation, scaling and shearing was also allowed here to
fulfil the above mentioned goal. It proved necessary to employ all these degrees of
freedom here, since the cortices of the subjects were of different shapes and sizes.
Registration was done by

Xreg = RX + t,

where X, X,o, € R**" are the points to be registered and the registered points
respectively and ¢ is replicated n times in the row direction. To be able to determine
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the optimal parameters using linear least squares, we concatenated R and ¢ into

ri1 Tiz Tzt
T = |ro 1o T3 1o
r3; T3z T33 13

and add a row of ones to X. In Algorithm 1, the unit transformation on row 2 stands
for the transformation not affecting the points at all, i.e.

1 000
To=10 1 0 0
0010

The notation T'X on row 5 refers to matrix multiplication and is the set of points
transformed by T'. Finally, on row 9 the optimal 12 parameters for 7' that minimize
the total Euclidean distance between the points in X and the corresponding closest
points in points are determined. The algorithm eventually converges on a set of
closest points and the distance is unchanged after this.

Algorithm 1 Iterative closest point

Require: a set of points X to be registered and a set of points Y to register to
1: procedure ICP

2 T+ T, > Unit transformation

3 repeat

4 dist < 0

5: for x in TX do

6

7

8

9

y < closestpoint(Y, x)
dist < dist + distance(z,y)
poInts, <y
T < leastsquares(X, points)
10: until dist is unchanged

The region of activation was determined in one of two different ways: by using
previously anatomically labelled regions (only for areas located in the visual cortex) or
by systematically selecting sources according to some rule. One goal of the systematic
selection was to allow selection of small regions throughout the cortex without having
to rely on any labelling. By doing this, the number of activated sources could be
controlled for and the effects of depth on the MEG signal determined. In some
simulations, two regions were activated at the same time, both exhibiting different
types of activity.

The registered sources were used for defining activation regions. One early
definition method was based on generating a cubic grid and selecting a cubic or
spherical volume of sources within a certain distance of every grid point. This method
however proved to provide quite unstable results, since the number of sources in a
region could vary much between subjects, both due to the inevitable registration
error and the different source distributions of the subjects. Differences also occurred
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between regions of the cortex due to variation in the overall density of the sources.
To remedy these problems, a fixed number of the sources closest to a grid point was
instead used to define an activation region. An example of what a region like this
might look like is shown in Figure 8.

Figure 8: Example of two activation regions (yellow and red) determined by the
closest sources to a given point. In this case, the region has originally been defined
as one continuous region and then split into two along the coronal plane. This
also illustrates how systematic region selection can result in unwanted gaps in the
activation region; here the activation “jumps” to the other hemisphere. Every point
in the image is a source. Left: View from behind and left. Right: View from above,
the two hemispheres clearly visible.

The depth of an activation region was calculated in a way very similar to in which
the distance is calculated in Algorithm 1. Rows 5-7 of the algorithm were used (with
T = Tp) between the sets of source locations and sensor locations, after which the
resulting distance was divided by the number of sources in the activation region to
arrive at a mean distance between the sources and the sensors.

One notable weakness of the automated methods is that they ignore neurop-
hysiological realities. Sources are included in the activation region only based on
their locations without taking their orientation in regard in any way. This might
lead to naturally improbable results, where the activation can jump over sulci, over
functionally defined regions or even to the other hemisphere (see Figure 8). Ignoring
orientation in region selection also leads to sources cancelling each other out in
varying degrees, introducing an artificial source of variation in the results. Relying
on anatomically or functionally labelled regions could have remedied problems like
these, but would not have been able to provide as systematic a division.

3.2.2 Source activation

In MEG studies on human subjects, the underlying source activation is always
unknown, but of great interest and therefore estimated from the signal using different
methods (see Section 2.1.4). In the simulations, the activation was generated based
on a model RDM, which will be explained more in details a bit later. Specifically, the
amplitude of a source is set to a constant plus a vector pseudorandomly generated using
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a multivariate normal distribution with zero mean and covariance 1—RDM, i.e. a high
dissimilarity between stimuli results in a low covariance between the corresponding
activations. In this procedure, every source receives a different amplitude for every
stimulus, but the overall pattern of all the activated sources is what is of interest. The
RDM of the activated sources (using the correlation distance) will be approximately
equal to the original model RDM (in the limit of an infinite number of sources,
equality holds) when using this pseudorandom technique. The randomness inherent
in this procedure introduces variance at the source level, but results between runs
were found to be consistent to the degree that this variance could be ignored. Notice
that the covariance matrix > € R™™ must be a positive semi-definite matrix. This
means that the inequality
x'Yx >0

must apply for all x € R". An equivalent condition is that all eigenvalues of ¥ are
positive.

A number of classes of model RDMs were used for generating the activation. One
particularly simple one and highly structured is the categorical RDM. Stimuli are
grouped into a number of categories with a fixed number of stimuli per category.
Stimuli belonging to the same category produce exactly the same source activation,
while stimuli belonging to different categories produce maximally dissimilar source
activation. There can also be some variations on this, where e.g., some stimuli do
not belong to any category. Examples of the categorical RDMs used in this work
(although in smaller versions) can be seen in Figure 9. The block models were usually
used together in distinguishability tests, since they are structurally similar.

Figure 9: Examples of categorical RDMs. These three examples are the ones most
often used in the simulations. The grid is added to allow for better visualization of
the actual rows and columns of the RDM. Left: Categorical model with 3 categories
and 5 stimuli per category. Middle: Block model, referred to as [0 1; 1 1]. Right:
Block model, referred to as [1 1; 1 0].

In contrast to categorical RDMs, a random RDM contains little or no structure.
Due to the constraints imposed on an RDM (symmetric and diagonal zero), a
completely random matrix cannot be used. In addition, to use the RDM as a
covariance matrix, 1-RDM must be positive semi-definite, which in itself implies
symmetry. In this work, three different methods of producing random RDMs were
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used. The first two methods are very similar and are described in detail in Algorithm
2.

Algorithm 2 Random positive semi-definite RDM generation
Require: The size n of the RDM.

1: procedure RANDRDM
2: rdm < random matrix of size n X n, elements uniformly drawn from [0, 1]
3 execute row 4 or 5
4: rdm < rdm + transpose(rdm) > Method 1
5: rdm < rdm X transpose(rdm) > Method 2
6 diagonal(rdm) « 1
7 A < minimum eigenvalue of rdm
8 if A <0 then
9 diagonal(rdm) < diagonal(rdm) - A > Make eigenvalues positive.
10: rdm <« rdm/rdm[1,1] > Normalize diagonal to 1.

Note that Algorithm 2 contains a choice between two different generation methods
to be made on row 3. Row 5 of the algorithm actually produces a positive semi-
definite matrix (since x7 X7 ¥x = [|¥x||2 > 0 for all x € R™), but setting the diagonal
elements to 1 breaks this property. This can be remedied by making the eigenvalues
positive (row 9).

Another method of producing random positive semi-definite RDMs is by random
sampling from the Wishart distribution, which can be done using the function
wishrnd in MATLAB. Examples of typical RDMs arising from the different genera-
tion methods are shown in Figure 10.

