
Aalto University
School of Science

Department of Computer Science

Contributions to multi-view modeling and the multi-view consistency
problem for infinitary languages and discrete systems

Licentiate thesis

Maria Pittou

Supervisor Full Professor Stavros Tripakis

Espoo, Finland, 2017

Copyright © 2017 Maria Pittou

Abstract of Licentiate Thesis

Author

Maria Pittou
Title of Thesis

Contributions to multi-view modeling and the multi-view consistency
problem for infinitary languages and discrete systems
Abstract

The modeling of most large and complex systems, such as embedded, cyber-physical, or
distributed systems, necessarily involves many designers. The multiple stakeholders carry their
own perspectives of the system under development in order to meet a variety of objectives,
and hence they derive their own models for the same system. This practice is known as multi-
view modeling, where the distinct models of a system are called views. Inevitably, the separate
views are related, and possible overlaps may give rise to inconsistencies. Checking for multi-
view consistency is key to multi-view modeling approaches, especially when a global model for
the system is absent, and can only be synthesized from the views.

The present thesis provides an overview of the representative related work in multi-view
modeling, and contributes to the formal study of multi-view modeling and the multi-view
consistency problem for views and systems described as sets of behaviors. In particular, two
distinct settings are investigated, namely, infinitary languages, and discrete systems. In the
former research, a system and its views are described by mixed automata, which accept both
finite and infinite words, and the corresponding infinitary languages. The views are obtained
from the system by projections of an alphabet of events (system domain) onto a subalphabet
(view domain), while inverse projections are used in the other direction. A systematic study is
provided for mixed automata, and their languages are proved to be closed under union,
intersection, complementation, projection, and inverse projection. In the sequel, these results
are used in order to solve the multi-view consistency problem in the infinitary language setting.

The second research introduces the notion of periodic sampling abstraction functions, and
investigates the multi-view consistency problem for symbolic discrete systems with respect to
these functions. Apart from periodic samplings, inverse periodic samplings are also introduced,
and the closure of discrete systems under these operations is investigated. Then, three
variations of the multi-view consistency problem are considered, and their relations are
discussed. Moreover, an algorithm is provided for detecting view inconsistencies. The
algorithm is sound but it may fail to detect all inconsistencies, as it relies on a state-based
reachability, and inconsistencies may also involve the transition structure of the system.

Research field Key words

Computer Science multi-view modeling, view consistency,
infinitary languages, discrete systems

Supervising professor Pages

Full Professor Stavros Tripakis 80

Thesis advisor Language

Full Professor Stavros Tripakis English

Thesis examiner Date

Assistant Professor Jan Reineke 13.02.2017

 The thesis can be read at https://aaltodoc.aalto.fi/handle/123456789/27

 Abstract of Licentiate Thesis

Preface

The present thesis was carried out at the Department of Computer Science of Aalto

University during the years 2015-2017, as a partial requirement for the Licentiate

Degree. The particular studies and research were funded by the School of Science of

Aalto University, which is gratefully acknowledged.

First of all, I would like to express my sincere gratitude to Professor Stavros Tri-

pakis for giving me the opportunity to work in his research group, and for supervis-

ing my research work. I would like to thank him for the abundance of knowledge

I received in a variety of previously unknown topics related to Computer Science.

Moreover, I would like to thank Professor Tripakis for his patience and guidance, for

the fruitful discussions, and for giving me the freedom to find my own path with the

research. I feel honoured that I collaborated with a professor of such repute in the

field of Computer Science.

Moreover, I would like to thank the examiner Associate Professor Jan Reineke for

accepting to review my thesis, and for his valuable feedback. I would also like to

thank my research group, Iulia Dragomir, Georgios Giantamidis, Srivinas Pinisetty

and Viorel Preoteasa, for the informative sessions they offered, and for the supportive

working environment they created. I am particularly grateful to my colleague and

very good friend Georgios for his unconditional help and support. I would also like to

thank my colleague and friend Iulia for her suggestions and corrections in an earlier

version of this thesis.

Furthermore, I would like to express my gratitude to the supervisor of my Master

thesis, Assistant Professor George Rahonis, for shaping me as a researcher, and for

his continuous guidance and support.

I would like to thank the Computer Science Department for supporting competitive

research, and offering a high level quality of studies. Also, I thank the adminis-

tration, the study coordinators, and the secretaries of the School of Science and the

1

Preface

Department of Computer Science.

I warmly thank my close friends Maria Pavlidou, Anna Simeonidou, and Evi Ste-

fanidou, and my students Vera and Nefeli Vegiazi for their support and trust in me.

I also thank all my friends here in Finland for creating beautiful memories.

Finally, I express my deepest gratitude to my family, my mother, my brother and

my grandmother, for shaping me as an individual, and for their unconditional love

and guidance in my life. Without their support my studies and research work would

not be feasible.

Espoo, March 8, 2017,

Maria Pittou

2

Contents

Preface 1

Contents 3

List of Publications 5

Author’s Contribution 7

1. Introduction 9

2. Related Work 15

2.1 Early Work on Multi-View Modeling . 15

2.2 Multi-Modeling Languages . 17

2.3 Multi-View Modeling for Embedded and Cyber-Physical Systems 21

2.4 A Generic Formal Framework for Multi-View Modeling 25

2.4.1 Instantiating the Framework for Symbolic Discrete Systems . . . 26

2.4.2 Instantiating the Framework for Languages and Automata . . . 28

2.5 Other Approaches to Multi-View Modeling 29

2.5.1 Metamodeling . 29

2.5.2 Aspect-Oriented Modeling . 30

2.5.3 Interface Theories . 30

2.6 Conclusion . 30

3. Overview of Contributions to Multi-View Modeling 33

3.1 Overview of Publication I . 33

3.2 Overview of Publication II . 36

3.3 Conclusion . 38

3

Contents

4. Conclusions and Perspectives 39

References 43

Publications 47

4

List of Publications

This thesis consists of an overview and of the following publications which are re-

ferred to in the text by their Roman numerals.

I Maria Pittou and Stavros Tripakis. Multi-View Consistency for Infinitary Regular

Languages. In XVI International Conference on Embedded Computer Systems: Ar-

chitectures, MOdeling, and Simulation (SAMOS 2016), Samos, Greece, July 2016.

IEEE, 2016.

II Maria Pittou and Stavros Tripakis. Checking multi-view consistency of discrete

systems with respect to periodic sampling abstractions. In 13th International Con-

ference on Formal Aspects of Component Software (FACS 2016), Besançon, France,

October 2016, Lecture notes in Computer Science. Springer, 2016.

5

List of Publications

6

Author’s Contribution

Publication I: “Multi-View Consistency for Infinitary Regular Languages”

The author of this thesis was the principal author and wrote the paper. The second

author and supervisor of this thesis contributed with comments.

Publication II: “Checking multi-view consistency of discrete systems with
respect to periodic sampling abstractions”

The author of this thesis was the principal author and wrote the paper. The sec-

ond author and supervisor of this thesis contributed with discussions with the main

author. The final version of the publication was edited jointly with the second author.

7

Author’s Contribution

8

1. Introduction

System modeling has proved to be an essential technology for reasoning about com-

plex systems. It uses high level abstractions for the description of a system under

development, in order to analyse the system and predicate its behavior. This al-

lows capturing errors in the early stages of the design, improving performance, and

ensuring the correctness of the system. As software has become omnipresent, sys-

tems have grown increasingly large and heterogeneous. Typical examples include

mechatronic [17, 35], embedded [23, 21], and cyber-physical systems [30, 25]. For in-

stance, embedded systems are defined by a combination of versatile descriptions such

as hardware, software, requirements, as well as design and analysis models. More-

over, in cyber-physical systems, the architectural and functional representations are

associated with the descriptions of the physical processes.

The modeling of any large and complex system inevitably depends on a combination

of multiple engineering disciplines. Hence, the design of such systems takes place in

collaborative distributed environments, and involves many stakeholders. The differ-

ent stakeholders carry their own concerns and perspectives on the system defined

by the knowledge of their discipline. Then, a variety of tools and languages are uti-

lized in order to model the versatile perspectives, and each expert derives their own

models for the design of a system. On the other hand, the different perspectives of

those involved in the process inevitably intersect and overlap. Therefore, the multiple

models that represent the perspectives of the corresponding designers, are different

but yet related (Figure 1.1). This practice is known as multi-view modeling, and is

gaining in popularity since it supports the design of modern systems. In multi-view

modeling (MVM for short), the different stakeholders derive separate models, called

views, of the same system, i.e., a system is described from multiple points of view (cf.

[11, 5, 25]). Given a system, its views can be either structural or behavioral or both.

Moreover, the views can describe requirements or constraints (for instance for the

9

Introduction

Tool 2

Designers

Designers

Designers

Designers

Programmers

Suppliers

Tool 1 Tool 3

Simulation
tool

Software
design tool

Financial
tool

V1

V2

V3

V4 V5

V6

System

Figure 1.1. Example of multiple design teams involved in the modeling of a system. The different
teams carry their own perspectives of the system, and derive distinct models using a vari-
ety of tools. Modified figure from [35].

architecture or the dynamic aspects) that should be satisfied by the original system.

Consider for instance the specification of a system within the context of power and

thermal aware modeling (Figure 1.2) [21]. The stakeholders involved in the design

of the system derive five views, namely the Architecture View (Backbone View), the

Performance View, the Power View, the Thermal view, and the Application View. In

the sequel, two further (sub)views are used in order to specify the structure and the

behavior for each of the five views. For a given view (i.e. Thermal View), the struc-

tural (sub)view refers to the state of view from the other views (Floorplan area), and

the behavioral (sub)view (Thermal Manager Unit) represents the control of the ele-

ments of the view. Then, the stakeholders utilize several means in order to describe

their views. However, each of the five views is inevitably related with some of the rest

views. The interconnections among the separate views of the designers, can then be

described with different types of relations including allocation (for actions that as-

sociate the application view with the architecture view), abstraction (for structural

elements that occur in more that one views), and characterization (for the behav-

ioral part of a view that is defined by some external physical laws). These relations

illustrate that the different views are not independent from each other, and hence

they may overlap. This example illustrates one type of a multi-view modeling ap-

proach. Other examples of concrete systems, that motivate the multi-view modeling

approaches, can be found in [13, 35, 28, 25].

Multi-view modeling techniques are usually either projective or synthetic [38]. In

the former case, there exists a single model of the system from which views are de-

rived using a projection mechanism. The views can then be used to serve for other

10

Introduction

Figure 1.2. Example of the multi-view modeling approach for a system within the context of power and
thermal aware design. Figure taken from [21].

purposes (like verification). In the synthetic case, a model for the original system is

absent, and is derived by integrating the views into a comprehensive model. In this

setting, a basic problem is to ensure consistency among the views, i.e., that the views

do not contradict each other [13, 4, 25, 32]. Multi-view consistency can also imply

that the views for a given system conform to some relationship that is prescribed to

hold among them.

Checking for multi-view consistency is not a trivial problem. The difficulty lies on

the complexity of the system to be built. In many cases, single views consist of further

multiple views in order to provide exhaustive descriptions for the views structure and

behavior. On the top of that, views are often described with versatile means. Even in

the case of describing the views with the same formalism, the task of identifying the

relations among the views, is cumbersome.

Ensuring consistency among the views is one of the main challenges in multi-view

modeling. Apart from the multi-view consistency problem, there exist other problems

related to multi-view modeling. In the synthetic case, a related problem is the syn-

thesis of a complete system given a set of consistent views. Other problems include

handling inconsistencies within the views [12], checking conformance of views to a

system, and view reuse (cf. [25, 32]).

The focus of this thesis is to contribute in the formal study of the multi-view mod-

eling approach, and the multi-view consistency problem for systems and views de-

scribed as sets of behaviors. Actually, multi-view modeling and the consistency prob-

lem occur in the early literature of software engineering. Most of the existing work

uses some multi-modeling language (for instance UML or SysML) in order to describe

11

Introduction

the different views of a system. Then, checking for multi-view consistency reduces to

checking for consistency among the different architectures. On the other hand, multi-

view consistency is usually described by non-emptiness of some kind of composition

(e.g. intersection) of the corresponding views. However, these work do not provide

any formal framework for multi-view modeling. Moreover, a formal definition of the

view consistency problem, why is key to multi-view modeling approaches, has been

lacking.

Only the recent work [32, 31] provides a generic formal framework for multi-view

modeling, and investigates its basic problems. More precisely, in [32] systems are

described as set of behaviors within any global universe, and views are also sets of

behaviors obtained by some kind of abstraction of system behaviors. In other words,

abstraction functions are used to generate views from a system. Then, the notion

of multi-view consistency is defined in a strict mathematical way, and the authors

provide sufficient and necessary conditions to check for the consistency problem. In

contrast to previous work, the authors show that in their framework, non-emptiness

of some kind of conjunction among views, does not always imply consistency. In [32]

the generic framework is instantiated for discrete systems and the abstraction func-

tions used are variable hidings. Later on, in [31] the framework is also extended

to systems described either only by automata or by ω-automata, and the abstrac-

tion functions used are projections of an alphabet of events (describing the system

domain) onto a subalphabet (describing the view domain).

The present thesis contributes in the multi-view consistency problem for behav-

ioral views. In particular, the problem is studied for two distinct settings, namely,

for infinitary languages [27], and discrete systems [26]. Both cases are instantiations

of the generic formal framework proposed in [32]. More precisely, [27] (publication

I) extends the work of [31] for finite automata or ω-automata to the case of mixed

automata (finite automata that accept both finite and infinite words) and the cor-

responding infinitary regular languages (sets of finite or infinite words, accepted by

mixed automata). Essentially, a mixed automaton consists of two independent coun-

terparts, a finite automaton and an ω-automaton. Projections are used as abstraction

functions to obtain the views from the system, and inverse projections for the other

direction. Then, a systematic study is provided for mixed automata, and their class

of their behaviors is proved to be closed under union, intersection, complementation,

as well as under projection and inverse projection. The closure properties of the class

of infinitary languages are necessary in order to check for multi-view consistency.

12

Introduction

Checking for multi-view consistency is perfomed by extending one of the conditions

proposed in [31] to the infinitary language setting, and the problem is proved to be

PSPACE-complete.

The motivation for studying the multi-view consistency problem for mixed automata

lies on the fact that projections may turn an infinite view behavior into an finite one,

while inverse projections may turn a finite behavior into a set of infinite behaviors.

Moreover, it may be the case that the different views of the system are described by

regular or ω-regular languages or infinitary regular languages, which may result in a

language containing both finite and infinite words for describing the original system’s

behavior.

In the second contribution [26] (publication II), the systems and the views are de-

fined by discrete systems. Discrete systems are described symbolically, and their

behaviors are finite or infinite sequences of states. In contrast to [32], where the ab-

straction functions are variable hidings, timing abstractions are used in [26], and in

particular periodic samplings. Intuitively, given a positive integer number T (period),

the periodic sampling abstraction consists in sampling the system’s behaviors once

every T steps. Apart from periodic samplings, inverse periodic samplings are also

considered, and the closure of discrete systems is studied under these operations.

Then, an algorithm is provided in order to detect view inconsistencies. The algorithm

is sound and it applies state based reachability in order to find conflicts among the

views. However, the algorithm is incomplete since it neglects the transition structure

of the views, which may also give rise to inconsistencies.

The initial motivation for studying periodic samplings as abstraction functions orig-

inated from the fact that many systems, like embedded systems, consist of compo-

nents operating over multiple periods. Then, observing the operation of such a sys-

tem partially, one could periodically sample its behaviors. In case of absence of the

system, one would have to synthesize its views, operating at different periods, in

order to derive the overall multi-periodic system.

The organisation of this (article-based) thesis is as follows. Apart from this Intro-

duction, the thesis contains 3 sections. Section 2 provides a detailed overview of some

representative related work in multi-view modeling. Section 3 presents the summary

of the author’s contributions on the multi-view modeling problem. Finally, Section 4

concludes the thesis, and discusses possible directions for future research.

The author’s work [27, 26] (publications I and II respectively) can be found as they

were published at the end of the thesis.

13

Introduction

14

2. Related Work

Multi-view modeling and the multi-view consistency problem occur in the early liter-

ature of software engineering within the context of a variety of applications. In what

follows we provide an extensive description of some representative related work, and

we discuss the state of the art approaches to multi-view modeling.

2.1 Early Work on Multi-View Modeling

One of the early work adressing the multi-view modeling problem is [13]. In partic-

ular, [13] provides an informal framework and a prototype to deal with the so called

multiple perspective problem of composite systems. Composite systems character-

ize systems which are defined by multiple perspectives (descriptions) using different

means. Then, the multiple perspective problem consists in dealing with all these per-

spectives which are overlapping, and hence there is need for coordination in order to

ensure consistency among the several requirements. The framework in [13] is quite

informal, and most of the notions are illustrated by examples rather than by formal

definitions. However, [13] serves as a nice introduction to the problem and captures

the important aspects of multi-view modeling including viewpoints and the consis-

tency problem. Moreover, the proposed framework is quite generic and it consists one

of the first papers that considers the problem of heterogeneity in the models used to

describe the different aspects of a system under development.

Motivated by [13], the authors of [11] investigate the view-based approach of sys-

tem specification. The authors explain that the development of large software sys-

tems requires multiple teams of engineers to work concurrently. Each team restricts

on different aspects of the same conceptual system and derives separate but overlap-

ping views, for which inconsistencies should be resolved. The authors consider the

15

Related Work

approach of using multiple views for the modeling of software systems (viewpoints

approach where a viewpoint is defined by a view) combined with the reference model

approach, i.e., each team of engineers develops separate views by applying view op-

erations on a given incomplete common reference model. The reference model and

the views are defined by typed graphs (graph transformation systems), i.e., graphs

which are characterized by a type. Then, view relations are defined to relate either

multiple views or the original system with a view. Roughly, a view relation describes

a projection of a graph to another. Three types of inconsistencies are considered, two

static and one dynamic: (i) The same concept is specified in two different views with

different names (investigated a lot in databases concept). To resolve this problem the

reference model has to be extended in order to consider the unspecified concepts. (ii)

The same names are used in two different views and they refer to different semantic

concepts. In this case, the views are kept separate for the overall system or they are

both rejected. (iii) A view operation violates the constraints of another view, hence

the views overlap, and they have to be integrated (synchronized) into one consistent

view. The integration procedure for two views consists in modifying the views so that

they contain a same name only if they have a same origin in the reference model.

Then, one takes the union of the given views to integrate them.

In [34] the concept of consistency in studied within the context of programming

languages. In particular, the authors point out that when building systems, the pro-

grammers want to ensure consistency with respect to type safety (i.e., static type

checking), and the different source code versions used. To achieve that, the au-

thors develop a programming enviroment, CONMAN, for constructing and debug-

ging inconsistent software systems, where inconsistencies are obtained with respect

to source code versions used, and type safety. The central idea in [34] is that some

degree of inconsistency in unavoidable within a system, and most importantly it is

often more cost effective to obtain a software system with some inconsistencies rather

than a system with no inconsistencies at all. For this, there is need to distinguish the

severity of inconsistencies and fix the critical ones. Consider for instance, a software

program generated by multiple modules (where some of them are dependent), and a

type safety bug for an object in some module. A programmer should be able to fix

the bug by imposing changes only on those modules affected by the bug. Then, the

resulting system may be inconsistent in the perspective that it potentially contains

modules where for instance the particular type of the object is different. However,

this inconsistency is not problematic as long as it does not affect the correctness of

16

Related Work

the program. On the other hand, it would be more cost effective to correct the bug in

every module (for instance in some cases fixing a bug introduces others bugs). CON-

MAN is a tool built upon this idea, such that: (i) Detects and keeps track of different

types of inconsistencies without requiring their immediate removal, (ii) Provides a

smarter compilation technique that reduces the (type safety) costs by detecting which

modules should be modified to restore safety. Smart compilation techniques identify

declarations that have changed in files of the program, and enable for recompilation

when changes have been applied only to the related files, and (iii) Supports debugging

and testing.

A versatile approach for the notion of inconsistency is considered in [7] for systems

defined by propositional or first order calculi. In [7] a system, defined by a set of

calculi, is considered to be inconsistent if there is a formula of the system such that

both the formula and its negation, are theorems of this system. Such a methodology

is out of the scope of this thesis, thus it is not discussed further.

Afterwards, a body of research focused on the study of multi-view modeling and its

related problems, with emphasis on the consistency problem. Multi-view modeling

was further motivated by the proliferation of complex heterogeneous systems. As re-

sult, the multi-view modeling idea has been tracked in a variety of design techniques

either explicitly or inherently. In what follows, we present some existing work on

these techniques.

2.2 Multi-Modeling Languages

Multi-view modeling is supported by multi-modeling languages such as UML and

SysML. UML and SysML are standardized visual modeling languages used for the

artifacts of software systems. These languages use a plethora of diagrams in order

to specify and construct various abstractions of software and hardware systems (i.e.,

structural, behavioral, specifications etc). SysML actually improves UML by pro-

viding additional extensions to address requirements. Several work has focused on

solving specific consistency problems among different structures of these languages.

In [24] the authors provide a semantic consistency analysis for Class and Object

diagrams. Class diagrams (CD) are UML structure diagrams and represent a static

view of a system, while object diagrams (OD) are engineering instances of classes in-

terconnected by links. Semantic variabilities in these two structures create the need

to check for inconsistencies in their semantics. For example, one would have to check

17

Related Work

whether empty object models are valid for class diagrams, or whether incomplete

ODs are consistent with the semantics in the CD, after being completed. In order to

check for such inconsistencies, a feature model, in the form of a tree, is initially con-

sidered for formalizing the possible semantics of the diagrams. In particular, a tree

is formalized for the CDs and the ODs separately, and the semantics of the diagrams

are given in the form of sets of objects and relations among them.

