
Aalto University

School of Science

Degree Programme in Computer, Communication and Information Sciences

Duc Hung Luu

Deploying building information mod-
eling software

on Desktop as a Service platform

Master’s Thesis
Espoo, March 09, 2017

Supervisor: Professor Antti Ylä-Jääski, Aalto University
Advisors: Paula Hellemaa, M.Sc. (Tech.)

Mirko Gatto, Trimble Solutions Corporation

Aalto University
School of Science
Degree Programme in Computer, Communication and Infor-
mation Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Duc Hung Luu

Title:
Deploying building information modeling software on Desktop as a Service plat-
form

Date: March 09, 2017 Pages: 68

Major: Mobile Computing, Services and Secu-
rity

Code: T-110

Supervisor: Professor Antti Ylä-Jääski

Advisors: Paula Hellemaa, M.Sc. (Tech.)
Mirko Gatto, Trimble Solutions Corporation

Desktop as a Service (DaaS) is a novel cloud computing service that provides
cloud-based virtual desktops on-demand to end users. The major advantage of
DaaS is the capability to quickly deliver expeditious control of a full desktop
environment to end users from various device platforms such as Android, iOS,
MacOS or Web access from anywhere and at any time.
This master thesis is a proof of concept to demonstrate the practicability to
deploy the case company’s graphics-intensive building information modeling soft-
ware, Tekla Structures on Amazon Web Services’ DaaS solution, named Amazon
WorkSpaces. We investigated the whole deployment process of the software to
the Amazon WorkSpaces. After clarifying the deployment process, we developed
the working prototype consisting of different Amazon Web Services to automate
the process. Furthermore, we implemented operational test cases for the proto-
type and for the Tekla Structures running on Amazon WorkSpaces to determine
the feasibility of using this novel cloud service for the production purpose in the
case company.
In summary, Amazon WorkSpaces is a highly anticipated DaaS solution that can
simplify the desktop and software delivery process to the case company’s cus-
tomers. The prototype developed in the thesis can automate the deployment
process and launch new Amazon WorkSpaces to a sufficient extent. Moreover,
the evaluation shows that the prototype can handle its automation tasks cor-
rectly based on the proposed architectural design and the Amazon WorkSpaces
with Graphics hardware configuration are capable of operating Tekla Structures
impeccably as in physical Windows desktops.

Keywords: Amazon WorkSpaces, Desktop as a Service, virtual cloud
desktop, cloud computing, Tekla Structures, graphics-
intensive software, continuous deployment

Language: English

2

Acknowledgements

This thesis was written for Trimble Solutions Corporation. I wish to thanks
Trimble for an interesting thesis topic and resources to work on this thesis.

I want to thank my supervisor, Professor Antti Ylä-Jääski for the valu-
able feedback and suggestions that ushered my thesis to the right path. I am
profoundly grateful to have Paula Hellemaa and Mirko Gatto as my thesis
advisers. Thank you for your dedicated guidance during the whole process
of this thesis work.

I would like to express my gratitude to my manager Jari Patanen and
the entire Software Deployment team for supporting my thesis work and re-
minding me of lounasaika.

My thanks go to Software Architecture, SOLD teams and other colleagues
at Trimble Solutions Finland whom I have had thought-provoking discussions
that keep me inspired and motivated.

Thank you my family for being always by my side!

Finland, March 09, 2017

Duc Hung Luu

3

Abbreviations and Acronyms

Amazon EC2 Amazon Elastic Compute Cloud
Amazon S3 Amazon Simple Storage Service
Amazon WAM Amazon WorkSpaces Application Manager
AD Active Directory
API Application programming interfaces
AWS Amazon Web Services
CD Continuous Delivery
CI Continuous Integration
CSP Cloud service providers
CSU Cloud service users
DaaS Desktop as a Service
DAaaS Desktop Application as a Service
GPU Graphics processing unit
PCoIP PC-over-IP
JSON JavaScript Object Notation
VCS Version Control System
VDI Virtual Desktop Infrastructure
REST Representational State Transfer

4

Contents

Abbreviations and Acronyms 4

1 Introduction 9
1.1 Problem statement . 10
1.2 Scope of the Thesis . 11
1.3 Structure of the Thesis . 12

2 Background 13
2.1 Virtual Desktop Infrastructure 13
2.2 Cloud computing . 14

2.2.1 Cloud deployment models 14
2.2.2 Cloud computing architecture and services 15

2.3 Desktop as a Service . 16
2.3.1 Definition of Desktop as a Service 16
2.3.2 Service Architecture for Desktop as a Service 17
2.3.3 Desktop as a Service benefits and limitations 19
2.3.4 Desktop as a Service providers 20

2.4 GPU-Accelerated virtual machines in cloud computing 21
2.5 Summary . 22

3 Case Study Software 24
3.1 Case Study Company . 24
3.2 Tekla Structures Software . 24
3.3 Continuous delivery system 26
3.4 Pre-requisite Software . 27

3.4.1 Tekla Structures License Administration Tool 27
3.4.2 Tekla Structures Environments 28

4 Amazon Web Services and other tools 29
4.1 Amazon WorkSpaces . 29

4.1.1 WorkSpaces . 30

5

4.1.2 PC-over-IP Protocol for Virtual Desktop Delivery . . . 30
4.2 Amazon Elastic Compute Cloud 31
4.3 Amazon Simple Storage Service 31
4.4 AWS Lambda . 31
4.5 Amazon API Gateway . 32
4.6 AWS Directory Service . 32
4.7 AWS Identity and Access Management 32
4.8 Other applications . 32

4.8.1 SikuliX . 32
4.8.2 InstallShield . 33

4.9 Summary . 33

5 Design 34
5.1 Functional objectives . 34
5.2 Amazon WorkSpaces Deployment Process 34

5.2.1 Packaging application in Amazon WorkSpaces 36
5.2.2 Launching Amazon WorkSpaces to end users 37

6 Implementation and System Prototype 39
6.1 Packaging application in Amazon WorkSpaces 39

6.1.1 AWS IAM component 40
6.1.2 Amazon API Gateway component 40
6.1.3 AWS Lambda component 41
6.1.4 Amazon S3 component 42
6.1.5 Amazon EC2 component 42
6.1.6 SikuliX scripts component 42
6.1.7 Amazon DynamoDB component 43
6.1.8 Associate all components as one system 43

6.2 Launching WorkSpaces to end users 44
6.2.1 Amazon API Gateway component 44
6.2.2 AWS Lambda component 45
6.2.3 AWS IAM component 45
6.2.4 AWS Directory Service component 45
6.2.5 Amazon EC2 component 45
6.2.6 Amazon WorkSpaces console 46
6.2.7 Associate all components as one system 46

6.3 Summary . 46

7 Evaluation 47
7.1 The prototype experiment and analysis 47

6

7.1.1 Virtualizing and validating Tekla Structures for Ama-
zon WorkSpaces . 48

7.1.2 Assigning WorkSpaces to client 49
7.2 Amazon WorkSpaces Console 50
7.3 Tekla Structures operation in Amazon Graphics WorkSpaces . 51

7.3.1 Performance evaluation 51
7.3.2 Interoperability evaluation 53
7.3.3 Security evaluation . 53
7.3.4 Reliability evaluation 54

7.4 Summary . 54

8 Discussion 56
8.1 The implementation and future enhancements 56
8.2 Delivering the WorkSpace and Tekla Structures as a bundle . 59
8.3 Business models for software delivery 59
8.4 Potential cloud services . 60

9 Conclusions 62

7

List of Figures

2.1 Four cloud deployment models 15
2.2 DaaS and other cloud service models in the cloud segments . . 17
2.3 DaaS service architecture and the interactions with the client . 18

3.1 Tekla Structures Screenshot 25
3.2 Tekla Structures continuous delivery system 26

5.1 Tekla Structures deployment process in Amazon WorkSpaces . 35
5.2 Tekla Structures packaging workflow in Amazon WorkSpaces . 36
5.3 Workflow for launching Amazon WorkSpaces to end users . . . 37

6.1 Amazon API Gateway Console for WorkSpacesAPI 41
6.2 SikuliX script snippet for automating tasks in Amazon WAM

Studio instance . 43
6.3 WorkSpacesAPI table query result in Amazon DynamoDB

dashboard . 44

7.1 AWS WorkSpaces Operation Status GUI 47
7.2 A screenshot of EC2 Admin Studio virtualizing Tekla Struc-

tures under SikuliX script . 49
7.3 Amazon Graphics WorkSpace and Citrix XenDesktop perfor-

mance comparison chart . 52

8

Chapter 1

Introduction

Cloud computing refers to an evolving paradigm that is shifting client/server
systems to hosted services. Over the last decade, cloud computing has ad-
vanced from a precarious concept to a mature and prevalent technology that
provides flexible, on-demand information technology (IT) systems over the
Internet. Cloud computing power comes from physical data centers located
in one or many different places that are pooled and virtualized to form a
multi-tenant network architecture.[27] Furthermore, cloud computing is cost
effective since it removes the need of on-premises IT infrastructure and oper-
ations. There are various cloud computing service models such as Software
as a Service, Platform as a Service, Infrastructure as a Service, Compute as
a Service and many more. Nevertheless, this thesis focuses particularly on
Desktop as a Service (DaaS) model.

DaaS is a relatively novel cloud computing service that offers full cloud-
based virtual desktop experience for end users on various platforms, e.g.,
Android, iOS, Windows, MacOS and web access. Today, with the substan-
tial growth of portable devices and broadband Internet connection, the de-
mands to get instant access to data, applications and desktops on any devices
anywhere and at any time has become imperative. This trend demands enter-
prise IT departments to conduct a more secure and reliable access remotely
to workplace desktops.

With DaaS, end users only need a simple device that can run a DaaS
client software to connect and control their virtual desktops. The concept
of DaaS is highly practical for users that require accessing to full desktops
without taking care of the tedious configuration and hardware maintenance.
Consequently, DaaS is exposed as an ideal solution to fulfill these demands.

This thesis work stemmed from the need to deliver customers an enter-
prise DaaS solution that can operate the case company software without

9

CHAPTER 1. INTRODUCTION 10

compromising security and performance. Particularly, the thesis aims to de-
ploy and evaluate the feasibility of implementing Tekla Structures, the case
company software, on Amazon WorkSpaces, a DaaS solution in Amazon Web
Services.

1.1 Problem statement

Tekla Structures is a Building Information Modeling (BIM) software of the
case company. As the nature of BIM software that usually involves draw-
ing and rendering multiplex 3D models, Tekla Structures requires intensive
graphics computation to function smoothly. Generally, customers work with
Tekla Structures using high performance workstation desktops and laptops.
However, as the cloud computing becomes more ubiquitous, and demands
to get instant access to the software regardless of devices and location are
arising. It is essential for the case company to provide a solution to meet
these demands. DaaS stands out to be a good candidate to provide a reliable
control of virtual desktop machines that are capable of running graphics-
intensive software such as Tekla Structures.

Amazon WorkSpaces is a newly introduced DaaS solution within Ama-
zon Web Services (AWS) ecosystem. As the case company has been adopting
AWS extensively, taking Amazon WorkSpaces into use would not only help
to develop a more diverse Trimble Solutions Corporation product offering in
AWS but also fulfill the high-quality cloud desktops for customers. Addi-
tionally, Amazon WorkSpaces offers high-end GPU-powered virtual desktops
that meet the Tekla Structures requirement specifications.

On the other hand, the case company product development generates
several Tekla Structures versions daily from the in-house continuous delivery
system. It is important to automate the deployment process of packaging
Tekla Structures to Amazon Workspaces as wholly as possible. The au-
tomation process would help to deliver the software to end users in a timely
manner and minimize repetitive, error-prone tasks. Currently, the case com-
pany is providing Citrix XenApp and XenDesktop as DaaS solutions for
delivering Tekla Structures software to end users. By experimenting Ama-
zon WorkSpaces, we can compare and assess equitably the benefits of each
DaaS solution.

CHAPTER 1. INTRODUCTION 11

1.2 Scope of the Thesis

The main objective of this thesis is to deploy Tekla Structures on Amazon
WorkSpaces in Amazon Web Services and automate this whole deployment
process. The thesis aims to produce a proof of concept on how feasible Tekla
Structures can be used on Amazon WorkSpaces.

In order to attain the objective, we investigate the technologies that can
be utilized for automating the deployment process. In essence, a multitude of
AWS services and scripting languages are studied and developed for automat-
ing these tasks. We scrutinize the design of the Amazon WorkSpaces and its
required packaging work-flow for virtualizing and validating Tekla Structures.
Additionally, we investigate pre-requisite and add-on applications needed to
manage and operate Tekla Structures, e.g., Tekla license server, model shar-
ing tool and customized environments. Then we examine the practical tasks
to automate in the Amazon WorkSpaces application packaging and launching
operations. Ultimately, the automation prototype is implemented according
to the study and the proposed design. Once the prototype is developed
and Tekla Structures fully functions in Amazon WorkSpaces, we perform
different tests to assess the feasibility of using Tekla Structures in Amazon
WorkSpaces. Furthermore, other imperative factors that are essential for any
enterprise DaaS solutions such as security and reliability are reviewed.

Our research questions have been identified to achieve the objectives, and
are listed below:

RQ1: How Tekla Structures can be deployed in Amazon WorkSpaces?
Will Amazon WorkSpaces be capable of running Tekla Structures?

This thesis deploys Tekla Structures in Amazon WorkSpaces in order to
understand the behavior of the Amazon WorkSpaces service as a whole. The
findings from the implementation can be used to create a concrete plan for
developing the continuous deployment system for the production use in the
case company. Additionally, this research question aims to discover any lim-
itations occurred in the deployment process.

