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ABSTRACT

High-power operation of conventional GaN-based light-emitting diodes (LEDs) is severely limited by current
crowding, which increases the bias voltage of the LED, concentrates light emission close to the p-type contact edge,
and aggravates the efficiency droop. Fabricating LEDs on thick n-GaN substrates alleviates current crowding but
requires the use of expensive bulk GaN substrates and fairly large n-contacts, which take away a large part of the
active region (AR). In this work, we demonstrate through comparative simulations how the recently introduced
diffusion-driven charge transport (DDCT) concept can be used to realize lateral heterojunction (LHJ) structures,
which eliminate most of the lateral current crowding. Specifically in this work, we analyze how using a single-side
graded AR can both facilitate electron and hole diffusion in DDCT and increase the effective AR thickness. Our
simulations show that the increased effective AR thickness allows a substantial reduction in the efficiency droop
at large currents, and that unlike conventional 2D LEDs, the LHJ structure shows practically no added efficiency
loss or differential resistance due to current crowding. Furthermore, as both electrons and holes enter the AR
from the same side without any notable potential barriers in the LHJ structure, the LHJ structure shows an
additional wall-plug efficiency gain over the conventional structures under comparison. This injection from the
same side is expected to be even more interesting in multiple quantum well structures, where carriers typically
need to surpass several potential barriers in conventional LEDs before recombining. In addition to simulations,
we also demonstrate selective-area growth of a finger structure suitable for operation as an LHJ device with 2um
distance between n- and p-GaN regions.
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1. INTRODUCTION

Highly efficient blue GaN-based light-emitting diodes (LEDs) have disrupted the general lighting industry and are
already enabling significant energy savings.! However, there are still several issues related to GaN LEDs which,
if solved, would provide a higher efficiency at large currents and potentially even new application areas for LEDs?
and high power visible lasers. One of the present challenges for LED development is current crowding, which
typically causes most of the light emission to originate from the p-type contact edge.®® This limits strongly the
LED efficiency at current densities above 100 A /cm? and therefore prevents LEDs from being used efficiently in
applications requiring very high output powers. Very recently, Hurni et al. demonstrated how current crowding
can be reduced by using a thick n-type current-spreading layer,® but this still requires expensive bulk GaN
substrates as well as large n-type contacts.

Current transport in today’s LEDs is organized using the double heterojunction (DHJ) scheme and the flip-
chip design” illustrated in Fig. 1(a). The DHJ scheme requires the active region (AR) to be placed between
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Figure 1. Devices simulated in this work: (a) DHJ-100 and DHJ-250, (b) LHJ and (c) Ideal vertical DHJ LED (DHJ-
0). In (a) and (b), the dashed arrows depict where the band diagrams are plotted later in the article. The slight n-type
polarization doping in the graded layer is assumed to be compensated with an equal but opposing acceptor doping density.

n- and p-type bulk layers, and this severely limits spreading carriers efficiently over a large-area LED without
using a dense n-contact grid that decreases the AR area. In addition, to also keep the additional voltage losses
at the contacts at a reasonable level, the n-contact typically has to occupy roughly 10 % of the whole device
area, reducing the AR area by an equivalent amount. To provide alternative ways to realize current spreading
in optoelectronic devices, we have recently demonstrated the diffusion-driven current transport (DDCT) scheme
using simulations and experiments.® 19 More recently we also proposed that combining DDCT with selective-
area growth (SAG) of doped GaN enables eliminating the lateral resistance and current crowding, especially if
combined with material composition grading.!

In this work we analyze how the use of DDCT affects the device efficiency and discuss the associated changes
in the device band diagram that enable the improvements. We also propose that realizing the linear composition
grading all the way from the QW material composition to GaN can be used both to increase the effective
thickness of the AR and to further facilitate the current transport in DDCT. Both of the latter benefits have been
studied separately in Refs.,!!>1? but this paper combines both effects in the same device. Our results show that
increasing the thickness of the AR with composition grading shifts the peak efficiency to higher current densities
and decreases the efficiency droop. In the DHJ design, current crowding still causes an additional reduction
of the device efficiency at large currents, but according to our results such an efficiency loss can be practically
eliminated using DDCT and SAG. In addition, our results on single-side graded structures demonstrate how
DDCT can be used to remove voltage losses due to electrons surpassing a polarization-induced potential barrier,
as both electrons and holes enter the AR from the graded side in DDCT. In addition to the simulations, we
perform SAG of a finger structure suitable for operation as an LHJ device.