0

Figure 10: Typical examples of random RDMs used as models in some simulations.
From left to right: RDM generated using row 4 in Algorithm 2, RDM generated
using row 5 in the same algorithm and RDM sampled from the Wishart distribution
with unit covariance matrix and df = 1. Notice that the level of perceivable structure
differs between generation methods.

To be able to test the performance of the fitting of multiple models, combinations
of models were also used for generating source activations. A linear combination of
two models was the one mostly used,

M = U)lMl + w2M2 ( + C), (4)
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where M, My are two different models called component models, wq,ws are the
weights applied to them and M is the resulting model. Without loss of generality, it
was assumed that w; +wy = 1. The simulations were usually run for w; = 0:0.05: 1.

3.2.3 Application of forward model and inverse model

The application of the forward model is straightforward according to Equation 1 in
Section 2.1.4. We explained how to obtain the source activation x in the previous
section. The gain matrix A had previously been determined for all subjects. The noise
covariance matrix C), was also known, meaning that the noise n could be simulated by
sampling from a multivariate normal distribution with C,, as the covariance matrix.
The signal to noise ratio could also be varied by weighting n appropriately, but for
most simulations, it was set at SNR = 3.

Modelling the source activation was done using the MNE solution presented in
Equation 2 in Section 2.1.4. The inverse operator required the parameter A\, which
was set to SNR2.

3.3 RDMs and fitting

The second part of the simulation relates to examining the results using RDMs. The
steps used in this part depends very much on the phenomenon being analyzed.

3.3.1 RDMs

RDMs can be calculated for the source activation, the MEG signal and for the
inversely modelled source activation. These RDMs can then be compared to each
other and to the activation model(s).

In early testing, the signal RDM was compared to the activated source RDM
instead of the activation model RDM. This was to combat effects of the randomness
in source activation generation. However, the relationship between these correlations
was always monotonic and therefore we focused on the correlation between the signal
RDM and the activation model RDM, since one neurophysiologically also could
expect noise in the EPSPs while there is an underlying “true” model these EPSPs
are based on.

Magnetometer data was ignored in all experiments performed in this thesis, due
to the fact that they are more prone to noise. The signal RDM can be calculated
for the total MEG signal, using all channels. To perform localization, we instead
used the signal from channel neighborhoods, which corresponds to the spatial aspect
of the spatiotemporal searchlight. For each channel location, all channels within a
certain radius are selected to form a channel neighborhood. This is done since one
single channel rarely contains enough information to actually get sensible RDMs.
Therefore, what is referred to as the signal RDM actually consists of 102 separate
RDMs, one for each channel. All of these RDMs are then one by one correlated to
the target RDM to create a map of correlations. For simplicity and where the spatial
pattern of the correlations is not important, maximum and mean correlations over
channel neighborhoods are usually reported.
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As a technical detail, the symmetry of the RDMs allows for using less memory
by representing them as vectors. In addition, since the distance between a stimulus
and itself always is 0, the diagonal does not need to be represented. A n x n RDM
can be converted into a vector of length

n(n—1
s:(n—1)+(n—2)+...+1:(2) (5)
by using the procedure seen in Figure 11. To convert a vector back to a matrix,
the size of the matrix can be determined from the length of the vector by solving
Equation 5 for n, which gives us

1 1
= i(i—) 1+28

1++1+48s
—

A method for converting matrix indices to vector indices is presented in Appendix B.
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Figure 11: Representing an RDM as a vector. Left: RDM represented as a matrix.
The arrows denote the order in which elements are stored in the vector version. Right:
RDM represented as a vector. This representation cuts the memory requirements in
half.

3.3.2 Fitting multiple models

As explained in the previous section, fitting multiple models to the signal RDM
actually consists of making 102 separate fits, one per channel neighborhood. Fitting
is based on Equation 4 in Section 3.2.2 with the constant included in some cases. As
mentioned in Section 2.2.4, the weights of the linear combination must be positive.
Therefore, the function 1sqnonneg in MATLAB was used for fitting. The function
uses an algorithm presented in Lawson and Hanson (1974).
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The usage of linear least squares fitting with forced positive coefficients is not
always problem-free. In cases where the component models are not suitable for
explaining the signal RDM, the optimal weights might be negative. This might
force lsgnonneg to return w; = wy = 0 and c as the mean of the RDM. This
especially causes problems in determining the cross-validated RDM, as this results
in the algorithm performing mean interpolation (see Appendix F).

It is notable that linear least squares fitting is based on minimizing the squared
Euclidean distance between the linear combination of component model RDMs and
the target model RDM. This procedure does not guarantee that the correlation
between the fitted RDM and the data will be the maximum possible. For example,
there is a possibility that there is a different linear combination that would have a
higher correlation with the data RDM or even that one of the component RDMs has
a higher correlation with the data RDM than the fitted RDM has.

To evaluate the performance of the fit, the ratio between the fitted weights was
compared to the ratio between the original weights. A direct comparison was not
possible, since the fitted weights (corresponding to the signal RDM) might be of a
completely different order of magnitude then the original ones (corresponding to the
activation model RDM). Nevertheless, for the weights to contain any information,
we expected that their ratio should be preserved. Note that the extreme cases w; = 1
and we = 0 or vice versa cannot be studied this way, since they result in an infinite
or zero ratio. The fitted weight ratios were calculated for all w; = 0.05: 0.05 : 0.95
and correlated to the original weight ratios using Pearson’s r. Also, a mean squared
logarithmic deviation (MSD) from a one-to-one correspondence between original and
fitted weight ratios was used as a performance measure.

3.3.3 Cross-validation

The cross-validation procedure was implemented separately and is included as Al-
gorithm 3. The actual implementation in MATLAB (see Appendix B) uses vectors
instead of matrices to increase speed and lower memory requirements. This requires
some indexing tricks to easily be able to leave out stimuli from fitting. The imple-
mented version also checks whether the choice of stimuli to be left out actually allows
for the evaluation of any previously undetermined elements of the CV-fitted RDM,
and select a new leave-out set if not.

As can be seen in rows 6 and 7 in Algorithm 3, the CV-fit is also based on a
non-negative linear least squares algorithm. When fitting (row 6, see Equation 4 in
Section 3.2.1), the constant is included. However, when evaluating the fit (row 7),
one question examined was whether to include the constant or not.

While a standard linear least squares fit naturally returns weights, this imple-
mentation of a CV-fit does not. The actual weights used for determining values
of the CV-fitted RDM are calculated at row 6 and depend on which stimuli has
been left out. To be able to return weights by this procedure, the weights used for
the determination of each value of the CV-fitted RDM were saved and the average
(over RDM positions) of these weights was returned. Also note that elements of the
CV-fitted RDM might be evaluated several times and overwritten. The last value
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(and its corresponding weights) written is always the one that is kept.

Algorithm 3 Cross-validated RDM fit
Require: The number of stimuli to leave out k, the target RDM target and a
collection of model RDMs models.

