Aalto University
School of Electrical Engineering

Department of Electrical Engineering and Automation

Joel Huttunen

Microservice Testing Practices in Public
Sector Software Projects

Master’s Thesis
Espoo, April 18, 2017

Supervisor: Ville Kyrki, D.Sc. (Tech.)
Advisor: Jari Paakko, M.Sc. (Tech.)



Aalto University
School of Electrical
| Engineering

Aalto University

School of Electrical Engineering ABSTRACT OF
Department of Electrical Engineering and Automation MASTER’S THESIS
Author: Joel Huttunen
Title: Microservice Testing Practices in Public Sector Soft-

ware Projects

Date: April 18, 2017 Pages: ix + 83
Professorship: Automation Technology Code: AS-84
Supervisor: Ville Kyrki, D.Sc. (Tech.)

Advisor: Jari Paakko, M.Sc. (Tech.)

Online services are constantly evolving, which makes service maintainability challenging.
This has led to microservice architecture, where big applications are split into smaller
services in order to improve applications’ maintainability, scalability, and flexibility.

However, splitting a single process application into multiple services causes the testing
process to be more challenging. This Master’s thesis is exploring these testing problems
in a microservice context and finding practical guidance for the test implementation.

Moreover, this Master’s thesis focuses on public sector software projects. Public sector
software projects are clearly predefined and the provider has open information about
the project’s needs. Thus, the project has a clear goal and known boundaries right

from the beginning.

The research approach for this study is an exploratory multiple case study consisting of
three case projects. The data of the case projects were collected through semi-structural

interviews and version history commit analysis.

The results of this study present a set of successful practices and recommendations for
taking testing into account during a microservice oriented agile development process.
Successful testing requires monitoring of the project’s maturity level to focus testing
resources at the right time. Additionally, the case projects brought up practical testing
guidance, such as understanding of the common testing responsibility, the importance
of peer review, and the value of assigning a specific tester after the project has reached
its end-to-end testing phase.

Keywords: microservice, testing practices, case study, software maturity, soft-

ware architecture

Language: English

ii



Aalto-yliopisto
Sahkotekniikan
B korkeakoulu

Aalto-yliopisto

Séahkotekniikan korkeakoulu DIPLOMITYON
Séhkotekniikan ja automaation laitos TIIVISTELMA
Tekija: Joel Huttunen
Tyon nimi: Mikropalveluiden testauskéytdnnot julkisen sektorin
projekteissa
Paivamaara: 18. huhtikuuta 2017 Sivumaara: ix + 83
Professuuri: Automaatiotekniikka Koodi: AS-84
Valvoja: TkT Ville Kyrki
Ohjaaja: DI Jari Paakko

Web-palvelut kehittyvéit jatkuvasti, mikéd vaikeuttaa palveluiden yllapitoa. Yhtena rat-
kaisuna on palvelun pilkkominen osiin mikropalveluiksi. Palvelun pilkkominen edistda
palvelun ylldpitoa, skaalattavuutta ja joustavuutta.

Toisaalta palvelun pilkkominen mikropalveluiksi vaikeuttaa testausprosessia. Tamé
diplomityo tutkii mikropalveluiden testausprosessiin liittyvid ongelmia ja etsii kaytan-
nonléheista ohjeistuista testien toteuttamiseen mikropalveluympéaristossa.

Diplomity6 keskittyy julkisen sektorin mikropalveluprojekteihin, koska kaikki téssé
diplomityossé kaytetyt tutkimusprojektit ovat julkisen sektorin hallinnoimia. Julkisen
sektorin ohjelmistoprojektit ovat selkedsti esiméaériteltyjé ja projektien aineisto on avoi-
mesti saatavilla. Taman takia projekteilla on selked padamadréd ja tunnetut rajat heti
projektin alussa.

Tutkimusmenetelména kaytettiin tutkivaa case study -menetelméaé. Tutkimus sisilsi
kolme tutkimuskohdetta. Tutkimusdata kerattiin osittain jadsennetyilld kontekstuaali-
silla haastatteluilla ja ohjelmistokoodin versiohallinnan historian analyysilla.

Tuloksena syntyi kokoelma hyviksi todettuja kaytéintojé ja suosituksia, jotka auttavat
ottamaan testauksen huomioon mikropalvelun iteratiivisessa ohjelmistokehitysproses-
sissa. Suositeltaviksi testauskdytdnnoiksi havaittiin projektin maturiteetin tarkkailemi-
nen, ettd testauksen resursointi voidaan tehd&d oikeaan aikaan. Liséksi, projekteista
nousi esiin muita suosituksia, kuten kehitystiimin yhteisen testaamisvastuun ymmérta-
minen, koodikatselmoinnin merkitys ja erillisen testaajan tarkeys, kun projektin matu-

riteetti on kasvanut riittavasti.

Avainsanat: mikropalvelut, testauskaytannot, tapaustutkimus, ohjelmiston ma-
turiteetti, ohjelmistoarkkitehtuuri

Kieli: Englanti

iii



Preface

First, I would like to thank my advisor M.Sc. Jari Paakko for his excellent
support, feedback and facilitating during the process. I want to thank my
supervisor D.Sc. Ville Kyrki for his time and valuable and inspiring feedback.

I am grateful to Finnish Institution of Occupational Health and to Pop-
ulation Register Center for allowing me to use their projects in my Master’s
Thesis. I want to also thank Gofore for giving me time to write my thesis
and my colleagues for their support and feedback. I am also thankful of the
weekly supportive discussions with Peter Kronstrom and Mika Huttunen’s
great feedback.

I would also like to thank the experts who were involved in the interviews
for this research project. Without their passionate participation and input,
this thesis would not have been conducted.

Finally, I express my very profound gratitude to my family, roommates,
and friends for their encouragement throughout my years of study and writ-
ing this thesis. This accomplishment would not have been possible without
them. Thank you.

Helsinki, April 18th, 2017

Joel Huttunen

iv



Abbreviations

API Application Programming Interface

AWS Amazon Web Services

CD Continuous Delivery

CDC Customer-Driven Contract

CI Continuous Integration

CRUD Create, Read, Update, and Delete

DEVOPS Software Development and Information Technology
Operations

E2E End-to-End

ESF European Social Fund

ESP Enterprise Services Platform

ET Exploratory Testing

FIOH Finnish Institute of Occupational Health

GQUI Graphical User Interface

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

KAPA National Architecture for Digital Services

REST Representational State Transfer

RPC Remote Procedure Calls

SOA Service-Orientated Architecture

SOAP Simple Object Access Protocol

SUT System Under Test

TDD Test-Driven Design

UAT User Acceptance Testing

Ul User Interface

WIP Work In Progress



Contents

Abbreviations

List of Tables

List of Figures

1 Introduction

1.1 Background and Motivation . . . . .. .. .. ... ... ...
1.2 Research Problem . . . .. .. ... ... .. .. .......
1.3 Thesis Scope . . . . . . .
1.4 Thesis Outline . . . .. .. .. .. .. .

2 Research methodology

2.1 Research approach . . ... ... ... ... ... ... ...

2.2 Caseselection . . . . . . . ..

2.3 Overview of case projects . . . . . .. ... ... .......

2.3.1
2.3.2
2.3.3

Case Solmu . . . . . . . . . .. ...
Case Latu . . . . . . . . . ... ..
Case Kapa . . . ... ... .. .. ... .. ...,

2.4 Datacollection . . . . . . . . ...
2.5 Data analysis . . . . . . ... ..o

3 Related Work

3.1 Microservices Architecture Structure . . . . . . . . . . .. ..

3.1.1
3.1.2
3.1.3
3.14
3.1.5

Relation to Service-Orientated Architecture . . . . . .
Forerunners of Microservices . . . . ... ... .. ..
Key Benefits . . . . ... ... ... ... .......
Base Requirements . . . . . . ... ... ... ...
When to Adopt Microservices . . . . . .. ... .. ..

3.2 Microservice Environment . . . . . .. . . ... ..

vi

viii

ix

10
11
11
12
13
13
15



3.2.1 Agile Software Development, . . . . . . ... ... ... 27

3.2.2 Continuous Integration . . . .. ... ... ... ... 29

3.2.3 Continuous Delivery . . . . ... ... ... ... ... 29

3.2.4 Deploying microservices . . . . . . . .. ... ... .. 31

3.3 Testing. . . . . . oL 32
3.3.1 Typesoftesting . .. ...... ... ... .. .... 32

3.3.2 Testscope. .. ... ... . ... ... ... 33

3.3.3 Testing Microservices . . . .. ... ... .. ..... 35

3.4 Software Testing Practices . . . . . . . ... ... ... .... 40
3.4.1 Capability Maturity Model . . . . . .. ... ... .. 41

3.4.2 Testing Maturity Model . . . . . . ... ... ... .. 42

3.4.3 Agile Software Testing Practices . . . ... ... ... 43

3.5 Summary of Findings . . . . . . ... ... ... ....... 44

4 Results 46
4.1 Case Projects . . . . . . ... 46
4.1.1 CaseSolmu . .. ... ... ... 47

4.1.2 CaseLatu . . ... ... ... ... ... ... ... 51

413 CaseKapa . ... .. .. ... 56

4.2 Summary of findings . . . . .. ... 62

5 Discussion 66
5.1 Answers to the research questions . . . . . ... .. ... ... 66
5.2 Comparison between results and literature . . . . . . . .. .. 69
5.3 Limitations . . . . . . ... ... L oo 70
5.4 Future Work . . . . . ... oo 71

6 Conclusion 72
References 74
A Appendix A 79
A.1 Technical interview template . . . . . ... ... ... .... 79
A.2 Project management interview template . . . . . ... .. .. 82

vii



List of Tables

2.1
2.2

3.1

4.1
4.2
4.3
4.4

The studied case projects . . . . . . . .. ... ... ... .. 11
The interview pool by projects. . . . . . . ... ... ..... 14
The main differences between traditional SOA and microser-

vice architecture . . . . . . ... oo oL 19
Team related testing practices . . . . . . .. .. ... ... .. 63
Development process related testing practices . . . . . . . .. 63
Software structure related testing practices . . ... ... .. 64
Practices to solve technical testing challenges . . . . . .. .. 65

viii



List of Figures

1.1

2.1

3.1

3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1

4.2
4.3

4.4
4.5

Microservice deployment modularity . . . ... ... ... ..
Interview results’ analyzing process . . . . . . . . . . ... ..

Structural differences between monolith and microservice ar-
chitecture . . . . . . . . . ...
The evolution of service oriented software architectures . . . .
The difference between a monolithic and a microservice archi-
tecture . . . . . Lo
Productivity over project complexity . . . . . . ... ... ..
Software architecture path by Martin Fowler . . . . . .. ..
Scrum software development process . . . . . ... ... ...
Kanban software development process . . . . ... ... ...
Deployment pipeline process visualized . . . . . . . ... ...
Continuous integration building in microservice context

Marick's testing Quadrants . . . . . ... ... ... ... ..
Mike Cohn’s testing pyramid . . . . . . .. .. .. ... ...
The difference between contract and integration tests . . . . .

Microservice testing pyramid according to Brown . . . . . . .

Abstraction of the Solmu project’s microservice architecture
structure. . . . ..o Lo
Solmu version history commit analysis. . . . . . .. ... ...
Abstraction of Latu-project’s microservice architecture struc-
ture. . . ..o
Latu version history commit analysis. . . ... ... ... ..
Abstraction of the Kapa-project’s microservice architecture
structure. . . . ... 0oL o

ix



Chapter 1

Introduction

This section presents a short introduction to this thesis. The section begins
with Section 1.1 giving a short background of microservices. Section 1.2
presents the aims and objects of this study. It explains what kind of testing
challenges microservices include. These challenges define the research prob-
lem of this thesis. The scope is restricted to public sector software projects,
which are explained in Section 1.2. The methods of the case study will be
shortly discussed in Section 1.3. Finally, Section 1.4 concludes with a thesis

outline.

1.1 Background and Motivation

A typical piece of software consists of several relations between modules
which make testing more difficult. Nowadays, web based and business ori-
ented software are increasingly implemented by using a microservice archi-
tectural style [1]. Business orientation means that the service has a clear
business goal and allows small latencies between services. For example, a
service providing a form is business oriented, because it has a clear business
goal - to provide a form to a user. The service could allow latencies up to
100 ms, because the user is not able to recognize the delay within this scope.
2]

Microservices can be defined as one implementation of Service Orien-
tated Architecture (SOA) [2]. Previous common implementations of soA
have been enterprise oriented. For example, Web Services are one common
implementation of soA [4]. On the other hand, microservices have typi-
cal common features like independence, micro databases, and infrastructure
automation [5]. Thus, microservices can also be described as a separate



Monolithic Architecture Microservice Architecture

— @

S
@
™
o
i}
°
=]

. -

F [

b= =

c

o ®

Q@ 3

e 3

& ==

[=3

[

©

o

o

E AV AV AV

w — — —

— *Independent entities with
cross communication through API's or Message Queuing
Wi continuousautomation.con

Figure 1.1: Microservice deployment modularity [3].

architecture [6]. However, definition of a microservice is still forming. Cur-
rently, microservices are defined to be small, autonomous services which
have a focused purpose [2].

The goal of microservices is to break an application into smaller pieces to
make the application more maintainable (see Figure 1.1). In web software
development, modules, libraries or even languages out-date rapidly [1]. This
has created a demand for an easily re-programmable software architecture.
Microservices do not add limitations for the inner implementation of the ser-
vice [1]. Furthermore, microservice architecture supports DevOps practices
by providing small and more focused systems for the delivery process. De-
vOps consists of a set of practices which typically minimize the delivery time
between development and production environments [7]. Moreover, microser-
vices are usually developed in agile teams [1]. The teams are responsible
of the whole journey of the implemented property. The journey includes
planning, implementation, testing, and maintaining the solution.

Microservices are not a silver bullet which solves all problems of the ser-
vice oriented software design. One simplified way to describe microservices
is that it moves complexity from the modules to the network layer. Thus, the
software structure should be well-known before the implementation. How-
ever, this is not guaranteed in software development. The communication

structure should be consistent between the microservices, so shifting be-



tween microservices would not require unnecessarily broad programming

knowledge. [2]

1.2 Research Problem

This thesis aims to study how testing should be done in public sector mi-
croservice projects. Software testing is used to ensure the quality of the
service, which is impossible to measure only by software metrics [8, Chap-
ter 8]. Thus, the thesis uses an exploratory research approach, which in-
cludes semi-structured interviews from three different public sector software
projects.

The outcome of this study is a set of recommendations for different test-
ing practices, approaches, and models that should be considered when start-
ing a public sector microservice project. The thesis compares the findings
and practices with literature recommendations.

Overall, testing is used to decrease the frequency of defects in software.
Testing can be divided into two distinct goals according to Sommerville [8,
Chapter 8:

e 7To demonstrate to the developer and the customer that the software

meets its requirements”.

e 7To discover situations in which the behavior of the software is incorrect

or undefined.”

Testing cannot ensure that the software is bug-free or that it will behave
according to specifications in every situation. Thus, software monitoring
is also required, before the software is released into production. Testing
allows discovery of errors but does not show their absence [8, Chapter 8§].
In this study, service monitoring is considered as a testing tool, because
microservices requires service monitoring. Service monitoring allows finding
bugs from the software like dedicated testing.

Single process architectures, i.e., monoliths, are running as one task on
top of the operating system, whereas microservices have established multiple
processes to extend scalability. Thus, microservices includes distributed soft-
ware environment problems in their testing, monitoring, and development

environments.



Research questions

The main research problem is the following: What kind of testing practices
are software engineers recommending for public sector microservice software
projects?

The research problem is divided into smaller research questions, which

are the following:

e How does testing a microservice architecture differ from testing a
monolithic architecture?

e How does a microservice environment influence testing?
« Why do project testing practices differ from the recommendations?

e How does a project’s release process affect testing?

1.3 Thesis Scope

The thesis scope is restricted into public sector oriented microservice archi-
tectures, which are implemented in agile teams. The thesis includes three
different case projects. The case projects have varying maturity level, size,
and development practices. Nevertheless, all case projects have a clearly de-
fined goal right from the beginning like most public sector oriented software
projects. Public sector projects also provide a clear framework of technolo-
gies that are recommended or even required to be used because those have
been evaluation criteria in the competitive tendering. Moreover, public sec-
tor software projects have similarities in the organizational structure. For
example, all case projects have a dedicated part-time product owner to fa-
cilitate the software team.