RQ2: To what extent can continuous deployment tasks be automated and
how to implement these tasks in Amazon Web Services?

To answer this question, we study the architecture of Amazon WorkSpaces.
We investigate how to deploy different Tekla Structures versions on Amazon
WorkSpaces and to automate these deployment tasks. By carrying out dif-
ferent trial-and-error implementations, the thesis evaluates the most sensible
approach to be used for Amazon WorkSpaces in Amazon Web Services.

CHAPTER 1. INTRODUCTION 12

The output of this thesis work is an automated continuous deployment
system built on different AWS services. The system aims to pave the way
for taking Amazon WorkSpaces into use as a part of the case company’s
continuous deployment process and a DaaS offering for customers.

1.3 Structure of the Thesis

The thesis is divided into nine chapters. A brief introduction to the thesis
work and the thesis objectives are provided in this chapter. Subsequently,
Chapter 2 presents the background of the core technologies studied in the
thesis. In Chapter 3, the case company information, their software and the
continuous delivery system are provided. Chapter 4 is devoted to analyz-
ing the AWS ecosystem in order to understand the AWS services used in
the implementation. In Chapter 5, the design for the deployment of Tekla
Structures in AWS is proposed. The implementation and system prototype
are developed and scrutinized in Chapter 6. We assess various aspects of the
system in Chapter 7. Chapter 8 is dedicated for discussing the findings of
the thesis and suggesting directions for future studies. Finally, Chapter 9
concludes the thesis and synthesizes the results of the implementation.

Chapter 2

Background

2.1 Virtual Desktop Infrastructure

Virtual Desktop Infrastructure (VDI) is a centralized server-based computing
platform that hosts user desktops in a data center. VDI enables multiple
user desktops to have an independent operating system in a virtual machine
while still sharing underlying physical hardware resources [1, 10]. VMware
ESX server is the pioneer in the VDI approach that provides a thin software
layer to allocate efficiently hardware resources among virtual machines. For
example, a VMware ESX server can host and distribute computing power
among Microsoft Windows 7, Microsoft Windows Server and Linux virtual
machines concurrently [39]. Thus, multiple users can work on their virtual
machines without affecting each others’ activities via the remote desktop
protocol.

VDI brings an ease to IT management as it allows central management
and full control on software being installed and used on the virtual desktops.
Additionally, deploying new virtual desktops is significantly faster compared
to the physical desktop deployment. Security enhancement is another ad-
vantage in VDI. The VDI image can be locked from external devices and the
data is centrally stored in the database server. Hence, if any devices used to
connect to virtual machines are lost or stolen, all the information is still safe
and protected in the server. Nevertheless, one drawback of VDI technology
is the high investment and complexity to equip the data center infrastructure
capable of virtualization [10].

13

CHAPTER 2. BACKGROUND 14

2.2 Cloud computing

A consensus of cloud computing defines its concept as a model that allows
omnipresent and on-demand network access to a shared pool of elastic, pay-
per-use computing resources such as applications, storage and servers. More-
over, these resources can be easily provisioned and released by cloud service
providers (CSP). [27]

In order to be considered as cloud computing, a computing service needs
to demonstrate the five following essential characteristics:

1. On-demand self-service: Enabling cloud service users (CSU) to provi-
sion computing capabilities with no intervention from CSP.

2. Rapid elasticity: The ability to appropriately scale inwards or outwards
the service depending on the demand in any quantity at any time.

3. Resource pooling: A multi-tenant model consisting of different physical
and virtual resources that is pooled and assigned dynamically irrespec-
tive of the real location.

4. Measured service: Capabilities to monitor, control and optimize pooled
resources usage and reporting a transparent usage and associated costs
for CSU and CSP.

5. Broad network access: Resources are made available with universal
high bandwidth, low latency and stable network access that can be
accessed by heterogeneous client platforms such as laptops, tablets and
mobile phones.

2.2.1 Cloud deployment models

Cloud deployment models regulate who can employ cloud resources and how
these resources are accessed and located [42]. Cloud deployment practices
are carried out based on four varied but rigidly connected models, i.e., public,
private, hybrid and community. Figure 2.1 illustrates the deployment models
concepts and their relations.

Private cloud infrastructure is designed exclusively for a single organiza-
tion consisting of multiple business units. The private cloud should handle
a specific function for business success and locate on or off the organiza-
tion premises [27]. Public cloud is a multi-tenant cloud infrastructure shared
by different users who usually have nothing in common and hosted on the
premises of the cloud provider. Community cloud is utilized by an associ-
ation of organizations that have shared interests. The community cloud is

CHAPTER 2. BACKGROUND 15

Figure 2.1: Four cloud deployment models

maintained by these organizations and/or a third vendor. As can be seen in
the Figure 2.1, hybrid cloud is a mixture of two or more unique cloud de-
ployment models (private, public, community) that remain as independent
entities but are bound together as single cloud under a strong management
framework [40].

Each cloud deployment model offers its advantages as well as challenges.
There is no silver bullet model that can resolve all demands. Therefore, it
depends on the organization to choose what cloud models can fulfill their
needs and requirements.

2.2.2 Cloud computing architecture and services

The conventional cloud computing is divided into three main layers, i.e., ap-
plication, platform and infrastructure. Each of these layers can be configured
and managed by CSU. Alternatively, they can be supplied by CSP to form
three major corresponding delivery models: Software as a Service (SaaS),
Platform as a Service (PaaS) and Infrastructure as a Service (IaaS).

Infrastructure layer can be seen as the fundamental foundation of the
cloud computing. In the past, mainframe computers and rack servers oper-
ated monolithic applications. Today, virtualization1 optimizes the hardware
resources by allowing one server to run as multiple servers. As a result, the

1Virtualization: the abstraction of physical computing resources such as processors,
storage devices, GPU cards and RAM.

CHAPTER 2. BACKGROUND 16

hardware resources can be pushed to their full capacity and serve different
utilities instantaneously [17]. IaaS is a way to deliver cloud computing in-
frastructure (server, storage and network) as an on-demand service. Thus,
CSU can easily obtain ready-to-run IaaS from the cloud provider instead of
equipping and managing the infrastructure of their own.

Platform layer provides CSU a computing platform to create, compile and
test applications easily without the complexity of configuring the run-time,
middleware, operating system and managing the underlying infrastructure.
PaaS is most applicable when CSU wants to automate testing and deploy a
product in a rapid and iterative software development.

Application layer is designed to distribute cloud native software to CSU.
Instead of running on-premises, SaaS is often centrally managed and hosted
by third-party vendor and the software is delivered to CSU over the Internet
as a service on demand or pay-as-you-go model. [17]

As this thesis focuses on Desktop as a Service model, we devote the next
section to discuss about this emerging model in more detail.

2.3 Desktop as a Service

2.3.1 Definition of Desktop as a Service

Desktop as a Service (DaaS) is a cloud service that offers on-demand virtual
desktops running on the cloud to remote users over the Internet. The back-
end of DaaS is a VDI hosted and maintained by the CSP. In essence, DaaS
is the VDI in the cloud that delivers cloud-based virtual desktops. DaaS
operates on a multi-tenant architecture and is provided as a subscription or
pay-per-use service. The CSP supervises virtualization, server, security, data
storage and backup which means that the complexity of VDI is concealed
from the CSU. As a result, DaaS CSU can get all the advantages that VDI
provides [29, 35] while not needing to concern about the underlying system.

Figure 2.2 adapted from Grossman L. [13] illustrates the cloud technology
segments that are covered by the CSP and for what the CSU has to take
responsibility in each cloud service models. Additionally, the figure shows
where DaaS stands in the cloud service models. DaaS is frequently regarded
as the graphical user interface based IaaS. The model is akin to IaaS since
the CSU can fully utilize the infrastructure layer. However, one difference
is that IaaS provides command line interface instead. Moreover, DaaS gives
the CSU possibility to customize their platform layer by using configurations
provided by the CSP and/or their own preferences. On the other hand,
when comparing DaaS with SaaS where only Web applications are utilized,

CHAPTER 2. BACKGROUND 17

Figure 2.2: DaaS and other cloud service models in the cloud segments

all types of software applications can be used in DaaS as in a full desktop
[21]. DaaS and desktop-applications as a service together build up a wider
cloud model called Workspace as a Service.

2.3.2 Service Architecture for Desktop as a Service

This section discusses the standard functions and their interactions with
the CSU in the DaaS service architecture. According to the International
Telecommunication Union [18], there are four major service functions in a
DaaS architecture as followed:

1. Connection brokering (CB): a software application can work as a con-
nection broker that connects the CSU to an available virtual desktop.
The connection broker application executes the user authentication and
license verification between the CSU and CSU’s software. The appli-
cation also manages the virtual machine (VM) for user assignment
and monitors the level of activity for the given VM. Additionally, the
connection broker application can coordinate the deploying protocols
between servers and users.

2. Resource pooling: A resource pool has to supervise high-capacity soft-

CHAPTER 2. BACKGROUND 18

Figure 2.3: DaaS service architecture and the interactions with the client

ware resources such as OS, applications and user profiles2 in order to en-
sure on-demand DaaS services. These software resources are streamed
and run on a dedicated VM.

3. Virtual machine infrastructure: This function aims to create VMs and
administer hardware resources. A hypervisor in the virtualized desktop
server is applied to deploy dynamically the hardware resources to a
higher level of software. As a result, the VM infrastructure produces
virtual desktops from VMs that are used by the CSU.

4. Virtual desktop delivery: The main role of this function is to encap-
sulate and transfer the information system environment to a remote
client device over the network. The virtual desktop delivery protocol is
utilized to arrange communication channels to send and receive all the
interaction information between servers and CSU’s terminals in DaaS
sessions.

2User profile: the individual information related to hardware configuration, operating
environment, current OS and assigned applications

CHAPTER 2. BACKGROUND 19

These four functions and their components are illustrated in Figure 2.3.
Additionally, the figure presents the workflow when a client interacts with
the DaaS service.

An end user only needs the simple client to connect and work with their
virtual machine. Firstly, when a client requests an access to the CB via a
security protocol such as SSH or TLS, the CB authenticates the client ID
and associated password. If the verification succeeds, the CB checks for the
client profile from the User Profile Pool. The Resource Pool also supports the
CB to find the optimal VM based on the client’s hardware configuration and
software required. If no VM is feasible, the CB instructs the VM infrastruc-
ture to create new VM aligned with the client’s configurations. After a VM
is created, the CB applies the client profile to this VM, such as the selected
OS and applications to formulate a virtual desktop. The VM infrastructure
generates a connection and dispatches the connection information to the CB.
The client uses this enquired information from the CB to connect to their
virtual desktop. The client interacts with the virtual desktop via virtual-
ized desktop delivery protocol, e.g., PC-over-IP. When the communication
between the client and the virtual desktop stops, the CB is informed. The
CB updates the most recent client profile to the user profile pool as well as
returns the virtual desktop and its state to the VM infrastructure [18].

2.3.3 Desktop as a Service benefits and limitations

Cloud computing in general and DaaS specifically have brought many benefits
for different parties utilizing the service.

For organizations, DaaS can deliver higher availability in comparison to
physical on-premises workstations as virtual desktops are centrally managed
in data centers and the workload can be spread across many facilities where
they are constantly monitored for optimal service up-time. Data loss due to
hardware malfunction or disaster occurrence can be prevented and business
can continue with a minimal effect since CSU can easily make important data
backed up and stored in multiple sites with DaaS. Besides that, the initial
IT infrastructure investment can be eliminated as the IT operation is shifted
from the upfront capital expense to the operational, pay-per-use expenses
[19]. Furthermore, organizations can quickly scale and expand their cloud
infrastructure as needed and only pay for the cloud services used without
building a whole data center from the ground up.

From the IT administrator perspective, the IT management is simplified
as all the virtual desktops can be supervised through a centralized infrastruc-
ture management system. The centralized control and efficient management
of resources in DaaS also allows faster software and OS’s provisioning time

CHAPTER 2. BACKGROUND 20

at lower cost thus enhancing the service level agreements [35]. Additionally,
administrative tasks would require less IT expertise at the organizational
level since the complex infrastructure is handled by the CSP.

DaaS end users can be more productive and flexible. The end users can
get access to their data and applications on any device irrespective of place
and time. It means that DaaS supports the users with the highly mobile
desktop-powered service and business can be accomplished anywhere and at
any time. For instance, in the construction industry, general contractors in
the office, architects and engineers in the construction sites around the globe
can collaborate and work on a same construction project simultaneously.
Hence, conflicts can be eliminated in early decision making stage to ensure
that all teams are working towards the common goal and having the mutual
understanding of the project [5]. Moreover, with virtual desktops delivered
to different devices such as tablets or smart-phones in DaaS, construction
engineers can monitor on-site how the implementation is carried out in com-
parison to the model created in the desktop Building Information Modelling
software and update the model at the same time.

However, there are few limitations existed in DaaS. Due to the nature
of the cloud computing that requires network connection to communicate
with data centers, DaaS would need to be always accessed to the Internet
for the service to function properly. Security is also a big concern when CSU
start to use DaaS. IT administrators may not know exactly where the data is
physically stored and the organizations’ security policies might be dissimilar
with what DaaS providers have to offer. From technical side, hypervisors
in VM infrastructure usually enclose a privileged domain that is capable of
accessing the VM’s active memory. If a hypervisor was compromised, the
memory content, virtual network traffic and other communication data that
it controls could be exploited [11, 23]. As DaaS is a relatively new service and
computational paradigm is different from the traditional standalone desktop,
virtual desktop hardware specifications that DaaS providers offer is fairly
restricted, particularly in graphics processing capability.