Figure 1 shows the DHJ and lateral heterojunction (LHJ) structures simulated in this paper. All the struc-
tures have an n-type GaN bottom layer, a 2.5nm thick layer of homogeneous In;5GagsN, a linearly graded
Iny5GagsN/GaN layer and 150nm thick layer of p-GaN (and a similarly thick adjacent n-GaN layer in (b)).
The 2.5nm thick InGaN layer and the bottommost nanometers of the graded layer together act as the AR,
where the recombination predominantly takes place. To illustrate how current crowding depends on the device
dimensions, two different 2-dimensional DHJ structures shown in Fig. 1(a) are studied: in the DHJ-100 and
DHJ-250 structures, the separations between adjacent n-contacts are 100pum and 250um, respectively. The LHJ
structure of Fig. 1(b) has adjacent n- and p-type layers realized with selective-area growth on top of the graded
layer, and both electrons and holes are transported to the AR from its top side by DDCT. The top n-GaN
layer is 3um wide and the top p-GaN layer is 10um wide to account for the lower conductivity of p-GaN, and
the separation between n-GalN and p-GaN is 1uym. To compare the 2-dimensional DHJ and LHJ devices with a
purely 1-dimensional structure, Fig. 1(c) shows an ideal vertical LED (structure DHJ-0) with perfect transparent
n- and p-type contacts on both sides. The resistive loss in the DHJ-0 structure does not contain any lateral



resistance, and its resistance is essentially caused by transport through the 150nm thick doped layers and the
100nm thick graded layer. Therefore it provides an idealized reference structure with no current crowding.

2. THEORY

Current transport is simulated in the LED structures of Fig. 1 using the drift-diffusion (DD) model (see, e.g.
Refs.!3716) which solves self-consistently the device operation and, in particular, provides an adequate treatment
of current crowding. The DD model is given by

V- (—eVo)=e(p—n+Ng— N,)— V- Piot
V-J,=V-(—eu,nVe,) =cR (1)
V-J, =V (—euppVe,) = —eR,

where € is the static permittivity, e is the elementary charge, fi,, 11, are the electron and hole mobilities, N4, N,
are the ionized donor and acceptor doping densities, and Py, is the total static polarization density consisting
of spontaneous and piezoelectric polarization. The DD model relates the electrostatic potential ¢ and the quasi-
Fermi levels Ep,, = —eV¢, and Er, = —eV¢, (¢, and ¢, being the quasi-Fermi potentials) to the electron and
hole densities n and p, electron and hole currents J,, and J,, and the recombination rate density throughout the
device. In Eq. (1), Ny is further assumed to be equal to the total donor doping density, whereas N, is calculated
from the valence band quasi-Fermi level using the Fermi-Dirac distribution with an acceptor ionization energy
of 170 meV, as in Ref.”

In Eq. (1), recombination rate R is calculated based on the electron and hole densities as detailed in Ref.!”
using the A, B and C coefficients for Shockley-Read-Hall (SRH), net radiative, and Auger recombination. Note
that as the thin InGaN layer in Fig. 1 is graded from its other side and as the AR therefore is effectively
much wider than the nominal 2.5nm, we do not separately account for any 2D carrier densities or recombination
rates. Considerable uncertainty surrounds the calculation of Auger recombination in III-N devices (see, e.g.,
Ref.'®). However, we note that as we mainly focus on electron and hole currents in the bulk layers and as the
AR properties are similar between the structures under comparison, the conclusions of this paper should hold
even if different Auger recombination models are used in the calculations. Internal quantum efficiency (IQE) is
calculated from the simulations as R,qq/Rtot, where R,..q is the net radiative recombination rate and Ry, is the
total net recombination rate. Wall-plug efficiency (WPE) is calculated as Py /(UI), where P, is the optical
output power calculated with a constant extraction efficiency of 0.9, and U is the electrical input power.

The simulations are carried out using donor and acceptor densities of 5 x 10'® cm ™ and 1 x 10'? cm ™3 in the
n- and p-doped layers, respectively. The electron and hole mobilities in the doped layers are 230cm?/(Vs) and
10cm?/(Vs) based on our Hall measurements on previous samples. In unintentionally doped GaN, the electron
and hole mobilities are 1000cm?/(Vs) and 70cm?/(Vs) based on Monte Carlo calculations reported in Ref.!® The
recombination parameters are set to A = 107 1/s, B =15-10"!" m®/s and C = 107*2 m%/s in accordance with
our previous work.'® The polarization densities are scaled by 0.5 from the theoretical values reported in Ref.?°
to account phenomenologically for unidealities that are expected to partly compensate the polarization charges,
such as defects and Indium fluctuations.?!:22