1.4 Thesis Outline

Chapter 2 explains the research approach and methods used in this study.
It also describes the case projects and explains the case selection. Chapter 3
introduces the background of the research project. It includes literature and
practices from other known cases. Overall, the chapter summarizes previous
related work done in the area of this thesis. Chapter 4 presents the results
that were obtained from the studied case projects. The cases are initially
described in Chapter 1.3, but here the thesis goes more into case details.



Chapter 5 compares literature practices to the results and groups them into
scalable categories. Chapter 6 answers to the research questions and makes
the final conclusions. This chapter points out the main findings, challenges,

and compares the findings to the literature practices.



Chapter 2

Research methodology

This section presents the research methods and case projects used in this
study. Section 2.1 goes through case study research approach. Next, Section
2.2 explains the selection of the case projects. Section 2.3 presents the case
projects’ backgrounds. After that, Section 2.4 shows how data collection is
done through interviews. Finally, Section 2.5 explains used data analysis

methods and estimates their validity and limitations.

2.1 Research approach

This thesis uses an exploratory multiple case study method [9] to find an-
swers to the research questions presented in Section 1.2. The exploratory
case study method allows finding out what is happening and seeking new
insights. The results can be used to identify microservice testing practices
and to bring up the main microservice testing questions. These results can
also be used as a hypothesis for another research. Basically, the thesis is
structuring good practices for microservice testing. [9]
The case study research process has five major process steps [9]:

1. Defining research questions
2. Planning data collection

3. Collecting evidence

4. Analysis of collected data

5. Reporting



The first step is to define research questions. The research questions are
formed around the research object which is usually a program, an entity, a
person, or a group of people in a case study research. Each of these objects
has complex connections to social, political, historical, and personal issues.
Thus, the researcher observes the object from multiple different directions
to gather a good overall picture of the case project. With a good overall
picture, a researcher is able to answer the research questions, and produce
convincing evidence about differences between the case projects. A case
study research’s interviews are aiming for quality over quantity [10].

A case study usually finds answers to questions, which begin with "how”
or "why” [11]. These questions are formulated after a literature review. A
literature review gives a background information about the problem, brings
up insightful questions, and ensures that the research questions are relevant
to the problem. A researcher can also complete a pilot study to ensure that
the research approach is relevant to the problem. [10] This thesis is moni-
toring microservice testing as an entity through different viewpoints which
came up during the interviews. The viewpoints are discussed in Section 5.

The second step is planning the data collection. The thesis is using
multiple real-life case projects to bring variety in project size. The multiple
cases should be treated as a single case in the case study methodology [10].
Thus, case projects are divided into separate sections. The conclusions of
the case projects can be used as information to form overall conclusions, but
the case project conclusions should be presented separately [10].

Multiple cases provide supportive theories through similar results, but
they also can contrast results for predictable reasons. Moreover, the theory
should be changed if the upcoming results do not work as a theoretical
framework has predicted. Hence, a theoretical framework should have clear
limitations and conditions when the framework can be used right from the
beginning. [11] Furthermore, according to Bratthall and Jgrgensen [12]:
A multiple data source case study is more trustworthy than single data
source case study”. They argue that a multiple case study will never provide
statistical significance, but instead, it brings many kinds of evidence, which
can be linked together to support a solid conclusion.

The third step is data collection. A case study requires a systematic
organization of the data because a researcher handles large amounts of data
from multiple sources. Moreover, systematic techniques help to keep track
of the original research purpose and prevent getting overwhelmed by the
research data. Additionally, investigators should be trained to perform the



Conclusions

Grouped quotes

Transcription of recording

Sound recording of interview

Subjects’ perceptions based on their
observations and experiences

Actual events within case context

Figure 2.1: Interview results’ analyzing process [9, sec. 5].

interviews trustworthily. [10] This thesis has only 10 interviews, so I decided
to complete all case project interviews by myself. The desired skills of an
investigator are the following; an investigator should be a good listener,
adaptive and flexible, be able to ask questions, interpret answers, have a
good understanding of the subject, and sense novelty of the answers [11].

The research data should be collected from multiple sources and stored
systematically. Case studies use field notes to categorize the data for later
use. However, I did not have team members to help me with the interviews,
so I ended up using the projects’ documentation as supportive material. Fur-
thermore, it is important to store the raw interview material, for instance, by
recording the interview. Field recordings include feelings, intuitive hunches,
pose questions, and document the work in progress. These attributes warn
about impending bias in the recordings. The results also point out if the
inquiry needs to be reformulated. Hence, results should maintain the con-
nection between the case project, the inquiry, and the interview. [10]

The next step is data evaluation. The raw research data should be
examined from multiple viewpoints to generate several interpretations from
the data. After this, interpretations can be used to find linkages between the
research object and the outcomes. Multiple data collection methods allow



data source triangulation and strengthen the findings. [10]

Researchers categorize, tabulate and recombine data to find linkages
between the data. Figure 2.1 shows the general process, how conclusions are
formed in a case study process. Research data grouping can be done by using
different data visualization methods, for example by using arrays, matrices
of categories, flow charts, or tabulating frequency events. The grouping
process requires constant data cross-checking and a good understanding of
the data validity. [10]

The final step is reporting. In reporting, researchers should pay attention
to present sufficient evidence to convince the reader. The confidence of a
reader can be achieved by showing that all paths of the research object
have been explored, pointing out all boundaries of the study, and disclosing
conflicting propositions. [10]

Case studies are commonly presented case by case in chronological order.
This means that case projects are presented like stories each in their own
section. The conclusions of the research are composed of the case projects’
results. Finally, the case study should be reviewed by a professional. Re-
searchers can, for example, use audience groups, journalists or participants
to review their study. [10]

Overall, this research procedure is quite straightforward, but it also sets
some constraints; the case study should have a clear hypothesis at the re-
search stage. Sometimes this is hard to achieve and the data collection
methods should be modified at the middle of the research. However, in a
case study, changing the data collection form invalidates the previous results.
Thus, in uncertain research cases, a pilot case study could ensure that the
data collection method is valid. Valid data should produce evidence that
allows answering the research questions. [11] Nevertheless, I had previous
experience with the subject, so I felt that a pilot case study would be unnec-
essary. However, I piloted the research questions with one non-expert from
the field.

The case study process has also some variations. For example, Eisen-
hardt [13] adds two research process steps between steps 4 and 5. These
steps are sharping hypothesis and enfolding literature. This thesis concen-
trates on the basic 5 step version, but I suppose hypothesis sharping hap-
pens almost automatically during the process. The alternative hypotheses
are discussed in Section 5.

The case study research procedure is built on triangulation. Triangula-
tion means that the object should be examined from multiple perspectives.



Case studies rely primarily on qualitative data, which is less precise than
quantitative data. Hence, triangulation is needed. However, qualitative
data sources are broader and richer, so single data units are more important
if the data is managed correctly. [14] Triangulation can be divided into four
different types [14, 15]:

e Data Source Triangulation - use multiple data sources
o Observer Triangulation - use multiple observers

e Methodological Triangulation - combine and use multiple data collec-
tion methods

e Theory Triangulation - use multiple viewpoints and create alternative
theories

In this case study, these triangulation types are taken into account by
having multiple interviews, having access to project specific information and
the results are complemented by the customer and analytics data. The
research was mainly monitored from an objective perspective. Nevertheless,
I had been the main software engineer of the Solmu project which caused a
bit challenge to objective monitoring.

2.2 Case selection

The cases for this study were selected from a project pool of a Gofore Oy
software company. An internal questionnaire was created to map out what
kind of technologies and service architectures projects were using. Based on
the answers, three case projects were chosen which shared the same kind
of development environments but had a different project size. Two of these
selected case projects were provided by Finnish Institute of Occupational
Health (FI0H) and one of them was part of Population Register Center’s (fi.
Viestorekisterikeskus, VRK) services.

The initial questionnaire included over 10 different microservice projects.
However, I had worked as the main developer for the Solmu project. Hence,
similar case projects were chosen to compare the decisions that were made in
the Solmu project. Latu was selected to be the second case project because
it had a very similar architecture and I had worked closely with Latu team
members. After this selection, a larger project was selected to add contrast

to the research. Thus, Kapa was selected and Kapa was also recommended

10



Table 2.1: The studied case projects

Case  Customer Project size (man-days) Team size Interviews

Solmu FIOH 200 4 1
Latu FIOH 10000 6 3
Kapa VRK 100000 13 x (5-12) 6

by one of my colleagues. Kapa had a more sophisticated software structure
and a large testing team.

The case projects have many similarities: all case projects are less than
three years old, public service oriented, implemented mainly by Gofore Oy,
and have employed a microservice approach right from the beginning. In con-
trast, long-term software projects tend to have more testing interest involved
because a developer cannot have a full understanding of the whole system.
Additionally, public service oriented software projects tend to have clear
specifications right from the beginning because projects have gone through
a competitive tendering. Furthermore, the case projects have applied a mi-
croservice architecture right from the beginning. Dividing an existing system
requires different methods: maintaining backward compatibility at the in-
tegration phase, implementing sufficient tests before integration phase, and

SO on.

2.3 Overview of case projects

The case projects have similarities in team structure, organizational require-
ments, and in a well-defined service structure. The projects are implemented
in small agile teams, where people have specialized roles. For example, in
the Solmu project, we had a scrum master, a developer, a user experience
designer, and a DevOps architect. The case projects are summarized in
Table 2.1.

2.3.1 Case Solmu

The goal of the Solmu project is to develop a self-assessment questionnaire,
the Abilitator, for measuring the work ability and functional capacity of
the participants. These participants are unemployed job seekers, who are
motivated through government founded projects. The project results are
gathered through the Abilitator questionnaire. The Solmu project is part of
the European Social Fund (ESF) Priority 5 program that supports the em-

11



ployability and social inclusion of groups at risk of marginalization. Solmu is
funded by ESF and carried out by Finnish Institute of Occupational Health
(FIOH).

Therefore, Solmu aims to support social inclusion and employability of
various hard-to-reach groups in Finland. FIOH is monitoring these projects
through the Abilitator questionnaire and providing analytics from the data
to participants and to common use. The Abilitator service has three types
of users. It has FIOH administrators, program workers, and program partic-
ipants. The service also includes three different deployment environments:
development, acceptance testing, and production.

The project lasted about 5 months with 4 team members so it was quite
small compared to the other case projects. The service was implemented
using a microservice architecture because the service will be extended in the
future.

2.3.2 Case Latu

The Latu project consists of two different services: Quality portal (Laatupor-
taali) and Zero accidents (Nolla tapaturmaa) -forum. The services share a
few background services but provide separate front-end services. Both of the
services are carried out by Finnish Institute of Occupational Health. This
thesis concentrates on projects’ software architecture and testing practices.
Thus, the services are handled as one project, because the same developer
team is responsible for both of the services. The developer team size has
been between 4 and 7 team members.

Laatuportaali provides information, support, and tools about occupa-
tional health care. The project aims to improve occupational health care
co-operation and to provide tools for comparing and improving the quality
of occupational health care services in Finland.

Nollis aims to decrease work accidents by providing a program to com-
panies which they can join. The program includes annual meetings, tools,
and metrics which can be used to prevent work accidents at workplaces.

Both services are long-term software projects which aim to be functional
over a decade. Thus, a microservice architectural style was selected to ensure
the maintainability and future development of the services. The services do
not have many concurrent users. Both of the services are more like form
filling services that gather information and provide supportive feedback to
the users.

12



2.3.3 Case Kapa

National Architecture for Digital Services (fi. Kansallinen Palveluarkkite-
htuuri, KAPA) is a large continuous software project, which aims to provide
a public service interface to services provided by the public sector. It facili-
tates information transfer between organizations and services. The program
involves creating a national data exchange layer, the shared service views re-
quired by citizens, companies and authorities, a new national e-identification
model and national solutions for organizations and individuals. The pro-
gram aims to simplify and facilitate transactions with the authorities. It
promotes openness in public administration and improves quality and se-
curity of the online services. So, basically, Kapa provides an interface to
different national public services. Moreover, it also adds an access-point to
the end-users as well as to private and public sectors.

The thesis concentrates on the data exchange layer because its archi-
tecture differs from the other case projects. The project encloses over 13
different software teams (see Table 2.1). The team size varies between 5
and 12 members, but the average team size is about 8 people. The data
exchange layer includes four different teams, so the layer is built in close
relationship with related teams.

2.4 Data collection

The data for this study was collected in Spring 2017. The data were col-
lected through semi-structured interviews which were held at the customers’
premises. The interviews were recorded, so the interviewer was able to have
his or hers full focus on the current interview. Persons for the interview
were selected based on the project’s architect’s recommendations. The ar-
chitect knew the project, so they were able to point out different people from
the project. It was important to select people with varying backgrounds to
ensure data source triangulation of the case project. The selected team
members had been in the projects from the beginning, so they were able to
understand the reasons behind test changes during the project.

All except one interview were conducted face-to-face, which made note
taking more difficult. Actually, the interviewer preferred to stay focused and
leave note-taking for later. Two recording devices were used to ensure that
recording works all the time. The planned duration for the interviews was
a bit over an hour, but the interviewees were asked to reserve 1.5 hours for

13



Table 2.2: The interview pool by projects.

Project Time used (min) Role
Solmu 50 Scrum Master and Architect
Latu 75 Scrum Master and Architect
Latu 40 Software Developer
Latu 60 Project Manager
Kapa 90 Software Architect
Kapa 60 Test Manager
Kapa 60 Project Manager
Kapa 40 Regression Tester
Kapa 40 Regression Tester
Kapa 40 Manual Tester

the interviews, so the interviewer would not need to hurry. The interview
duration decreased generally after the first interview from a case project
because the interviewer did not need to use so much time to understand the
background of the case project.

The target was to get at least three interviews from each case, but in
the Solmu case, it was impossible because the project did not have enough
technical team members to interview. Furthermore, I could not interview
myself. Relevant interviews were chosen with the project architect’s help.
Mostly technical long time project members were interviewed because they
had the broadest knowledge of the project’s history. The interviews had also
two different technical groups: testers and developers. Overall, I completed
all interviews which included varying roles, such as developers, testers, ar-
chitects, and project managers. The diversity of the interviewed roles is
presented in Table 2.2.

The interviews started to repeat themselves after a few interviews. The
overlapping answers were able to specify the problem cause. Sometimes,
the interviewees had not thought about the testing process problems before
those were brought up in the discussion.

Two different interview templates were used to guide the semi-structural
interviews. The first interview template presented in appendix A.1 focuses
on technology specific questions for the developer team. The second inter-
view template presented in appendix A.2 is for software project managers.
The second template is process and team oriented whereas the first one is

more software architecture specific. The templates follow a top-down ap-

14



proach, where the questions started from a more general level and became
more precise during the interview. For example, the interview started by ex-
plaining my thesis project and after that, the interview included questions
about the interviewee’s background. The interview had also a few team
based questions about the project’s history to see if there had been any big
changes during the project.

The interviewees were asked about their individual testing practices and
to compare their testing practices to the project’s requirements. They were
also encouraged to describe the system in their own words and to tell possible
improvement ideas and challenges in the case project. Interview templates
were inspected and tested with my colleague beforehand to ensure that the
questions are relevant to the problem.

2.5 Data analysis

The interviews were performed in two batches. The first batch included
the case projects’ software architects. The second interview batch included
other team members. After the first interview batch, the interview notes
were grouped from the recordings. The interview direction was checked to
ensure that the interviews are leading to the right direction. The results
were analyzed by organizing the answers into clusters. These clusters had
usually some common properties and the clusters were named in order to
be able to refer to them later.

At the next interview batch, mainly software developers and testers were
interviewed. The answers started to repeat them self after a few interviews.
When the overlapping answers were detected the interview were focused
more on the details. The first batch interviews were able to clarify the
fuzzy concepts that architects introduced on a high level. The developers’
comments were closer to the actual implementation, which allowed to see
language specific problems. On the other hand, managers pointed out the
responsibility and scheduling problems.

15



Chapter 3

Related Work

This section presents the background of the study through a literature re-
view. The section begins by explaining what microservices are in Section
3.1. Section 3.2 explains the microservice development environment, which
includes basics of agile software development and microservice deployment.
After this, 3.3 goes through testing strategies and explains the terms in a
microservice context. Next, Section 3.4 describes different testing practices
and connects those with a software maturity model. Finally, Section 3.5
concludes the literature review and summarizes the key findings from the

literature.