The notion of consistency among a set of arbitrary diagrams is defined in [24] such

that the intersection of the semantics of the diagrams is nonempty. The (semantic)

consistency between a CD and OD is similarly defined. In order to check a CD and OD

for consistency, another simple tree is considered with two successors, one for the CD

semantics and one for the OD semantics. The authors provide a fully automated way

for checking for semantic consistency between the two types of diagrams. In order

to achieve that they use a parametrized transformation to the Alloy tool [18]. The

input to the transformation is a CD, an OD, and a valid configuration of the CD/OD

consistency feature model. Then, some examples are used to illustrate the Alloy

module for the transformation. The authors provide a prototype implementation of

their work and their evaluation results indicate that the implementation works well

for small CDs and ODs, but not for more complicated diagrams.

Another approach is considered in [9], where the authors reduce the multi-view

consistency problem to model checking. In particular, the authors develop a tool,

called Vooduu, that extends UML in order to enable verification of UML diagrams.

Initially, a system is given as a software design and its dynamics is modeled in Po-

seidon. Then, Vooduu is plugged in Poseidon and generates XML files which trig-

ger the initiation of the verification procedure performed by UPPAAL (cf. [1]). The

Vooduu tool allows to automatically check for view consistency of object oriented de-

signs. The views are dynamic and they are described semantically either by state

charts or by sequence diagrams, both augmented with communication and timing

constraints. Then, the multi-view consistency checking between two such views is

reduced to model checking a system described by the state charts against properties

described by the sequence diagrams.

Vooduu receives as inputs the views representing the system and the required prop-

erties. Then, Vooduu converts the set of state charts describing the system, to a

network of timed automata given as XML files. Moreover, the required properties

described by sequence diagrams are used to generate observer automata that move

to error states whenever a timing violation happens or an erroneous message arrives.

18

Related Work

After performing model checking, the given views are considered to be consistent, if

the property is satisfied by the system, and inconsistent, otherwise. In the latter

case, a counterexample is returned, that is an error trace described by a sequence

diagram, and the verification procedure is repeated upon correction.

The extension of UML to SysML resulted in studying multi-view modeling using

the latter as a common language for the description of the views for a system. For

instance, the focus of [35] is to model the different views of an embedded system with

SysML, and to identify possible dependencies among the views. As it is argued in

[35], using only SysML as a modeling language is not sufficient to completely repre-

sent all the different aspects of an embedded system. For instance, SysML cannot be

used for specifying schematics for assembly (EPLAN’s function) or simulating control

systems and dynamic system behavior (Modelica’s function). As a result, the authors

propose a different methodology than modeling directly the different views in SysML.

Given an embedded system, its multiple descriptions involve the use of different tools

and domains. As a first step, the latter are formally abstracted using metamodels in

the MOF standard. Then, a SysML profile is generated for each of the metamod-

els. Actually, the authors customize SysML with profiles (a case of domain specific

languages) in order that SysML supports the existence of versatile domains. On the

other hand, a generic SysML model for the complete system is provided. Then, it

should be the case that the separate views are generated by this generic model, and

correspond to the SysML profiles. For the development and integration of views the

authors use graph transformation. The framework is illustrated through a specific

mechatronic design problem. However, the authors do not investigate the consistency

problem in their approach.

In [14] the authors consider views described by hierarchical structures in the SysML

language. The authors call these views thematic views and the hierarchical struc-

tures, thematic structures. The thematic views and structures are to be described

by some model in SysML. To achieve that, a common SysML model will be used in

order to generate the several structures according to views they refer to. Most im-

portantly, the modeling procedure should be such that the generated view thematic

structures are consistent. A thematic view structure is described by a set of compo-

nent structures (thematic structures) connected by some kind of relation. The compo-

nents themselves are also described by a set of components, SysML block instances,

which are connected to each other. The authors use a composition relation (the child

instance cannot exist independently of the parent block) to relate block instances

19

Related Work

that form components, and aggregation relations (the child instance can exist inde-

pendently of the parent block) for building the thematic structures. Inconsistency

issues are discussed in [14], but no formal definition is considered. More precisely,

the authors check for consistency automatically by adding ports to the multiple parts

of the components that occur in the several views.

Although the aforementioned investigations propose some practical methods for

dealing with consistency in UML and SysML design models, they do not consider a

formal treatment for the problem. In [3] the authors formalize the consistency prob-

lem for dynamic behavioral views described either by a state machine model or as

a message sequence chart. The motivation is to reduce the problem of checking a

system against dynamic behavioral properties to the problem of checking view con-

sistency. In particular, the authors are interested in safety properties of systems

expressed by finite traces. In order to check consistency between a state machine

model and a message sequence chart, a metamodel is defined for each one of them, in

order to serve as a unified modeling formalism. Then, checking consistency between

two views consists in checking consistency between their metamodels.

In [3], a metamodel is defined as a labelled transition system (LTS) with some addi-

tional structure on the states defined by sets of objects. Each object is characterized

by an identity, its state and a set of operations. The views of a given system are ob-

tained by applying a type of projection operation. The intuition of a system projection

is that the resulting system (view) misses both objects from the states and the rele-

vant transitions where the missing objects change their local states. Moreover, each

view is again a LTS with some additional constraints (these constraints are expressed

as must and never mode of the LTS describing the view). Then criteria are formu-

lated in order to check (i) whether a given view is a view of a particular system, and

(ii) whether two views are consistent. The consistency notion between two views is

defined as follows. If the two views are of the same mode then they are consistent. If

the two views have with different modes, then they are consistent whenever the must

and never traces do not intersect for the common set of objects. Then, the algorithm

for checking consistency between two views, reduces to checking the nonemptiness of

the intersection of the two systems describing the views. Finally, checking whether

a system satisfies a property reduces to checking that the property is a view of the

system, while checking that a state machine (message sequence chart respectively)

satisfies a property reduces to checking the consistency between the view defining

the property and the state machine (message sequence chart respectively).

20

Related Work

2.3 Multi-View Modeling for Embedded and Cyber-Physical Systems

This section discusses some work on multi-view modeling approaches within the con-

text of embedded and cyber-physical systems.

Cyber-physical systems (CPS) are heterogeneous and as a result their design in-

volves multiple stakeholders whose concerns are related with different aspects of

the system. Hence, designers have to identify among a plethora of formalisms, tools

and languages for CPS, those artifacts which are appropriated to model the different

viewpoints. In [5] the authors develop a framework for the relations among the mul-

tiple viewpoints, formalisms, tools and languages, in order to facilitate the modeling

procedure of cyber-physical systems. In the proposed framework, given a CPS, the

first step is to identify the viewpoints for the system, and then the appropriated for-

malisms for these viewpoints. Afterwards, one selects the languages and tools that

handle such formalisms.

In [5], given a CPS, a viewpoint is obtained as an intersection of the concerns of

stakeholders along with the parts of the system they are interested in. The authors

illustrate the notion of viewpoints by an abstracted advanced driver assistance sys-

tem, and they develop their framework for three viewpoints with respect to any CPS,

that is robustness, performance, and software design. Then, a survey is provided on

the main existing formalisms and their relation with the three viewpoints. The pro-

posed formalisms include (i) finite state machines to describe mainly the discrete but

also the continuous dynamics of systems, and hierarchical state machines in order

to capture more complex systems, (ii) differential equations for the modeling of the

physical part of CPS, (iii) timed automata that extend finite automata with contin-

uous variables called clocks in order to express quantitative time related properties,

and hybrid automata where the continuous variables are more complex, modeled by

differential equations, (iv) dataflow formalisms, and (v) discrete event formalisms. In

the next and final step, the authors survey the main languages and their associated

tools in order to handle such formalisms. Model checkers, block diagram languages,

and equation-based object-oriented languages are some of the tools mentioned in the

paper.

In [25] the authors are also motivated by embedded and cyber-physical systems,

and provide a classification of the main approaches to MVM and a classification and

comparison of the main types of view relations, in order to associate with each MVM

approach the supported view relations. Most importantly, the authors describe the

notions of behavioral views, view consistency, and synthesis of views. More precisely,

21

Related Work

in [25] a system with heterogeneous nature and multiple requirements is defined as

a multi-view system. Multi-view systems are described by multiple and interrelated

descriptions called views. The views are actually obtained as instances of a given

metamodel that encompasses many views referring to a set of specific semantics.

Such metamodels are called viewpoints. The views are considered as abstractions of

a given system, and they are defined by a model associated with a set of semantics,

so that specific properties are satisfied. The authors introduce the notions of faith-

fulness, consistency, and completeness, which formalize the properties that should be

satisfied for a model describing a view for a given system. Roughly, the faithfulness

of a view consists in ensuring that the system belongs to the set of the semantics

describing the given view. Consistency is the existence of a system such that all the

given views conform to, and completeness implies that a system can be completely

defined by its views.

In [25] the main relations between the views (and the viewpoints) are classified in

the groups of content, process, and operations. More precisely, content deals with se-

mantic and syntactic relations. The authors explain that a syntactic overlap implies

a semantic overlap, while the opposite does not always hold. On the other hand, in

case of no semantic overlap the views are considered orthogonal. Moreover, two views

can be related by the notion of abstraction (or refinement), that is a view V1 can be

an abstraction of another view V2 in which case, V2 is a refinement of V1. Finally,

the association relation occurs when a view is used to connect two or more (base)

views. The second category refers to relations over time and causality, and includes

precedence (a view exists before another view), dependence (a view contains data of

another view), co-dependence, versions (successive iterations of views) and variants

(alternatives of the same view). The third type of relations among views, are opera-

tions applied to views. Such operations include view composition, projection (where

part of the syntactical content of a view is removed), extension (opposite of projec-

tion), and synthesis (implementation of the system given a number of views). The

authors also discuss the main challenges in MVM. Among them, view consistency,

view traceability, and view reuse are considered. Finally, the characterization of the

main approaches in MVM is obtained with respect to the main MVM challenges and

the aforementioned relations.

Given a system to be constructed, using multi-view modeling approaches, the sev-

eral views are usually either structural, or behavioral, or a combination of both. In

[28] behavioral consistency is discussed within the context of multimodel heteroge-

22

Related Work

neous verification. However, the focus of [28] is on the heterogeneous verification

rather than solving the consistency problem or synthesizing a model for the system

given a set of consistent views (models). In multimodel heterogeneous verification,

a system is comprised by many models of heterogeneous types, and the goal is to

ensure the satisfaction of specifications at the system level given the satisfaction of

specifications at the models level. In [28] the authors derive abstractions of the mod-

els in order to obtain criteria ensuring that whenever a model of the system satisfies

its properties, then the system specifications are not violated. The contribution of

the paper is on developing a verification framework that relies on behavior relations

between the models of a system. The proposed framework is generic, in that there is

no restriction on the types of behaviors or behavior relations of the models and the

system.

In particular, in [28], behaviors are divided into categories according to their type.

Let B denote the set of all behaviors of a particular type and consider for simplicity

two such types B1 and B2. Then, a behavior relation between B1 and B2 is defined as

usual by a subset of the Cartesian product of B1 and B2. Moreover, a model M (and

a system model) is defined as the set of behaviors of a particular type allowed by M .

Then, a model M1 is an abstraction of a model M2 whenever the behaviors of M2 are

a subset of the behaviors of M1. Similarly, a specification S of a behavioral type B is

the set of behaviors in B that satisfy S. Then specifications are defined for a model

M , and the notion of abstraction is also extended for specifications. The authors

consider two cases for the verification problem: (i) the interdependencies among the

models are neglected, and (ii) the interdependencies are taken into consideration by

adding constraints on the parameters of the abstractions defining the models and

the system. For both cases, the authors develop criteria to achieve verification at the

system level, and in the second case they also check that the constraints among the

models and the system are consistent.

Consistency is defined in [28] at the level of the constraints of the parameters per-

taining to a model. Consider for instance models Mi for i = 0, 1, ..., n, where M0 refers

to the (original) system, and Mi for i = 1, ..., n to the different (partial) models of

the system. A parameter is a real valued static variable that affects the behavior of

the system. Then, the constraints on a set of parameters P , denoted by C(P), can

be expressed for instance in first order logic or in some other formalism. Let CMi
denote the constraints of the parameters of the model Mi for i = 0, ..., n, and Caux de-

note the constraints that capture all the dependencies among the models (including

23

Related Work

the original system model). Then, consistency is obtained if the constraints of the

system that occur in Caux, restricted to the parameters of the i-th model imply the

constraints of the i-th model, for all i = 1, ..., n. In other words, consistency is ensured

by non-emptiness of the constraints of the system and each of its models.

In subsequent work, the authors of [28] study also the problem of composing compo-

nents with heterogeneous formalisms using abstractions of components and abstrac-

tion functions for relating their different domains [29]. Following the methodology

of [28], the framework of [29] is also generic, i.e., there is no restriction on the type

of behaviors of the components as well as on the abstractions and the abstraction

functions. The authors consider two cases for this problem: the local semantics of

the components are (i) from the same behavior domain of the same behavior class,

and (ii) from different behavior domains of the same behavior class. The goal of the

paper is illustrated by a simple abstract example: Consider two components P0 and

Q0 with their behavior domains BP
0 and BQ

0 from a behavior class B0. Let also P1 and

Q1 denote the abstractions of P0 and Q0 with respective domains BP
1 and BQ

1 from

another behavior class B1. The authors propose criteria in order to ensure that the

composition of the abstractions P1 and Q1 is an abstraction of the composition of the

originally given components P0 and Q0, both for components of the same behavior

domain and different behavior domain.

In [29] each component is described semantically by a model M that belongs to

a set of modeling formalisms (a modeling formalism for CPS is for instance hybrid

automata). The semantics of M is a set of behaviors derived by a specific behavior

domain B. Each behavior domain belongs to a behavior class used to define seman-

tics for CPS models (for instance if the behavior class for CPS is discrete traces, then

different behavior domains may be derived by distinct alphabets used to generate

discrete traces). Then, the notion of abstraction between two models M1, M2 with

behavior domain B is similar to [28], i.e., a model M2 is an abstraction of M1 if the

behaviors of M1 are included in the behaviors of M2. A behavior abstraction function

is a special case of a behavior relation defined in [28]. More precisely, an abstraction

function maps behaviors of a class B1 to behaviors of a class B2. Then, the notion

of heterogeneous abstraction between M1 and M2 extends the notion of classical ab-

straction, by taking into consideration the abstraction function between M1 and M2.

Hence, heterogeneous abstraction between M0 and M1 with behavior domains B0

and B1 is defined such that the abstraction function A associates every behavior of

model M0 in B0 to a corresponding abstract behavior of model M1 in B1. The notion

24

Related Work

of behavior localization is used in order to move from the semantics of a behavior

domain to another one, given that they both belong to the same behavior class (for

instance the two components can be described by transition systems with different

alphabets as different behavior domains. So behavior localization consists in defining

each component in the alphabet of the other).

Composition is defined in [29] separately for (i) components with the same behavior

domain and (ii) components with different behavior domain. In the former case, com-

position is defined as the intersection of the behavior sets of the given components.

In the latter case, one should first obtain abstractions of the given components on a

common behavior domain, and then compose these abstractions. Then, the authors

describe for the setting of (i) and (ii), the conditions under which the abstraction of

the composition of two components for a given system consists in composing the ab-

stractions of the components. Within these conditions the notion of consistency is

implicitly described on the level of abstraction functions (which are used to abstract

the components for a given system). The abstraction functions are considered to be

consistent if it is possible to find a common abstraction function from which the initial

abstraction functions can be generated. Finally, the authors illustrate the theoreti-

cal concepts of [29] (and [28]) with the example of a cooperative intersection collision

avoidance system (CICAS).

Since in the present thesis we are only interested in behavioral views, we do not

discuss structural or mixed views. Some work on the latter can be found in [12, 4].

2.4 A Generic Formal Framework for Multi-View Modeling

Most of the work discussed above provides an informal treatment of multi-view mod-

eling or solves specific consistency problems, in particular with respect to behav-

ioral views of a system under development. In other words, a formal framework for

multi-view modeling, and a formal definition of the multi-view consistency problem

have been lacking. Only recently, the authors of [32] introduced a formal framework

for multi-view modeling and studied its related problems, for systems and views de-

scribed as sets of behaviors. Moreover, the framework is generic as there is no re-

striction on the kind of behaviors, and abstraction functions used.

More precisely, in [32] a system is described semantically as a set of behaviors

and the views are obtained by applying some kind of transformation to the system

behaviors. However, there is no restriction on the kind of behaviors used, and they

25

Related Work

can be derived from any universe of behaviors (for instance the behaviors could be

discrete, dynamic, or hybrid). Formally, a system S over a domain of behaviors U , is

a subset of U : S ⊆ U . The transformations used to derive the views from the system,

are defined by means of an abstraction function a : U → D, where D is the view

domain. A view V over view domain D, is a subset of D: V ⊆ D.

Some basic problems related to MVM are formalized in [32], including 1) view con-

formance which formalizes how faithful is a view to a system, 2) view consistency that

is defined by the existence of a (witness) system to which all the views conform to,

3) view reduction which allows to optimize some views by using the information con-

tained in other views, and 4) view orthogonality for expressing independence among

views.

Formally, the multi-view consistency problem is defined as follows. A set of views

V1, · · · ,Vn over view domains D1, · · · ,Dn, are consistent with respect to a set of confor-

mance relations |=i⊆ 2Di × 2U (either derived from given abstraction function ai and

partial order wi over 2Di , or defined as a primitive notion), if there exists a system S
over U so that Vi |=i S, for all i = 1, · · · , n. Such a system S is called a witness system

to the consistency of V1, · · · ,Vn, and if there is no such system, then the views are

considered to be inconsistent.

2.4.1 Instantiating the Framework for Symbolic Discrete Systems

In [32] the authors instantiate the aforementioned generic formal framework for sys-

tems and views described by symbolic discrete systems. Semantically, a symbolic

discrete system (discrete system for simplicity) is described by a set of behaviors, i.e.,

sequences of states, which are obtained as valuations over a finite set of variables.

Formally, letX denote a (finite) set of boolean variables for describing the state space.

Then, a state s over X is a function s : X → B, where B denotes the set of Booleans. A

behavior over X is a finite or infinite sequence of states over X, σ = s0s1 · · · . Then, a

discrete system S over X is described semantically as a set of behaviors over X, i.e.,

S ⊆ U(X), where U(X) denotes the set of all possible behaviors over X.

Two categories of discrete systems are considered, fully-observable discrete systems

(FOS), which do not have hidden variables, and discrete systems with internal vari-

ables. Syntactically, a fully-observable discrete system (FOS for short) is defined by

a triple S = (X, θ, φ) where X is the finite set of boolean variables, θ is a boolean

expression over X characterizing the set of all initial states, and φ is a boolean ex-

pression over X ∪X ′, where X ′ := {x′ | x ∈ X} is the set of the next state variables.

26

Related Work

φ characterizes pairs of states (s, s′) representing a transition from s to s′ of S. Then,

θ(s) denotes that s satisfies θ, and φ(s, s′) denotes that the pair (s, s′) satisfies φ, i.e.,

that there is a transition from s to s′. A behavior of a FOS (X, θ, φ) is a finite or infi-

nite sequence of states over X, σ = s0s1 · · · , such that σ can be generated by the FOS,

i.e., such that θ(s0) and ∀i : φ(si, si+1).

In the sequel, a particular type of projection operation is introduced, namely, vari-

able hiding. Given a state s over the set of variables X and a subset Y ⊆ X, the

hiding function hY projects s onto the set of variables Y , hence hY hides from s all

variables in X \ Y . Then hY (s) is defined to be the new state s′, that is, s′ : Y → B

such that s′(x) = s(x) for every x ∈ Y . The notion of variable hiding is then lifted at

the level of behaviors and systems. If σ = s0s1 · · · is a behavior over X, then hY (σ) is

a behavior over Y defined by hY (σ) := hY (s0)hY (s1) · · · . For a discrete system over X,

the variable hiding consists in applying the variable hiding on each of the behaviors

of the system.

The authors prove that FOS are closed under intersection, but not under union

and variable hiding. Then, the authors extend fully-observable discrete systems to

discrete systems with internal variables. Formally, a discrete system with internal

variables, is a tuple S = (X,Z, θ, φ) where X,Z are disjoint finite sets of variables

such that X describes the set of observable variables, and Z the set of internal (un-

observable) variables. The initial condition θ is a boolean expression over X ∪ Z, and

the transition relation φ is a boolean expression over X ∪Z ∪X ′ ∪Z ′. A behavior of a

discrete system with internal variables S = (X,Z, θ, φ) is a finite or infinite sequence

of states over X ∪Z which can be generated by S, in the same manner as with behav-

iors generated by a FOS. Then, discrete systems with internal variables are proved

to be closed under union, intersection, and variable hiding.

The abstraction functions used in [32] for generating views from discrete systems,

are variable hidings. Essentially, given a discrete system defined over some variables,

then a view is obtained by hiding some of these variables. Since FOS are not closed

under variable hiding, there exist FOS over a set of variables X, that do not have a

canonical view with respect to a subset of variables Y ⊆ X. As a result, the authors

investigate the existence of least or greatest views described by FOS, for a given

system with or without internal variables. In particular, it is proved that for such

systems there exists always a least view, but this is not the case for the greatest view.

Then, the view conformance and the view consistency problems are considered for

discrete systems. For the latter variable hidings are used as abstraction functions

27

Related Work

and the problem is proved to be PSPACE-complete.

2.4.2 Instantiating the Framework for Languages and Automata

In [31] (journal version of [32]), the authors instantiate the generic formal framework

for systems defined either only by (i) automata, or (ii) ω-automata (specifically Büchi

automata). Then, an abstraction function is a projection of an alphabet of events onto

a subalphabet, where the former refers to the domain of the system and the latter is

the view domain. More precisely, consider an alphabet Σ and a finite or infinite word

w over Σ. The projection of w over some subalphabet Σ′ ⊆ Σ, denoted by ΠΣ→Σ′(w),

consists in hiding from w all the letters that belong in Σ\Σ′. Moreover, the projection

of a language L over Σ (that contains finite or infinite words) onto the subalphabet

Σ′ ⊆ Σ, denoted by ΠΣ→Σ′(L), consists in projecting every word of L onto Σ′. Inverse

projections are also defined for finite and infinite words, and the relevant languages.

