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DISSERTATION ABSTRACT

Kyle Matthew Meyer
Doctor of Philosophy
Department of Biology
December 2016
Title: The Biogeography and Functional Ecology of Tropical Soil Microorganisms

Tropical ecosystems are some of the most diverse and productive
ecosystems on the planet. These ecosystems are also some of the most threatened
worldwide and this is largely driven by agricultural expansion. Predicting biotic
responses to such forms of environmental change is a challenge that requires an
increased understanding of the factors structuring these communities in both
pristine environments as well as environments undergoing environmental change.
Studying patterns in the spatial structure of communities can provide important
insights into ecological and evolutionary processes structuring communities.
Combining such approaches with analyses of the distribution of activity and the
genomic content of communities can help us better understand relationships
between community structure and function. I explore the topics of microbial spatial
scaling, activity, and gene content in both pristine tropical rainforest environments
and tropical regions undergoing agricultural conversion. I first pose a fundamental
question in microbial spatial ecology, i.e. why do microorganisms tend to show

weaker spatial patterns than macro-organisms? [ show that trees and soil
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microorganisms differ in the rates at which their communities change over space. |
test the hypothesis that low rates of spatial turnover in microbial communities are
an artifact of how we assess the community structure of microbial communities and
show that sampling extent is likely the main driver of these differences. Next, I
examine a Central Africa ecosystem undergoing agricultural conversion. I show that
there are numerous indications of biotic homogenization in these soil microbial
communities and that the active fraction of the community shows a more
pronounced response to environmental change. Finally, [ examine two microbial
processes in the Amazon Basin that have been reported to change following
agricultural conversion: methane production and methane consumption. I
investigate changes to the genes and taxa involved in these processes and propose a
new conceptual framework for how these processes might be changing. Work in this
thesis contributes to a broader understanding of the spatial and functional ecology
of tropical microorganisms and offers perspectives useful for predicting and
mitigating the impacts of environmental change on these communities.

This dissertation includes previously submitted and co-authored material.
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CHAPTERI

INTRODUCTION

Tropical rainforests: model ecosystems for studying ecological interactions in
a changing world

Tropical ecosystems are some of the most diverse and productive
ecosystems worldwide. Because of the extraordinary variety of life in the tropics,
many scientists have turned to these regions to develop or test theories in ecology
and evolution. Tropical rainforests exert influence over the planet by producing
oxygen, filtering freshwater, and sequestering carbon. Yet despite their global
importance, these ecosystems are some of the most threatened on the planet (Dirzo
& Raven, 2003). Environmental change- largely driven by agricultural development-
is occurring disproportionately faster in the tropics than in any other region, driving
increased rates of species loss as well as dramatic changes to the ways these
ecosystems function (Laurance et al., 2014). There is considerable uncertainty in
how these communities will respond to the growing human pressures imposed on
them, largely due to the fact that these communities are so understudied. Directing
our attention to better understand these threatened ecosystems is a priority and it
is the only way forward if we are to predict and mitigate changes from mounting
human pressures. This requires studying communities in intact environments and
environments undergoing change, as well as navigating the numerous historical,

ecological, and socioeconomic dimensions that make tropical environments unique.



The global importance of the soil environment and the many challenges it
presents

All terrestrial life is intimately connected with the soil environment.
Predicting the fate of soils in a changing environment is therefore an issue that is of
global importance. Soils change over time through interactions with the
environment and biotic communities. Changes in nutrient inputs, precipitation
regimes, average temperatures, and land cover are just a few of the ways in which
human activities can impact the soil environment and these can lead to changes to
the communities of organisms inhabiting soil. Microbial communities in the soil are
some of the most diverse communities on the planet and this diversity is mirrored
by the tremendous breadth of metabolic activities performed by these communities
(Fierer & Jackson, 2006). Soil bacteria, archaea, and fungi are directly involved in
processes that can influence the assembly and productivity of aboveground
communities (Wardle et al., 2004; van der Heijden et al., 2008), and they also govern
ecosystem functions such as transforming soil chemicals (Falkowski et al., 2008)
and cycling greenhouse gases (Schimel & Gulledge, 1998) that can impact Earth’s
climate. The exceptional diversity of these communities makes understanding their
ecology and predicting their responses to environmental change one of the ultimate
challenges in microbial ecology. Studying these communities and the processes they
perform, however, can allow us to test predictions in ecology and uncover novel
mechanisms for survival in such a dynamic environment.

The soil environment can harbor very high levels of microbial dormancy (i.e.

taxa that are in a prolonged state of physiological inactivity) and some have



estimated that between 40 and 97% of bacterial cells present in soil can be dormant
(Lennon & Jones, 2011; Blagodatskaya & Kuzyakov, 2013). Very little is known
about the factors governing microbial resuscitation from dormancy and this
presents a unique challenge to microbial ecologists interested in predicting
community processes and responses to change. This problem is compounded by the
fact that most of the traditional methods used to identify microbial taxa in the
environment (e.g. DNA-metabarcoding) do not distinguish between active and
dormant members. Since dormant individuals are likely avoiding negative
interactions (either with their environment or other community members), it is only
the active fraction of the community that is interacting with the environment and
performing metabolic processes. If the active fraction of the community is more
intimately interacting with the environment, it may be structured differently than
the “seedbank” of dormant taxa and it may also be more susceptible to
environmental change. From the few studies that look specifically at the active
microbial taxa, it has been shown that this fraction may be more responsive to
seasonal changes (Barnard et al,, 2013) and may be more directly influenced by
variation in the environment (Zhang et al., 2014). However, there has been little
effort to measure the response of the active fraction to environmental change, and

there has been even less effort to do so in tropical ecosystems.