3.1 Microservices Architecture Structure

There is no formal definition of microservices, but microservices tend to
have some common characteristics [1]. Mainly, microservice architecture is
a method of developing applications consisting of independently deployable,
small, and modular services [2]. These services communicate through a
well-defined, lightweight protocol to serve a business goal.

The application’s requirements define the communication protocols, but
usually, developers end up with using HTTP/REST with JSON or Proto-
buf [16]. A reason to this is that Representational State Transfer (REST)
is easy-to-use and extremely well-supported [16]. However, services that
require more calculating power, may end up with using Remote Procedure
Calls (RPC) to provide tighter coupling between the client and server [2].
Anyway, in this thesis, we concentrate on HTTP/REST, because it is used
in all the case projects and it has become clearly the most used protocol in

microservices [1].

16



A monolithic application puts all its -’ A microservices architecture puts 9 '
functionality into a single process... L 4 each element of functionality into a
. v separate service...
-
... and scales by replicating the ... and scales by distributing these services
monolith on multiple servers across servers, replicating as needed.
" o’ vl *li [lw[*®
@ @
oV oV ®lle ®l|e
/
-’ -’ ’ ’ o 1M
® o
oV oV ofe I\ 4

Figure 3.1: Structural differences between monolith and microservice archi-

tecture [1].

In order to understand microservices, it is good to compare to its op-
posite; the monolithic architectural style (see Figure 3.1). A monolith ap-
plication is always built as a single unit. There all modules are inside one
application and built as one. This brings up a problem; small software up-
dates require building and deploying an entirely new version of the whole
application. Moreover, if you need to scale a component of an application,
you may need to scale the whole application instead, because the compo-
nents are usually really tightly related. [16]

Single process applications, monoliths, are usually built from small mod-
ules, but the connections between modules are tight and hard to split into
separate processes. This restricts code reusability and extendability. For
example, changing the programming language of a monolith is almost im-
possible. In web software development, coding languages and frameworks
out-date rapidly, which has created a demand for a more flexible architec-
tural style. Thus, web services have started to split their monoliths into

smaller pieces - towards microservices. [1]

17



Evolution of services orientation

1990s and earlier 2000s 2010s
Coupling
Pre-SOA (monolithic) Traditional SOA Microservices

Tight coupling Looser coupling Decoupled

@ @

Figure 3.2: The evolution of service oriented software architectures [6].

3.1.1 Relation to Service-Orientated Architecture

Service-Orientated Architecture (SOA) became popular at the beginning
of this century. It has many similarities to microservices. It is said that
microservices are a modern ideal implementation of SOA [16]. The main
difference between SOA and microservices is that SOA is a broader frame-
work which includes also other implementations [16].

The best known SOA implementations are old-fashioned Web Services.
Web Services is a middleware interoperability standard which provides a
message bus and remote procedure calls between services [17]. Web Ser-
vices commonly use Simple Object Access Protocol (SOAP) to transfer data
over Hypertext Transfer Protocol (HTTP). The web services message bus is
generally referred to as Enterprise Service Bus (ESB) because it facilitates
the transfer of data among services. [18] Web services have been criticized
for having a vendor middleware which might restrict service development.
Furthermore, many problems which are associated with SOA are actually
problems of previous SOA implementations. For example, problems like
stiff communication protocols (e.g., SOAP), vendor middleware, and lack of
guidance of service structuring have decreased SOA’s reputation. [2, sec. 1]

Sam Newman [2, sec. 1] defines SOA in the following way: "SOA is a
design approach where multiple services collaborate to provide some end set
of capabilities”. Service here means a completely separate system process,
where communication with other services goes through a network layer in-
stead of straight method calls. Thus, these connections are described as
loose connections. [16]

18



Table 3.1: The main differences between traditional SOA and microservice
architecture. Adapted from an article [6].
Criteria Traditional SOA | Microservices

Messaging style Smart, but | Dumb, fast messaging

dependency-laden
ESB

Programming style | Imperative model | Reactive actor programming

model that echoes agent-based

systems

State Stateful Stateless
Messaging Type Synchronous: wait | Asynchronous: publish and

to connect subscribe
Databases Large  relational | NoSQL or micro-SQL
databases databases blended with

conventional databases

As mentioned before, SOA and microservices are trying to split a mono-
lith into smaller maintainable pieces to promote the reusability of software.
Figure 3.2 visualizes how service-oriented architecture has been evolved re-
cently. The main changes between traditional SOA and microservices are
in messaging type, programming style, application state, and database han-
dling (see Table 3.1). However, more recent SOA implementations include
also features from microservice architecture. [6]

According to Newman [2, sec. 1], SOA is a great idea, but it does not
have solid guidance on how to achieve re-usability of software. Consequently,
SOA fits well in situations where the developer team is homogeneous and it
has already selected a service structure that will guarantee a certain level of
performance. In other situations, microservices, as a more democratic frame-
work allow a more agile framework to the teams to implement their parts
without unnecessary restrictions. In many cases, microservice architecture

can be used at least as an exploratory solution. [6]

3.1.2 Forerunners of Microservices

Many well-known services are using microservice architecture, including Net-
flix, eBay, Amazon, Twitter, PayPal [1]. Netflix has been a great example,
how it is possible to convert a monolithic architecture into microservices

[16]. Their online service receives more than one billion requests every day

19



to its streaming-video API. Each API call is creating additional back-end
calls in order to complete its functionality. Microservices allow easy load
balancing because the microservices do not have many external relations.
Thus, microservices can be run on separate machines and there can even be
multiple entities of one microservice. This improves application’s scalability
and makes online services likes Netflix possible. [16]

Amazon is another well-known pioneer in the field [2, sec. 10]. They
had a more team based approach to develop online services. They noticed
that small teams can work faster than large teams. Thus, they designed the
nowadays famous two-pizza teams where no team should be so big that it
could not be fed by two pizzas. These small teams handled their feature’s
whole life-cycle from requirements until the maintenance phase. Amazon
designed Amazon Web Services (AWS) for supporting the delivery process
of small teams. Nowadays, AWS is used widely with microservices to provide
good tooling to allow cross-functional teams to be self-sufficient [19].

3.1.3 Key Benefits

The main advantages of using microservices are according to Newman the

following [2, section 1]:

e Technology heterogeneity. A microservice does not restrict the im-
plementation technology of the service. Thus, the developer team is
solely responsible for choosing the right technology to solve the prob-
lem. This includes choosing a programming language, databases, and
related libraries. However, the team should have a common guidance
to coding style to improve its services’ maintainability. The microser-
vices should use mainly the same communication protocols between
services. If the communication protocols vary a lot, each module re-
quires different middleware to convert the messages between protocols.
Using multiple communication protocols or different technologies adds
unnecessary complexity to the system and requires more expertise from
the team. The team should try to keep the system as simple as possible

to ensure its maintainability.

e Resilience. Building a system composed of microservices can increase
the resilience of the whole system by enabling better isolation of fail-
ures. However, this requires that the service has taken fault-tolerance
into account. A system comprising of microservices might work mostly,

20



even if one service would be off-line compared to a monolithic archi-
tecture where the whole system crashes if its component gets into a
fatal situation. On the other hand, a crashed microservice may cause
cascading failures through the whole system if it is not well isolated. A
cascading failure crashes or jams the whole microservice network. To
prevent cascading errors, microservices use timeouts, bulkheads and
circuit breakers to isolate failure situations. Additionally, microser-
vices, as any other distributed system, requires active monitoring to
see the status of all the services. For example, health monitoring
and different types of application metrics are used to monitor the ser-
vices. By these metrics, the team is able to ensure that all services are
working correctly. The team can also predict upcoming problems by
monitoring, for example, the load usage of the services.

Scaling. Enterprise applications have to be ready for scaling. With
a monolith architecture, this is expensive because the whole system
needs to scaled. With microservices, scaling can be done in smaller
pieces. The server can deploy multiple instances of microservices that
have most of the load. For example, Amazon Web Services automat-
ically spawns more instances of a microservice if the microservice is
under heavy load. This kind of scaling allows you to run the whole ap-
plication on less powerful hardware. See Figure 3.3 for how monolithic
and microservice architectures differ. Each box in Figure 3.3 can be
multiplied into many instances (except shared databases, which require
the replication of the whole application like a monolithic architecture).

Ease of Deployment. Ease of deployment actually enables the bene-
fits of microservices. Microservices are commonly built in agile teams,
which have the whole responsibility of the new functionality. This
means that the team is responsible for designing, implementing, test-
ing, and maintaining the implemented functionality. Thus, the team
needs an easy way to deploy their own functionality. The deployment
should be easy and fast. Faster releases allow for better tracking of the
software’s direction based on agile software development principles.

Organizational Alignment. Conway’s Law [20] states the following:
"Any organization that designs a system (defined broadly) will produce
a design whose structure is a copy of the organization’s communica-
tion structure.” Basically, this means that communication problems

21



increase when a team is too large or distributed. Microservices are
embracing Conway’s Law by giving the whole ownership of the func-
tionality to small agile teams. The team is in charge of developing,
deploying, testing, operating, and possible restructuring of the ser-
vices under their control. Hence, the team gets a suitable challenge
where the team has a freedom to find a solution. A suitable challenge

improves a team’s motivation and enhances their working capability.

e« Composability. Microservices allow us to divide platform specific
builds into separate services. This way the application supports easily
multiple platforms because a microservice can reuse main components
which are not platform specific. The application supports also building
the software by using different versions of the microservices to create
specific releases. Therefore, the product can be composed of a subset
of the microservices rather than duplicating service functionalities. On
monolithic systems, reusability of the software is not guaranteed and
maintaining platform specific releases is always a challenge.

e Optimizing for Replaceability. Microservices are like modular
components; they are independently upgradeable and replaceable. Thus,
there are not many restrictions to replace the whole service with newer
technology. This allows keeping the services fresh and reactive to mar-
ket and user requirements. For example, rewriting the service is a
tempting option, when major changes are made to an old service. This
happened for example in one of the research cases.

3.1.4 Base Requirements

Microservice also brings new software environment challenges to the devel-
opers, which are managing distributed systems: building support for con-
tinuous deployment, restructuring test automation, and setting up service
monitoring [2]. Without environment support, a microservice loses all its
benefits [16]. Microservices depend heavily on agile software development
ideology, where the development feedback cycle should be short. This is not
achievable if services’ deployment is too slow or difficult [8].

Building a distributed system instead of a monolith can double the effort
[16]. This extra work comes from implementing the communication inter-
faces between services, configuring multiple developments and test environ-

ments, and integrating everything into a continuous build delivery process

22



zZ .

[0

manalith - single database microservices - application databases

Figure 3.3: The difference between a monolithic and a microservice archi-

tecture [1].

[23]. Thus, microservices includes investment into infrastructure before the
project actually starts.

According to Newman [2], microservices are not solution to every online
service. He says that splitting a monolith into microservices is a challeng-
ing task because usually a monolithic architecture is not designed to be split
apart. There are different toolsets to help with these challenges, but a devel-
oper with a monolithic architecture background requires some time to learn
these new tools. Learning to use these tools is necessary for a microservice
environment because building own unique solutions is not a sustainable solu-
tion. Software development tools help to minimize monitoring, testing, and
deployment delays. The team’s toolset depends on the project, organization,
and team’s preferences. [2]

Fowler [21] brings up the following prerequisites for microservices:

e Rapid provisioning. The deployment process may need to fire up a
new server, so the server spawning should be automated. For example,
this can be achieved by using a cloud provider or using another existing

provisioning system, as long as rapid deployment is achieved.

e Service monitoring. Failures are inevitable and noticing the fail-
ures will be more difficult in distributed systems. The service might

23



get jammed or just lose its state in relation with the other services.
Thus, monitoring is essential with microservices. The services should
be easily accessible and real-time monitored. Basically, monitoring
includes logging all events and parsing those into one value adding
stream. For example, a minimal log implementation could record all
HTTP requests from microservices into a common file [2]. A more
sophisticated monitoring solution would inform about disruptions in
testing and production environments [2]. The faults may be impossible
to repeat without proper logging from the application side.

e« Rapid application deployment. This involves the creation of a
delivery pipeline, where a developer can easily promote selected builds
of the services into production or test environments. The delivery
pipeline should finish the provisioning in hours to be feasible [22].

3.1.5 When to Adopt Microservices

for less-complex systems, the extra
baggage required to manage
microservices reduces productivity

as complexity kicks in,
productivity starts falling
rapidly
the decreased coupling of
microservices reduces the
I attenuation of productivity

Productivity
Microservice

Base Complexity

but remember the skill of the team will
outweigh any monolith/microservice choice

Figure 3.4: Productivity over project complexity [23].

A base rule according to Newman [23] is the following: ”You should not
even consider microservices unless you have a system that’s too complex to

24



Going directly to a
microservices

_ - ®
architecture is risky
. o &
> { & ¢ .
>

©
Continue breaking out
services as your knowledge

of boundaries and service
management increases

A monolith allows you to
explore both the complexity
of a system and its As complexity rises start
component boundaries breaking out some
microservices

Figure 3.5: Software architecture path by Martin Fowler [24].

manage as a monolith.”. Figure 3.4 shows the correlation between produc-
tivity and base complexity in monolithic and microservice architecture ap-
proaches. Therefore, many people favor a monolithic architecture, because
microservice architecture adds unnecessary complexity at the beginning of
the project [24]. Additionally, according to Fowler [25] and Newman [26],
most of the projects should be built as monoliths, because the complexity
of those projects will not cross the critical point. Thus, they recommend
starting with a monolithic architecture style (see Figure 3.5), unless you are
sure that the complexity of the software will be increasing and the customer
is ready to invest into the future development.

Fowler [25] also argues that organizational challenges have driven teams
towards microservices. For example, if the team size is too large, it becomes
inefficient and loses the focus of the whole system. He points out that the
main reason for moving towards microservices is that the monolith may grow
too big to be modifiable and become too fragile to be deployable.

I see that Newman’s rule applies well to the situation and I agree with
Fowler that the software should be divided into pieces based on team needs.
Fowler is a significant microservice supporter and if he says that it is too
risky to go straight to microservices I totally understand that.

Tilkov [26] disagrees with the monolithic first approach (see Figure 3.5).
He says that you should reserve more time to architecture design, and delay
implementation in order to be able to structure the microservices right from

25



the start. He claims that if you start with a monolithic architecture style,
the components will be extremely tightly coupled with each other, and these
components are almost impossible to restructure afterward. He argues that
if you are able to build a well-structured monolith, you probably do not need
microservices in the first place.

Tikov has a different viewpoint, but I think that he wants to emphasize
that a monolithic application does not automatically slip into microservices.
Even if you are building a monolith at the start, the project should have a
determined software architect who would not allow taking shortcuts between
the modules. Thus, I see that people selection affects a lot to the path
selection. With motivated and quality oriented developers monolithic first
approach would work, but if developers are not so self-quality oriented the
approach would not work because the monolithic software would end up to
have too many tight relations between the modules.

On the other hand, some of the problems ascribed to monoliths are not
influenced by the architectural choice. For example, a developer can do
continuous delivery also when using a monolithic architecture, but many
people tend to associate that with microservices. For example, Facebook
has used a cookie-cutter deployment approach to achieve continuous delivery
with a monolithic architecture style [25]. Cookie-cutter deployment is used
when the performance of a server is not enough to deploy the software. The
deployment is divided into multiple services which perform the deployment
process concurrently. [27]

3.2 Microservice Environment

Microservice testing is tightly related to agile software development practices
[28]. Thus, it is important to understand the deployment process of microser-
vices. First, Section 3.2.1 explains what the lean principle is and then goes
through Scrum and Kanban software development strategies. Next, Section
3.2.2 takes look into continuous integration (Cr1). Section 3.2.3 presents the
continuous delivery (CD) process model. After these basic agile software
deployment practices, Section 3.2.4 applies these deploying processes in a

microservice context.

26



3.2.1 Agile Software Development

Microservices are usually implemented in small agile software development
teams [2]. All case projects were using an agile software development process.
Thus, it is important to understand the basic principles behind agile software
development. Agile software development has many patterns which can be
explained through the principles of lean software development [29]:

1. Eliminate Waste

2. Build Quality In

3. Create Knowledge
4. Defer Commitment
5. Deliver Fast

6. Respect People

7. Optimize the Whole

These principles optimize software development by decreasing waste time,
offering shorter delivery times and building trust within the team [29]. Our
case projects were using Scrum and Kanban agile software development
guidelines to achieve effective software development processes.