Then, projection and inverse projection constructions are developed both for finite

automata and Büchi automata, and the closure of their languages is proved under

these operations.

The multi-view consistency problem is investigated in [31] for languages, regular

languages, and ω-regular languages. For all these cases the notion of consistency

is defined with respect to = as a partial order, which is a special case of the defini-

tion introduced in [32]. In particular, two languages L1, L2 (describing two views) on

alphabets Σ1,Σ2, respectively, are consistent if there exists language L on some al-

phabet Σ such that ΠΣ→Σi(L) = Li, for i = 1, 2. The authors prove that the alphabet

Σ may be unknown, but necessarily a superset of Σ1 ∪ Σ2.

Moreover, the authors formulate two necessary and sufficient conditions for check-

ing consistency between views described by languages. Intuitively the first condition

expresses that given two views described by languages L1 and L2, over alphabets

Σ1 and Σ2, to check for view consistency one has to obtain the inverse projections of

L1 and L2 onto the alphabet Σ1 ∪ Σ2, then construct the language of their intersec-

tion, and finally check whether this language projected onto Σ1 and Σ2, results in

languages equivalent with the two starting languages, respectively. In the positive

cases, the given views are considered to be consistent, and inconsistent, otherwise.

In case of consistency, the language of the intersection of the inverse projections of L1

and L2 over the alphabet Σ1 ∪ Σ2, describes the witness system to the consistency of

the given views. This condition indicates that is sufficient to search for witness lan-

guages over Σ = Σ1∪Σ2. According to the second criterion, given two views described

28

Related Work

by languages L1 and L2, over alphabets Σ1 and Σ2, one has to project the languages

onto the intersection of their alphabets Σ1 ∩ Σ2, and if the resulting languages are

equivalent, then the views are consistent, and inconsistent, otherwise.

The consistency problem is solved in [31] separately for regular languages (equiv-

alently for finite automata), and ω-regular languages (equivalently for Büchi au-

tomata). For both cases, two variants of the multi-view consistency problem are

considered. More precisely, given two finite automata M1,M2 (describing views) on

alphabets Σ1,Σ2, the first variant searches for the existence of a language L over the

alphabet Σ ⊇ Σ1 ∪ Σ2 such that ΠΣ→Σ1(L) = L (M1) and ΠΣ→Σ2(L) = L (M2). The

second variant searches for a finite automaton M over the alphabet Σ ⊇ Σ1 ∪Σ2 such

that ΠΣ→Σ1(L(M)) = L (M1) and ΠΣ→Σ2(L(M)) = L (M2). The problems are different

since the witness system in the first case is a language, but in the second case is a

language accepted by a finite automaton. However, the authors show the equivalence

of the two variants. These two problems are similarly defined for Büchi automata.

Finally, the authors prove that both for finite and Büchi automata the problems are

PSPACE-complete.

2.5 Other Approaches to Multi-View Modeling

2.5.1 Metamodeling

Metamodeling (cf. [20, 19]) is a model transformation method that occurs often in

multi-view modeling approaches. Given a system under development, the different

views used to describe the system, are often expressed in versatile formalisms or

modeling languages. In this setting, is essential to derive metamodels for the given

views in order to relate the views, and then construct a comprehensive metamodel for

the original system. Moreover, translating the views in metamodels allows capturing

dependencies which otherwise would be intractable. On the other hand, metamodels

can also be used to describe generic incomplete models, serving as reference models,

in order to build detailed view models.

Several of the related work discussed in the previous subsections, encompasses the

approach of metamodeling in order to relate the views with each other or with the

original system [11, 3, 35].

29

Related Work

2.5.2 Aspect-Oriented Modeling

Another methodology for modeling systems described by multiple concerns, is aspect-

oriented design [6]. Aspects are used to describe behaviors that are tangled and

scattered across a system. Aspect-oriented techniques have been proved essential

for modularizing crosscutting concerns. Similarly to multi-view modeling, the stake-

holders for each concern are interested in identifying conflicts among the concerns,

which is checked through the composition of concerns.

The recent work of [22] indicates that aspect-oriented techniques can also be com-

bined with multi-view modeling. Indeed, the authors propose the use of aspect-

oriented techniques in order to improve the scalability of multi-view modeling, and

check for consistency among the views through aspect composition and reuse. Any

concern, i.e., a view, is modeled as a reusable aspect consisting of three counterparts:

structural (UML class diagram), state (UML state diagram), and message view (UML

sequence diagram). Then, checking for consistency is performed at three levels: for

each individual aspect independently, among all the aspects, and for each aspect with

respect to the final (base) model.

2.5.3 Interface Theories

Interface theories provide a method to construct a system incrementally by using

partial system descriptions, and hence they can been seen as an alternative to multi-

view modeling. Interfaces, are abstractions of components so that they capture only

the necessary information for the component, which implies that some information

is missed. Then, the goal is to compose the given interfaces using specific operations,

so that the assumptions of all the components are satisfied. This implies that the

notion of view consistency is defined for the interface theories by a special type of

interface conjunction. Some extended work on interface theories can be found in

[8, 2, 10, 37, 16].

2.6 Conclusion

Most of the existing work in multi-view modeling focuses on solving specific consis-

tency problems without providing a generic framework for the problem. For instance,

in [9, 35, 24, 14] the different views of a system are described by diagrams of some

multi-modeling language (UML or SysML). Then, the notion of consistency among

30

Related Work

diagrams is described by non-emptiness of some special kind of conjunction (in this

case, intersection of the semantics of the diagrams). Most importantly, in these works

there is no formal treatment of the multi-view modeling approach and the consistency

problem. Even the formal approach followed in [3], falls into the same class with the

previous work, since it is not generic. Indeed, the views are described by diagrams

(state charts or message sequence charts), which are then translated to a type of

metamodels (labelled transition systems), and checking view consistency reduces in

checking the non-emptiness of the intersection of views.

Behavioral consistency is discussed in [28, 29] within the context of heterogeneous

verification and composition respectively. Following the previous work on multi-view

modeling, consistency is defined in [28] by non-emptiness on the constraints of the

system behaviors and each of its models behaviors, and in [29] by non-emptiness

of some kind of composition of the heterogeneous components for a given system.

Moreover, the focus of these two works is on the heterogeneous verification rather

than solving the consistency problem.

Only later on, a generic formal framework for multi-view modeling and its basic

problems is developed, where both the views and the systems are described as sets of

behaviors [32, 31]. Moreover, the notion of consistency presented there differs from

previous work in multi-view modeling. In particular, the authors show that obtaining

non-emptiness of some kind of conjunction among views, does not always imply view

consistency. However, the proposed framework can capture the notion of conjunctive

consistency, and hence, is a generalization of the previous conjunctive approaches

[31]. Finally, the authors instantiate the generic framework for discrete systems

[32], and for languages, regular languages, and ω-regular languages [31].

In the present thesis the focus is on studing formally the multi-view modeling ap-

proach and the multi-view consistency problem for behavioral views. For this, the

author follows the formal framework of [32], because it is also generic with respect

to the descriptions of the systems and the views, and the abstraction functions. The

author studies the multi-view consistency problem for two distinct settings, namely,

for infinitary languages [27], and discrete systems [26]. More precisely, in [27] the

problem is studied in the context of mixed automata, which accept both finite and

infinite words, and the corresponding infinitary regular languages. Actually, [27] ex-

tends the work presented in [31], where a given system and its views are described

only by regular languages or ω-regular languages. In the sequel, [26] studies the

multi-view consistency problem for discrete systems, defined as in [32], but the ab-

31

Related Work

straction functions used are timing abstractions (periodic samplings) in contrast to

variable hidings that were investigated in [32]. A detailed summary of these two

contributions is provided at the next section.

32

3. Overview of Contributions to Multi-View
Modeling

The interest of the author is on studying formally multi-view modeling and the multi-

view consistency problem for systems and views described as sets of behaviors. In

particular, the author contributes with two publications (I and II), that investigate

the multi-view consistency problem for two distinct settings, infinitary languages,

and discrete systems. This section provides an overview of the two contributions,

which are also included at the end of the thesis.

3.1 Overview of Publication I

In [27] (publication I), the author studies multi-view modeling and the multi-view

consistency problem for infinitary languages. The setting of [27] is a concrete instan-

tiation of the generic formal framework for multi-view modeling introduced in [32].

In the latter, the system behaviors can be defined within any global universe while

the views may be obtained by some kind of transformation, like abstraction func-

tions, to the system’s behaviors. Formally, a system S over a domain of behaviors U ,

is a subset of U : S ⊆ U , and an abstraction function is defined by a : U → D, where D
is the view domain. Then, a view V over view domain D, is a subset of D: V ⊆ D.

More precisely, the work of [27] actually extends [31]. In the latter, the system

and view behaviors are described either only by regular languages or ω-regular lan-

guages. Then, projections of an alphabet (system domain) onto a subalphabet (views

domain) are used as abstraction functions to obtain the views from a system, and in-

verse projections for the other direction. In [27] the author studies the problem with

respect to the same abstractions functions, i.e., projections (and inverse projections),

but for the case where the system and the views are described by mixed automata,

which accept both finite and infinite words, and for the corresponding infinitary reg-

33

Overview of Contributions to Multi-View Modeling

ular languages.

The motivation for this setting lies on the fact that projections in general may turn

an infinite behavior into a finite one, while inverse projections may turn a finite be-

havior into a set of infinite behaviors. In order to illustrate this with some examples,

some preliminary notions are introduced. For a given alphabet Σ, Σ∗ denotes the set

of all finite words over Σ, and Σω the set of all infinite words over Σ. The set of all

words over Σ is Σ∞, i.e., Σ∞ = Σ∗ ∪ Σω. Moreover, a ∗-language (star language) L on

Σ is a set of finite words, subset of Σ∗, i.e., L ⊆ Σ∗. An ω-language (omega language)

L on Σ is a set of infinite words, subset of Σω, i.e., L ⊆ Σω. An∞-language (infinitary

language) L is a set of finite or infinite words, subset of Σ∞, i.e., L ⊆ Σ∞.

Consider now a finite or infinite word w over some alphabet Σ. Then, the projection

of w over some subalphabet Σ′ ⊆ Σ, consists in hiding from w all the letters that

belong in Σ \ Σ′. As a result, the projection operation applied on a star language

derives always a star language, but when applied on an omega language it may derive

an infinitary language in general. For example, if Σ = {b, c} and Σ′ = {b}, then for the

language L = b∗cω∪c∗bω ⊆ Σω, we obtain that the projection of L from Σ onto Σ′ is the

language b∗∪bω ⊆ Σ′∞. On the other hand, given a (finite or infinite word)w over some

alphabet Σ, its inverse projection onto Σ′ ⊇ Σ is the set of all words, that if projected

onto Σ they coincide with w. The inverse projection of a finite word can be either a set

of finite or infinite words, while the inverse projection of an infinite word is always

a set of infinite words. For example, if Σ = {b} and Σ′ = {a, b}, then for w = b ∈ Σ∗

we obtain that the inverse projection of w onto Σ′ generates a∗b(a∗ ∪ aω) ⊆ Σ′∞. With

similar arguments, one obtains that the inverse projection of a star language is an

infinitary language in general. As a result, it appeared interesting to consider the

multi-view consistency problem for the generic case of infinitary languages.

In [27] is studied the case that a system and its views are described by infinitary

regular languages. Therefore, a model is proposed for automata that accept infini-

tary languages, namely mixed automata. Such automata have been defined in the

literature [33], but a systematic study has been lacking. In [27] a mixed automa-

ton is a pair of a finite automaton and an ω-automaton. The ω-automaton is fixed

to be a Büchi automaton, and both counterparts are assumed to be nondeterminis-

tic, hence the mixed automaton is also nondeterministic. In particular, a nondeter-

ministic mixed automaton (NXA for short) over a finite alphabet Σ is defined as a

pair M = (A,B) where A = (QA,Σ, IA,∆A, FA) is a nondeterministic finite state au-

tomaton and B = (QB,Σ, IB,∆B, CB) is a nondeterministic Büchi automaton, with

34

Overview of Contributions to Multi-View Modeling

QA ∩ QB = ∅. The language L(M) of the mixed automaton M is defined by the dis-

joint union L(M) = L(A) ∪ L(B) = {w ∈ Σ∗ | w is accepted by A} ∪ {w ∈ Σω | w
is accepted by B}. Every NXA M over Σ can be considered either as nondetermin-

istic finite automaton whenever CB = ∅, or as a nondeterministic Büchi automaton,

whenever FA = ∅.
In order to study the consistency problem for infinitary languages, there is need to

investigate several closure properties for their class. More precisely, mixed automata

are proved to be closed under union, intersection, complementation, as well as under

projection and inverse projection. The two latter operations are based on the con-

structions of projection and inverse projection for finite and ω-automata studied in

[31]. Then, the closure results for mixed automata are used to consider the multi-

view consistency problem in the infinitary language setting. Given a set of views, the

notion of consistency in [27] is defined with respect to a set of abstraction functions

and the partial order =. More precisely, a set of views V1, . . . ,Vn over view domains

D1, . . . ,Dn respectively, are consistent with respect to a set of abstraction functions

a1, ..., an, if there exists a system S over system domain U so that Vi = ai(S), for all

i = 1, ..., n. This definition for consistency is a special case of the generic definition

provided in [32] (see also subsection 2.4 of this thesis).

In the sequel, two variants of the consistency problem are investigated for the set-

ting that the views of a system are described by ∞-regular languages. Given a set

of views described by nondeterministic mixed automata, the first problem searches

for a witness system described by an infinitary language, while the second one, for a

witness system defined by a regular infinitary language, i.e., accepted by some nonde-

terministic mixed automaton. The two variants of the consistency problem are then

proved to be equivalent, using similar arguments to those developed in [31]. Consis-

tency in [27] is actually checked by extending the first of the sufficient and necessary

conditions of [31], discussed in subsection 2.4, to the case of mixed automata (or for

infinitary languages). Informally, given a set of nondeterministic mixed automata

M1, M2 over two alphabets Σ1 and Σ2, describing views, one has to compute their

inverse projections onto the alphabet Σ1 ∪Σ2, and if the intersection of these inverse

projections projected back to the original alphabets, derives languages equivalent

to those accepted by the views, then consistency is ensured. In case of consistency,

the previously described intersection defines the witness system. Finally, the multi-

view consistency problem is proved to be PSPACE-complete exploiting the known

PSPACE-completeness result of language equivalence for nondeterministic finite au-

35

Overview of Contributions to Multi-View Modeling

tomata and nondeterministic Büchi automata (cf. [15, 36]).

3.2 Overview of Publication II

In [26] (publication II) the multi-view consistency problem is studied for discrete sys-

tems with respect to timing abstractions, and in particular periodic sampling abstrac-

tion functions. Similarly to publication I, this work is also a concrete instantiation of

the multi-view generic formal framework introduced in [32]. The latter, investigates

also the multi-view consistency problem for discrete systems, but the abstraction

functions used there are variable hidings.

Following [32], discrete systems are described symbolically, and they are used to

describe both systems and their views as sets of behaviors. In particular, given a

finite set of variables X, a state is a valuation of X over the set of Booleans. Then,

a behavior over X is in general a finite or infinite sequence of states over X, and

semantically a discrete system S over X is a set of behaviors over X, i.e., S ⊆ U(X),

where U denotes the domain of possible behaviors. Then, discrete systems are divided

in fully-observable discrete systems (FOS) without internal variables, and non-fully-

observable discrete systems (nFOS) which contain also hidden variables (non-fully-

observable discrete systems characterize exactly the discrete systems with internal

variables from [32]). For non-fully-observable discrete systems, there is a distinction

between their observable and unobservable behavior. The former is defined with

respect only to the set observable variables of the nFOS, while the latter takes into

consideration all the variables in the system (see subsection 2.4.1 of the thesis for the

formal definition of the aforementioned notions). Obviously, FOS are a special case

of nFOS, and the latter are used in [26] to describe the views of system.

The abstraction functions studied in [26] are periodic samplings in contrast to vari-

able hidings considered in [32]. Intuitively, given a period which is a positive in-

teger number T , the periodic sampling abstraction consists in sampling the system

once every T steps. For instance, given a system behavior which is a sequence of

states s0s1s2 . . . , the periodic sampling w.r.t. T = 2 produces the abstract behavior

s0s2s4 Formally, given a finite set of variables X, a domain of behaviors U(X)

and a view domain D(X) = U(X), a periodic sampling abstraction function from

U(X) to D(X) w.r.t. period T and initial position τ , denoted by aT,τ , is defined by

the mapping aT,τ : U(X) → D(X) such that for every behavior σ = s0s1 · · · ∈ U(X),

aT,τ (σ) := s′0s
′
1 · · · ∈ D(X) where s′i = sτ+i·T for every i ≥ 0. Lifting this notion at

36

Overview of Contributions to Multi-View Modeling

the discrete systems level, the periodic sampling is applied on each behavior of the

system.

Apart from the (forward) periodic samplings, inverse periodic samplings are also

considered, since they could serve for defining a witness system in case of consis-

tency among the views. An inverse periodic sampling abstraction function from

D(X) to U(X) with D(X) = U(X), w.r.t. period T and initial position τ , denoted

by a−1
T,τ , is defined by the mapping a−1

T,τ : D(X) → U(X) such that for every behav-

ior σ = s0s1 · · · ∈ D(X), a−1
T,τ (σ) := {σ′ | σ′ = s′0s

′
1 · · · ∈ U(X) s.t. s′τ+i·T = si, i ≥ 0}

or equivalently a−1
T,τ (σ) := {σ′ | aT,τ (σ′) = σ}. Then, given a system S ⊆ U(X), the

inverse periodic sampling is defined by a−1
T,τ (S) :=

⋃
σ∈S

a−1
T,τ (σ).

The closure of FOS and nFOS is studied with respect to the above operations, and

both FOS and nFOS are proved to be closed under periodic samplings, while only

nFOS are closed under inverse periodic samplings. Then, three variations of the

multi-view consistency problem are considered for a given set of views described by

nFOS, and the relations of these problems are also discussed. Note that for such an

investigation, only the observable behaviors of the nFOS are taken under considera-

tion (cf. [32]). More precisely, given a finite set of nFOS Si over the same domain of

observable variables X, describing views, and periodic samplings aTi , for 1 ≤ i ≤ n,

the three problems consist in checking whether there exists (i) a system S over U(X),

or (ii) a nFOS system S, or (iii) a FOS system S, such by applying each of the periodic

samplings aTi , for 1 ≤ i ≤ n, on the system, one obtains semantic equivalence with

the given views (for the cases (ii) and (iii) the set of observable variables of S is the

set X). This distinction is rational since the first problem asks for a semantic witness

system, not necessarily representable as a symbolic discrete system. Moreover, the

existence of a FOS witness system, implies the existence of a nFOS, and semantic

witness system, while a nFOS witness system does not always imply the existence

of a FOS witness system. This fact is proved in [26] with a counterexample. On the

other hand, it is open whether the finite-state nature of nFOS is enough to represent

all possible semantic witnesses of consistent nFOS views.

In the sequel, a sound (but incomplete) algorithm is provided in [26] for detecting

inconsistencies among a finite number of views with respect to periodic sampling

abstraction functions. The notion of inconsistency in this setting expresses that the

given views return different sets of states for the same positions with respect to the

behaviors of the original system. These are actually the positions in behaviors of the

original system that are multiples of the least common multiple of the periods that

37

Overview of Contributions to Multi-View Modeling

the views have been sampled with. Hence, the algorithm tries to detect such positions

for a given set of views, and therefore it applies to sets of views that satisfy one of

the following conditions: either every view generates only infinite behaviors; or every

view generates only finite behaviors. Additionally, the initial position of the periodic

samplings is assumed to be τ = 0 for every view.

The algorithm exploits known techniques from automata theory, and hence it actu-

ally checks consistency among a set of views described as finite automata. For this,

the first step of the algorithm consists in generating automata simulating the be-

haviors of the given views (nondeterministic finite automata for views with finite be-

haviors only, and nondeterministic Muller automata for views with infinite behaviors

only). Then, the algorithm involves a special construction, a finite automaton, that

encodes the positions where the views should return the similar sets of states. A type

of composition is defined among this construction, and the modified versions of views

into deterministic finite automata (determinization procedure allows to trace all the

possible states for the positions under consideration). Applying state based reacha-

bility, the algorithm detects whether an inconsistency is found or not. In the latter

case, the algorithm cannot ensure that the views are consistent (incompleteness of

the algorithm), as the algorithm neglects the transition structure of the system (and

the views), which is proved to generate inconsistencies as well. This fact is illustrated

in [26] by a counterexample.

3.3 Conclusion

To conclude, [27, 26] (publications I and II respectively) contribute to the study of the

multi-view consistency problem for systems and views described as sets of behaviors.

In [27], the author extends the multi-view modeling approach of [31] for finite au-

tomata or ω-automata to the case of mixed automata. In other words, it is proved

that the results presented in [31] (section 4 of the paper) are also valid for the set-

ting of infinitary languages. In the sequel, [26] studies a different instantiation of

the generic formal framework proposed in [32]. In particular, the focus is on discrete

systems with views derived by applying periodic samplings. In comparison to [27],

[26] does not investigate complete conditions (sufficient and necessary) for ensuring

consistency, but focuses on detecting inconsistencies among the views.

For further details on [27, 26] the reader is pointed to the corresponding publica-

tions included at the end of the thesis.

38

4. Conclusions and Perspectives

This thesis focuses on the formal study of multi-view modeling and the related multi-

view consistency problem. Multi-view modeling uses multiple separate models, called

views, for the design of a system under development. In the presence of complex

heterogeneous systems, such modeling approaches are becoming of high importance.

On the other hand, multi-view modeling encompasses the challenge of ensuring con-

sistency among the different views. This stems from the fact that, although, the

views refer to partial aspects of a system, they inevitably overlap with other views.