1: procedure CVFIT

2 n < size(target)

3 while fit has undefined elements do

4: leaveout < k random integers from {1,...,n}

5 keep < elements in {1,...,n}, but not in leaveout
6 fitpar < nonnegativelsq(target|[keep|, models[keep])
7 fit[leaveout] < evaluate(models[leaveout], fitpar)

3.4 Application to real data

The dataset used for validation and testing is described in more detail in the works
by Olander (2015) and by Henriksson and colleagues (2016). In short, MEG and
eye-movements were measured simultaneously while the subjects viewed grayscale
photographs. Since the subjects were instructed to freely fixate on the images, the
MEG data is contaminated with artifacts from saccades. Therefore, only data from
the time period before the first saccade has been used for each trial and analysis was
only performed for 125 ms post-stimulus.

No MR images had been acquired of the subjects, so source modelling was not
possible. The goal was however to apply the spatiotemporal searchlight at the channel
level. For every channel location, a channel neighborhood of a certain radius was
determined, and RDMs were calculated for each neighborhood. Only data from
gradiometers were used. Temporally, the data was divided into four windows of a
length of 25 ms. This procedure has been applied to the same dataset in the work
by Henriksson and colleagues (2016), but that study only used single models. The
models used in this thesis are also the same: one model based on low-level image
features (Gabor-wavelet pyramid model), one related to the content of target of the
first saccade, one related to the spatial length of the first saccade, one related to
the distance between the fixation point and the first saccade and one for saccade
scanpaths. To fulfil the theoretical assumptions of the fitting routine, the original
distances used in the study were dismissed and correlation distances were used for

RDMs where possible.

3.5 Workflow

The first simulations were performed to see how RSA enabled the study of basic
properties of the forward and inverse models. After this, the performance of the
different types of activation models and linear combinations of these was evaluated.
This provided the necessary basis for testing fitting.
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In fitting, both weights and correlations can be examined. Starting with the
standard LSQ-fit, weights are examined, both for the total MEG signal and per
channel neighborhood. Correlations are then examined. The same approach is used
for the CV-fit. Once the properties of the CV-fit has been established, multiple
activation regions with different activation models are tested. Finally, the CV-fit is
applied to the real data.
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4 Results

4.1 Correlation coefficients

As noted in Section 2.2.1, Kendall’s 7, is to be preferred over Spearman’s rank
correlation coefficient. Due to the coefficients belonging to different complexity
classes, the calculation time varies greatly for large matrices. In the experiment
using real data, the RDM was of size 199 x 199. On a laptop (Intel Core i5 520M,
2.4 GHz), the speed of calculation was 210 coefficients per second for Spearman’s
p and 0.70 coefficients per second for Kendall’s 7,. Applying the spatiotemporal
searchlight (102 channel neighborhoods and 4 time windows), resulted in a speed
of about 2 seconds per model when using Spearman’s p and about 10 minutes for
Kendall’s 7,. The significant difference in speed plus some additional simulations
(see Appendix C) motivated us to employ Spearman’s p in all simulations. Whenever
dubious results were attained, the correlations were double-checked using Kendall’s
Ta, but this never caused any qualitative changes in the results.

4.2 Validation of methods used in simulations
4.2.1 Activation region depth

As a first test that all procedures were working as expected, the effect of depth of
the activated region was examined. Here, 150 activation regions (defined by a cubic
grid with step 0.02 cm) each containing 50 sources were examined. The activation
model was a categorical model with 3 categories and 10 stimuli per category. The
activation region depth was compared to the maximum MEG signal and signal RDM
to model RDM correlation. Results can be seen in Figure 12. The maximum signal
refers to the maximum RMS value of the signal over gradiometer pairs, averaged
across subjects and stimuli. Note that channel neighborhoods are not used here. For
the correlation, channel neighborhoods were used, and the plotted correlation value
is the maximum over channel neighborhoods.
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Figure 12: Left: The maximum MEG signal as a function of activation region depth,
p = —0.8407. Right: The maximum correlation between the signal RDM and the
model RDM as a function of activation region depth, p = —0.7673.
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The spread of the data points in Figure 12 (left) can perhaps be explained by
the automated region selection not taking source direction into account. We can see
that deep activation regions always generate a weak signal, but the signal generated
by shallow ones varies more. The right panel in the same figure shows that the
relationship between depth and signal RDM to model RDM correlation is quite
linear, indicating that a region might elicit a low maximum MEG signal, but still a
significant correlation.

4.2.2 Forward-inverse modelling activation spread

To further evaluate the possibilities of using RSA, the activation spread in forward-
inverse source modelling was examined. Again, a categorical model with 3 categories
and 10 stimuli per category was used. A total of 334 activation regions (grid step
0.015 cm) of 50 sources each was used. This density resulted in overlaps between
neighboring regions. In one run, a specific region was activated and inverse modelling
was used to determine the source activation in all other regions. The modelled source
activation in the non-active regions was correlated with the activation model. Results
of this simulation are shown in the somewhat complex Figure 13.
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Figure 13: Spread of correlation in forward-inverse modelling. Each point corresponds
to the correlation between the modelled source activation in a non-activated region
and the activation model. The color denotes the correlation between the modelled
source activation in the activated region and the activation model.

Focusing on the yellowish data points (corresponding to activation regions were
the correlation between the region itself and the activation model was high) of
Figure 13, we can see a boomerang-shaped pattern. The closer a region lies to the
activated region, the higher the correlation of the modelled source activation in
the non-activated region to the activation model is. Activated regions with a lower
correlation (bluer colors) show a similar behavior, but with a slower rise when the
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distance decreases. There are at least two factors at play here: firstly, there are
limits on how accurately inverse modelling can locate the activation, which becomes
spread out, and secondly, the grid was so dense that some regions are overlapping.

4.2.3 Random model performance

Simulations were also conducted to evaluate the behavior of random activation
models. Here, the activated region consisted of 150 sources in the occipital lobe. The
simulation was run 20 x 20 times, meaning that 20 random models were generated
using each method and the results for each random model were averaged over 20
runs. The categorical model used had 3 categories and 10 stimuli per category and
the random models were of the same size, i.e. 30 x 30. Separate runs were done with
and without channel noise. Channel neighborhoods were used and the correlation
between the signal RDM (per neighborhood) and the source activation RDM was
calculated. The results can be seen in table 1. The mean correlation included in part
to show that the maximum correlation really stands out.

Table 1: Mean and maximum correlation (over channel neighborhoods) for noise/no
noise conditions using random models generated by the two methods described in
Algorithm 2 and a categorical model.

No noise Noise
Model Mean p ‘ Max p | Mean p ‘ Max p
Random (Method 1) | 0.0788 | 0.1195 | 0.0184 | 0.0776
Random (Method 2) | 0.2002 | 0.2951 | 0.0286 | 0.1502
Categorical 0.8107 | 0.8144 | 0.1204 | 0.5380

The random models do indeed perform differently as seen in table 1. The
categorical model, which has a well-defined structure, is the easiest one to detect
(highest correlation) of the tested models. The less structure a model has (models
generated randomly using Method 2 at least visually seems to have more structure
than those generated using Method 1, refer to Figure 10), the less the correlation
between the activation model and the signal is. It can also be noted that the presence
of noise makes the correlation more localized. In the case of the categorical model
without channel noise, there was almost no difference between the average and the
maximum correlation. With added noise, the difference was more than 4-fold.