Scrum [30] has specified steps for how product owner’s user stories ends
up in the product (see Figure 3.6). The product owner starts the process
by presenting the user stories. The user stories are split into smaller tasks
and the team commits to doing some of those during the next sprint. The
selected tasks are moved to the sprint backlog. During the 1-4 week long
sprint, the team has short (max. 15 minutes long) daily meetings where each
team member answers three questions: what they did yesterday, what they
will do today, and are there any problems in the way. After the sprint, the
potential product increment is reviewed and the team keeps a retrospective
to examine possible process improvements.

Kanban is quite similar to Scrum with a few differences [31]: Kanban
does not include specific time boxes or iterations. The Kanban process
is continuously iterative. The Kanban process limits the work in process
(WIP) in each work category (see Figure 3.7). So, the work is limited by
the tasks and the efficiency of the process is measured by the lead time.
Lead time means the average time to complete one task. The process is

27



Input from End-Users,
Customers, Team and
Other Stakeholders

o N e

9

10

11

12

Product
Backlog

Team Selects
How Much To
Commit To Do
By Sprint's End

Sprint Planning
Meeting
(Parts One and Two)

ScrumMaster

Product
Backlog
Refinement

Sprint
Backlog

5

Sprint

1-4 Weeks

a—p

No Changes

in Duration or Goal

o)

l \
Daily Scrum
Meeting and
Artifacts Update

Review

Potentially
Shippable Product
Increment

waa 05

Retrospective

Figure 3.6: Scrum software development process [30].

Test

Re}!aase

2
[ D]
=

Figure 3.7: Kanban software development process [31, sec. 1].

28



optimized by decreasing the lead time as much as possible without sacrificing
the predictability of the tasks.

However, agile software development leaves a lot of freedom, flexibil-
ity, and responsibility to the team [31]. Therefore, the teams should have
broad professional competence. For example, Scrum and Kanban models
are usually used in cross-functional development teams. The team shares
their knowledge and aims to be self-organizing, so the team itself notifies
and reacts to upcoming challenges.

3.2.2 Continuous Integration

Continuous integration (CI) is a practice to keep the shared mainline up-to-
date [5]. This software development practice is used to minimize the risk
of software integration. In agile software development, new code updates
are committed constantly to the mainline. Continuous integration [5] allows
fast integrations of the updates and prevents forming a pile of code changes.
Continuous integration relies on automated tests that are run every time
before the code submission is accepted. These tests ensure that the added
functionality does not break any existing functionalities.

Usually, a team uses a dedicated continuous integration server, which
handles the build test running and automates the process [2, sec. 6]. There
are multiple frameworks supporting the modern €I methods, for example,
Jenkins, TravisCI, and TeamCity offer a broad CI tool set [22].

3.2.3 Continuous Delivery

Continuous delivery (CD) is an extension of continuous integration [32]. It
includes the software release process, where CI only takes along the develop-
ment process. Continuous delivery [32] can be seen through a build pipeline,
which declares the code submission’s route to release. Figure 3.8 shows that
the first testing steps are fast unit tests and the last steps are manually
approved user acceptance testing (UAT) and release publication. Further-
more, continuous delivery considers every check-in as a release candidate,
because all code submissions may end up released if they go through the
whole pipeline. Each step has to be completed successfully in order to move
on to the next stage. Nevertheless, Figure 3.8 shows that the user has the
final word because even the automated tests fails the user can accept the
build to UAT environment.

Benefits of this pipeline are that it helps to monitor the quality of the

29



0 Release
Team Control Unit Tests Acceptance Acceptance
T T T Tests Tests T
| 1 1 I T I
Check In 1 1 1 1 I
Trigger 1 | 1 I
1 1 I
I T | F=fail 1 1 1
! ! P=pass | ! !
I-..— Foadback | 1 1 1
| 1 I | 1
1 | 1 I | |
Check In 1 1 1 1 1
Trigger | 1 1 1
1 I 1 1
| I =] 1 1 |
| E 1 . 1 | 1
' eadback Trigger - | |
- S — -
| 1 | 1 1
| 1 I 1 |
1 1 1 F 1 1
| 1 I 1 |
|‘ 1 Feadback y 1 1
| 1 1 I 1
| |
Check In ! : 1 1 :
Trigoer
s i i I
1 1 I 1
| 1 P 1 I 1
1 Foedback | Trigger | | I
s
I T L I 1
1 | 1 ] 1
1 I 1 ] 1
F i
| I 1 1
| I 1 I 1
N | Feedback Approval i 1
! ! Feedback | : o Approval !
- t t Ll -t
1 1 1 I I I-F:-l
| 1 | I I
L] L] L] L) L) .

Figure 3.8: Deployment pipeline process visualized. Adapted from a book
[32, sec. 5.

30



User User User service
_ ™ service build service build ’ [ build-123 :
Check-in —————
triggers ) (atalog (atalog (atalog service
individual service build service build build-123
builds
N Invoice Invoice Invoice service
service build service build . | build-123
Continuous integration Each build produces a
server single artifact

Figure 3.9: Continuous integration building in microservice context. Each
service has their own source code repository and builds are done indepen-
dently. Adapted from Newman [2, sec. 6].

software, reduce the time taken between releases and allows constant feed-
back from the code submission’s readiness. Disadvantages are usually the
invested time for building the whole pipeline because the whole process can

also be achieved by running separate scripts. [2, sec. 6]

3.2.4 Deploying microservices

As mentioned in Section 3.1.4 microservices requires a continuous delivery
process in order to benefit from the architecture. Anyway, the build pipeline
that a microservice requires is larger than for a normal monolithic applica-
tion’s build pipeline, because every microservice has to have their own build
process (see Figure 3.9). According to Sam Newman [2, sec. 6] building or
releasing multiple microservices at once can cause a lock-step release pattern,
where the microservices have hidden couplings between each other. Thus, he
recommends that each microservice has their own repository, pipeline and
build provisioning. He says that separating the microservice’s deployment
processes decreases the risk of undiscovered dependencies.

Running multiple build processes on multiple machines requires a lot of
calculating power and may be expensive to maintain. Thus, continuous in-
tegration servers are usually using virtualized containers to be able to build
multiple microservices on the same machine. Docker [33] is a lightweight
platform that allows an easy way of managing and deploying applications.
It allows configuring everything in advance so that reproducible server con-

figurations are made possible. [22]

31



3.3 Testing

The previous sections presented the microservice architecture and the devel-
opment environment of microservices. Section 3.3.1 explains testing method-
ologies. Next, Section 3.3.2 presents the testing scope. Finally, Section 3.3.3
brings up testing differences in a microservice environment and shows special

testing properties of microservices.

3.3.1 Types of testing

Sam Newman [2] emphasizes the purpose of testing. He says that testing is
always an additional task for a developer to ensure that the service meets its
requirements. Figure 3.10 classifies testing methods by team impact. The
tests can be business or technology facing as well as critical or supportive
[34]. These categories help us to understand to who we are writing these
tests for. For example, engineers usually start from the Q2 tests, which are
supportive and helps implementation of a certain user story.

Tests can be roughly categorized into development and maintenance
phase tests [34]. Q3 and Q4 test categories require that there is deployable

Manual

Agile Testing Quadrants

Automated & Manual Business Facing

Functional Tests
Examples
Story Tests
£ Prototypes
© Simulations o
]
- =
] 4
= Q2 s
o
£ Qi 3
= 5]
2 g
& s
=)
5]
Unit Tests
ComponentTests

{;/__/) Technology Facing

Figure 3.10: Marick‘s testing Quadrants (The markings Q1, Q2, Q3, and
Q4 are just used for referring to the categories) [34].

32



software. Therefore, these tests are usually completed after the functionality
is written. Anyway, in some projects performance, security or even usability
might be key elements of the service. Hence, the team may prioritize Q3 or
Q4 tests over Q1 and Q2 tests, because the pilot test results may change
the whole direction of the project.

This thesis mainly concentrates on automated testing. Figure 3.10 shows
that automated tests are team supportive, which means that developers
create these test in order to speed up the localization of malfunctions. The
locating speed depends on the test scope, which is explained in Section 3.3.2.
Furthermore, testing can also be divided by methodologies to black-box and
white-box testing [35]:

o Black-box testing. Black-box testing means that the system under
test (SUT) is unknown. The internal logic is hidden and the user
can only monitor the system’s inputs and outputs. This kind of sys-
tem requires massive amounts of input tests to expose potential bugs.
However, the user cannot determine the expected functionality by cre-
ating random inputs, if the system is a total black-box. This makes
validating the results more difficult. To be able to validate the results,
black-box testing is commonly combined with the white-box testing
approach. In white-box testing, the user knows the expected results.
Thus, black-box testing is mainly used as a supportive testing method
to increase the coverage and probability of finding bugs [35].

e White-box testing. White-box testing examines the system’s inter-
nal behavior. It ensures that all parts of the code are working correctly,
but it does not take collaboration with other systems into account [35].
Sometimes white-box tests are described with test code coverage num-
bers. On the other hand, even if test code coverage would reach 100%,
the software may still include bugs because test coverage is only testing
a few of the possible paths of the software.

These methods can be applied to different scope levels of a system, which
are described in the following Section 3.3.2.

3.3.2 Test scope

Test scope can be explained with the test pyramid concept, which has been
developed by Mike Cohn [37]. Figure 3.11 shows the concept. It divides the
test area into three main categories, which are the following [2, sec. 7]:

33



The Automation Pyramid

Coverage
Maintenance
Fragility
Duration
Cost

4 numberoftests ——p

Figure 3.11: Mike Cohn’s testing pyramid. The pyramid describes test

diversity in traditional software development. Adapted from [36].

e Unit tests. These typically test a single function, class or method.
Furthermore, unit tests are fast; a modern hardware can run thou-
sands of unit tests in a minute. Thus, unit tests are recommended,
because tests are easy to write and fast to perform. For example, in
test-driven design (TDD) a developer writes unit tests for every sin-
gle functionality before implementing the features. Writing tests first
helps and speeds up development. Nevertheless, if the requirements
are not clear, writing the test cases is a waste of time. Moreover, rapid
testing speeds up development process [37]. Additionally, the scope of
unit tests is narrow, which allows fast localization of errors. Therefore,
locating an error is faster than for broader tests [2].

e Service tests. These tests are designed to interact with services di-
rectly. Service tests bypass the user interface (UI) in order to make
testing easier. Service tests isolate upcoming problems inside one ser-
vice. The scope of service tests is then broader than for unit tests.
Broader testing scope increases the test time, but also improves the
test code coverage, which brings more value to the developer.

Service testing is sometimes called application interface (API) test-
ing. Services include commonly database or other external connec-
tions. This brings a problem with how to fake the external relations
of the service. One option is to face the database or external relations

34



by using test doubles (see Section 3.3.3). Another common option is
to duplicate the database or use an external sandbox API1. Usually,

external services provide some sandbox API for testing.

o End-to-end (E2E) tests. These tests are usually driven through
a browser’s graphical user interface (GUI), which makes the testing a
lot slower and more fragile to changes. These tests cover the main
functionality of the service, but when they fail, it may be difficult to
locate the problem without additional smaller scope tests.

Overall, all testing ranges are required, but the automation level of testing
is dependent on the project’s architecture and developer’s vision. Outside of
the testing triangle is exploratory testing (ET) [2, sec. 7]. In exploratory test-
ing, a developer is manually finding ways to break the system. Exploratory
testing is looking for an answer to the question: ”What is the best test I can
perform, right now?”. Thus, it is a powerful tool for providing rapid feed-
back from a new product or feature. It is also used for initial performance
testing, security testing, product analysis and prototyping scripts. For ex-
ample, security risks are usually discovered by using ET strategies [38]. ET
includes everything that is not practical to automate. Nevertheless, devel-
opers tend to forget that even exploratory testing has strategies. A test
should be implemented in such a way that it gives maximal information for
the further process. Furthermore, ET does not have ordinary automated test
restrictions, like test maintenance or suitability with other tests. [39]

3.3.3 Testing Microservices

This section describes software testing in a microservice context. First, the
section defines testing terminology. This specifies service testing in a mi-
croservice context and includes test doubles, which declare different ways
to face the service responses. Finally, the sections bring up the best testing

practices for microservices.

Testing Terminology with Microservices

Microservices collaborate with other services, which creates a need for test
dependency management [40]. Thus, microservices split the traditional ser-
vice testing category into contract and integration testing (see Figure 3.12).

Figure 3.12 shows that contract testing happens via queries to an API.
Testing the API access points verifies each service’s calls independently. Con-

35



o
C
e
— \I I V-
<

Service Interface -

Business Logic A

|

"

N ~ /

> \ /

>~ \ \

r’. l‘L / /

Extemal Services .‘-‘"

\ /

\ I //

- External Database

Data Access

Integration Testing [™

S 7
S~ A yd
— , /
. e

Figure 3.12: The difference between contract and integration tests. Adapted
from [41].

tract testing is imagining a service as a black-box, so a tester does not need
to know about the inner implementation. Server dependencies should be
implemented as stubs in order to restrict interaction with other services.
Moreover, stubbing other services decreases unnecessarily complex behav-
ior, which could be caused by external services. [41]

Consumer-contract testing is treating each service as a “contract”, for
example: a contract-test can send a JSON request to a server and validate
the response from the server API. The test ensures that the service gives
the right answer from the API at all times. This kind of testing allows
building more resilient services and the consumers do not need to change
their interface. [41]

There are a few popular mocking frameworks to face responses from ex-
ternal services in order to achieve isolation on selected level. Those include
for example Mockito for Java and JustMock for .NET. Furthermore, for
consumer-driven contract testing Pact, Pacto, and Janus are well known
testing frameworks. These frameworks allow testing services independently
by isolating the service from other services and therefore verifying the ser-
vice’s contract’s behavior [42].

Integration testing is done after contract testing because it assumes that
the service’s independent behavior is valid. Moreover, this is an important

part of microservice testing, because microservices depend on cross-service

36



communication. Integration testing should include error and success cases.
It ensures that the service works with its dependencies as expected. [43]

End-to-End (E2E) testing ensures that there are no errors in the main
workflows [44]. E2E tests work similarly to in monolithic architecture, but
multiple services just make them more fragile, which increases the flakiness
of the E2E tests. Based on Cohn’s testing pyramid, tests should always be
implemented on the lowest level of the pyramid if possible. Thus, there
should not be a large need for E2E testing.

In a microservice context, unit tests can be split into sociable and soli-
tary categories [42]. Sociable unit testing is a black-box testing method,
that focuses on testing the modules by observing their state changes. Soli-
tary unit testing concentrates on the interactions between an object and its
dependencies.

Figure 3.12 clarifies the categories of unit testing by providing an exam-
ple of a microservice. Unit tests can be included inside the service interface,
business logic, data access and service agents. The services which are not
highly state-based should concentrate on solitary unit testing and the rest
on sociable unit testing. For example, business logic which is highly state-
based requires sociable unit testing, but the other modules can be tested
with the solitary unit testing style. Furthermore, the size of the unit tests is
not strictly restricted, but typically unit tests are written at the class level
to provide better isolation of an error. Moreover, unit test dependencies are
commonly replaced by using test doubles. [42].

Test Doubles

Martin Fowler [45] lists different kinds of test doubles which support defining
different methods for facing with external relation. He divides test doubles
into five different categories, which are the following:

e Dummy objects are given as parameters but never used. These are
used for example to fill some mandatory field of the request.

o Fake objects have a working implementation, but they include short-
cuts. These shortcuts include different security risks, so fakes should

never end up in production.

e Stubs have specified answers to test requests and do not react to other
inputs.

37



e Spies have specified answers to test requests, but they also record his-
tory data about the calls. Thus, they could be described as stubs that
record some information. For example, a mail service could work like
this. It delivers messages forward, but at the same time, it internally

calculates how many messages the service has processed.

¢ Mocks monitor the requests and have pre-programmed expectations
which they compare to the input calls. If a call does not match, mocks
throws an exception about unspecified behavior. Mocks should also

include a relevant error message for the developer.

Microservice Testing Challenges

Microservices come with increased complexity of a distributed system and
its environment, which makes testing more challenging. This means that
cross-service testing needs more effort and may be unpractical to implement
or maintain.

Hughes [46] argues that microservices should have fewer tests than mono-
lithic applications because splitting the service into microservices has already
simplified the testing surface of the services. Thus, he emphasizes the need
to pay attention to value adding testing. This sets a challenge that a de-
veloper should know what to test instead of testing every typical use case.
To know what to test, developers have to maintain an overall picture of
the service [2]. Luckily, microservices are developed in agile cross-functional
teams, so I think that forming the overall picture is easier than in a waterfall
process.