Moreover, when developing a view one may inherently make (possibly incorrect) as-

sumptions for some other views. Hence, a key challenge is to check for multi-view

consistency.

The main parts of this thesis is the overview of representative related work, and

the further study of the multi-view consistency problem for behavioral views. In the

literature review both theoretical and practical investigations for multi-view model-

ing are considered, and some related approaches are discussed as well. Then, the

multi-view consistency problem is investigated for the distinct settings of infinitary

languages, and discrete systems. The settings developed in [27, 26] are concrete in-

statiations of the generic formal framework introduced in [32]. Previous work solved

the consistency problem for discrete systems with respect to variable hidings as ab-

straction functions [32], and for regular or ω-regular languages separately, where the

abstraction functions used were projections [31].

In [27] the author studies the case of describing a system and its views by∞-regular

languages or equivalently by the relevant automata accepting such languages. A

model for accepting such languages is proposed, namely mixed automata. Mixed au-

tomata simply simulate a classical finite automaton and an ω-automaton using two

separate counterparts. In order to study the consistency problem, a systematic study

for mixed automata is necessary. Hence, the closure of the class of languages ac-

39

Conclusions and Perspectives

cepted by these automata is proved for the operations of union, intersection, comple-

mentation, as well as under projection and inverse projection. Then, exploiting these

results, and extending the techniques introduced in [31], the multi-view consistency

problem is studied. Moreover, a complexity result proves the PSPACE-completeness

for the problem in this setting.

In the sequel, in [26] the author studies the multi-view consistency problem for

symbolic discrete systems with respect to timing abstractions and in particular peri-

odic sampling abstraction functions. A discrete system is defined semantically by a

set of finite or infinite sequence of states, and the states are obtained as a valuation

of a finite set of variables to the set of Booleans [32]. Two cases of discrete sys-

tems are considered, fully-observable discrete systems which do not contain hidden

variables, and non-fully-observable discrete systems which contain both observable

and unobservable variables. Obviously, the latter category of systems encompasses

the former systems, and thus non-fully-observable discrete systems are used to de-

scribe systems and views. Then, a periodic sampling abstraction function is defined

by sampling the system’s behaviors once every T steps, where T denotes the period.

Inverse periodic samplings are also considered, and the closure of FOS and nFOS is

investigated. In particular, it is proved that both FOS and nFOS are closed under

periodic samplings, but only the latter are closed under inverse periodic samplings.

Then, three variants of the multi-view consitency problem are considered, with re-

spect to the type of the candidate witness system (semantic system, nFOS, or FOS).

In comparison to [32, 31, 27], the framework of [26] does not provide complete con-

ditions (both necessary and sufficient) for view consistency. Instead, it provides an

algorithm for detecting some view inconsistencies. The proposed algorithm is proved

to be sound, but incomplete, meaning that whenever the algorithm does not report

an inconsistency then the views may be consistent or not. This results from the fact

that the algorithm uses state based reachability to detect inconsistencies, and hence

the transition structure of the given views is neglected.

A limitation of [26] and [27] is that the views of a system are described with the

same formalism, mixed automata, and discrete systems respectively. However, dis-

tinct means are usually required for defining the views, since the latter represent

different aspects of the system. On the other hand, multi-view modeling techniques

often search for a common metamodel in order to translate the initially distinct mod-

els for the views. Then, one can easier detect inconsistencies among the views, which

otherwise would be intractable. Hence, one could use mixed automata or discrete

40

Conclusions and Perspectives

systems in future work, to serve as metamodels, for the design of some systems un-

der development. Future work also includes the investigation of open questions from

[26]. More precisely, one could develop a complete view consistency algorithm. An-

other open question is whether the problem of searching for a semantic witness sys-

tem to the consistency of a set of views, described by discrete systems (nFOS) and

obtained with periodic samplings, is equivalent with the problem of searching for a

nFOS witness system.

In general, possible directions for future research could tackle other abstraction

functions than projections or periodic samplings. Moreover, one could study hetero-

geneous instantiations of the multi-view modeling framework, i.e., using timed au-

tomata to capture behaviors in continuous time, or hybrid views in order to combine

the discrete and continuous framework. Apart from these theoretical directions, fu-

ture work includes implementations of the existing formal approaches [32, 31, 27, 26].

In particular, the framework developed in [26] could potentially serve for the model-

ing of embedded systems, where multi-periodicity is present. Different views could

model the system’s behavior on different periods, using discrete systems and peri-

odic samplings. Then, in case of absence of the original system, one could develop

techniques for checking for view consistency, and in positive cases for synthesizing a

model for the original system. Finally, it would be interesting to consider real case

studies that build upon the methodology of the generic formal framework for multi-

view modeling [32].

41

Conclusions and Perspectives

42

References

[1] G. Behrmann, A. David, K. G. Larsen, P. Pettersson, and W. Yi. Developing UPPAAL
over 15 years. Softw., Pract. Exper., 41(2):133–142, 2011.

[2] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and C. Sofronis.
Multiple viewpoint contract-based specification and design. In F. S. de Boer, M. M.
Bonsangue, S. Graf, and W. P. de Roever, editors, Formal Methods for Components and
Objects, 6th International Symposium, FMCO 2007, Amsterdam, The Netherlands, Oc-
tober 24-26, 2007, Revised Lectures, volume 5382 of Lecture Notes in Computer Science,
pages 200–225. Springer, 2007.

[3] P. Bhaduri and R. Venkatesh. Formal consistency of models in multi-view modelling.
In 2002 Workshop on Consistency Problems in UML-based Software Development, 2002,
pages 149–159, 2002.

[4] A. Bhave, B. H. Krogh, D. Garlan, and B. R. Schmerl. View consistency in architectures
for cyber-physical systems. In 2011 IEEE/ACM International Conference on Cyber-
Physical Systems, ICCPS 2011, Chicago, Illinois, USA, 12-14 April, 2011, pages 151–
160. IEEE Computer Society, 2011.

[5] D. Broman, E. A. Lee, S. Tripakis, and M. Törngren. Viewpoints, formalisms, languages,
and tools for cyber-physical systems. In C. Hardebolle, E. Syriani, J. Sprinkle, and
T. Mészáros, editors, Proceedings of the 6th International Workshop on Multi-Paradigm
Modeling, MPM@MoDELS 2012, Innsbruck, Austria, October 1-5, 2012, pages 49–54.
ACM, 2012.

[6] S. Clarke and E. L. A. Baniassad. Aspect-oriented analysis and design - the theme ap-
proach. Addison Wesley object technology series. Addison-Wesley, 2005.

[7] N. C. A. da Costa. On the theory of inconsistent formal systems. Notre Dame Journal of
Formal Logic, 15(4):497–510, 1974.

[8] L. de Alfaro and T. A. Henzinger. Interface theories for component-based design. In T. A.
Henzinger and C. M. Kirsch, editors, Embedded Software, First International Workshop,
EMSOFT 2001, Tahoe City, CA, USA, October, 8-10, 2001, Proceedings, volume 2211 of
Lecture Notes in Computer Science, pages 148–165. Springer, 2001.

[9] K. Diethers and M. Huhn. Vooduu: Verification of object-oriented designs using UP-
PAAL. In K. Jensen and A. Podelski, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, 10th International Conference, TACAS 2004, Held as Part

43

References

of the Joint European Conferences on Theory and Practice of Software, ETAPS 2004,
Barcelona, Spain, March 29 - April 2, 2004, Proceedings, volume 2988 of Lecture Notes
in Computer Science, pages 139–143. Springer, 2004.

[10] L. Doyen, T. A. Henzinger, B. Jobstmann, and T. Petrov. Interface theories with compo-
nent reuse. In L. de Alfaro and J. Palsberg, editors, Proceedings of the 8th ACM & IEEE
International conference on Embedded software, EMSOFT 2008, Atlanta, GA, USA, Oc-
tober 19-24, 2008, pages 79–88. ACM, 2008.

[11] G. Engels, R. Heckel, G. Taentzer, and H. Ehrig. A combined reference model- and view-
based approach to system specification. International Journal of Software Engineering
and Knowledge Engineering, 7(4):457–477, 1997.

[12] A. Finkelstein, D. M. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsis-
tency handling in multi-perspective specifications. In I. Sommerville and M. Paul, edi-
tors, Software Engineering - ESEC ’93, 4th European Software Engineering Conference,
Garmisch-Partenkirchen, Germany, September 13-17, 1993, Proceedings, volume 717 of
Lecture Notes in Computer Science, pages 84–99. Springer, 1993.

[13] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. Viewpoints: A
framework for integrating multiple perspectives in system development. International
Journal of Software Engineering and Knowledge Engineering, 2(1):31–57, 1992.

[14] M. Florian, A. Albert, W. Daniel, and B. Matthias. Multi-view modeling in sysml: The-
matic structuring for multiple thematic views. In A. M. Madni and B. W. Boehm, editors,
Proceedings of the Conference on Systems Engineering Research, CSER 2014, Redondo
Beach, CA, USA, March 20-22, 2014, volume 28 of Procedia Computer Science, pages
531–538. Elsevier, 2014.

[15] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman, 1979.

[16] T. A. Henzinger and D. Nickovic. Independent implementability of viewpoints. In R. Ca-
linescu and D. Garlan, editors, Large-Scale Complex IT Systems. Development, Opera-
tion and Management - 17th Monterey Workshop 2012, Oxford, UK, March 19-21, 2012,
Revised Selected Papers, volume 7539 of Lecture Notes in Computer Science, pages 380–
395. Springer, 2012.

[17] R. Isermann. Mechatronic Systems Fundamentals. Springer, 2005.

[18] D. Jackson. Software Abstractions - Logic, Language, and Analysis. MIT Press, 2006.

[19] E. K. Jackson, T. Levendovszky, and D. Balasubramanian. Automatically reasoning
about metamodeling. Software and System Modeling, 14(1):271–285, 2015.

[20] E. K. Jackson and J. Sztipanovits. Formalizing the structural semantics of domain-
specific modeling languages. Software and System Modeling, 8(4):451–478, 2009.

[21] A. Khecharem and R. De Simone. A Multi-View Co-Modeling and Co-Simulation Frame-
work for Heterogeneous Embedded Systems. In eSAME 2015 - Embedded software and
micro-electronics conference, Sophia Antipolis, France, Nov. 2015. eSAME.

44

References

[22] J. Kienzle, W. A. Abed, and J. Klein. Aspect-oriented multi-view modeling. In K. J.
Sullivan, A. Moreira, C. Schwanninger, and J. Gray, editors, Proceedings of the 8th In-
ternational Conference on Aspect-Oriented Software Development, AOSD 2009, Char-
lottesville, Virginia, USA, March 2-6, 2009, pages 87–98. ACM, 2009.

[23] F. Lopes and I. Fonseca. Networked embedded systems – example applications in the
educational environment. In K. Tanaka, editor, Embedded Systems - High Performance
Systems, Applications and Projects, pages 103–128. InTech, 2012.

[24] S. Maoz, J. O. Ringert, and B. Rumpe. Semantically configurable consistency analysis for
class and object diagrams. In J. Whittle, T. Clark, and T. Kühne, editors, Model Driven
Engineering Languages and Systems, 14th International Conference, MODELS 2011,
Wellington, New Zealand, October 16-21, 2011. Proceedings, volume 6981 of Lecture
Notes in Computer Science, pages 153–167. Springer, 2011.

[25] M. Persson, M. Törngren, A. Qamar, J. Westman, M. Biehl, S. Tripakis, H. Vangheluwe,
and J. Denil. A characterization of integrated multi-view modeling in the context of
embedded and cyber-physical systems. In Proceedings of the International Conference
on Embedded Software, EMSOFT 2013, Montreal, QC, Canada, September 29 - Oct. 4,
2013, pages 10:1–10:10. IEEE, 2013.

[26] M. Pittou and S. Tripakis. Checking multi-view consistency of discrete systems with re-
spect to periodic sampling abstractions. In The 13th International Conference on Formal
Aspects of Component Software (FACS), Besançon, France, 2016.

[27] M. Pittou and S. Tripakis. Multi-view consistency for infinitary regular languages. In
International Conference on Embedded Computer Systems: Architectures, MOdeling and
Simulation (SAMOS XVI), Samos, Greece, 2016.

[28] A. Rajhans and B. H. Krogh. Heterogeneous verification of cyber-physical systems using
behavior relations. In T. Dang and I. M. Mitchell, editors, Hybrid Systems: Computation
and Control (part of CPS Week 2012), HSCC’12, Beijing, China, April 17-19, 2012, pages
35–44. ACM, 2012.

[29] A. Rajhans and B. H. Krogh. Compositional heterogeneous abstraction. In C. Belta and
F. Ivancic, editors, Proceedings of the 16th international conference on Hybrid systems:
computation and control, HSCC 2013, April 8-11, 2013, Philadelphia, PA, USA, pages
253–262. ACM, 2013.

[30] R. Rajkumar, I. Lee, L. Sha, and J. A. Stankovic. Cyber-physical systems: the next
computing revolution. In S. S. Sapatnekar, editor, Proceedings of the 47th Design Au-
tomation Conference, DAC 2010, Anaheim, California, USA, July 13-18, 2010, pages
731–736. ACM, 2010.

[31] J. Reineke, C. Stergiou, and S. Tripakis. Basic problems in multi-view modeling. Sub-
mitted journal version of [32]. The submitted version has been made available by its
authors to the author of this thesis.

[32] J. Reineke and S. Tripakis. Basic problems in multi-view modeling. In TACAS, volume
8413 of LNCS, pages 217–232. Springer, 2014.

[33] J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning. Elsevier
and MIT Press, 2001.

45

References

[34] R. W. Schwanke and G. E. Kaiser. Living with inconsistency in large systems. In J. F. H.
Winkler, editor, Proceedings of the International Workshop on Software Version and Con-
figuration Control, January 27-29, 1988, Grassau, Germany, volume 30 of Berichte des
German Chapter of the ACM, pages 98–118. Teubner, 1988.

[35] A. A. Shah, A. A. Kerzhner, D. Schaefer, and C. J. J. Paredis. Multi-view modeling to sup-
port embedded systems engineering in sysml. In G. Engels, C. Lewerentz, W. Schäfer,
A. Schürr, and B. Westfechtel, editors, Graph Transformations and Model-Driven Engi-
neering - Essays Dedicated to Manfred Nagl on the Occasion of his 65th Birthday, volume
5765 of Lecture Notes in Computer Science, pages 580–601. Springer, 2010.

[36] A. P. Sistla, M. Y. Vardi, and P. Wolper. The Complementation Problem for Büchi Au-
tomata with Applications to Temporal Logic. In ICALP, volume 194 of LNCS, pages
465–474. Springer, 1985.

[37] S. Tripakis, B. Lickly, T. A. Henzinger, and E. A. Lee. A theory of synchronous relational
interfaces. ACM Trans. Program. Lang. Syst., 33(4):14:1–14:41, 2011.

[38] R. von Hanxleden, E. A. Lee, C. Motika, and H. Fuhrmann. Multi-view modeling and
pragmatics in 2020 - position paper on designing complex cyber-physical systems. In
R. Calinescu and D. Garlan, editors, Large-Scale Complex IT Systems. Development,
Operation and Management - 17th Monterey Workshop 2012, Oxford, UK, March 19-21,
2012, Revised Selected Papers, volume 7539 of Lecture Notes in Computer Science, pages
209–223. Springer, 2012.

46

Publication I

Maria Pittou and Stavros Tripakis. Multi-View Consistency for Infinitary Regular Lan-

guages. In XVI International Conference on Embedded Computer Systems: Architec-

tures, MOdeling, and Simulation (SAMOS 2016), Samos, Greece, July 2016. IEEE, 2016.

c© 2016. IEEE, 2016 .

Reprinted with permission.

47

Multi-View Consistency for Infinitary Regular Languages

Maria Pittou
Aalto University

Stavros Tripakis
Aalto University and UC Berkeley

Abstract—Multi-view modeling is a system design
methodology where different facets of a system are
modeled each with a separate model, called view. The
problem of view consistency then arises, namely, does
there exist a system which could generate a given set
of views? In previous work this problem has been
studied for the case of discrete systems such as finite
automata over finite words, on one hand, and finite
automata over infinite words, on the other hand. In
this work we study the problem for the case of mixed
automata, which accept both finite and infinite words,
and the corresponding infinitary regular languages.
This model is particularly useful in the multi-view
modeling setting, where views are obtained as projec-
tions of the system, and where these projections may
turn an infinite behavior into a finite one.

1. Introduction

Modeling provides an abstract formal description
of a system under development, and it has been
proved essential in system design. Obtaining a model
of a system efficiently allows analysis and detection
of failures, that can be resolved prior to experimental
work. The construction of complex systems, and
hence their modeling, is usually delegated to more
than one stakeholders, in order to capture the vari-
ous aspects of the systems and reduce the involved
complexity. In multi-view modeling in particular, the
different stakeholders obtain several models, the so
called views, of the same system [2], [14].

The views can be either behavioral or structural
since they may refer to the behavior or structure
of the system respectively, and they are usually
expressed in different semantics in order to describe
the various tasks of the system. As a result, the
views model only partial perspectives of the same
system, and therefore the aspects not considered by
each view are ignored. However, possible overlaps
among the views may give rise to inconsistencies.

This work has been partially supported by the Academy of Finland
and the National Science Foundation (awards #1329759 and
#1139138).

One of the main challenges in multi-view model-
ing is to ensure consistency among the different
views [14]. Other problems related to multi-view
modeling include the construction (or synthesis [14])
of a complete system given its views, and also view
traceability and reuse [9]. For general discussions on
multi-view modeling the reader is referred to [2], [9],
and for a formal treatment to [13], [14].

In this work we are interested in solving the
consistency problem for the behavioral views of a
system under construction. The behavior of a system
can be defined in general within any global universe
while the views may be obtained by some kind
of transformation, like abstraction functions, to the
system’s behavior. [14] defines a generic multi-view
modeling framework and instantiates that framework
for the case of symbolic discrete systems. In [13],
the behavior of a given system and of its views is de-
scribed by languages in general, regular languages or
ω-regular languages. Projections are used as abstrac-
tion functions to obtain the views from the system,
and inverse projections for the other direction. Even
though the views of a system may be defined only
by regular or ω-regular languages, the application of
projections and inverse projections may result in an
∞-regular language (infinitary regular language, i.e.,
a language containing both finite and infinite words)
for describing the system’s behavior. Moreover, it
may be the case that the different views of the system
can be described only by an ∞-regular language.
Hence, in this paper we consider the case of de-
scribing the behavior of a system and its views by
∞-regular languages or equivalently by the relevant
automata accepting such languages, which we also
study in this paper.

In summary, the main contributions of this pa-
per are three: first, we propose a model of (non-
deterministic) mixed automata accepting infinitary
languages; second, we show that mixed automata
are closed under the usual set-theoretic operations
(union, intersection, complementation), as well as
under projection and inverse projection; third, we
use these results to solve the multi-view consistency
problem in the infinitary language setting.

2. Related work

Multi-view modeling is a well known problem,
related to the construction of complex systems. Ex-
isting literature mainly refers to structural views of
a system, e.g., see [1], [4]. However, our interest
is in describing a system and its views as sets
of behaviors. Behavioral views are investigated for
instance in [11], [12] within the context of cyber
physical systems. In particular, the authors address
the problem of heterogeneity in such complex sys-
tems in order to aid their verification, and consider
behavior relations for the different semantic models
used to decribe the different aspects of the same
system.

Our work follows the framework proposed
in [14] where the behavioral view consistency prob-
lem is defined formally. [14] provides a generic
framework where both the system and views can
be defined within any global universe and can be
related by any kind of abstraction functions. [14]
also includes a notion of conformance to capture
faithfulness of a view w.r.t. a system. The problems
of view consistency, orthogonality and reduction are
also defined. The aforementioned can then be instan-
tiated for versatile formalisms of a system, its views
and abstraction functions. In [14] the framework
is instatiated for symbolic discrete systems, while
recently it has also been extended to languages and
automata [13], but not infinitary languages, which is
the focus of this paper.

Automata accepting a mix of finite and infi-
nite words have been studied earlier. [10] stud-
ies weighted such automata for the fuzzy semiring
(weighted automata form the quantitative extension
of the classical finite state automata). In [3] and
[7] one can find futher works for the model of
[10]. Moreover, in [15] there is the definition of an
(unweighted) finite state automaton that accepts both
finite and infinite words, but no further results for
this class of automata are presented. In this paper,
we consider a definition different, albeit semantically
equivalent to the one of [15], and we provide a
systematic study for this class which is needed for
our multi-view framework.

3. Background

3.1. Languages over finite and infinite words

Alphabet, Finite words, Infinite words: A finite
alphabet Σ is a non-empty finite set of symbols. Σ∗

is the set of all finite words over Σ and Σω is the
set of all infinite words over Σ. The set of all words
over Σ is Σ∞, i.e., Σ∞ = Σ∗ ∪ Σω.

Languages: A ∗-language (star language) L on
Σ is a set of finite words, subset of Σ∗, i.e., L ⊆ Σ∗.
An ω-language (omega language) L on Σ is a set of
infinite words, subset of Σω, i.e., L ⊆ Σω. An ∞-
language (infinitary language) L is a set of finite or
infinite words, subset of Σ∞, i.e., L ⊆ Σ∞.

3.2. Automata over finite and infinite words

Nondeterministic finite automaton: Let A =
(QA,Σ, IA,∆A, FA) be a nondeterministic finite
state automaton (NFA for short) where QA is a
finite set of states, Σ is a finite alphabet, IA ⊆ QA

is the set of initial states, ∆A ⊆ QA × Σ × QA

is a transition function, and FA ⊆ QA is the
set of final states. A path PA

w of A over a finite
word w = w0 . . . wn−1 ∈ Σ∗ is a finite sequence
PA
w : (q0A, w0, q1A) . . . (qn−1A, wn−1, qnA) such that
q0A ∈ IA is the initial state and (qiA, wi, qi+1A) ∈
∆A for every 0 ≤ i < n. A path PA

w of A
over a finite word w ∈ Σ∗ is called accepting if
additionally qnA ∈ FA. A finite word w ∈ Σ∗ is
accepted by A if there is an accepting path PA

w

of A over w. The language accepted by A, also
called behavior of A, written L(A), is the set of
finite words accepted by A: L(A) = {w ∈ Σ∗ |
∃ accepting path PA

w of A over w}. A language L
is called regular if there exists a nondeterministic
finite automaton A over Σ accepting L, i.e., such
that L = L(A).