4.3 Multiple models
4.3.1 Linear combination

Another preparatory validation simulation used a linear combination M of two
component models M; and M, as the activation model and correlated the resulting
signal to both the real activation model M and to the component models M; and
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Ms. The activation region was 150 sources in the occipital lobe and the simulation
was run 20 times for each weight-pair combination. Two different pairs of models
were tested: the block models [0 1; 1 1] and [1 1; 1 0] of size 30 x 30, and a
random (Method 1) model and a categorical model with 3 categories and 10 stimuli
per category. Results are shown in Figure 14.

o
(o))
o
[}

£ 05 £ 05
@ 3
E04 1 Eoa4at
© ©
[ (O]
&o03 1 &Ho3r , —w
—M
£ 1S M
202 —M|1 2o2¢ T
E S
(>é MZ = M2
=01 | Soiy TN~
0 ‘ ‘ : : 0 ‘ ‘ : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Wl Wl

Figure 14: Maximum correlation (over neighborhoods) of the signal to the activation
model M and its components M; and Ms. Left: Comparison of the block models [0
1; 1 1] (wy) and [1 1; 1 0]. Right: Comparison of a categorical model (w;) and
a random model (Method 1).

Note that while the graphs for the block models that have a similar structure
intersect at w; = 0.5, the graphs of the categorical and random model intersect
already at wy; = 0.2. This indicates that the categorical model is detected already at
lower weights. One possible explanation for this is that the values of the models are
not normalized in any way. An RDM generated randomly by Method 1 usually has
values in the range of [0.6, 1], while a categorical RDM only consists of the values 0
and 1. Since 1-RDM is used for the covariance matrix used for sampling the source
activation, the categorical model contributes with either 0 or 1, while the random
model contributes with a value in [0, 0.4], clearly a lower influence. Figure 14 also
illustrates that a component model actually can have a higher correlation to the
signal than the real activation model.

4.3.2 Fitting using all channels

As a first step in evaluating fitting, the signal RDM was calculated using the total
gradiometer signal instead using separate channel neighborhoods. The activation
model was a combination of two models, a categorical one (w;) with 3 categories
and 10 stimuli per category and a random one (ws, Method 1). 150 sources in the
occipital lobe were activated and the simulation was run 100 times. In the conditions
with includes noise, SNR was set to 3. All results are averages over runs and subjects
and can be seen in Figure 15. Fitted weight ratios versus original weight ratios (left)
as well as actual weights are shown (right). When channel noise is included, the ratio
of the fitted weights is shifted away from the one-to-one line when w is high, but not
as much when w; is low. The shift was more symmetric when using a combination
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of models more similar to each other, e.g., two Wishart sampled models or the block
models [1 1; 1 0] and [0 1; 1 1] (see Figure 19).

Figure 15 shows that the weights of the components model can be determined
under optimal conditions with no noise. The dimensionality of the signal is much
lower than that of the sources, but the information is still carried over by the forward
model. It can of course be argued that since we're only using 150 sources, the
dimensionality of the signal actually is higher than that of the sources. In practice,
noise hinders us from obtaining fitted weight ratios this perfect. Fitting without a
constant to noisy data (middle row) results in the fitted weight ratios not containing
any sensible information. Adding a constant (bottom row) shifts the fitted weight
ratio curve much closer to the one-to-one correspondence, but significant errors are
still being made when the categorical model dominates.

4.3.3 Fitting using channel neighborhoods

The next step was to actually use channel neighborhoods and examine how the
weights behave both in locations far away from and close to the point of activation.
These simulations were run concurrently with the ones described in the previous
section and have the same parameters. Although these kinds of results usually are
visualized on the flattened MEG helmet, we have chosen a different approach of
putting the indices of the channel on the horizontal axis in a standard scatter plot.
This both makes the visualization of all weight ratios possible in one figure and also
better indicates the deviations from the original weight ratio. Refer to Figure 4 for
the location of the channels based on channel index. The results can be seen in
Figure 16. The process was repeated using two random models from the Wishart
distribution as component models with similar results (not shown).

The pattern visible in Figure 15 can also be seen here when focusing on the high-
performing channel neighborhoods. In the absence of noise, channels in the index
range 50-97 perform almost optimally. With noise present and focusing on channels
71-82, we can see that the correspondence between original and fitted weights is
very good when 0.2 < w; < 0.5, but that performance degrades with higher wj.
We also evaluated the fitted weight ratios of the neighborhood of channel 82, the
best-performing channel in this case, and found that R = 0.9924 and MSD = 0.0943,
a notably better result than when calculating the RDM based on all channels (see
the lower left panel in Figure 15). Qualitatively, the resulting plot looked similar as
the one using all channels (not shown).

As mentioned in Section 3.3, the weights for the fit might be set to zero in some
cases. For the data shown in the lower panel of Figure 16, this occurred for on average
16% of channel neighborhoods, while the corresponding value when using component
models from the Wishart distribution was 23%. This phenomenon usually occurs
in channel neighborhoods registering mostly noise, located far from the activated
source region. Ignoring the zero values when plotting the average ratios does not
result in visible differences.
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Figure 15: Behavior of weights when fitting multiple models. R is Pearson’s R, MSD
is mean squared logarithmic deviation from the one-to-one line, w; corresponds to a
categorical model with 3 categories and 10 stimuli per category, wsy corresponds to a
random model (Method 1). Note the double logarithmic axes in the plots to the left.
A low ratio wq/wy corresponds to a low wy, so the directionality is the same in the
left and right plots. Top row: No channel noise, no constant used (nor needed) in
fitting. Middle row: Channel noise added. Bottom row: Channel noise added, fitting

using constant.
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Figure 16: Fitting to channel neighborhood RDMs. The channel index is the index
of the central channel in each neighborhood. The colored number to the right are the
values of w; (categorical model with 3 categories and 10 stimuli per category). The
other component model (ws) was a random model (Method 1). Dashed lines signify
the original weight ratios. Upper: No channel noise. Lower: Channel noise included.



35

4.3.4 Correlations

In addition to examining how the fitted weights behave, we were also interested in
how the fitted RDM correlates with the activation model RDM. In simulations very
similar to the previous ones, two RDMs from the Wishart distribution were used as
component models. Both for maximum and average (over channel neighborhoods),
the correlation between the fitted RDM and the data RDM was systematically higher
than the correlation between the underlying model RDM and the data RDM for all
weight pairs. For example, over the range w; = 0: 0.05 : 1, the average correlation
between model and data RDM was in the range [0.02,0.03] while the correlation
between fitted and data RDM was in the range [0.06,0.07]. This result calls for the
use of cross-validation.

4.4 Cross-validation
4.4.1 Initial problems

Preliminary testing using CV-fitted RDMs conducted in the same manner as the
simulations above showed both very low and highly negative correlations between
the CV-fitted RDM and the signal RDM. Including the constant of Equation 4 in
Section 3.2.2 when performing the CV-fit seemed to shift correlations downwards by
in some cases as much as —0.75. To further analyze these issues, a signal RDM with
a highly problematic correlation was examined (there were plenty of these, one was
arbitrarily chosen). The channel neighborhood used and the RDM itself can be seen
in Figure 17. The source activation was in the occipital lobe, so this area only had
minor influences of the real activation, whose generating model was a combination
of two random models from the Wishart distribution. The best fit of the component
models to the signal RDM of this channel neighborhood had negative weights and a
non-negative linear least squares resulted in weights of 0. This situation occurred in
23.4% of channel neighborhoods in the simulation overall.
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Figure 17: Channel neighborhood and signal RDM from one subject used to evaluate
problems in CV-fitting.