2.3.4 Desktop as a Service providers

Regardless of its late start, DaaS is gradually replacing VDI and thriving
as a notable cloud service delivery model. Today, the DaaS market is go-
ing through a rapid growth as indicated by major cloud suppliers entering
and investing heavily in the DaaS segment such as Amazon with Amazon
Workspaces, Citrix with XenDesktop service and VMware with VMware
Horizon DaaS. These DaaS solutions help to bring data and applications
go beyond the boundaries of desktops by becoming available on multiple

CHAPTER 2. BACKGROUND 21

devices.[7, 20] The following reviews provide the overview of each DaaS so-
lution.

Amazon WorkSpaces provides a fully managed, pay-as-you-go desktop
computing solution from the cloud to the end users. Amazon WorkSpaces
is a part of AWS ecosystem. Hence, it can easily connect with other AWS
products to consolidate the CSU’s IT infrastructure. [33]

XenDesktop Service is a service of the Citrix Cloud. The service enables
secure access to virtual Windows and Linux desktops. Since Citrix does not
have any public cloud or data center as AWS, XenDesktop Service has to
operate in its partners’ or organizations’ IT infrastructure virtualization to
deliver DaaS to end users. The service can operate on the public cloud,
private cloud or hybrid cloud models. [34]

VMware Horizon DaaS provides a virtual cloud desktop platform for
the CSP. The Horizon DaaS platform supports the CSP to deliver virtual
workspaces such as full desktops and applications to the CSU on a monthly
subscription basis. By partnering with Google and NVIDIA, VMware Hori-
zon DaaS can be tailored to suit the needs to deliver from basic to powerful
desktop applications such as CAD and BIM software to any devices, e.g.,
Chromebook and Android tablets [6].

In this thesis, we concentrate on the Amazon WorkSpaces solution for the
implementation. The motivation for choosing Amazon WorkSpaces stemmed
from the case company existing infrastructure in AWS ecosystem and the
demand to deliver the cloud virtual desktops and the case company appli-
cation altogether as one package offering. Additionally, with the Amazon
WorkSpaces, we are free from handling complex underlying IT infrastructure
virtualization as it is manage by the Amazon.

2.4 GPU-Accelerated virtual machines in

cloud computing

A graphics processing unit (GPU) is a specialized computer hardware de-
signed to rapidly accelerate the creation of digital images and manipulate
computer graphics to display as the visual output. The GPU is an essential
hardware component in workstations, especially for graphics-intensive usage.

The case company’s software requires high performance graphics capabil-
ity to function speedily and reliably. Nevertheless, unlike physical desktops,
virtual machines cannot utilize the power of a traditional GPU without an
emulated graphics adapter. The emulated graphics adapter is usually a soft-
ware interface that allocates inefficiently the host’s graphics processing power

CHAPTER 2. BACKGROUND 22

to virtual machines [36]. GPU pass-through, enabled by Intel VT-d/AMD
IOMMU techniques [2], can overcome the inadequacy of the emulated graph-
ics adapter by introducing a nearly native graphics performance to virtual
machines through exclusive direct I/O accesses without privileged domain
involvements. Thus, the GPU pass-through is a favorable virtualization solu-
tion to serve graphics-intensive virtual machines in the cloud computing.[22]

NVIDIA GRID is a graphics technology that supports the GPU pass-
through for sharing virtual GPUs’ resources to multiple virtual machines
simultaneously. NVIDIA GRID platform consists of GPU virtualization,
remote processing and session management libraries that are capable of sup-
porting concurrent high performance graphics tasks via the network. Besides
that, the Computer Unified Device Architecture encapsulated in NVIDIA
GRID graphics cards is capable of parallel processing general purpose al-
gorithms in the GPU level that functions as a co-processor to the CPU.
Furthermore, NVDIA GRID techniques allow transmitting virtual machines’
contents via the cloud service in the form of streams like other media. All
these features NVIDIA GRID technology provided makes it become an op-
timal choice to facilitate the implementation of high performance virtual
machines in the cloud. [15, 28]

Amazon Web Services is a prevalent cloud service provider that has
taken NVIDIA GRID techniques into production. Amazon Elastic Com-
pute Cloud G2 and Amazon Graphics WorkSpaces are the two renowned vir-
tual cloud computing services that feature high-performance NVIDIA GRID
GPUs.[3, 4] Currently, Amazon Graphics WorkSpaces is the solely Desktop
as a Service solution that can match the performance requirements from the
case computer’s software. Hence, this thesis implementation focally engages
the Amazon Graphics WorkSpaces DaaS solution.

2.5 Summary

In this chapter, we presented the main concepts and technologies of desk-
top virtualization. Virtual Desktop Infrastructure, the fundamental idea of
desktop virtualization, is scrutinized. In the section 2.2, we investigated
thoroughly the cloud computing ontology, its deployment models as well as
the cloud computing architecture and services.

After discussing the major cloud computing as-a-Service models, we con-
scientiously explored Desktop as a Service (DaaS), the focal cloud service
model that we employ throughout the thesis work. We formulated the con-
sensus on DaaS definition based on different sources [19, 23, 29, 33]. In
order to get a more profound understanding of the service, we studied the

CHAPTER 2. BACKGROUND 23

underlying service architecture of DaaS. The notable advantages of DaaS for
different user groups utilizing the service were discussed. Besides that, we
pointed out few limitations that DaaS encounters.

The leading DaaS providers, e.g., Amazon, Citrix and VMware with their
explicit DaaS technologies are succinctly described in the section 2.3.4. Fur-
thermore, the high performance GPU utilized in virtual machines in the cloud
computing is investigated. The GPU virtualization technique has evolved
significantly in the past few years from an inefficient emulated graphics to a
nearly native, powerful desktop graphics such as NVIDIA GRID. It is cer-
tain that the GPU-Accelerated technique for virtual machines would bring a
solid boost for DaaS to reach more users’ use cases such as CAD designers
or gamers who work with 3D building information modeling software or vir-
tual reality games that often require graphics-intensive machines for heavy
3D rendering tasks. In the next chapter, we delve into the case company’s
background and their software that we will use to deploy in the Amazon
WorkSpaces.

Chapter 3

Case Study Software

This chapter gives a brief introduction about the case company. One of the
case company’s core software products, Tekla Structures, is described. Then,
we delve into the case company’s continuous delivery system. Furthermore,
the prerequisite software and tools revolving Tekla Structures are concisely
presented.

3.1 Case Study Company

Trimble Inc. is a global corporation that provides integrated information
technology solutions for a wide range of industries such as agriculture, con-
struction, geospatial, transportation and logistics. Trimble’s solutions are
being used in more than 150 countries with offices in 35 countries. [37]

Tekla Corporation was acquired and became a part of Trimble Inc. in
2011. The addition of Tekla’s BIM software has further enhanced Trimble’s
building and construction industry. Tekla Structures is the main software
offering in the case company’s structures portfolio. [37]

3.2 Tekla Structures Software

Tekla Structures is an extensive 3D Building Information Modeling (BIM)
software. Tekla Structures provides a wide range of configurations and local-
ized environments to fulfill various customer requirements. The software al-
lows structural engineers, fabricators and construction professionals to create,
manage and share constructible information throughout the design-build-
operate life cycle [37]. Tekla Structures can be utilized to design complex
3D models. The software is fully capable of handling large size models such

24

CHAPTER 3. CASE STUDY SOFTWARE 25

Figure 3.1: Tekla Structures Screenshot

as skyscrapers and stadiums that comprise millions of objects and compo-
nents. Figure 3.1 illustrates a steel and concrete offshore platform modeled
with Tekla Structures. Furthermore, the software supports structural en-
gineers to manipulate 3D models to generate 2D drawings and reports for
references and manufacturing. The general arrangement drawings from Tekla
Structures are regularly produced to provide information of model views and
erection elevation in the construction site.

Tekla Structures is a mature software. The software development has
been progressing for more than 26 years with the code base consisting of
millions lines of code divided into over a hundred logical libraries. Tekla
Structures endorses object oriented design and was initially developed in
C programming language. Later on, C++, C# and the .NET framework
were utilized for easier development and better interoperability with other
applications. The case company’s developers are constantly working on the
software to develop new features, fix defects, refine the software architecture
and enhance the performance.

CHAPTER 3. CASE STUDY SOFTWARE 26

Figure 3.2: Tekla Structures continuous delivery system

3.3 Continuous delivery system

Continuous delivery (CD) is a software engineering approach that automates
building and testing a software product on a regular basis and maintains
the releasable state of the software at any point in time. In other words, CD
approach presents a fully automated pipeline from code commit to production
artifacts.[8, 16] The case company has adopted CD practice for the past few
years. Figure 3.2 depicts the case company’s CD pipeline for Tekla Structures
software.

In the initial step, development items logged in the case company’s issue
management system are developed. Once developers commit the code to the
software repository in the case company version control system (VCS), this
code check-in automatically triggers the continuous integration (CI) system
that compiles the source code and executes unit tests. If the code commit
stage fails the integration checks, the CD pipeline halts and alerts the de-
velopers. Developers can then investigate the error logs from the CI system,
revise the code, get peer review approved and push the code to the mainline
repository. It again triggers the integration quality checks. If all the tests
are passed, the pipeline flows to the next stage.

The packaging stage automatically builds artifacts for the acceptance test-
ing. Specifically, these artifacts include the software installer and its binaries
generated from the previous stage. After successfully created, these artifacts
are uploaded to the central repository for further tests and distribution.

Quality checks is the next step in the CD pipeline. This stage thoroughly
analyzes the software so that it meets the company standards for the pro-
duction. Continuous inspection holistically measures the code quality based
on rule-based defect identification. If the code quality is below an acceptable
threshold, developers are reported about the quality flaws. Developers can
then correct the defects while the impacts are manageable and the fix is still

CHAPTER 3. CASE STUDY SOFTWARE 27

viable. Integration test examines problems that arise when combining units
into modules and modules together. This test helps to verify that differ-
ent parts and components of Tekla Structures software can work properly
together as a unified entity. The case company has an in-house developed
system that is utilized for functional and regression testing. For each TS
version, exhaustive amount of test cases are carried out systematically in
various TS models in testing agents. The functional testing system does not
aim to find out all defects but to give assurance that the tested TS version
reaches the acceptance levels for deployment. Even though the automated
testing is genuinely comprehensive, manual smoke testing remains essential
as a part of the quality checks. In the manual smoke tests, manual testers
execute exploratory inspections with different user roles and interact with the
software as customers would do on their daily work. Usability and user expe-
rience tests are also performed by business owners and selected customers to
perceive how they appraise the software. When all these tests are completed
satisfactorily, the artifacts are switched from testing mode to release mode.
At this stage, the software has passed the quality checks and can be deployed
to the production.

Applying CD approach has brought several benefits for the case com-
pany. Productivity and efficiency in the release process have enhanced sub-
stantially. In the old release process, the source code was compiled and the
software was packaged once in each development cycle. Now, the software
can be released several times daily with minimal human intervention. Besides
that, development-operation engineers do not need to spend ample effort on
troubleshooting errors caused by the former practice as the CD pipeline can
eliminate these manual arduous configurations. Moreover, the CD system
helps developers to be more agile and flexible in delivering new features and
fixing defects. For example, whenever a new feature is developed, it can be
immediately pushed to the main repository that triggers the CD pipeline for
compiling, integration and functional tests. As the result, developers receive
the report and feedback about their new development faster so as to have a
better plan to get the product adjusted and released to customers.

3.4 Pre-requisite Software

3.4.1 Tekla Structures License Administration Tool

Tekla Structures requires a valid license to operate. The licenses are managed
by FlexNet 1 Publisher License Management licensing system and stored in a

1FlexNet is a Flexera Software’s licensing system

CHAPTER 3. CASE STUDY SOFTWARE 28

trusted storage. Tekla Structures License Administration Tool (LAT) is built
on top of the activation-based FlexNet licensing system. LAT is utilized to
save the entitlement certificate and activate the licenses that can be applied
to Tekla Structures software in client computers.

The major advantage of LAT is that TS licenses are not permanently
linked to a MAC address or password files. Hence, customers can easily
update and renew the licenses. Moreover, these licenses can be flexibly ad-
ministered. LAT allows customers to activate licenses based on their needs,
for instance, some licenses can be activated to a common license server in a
local area network while others on specific users’ workstations.[38]

3.4.2 Tekla Structures Environments

Due to the nature of the construction industry that requires country and
region-specific standards and profiles for modeling and drawing structures,
Tekla Structures (TS) provides different environment packages based on
definitive structural design standards to fulfill the construction’s code of con-
duct. At the moment of this writing, 32 TS environments are being provided.
Each TS environment consists of tailored settings, material grades, variables,
reports and templates. Customers can have many environments installed in
TS, at least one environment installed is required for TS operation.

Chapter 4

Amazon Web Services and
other tools

Amazon Web Services (AWS) provide IT infrastructure services to enterprises
globally in the form of a web-based cloud computing. The main benefits
derived from AWS for the case company are the multiple regions availability
and the comprehensive, flexible IT cloud infrastructure Amazon provided.

In the following sections, we discuss the Amazon Web Services offered by
Amazon that are utilized in the thesis implementation. The sections’ order
is based on the significance of these services utilized in the implementation.
Furthermore, we examine other Windows application software used as a part
of the implementation.