Example 1. Consider the NFA A shown in Figure 1,
A = ({q0A, q1A}, {a, b}, {q0A},∆A, {q1A}), with
∆A = {(q0A, a, q0A), (q0A, a, q1A) , (q1A, b, q1A)}.
The language accepted by A is L(A) = a+b∗, where
a+ denotes a non-empty finite sequence of the letter
a and b∗ denotes a (possibly empty) finite sequence
of the letter b.

q0A q1A

a

a

b

A:

Figure 1: NFA example.

Union of NFA: Let Ai = (Qi
A,Σ, I

i
A,∆

i
A, F

i
A),

for i = 1, 2, be two NFA. The union of A1 and
A2 is the NFA A1 ∪ A2 = (QA,Σ, IA,∆A, FA),
with QA = Q1

A ∪ Q2
A, IA = I1

A ∪ I2
A, FA = F 1

A ∪
F 2
A and the transition function ∆A ⊆ QA × Σ ×
QA defined by ∆A = {(qA, σ, q′A) | (qA, σ, q

′
A) ∈

∆1
A or (qA, σ, q

′
A) ∈ ∆2

A}.
Intersection of NFA: The intersection of A1 and

A2 is the NFA A1 × A2 = (QA,Σ, IA,∆A, FA),
with QA = Q1

A×Q2
A, IA = I1

A×I2
A, FA = F 1

A×F 2
A

and the transition function ∆A ⊆ QA × Σ ×

QA defined by ∆A = {((q1
A, q

2
A), σ, (q′1A , q

′2
A)) |

(q1
A, σ, q

′1
A) ∈ ∆1

A and (q2
A, σ, q

′2
A) ∈ ∆2

A}.
It is well known that L(A1 ∪ A2) = L(A1) ∪

L(A2) and L(A1 ×A2) = L(A1) ∩ L(A2) [6].
Closure properties of regular languages: The

class of regular languages is closed under union,
intersection, and complementation [6], as well as un-
der projections [13], which will be presented below.

Nondeterministic Büchi automaton: Let B =
(QB ,Σ, IB ,∆B , CB) be a nondeterministic Büchi
automaton (NBA for short) where QB is a finite
set of states, Σ is a finite alphabet, IB ⊆ QB

is the set of initial states, ∆B ⊆ QB × Σ × QB

is a transition function, and CB ⊆ QB is the
set of final states. A path PB

w of B over an in-
finite word w = w0w1 . . . ∈ Σω is an infi-
nite sequence PB

w : (q0B , w0, q1B)(q1B , w1, q2B) . . .
such that q0B ∈ IB is the initial state and
(qiB , wi, qi+1B) ∈ ∆B for every i ≥ 0. For every
path PB

w of B over an infinite word w ∈ Σω we
denote with Inf

(
PB
w

)
the set of states occurring

an infinite number of times along PB
w . Then, a

path PB
w of B over w ∈ Σω is called accepting if

additionally Inf(PB
w) ∩ CB 6= ∅. An infinite word

w ∈ Σω is accepted by B if there is an accepting
path PB

w of B over w. The language accepted by
B, also called behavior of B, written L(B), is the
set of infinite words accepted by B: L(B) = {w ∈
Σω | ∃ infinite accepting path PB

w of B over w}. A
language L is called ω-regular if there exists a non-
deterministic Büchi automaton B over Σ accepting
L, i.e., L = L(B).

Example 2. Consider the NBA of Figure 2,
B = ({q0B , q1B}, {a, b}, {q0B},∆B , {q1B}) with
∆B = {(q0B , b, q0B), (q0B , b, q1B), (q1B , a, q0B)}.
Then the language accepted by B is L(B) =
(b+ab+)ω.

q0B q1B

b

a

b

B:

Figure 2: NBA example.

Union of NBA: Consider two NBA Bi =
(Qi

B ,Σ, I
i
B ,∆

i
B , C

i
B) for i = 1, 2. The union of B1

and B2 is a NBA B1∪B2 = (QB ,Σ, IB ,∆B , CB),
with QB = Q1

B∪Q2
B , IB = I1

B∪I2
B , CB = C1

B∪C2
B

and ∆B ⊆ QB × Σ × QB defined by ∆B =
{(qB , σ, q′B) | (qB , σ, q

′
B) ∈ ∆1

B or (qB , σ, q
′
B) ∈

∆2
B}.

Intersection of NBA: The intersection of B1 and
B2 is the NBA B1 × B2 = (QB ,Σ, IB ,∆B , CB),
with QB = Q1

B × Q2
B × {1, 2},

IB = I1
B × I2

B × {1}, CB = Q1
B × C2

B × {2}
and ∆B ⊆ QB × Σ × QB is defined by

∆B = {((q1
B , q

2
B , 1), σ, (q′1B , q

′2
B , j)) | (q1

B , σ, q
′1
B) ∈

∆1
B and (q2

B , σ, q
′2
B) ∈ ∆2

B and if q1
B ∈ C1

B , j =
2 else j = 1} ∪ {((q1

B , q
2
B , 2), σ, (q′1B , q

′2
B , j)) |

(q1
B , σ, q

′1
B) ∈ ∆1

B and (q2
B , σ, q

′2
B) ∈

∆2
B and if q2

B ∈ C2
B j = 1 else j = 2}.

Then, it can be proved that L(B1 ∪ B2) =
L(B1)∪L(B2) and L(B1×B2) = L(B1)∩L(B2).

Closure properties of ω-regular languages: The
class of ω-regular languages is closed under union,
intersection, complementation [8], infinite projec-
tion, and inverse projection [13].

3.3. Projections and inverse projections

Projection of words and languages: Consider
two alphabets Σ and Σ′ such that Σ′ ⊆ Σ. The pro-
jection of a word w ∈ Σ∞ onto the subalphabet Σ′,
is performed by the function ΠΣ→Σ′ : Σ∞ → Σ′∞

defined as follows (where · denotes word concate-
nation):

ΠΣ→Σ′(w) =





ε if w = ε

σ ·ΠΣ→Σ′(u) if w = σ · u and σ ∈ Σ′

ΠΣ→Σ′(u) if w = σ · u and σ 6∈ Σ′

The projection of a finite word is always a finite
word while the projection of an infinite word may
be either a finite or infinite word. For example, if
Σ = {a, b} and Σ′ = {b}, then for w1 = abab ∈ Σ∗

we have ΠΣ→Σ′(w1) = bb ∈ Σ′∗ while for w2 =
baω ∈ Σω we have ΠΣ→Σ′(w2) = b ∈ Σ′∗.
The projection of a language L ⊆ Σ∞ is defined
as ΠΣ→Σ′(L) = {ΠΣ→Σ′(w) | w ∈ L}. The
projection of a ∗-language is always a ∗-language,
while the projection of an ω-language is generally
an ∞-language. For example, if Σ = {b, c} and
Σ′ = {b}, then for L1 = cb∗c ⊆ Σ∗, we obtain
that ΠΣ→Σ′(L1) = b∗ ⊆ Σ′∗, while for L2 =
b∗cω ∪ c∗bω ⊆ Σω, we obtain that ΠΣ→Σ′(L2) =
b∗ ∪ bω ⊆ Σ′∞.

Inverse projection of words and languages: Con-
sider two alphabets Σ and Σ′ such that Σ′ ⊇ Σ. We
define the inverse projection of w ∈ Σ∞ onto Σ′ as
the set Π−1

Σ′←Σ(w) = {u over Σ′ | ΠΣ′→Σ(u) = w}.
The inverse projection of a finite word can be either
a finite or infinite word, while the inverse projection
of an infinite word is always an infinite word. For
example, if Σ = {b} and Σ′ = {a, b}, then for
w1 = b ∈ Σ∗ we obtain that Π−1

Σ′←Σ(w1) =
a∗b(a∗ ∪ aω) ⊆ Σ′∞, and for w2 = bω ∈ Σω we
obtain that Π−1

Σ′←Σ(w2) = a∗(a∗ba∗)ω ⊆ Σ′ω.
Moreover, the inverse projection of a language

L ⊆ Σ∞ is defined as Π−1
Σ′←Σ(L) = {w over

Σ′ | ΠΣ′→Σ(w) ∈ L}. The inverse projection
of an ω-language is always an ω-language, while

the inverse projection of a ∗-language is generally
an ∞-language. For instance, if Σ = {b} and
Σ′ = {b, c}, then for L1 = b∗ ⊆ Σ∗, we obtain
that Π−1

Σ′←Σ(L1) = c∗b∗(c∗ ∪ cω) ⊆ Σ′∞, while for
L2 = (bb)ω ⊆ Σω, we obtain that ΠΣ′←Σ(L2) =
c∗(c∗bc∗bc∗)ω ⊆ Σ′ω.

More examples of projections and inverse projec-
tions of languages are given below where we discuss
how these operations are implemented on automata.

Lemma 1. 1. The projection of the inverse projec-
tion of a language yields the original language, i.e.,:
for every language L ⊆ Σ∞ and Σ ⊆ Σ′ it holds
that ΠΣ′→Σ(Π−1

Σ′←Σ(L)) = L.
2. The inverse projection of the projection of a

language generally yields a superset of the original
language: for every language L ⊆ Σ∞ and Σ′ ⊆ Σ
it holds that Π−1

Σ←Σ′(ΠΣ→Σ′(L)) ⊇ L.

Next, we show how the projection and inverse pro-
jection operations can be implemented on NFA and
NBA. We omit the details and correctness proofs of
these constructions, which can be found on [13], and
we rather illustrate the results with some examples.

Projection of NFA: Consider two alphabets
Σ and Σ′ such that Σ′ ⊆ Σ, and a NFA
A = (QA,Σ, IA,∆A, FA) over Σ. The projection
of A on Σ′ denoted by ΠΣ→Σ′(A), is a NFA
(QA,Σ

′, IA,∆′A, FA) with ∆′A = {(qA, σ, q′A) |
σ ∈ Σ′ and (qA, σ, q

′
A) ∈ ∆A} ∪ {(qA, ε, q′A) | σ ∈

Σ \Σ′ and (qA, σ, q
′
A) ∈ ∆A}. An example of NFA

projection is shown in Figure 3.

q0A q1A

a

a

b

A: q0A q1A

a

a

ε

A′:

Figure 3: Example of NFA projection. NFA A over
Σ = {a, b} and NFA A′ = ΠΣ→{a}(A).

Projection of NBA: Let Σ′ ⊆ Σ and consider
a NBA B = (QB ,Σ, IB ,∆B , CB) over Σ. Since
the projection of a ω-language can contain both
finite and infinite words, two kinds of projections
are obtained, the NBA finite and infinite projection.
The NBA finite projection of B on Σ′, denoted by
Π∗Σ→Σ′(B), is a NFA (QB ,Σ

′, IB , ∆̄B , F̄B) where
∆̄B = {(qB , σ, q′B) | σ ∈ Σ′ and (qB , σ, q

′
B) ∈

∆B} ∪ {(qB , ε, q′B) | σ ∈ Σ \ Σ′ and (qB , σ, q
′
B) ∈

∆B}, and F̄B = {qB | qB ∈ CB and ∃w ∈
(Σ \ Σ′)+ : (qB , σ, qB) ∈ ∆∗B}, where ∆∗B de-
notes the reflexive and transitive closure of ∆B . The
NBA infinite projection of B on Σ′, denoted by
Πω

Σ→Σ′(B), is a NBA (QB ,Σ
′, IB ,∆′B , CB) with

∆′B = {(qB , σ, q′B) | σ ∈ Σ′ and ∃w ∈ Σ∗ :
ΠΣ→Σ′(w) = σ and (qB , w, q

′
B) ∈ ∆∗B}. An ex-

ample of NBA projection is shown in Figure 4.

q0B q1B

b

a

b

B: q0B q1B

ε

a

ε

B1:

q0B q1B

a

a

a

a

B2:

Figure 4: Example of NBA projection. NBA B over
Σ = {a, b}, NFA B1 = Π∗Σ→{a}(B), and NBA
B2 = Πω

Σ→{a}(B).

NFA inverse projection: Let Σ′ ⊇ Σ and
consider a NFA A = (QA,Σ, IA,∆A, FA) over
Σ. Since the inverse projection of a ∗-language
can contain both finite and infinite words, we
consider the relevant ∗-part and ω-part of the
inverse projection of A. In particular, the for-
mer is denoted by Π−1,∗

Σ′←Σ(A) and is a NFA
(QA,Σ

′, ∆̄A, IA, FA), where ∆̄A = {(qA, σ, q′A) |
σ ∈ Σ and (qA, σ, q

′
A) ∈ ∆A} ∪ {(qA, σ, qA) |

qA ∈ QA and σ ∈ Σ′ \ Σ}. The infinite, ω-part of
the inverse projection is denoted by Π−1,ω

Σ′←Σ(A) and
is a NBA (QA ∪ {qωA},Σ′, IA,∆′A, {qωA}) where
∆′A = {(qA, σ, q′A) | σ ∈ Σ and (qA, σ, q

′
A) ∈

∆A} ∪ {(qA, σ, qA) | qA ∈ QA and σ ∈ Σ′ \
Σ} ∪ {(qA, σ, qωA) | qA ∈ FA and σ ∈ Σ′ \ Σ} ∪
{(qωA, σ, qωA) | σ ∈ Σ′ \ Σ}. An example of NFA
inverse projection is shown in Figure 5.

q0A q1A

a

a

b

A: q0A q1A

a, c

a

b, c

A1:

q0A q1A qωA

a, c

a

b, c

c

c

A2:

Figure 5: Example of NFA inverse projection. NFA
A over Σ = {a, b}. NFA A1 = Π−1,∗

{a,b,c}←Σ(A), and
NBA A2 = Π−1,ω

{a,b,c}←Σ(A).

NBA inverse projection: Let Σ′ ⊇ Σ and consider
a NBA A = (QB ,Σ, IB ,∆B , CB) over Σ. The in-
verse projection of B on Σ′ denoted by Π−1

Σ′←Σ(B),
is a NBA (Q′B ,Σ

′, IB ,∆′B , CB) where Q′B = QB∪
{q̂B | qB ∈ CB} and ∆′B = ∆B ∪ {(q̂B , σ, q′B) |
qB ∈ CB and (qB , σ, q

′
B) ∈ ∆B} ∪ {(qB , σ, q̂B) |

qB ∈ CB and σ ∈ Σ′ \ Σ} ∪ {(q̂B , σ, q̂B) | qB ∈
CB and σ ∈ Σ′ \ Σ} ∪ {(qB , σ, qB) | qB ∈ QB \
CB and σ ∈ Σ′ \ Σ}. An example of NBA inverse
projection is shown in Figure 6.

3.4. Multi-view modeling

For our multi-view modeling framework we con-
sider a system and its views as sets of behaviors [14].

q0B q1B

b

a

b

B:

q0B q1B ˆq1B

b

a

b, c a

c

c

B′:

Figure 6: Example of NBA inverse projection. NBA
B over Σ = {a, b} and NBA B′ = Π−1

{a,b,c}←Σ(B).

Formally, a system S over a domain of behaviors U ,
is a subset of U : S ⊆ U . A view is intuitively an
incomplete picture of a system, and may be obtained
by some kind of transformation of the system behav-
iors into (incomplete) behaviors in another domain.
Following [14], such a transformation is defined by
means of an abstraction function a : U → D, where
D is the view domain. A view V over view domain
D, is a subset of D: V ⊆ D.

Let us now state the multi-view consistency
problem as defined in [14]. A set of views
V1, . . . ,Vn over view domains D1, . . . ,Dn respec-
tively, are consistent with respect to a set of abstrac-
tion functions a1, ..., an, if there exists a system S
over U so that Vi = ai(S), for all i = 1, ..., n.
We call such a system S a witness system to the
consistency of V1, . . . ,Vn. Obviously, if there is no
such system, then we conclude that the views are
inconsistent.

We consider the setting where a system and its
views are described by languages over finite and
infinite words. Specifically, two languages L1, L2

(describing two views) on alphabets Σ1,Σ2, respec-
tively, are consistent if there exists language L on
some alphabet Σ such that ΠΣ→Σi(L) = Li, for
i = 1, 2. It is not necessary that the alphabet Σ is
known, however, it should be a superset of Σ1∪Σ2.
It is in fact proved in [13] that it suffices to con-
sider only Σ = Σ1 ∪ Σ2, and to check whether
L] = Π−1

Σ1∪Σ2←Σ1(L1)∩Π−1
Σ1∪Σ2←Σ2(L2) is a valid

witness:

Theorem 1. [13] Let L1 and L2 be two languages
on alphabets Σ1 and Σ2 respectively, and let L] =
Π−1

Σ1∪Σ2←Σ1(L1) ∩Π−1
Σ1∪Σ2←Σ2(L2). Then:

1) L1 and L2 are consistent if and only if there
exists language L on alphabet Σ1∪Σ2, such that
ΠΣ1∪Σ2→Σi(L) = Li, for i = 1, 2.

2) Let L be a language on Σ1∪Σ2 that is a witness
to the consistency of L1 and L2. Then: (a) If both
L1 and L2 are ∗-languages, then L is also a ∗-
language, i.e., L ⊆ Σ∗. (b) If both L1 and L2

are ω-languages, then L is also a ω-language,
i.e., L ⊆ Σω.

3) L1 and L2 are consistent if and only if
ΠΣ1∪Σ2→Σi(L]) ⊇ Li, for i = 1, 2.

4) If L1 and L2 are consistent then L] is a witness
to their consistency, i.e., ΠΣ1∪Σ2→Σi(L]) = Li,
for i = 1, 2. Moreover, L] is the greatest such
witness, that is, any other witness L is such that
L ⊆ L].

4. Multi-view consistency for ∞-regular
languages

In this paper, we define the behavior of a system
and its views by ∞-regular languages, that is, by
∞-languages accepted by a type of finite automata
that we call mixed automata, and which will be de-
fined below. We consider projections as abstraction
functions, and we propose algorithmic solutions to
the view consistency problem in this setting.

4.1. Mixed automata and ∞-regular lan-
guages

In order to solve the consistency problem for∞-
languages, we need the notion of automata that can
accept an infinitary language, i.e., a language that
may contain both finite and infinite words. As we
have already mentioned in Section 2, such automata
have been considered in the literature, but a sys-
tematic study has been lacking. [15] defines an au-
tomaton with two accepting conditions, so that it can
accept both finite and infinite words. However, [15]
provides no further results for this type of automata,
apart from their definition. In this paper, we propose
an even more intuitive definition of an automaton
accepting an infinitary language, the so called mixed
automaton, which is a pair of a finite automaton
and an ω-automaton. We fix the ω-automaton to be
a Büchi automaton, and we consider in particular
nondeterministic mixed automata.

One should observe that the notion of a pair
automaton is equivalent with the definition of a
single automaton with two accepting sets [15]. In-
deed, from the latter model one can obtain a pair
automaton by making two distinct copies of the
single automaton, and associating the appropriate
accepting set of each element of the pair. Vice-versa,
from a mixed automaton, i.e., from a pair automaton,
one can construct a single automaton by taking the
product of the two automata in the pair.

Nondeterministic Mixed Automaton: Let Σ de-
note a finite alphabet. A nondeterministic mixed
automaton (NXA for short) over the alphabet Σ
is defined as a pair M = (A,B) where A =
(QA,Σ, IA,∆A, FA) is a nondeterministic finite
state automaton and B = (QB ,Σ, IB ,∆B , CB) is a

nondeterministic Büchi automaton, with QA∩QB =
∅. The language L(M) of the mixed automaton M
is defined by L(M) = L(A)∪L(B) = {w ∈ Σ∗ | w
is accepted by A} ∪ {w ∈ Σω | w is accepted by
B} = {w ∈ Σ∞ | w is accepted by A or B}. It
should be clear that this is disjoint union since A
accepts only finite words over Σ and B accepts only
infinite words over Σ. A language L ⊆ Σ∞ is called
∞-regular, if there exists a mixed automaton M such
that L (M) = L. Moreover, every NXA M over Σ
can be considered either as nondeterministic finite
automaton whenever CB = ∅, or as a nondetermin-
istic Büchi automaton, whenever FA = ∅.
Example 3. Consider the NXA
M = (A,B) where A =
({q0A, q1A}, {a, b}, {q0A},∆A, {q1A}) with ∆A =
{(q0A, a, q0A), (q0A, a, q1A), (q1A, b, q1A)}, and
B = ({q0B , q1B}, {a, b}, {q0B},∆B , {q1B}) with
∆B = {(q0B , b, q0B), (q0B , b, q1B), (q1B , a, q0B)},
as shown in Figure 7. Then the language accepted
by M is L(M) = L(A)∪L(B) = a+b∗∪(b+ab+)ω.

q0A q1A

a

a

b

A: q0B q1B

b

a

b

B:

Figure 7: NXA example with NFA A and NBA B.

Throughout the paper, when we refer to mixed au-
tomata we mean nondeterministic mixed automata.

4.2. Closure properties of ∞-regular lan-
guages

We now show that the class of ∞-regular lan-
guages is closed under union, intersection, comple-
mentation, projection, and inverse projection.

Union of mixed automata: Consider two NXA
M i =

(
Ai, Bi

)
where Ai =

(
Qi

A,Σ, I
i
A,∆

i
A, F

i
A

)

and Bi =
(
Qi

B ,Σ, I
i
B ,∆

i
B , C

i
B

)
, for i = 1, 2 and(

Q1
A ∪Q1

B

)
∩
(
Q2

A ∪Q2
B

)
= ∅. The union of M1

and M2 is a NXA M = (A,B) where: A = A1 ∪
A2 = (QA,Σ, IA,∆A, FA) and B = B1 ∪ B2 =
(QB ,Σ, IB ,∆B , CB).