A CV-fit was performed on the same signal RDM, both with and without the
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constant when evaluating the fit with £k = 2. The results can be seen in Figure 18.
In the CV-fit without the constant, 93% of the elements are 0 due to weights of zero
being returned by the non-negative linear least squares algorithm. Increasing £ led
to more filled RDMs, but the variability between runs was much higher. Including
the constant resulted in very high negative correlations. This can be explained by
the algorithm mostly performing mean interpolation in this case, since an RDM
calculated by using mean interpolation was visually inseparable from the right RDM
in Figure 18. All of these problems were found to be alleviated by selecting a higher
k and not using the constant when evaluating the fit.
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Figure 18: CV-fitted RDMs to the signal RDM shown in Figure 17. The component
models were two random models from the Wishart distribution. Left: Constant not
used when evaluating fit. Right: Constant used when evaluating fit.

4.4.2 Weights

Next, the average weights for determining the CV-fitted RDM were compared the
to weights given by non-negative least-squares fitting. The activation was based
on a linear combination of the two block models [0 1; 1 1] and [1 1; 1 0] of
size 30 x 30 and comprised 150 sources in the occipital lobe. The simulation is an
average of 5 runs. The situation was first examined using by averaging weights over
all channel neighborhoods before calculating the ratio. Results of this can be seen in
Figure 19. The results per channel are shown in Figure 20. The difference between
weight ratios given by LSQ and CV is barely noticeable in these cases. It is worth
observing that the simulation with only 5 runs leads to quite much variation in
Figure 19, even though each run includes 10 subjects. This illustrates the importance
of repeated trials.



R =0.8338, MSD = 1.5425

Original wllw2

R =0.8361, MSD =1.5775

37

Original wl/w2

2 E
2 L
18l 1.8}
16F ‘ 16} ‘
N N
Z 14} e R z 141 . .
Z 12 oo ® 212 oo o
g 10 ° ° g 1r ‘ °
i .. i «°,
[ J [
0.8 o ° 0.8 . °
[ ) [ )
107 10° 10° 107 10° 102

Figure 19: Fitted weight ratios versus original weight ratios for a linear combination
of the block models [0 1; 1 1] and [1 1; 1 0]. Left: Using non-negative linear
least squares. Right: Using average CV-fitted RDM weights.
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Figure 20: Fitted and original weights ratios per channel illustrated. The activation
model is a linear combination of the block models [0 1; 1 1] and [1 1; 1 0]. Left:
Using non-negative linear least squares. Right: Using average CV RDM weights.
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4.4.3 Correlations

After this, focus was put on examining the correlations between the activation model
RDM and the CV-fitted RDM. As previously noted, the LSQ-fitted RDM in many
cases correlated higher with the signal RDM than the actual underlying model
RDM did; this can be attributed to overfitting. In Figure 21, the correlations per
channel neighborhood are visualized on the flattened MEG helmet. 150 sources in the
occipital lobe were activated and the component models used are the block models [1
1; 1 0] and [0 1; 1 1] of size 150 x 150 with weights w; = wy = 0.5. The results
are averages of 5 runs and k = 15 was used for the CV-fit. Note that even though the
colorbar scales are different for each subplot, it visually looks like the LSQ-fit spreads
out the correlations more than the CV-fit, which seems to better correspond to the
correlations of the model RDM to the signal RDM (although they are a bit lower).
The behavior is further visualized in Figure 22, where each data point corresponds
to the correlation of the signal RDM of one channel neighborhood to the fitted RDM.
While only the case of w; = we = 0.5 is shown, the qualitative behavior for the
correlations was similar for all weights wy = [0:0.05 : 1] and we = 1 — w;. We can
see that there is a substantial offset in the correlation between the LSQ-fitted RDM
and the signal RDM and the correlation between the CV-fitted RDM and the signal
RDM. This difference can be attributed to simple LSQ overfitting the RDM to the
signal RDM.

Model <-> signal LSQ <-> signal CV <-> signal
w,=0.500000 w,=0.500000 w,=0.500000
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Figure 21: Correlations between the signal RDM and the model, LSQ-fitted and
CV-fitted (k = 15) RDMs shown per channel neighborhood on the flattened MEG
helmet. The activation models are the block models [0 1; 1 1] and [1 1; 1 0]
of size 150 x 150.

The results of simulation with another choice of component models, a random
model (Method 1) and a categorical model with 3 categories and 10 stimuli per
category, can be seen in Figure 23. This particular case was chosen to illustrate a
potential problems in CV-fitting. The activation model is 30% a categorical model
and 70% a random model. We can see that the correlation of the LSQ-fitted RDM to
the signal RDM corresponds quite well to the model RDM correlation to the signal
RDM. However, when looking at the correlations between the CV-fitted RDM and
the signal RDM, we notice that they are very small and spread out in a pattern
not resembling the previous ones. This behavior can probably be attributed to the
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Figure 22: Comparing LSQ-fitted and CV-fitted RDM signal correlations to the
model RDM signal correlation. The data are the same as in Figure 21, but visualized
in another way.

randomness of the model and will be discussed further in Chapter 5.
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Figure 23: Correlations between the signal RDM and the model, LSQ-fitted and
CV-fitted RDMs shown per channel neighborhood on the flattened MEG helmet.
The activation models are a random model (Method 1, wy) and a categorical model
with 3 categories and 10 stimuli per category.

Another aspect of the two previous simulations is shown in Figure 24. Here,
the correlation between the signal RDM and the activation model, LSQ-fitted and
CV-fitted RDMs are shown for different weights. We can see that in the case of one
random and one categorical component model (right plot), the maximum CV-fitted
correlation is mostly flat for low w; (categorical model) and starts rising at w; = 0.4.
This is probably due to the randomness of the model mentioned in the previous
paragraph. The same figure also illustrates how the correlation of the LSQ-fit to the
signal RDM is higher than the correlation between the activation model RDM and
the signal RDM, indicating overfitting and calling for CV.
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Figure 24: Maximum correlations over the channel neighborhood as a function of
the weights of the component models, wy = 1 — wy. Left: Block models [0 1; 1 1]
(wy) and [1 1; 1 0] (wy) of size 30 x 30. Right: Random model (Method 1, wy)
and a categorical model (w,) with 3 categories and 10 stimuli per category.

4.5 Multiple activations

In this section, results from simulations where two regions are active simultaneously,
but activated using different models, are presented. 100 sources in the occipital lobe
are used and they are divided into two separate regions of 50 sources each. The
division is done straight along a given dimension (sagittal, transverse, coronal). See
Figure 8 for an illustration. One of the regions is then activated by the model [0 1;
1 1] while the other one is activated by [1 1; 1 0], both models of size 30 x 30.
The fits were done using CV (k = 10) and average weights were calculated. The
ratio of the weights of the models can be seen in Figure 25. Component model
correlations in the specific case of splitting the activation region in the sagittal
direction is illustrated in Figure 26.