4.1 Amazon WorkSpaces

Amazon WorkSpaces is a fully managed desktop computing service that oper-
ates in the AWS cloud. End users are able to easily manipulate WorkSpaces,
i.e., cloud-based desktops in Amazon WorkSpaces from various devices such
as computers, tablets and smartphones with the Internet access. Addition-
ally, the existing IT systems and enterprises’ on-premises Active Directory
can be fully integrated with Amazon WorkSpaces in order to provide a consis-
tent access to the enterprises’ resources. Cloud service users can pay hourly
rate for each hour they use WorkSpaces or a fixed monthly fee based on the
WorkSpaces used and their hardware configurations. [26]

This thesis implementation revolves around the Amazon WorkSpaces
service. Firstly, we delve into Amazon WorkSpaces Application Manager
(WAM) for packaging the virtualized case company software, Tekla Struc-
tures, in order to be operated on WorkSpace cloud desktops. Secondly,

29

CHAPTER 4. AMAZON WEB SERVICES AND OTHER TOOLS 30

WorkSpaces delivery process is studied to find out the most efficient and feasi-
ble approach to deliver continuously a bundle of the high-quality WorkSpace
cloud desktops and Tekla Structures to end users.

4.1.1 WorkSpaces

WorkSpaces are fully managed virtual desktops spawned from Amazon Work-
Spaces that run on the AWS cloud. The WorkSpace is the virtual desktop
that end users will connect to and work with. Based on the requirement, the
end users can choose between four different hardware configurations: Value,
Standard, Performance and Graphics. In this thesis work, the Graphics
WorkSpace is exclusively utilized as it offers a high-end GPU-powered vir-
tual desktop that fulfills the Tekla Structures’ hardware requirements. Fur-
thermore, the NVIDIA K520 graphics card used in the Graphics WorkSpace
supports OpenGL 4.x, DirectX, CUDA and OpenCL that are essential for
rendering processes in Tekla Structures. Below is the specification of the
GPU-powered Graphics WorkSpace [4, 26]:

• Processing - Intel R© Xeon R© E5-2670 @ 2.60 GHz, 8 virtual CPUs.

• Memory - 15 GB.

• Graphics - NVIDIA GRID K520, 4 GB memory.

• Display - Support max. 2 monitors with 2560x1600 pixels resolution.

• System volume - 100 SSD GB.

• User volume - 100 SSD GB.

4.1.2 PC-over-IP Protocol for Virtual Desktop
Delivery

Amazon WorkSpaces adopts Teradici’s PC-over-IP (PCoIP) protocol technol-
ogy to deliver virtual desktops to client devices. The PCoIP remote display
protocol is a nimble and secure communication channel since it only transfers
images built up from pixels’ location information. In essence, only encrypted
pixels of images are transferred between client devices and their WorkSpaces
while the actual data always remains safely in the AWS data center. In addi-
tion, the PCoIP protocol supports high resolution and multiple displays that
would fulfil the case company’s software usability. [24, 26]

CHAPTER 4. AMAZON WEB SERVICES AND OTHER TOOLS 31

4.2 Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud (EC2) is a virtual computing environment
that provides scalable computing capacity over the cloud. Amazon EC2 can
launch various EC2 instances with different configurations and settings such
as operating systems, custom applications and network access permissions.
Since new Amazon EC2 instances can be acquired and run within a short
time, it facilitates the cloud service users (CSU) to flexibly scale the com-
puting capacity as the requirements alter. [26]

In the implementation, we use two specific configurations of Amazon Ma-
chine Image named: Amazon WAM Admin Studio AMI (WAM Studio) and
Amazon WAM Admin Player AMI (WAM Player). The WAM Studio is uti-
lized to package the software as a virtual container so that it can be used in
Amazon WorkSpaces. After the software is packaged, the WAM Player does
the validation for this package to verify its readiness in the WorkSpaces.

4.3 Amazon Simple Storage Service

Amazon Simple Storage Service (S3) is a web-based cloud service that sup-
plies secure and scalable data storage. Amazon S3 enables CSU to store and
retrieve unlimited data from the cloud. There are different options for choos-
ing the most appropriate storage classes based on the data access frequency.
[26]

We employ Amazon S3 to transfer the Tekla Structures software and other
data from the case company on-premises database and AWS ecosystem itself
for the automation prototype.

4.4 AWS Lambda

AWS Lambda enables code to be executed in response to events such as Ama-
zon resources change or custom events triggered by other services. Lambda
can run code for most application types and back-end services without ad-
ministration and managing servers. [26]

Lambda functions are developed in the prototype to create, monitor and
terminate the desired EC2 instances as a part of the packaging automation
for the Tekla Structures software as well as calling the Amazon WorkSpaces
API for launching new WorkSpaces. All the Lambda functions are written
in Python 2.7.

CHAPTER 4. AMAZON WEB SERVICES AND OTHER TOOLS 32

4.5 Amazon API Gateway

Amazon API Gateway is a management service to create, publish and manage
Application programming interfaces (API). An API in Amazon API Gateway
allows other applications to access data or functionality from the back-end
services such as AWS lambda functions. Amazon API Gateway can supervise
all API tasks including access and authorization control, traffic handling and
API version control. [26]

In the implementation, we use Amazon API Gateway in conjunction with
Amazon Lambda functions to create an AWS serverless service.

4.6 AWS Directory Service

AWS Directory Service gives administrators the capability to connect AWS
resources with an on-premises Microsoft Active Directory (AD) or to create
a standalone AD in the AWS cloud. Connecting to an existing on-premises
directory can be implemented through AD Connector gateway. On the other
hand, a brand new Microsoft AD supporting up to 50000 users can be set
up with AWS Directory Service.[26] We will use AWS Directory Service to
create a new simple AD to manage Amazon WorkSpaces users.

4.7 AWS Identity and Access Management

AWS Identity and Access Management (IAM) provides a web-based manage-
ment system to administer AWS services and resources for AWS users and
groups. IAM is used throughout the whole implementation to assign suitable
access permissions to different AWS resources.

4.8 Other applications

Besides the services utilized in the AWS ecosystem, the implementation re-
quires some additional scripts and tools to fully automate the packaging
process in Amazon WorkSpaces Application Manager (WAM). The following
subsections introduce these applications.

4.8.1 SikuliX

SikuliX is a Java application that uses image recognition to automate any-
thing displayed on the desktop screen. SikuliX can control peripherals to

CHAPTER 4. AMAZON WEB SERVICES AND OTHER TOOLS 33

interact with the identified GUI Windows items. Java implementation of
Python also known as Jython is used to develop SikuliX scripts. [14]

The motivation to use SikuliX stemmed from the lack of an available
Amazon WAM API to handle the packaging tasks nor access to the Ama-
zon WAM internal source code. Hence, SikuliX would be the appropriate
automation tool in this scenario.

4.8.2 InstallShield

InstallShield is a Windows packaging software. In the implementation, In-
stallShield is used to create an auto-install installer package that contains
Java run-time binaries and SikuliX scripts. The installer will be installed au-
tomatically right after the EC2 instances are successfully created and initiate
the SikuliX scripts.

4.9 Summary

This chapter presented the Amazon Web Services and tools we use to de-
velop the prototype in the implementation part. Particularly, we studied the
Amazon WorkSpaces in detail and discussed about the WorkSpace, a virtual
machine unit in the Amazon WorkSpaces. The WorkSpace with the Graph-
ics hardware configuration is also reviewed. Additionally, we investigated
the PC-over-IP protocol and its advantages for being used in the Amazon
WorkSpaces.

Amazon API Gateway and AWS Lambda utilized to form up an AWS
serverless service in the prototype were examined. Other AWS services neces-
sity to build the prototype were presented and their roles in the system were
described. All these services are essential to build the working prototype as
each of them plays a specific role in the system. Other tools such as SikuliX
and InstallShield were used to create the graphical scripts and package the
scripts and Tekla Structures installer as one package for the automation.

The detailed usage and functionality of these AWS services and tools are
scrutinized in the next chapters.

Chapter 5

Design

This chapter presents the architectural design that is used to develop the
prototype in the implementation. We explain the overall processes and the
work-flow of the prototype design.

5.1 Functional objectives

The main objective of the implementation is to automate the whole deploy-
ment process of the case company software in Amazon WorkSpaces to the
greatest extent. In order to achieve the objective, we study the requirements
to accomplish the deployment process. We then investigate which tasks in
the deployment process can and should be automated. Thenceforth, the
prototype design to automate these tasks is proposed and discussed.

5.2 Amazon WorkSpaces Deployment

Process

Figure 5.1 illustrates the complete high-level deployment process of a Win-
dows software, e.g., Tekla Structures in the Amazon WorkSpaces. Firstly,
the software needs to be packaged exclusively for Amazon WorkSpaces1. The
packaging operation consists of virtualizing and validating the software. The
WAM Studio EC2 instance that includes Amazon WAM Admin Studio tool
is utilized to virtualize the software. After the virtualized application con-
tainer of the software is created, the WAM Player EC2 instance is launched to

1Amazon WorkSpaces provisions a Windows application as a virtualized application
container.

34

CHAPTER 5. DESIGN 35

Figure 5.1: Tekla Structures deployment process in Amazon WorkSpaces

validate the package functionality in the Amazon WorkSpaces environment.
If the package is validated without errors, it will be released and visible in
Amazon WorkSpaces Console. At this stage, the Tekla Structures virtual-
ized package is ready to be assigned to the WorkSpaces virtual desktops.
The package would behave as a standard Windows application even though
they are actually not installed in these WorkSpaces. End users can access
to their dedicated bundle of WorkSpaces with the Tekla Structures installed
via Amazon WorkSpaces client. The Amazon WorkSpaces client is respon-
sible to transmit the user’s input such as keyboard, mouse and touch to the
WorkSpace in the data center. Furthermore, the encrypted image pixels and
audio sent from the WorkSpace to the user are decrypted, decompressed and
displayed seamlessly via the PCoIP protocol.

As described in the previous paragraph, there are 4 major procedures in
the deployment process: virtualizing, validating, uploading and launching.
The uploading procedure proceeds automatically by Amazon WAM. Hence,
there are 3 remaining procedures we need to automate in order to achieve
a continuous deployment system in the Amazon WorkSpaces service. Virtu-
alizing and validating are grouped together as a packaging operation. One
automation system is developed for the virtualizing and validating procedures
due to their similarity in resources and correlative in actions. The launching
procedure is the second operation we aim to automate. The following sub
sections provides the in-depth system design details for these 2 operations.

CHAPTER 5. DESIGN 36

Figure 5.2: Tekla Structures packaging workflow in Amazon WorkSpaces

5.2.1 Packaging application in Amazon WorkSpaces

Figure 5.2 demonstrates the packaging operation’s system architecture in
the deployment process. The system involves principally five AWS services:
Amazon API Gateway, AWS Lambda, Amazon EC2, Amazon Dynamo DB
and Amazon S3. By combining AWS Lambda with Amazon API Gateway,
we aim to build a serverless system without administrative provisions.

The figure 5.2 also illustrates the system overview. Initially, adminis-
trators make a Representational state transfer (REST) call to an endpoint
created by Amazon API Gateway. Based on the call request’s content, Ama-
zon API Gateway would trigger the corresponding function built in AWS
Lambda. For instance, the Lambda Function 1 would launch a WAM Studio
EC2 instance with a pre-defined configuration. Once the instance is success-
fully launched, the Lambda Function 1 commands the instance to download
the SikuliX script and Tekla Structures installation files from Amazon S3.
When the files download completed, the SikuliX script automatically starts
to virtualize the software in the WAM Studio. After the software has been
virtualized, the instance sends a POST request to Amazon API Gateway that

CHAPTER 5. DESIGN 37

Figure 5.3: Workflow for launching Amazon WorkSpaces to end users

provokes the Lambda Function 2. The Lambda Function 2 would terminate
the WAM Studio EC2 instance as it is no longer needed. Concurrently, the
Function 2 creates a new WAM Player EC2 instance. The second SikuliX
script is downloaded and executes automatically to validate the virtualized
software package. Once the package is tested successfully, it will be available
in the WAM Console, ready to be utilized. Another POST request is sent
from the WAM Player to notify the validation is completed. This POST re-
quest triggers the Lambda Function 3 that would terminate all running EC2
instances and verify the operation accomplishment. Additionally, all lambda
functions write log files of their operational status into a table in Amazon
Dynamo DB for monitoring and analyzing. Administrators can also interfere
and manipulate any lambda functions from a special GUI tool developed in
this implementation.

5.2.2 Launching Amazon WorkSpaces to end users

The second operation is the new WorkSpaces launching procedure. It con-
sists of adding new users to a Microsoft Active Directory (AD), creating
WorkSpaces and providing WorkSpaces’ accessed information to end users.
Figure 5.3 illustrates the second operation’s system architecture in the de-
ployment process.

CHAPTER 5. DESIGN 38

As can be seen in Figure 5.3, we use the same serverless service framework
with the Amazon API Gateway and the AWS Lambda as in the first oper-
ation. Firstly, administrator sends a user accounts’ database consisting of
usernames and their personal information, e.g., full names, display name and
emails to a PowerShell script. The script will import the database and send
commands to add each username and its information to the AD. Thereupon,
the script sends POST requests that contains the authentication token and
the usernames to the Amazon API Gateway. The API Gateway will trigger
the Lambda Function and deliver the POST content to the Lambda Function
event handler. The event handler will verify the authentication token. If the
token is correct, the Lambda Function sends WorkSpace launching requests
with the usernames to Amazon WorkSpaces Console. Amazon WorkSpaces
Console (AWC) will start the WorkSpace creation process with the config-
uration parameters received from the Lambda Function request. Initially,
AWC has to ratify the received usernames with the matching ones in the
AD through the AWS Directory Service. If the username is valid, AWC
will enquire the user’s email, last name and first name and display name
from the AD and launch a new WorkSpace based on these values. When
the WorkSpace is ready, end users will be notified with the username and
an accessible link to connect to their WorkSpace via email. End users can
access WorkSpaces anytime by Amazon WorkSpaces client.