Proposition 1. The class of∞-regular languages is
closed under union.

Proof. One can observe that L(M) =
L(A) ∪ L(B) =

(
L
(
A1
)
∪ L

(
A2)
))
∪(

L
(
B1
)
∪ L

(
B2
))

=
(
L
(
A1
)
∪ L

(
B1
))
∪(

L
(
A2
)
∪ L

(
B2
))

= L
(
M1
)
∪ L

(
M2
)
, which

completes our proof.

Intersection of mixed automata:
Consider two NXA M i =

(
Ai, Bi

)

where Ai =
(
Qi

A,Σ, I
i
A,∆

i
A, F

i
A

)
and

Bi =
(
Qi

B ,Σ, I
i
B ,∆

i
B , C

i
B

)
, for i = 1, 2 and(

Q1
A ∪Q1

B

)
∩
(
Q2

A ∪Q2
B

)
= ∅. The intersection

of M1 and M2 is a NXA M = (A,B) where:
A = A1 × A2 = (QA,Σ, IA,∆A, FA) and
B = B1 ×B2 = (QB ,Σ, IB ,∆B , CB).

Proposition 2. The class of∞-regular languages is
closed under intersection.

Proof. We observe that L
(
M1
)
∩ L

(
M2
)

=(
L
(
A1
)
∩ L

(
A2
))

∪
(
L
(
A1
)
∩ L

(
B2
))

∪(
L
(
B1
)
∩ L

(
A2
))
∪
(
L
(
B1
)
∩ L

(
B2
))

=(
L
(
A1
)
∩ L

(
A2
))

∪
(
L
(
B1
)
∩ L

(
B2
))

.
Moreover, by construction of B, we
have that L(M) =

(
L
(
A1
)
∩ L

(
A2
))
∪(

L
(
B1
)
∩ L

(
B2
))

= L
(
M1
)
∩ L

(
M2
)
, which

completes our proof.

Complementation of mixed automata: Consider a
NXA M = (A,B) where A = (QA,Σ, IA,∆A, FA)
and B = (QB ,Σ, IB ,∆B , CB), and QA ∩QB = ∅.
The complement of M is a NXA M c = (Ac, Bc),
where Ac is the complement automaton of the NFA
A and Bc is the complement automaton of the NBA
B. (One can find the relevant constructions for Ac

and Bc in [6] and [17] respectively).

Proposition 3. The class of∞-regular languages is
closed under complementation.

Proof. We have that L(M c) = L(Ac) ∪ L(Bc) =
(Σ∗\L(A))∪(Σω\L(B)) = Σ∞\(L(A)∪L(B)) =
Σ∞ \ L(M), and our proof is completed.

Proposition 4. The emptiness problem of an ∞-
regular language is decidable.

Proof. The proof can be obtained by decidability of
the emptiness problem for both regular and ω-regular
languages.

Proposition 5. The equality problem of two ∞-
regular languages is decidable.

Proof. The proof can be obtained by decidability of
the equality problem for both regular and ω-regular
languages.

4.3. Projections and inverse projections on
mixed automata

In the sequel, we consider the closure of ∞-
regular languages over projections and inverse pro-
jections. For this, we need to obtain the construc-
tions of these operations on NXA, and we do so
by using the relevant constructions for NFA and
NBA as defined in 3.3. It should be clear that since
mixed automata accept ∞-regular languages, both

the projection and inverse projection of an∞-regular
language is always an ∞-regular language.

Projection of NXA: Let Σ,Σ′ denote two finite
alphabets such that Σ′ ⊆ Σ and consider the NXA
M = (A,B) where A = (QA,Σ, IA,∆A, FA) and
B = (QB ,Σ, IB ,∆B , CB), with QA∩QB = ∅. The
projection of M on Σ′, denoted by ΠΣ→Σ′(M) is
a NXA M ′ = (A′, B′) over Σ′, where A′ = A1 ∪
A2, A1 = ΠΣ→Σ′(A) and A2 = Π∗Σ→Σ′(B), and
B′ = Πω

Σ→Σ′(B). An example of NXA projection
is shown in Figure 8.

q0AA1: q1A

a

a

ε

q0B q1B

ε

a

ε

A2:

q0B q1B

a

a

a

a

B′:

Figure 8: Example of NXA projection ΠΣ→{a}(M),
where M is the NXA of the Example 3.

Proposition 6. The class of∞-regular languages is
closed under projections.

Proof. By [13], it holds that L (ΠΣ→Σ′ (A)) =
ΠΣ→Σ′(L(A)), L (Π∗Σ→Σ′ (B)) = ΠΣ→Σ′(L(B)) ∩
Σ′∗, and L (Πω

Σ→Σ′ (B)) = ΠΣ→Σ′(L(B)) ∩ Σ′ω.
Then, L(M ′) = L (ΠΣ→Σ′ (M)) =
L(A′) ∪ L(B′) =

(
L(A1 ∪A2)

)
∪ L(B′) =

L(A1) ∪ L(A2) ∪ L(B′) = L (ΠΣ→Σ′ (A)) ∪
L (Π∗Σ→Σ′ (B)) ∪ L (Πω

Σ→Σ′ (B)) =
ΠΣ→Σ′(L(A)) ∪ (ΠΣ→Σ′(L(B)) ∩ Σ′∗) ∪
(ΠΣ→Σ′(L(B)) ∩ Σ′ω) = ΠΣ→Σ′(L(M)).

NXA inverse projection: Let Σ,Σ′ denote two
finite alphabets such that Σ′ ⊇ Σ and consider the
NXA M = (A,B) where A = (QA,Σ, IA,∆A, FA)
and B = (QB ,Σ, IB ,∆B , CB), with QA∩QB = ∅.
The inverse projection of M on Σ′, denoted by
Π−1

Σ′←Σ(M) is a NXA M ′ = (A′, B′) over Σ′

such that A′ = Π−1,∗
Σ′←Σ(A), and B′ = B1 ∪ B2

where B1 = Π−1,ω
Σ′←Σ(A) and B2 = Π−1

Σ′←Σ(B).
An example of NXA inverse projection is shown
in Figure 9.

Proposition 7. The class of∞-regular languages is
closed under inverse projections.

Proof. By [13], it holds that
L
(

Π−1,∗
Σ′←Σ (A)

)
= Π−1

Σ′←Σ(L(A)) ∩ Σ′∗,

L
(

Π−1,ω
Σ′←Σ (A)

)
= Π−1

Σ′←Σ(L(A)) ∩ Σ′ω,

and L
(
Π−1

Σ′←Σ (B)
)

= Π−1
Σ′←Σ(L(B)). Hence,

L(M ′) = L
(
Π−1

Σ′←Σ (M)
)

= L(A′) ∪ L(B′) =
L(A′)∪

(
L(B1 ∪B2)

)
= L(A′)∪L(B1)∪L(B2) =

q0A q1A

a, c

a

b, c

A′: q0A q1A qωA

a, c

a

b, c

c

c

B1:

q0B q1B ˆq1B

b

a

b, c a

c

c

B2:

Figure 9: Example of NXA inverse projection
Π−1
{a,b,c}←Σ(M), where M is the NXA of the Ex-

ample 3.

L
(

Π−1,∗
Σ′←Σ (A)

)
∪ L

(
Π−1,ω

Σ′←Σ (A)
)

∪
L
(
Π−1

Σ′←Σ (B)
)

=
(
Π−1

Σ′←Σ(L(A)) ∩ Σ′∗
)
∪(

Π−1
Σ′←Σ(L(A)) ∩ Σ′ω

)
∪ Π−1

Σ′←Σ(L(B)) =
Π−1

Σ′←Σ(L(M)).

4.4. Solution to the multi-view consistency
problem

Checking consistency for infinitary languages:
We consider the setting discussed in 3.4 and we
solve the view consistency problem, given that the
views of a certain system are described by∞-regular
languages. We obtain two variants of the problem,
and then we prove that they are equivalent:

Problem 1: Consider two NXA M i =
(
Ai, Bi

)

over the alphabet Σi for i = 1, 2 respectively.
Check whether L(M1) and L(M2) are consistent,
i.e., whether there exists an ∞-language L over the
alphabet Σ = Σ1 ∪ Σ2 such that ΠΣ1∪Σ2→Σ1(L) =
L
(
M1
)

and ΠΣ1∪Σ2→Σ2(L) = L
(
M2
)
.

Problem 2: Consider two NXA M i =
(
Ai, Bi

)

over the alphabet Σi for i = 1, 2 respectively. Check
whether there exists a NXA M over the alphabet
Σ = Σ1 ∪ Σ2 such that ΠΣ1∪Σ2→Σ1(L (M)) =
L
(
M1
)

and ΠΣ1∪Σ2→Σ2(L (M)) = L
(
M2
)
.

Theorem 2. There is a solution to Problem 1 if and
only if there is a solution to Problem 2.

Proof. The if part is trivial. For the only if
part, we assume that L

(
M1
)

and L
(
M2
)

are
consistent. Then by Theorem 1, the language
L] = Π−1

Σ1∪Σ2←Σ1(L(M1)) ∩ Π−1
Σ1∪Σ2←Σ2(L(M2))

is a witness to the consistency of L
(
M1
)

and L
(
M2
)
. It suffices to obtain a NXA

that accepts L]. It holds, by Proposition 7,
that Π−1

Σ1∪Σ2←Σi(L(M i)) = L(Π−1
Σ1∪Σ2←Σi(M

i)),
for i = 1, 2. Moreover, by Proposition 2,
we have that L] = L(Π−1

Σ1∪Σ2←Σ1(M1)) ∩
L(Π−1

Σ1∪Σ2←Σ2(M2)) = L(M]), where M] =
Π−1

Σ1∪Σ2←Σ1(M1)×Π−1
Σ1∪Σ2←Σ2(M2), and the NXA

M] is a solution to Problem 2.

Theorem 3. Problems 1 and 2 are PSPACE-
complete.

Proof. Since Problems 1 and 2 are equivalent, it
suffices to consider only Problem 1. By part 3
of Theorem 1, by Theorem 2, and by Propo-
sition 6, L(M1) and L(M2) are consistent iff
L(ΠΣ1∪Σ2→Σi(M])) ⊇ L(M i) for i = 1, 2.
ΠΣ1∪Σ2→Σi(M]) can be computed in polynomial
time, and for checking language containment of
NXA, one has to check language containment
of the NFA and NBA parts, which are both
PSPACE-complete. Therefore, checking consistency
of L(M1) and L(M2) is in PSPACE. Moreover,
since NFA and NBA language equivalence are both
PSPACE-hard [5], [16], we obtain that NXA lan-
guage equivalence is PSPACE-hard.

For PSPACE hardness of Problem 1, we prove
that NFA language equivalence, which is PSPACE-
complete [5], is reducible to Problem 1. Let A1, A2

be two NFA over the same alphabet Σ. The NFA
language equivalence problem is to check whether
L(A1) = L(A2). We let Σ1 = Σ2 = Σ and define
two NXA M1 = (A1, B∅) and M2 = (A2, B∅) by
setting their NBA parts to be a NBA B∅ accepting
the empty language. Then L(M i) = L(Ai), for i =
1, 2. We claim that L(A1) = L(A2) iff L(M1) and
L(M2) are consistent. Assume that L(A1) = L(A2),
i.e., L(M1) = L(M2) = L. Then, ΠΣ∪Σ→Σ(L) =
L(M1) and ΠΣ∪Σ→Σ(L) = L(M2). Hence, L(M1)
and L(M2) are consistent. Conversely, now assume
that L(M1) and L(M2) are consistent. Then, by
part 1 of Theorem 1 there is a language L over
Σ, such that L = ΠΣ∪Σ→Σ(L) = L(M1) and
L = ΠΣ∪Σ→Σ(L) = L(M2), which implies that
L(M1) = L(M2), thus L(A1) = L(A2).

5. Conclusions and future work

One of the main challenges in multi-view mod-
eling, where different models (views) are used to
represent different facets of the same system, is to
ensure that the views are consistent. In this work
we solved the consistency problem for behavioral
views defined by ∞-regular languages. As a special
case, our solution also implies the solution of the
consistency problem in the case where some of the
views are regular languages while some others are
ω-regular languages, an open problem from [13].
Indeed, both a regular and an ω-regular language is
an ∞-regular language, and in the positive cases of
the consistency problem the behavior of the witness
system is also defined as an∞-regular language, i.e.,
can be described by the behavior of a nondetermin-
istic mixed automaton.

Possible directions for future work would be to
develop the multi-view modeling for different frame-
works and solve the consistency problem. Moreover,
one can consider other abstraction functions apart
from projections for obtaining the views of a system
or in general other types of transformations.

References

[1] A. Bhave, B. H. Krogh, D. Garlan, and B. R. Schmerl. View
consistency in architectures for cyber-physical systems. In
ICCPS, pages 151–160, 2011.

[2] D. Broman, E. Lee, S. Tripakis, and M. Törngren. View-
points, Formalisms, Languages, and Tools for Cyber-
Physical Systems. In 6th International Workshop on Multi-
Paradigm Modeling (MPM’12), 2012.

[3] M. Droste and D. Kuske. Skew and infinitary formal power
series. Theor. Comput. Sci., 366(3):199–227, 2006.

[4] A. Finkelstein, D. M. Gabbay, A. Hunter, J. Kramer, and
B. Nuseibeh. Inconsistency handling in multperspective
specifications. IEEE Trans. Soft. Eng., 20(8):569–578, 1994.

[5] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity. W. H. Freeman, 1979.

[6] J. E. Hopcroft and J. D. Ullman. Introduction To Automata
Theory, Languages, And Computation. 1990.

[7] W. Kuich and G. Rahonis. Fuzzy regular languages
over finite and infinite words. Fuzzy Sets and Systems,
157(11):1532–1549, 2006.

[8] D. Perrin and J.-E. Pin. Infinite words : automata, semi-
groups, logic and games. Elsevier, 2004.

[9] M. Persson, M. Törngren, A. Qamar, J. Westman, M. Biehl,
S. Tripakis, H. Vangheluwe, and J. Denil. A characterization
of integrated multi-view modeling in the context of embed-
ded and cyber-physical systems. In Embedded Software,
EMSOFT, 2013.

[10] G. Rahonis. Infinite fuzzy computations. Fuzzy Sets and
Systems, 153(2):275–288, 2005.

[11] A. Rajhans and B. H. Krogh. Heterogeneous verification of
cyber-physical systems using behavior relations. In HSCC,
pages 35–44, 2012.

[12] A. Rajhans and B. H. Krogh. Compositional heterogeneous
abstraction. In Hybrid Systems: Computation and Control,
HSCC’13, pages 253–262, 2013.

[13] J. Reineke, C. Stergiou, and S. Tripakis. Basic problems in
multi-view modeling. Submitted journal version of [14].

[14] J. Reineke and S. Tripakis. Basic problems in multi-view
modeling. In Tools and Algorithms for the Construction and
Analysis of Systems - TACAS, volume 8413 of LNCS, pages
217–232. Springer, 2014.

[15] J. A. Robinson and A. Voronkov, editors. Handbook of
Automated Reasoning. Elsevier and MIT Press, 2001.

[16] A. P. Sistla, M. Y. Vardi, and P. Wolper. The Complemen-
tation Problem for Büchi Automata with Applications to
Temporal Logic. In ICALP, volume 194 of LNCS, pages
465–474. Springer, 1985.

[17] M. Tsai, S. Fogarty, M. Y. Vardi, and Y. Tsay. State of Büchi
Complementation. Logical Methods in Computer Science,
10(4), 2014.

Publication II

Maria Pittou and Stavros Tripakis. Checking multi-view consistency of discrete sys-

tems with respect to periodic sampling abstractions. In 13th International Conference

on Formal Aspects of Component Software (FACS 2016), Besançon, France, October

2016, Lecture notes in Computer Science. Springer, 2016.

c© 2016, Lecture notes in Computer Science. Springer, 2016 .

Reprinted with permission.

57

Checking multi-view consistency of discrete systems
with respect to periodic sampling abstractions?

Maria Pittou1 and Stavros Tripakis1,2

1 Aalto University, Finland
2 University of California, Berkeley, USA

Abstract. In multi-view modeling the system under development is described by
distinct models, called views, which capture different perspectives of the system.
Inevitably, possible overlaps of the views may give rise to inconsistencies. Hence,
it becomes essential to check for consistency among the separate views. Existing
work checks view consistency of discrete systems (transition systems or finite
automata) with respect to two types of abstraction functions: (1) projections of
state variables, (2) projections of an alphabet of events onto a subalphabet. In this
paper, we study view consistency with respect to timing abstractions, specifically,
periodic sampling. We define the multi-view consistency problem for periodic
sampling abstractions, and provide an algorithm for the problem.

1 Introduction

Designing complex systems, such as distributed, embedded, or cyber-physical systems,
is a challenging task. As many of these systems are safety-critical, design by trial-
and-error is not an option, and more rigorous methods such as model-based design are
preferred (see [13] for an overview). In addition, the design of such systems involves
several experts and stakeholders, each having their own perspective, or view, of the sys-
tem [2,6,14]. These views are typically different kinds of models. These model cover
different and potentially overlapping aspects of the system. In such a multi-view model-
ing setting, a basic problem is to check that the views are consistent, i.e., that they don’t
contradict each other [11].

In this paper we follow the multi-view modeling framework proposed in [11], where
systems are sets of behaviors (often described by transition systems), and views are also
sets of behaviors obtained by some kind of abstraction of system behaviors. Previous
work studied the view consistency problem for discrete systems (transition systems or
automata) with respect to two types of abstraction functions: (1) projections of state
variables [11], and (2) projections of alphabet of events onto a subalphabet [10].

In this work we study the multi-view consistency problem for discrete systems with
respect to timing abstractions and in particular periodic sampling abstraction functions.
Given a period which is a positive integer number T , the periodic sampling abstraction
consists in sampling the system once every T steps. That is, given a system behavior

? This work was partially supported by the Academy of Finland and the U.S. National Science
Foundation (awards #1329759 and #1139138).

which is a sequence of states s0s1s2 · · · , the periodic sampling w.r.t. T = 2 produces
the abstract behavior s0s2s4 · · · .

In summary the contributions of this paper are the following: first, we define the no-
tions of (forward and inverse) periodic sampling abstraction functions; second, we study
the closure of discrete systems under these abstraction functions; third, we provide an
algorithm for the multi-view consistency problem for discrete systems in the periodic
sampling setting. The algorithm is sound in the sense that if it reports that the views are
inconsistent, then an inconsistency indeed exists. However, the algorithm may fail to
detect all inconsistencies, as it relies on a state-based reachability, and inconsistencies
may also involve the transition structure of the system.

2 Related work

The view consistency problem is a well-known problem in the engineering commu-
nity. The several design teams engaged in the development process of a system obtain
distinct models of the system utilizing versatile tools and modeling languages [3,12].

Existing literature mainly focus on designing architectures that combine various
modeling tools or elements of the same tools [5,9,15], while a formal framework has
been lacking with respect to behavioral views. [7,8] study behavioral views within the
context of cyber-physical systems, in order to aid their verification rather than checking
view consistency. This is the focus of the recent work [10,11] towards behavioral views.
[11] offers a generic formal framework for multi-view modeling and its basic problems,
since the system and views are within any global universe and most importantly they
can be related by any kind of abstraction functions. The framework is instantiated for
discrete systems using projection of state variables as abstraction functions, and the
view consistency problem is solved. In [10] the framework is also extended to languages
and automata, where abstraction functions are projections of alphabet of events onto a
subalphabet.

Our work follows the setting of [10,11], but the abstraction functions studied there
are different, and consist in projections, either of state variables, or of some events in
the alphabet of events. Here we consider timing abstractions, and in particular periodic
sampling abstraction functions, which to our knowledge have not been investigated
earlier in the multi-view modeling context.

3 Background

Sets: Let S denote an arbitrary finite set: |S| denotes its cardinality and P(S) denotes
its powerset. Also: Z>0 := {n ∈ Z | n > 0}, Z≥0 := {n ∈ Z | n ≥ 0} are sets of
integer numbers, and B := {0, 1} is the set of booleans.

Alphabet, Finite words, Infinite words: A finite alphabet Σ is a non-empty finite set of
symbols. Σ∗ is the set of all finite words over Σ and Σω is the set of all infinite words
over Σ. The set of all words over Σ is Σ∞, i.e., Σ∞ = Σ∗ ∪Σω .

3.1 Automata

Nondeterministic finite automaton: A nondeterministic finite automaton (NFA for short)
is a tuple A = (Q,Σ,Q0, ∆, F) where Q is the finite set of states, Σ is the finite
alphabet, Q0 ⊆ Q is the set of initial states, ∆ ⊆ Q × Σ × Q is the transition
function, and F ⊆ Q is the set of final states. A path Pw of A over a finite word
w = w0 · · ·wn−1 ∈ Σ∗ is a finite sequence Pw : (q0, w0, q1) · · · (qn−1, wn−1, qn) such
that q0 ∈ Q0 is the initial state and (qi, wi, qi+1) ∈ ∆ for every 0 ≤ i < n. A path Pw
ofA over a finite word w ∈ Σ∗ is called accepting if additionally qn ∈ F . A finite word
w ∈ Σ∗ is accepted by A if there is an accepting path Pw of A over w. The language
accepted by A, also called the behavior of A, written L(A), is the set of finite words
accepted by A: L(A) = {w ∈ Σ∗ | ∃ accepting path Pw of A over w}.

We say that A is deterministic (DFA for short) iff (i) |Q0| = 1 and (ii) for ev-
ery q ∈ Q and x ∈ Σ there exists at most one successor state q′ ∈ Q such that
(q, x, q′) ∈ ∆. We call two automata equivalent iff they accept the same language.
It is known that every nondeterministic finite automaton can be transformed into an
equivalent deterministic finite automaton [4].