Figure 25: Ratios of CV-fitted weights per channel neighborhood shown on the
flattened MEG helmet. The activation region has been split in the (from left to
right) sagittal, coronal and transverse dimension and one part is activated by the
block model [0 1; 1 1] while the other one is activated by [1 1; 1 0].

The activation of two separate (but neighboring) regions using different models is
reflected in the weight ratios in a quite expected way. The left-most panel of Figure
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Figure 26: Correlations of component model RDMs and the CV-fitted RDM to the
signal RDM. The activation region was split in the sagittal direction and the models
used were 30 x 30 block models [0 1; 1 1] and [1 1; 1 0].

25 shows a clear left-right separation most prominent at the location close to the
activated region (in the occipital lobe). In the middle panel, the weight ws seems to
be higher than weight w; almost everywhere, but close inspection shows that the
channels in the back reach a weight ratio as low as 0.75. For the third panel, the
split in the coronal direction leads to a deep and a shallow activation region. The
shallow one naturally corresponds to wy, as it conceals the activity of the deeper
one. The correlations of the component models themselves to the signal RDM in the
case of the sagittal split are also shown in 26, where we can see that it is possible to
separate them spatially.

4.6 Application to real data

Since single model correlation already have been performed in the work by Henriksson
and colleagues (2016), it was not repeated here. Instead, the difference between a
LSQ-fit using only the Gabor-wavelet pyramid model and using all models mentioned
in Section 3.4 was determined. The statistical significance of the difference was tested
using the one tailed t-test and spatial cluster permutation described in the study.
The difference between the fits for the different time windows can be seen in Figure
27. In these tests, a constant was not used when fitting, since it caused correlations
in all location and for all time windows to be regarded significant. To determine
weights for the models however, a constant was used, since the LSQ-routine otherwise
would attribute a weight of almost 1 to the first model. The weights of different
models for the last time window examined can be seen in Figure 28. An average of
the weights over channels can also be plotted as a function of time for each model,
but this visualization was not very informative in this case, since the Gabor-wavelet
pyramid model was much stronger than all other models and the time span analyzed
was short (due to saccade artifacts).

Applying CV to the fit did not yield any interesting results. When only using the
Gabor-wavelet pyramid model, the maximum correlation occurred in the time window
75-100 ms and was 0.027. Using all models, the maximum correlation occurred in the
same time window and was 0.028. Note that this is the maximum correlation and
not the difference of correlations as shown in Figure 27. The results were obtained
using k& = 20. Other values of k& were tested, but did not give any better results.
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Figure 27: Application of LSQ-fitting to real data. Top row: Difference between
correlations of a LSQ-fitted RDM with only the Gabor-wavelet pyramid model and
all available models. Bottom row: Significance tested using cluster permutation.
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Figure 28: Weights assigned to the different models in the LSQ-fit with constant for
the time window 100-125 ms. Note the that each panel has a different color scale.
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5 Discussion

This work sought to both validate and extend a method for analyzing MEG data
used in the work by Henriksson and colleagues (2016). As a preliminary step, it was
shown that separate models can be detected via correlation even when the generating
model is a combination of two models. The correlation between the signal RDM and
a component model RDM monotonically increased as the weight of the component
model in the generating model increased, as one intuitively would expect. This result
gave a strong indication that fitting multiple models might give sensible results.

One interesting question was whether the forward model would preserve weight
ratios of models from the source space to the sensor space. Although the fitted weight
ratios (signal) not always corresponded to the original weight ratios (source), the
dependence of these on each other usually seemed to be monotonic. The deviation
from a one-to-one correspondence was complex and varied with different models.
As opposed to the situation in simulations, there is in principle only a single set of
underlying weights in the analysis of real data. Fitting therefore returns a single set
of weights, but no data on how these depend on the underlying weights. By using
simulations, we can however get a picture of how the weights of the models we are
using behave theoretically. Using this information, the the real weight ratio can be
estimated more accurately. This result might seem discouraging, but as absence of
noise resulted in an almost perfect correspondence between original and fitted weight
ratios, taking measures to raise the SNR will no doubt help.

Since one of the goals was to be able to use a spatiotemporal searchlight, the
behavior of weight ratios on a channel neighborhood level was also examined. As
expected and seen in Figure 16, adding noise made the detectability much more
concentrated and the fitted weight ratios approach the real ones only for channel
neighborhoods that are close to the activated region. When it comes to real data,
the situation is similar to the one described in the previous paragraph.

It was determined that CV worked best by excluding the coefficient when fitting
and using a k not too low. The method was also able to return weights that did not
notably differ from those returned by a LSQ-fit. Therefore, if only the weights are of
interest, LSQ can well be used instead, especially since CV is considerably slower
(see Appendix E for details). A potential issue in using CV to determine correlations
is shown in Figure 23, where the LSQ-fit very well corresponds to the actual model
RDM to signal RDM correlation, while the situation for the CV-fit is completely
the opposite. This phenomenon can be explained by referring to the structure of
the models used. When performing leave-k-out CV, we assume that there are some
kind of information about the left-out data retained in the kept data. Otherwise, the
values of the left-out stimuli could not be estimated form a fit involving only the kept
stimuli. In a truly random matrix, there is no dependence between the elements, so
this assumption is therefore invalidated in such a case. In this particular case, even
though the model to 30% consists of a categorical model (plus 70% random), this
apparently is not enough to enable CV-fitting.

In the application to real data, the models used originally had relatively low
correlations with the signal. The Gabor-wavelet pyramid model had a much greater
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explanatory power than the rest of the models in the original study, but still, a
significant difference in correlation was attained by combining all models. Using
CV did not return any meaningful results. Similar behavior of the CV-fit was also
observed during testing multiple activations, where fitting only one model using CV
(results not shown) resulted in negligible correlations although the standard LSQ-fit
did not. In the real data, correlations were relatively low using LSQ, no repeated
trials were performed and there was no clear categorical structure of the stimuli. All
these factors probably contributed to the fact that the CV-fit was unsuccessful.

Overall, using CV seemed to result in too conservative correlation estimates,
which is evident partly because of the failures mentioned above and partly in Figure
24. Here, the LSQ-fit is almost always overfitted, since it for most weights returns
a higher correlation with the signal RDM than the actual model RDM does. The
CV-fit however returns a noticeably lower correlation than the actual model RDM.
Although conservative, correlations of the CV-fit deemed significant will indeed be
that. Relying on LSQ is problematic if we want to report absolute correlations and
determine their significance. The best solution in this case is to rely on CV. However,
results between different LSQ-fits can be thought to be comparable. Especially, the
difference in correlation of separate LSQ-fits can be subjected to ordinary methods
for testing statistical significance. This is exactly what was done for the real data
in this work. We did not report absolute correlations, but examined whether the
correlations significantly increased when adding models to the fit.

Most of the tools required to perform multiple model fitting using non-negative
linear least squares are provided by MATLAB and do not require implementation
of any additional functions. A function for determining CV-fitted RDMs and their
corresponding weights taking advantage of the indexing tricks presented in Appendix
B is available from the author. It has been shown that using RSA for MEG on the
sensor level and fitting multiple models to measured data is possible and can also
be used to crudely localize activity corresponding to a given model. However, as
discussed in the previous paragraph, the current recommendation is to use LSQ for
fitting and apply CV only when the type of results demanded require it.