Brown [47] tackles value adding testing by redefining the test pyramid
for microservices (see Figure 3.13). He argues that class level testing is
not as value adding as service testing in a microservice context. He adds,
that the test pyramid balance is not a straight truth. A developer should
understand what the most value adding tests in the system are. Hence,
based on Brown’s [47] experience the test pyramid will be more balanced
between service and class tests in a microservice context.

Most of the microservice tests concentrate on service testing, which
leaves the overall testing more open [2]. For example, Johansson [22] shows
in his research that developers analyze the overall quality of the software
as the biggest risk in microservice quality assurance. End-to-end testing
includes problems like flakiness, maintenance responsibility, slowness, and
deployment problems |2, sec. 7].

38



In some cases, instead of the comprehensive amount of end-to-end tests,
microservices are using a highly developed release process as a testing tool.
A new release candidate is running beside the production instance, so that
the release candidate receives all synthetic transactions from the live environ-
ment. Synthetic transactions is an active monitoring method which contains
pre-scripted patterns that simulate a real end-user behavior through the web-
site. Active monitoring is predicting the future network states by recording
the current log and processing it with algorithms. If the release candidate
has no major concerns, the production instance can be replaced with the
release candidate after a testing period. [2] However, this kind of testing
requires semantic monitoring which includes investment into the release pro-
cess, and monitoring tools, such as Graphite, elasticsearch, Riemann or Suro
[22].

An alternative option is to use consumer-driven contract (CDC) test-
ing, which simulates the end-users inputs by sending custom made network
packages to the system. CDCs cover the core functionality of the service,
but the results do not test the end-user service usability. These checks are
mainly used as a sanity check for testing that a new update does not break
any existing core functionalities. CDCs are commonly used with regression
testing because CDCs are faster to perform than typical E2E tests. Nev-
ertheless, E2E and CDCs only cover the main use cases of the application,
which means that there are still many untested routes to test.

39



Component / Service

Class / Function

L humberottesis 3

Figure 3.13: Microservice testing pyramid according to Brown. Adapted
from an [47].

3.4 Software Testing Practices

Software testing practices focus on finding processes to improve the overall
quality of the software. Traditional technical quality metrics include only
software correctness, completeness, and security. Software testing practices
are taking a step further and consider the impact on integrity, capability,
reliability, efficiency, portability, maintainability, compatibility and usability
of the software [48].

This section describes the main models behind different testing practices.
Section 3.4.1 explains the maturity of the software and its impact on the soft-
ware process. The next Section 3.4.2 defines testing maturity model which
can be used as a guideline when a test should be automated. Finally, Section
3.4.3 describes testing practices that could be used in an agile microservice

development process.

40



3.4.1 Capability Maturity Model

Capability Maturity Model [49] is judging the maturity of the software pro-
cess. It is used to identify the key practices that are required to improve
an organization’s software process. The software process usually evolves
from ad hoc chaotic processes to mature, disciplined software processes [49].
CMM is divided into five maturity steps which are the following [49]:

1. Initial. This period is characterized as chaotic because the organiza-
tion does not provide a stable environment. The organization lacks
management practices and uses reaction-driven development without
good planning. The success of the project depends mainly on individ-
ual effort and heroics.

2. Repeatable. The initial project’s scope has been agreed and ba-
sic project management processed are established. The project starts
tracking different metrics to follow up cost, schedule, and functionality.
Successful teams tend to work disciplined towards a minimum viable
product in this phase.

3. Defined. This period tailors the software process for this project and
provides support for project maintenance; documentations, standard-
ized work style, intergroup coordination, and training programs. The
team starts to use common code quality monitoring practices like peer
reviewing. Software engineering activities are stable and repeatable.

4. Managed. The period includes software quality management into the
process. The process has a consistent output which is quantitatively
understood and controlled. The level can be described as predictable
because the process is measured from management and engineering
sides and the process operates within measurable limits.

5. Optimizing. A stable process requires piloting innovative ideas and
technologies to ensure continuous improvement. On this level, the
process is once in a while challenged to find better ways to prevent
known types of defects from recurring.

41



3.4.2 Testing Maturity Model

Testing Maturity Model (TMM) [50] is developed to support Capability
Maturity Model (CMM) [49]. TMM defines when an organization should
improve their testing capabilities. It defines when software testing should be
automated. The following five steps describe the behavioral characteristics
of the TMM levels [50]:

1. Initial. Chaotic phase; Tests are implemented after the coding is done.
The testing is done in ad hoc way and its objective is to ensure that
the software works. The software does not have any quality assurance,
and testing lacks resources, employee training, and tools.

2. Phase Definition. Testing has been separated into a planned activ-
ity; Testing ensures that the software meets its specifications and it is
planned mostly after coding is done. Thus, most of the quality prob-
lems occur late in the process. Moreover, there is no code reviewing
and most of code testing is done manually.

3. Integration. Testing is integrated into the entire software process.
Testing is considered as a professional activity and team members are
educated and encouraged to do testing properly. The team has com-
municated the importance of code reviewing and starts using it as a

basic quality assurance method.

4. Management and Measurement. The testing process is measured
and quantified. The software is tested according to quality attributes
such as quality, usability, and maintainability. Out-dated test cases
are systematically stored for later use. Furthermore, defects are logged
and analyzed regularly. The environment supports automated collec-
tion of test related metrics and provides analysis of the results.

5. Optimization, Defect Prevention and Quality Control. This
phase is optimizing the testing process, because at TMM level 4 the
testing process is defined, and its effectiveness can be monitored. The
performance of automated testing tools and the process is regularly
monitored. The testing tools are used to provide support for test case
design, allow rerunning of test cases, defect collection and analysis,
and to compose and analyze test related metrics.

42



3.4.3 Agile Software Testing Practices

Agile software development shares code responsibility [51]. The team should
form common goals and practices for the pursued code quality. For example,
assigning test writing to all team members improves their test awareness and
allows more relevant tests to be implemented. For example, test predefining
and code reviewing practices are used to ensure that the team keeps up their
quality.

Moreover, in agile software development, a dedicated test person may be-
come a bottleneck, because all test changes would go through only one per-
son [51]. Thus, the dedicated test member should share his knowledge with
the team. The tester may change during the project, so sharing and facili-
tating the other team to understand the testable functionality is important.
Furthermore, unit and service testing should be mainly the development
team’s responsibility, but a facilitating tester may become handy after the
project’s maturity has reached a sufficient level. Additionally, unit testing
mainly applies to the white-box testing methodology, so feature knowledge
speeds up the testing process. [48]

Agile software development process specifies code measuring process.
The product size should be determined by the test size because it describes
the code complexity better than the lines of code or specifications. Thus, ma-
ture agile software project iterations should include broad regression testing
before the builds are delivered forward. Furthermore, agile software develop-
ment reinforces the meaning of trust. Untested work should not be accepted

in a mature agile software project. [51]

End-to-End Testing Practices

The benefits of E2E testing are constantly discussed. Wacker argues that
the E2E tests are not worth implementing [52]. E2E tests are implemented
so that they simulate real user scenarios. Many team members likes E2E
tests; from a developer point of view it outsources the testing responsibility,
from a manager point of view it is a clear indicator how a failing test case
affects the user, and from a tester’s point of view E2E tests include a larger
scope, so a test does not need to test every single service so comprehensively.

In practice, Mike Wacker [52] presents that E2E tests should not be the
main focus when fixing a problem. Google’s strategy [52] is to “focus on the
user (and all else will follow)”. The E2E tests do not directly benefit the
user. The user benefits from a bug fix, where an unintended behavior goes

43



away. The developer should find the real cause of the problem, not only fix
the E2E test to pass. He says that common mistakes with E2E testing are
flakiness, fixing for the test instead of for the real user, too big number of
E2E tests, and sometimes E2E tests should be moved to service test level
or split into two separate test cases.

However, Fowler [42] sees that a few E2E tests help the development
process. He says that E2E tests allows to test the behavior of the fully
integrated system. This allows better quality monitoring. He has introduced
the following guidelines to achieve a successful end-to-end testing process:

Write as few end-to-end tests as possible

e Focus on personas and user journeys

Choose your ends wisely

Rely on infrastructure-as-code for repeatability

Make tests data-independent

3.5 Summary of Findings

Microservice architecture is still very recent, so it has no exact definition.
However, microservices have a recognizable style, which can be used to com-
pare microservices to other systems. In practice, microservices are a dis-
tributed system so it includes all features of distributed systems. Hence,
microservice’s testing can be monitored from a distributed system’s view-
point. Microservices splits a software into more maintainable pieces, which
can be built, run, re-factored, and tested separately. Small compact services
also reduce the need for unit testing because a microservice does not include
many complex functionalities.

The difficulty of testing has moved to the network and configuration
layer, where a developer should implement the massive amount of test in-
frastructure compared to a monolithic solution. Each service requires a sep-
arate test database and data initialization to all these services is complex.
Broader tests should ensure that all microservices are up and running be-
fore running the tests. This can be achieved for example by calling services’
health checks.

The distributed database model brings up a test data initialization prob-

lem; the data should be inserted into databases so that all services have the

44



correct information. Test data initialization can be done through an API,
using separate migration files or by using separate test data scripts. The
method varies by the project’s maturity, scale, and schedule. However, the
overall idea is to empty the test databases and after that add the test data,
so that the test databases are always starting with the same initial state.

Furthermore, the testing scope of the microservices is varying by the
compactness of the service. The services should be designed for failures, so
they will not crash into cascading failures after one service is temporarily
off-line.

Generally, microservices have better delivery pipelines built with the ser-
vices, because the process requires proper continuous delivery tools in order
to benefit from a microservice solution. The process allows fast and itera-

tive user acceptance testing, which improves the transparency of software
development.

45



Chapter 4

Results

This section shows the case projects case by case and presents the research
results. The section begins by presenting the case projects in Section 4.1.
Fach case project is briefly explained and the interview results are presented
case by case according to the case study methodology. After the case projects
review, the research results are shown in Section 4.2. Section 4.2 summarizes

and categorizes the main findings from the case projects.

4.1 Case Projects

The following sections concentrate on the case projects’ structure, develop-
ment process, and interview results. The case projects revealed that initial
software testing practices depend on team structure, software requirements,
and project schedule.

All case projects are iteratively developed, less than three years old,
microservice based right from the beginning, and carried out by the public
sector. Public sector projects have clear overall requirements for the software
right from the beginning. Clear overall requirements support microservice
architecture style because the division of the microservices has to be done
in early phase [24].

The results are divided into four different categories: team structure,
software development process model, software structure, and technical im-
plementation. Each category has an impact on software testing practices.
The most crucial categories by overall project success are the team and pro-
cess based categories. These define the overall testing resources and the
testing procedure. Additionally, the software structure specifies the testing
objectives and provides a clear application interface to be tested. For ex-

46



Application

HTTP router, Uoad balancing

=
Session store
Servicel frontend Service2 frontend AP gateway
y A Y
Microservice A Microservice B Microservice C Microservice D

Y Y

—_— e — —_—
P ———— —————]

Figure 4.1: Abstraction of the Solmu project’s microservice architecture

structure.

ample, the software structure defines the amount of work for integration
testing. Furthermore, technical testing implementations add more precise
details into the process. For example, simulated user testing requires sup-
port from the software development team in order to be beneficial.

4.1.1 Case Solmu

Software Architecture

Solmu is using an application programming interface (API) gateway centric
design, which means that all requests go through the gateway (see Figure
4.1). The API gateway handles user permissions, composes and delivers
answers for the requests. This design is common in small microservices
because it is simple to implement and to maintain. The architecture fulfills
the loose coupling requirement of microservices; a microservice does not

47



need to know about other services because all requests go through the API
gateway. On the other hand, the gateway keeps track of the location of each
of the microservices. The API gateway also contains some routing logic,
for example, it is responsible for composing answers to API queries from
multiple microservices. This means that if a query requires information
from microservices A and B, the gateway calls both of these microservices
and returns the composed result (see Figure 4.1).

Nevertheless, microservices are emphasizing that an online service’s struc-
ture should consists of dumb pipes and smart endpoints. Without this ide-
ology an API gateway will extend and look more like an ESB and the archi-
tecture ends up having the same problems as SOA. Thus, the case projects
Latu and Kapa have divided the API gateway into smaller pieces.

Afterwards, the Solmu project was a bit criticized about splitting the
software into too small pieces. This is a so called nanoservice problem
[53] where the microservice functionality is separated into too small pieces,
which adds unnecessary network complexity to the software. For example,
the complexity made overall testing more difficult. Testing a single service
is straightforward, but the tests between the services are more challenging.
The test data identifiers have to match between the services in order to be
testable. Therefore, the single service tests are testing only a small part of
the whole software’s functionality.

The API interfaces were mainly tested manually by using an exploratory
software testing strategy [54]. For example, the Postman-tool was used to
create HT'TP requests to the API endpoints. The services were easy to test
separately manually because each service’s endpoint is visible locally.

Testing practices

From a testing perspective it is relatively easy to add service tests into a gate-
way module and see that it is working with other services. However, the
actual Solmu project had no cross-service testing. Automated tests were
mainly APT tests, which were implemented inside each microservice and en-
sured that the API worked correctly. However, more algorithm oriented
services included also unit testing to ensure the algorithm’s functionality.
For example, one service calculated the form results, so the calculation pro-
cess was tested by unit tests.

The API tests were using a private test database. The test database
was initialized with hard coded data to allow for automatic testing. Test
databases allow realistic testing of the service and allow discovering database

48



specific problems. However, implementing an actual test database intro-
duces a test data synchronization challenge. The test data references need
to match between the databases. This was achieved by adding a separate
test database migration step. A separate test migration file allowed that
the hard-coded test data did not end up in production when the build was
promoted from the test environment.

Solmu test commit history

Focus on Backend Focus on Frontend

o om o
qqqqqqqqqqqqq

23292 3R KRR
uuuuuuuuuuuuuuuuuu 2888888883888 888030030333dd4a4d
B EERBABEELEARELEREEEEEEEEBEEEEEEEEEEEEEEEEEEEBEEBEE8E888ER
RRRRRREERERRRARRARAERRERRRARRARRRRERRARRARRRRRRRARRRIRRIERERRERREIRIRR

st modified  EETestaddEd Festureadded

Figure 4.2: The figure presented how many test modifications have been
made after the test creation. The graph also visualized the backend services’

feature flow.

Figure 4.2 shows the Solmu project’s test related commit history. It
shows how many test modifications was done after the test was implemented.
Most of the test cases were implemented at the beginning of the project.
Furthermore, the tests were not frequently modified. The project started
with backend development and moved to frontend development after the
main infrastructure was made. Thus, most of the tests were done when the
new microservices were created.

Additionally, Figure 4.2 presents the feature flow frequency which is
analyzed through Git version control merge commits. The team used a pull
request practice which means that every new feature should be implemented
in a separate branch. Hence, after a pull request was accepted, the feature
was merged into the mainline and the merge commit was committed. The
data was collected by analyzing the version history commit log.

The graph shows that the code does not include any service testing
because there are no updates to tests after frontend development was started.
The added feature measurements are only taken from the backend services,
so the changes that only affect the frontend service are not visible. The

49



graph shows that either the code maturity is on a sufficient level regarding
service tests or that service testing is lacking.

Team process

The Solmu team used an agile software development framework called Scrum
for managing the software development process. The project had a full-time
product owner from the customer’s side to prioritize the upcoming tasks
in the product backlog. A full-time product owner made communication
in the project a lot easier and most of the Ul testing was done by simply
showing the local version running on the developer’s machine to the product
owner. However, the project also included development, acceptance testing,
and production environments, but the development environment was mainly
used for testing.

The acceptance testing environment was implemented at the end of the
project which restricted its usage. User acceptance testing (UAT) mainly
revealed environment or browser specific problems. For example, different
browsers may render or print the web page items in different order. The
testing environment supported only a few browsers and the product owner
was responsible for defining which browsers should be supported. User ac-
ceptance testing also helped to point out contextual mistakes and usability
problems of the software. For example, the testers were able to discover
misspelling, unclear functionalities, and misleading notifications.

UAT testing was performed only a few times during the project because
the schedule was tight and there was no time to automate test cases to go
through the software thoroughly before the software was released. In addi-
tion, sometimes inviting the test users was challenging. The test users were
not really motivated to go through the whole software. They concentrated
on the main functionalities and created a quick user test review. Another

study could be made on how to involve test users efficiently.