Chapter 6

Implementation and System
Prototype

We develop the system based on the designs proposed in the Chapter 5. The
implementation follows these two major operations according to the designs:
packaging in Amazon WorkSpaces and launching WorkSpaces to end users.

We apply agile software development approach for this implementation
[25]. Our ultimate goal is to quickly build the working system and start
to study the system feasibility to apply for the case company production
purpose. In essence, we aim to create a fundamental system without ad-
vanced features yet. If it proves to be beneficial, we can keep the continuous
improvement in the future development phases.

In order to reduce data latency and match the system similarly to the
real-life production scenario, all Amazon Web Services that we deploy are
in the EU (Ireland) data center in the eu-west-1 region. This AWS data
center is also in the closest proximity to the case company. It should also be
taken into account that most Amazon data centers are not interconnected
between different regions. Hence, the AWS system employed in one region is
not available in other regions [26].

6.1 Packaging application in Amazon

WorkSpaces

The implementation of the first operation is divided into small components.
Each component is responsible for a specific task. When all the components
are developed, we integrate all of them into one system for the operation.
The following subsections describe the required components and their roles

39

CHAPTER 6. IMPLEMENTATION AND SYSTEM PROTOTYPE 40

in the system.

6.1.1 AWS IAM component

In order to access AWS services, we need to configure the permissions in AWS
IAM. The AWS IAM can grant policies on specific actions and resources of
any AWS services that users can administer. Below is an example policy for
full control permission in Amazon WorkSpaces.

1 {
2 ” Vers ion ” : ”2012−10−17” ,
3 ” Statement ” : [
4 {
5 ” Action ” : [
6 ” workspaces :CreateWorkspaces ” ,
7 ” workspaces :Descr ibeWorkspaces ” ,
8 ” workspaces:RebootWorkspaces ” ,
9 ” workspaces:Rebui ldWorkspaces ” ,

10 ” workspaces:TerminateWorkspaces ” ,
11 ” workspaces :Descr ibeWorkspaceDi rec tor i e s ” ,
12 ” workspaces :Descr ibeWorkspaceBundles ” ,
13 ” workspaces :Modi fyWorkspacePropert ies ” ,
14 ” workspaces:StopWorkspaces ” ,
15 ” workspaces :StartWorkspaces ” ,
16 ” workspaces :Descr ibeWorkspacesConnect ionStatus ” ,
17 ” workspaces :CreateTags ” ,
18 ” workspaces :De leteTags ” ,
19 ” workspaces :Descr ibeTags ” ,
20 ” kms:ListKeys ” ,
21 ” k m s : L i s t A l i a s e s ” ,
22 ” kms:DescribeKey ”
23] ,
24 ” E f f e c t ” : ”Allow” ,
25 ” Resource ” : ”∗”
26 }
27]
28 }

For the experimental purpose of this implementation, we give ourselves Ad-
ministrator Access permission that can exploit all the actions and resources
in AWS services.

6.1.2 Amazon API Gateway component

In Amazon API Gateway, we create a new API named WorkSpacesAPI. In
this new blank API, we generate a resource that would expose the REST
service. Then, we create 3 POST methods on the WorkSpacesAPI resource

CHAPTER 6. IMPLEMENTATION AND SYSTEM PROTOTYPE 41

Figure 6.1: Amazon API Gateway Console for WorkSpacesAPI

and connect them to these 3 corresponding Lambda functions. If the POST
request is called correctly, it will invoke the inquired Lambda function and
return to the caller the response status. Figure 6.1 depicts the workflow of
the first POST method that trigger Lambda Function 1. At last, we deploy
the API to be available in the public network so that it can be called outside
of the AWS by any REST clients.

The POST methods are tested with a Python API client code below. The
request body contains a ’token’ JSON object. The token value is compared
with the correct one in the Lambda function. If the token value is matched,
the Lambda main function will proceed.

1 def r eque s t (InvokeURL) :
2 r = r e q u e s t s . post (InvokeURL , data =json . dumps({ ’ token ’ : ’ key ’

}))
3 return r . t ex t

6.1.3 AWS Lambda component

We develop 3 separate AWS lambda functions for the first operation. The
lambda functions are written in Python 2.7 and work as described in the
section 5.2.1. We use boto3 module1 as the AWS software development kit
(SDK) in Python 2.7. boto3 is an intensive module that provides object-
oriented and low-level direct service access to several AWS. Since AWS
Lambda can run code without provisioning and administration, we have to
create a specific AWS IAM role for these 3 lambda functions to limit their
access to explicit services, namely, Amazon EC2, Amazon Dynamo DB and

1http://boto3.readthedocs.io/en/latest/reference/services/index.html

CHAPTER 6. IMPLEMENTATION AND SYSTEM PROTOTYPE 42

Amazon API Gateway. After setting up the AWS lambda configuration, the
AWS lambda functions can respond to events from the Amazon API Gateway
and automatically trigger other AWS services accordingly.

6.1.4 Amazon S3 component

Amazon S3 is utilized to store SikuliX scripts and Tekla Structures installers
that are used by WAM EC2 instances. We create a bucket, i.e., folder in
Amazon S3 and grant the read permission for the Lambda functions. Server-
side encryption with Amazon S3-Managed Keys is adopted to encrypt the
data so that only authenticated entities having access permissions can modify
the data [30].

6.1.5 Amazon EC2 component

As presented in the Design chapter, there are two dedicated Amazon EC2
instances utilized in the first operation: WAM Studio and WAM Player.
A predefined IAM role AmazonWamAppPackaging is assigned to these in-
stances so that they can access Amazon WAM administrative features and
the WAM application catalog. These instances are launched with all the
configurations designated in the lambda functions. Upon the instance cre-
ation, the lambda functions will trigger a PowerShell script to download the
required files from Amazon S3 and run the corresponding SikuliX scripts.

6.1.6 SikuliX scripts component

Two SikuliX scripts are written to graphically automate the installation pro-
cess of virtualizing the software for Amazon WorkSpaces in the WAM Studio
and the validation executed in the WAM Player. The SikuliX scripting lan-
guage is built on Jython2 and requires Java Runtime environment to function.
The SikuliX unique feature lies on its capability of assigning captured screen
images as values to variables.

To create SikuliX scripts for these two processes, we first implement the
packaging and validation tasks manually in the WAM Studio and the WAM
Player and capture all the taken actions. Then, we write SikuliX scripts
that guide the executions step-by-step based on the captured images. Fur-
thermore, functions to handle exceptional conditions and errors are defined.
Figure 6.2 shows a code snippet of our SikuliX script in the SikuliX IDE.

2http://www.jython.org/

CHAPTER 6. IMPLEMENTATION AND SYSTEM PROTOTYPE 43

Figure 6.2: SikuliX script snippet for automating tasks in Amazon WAM
Studio instance

6.1.7 Amazon DynamoDB component

We build a DynamoDB table that records the operation status. Initially, we
create a blank table named WorkSpacesAPI. The table contains an attribute
item Tag that is a primary key and has the value WorkSpaces. Other items
includes:

• ID: indicates a Lambda function number

• Description: shows a Lambda function information

• Timelog: records time stamp when a Lambda function is triggered

• UUID: universal unique ID for a triggered Lambda function

The Lambda functions write data logs to the WorkSpacesAPI table when-
ever they are in operation. Administrator can query the table for information
from Amazon DynamoDB dashboard as shown in Figure 6.3 or with the AWS
SDK.

6.1.8 Associate all components as one system

When all the components function as expected, we consolidate these closely
connected components into one system that can automate the first operation.
Moreover, an administrator tool for the virtualizing and validating operation

CHAPTER 6. IMPLEMENTATION AND SYSTEM PROTOTYPE 44

Figure 6.3: WorkSpacesAPI table query result in Amazon DynamoDB dash-
board

is created. The tool allows administrators to check for the operation status
and trigger different Lambda functions at any given time.

Besides that, it is possible to integrate the first operation system to the
case company’s continuous delivery system in the TeamCity. One more build
step can be added to TeamCity pipeline so that it will automatically upload
the released software artifacts, e.g., Tekla Structures installers to the Amazon
S3. TeamCity can then replace the administrator to send a POST request
that triggers the first operation to start the software packaging automation.

6.2 Launching WorkSpaces to end users

As in the first operation, we divide the second operation into small compo-
nents. The following subsections describe the required components and their
roles in the system.

6.2.1 Amazon API Gateway component

We make use of the existing WorkSpacesAPI from the first operation in the
Amazon API Gateway. A new resource that would expose a new Lambda
function via the POST method is created. After being tested internally, we
deploy a new stage to the WorkSpacesAPI so it is accessible over the Internet.

CHAPTER 6. IMPLEMENTATION AND SYSTEM PROTOTYPE 45

6.2.2 AWS Lambda component

We develop the new AWS Lambda function for the second operation. The
lambda function will retrieve token and username value from the POST re-
quest via Amazon API Gateway. The token will be verified. If it is matched,
the Lambda main function will be initiated to send a low-level client request
with the given username to Amazon WorkSpaces Console that will launch
a new WorkSpace accordingly. This Lambda operation is asynchronous and
returns before the WorkSpace is created.

6.2.3 AWS IAM component

Besides the permissions inherited from the first operation, we grant the new
Lambda function an additional admin permission to control the Amazon
WorkSpaces resources. Furthermore, a Windows Server EC2 instance is given
full access to Simple System Manager (SSM) in order to administer AWS
Directory Service.

6.2.4 AWS Directory Service component

AWS Directory Service is utilized to create an Active Directory (AD). The
Simple AD fulfils the experimental purpose of this thesis work as it equips
with a subset of Microsoft AD features such as user accounts and group mem-
berships management, group policies control and capability for Kerberos-
based single sign-on [31]. We set up a Simple AD powered by Samba 4
Active Directory Compatible Server3. This Simple AD is utilized to manage
the groups and user accounts information for Amazon WorkSpaces in the
active directory domain ”Trim.ble.com”.

6.2.5 Amazon EC2 component

We launch a dedicated Microsoft Windows Server 2008 EC2 instance to man-
age Active Directory Domain Services (ADDS). SSM Config [32] is utilized to
specify the ”Trim.ble.com” domain join details and associate the SSM docu-
ment to the EC2 instance. After the EC2 has successfully joined the domain,
ADDS and AD Lightweight Directory Services Tools are installed and con-
figured. In Active Directory Users and Computers, we can manage users and
groups in the Simple AD that are used by the Amazon WorkSpaces. Alter-
natively, users and groups can be administered with PowerShell commands

3https://wiki.samba.org/

CHAPTER 6. IMPLEMENTATION AND SYSTEM PROTOTYPE 46

via Systems Manager Services in the Amazon EC2 Dashboard or AWS com-
mand line interface. The SSM Config allows sending these commands from
the domain to the local EC2 server instance.

6.2.6 Amazon WorkSpaces console

In this second operation, Amazon WorkSpaces console is primarily utilized
to verify user accounts with the AWS Directory Server and launch new
WorkSpaces with the users’ information gathered from the AD. These tasks
are defined in the Lambda function and triggered automatically upon the
Lambda request. The GPU-Powered Graphics configuration is applied for
new WorkSpaces. The WorkSpace creation process takes approximately 20
minutes to complete. Upon completion, Amazon WorkSpaces console will
send the email that contains the WorkSpace log in information to the user.

One WorkSpace is dedicated only to one user all the time. The user
can access to their WorkSpace via Amazon WorkSpaces client. As Amazon
WorkSpaces uses PCoIP protocol to transfer the pixels from WorkSpaces to
the client, TCP/UDP port 4172 has to be opened so that PCoIP connection
can be established. We will thoroughly review Amazon WorkSpaces console
and its other features in the next chapter.

6.2.7 Associate all components as one system

In the second operation, each component is interconnected to one another.
Subsequently, we join all the components to assemble one coherent system
for the second operation. We also checked if the integration between different
components works well together and there is no conflict emerged.

6.3 Summary

By the end of this implementation, we have successfully created a functional
prototype that can automate the software packaging and delivery processes.
As our goal for this implementation is to create a fundamental working sys-
tem, some features can be added and improved in the future development.
For instance, we can add more specific function to check for failure, excep-
tional cases and manage iteration tasks. In the next chapter, we delve into
detail assessment about the system prototype developed in this chapter.

Chapter 7

Evaluation

This chapter evaluates the system prototype built in the implementation
from administrators’ perspectives. Additionally, we discuss in-depth the us-
age of Amazon WorkSpaces Application Manager tools and console with
Tekla Structures. Furthermore, we carry out different Tekla Structures usage
scenarios to evaluate the performance of Tekla Structures and its interoper-
ability with other software in Amazon WorkSpaces.

7.1 The prototype experiment and analysis

In order to evaluate the prototype, we appraise the two operations provided
from the implementation. In the first operation, we will package the case com-
pany, Tekla Structures Learning edition, based on the proposed chronological
order. Then, we follow the second operation procedure to create WorkSpaces
to two different end users and assign the virtualized Tekla Structures to them.