6 Summary

The main goal of this thesis was to examine fitting multiple models using linear least
squares (LSQ) both with and without cross-validation (CV) within the represen-
tational similarity analysis (RSA) framework to magnetoencephalography (MEG)
data. RSA was also used to illustrate activation spread in inverse modelling. By
simulating source activations based on different types of models, we have shown
that activity crudely can be localized. When using multiple models, the ratio of the
weights returned by a LSQ-fit of models to the signal is under realistic conditions
(i.e. noisy) not equivalent to the ratio of the weights of the underlying models, but
simulations can help understand the behavior of the weights when fitting to real
data. Weight ratios behave as expected when there are two neighboring activation
regions activated by different models, that is, the ratio is biased towards the model
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whose activation lies closest to the point examined. Using CV prevents overfitting
and the average weights returned are virtually identical to the weights given by a
simple LSQ-fit. However, if the underlying model contains too little structure or
if the correlations are very low, employing CV can result in negligible correlations.
This phenomenon was observed both in simulated data and in the application to real
data, where LSQ-fitting showed a significant increase in correlation when adding
more models, while CV-fitting overall returned very low correlations.
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A On distance metrics

Let x = (x1,...,2,) and y = (y1, ..., y,) be real vectors of length n. We will show
that the correlation distance of these vectors is proportional to the squared Euclidean
distance of the corresponding normalized vectors (with mean 0 and standard deviation
1). The Euclidean distance is defined as

diue(X,y) = Z(% —ui)%

Normalizing the vectors results in

X7 and Sf:y_ﬂy,
Ox Oy

X =

where p, and o, denote the mean and standard deviation respectively of a. The
squared Euclidean distance of the normalized vectors is

n 2
- o~ T; — Hx Yi —
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Ox Oy

) Zn: <<M>2_2($i_ﬂxxyi_ﬂy> N <yz-—uy>2)_ (A1)

OxOy Oy

Let us now analyze one of the squared terms in the sum. Using the definition of the
standard deviation, we have that

2": (sz - Mx)2 (= )’

Ox B % ?:1 (xl - Mx)2

=n.
i=1
Substituting this result into Equation A1, we get

n
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= 2n (1 - COV(XY)) : (A2)
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where cov stands for the sample covariance of the vectors. The correlation distance
is defined as

deorr(X,y) :=1 — corr(x,y) =1 — 7COV(X’Y). (A3)
OxOy
By comparing Equations A2 and A3, we can see that
1, .
dcorr(x7 Y) - 7dEuc(X7 Y)

2n
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B Matrix- and vector-based indexing

In this section, we will derive a formula for converting matrix indices to corresponding
vector indices in accordance with the transformation discussed in Section 3.3.1. Since
RDMs are symmetric and have zeroes on the diagonal, we only need to take the
lower triangular part below the diagonal into account. We will start by examining
the 6 X 6 matrix

X X X X X X
1 x X X X X
2 6 X X X X
3 7 10 x x x|’
4 8 11 13 x x
15 9 12 14 15 x|

where the crosses indicate uninteresting elements. The values of the matrix correspond
to the indices of the corresponding vector. We now wish to find a function that would
allow us to convert row-column-pairs (7, ¢) into vector indices 7. Once we have found
the index of the first element in a column (1,6, 10, 13 or 15 in the matrix above), it is
easy to take the required number of steps forward to arrive at the correct row. The
difference between the indices of the first elements of the columns is always reduced
by 1 when moving to the right. This tells us that the relation between the column
number and the index can be explained by a second-degree polynomial function.
In the general case of A € R"*", the indices of the first elements of the first three
columns are 1,s+ 1 and 2s, where s = n — 1. We will fit the second-order polynomial
function i(c) = a;c? + azc + ag to these values. We arrive at the equation system

a1 +as+az=1
da; +2a,+a3=s+1,
9a1+3a2—|—a3:25

that can be solved to give

1
CL1:—§

3
&2:84—5.
a3 = —S

This gives us
(c) 1 2 ( +3>
ifc)=—=c"+cls+ =) —s.
2 2

We extend this function to also take the row index into account. The number of
steps to walk downwards from the first element of a column to reach the correct row
isr — ¢ — 1. This results in

1 3
i(r,c) = 202+c<s+2>—8+r—c—1

1
= ic(Qs—c—l—l)qu—s—l.
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Figure B1: Left: The submatrix sought when extracting rows and columns 1, 3, 4, 5
and 8 shown in yellow. Right: The actual elements that need to be extracted when
working with an RDM due to symmetry and zeroes on the diagonal.

This formula will return incorrect values if trying to retrieve the index for a diagonal
element or for an element in the upper right part of the matrix.

An usual application in this thesis is the extraction of a submatrix. This operation
is illustrated in Figure B1 and an implementation in MATLAB is shown as Code 1.
Rows 4 and 5 generate index matrices that correspond to the yellow part of the left
image in Figure B1. Row 7 will generate erroneous output for all elements except for
those shown in the right image of Figure B1. Since we only need the elements shown
in this image, we can remove all indices where the original row index was larger than
the column index (row 8).

Code 1: Converts matrix indices to vector indices for submatrix extraction. The
input uselnds is a vector of columns/rows to be extracted (refer to Figure B1) and
numStimuli is the size of the original matrix.

function inds = convInds(useInds, numStimuli)
= numStimuli - 1;
= repmat (useInds, length(uselInds), 1);
r = c’;
inds = .5 * ¢ .*x (1 - ¢ + 2 ¥ 8) +r - s - 1;
inds = inds(c < r);
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C Spearman’s p and Kendall’s 7,

Due to the computation of Kendall’s 7, having a higher complexity than the computa-
tion of Spearman’s p, the behavior of these rank correlation coefficients was evaluated
to examine whether Kendall’s 7, provided meaningful additional information in our
simulations.

To test a case with many tied ranks, a categorical model C' with 3 categories and
10 items per category was used as the real model. This model was contaminated
with noise by linearly combining it with a random (uniformly sampled from [0, 1])
model R in different proportions, so that the observed model was given by

0= w1C + ’LUQR,

where w; + we = 1. Rank correlation coefficients between O and C' were calculated
for different values of w; and the results can be seen in Figure C1. Every point is
the average of results from using 50 different random models. The ratio between
Spearman’s p and Kendall’s 7, is constant (1.84) for all weights except for w;, = 1.
In this case, the real model is correlated against itself, and p = 1 as expected. As
stated in Section 2.2.1, Kendall’s 7, only includes the number of concordant and
discordant pairs, ignoring the pairs for which either z, = x;, or y. = y4. The pairs
arise frequently when comparing a categorical model (containing only the values 0
and 1) to itself. Therefore, 7, remains low, even though there is a perfect match
between the correlated vectors. The conclusion is that Kendall’s 7, provides no more
information than Spearman’s p in this particular case.