3. RESULTS & DISCUSSION

Figure 2 shows the simulated current-voltage characteristics, where the current density is defined by dividing
the total current with the full device area including contacts. The LHJ structure has a smaller voltage for a
given current than the DHJ structures at all current densities. At small current densities this is due to a more
favorable 2D band profile in the LHJ (to be discussed later) that decreases the voltage losses in the barrier
layers. Of all the DHJ structures, the DHJ-0 structure shows much less saturation in its current-voltage curve
at large currents than the other DHJ structures, since it does not contain any lateral current spreading. The
current-voltage characteristics of the DHJ-100 and especially the DHJ-250 structure start to saturate already
at current densities much below 100 A/cm? due to the resistive loss in the n-GaN layer and the corresponding
current crowding. Quite remarkably, the LHJ structure shows almost as little saturation as the DHJ-0 structure
at the current densities studied in Fig. 2, indicating very small lateral losses.
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Figure 2. Current-voltage characteristics resulting from the simulations excluding contact resistances.
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Figure 3. Differential resistance p of the structures defined as dU/dJ as a function of current density.

The resistive losses are easier to quantify by examining the differential resistance as a function of the current
density. Figure 3 shows the differential resistance defined as p = dU/d.J for all the structures from the simulations.
As expected, the DHJ-0 structure shows the least differential resistance at large currents, as it does not contain
any lateral current transport and as its resistive losses are therefore essentially caused by the 150nm thick
doped layers and the 100nm thick graded layer. The DHJ-100 and DHJ-250 structures show significantly larger
differential resistances than the DHJ-0 structure mostly due to the lateral resistive loss and the related current
crowding in the n-GaN layer. In contrast, the LHJ structure has only slightly larger differential resistance than
the ideal DHJ-0 structure, and its differential resistance is therefore significantly smaller than that of the DHJ-100
and DHJ-250 structures.

To illustrate the differences in the device operation in more detail, Fig. 4 shows the band diagrams of (a) the
LHJ structure and (b) the DHJ-100 structure at a current density of roughly 250 A/cm?. The band diagrams
are plotted following the dashed arrows in Fig. 1, which roughly correspond to the center points of the ARs. The
operating voltage is 2.75V in (a) and 2.9V in (b), reflecting that the LHJ requires a smaller operating voltage
due to more favorable carrier injection and smaller current crowding. The more favorable carrier injection in
the LHJ structure is illustrated in Fig. 4 using the symbols for electrons and holes: in the LHJ structure in
(a), both electrons and holes enter the low-bandgap region responsible for light emission from the same side on
the right. In the DHJ structure in Fig. 4(b), on the other hand, electrons enter the low-bandgap region from
the left, where they have to surpass the polarization-induced potential barrier. In the structures simulated here,
the large effective volume of the graded AR generates a fairly high recombination rate and consequently a large
electron current density already at small bias voltages. Due to the small bias voltage, the potential barrier in
Fig. 4(b) is not notably diminished by free-carrier screening even when a large electron current has to surpass
it. This causes an electrical loss for electrons in the form of a quasi-Fermi loss as explained in more detail in
Ref.,'6 and this loss also causes the ca. 0.1V difference in the low-bias operating voltages of the LHJ and DHJ
devices seen in Fig. 2. Even if the quasi-Fermi loss can be expected to at least partly follow from incomplete
treatment of carrier transport at the GaN/InGaN interface, such a loss may nonetheless be important at least in
multi-quantum well devices, where electrons would need to transfer over multiple GaN barriers before reaching
the uppermost QW with the highest hole concentration in the DHJ scheme.

To study the effects of current crowding on the device efficiency, Fig. 5(a) shows the internal quantum
efficiency (IQE) for all the structures as a function of current density. All the structures show essentially similar
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Figure 4. Band diagrams of (a) the LHJ structure and (b) the DHJ-100 structure at roughly 250 A/cm?. The band
diagrams are plotted following the dashed arrows marked in Fig. 1, and the zero position corresponds to the bottom
interface of the InGaN AR. The bias voltages are (a) 2.75V and (b) 2.9V. The 2.5nm thick homogeneous InGaN layer is
marked with a gray background, and the graded InGaN/GaN layer is on its right side.
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Figure 5. (a) Internal quantum efficiency and (b) wall-plug efficiency (excluding contact resistances) of the structures.

peak IQEs as expected, as all the devices have essentially similar active regions. Furthermore, especially the
DHJ-0 structure has a very modest IQE droop due to the large effective AR thickness and the lack of any
lateral current transport losses. On the other hand, both the DHJ-100 and the DHJ-250 structures show a more
severe IQE droop than the DHJ-0 structure, and this difference is essentially caused by lateral carrier spreading,
illustrating the additional effect of current crowding on the IQE droop. Especially the DHJ-250 structure has a
large added IQE droop due to its wider p-contact region, but even the DHJ-100 structure exhibits a substantially
more severe droop than the ideal DHJ-0 structure. The LHJ structure, on the other hand, differs only very little
from the DHJ-0 structure within the current density range shown in the figure. This illustrates that it suffers
much less from lateral current crowding than the 2-dimensional DHJ structures.