Figure 7.1: AWS WorkSpaces Operation Status GUI

47

CHAPTER 7. EVALUATION 48

7.1.1 Virtualizing and validating Tekla Structures for
Amazon WorkSpaces

Initially, Tekla Structures installer, e.g., TeklaStructuresLearning.exe is up-
loaded to Amazon S3 bucket via TeamCity, the case company’s continuous
delivery system. We then use the tool developed for the first operation shown
in Figure 7.1 to send a POST request containing a verification token to the
Amazon API Gateway. In the underlying scene, the Amazon API Gateway
triggers the first Lambda function that verifies and launches a WAM Studio
EC2 instance, downloads Tekla Structures installer from the S3 bucket and
deploys the SikuliX script. Figure 7.2 captured a screenshot of the WAM Stu-
dio being automated by the SikuliX script to virtualize the software. Since
the Tekla Structures installer we used is not built natively for the virtualiza-
tion environment, there are some fine tunings that need to be performed in
the Amazon WAM Admin Studio before delivering the package for validation:

• Folders: Tekla Structures uses custom keyboard shortcuts configuration
located under folder ”%LOCALAPPDATA%\Trimble\TeklaStructure-
s\2016\Settings”. The folder is not created during the package con-
tainer creation. However, when Tekla Structures operates, it requires
this folder to save the default configuration file. Hence, we have to add
Settings folder in the WAM Admin Studio Files tab so that this folder
will be permanently created in the first place.

• Fonts: A variety of application-type fonts, for example, fontfile.fon is
utilized by Tekla Structures. When fonts are being evaluated by the
WAM Player, by default they are being made available for system-wide
use. However, only true-type fonts (fontfile.ttf) can be installed for the
system use not application fonts (fontfile.fon). Consequently, the vali-
dation of Tekla Structures is failed since *.fon files cannot be installed
to Windows font repository. To solve this issue, we have to exclude the
application fonts in the WAM Admin Studio Fonts tab. Fonts will still
be available to the application as they are remained in the proper path:
[ProgramData]\Tekla Structures\2016\Environments\common\fonts

We add these file and folder tunings implementation in the SikuliX script
so it will be configured automatically. Once the virtualized package is cre-
ated, the SikuliX script starts the Windows PowerShell 1 script that will send
a POST request to activate the second Lambda function.

The second Lambda terminates the WAM Studio and launches the WAM
Player for validation. The second SikuliX script is executed in the WAM

1https://msdn.microsoft.com/en-us/powershell/

CHAPTER 7. EVALUATION 49

Figure 7.2: A screenshot of EC2 Admin Studio virtualizing Tekla Structures
under SikuliX script

Player to validate Tekla Structures. When the validation succeeds, this
SikuliX script calls the third Lambda function that will terminate all WAM
EC2 instances, notify the deployment process completion and write the logfile
to the WorkSpacesAPI table in Amazon DynamoDB. The virtualized Tekla
Structures package is now available in Amazon WorkSpaces Console.

The first operation took approximately 30 minutes from start to finish
with the T2.Large EC2 instances. Even the whole procedure executes con-
secutively until it accomplishes, we are still able to follow the procedure and
manipulate at any stages from the AWS WorkSpaces Operation Status tool.

7.1.2 Assigning WorkSpaces to client

In the second operation, we plan to launch two WorkSpaces for two users.
Firstly, we as administrators have to create new user accounts for these two
users in the ”Trim.ble.com” domain. As described in the subsection 6.2.5,
there are 3 different ways to add new user to the AD. For the evaluation
purpose, we first use traditional option which is the Active Directory Users
and Computers tool from the Windows Server EC2 instance. We add the
first user log-on name together with their first name, last name, email and

CHAPTER 7. EVALUATION 50

password. The second user account is created via Dsadd command-line tool
built into AWS command line. Both techniques accomplished the new user
account creation.

Next, we use Windows PowerShell to send a POST request to the Amazon
API Gateway that will trigger to the Lambda function developed for the
second operation. We promptly receive the request response that presents
the request result and the currently launching WorkSpace’s information. The
WorkSpace is available within 20 minutes from the time the POST request
was sent. The WorkSpace will automatically deliver its access information
to the user’s email.

7.2 Amazon WorkSpaces Console

Amazon WorkSpaces Console is a web application that provides the control
of all WorkSpaces pertinent resources. We will use the Console to assign the
Tekla Structures package to the two WorkSpaces recently created. The Con-
sole is the only place we can do the assigning task as there is no WorkSpaces
API available to do this task at the moment of this evaluation.

There are two sources of applications that can be deployed via Amazon
WAM: AWS Marketplace2 and our own virtualized applications. By default,
only AWS Marketplace option is available. In order to use our own appli-
cation that is Tekla Structures, we have to subscribe for a WAM Standard
feature. Once the subscription is activated, we can publish the Tekla Struc-
tures package into our CAD and CAM catalog so that it is ready to be
assigned to WorkSpace users.

In the Applications tab, we can start to assign Tekla Structures to users.
We select 2 new users previously created in the Trim.ble.com directory to
provide access to the Tekla Structures application. In the configure options,
we set Installation type as Required and Auto update as Yes. As a result,
Tekla Structures will be forced installed and automatically updated whenever
a new version is released. Once these users start their WorkSpaces, Tekla
Structures will be installed and available by default. The application also
shows up in the Amazon WAM client tool on the users’ WorkSpaces. Besides
that, there is an Optional Installation type that gives end users the capability
to decide whether they want to install the software. Additionally, we can
monitor the application usage, e.g., assigned and activated applications in
the Amazon WorkSpaces Usage tab.

Furthermore, Amazon WorkSpaces Console supports a sharing feature

2https://aws.amazon.com/marketplace/cp/WAMProducts

CHAPTER 7. EVALUATION 51

Table 7.1: Hardware configurations comparison
Amazon Graphics WorkSpaces Citrix XenDesktop Tekla Structures Rec.

Operating system Windows Server 2008 R2 Windows Server 2012 R2 Windows 10 (64-bit)
Processor Intel R© Xeon R© E5-2670, 2.60 GHz Intel R© Xeon R© E5-2680, 2.50 GHz Intel R© Core i5, 2+ GHz
Memory 15 GB 32 GB 8+ GB
Hard disk 200 GB, SSD 320 GB, SSD 240-480 GB, SSD
Graphics card NVIDIA GRID K520, 4 GB NVIDIA GRID K1, 1 GB NVIDIA GeForce GTX 1060

that allows software owners to share their virtualized packages with other
AWS accounts. In other words, organizations that have AWS accounts can
directly use the virtualized Tekla Structures package or create their own
application package based on the Tekla Structures package that we shared.
Additionally, setting up new directories or WorkSpaces can also be done
manually in Amazon WorkSpaces Console. Currently, we have to do the
management and assigning applications to the users’ WorkSpaces manually
via Amazon WorkSpaces Console as there are no other ways to handle these
tasks.

7.3 Tekla Structures operation in Amazon

Graphics WorkSpaces

In this section, we execute various assessments with Tekla Structures in Ama-
zon WorkSpaces. The Amazon Graphics WorkSpace that has been created
in the previous section is utilized for these evaluations.

7.3.1 Performance evaluation

In order to demonstrate the performance capability of Amazon Graphics
WorkSpaces (WorkSpace) with Tekla Structures, we carry out a general op-
erational test. The main objective of this test is to give a reference on how
the WorkSpace’s performance is compared with another desktop virtualiza-
tion system. The comparing system that we utilize in this test is the case
company’s current Citrix XenDesktop virtual machine3. The hardware con-
figurations of WorkSpace and the case company’s Citrix XenDesktop virtual
machine (Citrix) along with Tekla Structures recommendation are shown in
the Table 7.1. Since these two systems have dissimilar hardware configura-
tions as well as utilize disparate virtualization technologies, this test is not a
definitive comparison to identify the best virtualization system.

The test case aims to measure the time durations WorkSpace and Citrix
take to accomplish different tasks in Tekla Structures. The 3D BIM model

3https://www.citrix.fi/products/xenapp-xendesktop/

CHAPTER 7. EVALUATION 52

Figure 7.3: Amazon Graphics WorkSpace and Citrix XenDesktop perfor-
mance comparison chart

used for the test is a relatively large and complex shopping center consisting
of approximately 200 000 objects. The reason for choosing such composite
model is because we want to employ the system graphics and other resources
to their fullest. There are 6 main tasks that we implement in the test:
opening the full 3D model, creating a general arrangement drawing, loading
the model organizer, numbering model’s welds, generating a full report and
exporting to IFC file. Windows Performance Analyzer is used to record the
time taken by each task. The output is the time to completion of each task
in WorkSpace and Citrix as shown in the Figure 7.3.

As can be seen in Figure 7.3, both WorkSpace and Citrix are capable of
handling all the Tekla Structures tasks in timely manner. There is no bot-
tleneck in the WorkSpace’s resources when processing heavy computational
tasks. The time to completion for all the tasks in WorkSpace is slightly faster
than in Citrix. It might be explained by the fact that WorkSpace has higher
hardware configurations than in Citrix, particularly in GPU computational
power. Moreover, Amazon WorkSpaces virtualization technology allows the
WorkSpace to have its dedicated virtual hardware for each user while in the
Citrix XenDesktop, the Citrix virtual machine has to run several sessions
simultaneously for different users.

CHAPTER 7. EVALUATION 53

7.3.2 Interoperability evaluation

In the interoperability evaluation, we deploy Tekla Structures virtualized
package in the WorkSpace via Amazon WAM. Besides that, we install the
Tekla Structures UK environment, an extension for Tekla Structures, and
Trimble Connect4, a standalone software, with traditional Windows installer
packages, i.e., *.msi installers to the WorkSpace.

The result shows that all the applications can be set up as they are in
a physical Windows desktop computer. Tekla Structures can recognize and
load the installed environment and extension in the first place. Trimble
Connect also operates normally without any issues.

Due to the Tekla Structures Learning edition limited functionality and the
case company network policies, we could not examine some advanced features
that official Tekla Structures provides such as License Administration tool,
Tekla multi-user and Tekla model sharing service. Nonetheless, we firmly
anticipate that all these features would function properly as if they were on
a desktop computer.

7.3.3 Security evaluation

Amazon WorkSpaces is capable of encrypting root and user volumes with
Amazon Elastic Block Store. It means that the data stored at rest, disk
input/output to the volumes and the volumes’ snapshots are thoroughly en-
crypted. Furthermore, the WorkSpaces’ user volume is automatically backed
up every 12 hours. In case of a WorkSpace failure, the volume can be simply
restored from the backups. Besides that, as a cloud service user of AWS, we
are acknowledged of the location of the data center where the WorkSpaces
are running and the data is stored.

The PCoIP remote display protocol is utilized to deliver encrypted Work-
Spaces’ pixels from the data center to be displayed in Amazon WorkSpaces
clients. By using the PCoIP protocol, data never actually leaves the data
center. Hence, the risks of being intruded and losing important data during
the communication is minimized. However, there is a trade-off with this
protocol: as no data is sent out, limited data can be received by Amazon
WorkSpaces. For instance, Amazon WorkSpaces can only receive input data
from touch, mouse and keyboard. Other local peripheral devices such as
external hard drives, webcams or local printers will not be able to work with
WorkSpaces. To diminish this deficiency, WorkSpaces supports connecting
to a network drive and Amazon S3 service as external storage solutions.

4http://connect.trimble.com/

CHAPTER 7. EVALUATION 54

7.3.4 Reliability evaluation

The reliability of WorkSpaces when working with Tekla Structures is one of
the main concerns for the case company. In order to assess the WorkSpaces’
reliability, we work manually with Tekla Structures on a WorkSpace for 6
hours per day for 3 consecutive days as a standard Tekla Structures user
would use it. Various tasks are performed in a complex 3D model in Tekla
Structures. We also switch occasionally between different Amazon WorkSpace
client devices during the usage, namely, Windows desktop, iPad Air and an
Android tablet emulator.

As a result, the WorkSpace provides a smooth and stable experience
throughout the usage. We encountered no hanging or blackout in the WorkSp-
ace and the clients. Besides that, the input/output latency between Amazon
WorkSpace client and the WorkSpace is microscopic. The state of the ap-
plications and data are preserved when we disconnect from the WorkSpace.
Thus, whenever we resume the WorkSpace after it is stopped, we can get to
where we left off, all running applications and data are intact. One more
advantage we found during the experiment is that if a WorkSpace faces any
fatal errors, it can be completely rebuilt as a brand new machine or from a
backup point in a very short time.

7.4 Summary

By the end of this chapter, we have presented the examination of the automa-
tion prototype and Tekla Structures operation in the Amazon WorkSpaces.

In general, the prototype functions correctly as we described in the Imple-
mentation chapter. The prototype managed to automate successfully all the
defined tasks. However, supervision of the Tekla Structures packaging oper-
ation in Amazon WAM Admin Studio remains necessary as SikuliX scripts
running on these EC2 instances are precarious and susceptible to errors. In
other words, a small change in the environments or unexpected procedures
occurred while the SikuliX scripts are performing might conduce to the failing
of the whole operation. However, the robustness of the automation prototype
will be improved when we replace the SikuliX script with the Amazon WAM
API when it becomes available.

Furthermore, we are aware that the package we used for the evaluation,
i.e., Tekla Structures Learning is a traditional Windows Installer package,
not a native virtualized one. Hence, some issues with the software in the
virtualization environment may occur, e.g., invalid fonts and missing folders.
These issues would not happen if the package was built for virtualization

CHAPTER 7. EVALUATION 55

environment in the first place.
We conclude that Amazon WorkSpaces with Graphics configuration is

feasible to use with Tekla Structures. The Amazon Graphics WorkSpaces
can handle graphics-intensive tasks with complex 3D model in Tekla Struc-
tures. Nevertheless, there are some minor limitations with the Amazon WAM
system that needs to be addressed. For instance, administrators have to man-
ually assign the software for specific users or WorkSpaces in Amazon WAM
Console. The delay when the software is assigned from Amazon WAM Con-
sole to the time WorkSpaces’ end users can get the software in Amazon WAM
client is relatively long.