1

0.8r

o
o

Correlation

©
~
|

0.2}

* Spearman
* Kendall

0 ‘ ‘ ‘
0% 20% 40% 60% 80% 100%
Amount of categorical model

Figure C1: Values of Spearman’s p and Kendall’s 7, when correlating a model to
itself with added noise. See the text for more details.
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D Fractional ranking

Here we will show that using tied ranks is equivalent to averaging over all possible
permutations of ranks (refer to the discussion in Section 2.2.2). We will start by
considering permutations of the set {k,...,n + k — 1}, which contains n elements
and therefore n! permutations. We can list all of these permutations row-wise; an
example for k£ = 1 and n = 3 is shown below.

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
+ 3 2 1
12 12 12

The sum of every column S(k,n) is the same, since each element has the same
number of occurrences in every column. The sum is obtained by multiplying the
average of a row with the total number of rows,

S(kon) — n!<(n+k)(7;+k—1)_k(l{:;l))/n

1
= §n'(n +2k—1)
The mean m(k,n) of each column when averaging over rows is therefore

1
m(k,n) = i(n + 2k — 1),

the same as the mean of the numbers {k,...,n+k — 1}.
Denote the non-ties of a ranking by r;, where ¢ = 1,...,n, and n, is the number
of non-ties. Also denote the ties by ¢;;, where ¢ = 1,...,n, and 7 = 1,... 14,

where ng is the number of groups of ties and n; is the number of ties per group. An
example of a ranking in this notation is

r1,72,t11,t1,2, 81,3, 74,21, t2,2, 5.

12 3 4 5 6 7 8 9
The number of possible permutations is [}, n;!. Non-ties are unaffected when
averaging over permutations, since they are constant. When listing all permutations,
we notice that for each permutation of the group t;, all possible permutations of ¢,
are repeated. This increases the number of rows by a factor of n;;, but does not
change the means of the columns for #,. The same reasoning applies to the behavior
of any tie group when considering permutations of all the other tie groups. Therefore,

n
E o o E o m(ta,la ta,nt,a) Hz:gl nt,i! " "
al — -+ = langa = H?i1 nt,i' - m( a,ls a,nt,a)

for all @ = 1,...,n,, where the bar symbol denotes the mean. This result is the
mean of the numbers {t,,,..., %, }, i.e. the same as fractional ranking of ties.
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E Computational cost of cross-validation

We examine the expected value of the number of steps required to fully construct a
vector of length n when using leave-k-out cross-validation with a random choice in
every step. For k = 1, we will derive an analytical expression, but for k£ > 1, we will
rely on simulations.

We start by deriving a formula s(l,n) for determining the number of possible
strings of length [ using n characters where every character must appear at least once.
As an example, we will consider n = = 4 and the alphabet {a,b, c,d}. The number
of possible strings without any constraint is 4*. We start by removing all strings not
containing the character a, of which there are 3*. Repeating this for all characters,
we get 41 — 4 - 3%, In doing this, we have removed the strings containing e.g., only
the characters a and b twice, since they are missing both ¢ and d. Therefore, we
must add back the number of strings not containing ¢ and d and repeat this for all
possible pairs, of which there are é) This gives us 4* — 4 - 3* + (;) - 2% Now, we
have compensated too much, since also the strings aaaa, bbbb, cccc and dddd have
been added back. We ultimately arrive at

Qo) e ()

.44
(=1

o

4
s(4,4) = 44—4-34+<)-24—4

-3

J

This can be generalized to

n—1
st = S 1p (1) - i) (o)
=0 J

We can illustrate the leave-out choice history by a string of numbers. For example
113 means that data point 1 was left out during the first and second run and data
point 3 was left out during the third run. For a history z of length [ to be complete,
every number must appear at least once in the whole string, but every number cannot
appear in the subhistory z[1 : (I — 1)]. The complete histories of length [ correspond
to the CV finishing in [ steps.

We look at the case of n = 4, where n is the number of data points, and try to
determine to number of complete histories as a function of their length [. If the last
number of a complete history of length [ is 4, all others numbers in the history must
belong to {1,2,3}; otherwise, the process would have finish earlier. The number of
complete histories ending with 4 is therefore s(I — 1,3). This reasoning should be
repeated every other number, resulting in a total of 4 - s(I — 1,3) complete histories
of length [. In the general case, there are n - s(I — 1,n — 1) complete histories of
length [.

Let the stochastic variable X,, be the length of the complete history when there
is n data points. To determine the expected value of X,,, we need to calculate the
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probability of a complete history of a certain length occurring. The total number of
possible histories is n!. This gives us

n-s(l—1n—-1) s(l—1,n—-1)
p(Xn =1) = nl - i1 :

For the expected value, we get

BIX,) = Slpx, ==y sl tn=l)
l=n

n!

l=n
o) l n—2 In -1 o
S ToD 3 CHl] L ITE R
l=n 7=0

where the summing starts from n, since no complete history can have a length less
than n. The sum can be evaluated exactly using a CAS (in our case, Wolfram
Mathematica 11 was used). Experiments showed that the expected value can be
approximated by

E[X,] =~ cinlogn + con + cs. (E2)

Using n =[2 7 12] with corresponding E[X,,] = [3 32 282 and performing a
least-squares fit resulted in the coefficients ¢ = [0.9940 0.5978 0.4266]. The errors
for n = 1000 and n = 2000 were 0.28% and 0.31% respectively.

For k > 1, deriving a formula turned out to be tedious, since the alphabet consists
of k-tuplets of numbers which are highly dependent on each other in determining
the completeness of a history. Therefore, we relied on simulations instead. The
expected number of steps required was calculated as the average number of steps
needed over 10000 runs for each combination of n and k. Results are shown in Figure
E1l. Equation E2 was again used for fitting curves. Using the data points shown in
the figure and examining n = 5000, the fit resulted in the errors 0.24%, 1.6% and
0.20% for k =2, k =5 and k = 10.

Another point of view perhaps more practically motivated is to look a how
changing k affects the expected number of steps for a fixed n. Results of this are
shown in Figure E2, where each point again is the average of 10000 runs. These
curves can be approximated by a function of the form

&1
S:7+027

k

where s is the expected number of steps needed.
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Figure E1: The expected number of steps required as a function of n, the number of
data points, shown for different values of k£, the number of left-out data points per
step.
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Figure E2: The expected number of steps required as a function of k, the number
of left-out data points per step, shown for different values of n, the number of data
points. Note the double logarithmic axes.
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F Mean interpolation

In this section, we will show that a vector constructed from another vector using
mean interpolation results in perfect anti-correlation between the vectors. A variant
of this arises when performing CV and including the constant when evaluating the fit
(see Section 4.4.1 for details). If the weights are zero (due to the non-negative weight
constrain and bad data/models), the constant will be the mean of the training data,
since this is the best solution in the least squares sense. The left-out stimuli will
then acquire this mean value.

Let x = (x1,x9,...,x,) € R" be given and let uyx be the mean of x. We will

construct X = (%1, To, ..., T,) € R" by letting
D) (F1)
€Ty = Ly
n—1 oy

i.e. letting Z; be the mean of x with z; left out. We can rewrite Equation F1 as

where a and b are both independent of ¢ and b = —1/(n — 1), showing that Z; is the
same decreasing linear function of z; for all i. We can therefore write X = a + bx.
Since b < 0, this implies that

corr(x,X) = —1.
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