Nondeterministic Muller automaton: A nondeterministic Muller automaton (NMA for
short) is a tuple A = (Q,Σ,Q0, ∆, F) where Q,Σ,Q0, ∆ are defined as in a NFA and
F ⊆ 2Q. Now an infinite path Pw of A over an infinite word w = w0w1 · · · ∈ Σω

is an infinite sequence Pw : (q0, w0, q1)(q1, w1, q2) · · · such that q0 ∈ Q0 is the ini-
tial state and (qi, wi, qi+1) ∈ ∆ for every i ≥ 0. For every path Pw of A over an
infinite word w ∈ Σω we denote with Inf (Pw) the set of states occurring an infi-
nite number of times along Pw. Then, a path Pw of A over w ∈ Σω is called ac-
cepting if additionally Inf (Pw) ∈ F . An infinite word w ∈ Σω is accepted by A if
there is an accepting path Pw of A over w. The language accepted by A, also called
the behavior of A, written L(A), is the set of infinite words accepted by A: L(A) =
{w ∈ Σω | ∃ infinite accepting path Pw of A over w}. A deterministic Muller automa-
ton (DMA for short) is the deterministic variant of NMA, like DFAs are deterministic
NFAs. Every nondeterministic Muller automaton has an equivalent deterministic Muller
automaton [1].

3.2 Multi-view modeling

In multi-view modeling, one or more design teams obtain diverse models (views) of
the same system under development, as they target capturing and analyzing different
aspects of the system. For our framework we consider a system and its views as sets
of behaviors [11]. There is no restriction on the behavior of the system, and we only
assume that it is defined within an arbitrary global universe. Formally, a system S over
a domain of behaviors U , is a subset of U : S ⊆ U . A view is intuitively an incomplete
picture of a system, and may be obtained by some kind of transformation of the system
behaviors into (incomplete) behaviors in another domain. Following [11], such a trans-
formation is defined by means of an abstraction function a : U → D, where D is the
view domain. A view V over view domain D, is a subset of D: V ⊆ D.

However, it is not always the case that the system S is given. Indeed, usually, only
the views are available and we need to check for the existence of such a system S,
which, in positive cases, is constructed from the views. The existence of S implies that
the views should not have inconsistencies among them. But this raises the question of
what does formally consistency mean?

Following [10,11] we define the notion of consistency. A set of views V1, · · · ,Vn
over view domains D1, · · · ,Dn, are consistent with respect to a set of abstraction
functions a1, · · · , an, if there exists a system S over U so that Vi = ai(S), for all
i = 1, · · · , n. In general, we call such a system S a witness system to the consistency
of V1, · · · ,Vn. Obviously, if there is no such system, then we conclude that the views
are inconsistent.

In our setting, both systems and views are finite state discrete systems, as defined in
the next section, and the views are obtained by applying periodic sampling abstraction
functions.

3.3 Symbolic discrete systems

We consider finite state discrete systems described symbolically as in [11]. The state
space is described by a (finite) set of boolean variables X , resulting in 2n states where
n = |X|, and a state s over X is a function s : X → B. A behavior over X is in
general a finite or infinite sequence of states over X , σ = s0s1 · · · , where si denotes
the state at position i. We denote with U(X) the set of all possible behaviors over X .
Semantically, a discrete system S over X is a set of behaviors over X , i.e., S ⊆ U(X).

In the sequel we give concrete (syntactic) representations of discrete systems of
two kinds: first, fully observable systems where all variables are observable; second,
non-fully-observable systems which also have internal, unobservable variables.

Fully-observable discrete systems: Initially we consider fully-observable symbolic dis-
crete systems, i.e., systems where all variables are observable. Syntactically, a fully-
observable discrete system (FOS for short) is defined by a triple S = (X, θ, φ) where
X is the finite set of boolean variables, θ is a boolean expression over X character-
izing the set of all initial states, and φ is a boolean expression over X ∪ X ′, where
X ′ := {x′ | x ∈ X} is the set of the next state variables. φ characterizes pairs of
states (s, s′) representing a transition from s to s′ of S. We write θ(s) to denote that s
satisfies θ. We write φ(s, s′) to denote that the pair (s, s′) satisfies φ, i.e., that there is a
transition from s to s′.

A behavior of a FOS (X, θ, φ) is a finite or infinite sequence of states over X ,
σ = s0s1 · · · , such that σ can be generated by the FOS, i.e., such that θ(s0) and ∀i :
φ(si, si+1). We denote by JSK the set of all behaviors of S.

Non-fully-observable discrete systems: Fully-observable systems can also be extended
with a set of internal, unobservable state variables. For their definition we need to
introduce the notion of hiding function.

Given a state s over the set of variables X and a subset Y ⊆ X , the hiding function
hY projects s onto the set of variables Y , hence hY hides from s all variables in X \Y .
Then hY (s) is defined to be the new state s′, that is, s′ : Y → B such that s′(x) = s(x)

for every x ∈ Y . We extend hiding to sets of states and to behaviors. For a set of states
s = {s1, · · · , sn} where si : X → B for every 1 ≤ i ≤ n, we define hY (s) =
{hY (s1), · · · , hY (sn)}. If σ = s0s1 · · · is a behavior overX , then hY (σ) is a behavior
over Y defined by hY (σ) := hY (s0)hY (s1) · · · . If S is a discrete system over X , then
hY (JSK) := {hY (σ) | σ ∈ JSK}.

Formally, a non-fully-observable discrete system (nFOS for short), described sym-
bolically, is a tuple S = (X,Z, θ, φ) where X,Z are disjoint finite sets of variables
such that X describes the set of observable variables, and Z the set of internal (unob-
servable) variables. The initial condition θ is a boolean expression over X ∪Z, and the
transition relation φ is a boolean expression over X ∪ Z ∪X ′ ∪ Z ′.

A behavior of a nFOS S = (X,Z, θ, φ) is a finite or infinite sequence of states over
X∪Z which can be generated by S, in the same manner as with behaviors generated by
a FOS. The observable behavior of a behavior σ overX∪Z is the behavior hX(σ) over
X . In what follows we denote by JSK the set of all behaviors of S (over X ∪ Z), and
by JSKo the set of its observable behaviors (over X). If Z = ∅, i.e., the system has no
internal variables, then it is a FOS. Note that for every FOS S, it holds that JSK = JSKo.

4 Forward and inverse periodic sampling abstraction functions

Now we would like to relate systems over U and views overD, using periodic sampling
abstraction functions. We define as period any T ∈ Z>0. Note that in general, we can
apply the periodic sampling to the behaviors starting from the state at position τ = 0 or
at τ > 0, τ ∈ Z.

Periodic sampling abstraction functions (forward): Let X be a finite set of variables.
Given a domain of behaviors U(X) and a view domain D(X) = U(X), a periodic
sampling abstraction function from U(X) to D(X) w.r.t. period T and initial position
τ , denoted by aT,τ , is defined by the mapping aT,τ : U(X) → D(X) such that for
every behavior σ = s0s1 · · · ∈ U(X), aT,τ (σ) := s′0s

′
1 · · · ∈ D(X) where s′i = sτ+i·T

for every i ≥ 0. When τ = 0, instead of writing aT,τ or aT,0, we simply write aT .
Then we lift the notion of periodic sampling abstraction function to systems. For a

system S ⊆ U(X), we define aT,τ (S) := {aT,τ (σ) | σ ∈ S}. Since aT,τ (S) ⊆ D(X),
aT,τ (S) is a view overD(X). In what follows we refer to periodic sampling abstraction
functions simply by periodic sampling.

Closure of discrete systems under periodic sampling: Given a nFOS S = (X,Z, θ, φ)
and periodic sampling aT,τ : U(X ∪ Z) → D(X ∪ Z), D(X ∪ Z) = U(X ∪ Z),
we would like to examine whether there exists a nFOS S′ = (X,Z, θ′, φ′) such that
JS′K = aT,τ (JSK). Indeed, we prove closure for discrete systems S with Z = ∅ or
Z 6= ∅.

Theorem 1. (a) Given a FOS system S = (X, θ, φ) and periodic sampling aT,τ , there
exists a FOS system S′ such that JS′K = aT,τ (JSK).

(b) Given a nFOS system S = (X,Z, θ, φ) and periodic sampling aT,τ , there exists a
nFOS system S′ such that JS′K = aT,τ (JSK).

Proof. (a) We define the FOS S′ = (X, θ, φ′), where θ′ contains all states over X
which can be reached from some initial state of S in exactly τ steps; and φ′ is defined
as follows. Let s, s′ be two states over X . Then φ′(s, s′) iff S has a path from s to s′

of length exactly T . Consider an arbitrary behavior σ = s0s1s2 · · · ∈ JSK. Applying
the periodic sampling aT,τ to σ we obtain the behavior aT,τ (σ) = sτsτ+T sτ+2T · · · .
By construction of S′ we have that θ′(sτ) and φ′(sτ+iT , sτ+(i+1)T) for every i ≥ 0,
which implies that aT,τ (σ) ∈ JS′K. Hence, aT,τ (JSK) = {aT,τ (σ) | σ ∈ JSK} ⊆ JS′K.
Conversely, let σ′ = s′0s

′
1s
′
2 . . . ∈ JS′K. Since φ′(s′0), by definition of S′ there exists a

state s0 in S with θ(s0) so that s′0 can be reached from s0 in exactly τ steps. Moreover,
for σ′ we have that φ′(s′i, s

′
i+1), thus there exists a path in S from s′i to s′i+1 of length

exactly T for every i ≥ 0. Then, we obtain the behavior σ = s0s1s2 · · · ∈ JSK where
sτ+iT = s′i for every i ≥ 0. Hence, aT,τ (σ) ∈ aT,τ (JSK) and JS′K ⊆ aT,τ (JSK) which
completes our proof. The part (b) of the theorem is proved similarly. ut

Inverse periodic sampling: Consider a finite set of variables X , a domain of behaviors
U(X) and a view domain D(X) = U(X). Then, an inverse periodic sampling abstrac-
tion function from D(X) to U(X) w.r.t. period T and initial position τ , denoted by
a−1T,τ , is defined by the mapping a−1T,τ : D(X) → U(X) such that for every behavior
σ = s0s1 · · · ∈ D(X), a−1T,τ (σ) := {σ′ | σ′ = s′0s

′
1 · · · ∈ U(X) s.t. s′τ+i·T = si, i ≥

0} or equivalently a−1T,τ (σ) := {σ′ | aT,τ (σ′) = σ}. Moreover, for a system S ⊆ U(X),
we define a−1T,τ (S) :=

⋃
σ∈S

a−1T,τ (σ). When τ = 0, we simply write a−1T .

Non-closure of FOS under inverse periodic sampling: Given a FOS S = (X, θ, φ) and
inverse periodic sampling a−1T,τ : D(X) → U(X), D(X) = U(X), we show that there
does not exist always a FOS S′ = (X, θ′, φ′) such that JS′K = a−1T,τ (JSK).
Example 1. Consider the FOS S = ({x, y}, θ, φ) where both x and y are Boolean
variables, θ = x∧y and φ = (x∧y → ¬x′∧y′)∧(¬x∧y → x′∧¬y′)∧(x∧¬y → x′∧y′)
as shown in Figure 1. The system S has been obtained with periodic sampling aT and
period T = 2. In order to find a system S′ such that JS′K = a−1T (JSK) one would have
to replace each of the ”?” shown in Figure 2 with at least one state over X , so that the
first 6 states in the unique behavior σ of S′ would be distinct. Indeed, S′ needs at least
6 distinct states, otherwise we would have to have extra transitions between the three
states (1, 1), (0, 1), (1, 0) shown in the figure. But adding such transitions creates loops,
and results in JS′K 6= a−1T (JSK), which is wrong. However, having 6 distinct states is
also not possible, since we only have two Boolean variables x, y, thus, only 4 possible
combinations. Hence, there exists no such FOS S′.

Closure of nFOS under inverse periodic sampling: In contrast with FOS, that are not
closed under inverse periodic samplings, we prove closure for nFOS, i.e., for discrete
systems with internal variables.

Theorem 2. Given a system S = (X,Z, θ, φ) and inverse periodic sampling a−1T,τ :
D(X ∪ Z) → U(X ∪ Z ∪ W), there exists always a non-fully-observable system
S′ = (X ∪ Z,W, θ′, φ′) such that JS′K = a−1T,τ (JSK).

(1, 1)

(1, 0)

(0, 1)S:

Fig. 1: FOS obtained from aT with period T = 2.

(1,1)

σ

?

(0,1)

?

(1,0)

?

(1,1)

...

i = 0

Position

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

Fig. 2: Incomplete behavior σ of system S′.

Proof. Given the nFOS S = (X,Z, θ, φ) let R denote the set of reachable states of S
over X ∪Z. Moreover, let |R| = n and consider a set of Boolean variables W such that
|W | ≥ blog2(n · (T − 1) + τ)c (here we assume that T ≥ 2; if T = 1 then we can sim-
ply take S′ = S). By definition we have that σ ∈ a−1T,τ (JSK) iff aT,τ (σ) ∈ JSK. More-
over, σ′ = aT,τ (σ) = sτsτ+T sτ+2T · · · , i.e., each behavior σ′ in JSK has been obtained
with starting position τ and period T . The system S′ has to be defined such that each
behavior in JS′K results from σ′ by (i) adding τ transitions (or states) in the beginning
of σ′ and T transitions (or T − 1 states) in between the transition φ(sτ+iT , sτ+(i+1)T)
for every i ≥ 0, and by (ii) replacing each sτ+iT in σ′ with s′τ+iT = hX∪Z(sτ+iT).
Since S consists of n reachable states then S′ should have at least n(T − 1) + τ more
reachable states or equivalently blog2(n · (T − 1) + τ)c more Boolean variables. One
can then obtain a nFOS S′ over X ∪ Z ∪W , where X ∪ Z and W denote the set of
observable and unobservable variables respectively, such that JS′K = a−1T,τ (JSK). ut

Note that the system S′ of Theorem 2 is not unique. Indeed, even for each possible
value of |W | one obtains a family of systems S′ with JS′K = a−1T,τ (JSK).

5 Checking View Consistency w.r.t. Periodic Sampling Abstraction
Functions

For this entire section, we assume that τ = 0.

5.1 Views and Consistency

Views are finite-state discrete systems with or without internal variables. In our frame-
work views are obtained applying some periodic sampling aT , where T is the period
of the periodic sampling. Thus, if S = (X,Z, θ, φ) is a discrete system over a set
of observable variables X and domain of behaviors U(X ∪ Z), then a view obtained
with periodic sampling aT is a discrete system V = (X,Z, θ′, φ′) over the same set of
observable variables X and view domain D(X ∪ Z) = U(X ∪ Z).

We consider views defined by nFOS and we refer to V simply as a view of S. How-
ever, this does not exclude the case where the views are described by a FOS. Indeed,
FOS is a special case of nFOS and we can always assume that the set of unobserv-
able variables is empty. Hence, the results we derive can be naturally extended also for
views described by FOS. Moreover, in the rest of the paper when we compare systems
or views we compare them with respect to their observable behaviors, and instead of
writing for instance JV Ko = aT (JSKo) we simply write JV K = aT (JSK).

Note that, although each of the views is a nFOS, this does not always imply that the
witness system is also a nFOS. This motivates to study three different variants of the
consistency problem for views obtained by periodic sampling.

Problem 1. Given a finite set of nFOS Si = (X,Wi, θi, φi) and periodic samplings aTi ,
for 1 ≤ i ≤ n, check whether there exists a system S over U(X) such that aTi(S) =
JSiK for every 1 ≤ i ≤ n.

Problem 2. Given a finite set of nFOS Si = (X,Wi, θi, φi) and periodic samplings
aTi

, for 1 ≤ i ≤ n, check whether there exists an nFOS S = (X,W, θ, φ), W ⊇
W1 ∪ . . . ∪Wn, such that aTi

(JSK) = JSiK for every 1 ≤ i ≤ n.

Problem 3. Given a finite set of nFOS Si = (X,Wi, θi, φi) and periodic samplings aTi ,
for 1 ≤ i ≤ n, check whether there exists a fully-observable system S = (X, θ, φ),
such that aTi

(JSK) = JSiK for every 1 ≤ i ≤ n.

Observe that the three problems are different, since Problem 1 asks for a seman-
tic witness system, not necessarily representable as a symbolic discrete system, while
Problems 2 and 3 ask for a symbolic discrete witness system with or without internal
variables respectively. Obviously, a solution to Problem 3 is also a solution to Prob-
lem 2, and a solution to Problem 2 is also a solution to Problem 1. We do not yet know
whether Problems 1 and 2 are equivalent, i.e., whether existence of a semantic witness
implies existence of a syntactic (nFOS) witness. This is an interesting question which
has to do with whether the finite-state nature of nFOS is enough to represent all possible
semantic witnesses of consistent nFOS views. Example 2 that follows shows that Prob-
lems 2 and 3 are not equivalent, that is, existence of a nFOS witness does not always
imply existence of a FOS witness.

Example 2. Consider the views Vi = ({xi}, {yi, zi}, θi = ¬xi ∧ ¬yi ∧ ¬zi, φi) for
i = 1, 2, where all variables are Boolean and φ1, φ2 are such that JV1K = {σ1 =
(0, 0, 0)(0, 1, 1)(0, 1, 0)(0, 0, 1), σ′1 = (0, 0, 0)(1, 1, 1)(1, 1, 0)(1, 0, 1)} and JV2K =
{σ2 = (0, 0, 0)(0, 1, 1)(0, 0, 1), σ′2 = (0, 0, 0)(1, 1, 0)(1, 1, 1)}. The views V1 and V2
have been sampled with periods T1 = 2 and T2 = 3 respectively. The observable
behavior of the views is shown in the form of trees in Figure 3, along with the corre-
sponding positions as described in the sequel. For the view V2 which has been sampled
with period T2 = 3, we have that in the first position i = 0, V2 is at state x = 0, in
the next position i = 3, V2 is at one of the states x = 0 or x = 1, and similarly in the
last position i = 6. Similarly are interpreted the tree of behaviors for V1. There exists
a nFOS system S witness to the consistency of V1 and V2, with one observable state
variable, whose observable behavior is shown in the form of a tree in the rightmost part
of Figure 3 where the ∗−state of the system denotes an arbitrary state 0 or 1. However,
there does not exist any fully-observable system with a single state variable x that is a
witness system to the consistency of V1 and V2. For instance, it is not possible to define
by distinct states, the five states labelled by 0 in the positions i = 0, 2, 3, 4, 6, using
only one Boolean variable (as it can only encode 2 states).

0

V1

0

0

0

1

1

1

i = 0

Position

i = 2

i = 4

i = 6

0

V2

0

0

1

1

i = 3

0

S

∗

0

i = 1

0

0

∗

0

∗

1

1

1

∗

1

i = 5

Fig. 3: Behavior trees for views V1 and V2 and possible nFOS witness system S.

In the sequel we prove a Lemma that will help prove one of the main results of
this paper. We firstly introduce some notation. Consider a set of views S1, ..., Sn. For
every 1 ≤ i ≤ n and any positive integer m let Y mi be the set of all states that
can be found at position m in some behavior of Si, i.e., Y mi = {si | si : X →
B occurs at position m in some behavior σ ∈ JSiK}.

Lemma 1. Consider a set of views S1, ..., Sn and periodic samplings aTi
, for 1 ≤ i ≤

n. If there exist i, j ∈ {1, ..., n} and positive integer m multiple of LCM(Ti, Tj) such
that Y m/Tj

j 6= Y
m/Ti

i , then S1, ..., Sn are inconsistent.

Proof. Let Si = (X,Wi, θi, φi). Assume that there exist i, j ∈ {1, ..., n} and positive
integer m multiple of LCM(Ti, Tj) such that Y m/Tj

j 6= Y
m/Ti

i . W.l.o.g., suppose that

there exists a state s ∈ Y m/Ti

i \Y m/Tj

j . We would like to prove that the views S1, ..., Sn
are inconsistent. Assume to the contrary that they are consistent. This implies that there
exists a system S over U(X) such that aTk

(S) = JSkK for every 1 ≤ k ≤ n. Then,
aTi

(S) = JSiK and aTj
(S) = JSjK. Since there exists state s ∈ Y m/Ti

i \ Y m/Tj

j , then
there exists some behavior σi ∈ JSiK such that σi is at positionm/Ti at state s. Because
aTi

(S) = JSiK we have that σi ∈ aTi
(S). By definition, aTi

(S) = {aTi
(σ) | σ ∈ S}

and because σi ∈ aTi(S) then ∃σ ∈ S such that aTi(σ) = σi. By construction, σ
is at state s at position m. Since σ ∈ S we have that aTj (σ) ∈ aTj (S) = JSjK. Let
σj = aTj

(σ). Because σ is at state s at position m, σj must be at the same state s at
position m/Tj . This in turn implies that s ∈ Y mj , which is a contradiction. ut

5.2 Algorithm for detecting view inconsistency

In this chapter we describe the steps of the algorithm for detecting inconsistencies
among a finite number of views, w.r.t. periodic sampling abstraction functions. Our
algorithm applies to sets of views that satisfy one of the following conditions: (i) either
every view generates only infinite behaviors; (ii) or every view generates only finite
behaviors. This means that we cannot have views that have both finite and infinite be-
haviors, and also that we cannot have some views with finite behaviors and some other
views with infinite behaviors. Extending the algorithm to those cases is part of future
work. Note that a view which only has finite behaviors corresponds to a transition sys-
tem where all paths eventually lead to a deadlock. On the other hand, a view which only
has infinite behaviors corresponds to a transition system with no reachable deadlocks.

From now on we use the term finite automata (FA for short) to refer to NFA or
NMA, and the term deterministic finite automata to refer to DFA or DMA.

Our algorithm involves constructing the so called hyper-period automaton (HPA).
The algorithm also involves a special composition operator for finite automata w.r.t.
HPA called the label-driven composition. We define these notions next.