Chapter 8

Discussion

This chapter presents the overall benefits and challenges of deploying and
utilizing the case company software in Amazon WorkSpaces. We point out
some main issues that we have to deal with throughout the implementation.
Further developments for a decent automation deployment system are dis-
cussed. The new business models of delivering Tekla Structures with the
Amazon WorkSpaces are proposed. Moreover, we address alternative virtu-
alization systems and cloud services that could benefit the case company in
the future.

8.1 The implementation and future

enhancements

The automation prototype developed in this thesis is capable of automating
the major processes of packaging a software to Amazon WorkSpaces as well
as launching new WorkSpaces to end users. Seven different Amazon Web
Services are utilized in the automation prototype and all the services are
closely connected to assemble one working system. We built the prototype
as an AWS serverless service by combining Amazon API Gateway with AWS
Lambda. Hence, there is no administrative effort needed. In order to initiate
the prototype, administrator can simply send a valid POST request to invoke
the predefined uniform resource locator (URL). Upon receiving the request,
the Amazon API Gateway will trigger the automation procedure for virtual-
izing and validating a software to Amazon WorkSpaces. The similar architect
applied for launching WorkSpaces to end users in which a PowerShell script
is utilized to add new users’ information to an AD and send a different set of
POST requests to the Amazon API Gateway, which then forwards the con-

56

CHAPTER 8. DISCUSSION 57

tents to the AWS Lambda to launch new WorkSpaces. We used four separate
Lambda functions in the prototype instead of combining them together as
one since AWS Lambda is charged according to the requests’ compute time
not the numbers of available Lambda functions. Hence, dividing into smaller
Lambda functions proves to be more cost-efficient and easier to manage.

Even though the prototype fulfills the automation requirements, it is rel-
atively rudimentary and there is room for improvements. The prototype has
a basic method to verify POST requests. In order to use for the production,
another layer of protection such as applying Client-Side Secure Sockets Layer
(SSL) Certificates should be added, so that the system protection is more
secured when receiving REST calls from the public network. The prototype
log files’ information can be adjusted based on the needs and usage in spe-
cific scenarios. In further development, we can also integrate the launching
WorkSpaces operation in the prototype to the case company customer rela-
tionship management system. Thus, we will have a thorough and expeditious
automation software delivery system from the time customers purchase the
software to the time they get the ready-to-use WorkSpaces with the software
installed.

There are few steps in the deployment process that we have to do man-
ually such as assigning the application package to WorkSpaces. Moreover,
we have to use the SikuliX script to automate the interaction tasks with
Amazon WAM which is error-prone due to the SikuliX technique of detect-
ing matched pixels for automation. Currently, there is no Amazon WAM
API or alternative ways to handle these tasks. Hence, this is our solution at
the moment. However, replacing the SikuliX scripts and other manual tasks
with the Amazon WAM API will be indispensable in the future. Besides
that, some function limitations in AWS itself might pose a challenge for the
system in the production. For instance, AD Connector in AWS Director
Service does not support Security Assertion Markup Language (SAML) or
OAuth protocols to communicate with the on-premises AD. Thus, in order
to connect with AWS Directory Service the case company AD server will
have to be exposed, i.e., directly connected to the AWS environment that
may divulge some security risks.

Additionally, the case company software installer, Tekla Structures, is not
meant to be built for the virtual environments. Hence, the software requires
arduous configurations in Amazon WAM so that the virtualized application
container for the software can function correctly in Amazon WorkSpaces.
Besides that, as a non-native virtualization software, small changes in op-
erating environment such as missing folders, modified files or incompatible
.NET Framework might cause the software to malfunction in WorkSpaces.
The optimal solution to solve this issue is to create a native virtual version

CHAPTER 8. DISCUSSION 58

of Tekla Structures installer so it will be more consistent with the virtual
environment architecture such as Amazon WorkSpaces.

From administrators’ perspective, it is essential to be able to monitor
the resources of all active Amazon WorkSpaces. We have not contemplated
about the issue in this thesis. Nevertheless, Amazon CloudWatch is a suitable
AWS service to do those monitoring tasks. In the future development, we can
apply Amazon CloudWatch to attain a wider visibility not only into Amazon
WorkSpaces’ operational health, applications’ performance, users’ usage but
also other Amazon Web Services’ resources utilization in the automation
prototype. Besides that, applying tags to WorkSpaces is a useful way to
identify and organize different WorkSpaces’ groups and users.

At the prospect of the development-operations in the case company and
the customers’ requirements, it will be beneficial to study the integration
of the automation prototype to the case company continuous delivery sys-
tem in TeamCity in order to form a comprehensive continuous deployment
system. In essence, any fixes and new developments in the software will be
integrated, tested, packaged and deployed to the WorkSpaces expeditiously
via the continuous deployment pipeline. Nevertheless, the topic needs to be
meticulously researched as the nature of the case company software is a large
and composite Windows software, not a simple Web or mobile application.

With the prototype we have built a firm foundation for the software
automation deployment in Amazon WorkSpaces. In the future development,
based on the specific requirements, detailed infrastructure and resources,
we can improve and tailor the prototype to deliver an inclusive solution.
For instance, we have to estimate the number of WorkSpaces we want to
utilize, their usage periods and whether we will have a dedicated AD or
connect the WorkSpaces to the case company AD domain. According to
these decisions, we can tweak the automated deployment system to fulfill the
discrete production use cases. Furthermore, the AWS serverless service that
is a part of the prototype can be reused to process other API requests in
further AWS development.

In the Amazon Web Services, we anticipate to have the API support for
the Amazon WAM and Amazon WorkSpaces Console in the future. We will
be able to replace the SikuliX scripts by the native Amazon WAM API ac-
tions in the prototype. Additionally, having Amazon WorkSpaces Console
API will allows us to flexibly develop our own assigning and monitoring vir-
tualized applications for Amazon WorkSpaces. Hence, the manual, tedious
tasks with the WorkSpaces Console via the web UI can be reduced. Fur-
thermore, we would prefer to have a simpler, more straightforward approach
to package the software in preference to using 2 pristine specialized EC2 in-
stances for virtualization and validation each time. With the WorkSpaces, it

CHAPTER 8. DISCUSSION 59

will be ideal if AWS can give users the capability to customize the hardware
configurations for their WorkSpaces instead of limited to 4 hardware choices
currently.

8.2 Delivering the WorkSpace and Tekla

Structures as a bundle

Amazon WorkSpaces allows creating a custom bundle for the WorkSpace.
In essence, we can create a new WorkSpace, install conventional Windows
applications and adjust the WorkSpace settings as required. For instance, we
could install any software in the WorkSpace such as Tekla Structures, Google
Chrome and Microsoft Office as well as update the system so users can access
to the designated network drive. After that, Amazon WorkSpaces Console
is utilized to create the bundle that capture this WorkSpace. Consequently,
a new bundled WorkSpace launching will have exactly the same installed
software and settings as in the bundle. It is a convenient way to deliver
the WorkSpaces with a required set of software and Windows preconfigured
settings.

However, there is a drawback with this approach. Since the software
is not virtualized and installed in a conventional Windows Installer format,
Amazon WorkSpaces administrators cannot manage the software in the later
stages. Meanwhile with the software packaged with Amazon WAM, admin-
istrators are enable to monitor the software, install, uninstall and update
the software throughout the whole software life cycle. Nevertheless, there
is a possible solution to manage the end users’ usage with this approach.
Since the WorkSpaces work like traditional Windows desktops and are com-
patible with popular management tools such as SCCM, we can connect the
WorkSpaces to an AD domain and control them with the SCCM system as
normal desktops. A future in-depth study for this approach would be benefi-
cial as it could possibility reduce the complexity of virtualizing and managing
the software in the Amazon WorkSpaces.

8.3 Business models for software delivery

Tekla Structures uses perpetual licensing model along with maintenance con-
tract to deliver the product for customers. While Amazon WorkSpaces
charges monthly or hourly based on the number of running WorkSpaces
and the WorkSpaces’ hardware configurations. Therefore, by combining the

CHAPTER 8. DISCUSSION 60

WorkSpaces with Tekla Structures as a bundle, we can introduce new sub-
scription model in which customers are able to subscribe for a period of time
they want to use the bundle.

From the case company perspective, the subscription business model can
be designed in order to generate a greater revenue stream from the recurring
subscriptions in comparison to the perpetual one-time purchases. Addition-
ally, with the bundle subscriptions, the case company knows the number of
active customers and how they use the bundle as a whole and Tekla Struc-
tures software in particular as well as the customers churn rate. Furthermore,
the bundling subscription model would allow the case company to easily im-
plement cross-selling other products and services. [9, 41]

Enterprise customers can access their business Windows application such
as Tekla Structures over the Internet the same way they can use e-mail
application in the Web browser. Since there is no upfront investment, the
customers only pay for what they use. For a premium product like Tekla
Structures, subscriptions allow customers to pay for a period of time. Thus,
it could make the product appear to be more affordable. Besides that, in
some scenarios where customers only need to use the Tekla Structures for
a short period such as for temporary employees or contractors, subscription
becomes a big advantage and help to minimize superfluous IT investments
as customers do not need to buy a high end workstation and a perpetual
Tekla Structures license but to pay for a subscription fee to use the bundle
and terminate when it is no longer needed. [12]

Consequently, it is critical to carry out a comprehensive study and field
survey to acquire the optimal way for the case company software to license
Tekla Structures whether it is a perpetual license, a subscription contract or a
hybrid approach involving both methods. Nevertheless, it should be noticed
that the availability of Amazon WorkSpaces with Graphics configuration at
present is moderately limited. Besides that, the hourly price for the Graphics
WorkSpace is still fairly high and there is no monthly price available yet. In
the upcoming time, we expect the Amazon WorkSpaces pricing to scale down
and the AWS infrastructure to be reinforced.

8.4 Potential cloud services

Desktop Application as a service (DAaaS) is another emerging cloud services
that can compete and compliment for Desktop as a Service at the same time.
As its name demonstrated, DAaaS delivers the desktop application running in
the cloud to end users the same way DaaS offers its cloud desktops. However,
DAaaS is more specific in terms and scale as it only streams desktop software

CHAPTER 8. DISCUSSION 61

not a whole desktop system as in DaaS. One DAaaS entrant we can try out
is Amazon AppStream 2.01. Regardless of its novelty, DAaaS is a highly
potential cloud service that we can explore in the future.

Other VDI, cloud-hosted desktops system the case company can contem-
plate such as VMware Horizon Air and Microsoft Azure RemoteApp. Since
each system uses different hypervisors, cloud and virtualization techniques, it
will be useful to investigate and test Tekla Structures on these system so that
we can have an overall understanding of the advantages and disadvantages
each of them possesses.

1https://aws.amazon.com/appstream2

Chapter 9

Conclusions

It can be seen that Desktop as a Service is quintessential for today users who
require stability, flexibility and mobility in employing full desktop comput-
ers. Desktop as a Service appeases users by allowing instant access to high
performance Windows desktops at any time, from anywhere and in various
device platforms. Furthermore, Desktop as a Service eases the administrator
tasks of maintaining, monitoring and upgrading the IT infrastructure as the
heavy lifting tasks are handled by the cloud service providers.

In this thesis, we have discussed the concept of the cloud computing and
scrutinized the ontology of Desktop as a Service. In addition, the GPU-
Accelerated technique in cloud computing was studied. The case company
software and their continuous delivery system were investigated. We de-
scribed and explained the usage of the Amazon Web Services and tools uti-
lized in the thesis implementation.

For the practical part, the thesis has outlined the high level architecture of
the whole software deployment process in Amazon WorkSpaces. The work-
ing prototype involves 7 different Amazon Web Services and uses Python,
PowerShell and SikuliX as development languages. The agile approach of
solving the research problem proved to be beneficial as it helps to incremen-
tally develop and enhance the working prototype. In accordance with the
deployment process design and usage workflow, we divided the prototype into
two operations. The first operation can automatically package the software
for the virtualization environment in the Amazon WorkSpaces while the sec-
ond one is capable of launching new WorkSpaces for end users with minimal
administrator’s intervention.

The results of the in-depth topical studies about Amazon WorkSpaces
and the prototype implementation made it possible to answer the following
research questions:

62

CHAPTER 9. CONCLUSIONS 63

RQ1: How Tekla Structures can be deployed in Amazon WorkSpaces?
Will Amazon WorkSpaces be capable of running Tekla Structures?

In order to deploy Tekla Structures in Amazon WorkSpaces, we first
have to package the software by virtualizing and validating it for operat-
ing accurately in the WorkSpaces. Then Amazon WAM Console is used
to manage and assign the packaged software to the WorkSpaces. Besides
that, it is possible for end users to install Tekla Structures with the tradi-
tional Windows installer package in the WorkSpaces as in normal Windows
desktops. However, Amazon WAM Console cannot monitor the usage ap-
plications in the WorkSpaces with this installation method. The Amazon
Graphics WorkSpaces meet the Tekla Structures hardware recommendations
and can run the software smoothly without discernible issues.

RQ2: To what extent can continuous deployment tasks be automated and
how to implement these tasks in Amazon Web Services?

In this thesis, we have successfully developed the automation prototype
that can handle most of the deployment procedure in Amazon WorkSpaces.
There are some minor tasks that need to execute manually due to the lack
of supported APIs such as managing and assigning the application to the
WorkSpaces. Nonetheless, we expect the APIs to be available in the near
future. The prototype was written in Python, PowerShell, SikuliX script
and involves several Amazon Web Services that interoperate closely to one
another. By using the prototype, administrators can trigger the automation
AWS system that we configured to package the software and launch new
WorkSpaces without requiring in-depth knowledge of the underlying system.

The major contributions of the thesis work are the proof of concept on
how the case company software can be deployed in the Amazon WorkSpaces
and the working automation prototype to package the software and launch
WorkSpaces for end users in the Amazon WorkSpaces.