Since all the devices have essentially unity injection efficiency in the simulations, the IQE behaviour of the
devices in Fig. 5(a) is also fully reproduced in their external quantum efficiencies, if the light extraction efficiencies



Figure 6. (a) Microscope image of the fabricated structure with separately grown n- (left) and p-GaN (right) regions.
(b) SEM image of the area circled in (a) with the measured distance between the grown materials.

are similar. However, to illustrate the additional effect of the different bias voltages observed in Fig. 2, Fig. 5(b)
shows the wall-plug efficiency (WPE) as a function of the current density for all the structures. As in the case of
IQE, the DHJ-100/DHJ-250 structures show a stronger WPE droop than the ideal DHJ-0 structure. However,
the difference between the DHJ-100/DHJ-250 and the DHJ-0 structure is larger in the case of WPE than in the
case of IQE, since the DHJ-100/DHJ-250 structures require larger bias voltages than DHJ-0 at large current
densities due to their lateral resistances. Most importantly, however, the LHJ structure shows superior WPE as
compared to all the other structures. The larger peak WPE of the LHJ structure is caused by its roughly similar
peak IQE together with a smaller voltage for a given current density as seen in Fig. 2. The smaller input voltage
results in a smaller input power for a given current density in the LHJ structure. However, it can be seen in
Fig. 5 that even if the peak WPEs were similar, the WPE droop from its peak value is less severe in LHJ than
in the DHJ-100 structure, albeit still somewhat stronger than in the 1-dimensional ideal DHJ-0 structure. This
illustrates the potential of the LHJ concept to boost the output power of LEDs at high currents.

LHJ devices can be realized e.g. by using SAG on a template wafer with the QW and the graded layer. The n-
and p-type layers are then grown in separate epitaxial processes with a lithographically patterned growth mask.
Example of an SAG-grown GaN-based LHJ structure is shown in Fig. 6. Fig. 6(a) shows a microscope image
of a test structure with a separately grown n-GaN region (mesa and fingers on the left) and an opening in the
growth mask made for the p-GaN region (mesa and fingers on the right). Fig. 6(b) shows an SEM image from
the circled area in (a) for a structure where the SAG of both the n- and p-type GaN regions has been completed
and the growth mask has been removed. In the figure the distance measured between the n- and p-GaN regions
is approximately 2um. The fabricated sample was grown using metallo-organic vapor phase epitaxy (MOVPE).
First, templates consisting of a c-plane sapphire substrate, 5um thick unintentionally doped intrinsic GaN (i-
GaN) buffer layer, a standard 5 well InGaN/GaN MQW active region and 120nm i-GaN capping were grown.
This template was then used as a substrate for n-GaN and p-GaN SAG processes. The SAG growth mask was
fabricated by standard lithography techniques and an SiO layer deposited by PECVD. The precursors for the
growth were trimethyl gallium (TMG), trimethyl indium (TMI), and trimethyl aluminium (TMA).

4. CONCLUSIONS

We carried out full-device simulations of conventional LEDs and a comparable lateral heterojunction (LHJ) LED,
where the carrier injection was realized using the diffusion-driven charge transport concept. Our results showed
that using a single-side graded active region both facilitates the current transport in the LHJ device and leads to



a modest efficiency droop by increasing the effective thickness of the active region. More importantly, comparing
the operation of the LHJ structure with conventional LEDs and an ideal vertical LED showed that the LHJ
structure shows practically no added differential resistance or efficiency loss due to lateral current crowding.
The LHJ structure could therefore provide a viable solution for realizing efficient high-power LEDs operating
at current densities in excess of 100 A/cm? while allowing to separately engineer the material layers below the
AR for optimal AR quality. Furthermore, the LHJ structure studied here showed an additional efficiency gain
even over the ideal vertical LED thanks to injecting electrons and holes to the active region from the same side.
As the top side of the active region did not have any significant potential barriers to either carriers, the LHJ
structure operated with a smaller input voltage than any of the conventional structures. We expect this property
to be even more interesting in multiple quantum well structures, where carriers typically need to surpass several
potential barriers in conventional LEDs before being able to recombine and produce photons. One of the main
challenges in selective-area growth of the LHJ devices is the fabrication of laterally located n- and p-layers with
suitable geometry and spacing. Here we also demonstrated that it is possible to reach micrometer scale growth
resolution with selective-area growth using standard fabrication techniques and growth masks combined with
additional growth cycles. This should provide the means to fabrication of full device prototypes.
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