Interview insights

The interviews brought up team and technology based insights. The team
insights are the following:

¢ Team members’ interest in implementing automated tests varied which
affected test coverage. However, by instructing teammates how to
create effective automated tests, the problem decreased.

50



o It was easy to forget to run the tests because the tests were processed
in a separate process and were not executed automatically when a
feature was committed. So, the tests were not ran automatically on

CI server.

e The software used mainly API and unit tests. The Ul was manually
tested because automating the Ul tests did not add enough testing
value. On the other hand, unit tests worked greatly if the functionality
did not have external relations. If the functionality required database
access or other external relations, testing became more challenging.

The technology based insights are the following:

o Most of the implemented automated tests focused on special cases, for
example, testing that the API returns the correct answer based on the

session key:.

o A real database is a better solution than mocking a database. However,
adding test data to a real database is problematic. One way is to start
with a clean test database and add data through API calls. However,
in this project test data was hard coded to the test database.

o At the server side, 100% test coverage should be possible. However,
this project was in a rapid development phase, so most of the testing
was done manually with direct HT'TP calls generated by the Postman

tool.

o Microservices are easy to test if the services have clear boundaries with
compact inner implementation. In this project, the services were split

into too small pieces, which made testing more difficult.

4.1.2 Case Latu

Software Architecture

Case Latu’s architecture looks like an extended version of Solmu architec-
ture. Latu implements multiple end-user services through the same API
gateway. Solmu had only separate front-ends for different users, but Solmu
was still only one service. Multiple end-user services create a need for more
sophisticated version control practices in order to prevent code duplication.
For example, Latu had a common repository for services’ styles, which were
included and used by each of the services. Furthermore, multiple services

o1



increase testing work, because added functionality has to be tested through
multiple different services.

Application

HTTP router, Joad balancing

—_ =

_—

Service frontend Service2 frontend API gateway Intemal APl gateway

-

v k. k.

Microservice A Microservice B Microservice C Microservice D

Y Y

—
————

Y

Figure 4.3: Abstraction of Latu-project’s microservice architecture struc-

ture.

Moreover, Latu extended Solmu’s architecture by dividing the API gate-
way into two separate components (see Figure 4.3). Latu had the main
API gateway for public requests and a private internal API gateway for in-
ternal communication. This allowed more complex requests to go through
the internal API gateway. To clarify the concept, an API gateway only de-
livered the messages to the end-services. These end-services composed the
answers by using the internal API gateway to gather external data depen-
dencies. Therefore, the internal API gateway simplified the main gateway’s
structure and provided better load balancing support.

52



Testing practices

Latu also had different testing challenges compared to Solmu. It had many
unit tests at the microservice level, but cross-service tests were missing. The
unit tests were mocking databases instead of implementing and running an
actual database. The project ended up using mocked databases because pop-
ulating the test databases was too challenging withing the project’s schedule.

Furthermore, Latu did not have end-to-end tests at all. These tests were
dropped out because the tests were often broken and the schedule was too
tight. However, now the team is planning to bring some end-to-end tests
back because the software’s maturity has reached a decent level. Automatic
tests became more useful when a project moved into a maintenance phase.
Therefore, the beginning of a project should concentrate on rapid develop-
ment if the goal is fuzzy and rapid prototyping does not risk the goal. In
this project, end-to-end tests were created too early to add actual benefits.
However, based on the interviews, tests were automated when the manual
testing process had taken too much time. The importance of automated
tests was recognized with a delay because a new property’s testing time

increased gradually.

Latu test commit history

Figure 4.4: The figure presents how many test changes have been done

after a test have been added.

Figure 4.4 shows the Latu project’s test related commit history. It shows
how many test modifications were made after the test had been implemented.
Most of the test cases were implemented when the backend services were
created. Furthermore, the tests were not frequently modified. The project
started with frontend development and moved to backend development after
the main user interface was made. Figure 4.4 shows that most of the tests

were implemented when the new backend services were created.

93



The version history data was analyzed in the same way as in the Solmu
project (see Section 4.1.1). The graph also shows that the tests have not
been frequently updated after test creation. One reason behind this is that
the service does not have many cross-service tests. Broader tests would need

more maintenance during the sprints.

Team process

The Latu project is using fast and small iterations in order to keep the com-
mon main branch up-to-date. At the beginning of the project, the project
used Scrum, but after service maintenance responsibility increased, they
modified the development process towards Kanban. The Kanban process
is a constant workflow, whereas Scrum is divided into sprint planning and
sprints. Thus, they switched from Scrum to Kanban after service mainte-
nance got more priority.

Currently, Latu’s average pull-request review time was around 10 to
30 minutes. For contrast, in Solmu this was about 5 to 15 minutes, but
Solmu had only one end-service. The code review included code checking
and testing the updates on your own machine. The team took a pair-review
approach into use about a year ago. They said that it has improved the
code quality a lot. Before this practice, team members were free to commit
their own changes to the main branch. The code review practice created a
base for a common coding style and allowed faster tracking of environment
specific bugs.

Latu had also a common style guidance and version control strategy.
This helped to keep the code in-line between microservices. The style and
naming guidelines was extremely important with microservices because the
microservice’s API can be used from multiple locations and renaming all
those end-points is time-consuming and requires broad testing of the whole

application.

Interview insights

The interviews brought up team and technology based insights. The team
insights are the following:

e The team does not have strict roles. The decisions are discussed within
the team and the team members roles vary.

e Scrum is good at the beginning of a project, but Kanban has better

54



maintenance support. The Kanban process has better support for

implementing small changes.

e Common coding guidelines are useless without monitoring. At the
beginning of the project, the team used common coding guidelines,
but the code quality still decreased over time, because the guidelines

were not monitored regularly.

e A code review practice improves code quality a lot and allows more
stable development builds. The practice ensures that the code is also
compiling on an other environment and checks that the coding style

is uniform and correct.

The technology based insights are the following:

e Microservices as small compact entities make testing easier. Microser-
vices do not have as large side-effects from changes as monolithic solu-
tions have. Thus, microservices do not need as comprehensive testing
as monoliths.

o Javascript languages are preferred in microservice development be-
cause those provide a lightweight, clear, and compact implementation
framework for the microservice’s needs. Microservices may include
many compact create, read, update, and delete (CRUD) services which
are quite straight forward to implement and additional extra code adds

unnecessary complexity.

e Java virtual machine consumes a lot more memory than a lightweight
Javascript framework on default settings.

e Testing a pull request on one’s own machine is important because it

will reveal environment specific problems.

e Microservice tests are easily built on top of previous tests, which may
not be the best way to improve test coverage. For example, if the
service has already a few tests it is easy to add a few more tests to
the same place, even if it would not be the optimal solution. The
reason behind this is partly that microservices were implemented by
using varying technologies and a developer may not have the complete
understanding of all testing frameworks that the whole service is using.
Thus, a developer may end up using the old testing code as a baseline

with only a few modifications.

95



o Initializing a test set up should be done at the same time as a new
microservice is created because it will decrease developers’ test writing
threshold. If developers are unfamiliar with a microservices’ framework

they are not building the whole test infrastructure around one task.

o Real databases are better than mocked databases because those show
the real performance of the database. However, real databases require
setting up containers, configuring the network layer, populating the
test data and setting up the entire database. The database should be
the same as in the production because lightweight test databases do
not include all database specific properties.

o If developers do not have good knowledge about a testing framework,
they will probably just copy-paste existing test cases. Furthermore, if
a service does not have previous tests a developer may not implement
the test case because it would need too much infrastructural effort.

4.1.3 Case Kapa

Overall, Kapa is an extremely large software project, which consists of many
different services. In this review, I bring up the architecture’s sophisticated
structure to contrast it with the other case projects. Kapa also includes API
gateway centric architecture models, which are similar to project Solmu and
Latu.

Software Architecture

One part of Kapa was using a Netflix-styled architecture (see Figure 4.5).
Instead of having the API gateway manage the routing to different services,
it had a discovery server (Eureka) to inform other services about their con-
nections at startup. This allowed microservices to communicate with each
other without going through an API gateway. For example, see from Fig-
ure 4.5, how microservice C and D are connected. In this design, service
tests can be implemented into each microservice, because the information
does not flow through the API gateway. This allows creating more compact
services because service-related tests can also lay on the same level.
End-to-end tests required test expertise at the beginning of the process
because the tests should be built modularly. For example, the automated
test framework Selenium uses page-view patterns, which should be imple-

mented as modularly as possible to provide a good base for test modifica-

o6



HTTP router, Load balancing Application

Redis cache
Y
Discovery server
-
API gateway (Eurcka)
Microservice A . ) [}
Microservice B :

Elastic DB

Microservice C Microservice D

Microservice £

Data Queue DB

Figure 4.5: Abstraction of the Kapa-project’s microservice architecture
structure.

o7



tion. After the first tests have been implemented modularly, the extension
of tests is easy and less experienced testers or even developers can perform

the changes.

Testing practices

The project assigned one tester to each developer team to facilitate and
contribute E2E tests, because developers interest, competence, time and
project pressure do not leave room for broader tests. The practice was
successful. However, the team had to be willing to work with the tester
because without co-operation the tester will not bring extra value to the
team.

The teams that fully integrated a tester into their team had a better un-
derstanding of the developer’s test responsibility, for example, implementing
additional statical identifiers to UI components right at the start to help a
tester to write a test case for that functionality. Creating a test afterward
may be a really expensive task and usually the tester asks a developer to
fix their solution to be more testable. If the code has to be changed after-
wards, it increases the waste time which is against lean software development
principles. Modifying a software afterward is almost always more expensive
because a developer needs to gather the knowledge about the issue and find
a time slot to fix it.

Another challenging task was to unify testing practices inside a team be-
cause experienced developers had formed their own ways to develop and test
their software. They may have really good arguments, why the testing pro-
cess should be done in another way. Nevertheless, setting common testing
practices will improve overall code quality because of the common testing
structure, allows better code reviewing, and provides better co-worker sup-

port.

Team process

The Kapa project consists of many teams, and each team had different pro-
cesses. However, I will reflect on the Netflix-styled architecture team. They
were using a Scrumban iterative process. It was a combination of Scrum and
Kanban. The team was using 2-week sprints, but they also received some
maintenance related tasks behind of the backlog. The team was satisfied
with their process, even if it seldom went by the book. The project included
so many parties, that ownership of the source code, servers, tests, databases

o8



varies and makes the delivery process more difficult. Technically the pro-
cess was the same, but the developer team’s involvement was different. For
example, the developer team delivered the software to UAT and another
team approved it into production. However, the developer team was still
responsible for internal testing of the services, because UAT will be done as
black-box testing which means that the testing team was only testing the
services from the user point of view.

Kapa was a large software project, so it had many servers just for re-
gression testing. Regression tests required a lot of capacity from the servers
and therefore all services cannot be regression tested in parallel. All teams
wanted their software tested right after the sprint, which creates a schedul-
ing pressure for regression testing. However, the teams solved this problem

by creating variation to sprint end dates.

Interview Insights

The interview insights are grouped into four different categories. These
categories are formed and named by the clusters of the composed interview
insights. The first category presents the team related testing insights, which
are the following:

e An assigned test team member helps to maintain a high testing level
(E2E or service tests). However, the team also has to be willing to
work with the tester. The tester helps a normal developer team to
understand testing requirements and take those into account when

developing the software.

e The testing team should be involved in the development process when
the project’s maturity is on a decent level. Larger scale autonomous
testing is a waste of time if the project standard paths do not work

properly.

e The developer sees that the testing responsibility is on the testing team
if the project has one. The testing team counts on the developers to
test their software properly before it reaches the testing environment.
Anyway, the product owner is responsible for the overall quality, which
covers a lot more than just test coverage.

e Usually, testers do not participate in software functionality planning.
Thus, the developers should also have a testing vision in their mind.

99



They may point out critical points afterward to ensure the software’s
testability. Improving service’s testing supportability is usually cheaper
than implementing difficult test cases around the software.

o Developers should not fall in love with their code. A developer may be
hard to convince to take a look into their code when the test results

are blurry.
The software development process related testing insights are the following;:

e Testing should be started by using ET, in order to find the actual prob-
lems of the software. Autonomous tests should be used to ensure code
functionality, but these should not break regularly in an acceptance

testing environment.

e The problems should be found as early as possible, so that fixing would
not waste time into re-learning the functionality. When a problem is
found in the development phase, it is a lot faster to fix, because the
programmer has a clear understanding of the software’s structure at
the time. Fixing the same problem later will take more time.

e Developers are following agile principles and they concentrate on value-
adding testing. On the other hand, the testing team has broader
testing targets, which are test maintenance, manual bug hunting and

improving test coverage.

e The test team does not have visibility of the inner system. They are
running black-box tests, so the inner implementation of the software
does not impact on the external testing team. Thus, the test team

does not care if the underlying service is a microservice or not.

o Regression testers are not able to see the whole load information during
the test because usually in mature big software projects the user rights
are limited. Nevertheless, they have a clear area of responsibility which
to monitor and to report.

The software structure related testing insights are the following:

e Creating too small microservices produces unnecessary testing com-

plexity.

60



e Small microservices have more service-level tests than unit tests be-
cause dummy database-access service does not include any complex
functions. Thus, testing is concentrating on service level, where it
adds more testing value. The tests typically go through the whole
API access point.

o New properties are manually tested after the autonomous basic tests

have been completed.

e Regression testing needs lots of computational resources, so its sched-
ule should not overlap with other teams. Usually, most of the teams
want regression test results after the sprint, which may cause overlap-

ping.

e CDC tests are insufficient for UAT. The view of the page is important
and CDCs do not test the front-end at all. Anyway, CDCs are a really
useful tool for regression testing, because they run faster than E2E
tests and are not as fragile. However, a software’s Ul may be broken
after CDC regression test, but the test does not detect it.

The technology related testing insights are the following;:

o Maintaining UAT is difficult because many services have specialized
needs. Moreover, some services contain cross-references to other ser-
vices. For example, case Kapa has formed a stateful relation between

services, even though every single service is stateless.

o Services should use as real test database if possible. The real database
allows realistic load testing, response time measurement, and database

query testing.

o Existing databases are easy to double, but test data import varies
through services. Teams may end up using mock-tests because test
data migration is too troublesome.

o Test data can be inserted into a database by using separate database
migrations for test usage. This way the database would always have
the same testing data. Another style is to add data by using test
functions. For example, first call data insertion functions and later
test other functions. Both of these methods were used in the Kapa

project.

61



o End-to-End tests ensure that the core functionality works. Anyway,
the interface has to go through extra manual steps, because monitoring
the page layout cannot be effectively automated.

e Developers have to take testing into account. For example, if a de-
veloper does not give specific identifiers to form fields, creating an
autonomous test case will be difficult. With identifiers, test programs
can simply select the field by the identifier, but if this is missing, the
program has to figure out where the field could be, which is not so

accurate.

e Under one percent of the automated tests should be modified weekly,

in order to benefit from them.

4.2 Summary of findings

Most of the findings were highly dependent on the project’s maturity. Thus,
the following result tables describe successful software testing practices with
the related software maturity boundaries. The result tables are using CMM
levels to describe a project’s maturity level.

Moreover, most of the findings were not microservice specific, even though
they came up from a microservice environment. To ensure broader use for
these results, more case projects are needed.

The results revealed four different categories which are the following:
team related (see Table 4.1), software development process (see Table 4.2),
software structure (see Table 4.3), and technical (see Table 4.4).

62



Table 4.1: Team related testing practices

CMM Result

level

2-5 The team should have a basic understanding of agile software
development responsibilities and take lean principles into account
when designing and implementing software tests

3-5 One tester in each team improves the team’s testing motivation
and understanding of testing requirements

4-5 E2E tests should have a dedicated person

4-5 Regression testing should be scheduled so that it does not overlap
with other teams

5 The team should include an active and motivated exploratory

tester to find possible problems in the automated testing envi-
ronment. The basic coverage testing can be outsourced to less
experienced testers because the basic structure of the automated
tests already exists

Table 4.2: Development process related testing practices

CMM Result
level
1-3 Software testing is only a small part of quality assurance. Other
tools like code reviewing, static code analysis, and service mon-
itoring allow for efficient code quality control in immature soft-
ware projects
1-4 100% service side test coverage should not be a goal. The goal
should be to test real functionalities properly and leave imple-
menting tests just for code coverage out.
1-5 Testing should be started by using an ET approach to under-
standing what kind of tests are useful to automate.
-5 Peer code review is an effective way to improve code quality
-5 Flaky tests should be removed or fixed
-5 Test automation should be started on the E2E level when project
maturity has reached CMM model’s managed level.
4-5 Testing becomes a more important quality assurance tool in ma-

ture software projects. Mature software projects tend to be more
critical services and therefore the process is trying to eliminate

most of the bugs.