Hyper-period finite automaton: Consider a finite set of periods T1, . . . , Tn ∈ Z>0. Let
LCM be the least common multiple operator, and let T = LCM(T1, . . . , Tn) be the
hyper-period of the above set of periods. Also let M = {0,m1, . . . ,mk} denote the
finite ordered set of multiples of T1, . . . , Tn up to the hyper-period, i.e., with mk < T .
For example, let T1 = 2, T2 = 3 and T3 = 6. Then, T = LCM(T1, T2, T3) = 6 and
M = {0, 2, 3, 4}.

The intuition of the hyper-period automaton is that it contains as states the elements
of M and its transitions are labelled with sets of labels of the form pTi

, denoting the
fact that the period Ti is “active” at the corresponding time instant. The accepting states
of the automaton correspond to those instants where two or more periods are “active”.

We first illustrate this intuition by example, and then provide the formal definition
of the hyper-period automaton.

Example 3. Consider the two periods T1 = 3 and T2 = 2. Then, the hyper-period au-
tomaton w.r.t. T1, T2, is the automatonH shown in Figure 4. We haveH = (M,P, {0}, ∆, {0})
where M = {0, 2, 3, 4}, P = P({pT1

, pT2
}) = P({p3, p2}) (T1 = 3 and T2 = 2,

hence pT1
= p3 and pT2

= p2), and the transition function ∆ is as depicted in Figure 4.

0 2 3 4
{p2} {p3} {p2}

{p2, p3}

H:

Fig. 4: HPA w.r.t. the periods 2 and 3.

The above example of HPA is simple as we only have two periods. In the sequel
we provide a more interesting example which involves three periods. This example also
illustrates the fact that the HPA generally has more than one accepting states.

Example 4. Consider the three periods T1 = 4, T2 = 2 and T3 = 3. Then, the hyper-
period automaton is H = (M,P, {0}, ∆, F) where M = {0, 2, 3, 4, 6, 8, 9, 10}, P =
P({pT1 , pT2 , pT3}) = P({p4, p2, p3}), F = {0, 4, 6, 8}, and the transition function ∆
is as depicted in Figure 5.

0 2 3 4 6

8910

{p2} {p3} {p2, p4} {p2, p3}

{p2, p4}{p3}{p2}
{p2, p3, p4}

H:

Fig. 5: HPA w.r.t. the periods 2, 3 and 4.

We now formally define the hyper-period automaton H w.r.t. T1, . . . , Tn as the
deterministic finite automaton H = (M,P, {0}, ∆, F), where:

– M is the (finite) set of states of H .
– P = P({pT1 , . . . , pTn}) is the (finite) alphabet of H , where {pT1 , . . . , pTn} is

obtained by assigning to every i = 1, . . . , n the label pTi , corresponding to the
period Ti.

– ∆ is defined as follows. First, letM = {m0,m1, ...,mk}where we assume thatmi

are ordered in increasing sequence, i.e., m0 < m1 < · · · < mk. Note that under
this assumption, m0 must be 0. Then ∆ contains exactly k + 1 transitions (i.e., as
many as the elements of M): ∆ = {(m0, l0,m1), (m1, l1,m2), ...,

(mk, lk,m0)}, where for i = 0, ..., k, li = {pTj
| Tj is a divisor of mi+1}. Note

that, as defined, ∆ creates a loop starting at the initial state m0 = 0, and ending at
the same state, with each state in M having a unique successor as well as a unique
predecessor. Given m ∈M , let π(m) denote the set of period labels annotating the
unique incoming transition tom. For example, in the HPA of Figure 5, π(3) = {p3}
and π(4) = {p2, p4}.

– F = {m ∈ M | |π(m)| ≥ 2}, that is, F contains all states whose (unique)
incoming transition is labeled by a set containing at least two period labels.

Since H is deterministic, in the sequel we use for simplicity the notation ∆(s, x)
for the transition function, i.e., to denote the unique successor state of s with symbol x.

Label-driven composition of view automata with an HPA: Suppose we want to check
consistency between a set of views described as finite automata A1, ..., An, w.r.t. pe-
riods T1, ..., Tn. Our view consistency algorithm, described later in this section, re-
lies on computing a special kind of automata composition among modified versions of
A1, ..., An and the HPA H w.r.t. T1, ..., Tn. The modified version of Ai consists essen-
tially in labeling all transitions of Ai by its period label pTi

, and then determinizing.
Then, the composition with H consists in synchronizing every transition of H with the
corresponding automata Ai whose period is “active” on that transition, i.e., whose label
pTi belongs to the corresponding label set of the transition of H . This composition is
called label-driven composition, and is formalized next.

Consider a set of deterministic finite automata Ar = (Qr, Σr, Qr0 , ∆r, Fr) where
Σr = {pTr

} for 1 ≤ r ≤ n. Let H = (M,P, {0}, ∆, F) be the HPA w.r.t. T1, ..., Tn
defined as above. The label-driven composition of A1, ..., An and H , denoted by A1 ‖
. . . ‖ An ‖ H , is the finite automaton C = (Qc, Σc, Qc0 , ∆c, Fc) where Qc = Q1 ×
· · · ×Qn ×M , Σc = P , Qc0 = Q10 × · · · ×Qn0 × {0}, Fc = Q1 × · · · ×Qn × F ,
and the transition function ∆c ⊆ Qc ×Σc ×Qc is defined as follows:

∆c = {((q1, . . . , qn,m), l, (q′1, . . . , q
′
n,m

′)) | (m, l,m′) ∈ ∆ ∧
∀i = 1, ..., n : if pTi ∈ l then (qi, pTj , q

′
i) ∈ ∆i, otherwise q′i = qi}.

Example 5. Consider the finite automata A1, A2 as shown in Figure 6 and the HPA H
of Figure 4. Then, Figure 7 depicts the label-driven composition C = A1 ‖ A2 ‖ H .

q1 q2

p2

p2

A1: r1 r2

p3

p3

A2:

Fig. 6: Finite automata A1 and A2.

(q1, r1, 0) (q2, r1, 2) (q2, r2, 3) (q1, r2, 4) (q2, r1, 0) (q1, r1, 2) (q1, r2, 3) (q2, r2, 4)
{p2} {p3} {p2} {p2, p3} {p2} {p3} {p2}

{p2, p3}

C:

Fig. 7: The label-driven composition of automata A1, A2 of Figure 6 and HPA H of
Figure 4.

Algorithm for detecting view inconsistency: Consider a finite set of views defined by
the nFOS Si = (X,Wi, θi, φi), and obtained by applying some periodic sampling aTi

with sampling period Ti, for i = 1, . . . , n, respectively.
Let T = LCM(T1, . . . , Tn), P = P({pT1

, . . . , pTn
}) and M = {0,m1, . . . ,mk}

denote respectively the hyper-period of periods, the labels of periods, and the ordered
set of multiples of periods up to their hyper-period, as defined previously. The algorithm
for detecting inconsistency among the views S1, . . . , Sn, consists of the following steps:

– Step 1: Construct for each Si, i = 1, . . . , n, the FA Li = (Qi, Σi, Qi0 , ∆i, Fi)
where Qi = BX∪Wi , Σi = {pTi

}, Qi0 = {s | θi(s)}, Fi = ∅, and ∆i ⊆ Qi ×
Σi ×Qi is defined such that (s, pTi , s

′) ∈ ∆i iff φi(s, s′).
– Step 2: Determinize each of the FA Li and obtain the equivalent deterministic FA
dLi for every i = 1, . . . , n.

– Step 3: Construct the hyper-period automaton H w.r.t. the periods T1, . . . , Tn.
– Step 4: Obtain the label-driven composition C = (dL1, . . . , dLn, H) w.r.t HPA
H .

– Step 5: Let s = (s1, . . . , sn,m) be a state of C, and let Is = {i ∈ {1, ..., n} |
pTi
∈ π(m)}. The algorithm reports inconsistency ifC contains at least one reach-

able state s = (s1, . . . , sn,m) where si are states of dLi for i = 1, . . . , n respec-
tively, and m ∈ F is a final state of H , such that ∃i, j ∈ Is : hX(si) 6= hX(sj).
Otherwise, it reports inconclusive.

The determinization procedure at Step 2 is needed because the algorithm detects
view inconsistency by comparing sets of states of where each of the given views can be
at same points in time. We note that this determinization procedure does not attempt to
complete an automaton, i.e., to add transitions with missing symbols.

In the sequel we prove that the algorithm is sound, i.e., if it reports inconsistency
then the views are indeed inconsistent. We first introduce two auxiliary lemmas used
for proving this fact.

Lemma 2. Let S be a nFOS, T a period, L the FA obtained from S as in Step 1 of the
algorithm above, and dL the deterministic FA obtained from L. Then every reachable
state of dL is non-empty.

Proof. The set of initial states of S, and therefore also ofL, is non-empty. Therefore, the
initial state of dL is a non-empty set of states ofL. Recall that the alphabet of bothL and

dL is the singleton {pT }. Let s be a state of dL. We show by induction that if s is a non-
empty set, and (s, pT , s

′) is a transition of dL, then s′ is also non-empty. By definition
of dL, if all elements of s are deadlocks, i.e., none of them has a transition with pT ,
then no transition is added to s either (note that we do not complete the automaton dL
as we mentioned above). Therefore, in order for a transition (s, pT , s

′) to exist, at least
one state q ∈ s must have a transition (q, pT , q

′) in L. But in that case, s′ contains at
least the state q′, and is therefore non-empty. ut

We now introduce some concepts used in the lemma that follows. First, observe
that the HPA H is finite and deterministic, and so is every automaton dLi. More-
over, by definition, the label driven composition C obtained by Step 4 of the algo-
rithm forms a lasso, that is, C is finite-state and every state has a unique succes-
sor state. Consider a state m of the HPA H as obtained by Step 3 of the algorithm.
We define the indices of m, denoted by ins(m), to be the ordered set of numbers
ins(m) =

⋃
w≥0
{w · LCM(T1, . . . , Tn) + m}. For instance, consider the HPA H of

Example 3. Since T1 = 3 and T2 = 2 we have that LCM(T1, T2) = 6. Then, the
indices of the state m = 3 is the set ins(3) =

⋃
w≥0
{w · 6 + 3} = {3, 9, 15, . . .}.

Now consider a reachable state s = (q1, . . . , qn,m) of the label driven composition
C. Because C is a lasso, there is a unique acyclic path in C that reaches m. Let ξ
be the number of times that the state m of the HPA occurs in the states of this path
reaching s. We define the latent index of s, denoted by lin(s), to be the element of
ins(m) that occurs in position ξ in ins(m). For instance, consider the label driven
composition C of Example 5. For the state s = (q1, r2, 3) of C we have thatm = 3 and
ins(3) = {3, 9, 15, . . .} computed as above. The state m = 3 of the HPA H occured
twice up to the state s = (q1, r2, 3), hence ξ = 2. Then, the second element of ins(m)
is the integer 9, and thus lin(s) = 9. The intuition is that lin(s) represents the first
point in time where s appears in a behavior of the system.

Lemma 3. Consider the label driven composition C as obtained by Step 4 of the al-
gorithm. Let s = (s1, . . . , sn,m) be a state of C, and let Is = {i ∈ {1, ..., n} |
pTi
∈ π(m)}. Then, for every i ∈ Is, lin(s)/Ti is an integer number and it holds that

si = Y
lin(s)/Ti

i .

Proof. Let i ∈ Is. Then pTi
∈ π(m). By definition of the HPA H , and since pTi

belongs as a label in the incoming transition to m, lin(s) is a multiple of the period
Ti, thus k = lin(s)/Ti is an integer number. We also need to show that si = Y ki . By
definition of C, automaton dLi has “moved” (i.e., taken a transition) k times up to state
s. Thus, si must contain the set of all states of Li that can be reached from an initial
state after k steps. But this is exactly the set of states contained in Y ki . ut

Theorem 3. If the algorithm reports inconsistency then there exists no solution to Prob-
lems 1, 2, and 3.

Proof. Assume that the algorithm reports inconsistency. Then there exists a reachable
final state (s1, . . . , sn,m) of C such that ∃i, j ∈ Is : hX(si) 6= hX(sj), where si is a
state of dLi, sj is a state of dLj , and m is a final state of the HPA H . By Lemma 2 we

have that si 6= ∅ and sj 6= ∅. Moreover by Lemma 3 we have that si = Y
lin(s)/Ti

i and
sj = Y

lin(s)/Tj

j , where lin(s) is the latent index of state s. Since hX(si) 6= hX(sj) we

obtain that si 6= sj and hence Y lin(s)/Ti

i 6= Y
lin(s)/Tj

j . Then, by Lemma 1 the views
S1, . . . , Sn are inconsistent. Hence, there is no solution to Problem 1, and therefore
neither to Problems 2 and 3. ut

The algorithm is sound, but not complete, i.e., if the algorithm reports “inconclu-
sive” then the views can either be consistent or not. Example 6 that follows indicates
this fact.

Example 6. Consider the views Vi = ({xi}, {yi, zi, wi}, θi = ¬xi ∧ ¬yi ∧ ¬zi ∧
¬wi, φi) for i = 1, 2, where all variables are Boolean and φ1, φ2 are such that JV1Ko =
{σ1 = (0)(0)(0)(0)(0), σ′1 = (0)(1)(1)(1)(1)} and JV2Ko = {σ2 = (0)(0)(1),
σ′2 = (0)(1)(0)}. The views V1 and V2 have been sampled with periods T1 = 2 and
T2 = 4 respectively. The observable behavior of the views is shown in the form of trees
in Figure 8. We claim that the views V1 and V2 are inconsistent. Assume the contrary.
Then a possible witness system S should contain at least one behavior which at position
i = 8 is at state x = 0, while at position i = 4 it is at state x = 0 (like σ1 above), and
also at least one behavior which at position i = 8 is at state x = 1 while at position
i = 4 it is at state x = 0 (like σ2). This implies that aT1

(S) or equivalently JV1Ko should
contain at least one behavior that is at position i = 8 at state x = 1 while at position
i = 4 it is at state x = 0. This is not possible since JV1Ko contains only two behaviors:
σ1 which is at state x = 0 at both positions i = 4 and i = 8; and σ′1 which is at state
x = 1 at both positions i = 4 and i = 8. Therefore, V1 and V2 are inconsistent.

The algorithm cannot detect the inconsistency of V1 and V2, however, and reports
“inconclusive”. This is because at the common positions 0, 4, 8 the behaviors of the
views are both in the same sets of states ({0} at position 0, and {0, 1} at both positions 4
and 8). Hence, each of the reachable final states of the relevant label driven composition
C, contains in the first 2 coordinates the same states.

Example 7. We provide an example run of the algorithm. Consider two views described
by the FOS Si = (X = {x, y}, θi = ¬x ∧ ¬y, φi) where the definitions of φi are
indicated in Figure 9, for i = 1, 2. Although the two views have the same initial state
and the same set of (three) reachable states, they are not identical as their transitions
are different. For the remaining exposition, it helps to label the states of S1 as 1, 2, 3,
and the states of S2 as a, b, c. Suppose that the views have been obtained with periodic
samplings aTi for i = 1, 2 and periods T1 = 2, T2 = 3 respectively.

Applying Step 1 of the algorithm we obtain the finite automata Li for each of Si for
i = 1, 2 respectively, as shown in Figure 10. After the determinization Step 2, we obtain
the deterministic automata shown in Figure 11. The HPAH of Step 3 coincides with the
HPA shown in Figure 4. Figure 12 shows the label driven composition dL1 ‖ dL2 ‖ H
w.r.t. H of Step 4. We observe that there exists a final state (l123, lab, 0) that l123 6= lab.
Hence, according to the Step 5 of the view consistency algorithm, we obtain that the
views S1, S2 are inconsistent.

0

V1

0

0

0

0

1

1

1

1

i = 0

Position

i = 2

i = 4

i = 6

i = 8

0

V2

0

1

1

0

Fig. 8: Behavior trees for views V1 and V2.

1
(0, 0)

3
(1, 0)

2
(0, 1)

S1:

(a) View S1.

a
(0, 0)

c
(1, 0)

b
(0, 1)

S2:

(b) View S2.

Fig. 9: FOS views S1 and S2 .

1
(0, 0)

3
(1, 0)

2
(0, 1)

p2

p2

p2

p2

L1:

(a) FA L1.

a
(0, 0)

c
(1, 0)

b
(0, 1)

p3

p3

p3

p3

L2:

(b) FA L2.

Fig. 10: Step 1: Finite automata L1 and L2 obtained from the views S1 and S2 of
Figure 9 by adding the labels p2 and p3 corresponding to their respective periods.

6 Conclusions and Future work

Multi-view modeling is key to systems engineering, as a technique where the use of
multiple models/views guides the development of a system. However, one of the crucial
issues in multi-view modeling is ensuring consistency among the views. In this work
we studied the view consistency problem within the formal framework of [11,10], but
for a different type of abstraction functions than those studied previously. In particular,
we studied view consistency w.r.t. periodic sampling abstractions.

l1
{1}

l23
{2, 3}

l13
{1, 3}

l123
{1, 2, 3}

p2 p2 p2

p2

dL1:

(a) FA dL1.

la
{a}

lbc
{b, c}

lab
{a, b}

labc
{a, b, c}

p3 p3 p3

p3

dL2:

(b) FA dL2.

Fig. 11: Step 2: Deterministic FA dL1 and dL2 obtained by determinizing the automata
L1 and L2 of Figure 10.

(l1, la, 0) (l23, la, 2) (l23, lbc, 3) (l13, lbc, 4) (l123, lab, 0)

(l123, lab, 2)(l123, labc, 3)(l123, labc, 4)(l123, labc, 0)

{p2} {p3} {p2} {p2, p3}

{p2}

{p3}{p2}{p2, p3}

{p2}

C:

Fig. 12: Step 4: Label-driven composition dL1 ‖ dL2 ‖ H .

The main future work direction is to develop a complete view consistency algo-
rithm. It would be also interesting to answer the question whether Problems 1 and 2
are equivalent, which is currently open. Moreover, we would like to extend our results
to handle Problem 3, i.e., to examine under which conditions some given views have a
witness fully-observable system. Other future research includes considering other ab-
straction functions than projections or periodic samplings. Also part of future work is to
study heterogeneous instantiations of the multi-view modeling framework, e.g., where
some views are discrete, some continuous, some hybrid, and so on. In addition to these
theoretical directions, ongoing work includes an implementation of the current frame-
work and experimentation with case studies.

References

1. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
2. D. Broman, E.A. Lee, S. Tripakis, and M. Törngren. Viewpoints, Formalisms, Languages,

and Tools for Cyber-Physical Systems. In 6th International Workshop on Multi-Paradigm
Modeling (MPM’12), 2012.

3. Sinem Getir, Lars Grunske, Christian Karl Bernasko, Verena Käfer, Tim Sanwald, and
Matthias Tichy. Cowolf - A generic framework for multi-view co-evolution and evaluation
of models. In ICMT, volume 9152 of LNCS, pages 34–40. Springer, 2015.

4. John E. Hopcroft and Jeffrey D. Ullman. Introduction To Automata Theory, Languages, And
Computation. Addison-Wesley, 1990.

5. Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically configurable consis-
tency analysis for class and object diagrams. CoRR, abs/1409.2313, 2014.

6. Magnus Persson, Martin Törngren, Ahsan Qamar, Jonas Westman, Matthias Biehl, Stavros
Tripakis, Hans Vangheluwe, and Joachim Denil. A characterization of integrated multi-view
modeling in the context of embedded and cyber-physical systems. In EMSOFT, pages 10:1–
10:10. IEEE, 2013.

7. Akshay Rajhans and Bruce H. Krogh. Heterogeneous verification of cyber-physical systems
using behavior relations. In HSCC’12, pages 35–44. ACM, 2012.

8. Akshay Rajhans and Bruce H. Krogh. Compositional heterogeneous abstraction. In
HSCC’13, pages 253–262. ACM, 2013.

9. Holger Rasch and Heike Wehrheim. Checking consistency in UML diagrams: Classes and
state machines. In Formal Methods for Open Object-Based Distributed Systems, 6th IFIP
WG 6.1 International Conference, FMOODS, pages 229–243, 2003.

10. Jan Reineke, Christos Stergiou, and Stavros Tripakis. Basic problems in multi-view model-
ing. Submitted journal version of [11].

11. Jan Reineke and Stavros Tripakis. Basic problems in multi-view modeling. In TACAS,
volume 8413 of LNCS, pages 217–232. Springer, 2014.

12. Aditya A. Shah, Aleksandr A. Kerzhner, Dirk Schaefer, and Christiaan J. J. Paredis. Multi-
view modeling to support embedded systems engineering in sysml. In Graph Transfor-
mations and Model-Driven Engineering, volume 5765 of LNCS, pages 580–601. Springer,
2010.

13. S. Tripakis. Compositionality in the Science of System Design. Proceedings of the IEEE,
104(5), May 2016.

14. Reinhard von Hanxleden, Edward A. Lee, Christian Motika, and Hauke Fuhrmann. Multi-
view modeling and pragmatics in 2020. In 17th Intl. Monterey Workshop, LNCS, 2012.

15. Xiangpeng Zhao, Quan Long, and Zongyan Qiu. Model checking dynamic UML consis-
tency. In Formal Methods and Software Engineering, volume 4260 of LNCS, pages 440–459.
Springer, 2006.

	Preface
	Contents
	List of Publications
	Author's Contribution
	Introduction
	Related Work
	Early Work on Multi-View Modeling
	Multi-Modeling Languages
	Multi-View Modeling for Embedded and Cyber-Physical Systems
	A Generic Formal Framework for Multi-View Modeling
	Instantiating the Framework for Symbolic Discrete Systems
	Instantiating the Framework for Languages and Automata

	Other Approaches to Multi-View Modeling
	Metamodeling
	Aspect-Oriented Modeling
	Interface Theories

	Conclusion

	Overview of Contributions to Multi-View Modeling
	Overview of Publication I
	Overview of Publication II
	Conclusion

	Conclusions and Perspectives
	References
	Publications
	Publication I
	Publication II