Finally, the knowledge cultivated during the thesis work, the automation
prototype and the AWS configurations have formed a firm background for
the future development of the production system by the case company. We
are assured that Desktop as a Service encompasses a lot of potential for the
case company to expand their software delivery models to reach a larger and
more diverse customer base today and in the future to come.

Bibliography

[1] Agrawal, S., Biswas, R., and Nath, A. Virtual Desktop Infras-
tructure in Higher Education Institution: Energy Efficiency as an Ap-
plication of Green Computing. In Communication Systems and Network
Technologies (CSNT), 2014 Fourth International Conference on (April
2014), pp. 601–605.

[2] Amit, N., Ben-Yehuda, M., Tsafrir, D., and Schuster, A.
vIOMMU: Efficient IOMMU Emulation. In Proceedings of the 2011
USENIX Conference on USENIX Annual Technical Conference (Berke-
ley, CA, USA, 2011), USENIXATC’11, USENIX Association, pp. 6–6.

[3] Barr, J. New G2 Instance Type with 4x More
GPU Power. https://aws.amazon.com/blogs/aws/

new-g2-instance-type-with-4x-more-gpu-power/, 2015. (Accessed on
12/29/2016).

[4] Barr, J. New GPU-Powered Amazon Graph-
ics WorkSpaces. https://aws.amazon.com/blogs/aws/

new-gpu-powered-amazon-graphics-workspaces/, 2016. (Accessed
on 12/29/2016).

[5] Bennett, L., and Mahdjoubi, L. Construction Health and Safety,
BIM and Cloud Technology: Proper Integration Can Drive Benefits for
All Stakeholders. In 2013 IEEE 5th International Conference on Cloud
Computing Technology and Science (Dec 2013), vol. 2, pp. 215–218.

[6] Bowker, M., and Matuson, L. Meeting desktop and application de-
livery challenges across organizations. In Desktop-as-a-service (DaaS):
Greater Operational Control, Reduced Costs, and Secure Workspaces
(Jul 2016).

[7] Casalicchio, E., Iannucci, S., and Silvestri, L. Cloud Desktop
Workload: A Characterization Study. In Cloud Engineering (IC2E),
2015 IEEE International Conference on (March 2015), pp. 66–75.

64

https://aws.amazon.com/blogs/aws/new-g2-instance-type-with-4x-more-gpu-power/
https://aws.amazon.com/blogs/aws/new-g2-instance-type-with-4x-more-gpu-power/
https://aws.amazon.com/blogs/aws/new-gpu-powered-amazon-graphics-workspaces/
https://aws.amazon.com/blogs/aws/new-gpu-powered-amazon-graphics-workspaces/

BIBLIOGRAPHY 65

[8] Chen, L. Continuous Delivery: Huge Benefits, but Challenges Too.
IEEE Software 32, 2 (Mar 2015), 50–54.

[9] Choudhary, V. Comparison of Software Quality Under Perpetual Li-
censing and Software as a Service. Journal of Management Information
Systems 24, 2 (2007), 141–165.

[10] Chrobak, P. Implementation of Virtual Desktop Infrastructure in
academic laboratories. In Computer Science and Information Systems
(FedCSIS), 2014 Federated Conference on (Sept 2014), pp. 1139–1146.

[11] Dawoud, W., Takouna, I., and Meinel, C. Infrastructure as a ser-
vice security: Challenges and solutions. In Informatics and Systems (IN-
FOS), 2010 The 7th International Conference on (March 2010), pp. 1–8.

[12] Dubey, A., and Wagle, D. Delivering Software as a Service. The
McKinsey Quarterly 6, 2007 (2007), 2007.

[13] Grossman, R. L. The Case for Cloud Computing. IT Professional 11,
2 (March 2009), 23–27.

[14] Hocke, R. Sikuli / SikuliX Documentation for version 1.1+ (2014 and
later) - SikuliX 1.1+ documentation, 2014.

[15] Hou, Q., Qiu, C., Mu, K., Qi, Q., and Lu, Y. A Cloud Gam-
ing System Based on NVIDIA GRID GPU. In 2014 13th International
Symposium on Distributed Computing and Applications to Business, En-
gineering and Science (Nov 2014), pp. 73–77.

[16] Humble, J., and Farley, D. Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation (Addison-
Wesley Signature Series (Fowler)). Addison-Wesley Professional, 2010.

[17] ITU-T, F. G. Part 1: Introduction to the cloud ecosystem: definitions,
taxonomies, use cases and high-level requirements. In Focus Group on
Cloud Computing Technical Report (Feb 2012).

[18] ITU-T, F. G. Part 2: Functional requirements and reference archi-
tecture. In Focus Group on Cloud Computing Technical Report (Feb
2012).

[19] ITU-T, F. G. Part 7: Cloud computing benefits from telecommu-
nication and ICT perspectives. In Focus Group on Cloud Computing
Technical Report (Feb 2012).

BIBLIOGRAPHY 66

[20] Janakiram, M. What’s driving the adoption of desktop as
a service? http://www.computerweekly.com/news/2240233145/

Whats-driving-the-adoption-of-desktop-as-a-service, October
2014. (Accessed on 11/07/2016).

[21] Kibe, S., Koyama, T., and Uehara, M. The Evaluations of Desktop
as a Service in an Educational Cloud. In 2012 15th International Confer-
ence on Network-Based Information Systems (Sept 2012), pp. 621–626.

[22] Liu, M., Li, T., Jia, N., Currid, A., and Troy, V. Understanding
the virtualization ”Tax” of scale-out pass-through GPUs in GaaS clouds:
An empirical study. In 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA) (Feb 2015), pp. 259–
270.

[23] Luo, S., Lin, Z., Chen, X., Yang, Z., and Chen, J. Virtualization
security for cloud computing service. In Cloud and Service Computing
(CSC), 2011 International Conference on (Dec 2011), pp. 174–179.

[24] Makarov, M., Calyam, P., Sukhov, A., and Samykin, V. Time-
based criteria for performance comparison of resource-intensive user
tasks in virtual desktops. In 2014 International Conference on Comput-
ing, Networking and Communications (ICNC) (Feb 2014), pp. 112–116.

[25] Martin, R. C. Agile Software Development, Principles, Patterns, and
Practices. Pearson, 2002.

[26] Mathew, S. Overview of Amazon Web Services, December 2015. (Ac-
cessed on 12/07/2016).

[27] Mell, P., and Grance, T. The NIST Definition of Cloud Comput-
ing, NIST SP 800-145, Sep 2011.

[28] NVIDIA. GRID Virtual GPU. http://images.nvidia.com/content/

grid/pdf/GRID-vGPU-User-Guide.pdf, 2016. (Accessed on 12/29/2016).

[29] Orchilles, J. Virtualization: The benefits of VDI. TechNet Magazine
(2013).

[30] Services, A. W. Amazon Simple Storage Service Developer
Guide. http://docs.aws.amazon.com/AmazonS3/latest/dev/s3-dg.pdf,
2006. (Accessed on 12/07/2016).

http://www.computerweekly.com/news/2240233145/Whats-driving-the-adoption-of-desktop-as-a-service
http://www.computerweekly.com/news/2240233145/Whats-driving-the-adoption-of-desktop-as-a-service
http://images.nvidia.com/content/grid/pdf/GRID-vGPU-User-Guide.pdf
http://images.nvidia.com/content/grid/pdf/GRID-vGPU-User-Guide.pdf
http://docs.aws.amazon.com/AmazonS3/latest/dev/s3-dg.pdf

BIBLIOGRAPHY 67

[31] Services, A. W. Aws Directory Service. http://docs.aws.amazon.

com/directoryservice/latest/admin-guide/directory_simple_ad.

html, 2016. (Accessed on 12/29/2016).

[32] Services, A. W. Amazon Elastic Compute Cloud - User Guide
for Windows Instances. http://docs.aws.amazon.com/AWSEC2/latest/

WindowsGuide/ec2-wg.pdf, 2017. (Accessed on 02/03/2017).

[33] Services, A. W. Amazon WorkSpaces FAQs - Virtual Desktops in the
Cloud. https://aws.amazon.com/workspaces/faqs/, 2017. (Accessed on
02/17/2017).

[34] Silvestri, G. A. Citrix XenDesktop 5.6 Cookbook. Packt Publishing,
2013.

[35] Srivastava, A. vDaaS: Reference Architecture. In 2011 Annual IEEE
India Conference (Dec 2011), pp. 1–5.

[36] Suzuki, Y., Kato, S., Yamada, H., and Kono, K. GPUvm: Why
Not Virtualizing GPUs at the Hypervisor? In 2014 USENIX Annual
Technical Conference (USENIX ATC 14) (Philadelphia, PA, June 2014),
USENIX Association, pp. 109–120.

[37] Trimble. Trimble: Transforming the Way the World Works, 2014.
(Accessed on 10/10/2016).

[38] Trimble. Tekla Structures Glossary. http://teklastructures.

support.tekla.com/system/files/files/TeklaStructuresGlossary.

pdf, 2 2016. (Accessed on 10/25/2016).

[39] Waldspurger, C. A. Memory Resource Management in VMware ESX
Server. SIGOPS Operating Systems Review 36, SI (Dec. 2002), 181–194.

[40] Wang, L., Tao, J., Kunze, M., Castellanos, A. C., Kramer,
D., and Karl, W. Scientific Cloud Computing: Early Definition
and Experience. In High Performance Computing and Communications,
2008. HPCC ’08. 10th IEEE International Conference on (Sept 2008),
pp. 825–830.

[41] Zhang, J., and Seidmann, A. Perpetual Versus Subscription Licens-
ing Under Quality Uncertainty and Network Externality Effects. Journal
of Management Information Systems 27, 1 (2010), 39–68.

http://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_simple_ad.html
http://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_simple_ad.html
http://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_simple_ad.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-wg.pdf
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-wg.pdf
https://aws.amazon.com/workspaces/faqs/
http://teklastructures.support.tekla.com/system/files/files/TeklaStructuresGlossary.pdf
http://teklastructures.support.tekla.com/system/files/files/TeklaStructuresGlossary.pdf
http://teklastructures.support.tekla.com/system/files/files/TeklaStructuresGlossary.pdf

BIBLIOGRAPHY 68

[42] Ziglari, H., and Yahya, S. Deployment models: Enhancing security
in cloud computing environment. In 2016 22nd Asia-Pacific Conference
on Communications (APCC) (Aug 2016), pp. 204–209.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Scope of the Thesis
	1.3 Structure of the Thesis

	2 Background
	2.1 Virtual Desktop Infrastructure
	2.2 Cloud computing
	2.2.1 Cloud deployment models
	2.2.2 Cloud computing architecture and services

	2.3 Desktop as a Service
	2.3.1 Definition of Desktop as a Service
	2.3.2 Service Architecture for Desktop as a Service
	2.3.3 Desktop as a Service benefits and limitations
	2.3.4 Desktop as a Service providers

	2.4 GPU-Accelerated virtual machines in cloud computing
	2.5 Summary

	3 Case Study Software
	3.1 Case Study Company
	3.2 Tekla Structures Software
	3.3 Continuous delivery system
	3.4 Pre-requisite Software
	3.4.1 Tekla Structures License Administration Tool
	3.4.2 Tekla Structures Environments

	4 Amazon Web Services and other tools
	4.1 Amazon WorkSpaces
	4.1.1 WorkSpaces
	4.1.2 PC-over-IP Protocol for Virtual Desktop Delivery

	4.2 Amazon Elastic Compute Cloud
	4.3 Amazon Simple Storage Service
	4.4 AWS Lambda
	4.5 Amazon API Gateway
	4.6 AWS Directory Service
	4.7 AWS Identity and Access Management
	4.8 Other applications
	4.8.1 SikuliX
	4.8.2 InstallShield

	4.9 Summary

	5 Design
	5.1 Functional objectives
	5.2 Amazon WorkSpaces Deployment Process
	5.2.1 Packaging application in Amazon WorkSpaces
	5.2.2 Launching Amazon WorkSpaces to end users

	6 Implementation and System Prototype
	6.1 Packaging application in Amazon WorkSpaces
	6.1.1 AWS IAM component
	6.1.2 Amazon API Gateway component
	6.1.3 AWS Lambda component
	6.1.4 Amazon S3 component
	6.1.5 Amazon EC2 component
	6.1.6 SikuliX scripts component
	6.1.7 Amazon DynamoDB component
	6.1.8 Associate all components as one system

	6.2 Launching WorkSpaces to end users
	6.2.1 Amazon API Gateway component
	6.2.2 AWS Lambda component
	6.2.3 AWS IAM component
	6.2.4 AWS Directory Service component
	6.2.5 Amazon EC2 component
	6.2.6 Amazon WorkSpaces console
	6.2.7 Associate all components as one system

	6.3 Summary

	7 Evaluation
	7.1 The prototype experiment and analysis
	7.1.1 Virtualizing and validating Tekla Structures for Amazon WorkSpaces
	7.1.2 Assigning WorkSpaces to client

	7.2 Amazon WorkSpaces Console
	7.3 Tekla Structures operation in Amazon Graphics WorkSpaces
	7.3.1 Performance evaluation
	7.3.2 Interoperability evaluation
	7.3.3 Security evaluation
	7.3.4 Reliability evaluation

	7.4 Summary

	8 Discussion
	8.1 The implementation and future enhancements
	8.2 Delivering the WorkSpace and Tekla Structures as a bundle
	8.3 Business models for software delivery
	8.4 Potential cloud services

	9 Conclusions

		2017-03-28T11:47:07+0300
	Espoo
	Trimble Solutions Corporation
	I am the author of this document