63




Table 4.3: Software structure related testing practices

CMM
level

Result

1-5

Tests should be implemented according to a lean principle. In
practice, this leads to small microservices having more service

tests than unit tests.

Microservice testing infrastructure adds initial complexity to test
creation. For example implementing one test case into a new
service requires setting up the test database, initializing the test

environment, and writing the test code.

Automated microservice integration testing requires higher ma-
turity from the software than for a monolithic alternative. For
example, automated integration testing should be started at level
3-4.

Too small microservices increase testing complexity. For exam-
ple, functional testing may need to be done for the API gateway

instead of related services.

The team should consider when to add a new testing framework
into a microservice because new testing frameworks adds testing
complexity and requires developers’ with a broader technology
set.

A new microservice feature should be implemented by only touch-
ing one microservice at a time. A mature software projects tend
to have many software developers, so modifying multiple loca-
tions will cause unnecessary merge conflicts. Thus, in mature
software projects developers write test cases for the implementa-
tion and ensures that the microservice works as expected before

modifying other microservices on the way.

64




Table 4.4: Practices to solve technical testing challenges

CMM Result
level

1-2 Mocking a database is faster to implement than building infras-
tructure for a test database. So, in a hurry mocking a database is
okay, but when the project reaches CMM level 3, the databases

should not be faced anymore.

3-5 The database should be created as real as possible when the
project reaches E2E testing phase, but before that mocking the

database is a decent solution.

3-5 Test data should be added by running a separate script or by
using additional database migrations.

4-5 Developers should give individual identifiers to Ul components,

so testers can easily access Ul elements.

65




Chapter 5

Discussion

This section presents the answers to the research questions and reflects those
with the literature review. Section 5.1 presents answers to the research
questions. The following Section 5.2 compares the results with the literature
review. It brings up the common practices with microservice testing. Section
5.3 explains the limitations of the study. Finally, Section 5.4 presents the
possible future work for the study.

5.1 Answers to the research questions

This section presents answers to the overall research question: What kind
of testing practices are software engineers recommending for public sector
microservice software projects? The practices are presented in the previous
Section 4.2.

How does testing a microservice architecture differ from testing a
monolithic architecture?

Microservices are compact small services, which complete a clear functional-
ity. A microservice is easier to understand and to maintain than a monolithic
alternative. Small microservices tend to have more service level tests than
unit tests because the microservice itself has decreased the unit testing com-
plexity. Nevertheless, the integration testing between microservices is more
complex than with a monolithic solution. Monolithic architecture integra-
tion testing allows shortcuts, but with microservices each connection has to
be properly implemented or at least faced by using test doubles.
Microservices require a higher maturity level than a monolithic alterna-

tive when starting service testing. TMM level 3 defines integration testing

66



of the entire software which is usually achieved at CMM level 3 [50], but
with microservices, it is closer to CMM level 4. The cause to this is the
additional infrastructure complexity of a microservice process, which has to
be stable on each service level before service testing is beneficial. The ser-
vices could also be stubbed before implementation, but at the beginning of
the process (CMM level under 4), the time pressure drives projects towards
results instead of testing coverage.

In microservices 100% service test coverage is not needed because the
service structure has limited indirect relations between the modules. A
monolithic architecture has many relations with other components which a
developer may not be aware of. Thus, monoliths are creating broader test
cases for the functionalities. On the other hand, microservices are mainly
adding tests for complex functionalities.

A large microservice has more monolithic features. In contrast, the sim-
plest microservices are just dumb database CRUD services, which provide
basic functionalities to access the database. In small CRUD services, unit
testing is mostly useless and the tests are testing the API interface instead.

How does a microservice environment influence testing?

Microservices support agile software development processes. Thus, testing
can be done concurrently with software development. Furthermore, testing
single services is quite straightforward. However, small tests do not add so
much value in compact services, so the testing may move to the service layer.
Nevertheless, service tests are more difficult and complex to implement and
to maintain. Hence, these tests are usually implemented after the project’s
maturity has improved into a more stable state (CMM level 4). A stable
state means that the core use cases of the software work most of the time
and the tests are mainly ensuring that the basic functionality is okay, but
the tests should not fail weekly.

Why do project testing practices differ from the recommenda-
tions?

The project schedule is not reserving time to build testing infrastructure
before problems start to occur. Microservices requires a large testing infras-
tructure even to small test cases. Typically there is no time to build testing
infrastructure while implementing new features. Thus, overall testing is al-
ways a bit behind the project, if a project does not have a specific testing

67



team. Moreover, at the beginning of the project automated testing does
not add significant value to the software development in an agile software
environment, because the automated tests are out-dating constantly. Hence,
test automation should be started after a project has a sufficient maturity
level. However, maturity level can be identified individually for all microser-
vices. After a microservice’s maturity level reaches CMM level 3, automated
testing should be implemented and maintained professionally (TMM level
2+).

Another problem is the testing team’s vision. Testing practices vary in-
side the project because a team is mainly reviewing the results instead of test
coverage at the beginning of the project. However, the review process concen-
trates more on testing, when a project’s maturity level increases. Moreover,
developers need to change their style after the project has reached a more
stable point. If a microservice project is implemented in a really small team
and at the beginning of a microservice project, a developer creates many
changes into multiple repositories in order to complete some functionality.
At the maintenance phase or if the team size increases, a developer should
implement the functionality in one repository at the time. Moreover, they
should ensure the microservice’s functionality by creating tests before mov-
ing to the next microservice. Incremental testing improves code quality but
slows down the development of functionality.

Additionally, all case projects emphasized the importance of a realis-
tic testing database, but despite this the projects ended up mocking the
databases. The mocked databases were faster to implement and require
less environment specific configurations. Furthermore, a problem with real
databases is the initialization of the test data. The projects were using
different initialization methods, based on the situation and intuition; sepa-
rate database test migrations, adding the test data through API or running
separate database migration scripts.

Moreover, in a microservice context poorly implemented test cases tend
to multiply after an initial implementation. The services are quite similar,
so it is easy to cut and paste similar parts of the software and software
test implementations are close by copying existing test cases and modifying
them. Thus, the initial testing implementation easily spreads around the
software, even if it would be better to create a new test case by using a
different methodology. Furthermore, microservices allow and encourage to
use the best technology for each service. Thus, a developer may need to
work with multiple different technologies, which all have different testing

68



frameworks. The lack of knowledge of testing libraries drives developers to
use previous implementations as a baseline without thinking about the test
case further.

However, microservices are also supporting rapid refactoring. The project
should have a common direction because the out-dated test implementations
can be replaced by using a new technology after a while. Overall, the project
should summarize used testing frameworks, so developers could easily up-
grade their knowledge and improve their testing code quality.

How does a project’s release process affect testing?

The release process mainly affects user acceptance testing. A modern build
pipeline allows rapid monitoring of the upcoming changes. It counts on the
product owner who is typically responsible for ensuring the feature’s quality.
The case projects had part-time product owners to facilitate the developer
team. At least in these cases, an active product owner was an extremely
important part of the team.

Furthermore, the case projects showed that all testing steps should be
automated. If tests are not run beside the build or at the code commit hook,
a developer forgets to check the test cases or the code style. The testing
steps should be applied one by one when code maturity increases. A mature
software release process should include all automated testing steps: code
style checking, static code analyzing, unit testing, service testing, end-to-
end testing, library security tests, and regression testing. These steps allow
good base coverage of the software.

In a large software project, the testing steps should be divided into differ-
ent categories and scheduled based on the project needs. For example, one
common solution is to run tests that require more time during the night.

5.2 Comparison between results and literature

Fowler [42] states that end-to-end testing is a feasible solution if the tests
are selected correctly. However, according to the case projects, maturity,
team’s test interests, and project’s schedule affect more end-to-end testing
decisions than Fowler’s E2E testing practices. Martin Fowler [42] did not
clarify when end-to-end testing should be started. Moreover, Sam Newman
[2] pointed out the responsibility problem of E2E testing, but he did not
describe a solution to the problem. Based on the interviews, a separate E2E
testing person helps to focus the E2E testing responsibility.

69



Furthermore, all projects are not even aiming to have CMM level 5. Too
high maturity level adds unnecessary stiffness to projects. In small, not so
critical services, the projects are more like experiments which still search the
product direction. Thus, the process is commonly more flexible and does
not need to standardize everything. Most of the literature, including Sam
Newman [2], describes really mature software projects and how software
testing should be applied in those cases.

Large software projects which utilize the whole power of the organiza-
tional structure [2]. Nevertheless, on smaller projects and less safety critical
services, the customers are more willing to be flexible and more easily fol-
low a break fast and fix fast -strategy. Releases are created constantly and
upcoming bugs are fixed rapidly. However, a less organized testing process
increases the number of bugs in the end product, but with the constant
improvement, the bugs are fixed rapidly.

The interviews pointed out that quality assurance in small scale projects
is highly dependent on team practices. More mature software projects have
more solid testing environment and well-implemented testing practices. On
the other hand, small projects are heavily relying on developer’s individual
effort and motivation.

The traditional TDD approach is mainly used when the service has
reached a mature state. A developer has to modify services one by one
and test the modifications before moving to the next service. The main rea-
son behind this is that mature software projects tend to have more people
and concentrating one service at the time decreases the number of possible
conflicts with other developers. For example, Sam Newman [2] supports the
TDD approach by presenting multiple ways to implement test doubles to
enable service testing.

5.3 Limitations

This study has many limitations. First, the small number of case projects
decreases the generalizability of the findings. Second, all case projects were
at least partly implemented by a single organization. Furthermore, the case
project size varied a lot so the project pool included only one sample of each
project size.

All case projects were designed and developed in Finland and imple-
mented for the public sector. Thus, most of the case projects had similar

requirements and quite clear specifications right from the beginning.

70



The interviews also posed some limitations. For example, the interview
questions (see appendix A.1) were translated on the fly, so the final question
form varied between the interviews. Furthermore, I conducted the interviews
alone, even though a case study interview would require multiple observers.
Moreover, on the Kapa project, I had a test manager with me to ensure that
the interviewees did not reveal business secrets. This may have disturbed
the interviewee’s answers, but on the other hand, I was able to gather more
information at the same time through the test manager.

Personally, I also had some problems with proceeding with the interviews
step by step. However, I was able to adapt to the situation and used the
questionnaire template more like a checklist than a survey. Therefore, the
questions did not have the same format every time.

5.4 Future Work

The found microservice testing practices would require a pilot project to
test these findings. The practices should be tested with multiple projects
to be able to compare the found practices to the previous approaches. The
research should also consider the effect of the agile software process because
based on this study the team process affected testing more than the soft-
ware’s architectural model. In addition, further researchers could clarify
the test practices’ boundaries so that the project could have a more spe-
cific guidebook how to apply testing in a microservice context instead of a

general lean principle.

71



Chapter 6

Conclusion

The thesis investigated practices for microservice testing. The problem was
approached through case projects which provided real-life examples of test-
ing practices of microservice software projects. The results were compared
with the literature to improve reliability of the results. The literature review
explained how things should be done if a project would have unlimited re-
sources. However, in a real-life project, resources are limited and the testing
phase is usually limited until problems start to occur.

The case study pointed out that literature does not show a clear path
when to start testing and leaves the decision to be formed based on lean
principles. However, traditional TMM defines a general framework to use
to monitor a project’s testing needs. On the other hand, microservices
have special properties; distributed independent services with a compact
implementation. The microservices could have an optimized version of TMM
to provide better support for their environment. This study explored the
testing features of microservices.

The case projects revealed four different categories, which define the
testing practices: team related, development process, software structure,
and technical details. The team and development process related categories
ended up being the most significant from a testing perspective because test-
ing resources and scheduling is created based on these categories. Neverthe-
less, software structure and technical details were able to point out typical
software development problems and a few solutions to those.

Team related testing practices were that the team should understand the
importance of common responsibility of testing. Fach team member should
implement valid tests for the implemented feature when the project is in the

stable development phase. Furthermore, code peer review provides a perfect

72



tool for monitoring and improving code and testing quality. Additionally,
when a project’s maturity is rising and the project reaches the end-to-end
testing phase, the project should dedicate one team member to be responsi-
ble for broader test cases, because otherwise the broader tests will out-date
rapidly.

Testing process related results were that the testing process is not sched-
uled optimally to provide maximal value to developers. The projects’ re-
sources for testing are extended with a delay; the development process has
already decelerated because of lack of automated testing. The project should
monitor the project’s stage and use for example TMM to optimize usage of
testing resources. Implementing large tests too early is not beneficial be-
cause the tests are most of the time broken and do not bring more value to
the developers.

The software structure had not significant effect to testing practices. In-
stead, it affected testing implementations which were closer to a developer
than a tester member. Microservice unit and single server API testing im-
plementations were described easier and more intuitive to understand on
a single service level. Nevertheless, the service and system level tests were
seen difficult and the teams who did not have a specific testing team member
did not have the time to keep these tests up-to-date.

The technical testing based insights were highly related to data manage-
ment. Mature microservice testing requires a lot of infrastructure around
the actual tests. The tests should set up separate testing databases. The
case projects showed that the separate test database should be created after
the project’s maturity reaches level 3. Before that mocking the databases is
acceptable, but broader tests to the system are not realistic if the database
is not real.

Overall, as seen in this thesis, microservice testing is still forming its
common practices. Currently, most of the teams are using lean software
development principles when the team is agreeing on testing practices. Nev-
ertheless, this is a good basic approach because the team and process related
practices have a more significant effect on testing than the software’s archi-
tectural choice. Furthermore, the testing practices could be more customized
to a microservice environment to provide better testing scheduling, resource

usage, and more stable testing environments.

73



References

[1] Martin Fowler James Lewis. Microservices. http://www.martinfowler.

com/articles/microservices.html. [Online; accessed 2016, December
12.].

[2] Sam Newman. Building Microservices. O’Reilly Media, 2015.

[3] Jonathan  McAllister. Microservices  decoded: Best
practices and stacks. https://dzone.com/articles/
scalable-cloud-computing-with-microservices. [Online; accessed

2017, March 1.].

[4] Mark Endrei, Jenny Ang, Ali Arsanjani, Sook Chua, Philippe Comte,
Pal Krogdahl, Min Luo, and Tony Newling. Patterns: service-oriented
architecture and web services. IBM Corporation, International Technical
Support Organization, 2004.

[5] Martin Fowler. Continuous integration. https://www.martinfowler.
com/articles/continuousIntegration.html. [Online; accessed 2016, De-
cember 12.].

[6] Catalin Strimbei, Octavian Dospinescu, Roxana-Marina Strainu, and
Alexandra Nistor. Software architectures-present and visions. Infor-
matica Economica, 19(4):13, 2015.

[7] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microser-
vices architecture enables devops: migration to a cloud-native architec-
ture. IEEE Software, 33(3):42-52, 2016.

[8] Ian Sommerville. Software Engineering (9th Edition). Pearson, 2010.

[9] Per Runeson and Martin Host. Guidelines for conducting and report-
ing case study research in software engineering. FEmpirical Software
Engineering, 14(2):131, 2008.

74


http://www.martinfowler.com/articles/microservices.html
http://www.martinfowler.com/articles/microservices.html
https://dzone.com/articles/scalable-cloud-computing-with-microservices
https://dzone.com/articles/scalable-cloud-computing-with-microservices
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html

[10]

[11]

[12]

[20]

[21]

Susan K. Soy. The case study as a research method. https://www.
ischool.utexas.edu/~ssoy/usesusers/1391d1b.htm, 1997. [Online; ac-
cessed 2016, December 12.].

Robert K Yin. Case study research: Design and methods. Sage publi-
cations, 2013.

Lars Bratthall and Magne Jgrgensen. Can you trust a single data source
exploratory software engineering case study? Service-oriented science,
7(1):9-26, 2002.

Kathleen M Eisenhardt. Building theories from case study research.
Academy of management review, 14(4):532-550, 1989.

Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. Case
study research in software engineering: Guidelines and examples. John
Wiley & Sons, 2012.

Robert E Stake. The art of case study research. Sage, 1995.

Tom Huston. What is microservices architecture? https://smartbear.
com/learn/api-design/what-are-microservices/. [Online; accessed

2016, December 12.].

Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web
services vs. big’web services: making the right architectural decision. In
Proceedings of the 17th international conference on World Wide Web,
pages 805-814. ACM, 2008.

John FErickson and Keng Siau. Web services, service-oriented comput-
ing, and service-oriented architecture: Separating hype from reality.
Journal of Database management, 19(3):42, 2008.

Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel
Mazzara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina.
Microservices: yesterday, today, and tomorrow. arXiv preprint
arXiv:1606.04036, 2016.

M. Conway. Mel Conway’s home page. http://wwuw.melconway.com/
Home/Conways_Law.html, 1968. [Online; accessed 2016, December 12.].

Martin Fowler. Microservice prerequisites. http://martinfowler.com/
bliki/MicroservicePrerequisites.html, 2014. [Online; accessed 2017,
March 1.].

75


https://www.ischool.utexas.edu/~ssoy/usesusers/l391d1b.htm
https://www.ischool.utexas.edu/~ssoy/usesusers/l391d1b.htm
https://smartbear.com/learn/api-design/what-are-microservices/
https://smartbear.com/learn/api-design/what-are-microservices/
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
http://martinfowler.com/bliki/MicroservicePrerequisites.html
http://martinfowler.com/bliki/MicroservicePrerequisites.html

22]

[30]

[31]

33]

Simon Johansson. Risks of testing microservices. Master’s thesis,
NADA, Kungliga Tekniska Hogskolan, http://www.nada.kth.se/~ann/
exjobb/simon_johansson.pdf, 2016. [Online; accessed 2016, December
12.].

Martin Fowler. Microservices resource guide. http://martinfowler.

com/microservices/. [Online; accessed 2016, December 12.].

Martin Fowler. Monolithfirst. http://martinfowler.com/bliki/
MonolithFirst.html. [Online; accessed 2016, December 12.].

Martin Fowler.  Microservicepremium.  http://martinfowler.com/
bliki/MicroservicePremium.html. [Online; accessed 2016, December
12.].

Stefan Tilkov. Don’t start with a monolith. http://martinfowler.com/
articles/dont-start-monolith.html. [Online; accessed 2016, Decem-
ber 12.].

Ian Foster. Service-oriented science. Science, 308(5723):814-817, 2005.
[Online; accessed 2017, March 1.].

Sourabh Sharma. Mastering Microservices with Java. Packt Publishing
Ltd, 2016.

Mary Poppendieck. Lean software development. http://www.comp.dit.
ie/dgordon/Courses/ResearchMethods/Countdown/7Wastes.pdf. [Online;
accessed 2017, March 1.].

Fernando Loépez. Agile concept. http://backlog.fiware.org/guide/
foundation.html. [Online; accessed 2017, March 1.].

Henrik Kniberg and Mattias Skarin. Kanban and Scrum-making the
most of both. Lulu. com, 2010.

Jez Humble and David Farley. Continuous delivery: reliable software
releases through build, test, and deployment automation. Pearson Edu-
cation, 2010.

John Fink. Docker: a software as a service, operating system-level
virtualization framework. Code4Lib Journal, 25, 2014.

76


http://www.nada.kth.se/~ann/exjobb/simon_johansson.pdf
http://www.nada.kth.se/~ann/exjobb/simon_johansson.pdf
http://martinfowler.com/microservices/
http://martinfowler.com/microservices/
http://martinfowler.com/bliki/MonolithFirst.html
http://martinfowler.com/bliki/MonolithFirst.html
http://martinfowler.com/bliki/MicroservicePremium.html
http://martinfowler.com/bliki/MicroservicePremium.html
http://martinfowler.com/articles/dont-start-monolith.html
http://martinfowler.com/articles/dont-start-monolith.html
http://www.comp.dit.ie/dgordon/Courses/ResearchMethods/Countdown/7Wastes.pdf
http://www.comp.dit.ie/dgordon/Courses/ResearchMethods/Countdown/7Wastes.pdf
http://backlog.fiware.org/guide/foundation.html
http://backlog.fiware.org/guide/foundation.html

[34] Lisa Crispin. Using the agile testing quadrants. http://lisacrispin.
com/2011/11/08/using-the-agile-testing-quadrants/. [Online; ac-
cessed 2016, December 12.].

[35] Glenford J Myers, Corey Sandler, and Tom Badgett. The Art of Soft-
ware Testing. John Wiley & Sons, 2011.

[36] Andi Scharfstein. Types of tests. https://www.cqse.eu/en/blog/
junit3-migration/. [Online; accessed 2016, December 12.].

[37] Martin Fowler. Testpyramid.  http://martinfowler.com/bliki/
TestPyramid.html/. [Online; accessed 2016, December 12.].

[38] Toni Huttunen. Browser cross-origin timing attacks. Master’s thesis,
Aalto University, http://urn.fi/URN:NBN:fi:aalto-201612226248, 2016-
12-12. [Online; accessed 2016, December 12.].

[39] Bach, James. Exploratory testing explained. https://people.eecs.ku.

edu/~saiedian/Teaching/Fa07/814/Resources/exploratory-testing.
pdf, 2003. [Online; accessed 2016, December 12.].

[40] David Drake. Tiered testing of microservices. http://dev9.com/
article/2015/5/zgotxg9hajgchimg0d2hgbfgsf46ho, 2015. [Online; ac-
cessed 2016, December 12.].

[41] Taylor Pickens. Testing strategies for mi-
croservices. https://www.credera.com/blog/
technology-insights/open-source-technology-insights/
testing-strategies-for-microservices/. [Online; accessed 2016,
December 12.].

[42] Martin Fowler. Testing strategies in a microservice architecture. http://

martinfowler.com/articles/microservice-testing/. [Online; accessed

2016, December 12.].

[43] Taylor Pickens. Testing strategies for mi-
croservices. https://www.credera.com/blog/
technology-insights/open-source-technology-insights/
testing-strategies-for-microservices/, 2015.  [Online; accessed
2016, December 12.].

[44] Arvind Sundar. An insight into microservices testing strategies.

https://www.infosys.com/it-services/validation-solutions/

77


http://lisacrispin.com/2011/11/08/using-the-agile-testing-quadrants/
http://lisacrispin.com/2011/11/08/using-the-agile-testing-quadrants/
https://www.cqse.eu/en/blog/junit3-migration/
https://www.cqse.eu/en/blog/junit3-migration/
http://martinfowler.com/bliki/TestPyramid.html/
http://martinfowler.com/bliki/TestPyramid.html/
https://people.eecs.ku.edu/~saiedian/Teaching/Fa07/814/Resources/exploratory-testing.pdf
https://people.eecs.ku.edu/~saiedian/Teaching/Fa07/814/Resources/exploratory-testing.pdf
https://people.eecs.ku.edu/~saiedian/Teaching/Fa07/814/Resources/exploratory-testing.pdf
http://dev9.com/article/2015/5/zgotxg9hajgch1mg0d2hgbfgsf46ho
http://dev9.com/article/2015/5/zgotxg9hajgch1mg0d2hgbfgsf46ho
https://www.credera.com/blog/technology-insights/open-source-technology-insights/testing-strategies-for-microservices/
https://www.credera.com/blog/technology-insights/open-source-technology-insights/testing-strategies-for-microservices/
https://www.credera.com/blog/technology-insights/open-source-technology-insights/testing-strategies-for-microservices/
http://martinfowler.com/articles/microservice-testing/
http://martinfowler.com/articles/microservice-testing/
https://www.credera.com/blog/technology-insights/open-source-technology-insights/testing-strategies-for-microservices/
https://www.credera.com/blog/technology-insights/open-source-technology-insights/testing-strategies-for-microservices/
https://www.credera.com/blog/technology-insights/open-source-technology-insights/testing-strategies-for-microservices/
https://www.infosys.com/it-services/validation-solutions/white-papers/documents/microservices-testing-strategies.pdf
https://www.infosys.com/it-services/validation-solutions/white-papers/documents/microservices-testing-strategies.pdf

[47]

[48]

[49]

white-papers/documents/microservices-testing-strategies.pdf,

2016. [Online; accessed 2016, December 12.].

Martin Fowler. Testdouble. https://martinfowler.com/bliki/
TestDouble.html. [Online; accessed 2016, December 12.].

James Hughes. Micro service architecture. https://yobriefca.se/blog/
2013/04/29/micro-service-architecture/, 2013. [Online; accessed
2016, December 12.].

Simon Brown. Modularity and testability. http://wuw.
codingthearchitecture.com/2014/10/01/modularity_and_testability.
html, 2014. [Online; accessed 2016, December 12.].

Ganesh B Regulwar and Vijay S Gulhane. Software testing practices.
International Journal of Computer Applications, 1(2):1-7, 2010.

William E Lewis. Software testing and continuous quality improvement.

CRC press, 2016.

Elfriede Dustin, Jeff Rashka, and John Paul. Automated software test-
ing: introduction, management, and performance. Addison-Wesley Pro-
fessional, 1999.

David Talby, Arie Keren, Orit Hazzan, and Yael Dubinsky. Agile soft-
ware testing in a large-scale project. IEEFE software, 23(4):30-37, 2006.

Mike Wacker. Just say no to more end-to-end tests. https://testing.

googleblog.com/2015/04/ just-say-no-to-more-end-to-end-tests.
html. [Online; accessed 2017, March 1.].

Arnon Rotem-Gal-Oz, Eric Bruno, and Udi Dahan. Soa patterns.
http://www.rgoarchitects.com/Files/SOAPatterns/TheKnot.pdf, 2012.
[Online; accessed 2017, March 1.].

Juha Itkonen. Empirical studies on exploratory software testing. PhD
thesis, Aalto University, Espoo Finland, 2011.

78


https://www.infosys.com/it-services/validation-solutions/white-papers/documents/microservices-testing-strategies.pdf
https://martinfowler.com/bliki/TestDouble.html
https://martinfowler.com/bliki/TestDouble.html
https://yobriefca.se/blog/2013/04/29/micro-service-architecture/
https://yobriefca.se/blog/2013/04/29/micro-service-architecture/
http://www.codingthearchitecture.com/2014/10/01/modularity_and_testability.html
http://www.codingthearchitecture.com/2014/10/01/modularity_and_testability.html
http://www.codingthearchitecture.com/2014/10/01/modularity_and_testability.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
http://www.rgoarchitects.com/Files/SOAPatterns/TheKnot.pdf

Appendix A

Appendix A

A.1 Technical interview template

The following is a questionnaire template for technical interviews held in

research cases.

1. Interviewee
(a) Could you tell me about your background (education, experi-
ence)?
(b) What are your roles and tasks in the project?
(¢) When did you start at this project?

(d) What expectations do you have for this research?
2. Project Background

(a) How big is your project?

(b) What is the project’s schedule?

(c) What kind of parties are involved in this project?
)

(d) Could you roughly estimate how many people are working on this

project?

(e) Could you estimate how many users your service is going to have?
3. Process Model

(a) What kind of iterative process are you using? i.e. scrum

(b) Could you describe your work process from requirements to the

product?

79



()
(d)

(e)

How is your delivery chain structured?

How fast are you able to get feedback from your deliveries? How
long is your delivery cycle?

Who determines your product’s quality?

4. Microservices

How many microservices do you have?

How are these connected to each other? (i.e. through gateway or
something else)

What technologies are you using? (programming languages, test-
ing frameworks, build pipeline infrastructure)

How do you update your services? i.e. one by one or all at once

Do you have any stateful-services?

5. General Testing

b

(c
(d

(a)
(b)
)
)

What kind of testing processes are you using?
Who is responsible for testing?
How have you shared the responsibility of maintaining tests?

Have you noticed any problems with your testing practices? What

would you improve?

What kind of testing methods are you using? When do you use
these methods?

How acceptance testing is done? Are there some problems?

How is the testing progress followed?

6. Testing Environment

Have you integrated tests into your service deployment? What
are these tests? How much do you trust on the test results?

How many manual tests do you implement weekly? What kind
of tests are these?

How many tests do you automate weekly? What kind of tests are
these?

What kind of test have you automated?

How do you rationalize automation of testing to your customer?

80



(f)

How much time does your testing and feedback process take?

7. Testing scope

(a)

(b)

Estimate how many Unit, Contract, Integration, and E2E test
do you have? How many would you like to have? What is your
service’s total test coverage?

What technologies do you use to implement these tests?

8. Decisions behind testing

(a)
(b)
()

(d)

(e)

How did you select which service tests to write?
How did you select which E2E tests to write?

How do you handle test data management? Do you use pre-
existing data in databases or use stub the results?

How do you face external relations of the service in integration

testing?

Do your test execute the same process as the service? Are test
doubles (mocks, dummies, fakes, spies, stubs) implemented inside
the same service or used externally over the network? What is
your opinion about that?

9. Testing with microservices

How do you see testing in microservices?

How handle similarities in microservice testing? i.e. services are
very similar, do you write one test for both or tests for every

service?

What is easy in microservice orientated testing, what is difficult?
How have you noticed this during your project?

How would you improve your testing design in a microservice

environment?

How are testing frameworks supporting your testing practices?

81



A.2 Project management interview template

The following is a questionnaire template is used in project manager’s inter-

views:

1. Interviewee
(a) Could you tell me about your background (education, experi-
ence)?
(b) What are your roles and tasks in the project?
(c) When did you start at this project?

(d) What expectations do you have for this research?
2. Project Background

How big is your project?

(a
(b
(c

(d) Could you roughly estimate how many people are working on this

)
) What is the project’s schedule?

) What kind of parties are involved in this project?
)

project?

(e) Could you estimate how many users your service is going to have?
3. Process Model

(a) What kind of iterative process are you using? i.e. scrum

(b) Could you describe your work process from requirements to the
product?

(¢) How is your delivery chain structured?

(d) How fast are you able to get feedback from your deliveries? How

long is your delivery cycle?

(e) Who determines your product’s quality?
4. Project Maturity

(a) How has your project’s maturity evolved during the project?

(b) How the project quality has evolved during the project?
5. General Testing

(a) What kind of testing processes are you using?

82



(b) When do you start testing component?

Who is responsible for testing?

N~
[o"Ye)
= 2

Have you noticed any problems with your testing practices? What

would you improve?

(e) What kind of testing methods are you using? When do you use
these methods?

(f) How acceptance testing is done? Are there some problems?

(g) How is the testing progress followed?
6. Testing Environment

(a) How do you see continuous delivery pipeline?

(b) What kind of tests should be automated and what have you au-
tomated?

(¢) Do you understand the testing needs of the developer team?

(d) How does a project’s release process affect to testing?
7. Decisions behind testing

(a) How do you do UAT testing? What is difficult, what is easy?

(b) Why does the project’s differ from recommendations, or do they?
What are the recommendations?

8. Testing with microservices

(a) How do you see testing in microservices?
(b) How does a microservice environment influence on testing?

(¢) How would you improve your testing design in a microservice

environment? Does it differ from a monolithic architecture?

83



	Cover page
	Abbreviations
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Background and Motivation
	1.2 Research Problem
	1.3 Thesis Scope
	1.4 Thesis Outline

	2 Research methodology
	2.1 Research approach
	2.2 Case selection
	2.3 Overview of case projects
	2.3.1 Case Solmu
	2.3.2 Case Latu
	2.3.3 Case Kapa

	2.4 Data collection
	2.5 Data analysis

	3 Related Work
	3.1 Microservices Architecture Structure
	3.1.1 Relation to Service-Orientated Architecture
	3.1.2 Forerunners of Microservices
	3.1.3 Key Benefits
	3.1.4 Base Requirements
	3.1.5 When to Adopt Microservices

	3.2 Microservice Environment
	3.2.1 Agile Software Development
	3.2.2 Continuous Integration
	3.2.3 Continuous Delivery
	3.2.4 Deploying microservices

	3.3 Testing
	3.3.1 Types of testing
	3.3.2 Test scope
	3.3.3 Testing Microservices

	3.4 Software Testing Practices
	3.4.1 Capability Maturity Model
	3.4.2 Testing Maturity Model
	3.4.3 Agile Software Testing Practices

	3.5 Summary of Findings

	4 Results
	4.1 Case Projects
	4.1.1 Case Solmu
	4.1.2 Case Latu
	4.1.3 Case Kapa

	4.2 Summary of findings

	5 Discussion
	5.1 Answers to the research questions
	5.2 Comparison between results and literature
	5.3 Limitations
	5.4 Future Work

	6 Conclusion
	References
	A Appendix A
	A.1 Technical interview template
	A.2 Project management interview template