Spatial and functional ecology as a framework to study environmental change
The distribution of taxa through space and time is a fundamental topic in

biology and has led to profound insights into the processes driving species



evolution. Both microbial and macro-organismal communities show spatial patterns
in their taxonomic composition, yet there appear to be differences in these patterns.
For example, the decay of community similarity with geographic distance (i.e. the
distance-decay relationship) and the accumulation of taxa with increasing area (i.e.
the taxa-area relationship) - two well-studied relationships in spatial ecology- tend
to be much weaker for microorganisms relative to macro-organisms (Green et al.,
2004; Horner-Devine et al., 2004). Some have suggested that unicellular organisms
display different spatial patterns because they are more capable of long-distance
dispersal, have the potential to be dormant for long periods, and tend to be much
more abundant (Finlay, 2002; Finlay et al., 2004)- i.e. they are fundamentally
different from multi-cellular macro-organisms. Others have suggested that these
differences may simply be an artifact of how we measure microbial communities-
since our species delineations and means of surveying communities tend to be so
different from those used for macro-organisms (Martiny et al., 2006; Hanson et al.,
2012). Understanding whether micro- and macro-organisms are indeed
fundamentally different in their spatial patterning not only presents an interesting
opportunity to investigate general principles in ecology (i.e. those shared by all
organisms), but it is also an important consideration for ecosystem management
and conservation planning (which depend on spatial relationships to estimate
extinction probabilities) since society depends on many microbial natural products
and ecosystem functions.

Human impacts on the environment are intensifying globally and there is

considerable uncertainty over how microbial communities will respond. Spatial



variation in microbial communities can be used as one measure of how a community
responds to a changing environment. The effects of species diversity are thought to
increase at larger spatial scales (Dimitrakopoulos & Schmid, 2004; Cardinale et al.,
2012); thus a loss of spatial diversity could have negative consequences on the
resilience of community functions across a landscape and could imply lower
richness in the pool of species from which future communities will assemble.
Species loss in microbial communities is a topic few have addressed largely due to
the fact that microbial taxa have been generally assumed to be ubiquitous and hence
not susceptible to extinction. Demonstrating an extinction event in a microbial
community is also a considerable challenge because of the high abundance and
diversity of microbial communities. Numerous alterations to ecosystems, however,
have been shown to drive the local loss of certain microbial taxa and functional
groups (Rodrigues et al., 2013; Navarrete et al., 2015b; Hamaoui et al., 2016) and
this is of concern because the loss of soil microbial functions could have devastating
consequences. Elucidating whether losses in spatial or local diversity follow general
trends could help us better identify the drivers of change in these systems.
Understanding microbial responses to environmental change can help us mitigate
our impacts on these communities and it can help us to better understand how
these poorly understood taxa interact with their environment.

Microbial communities can be altered by environmental change in many
ways and this makes the task of predicting community responses all the more
difficult. A change in the composition of a community, for example, does not

necessarily imply a change in function since many microbial taxa are capable of



exchanging ecologically relevant genes. In this regard a change in the gene content
of the community (i.e. the presence and abundance of genes that code for cellular
and metabolic processes, aka the metagenome) may offer an alternative perspective
(Fierer et al,, 2014). For example, the loss of genes that encode certain processes
(e.g. methane consumption) could be a strong indication of a loss or perturbation to
that process. Certain combinations of genes could also represent life history
strategies employed by microbial communities in a given environment and could
lend insights into the environmental conditions as experienced by the community
(Barberan et al,, 2012). For example, an increase in genes related to temperature
stress tolerance, dormancy, or spore formation could be indicative of a stressful (or
unpredictable) environment- a perspective that we would not necessarily gain from
taxonomy or abiotic measurements alone. Some have also argued that the processes
that shape the taxonomic composition of a community differ from the processes that
shape the gene content of the community (Louca et al., 2016). Thus, if we are
interested in how community function may respond to environmental change,

measuring gene content may be a more direct approach.

The spatial and functional ecology of tropical soil microorganisms

This dissertation addresses the topic of spatial and functional ecology of
microbial communities in tropical soils. In Chapter II, I examine a classic paradigm
in the field of microbial spatial ecology: that is, why do microbial communities tend
to show much weaker spatial patterns than macro-organisms such as plants and

animals. [ compare soil bacterial spatial patterns to those of the tree community in a



Central African rainforest that is renowned for its high levels of plant and animal
diversity. I test the hypothesis that low rates of spatial turnover in microbial
communities are an artifact of how we assess the community structure of microbial
communities. In Chapter III, I look at a Central African ecosystem that is a mosaic of
land undergoing agricultural conversion. I survey lands representative of Central
African agricultural conversion including a forested plot, a plot that had very
recently been deforested and burned, a manioc/banana plantation plot, as well as an
abandoned plantation, all within close proximity to one another. I test for
indications of biotic homogenization in the microbial communities following
ecosystem conversion to agriculture, and ask whether these changes share
commonalities with other tropical ecosystems undergoing conversion. I also
distinguish the active fraction of the microbial community from the inactive taxa to
examine whether these members are disproportionately impacted by land use
change. Finally in Chapter IV, | examine two microbial processes in the Amazon
Basin that have been reported to change following conversion to agriculture:
methane production and methane consumption. [ take a metagenomic approach to
investigate changes to the genes and taxa that are involved in these processes and
examine several explanations for how these processes might be changing.

This dissertation includes previously submitted and unpublished co-
authored material. In Chapter Il Hervé Memighe, Lisa Korte, David Kenfack, Alfonso
Alonso, and Brendan Bohannan are included as co-authors. In Chapter I1I Brendan

Bohannan is a co-author. Chapter IV is currently in review at Molecular Ecology and
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CHAPTERII

WHY DO MICROBES EXHIBIT WEAK BIOGEOGRAPHIC PATTERNS?

This chapter is co-authored by myself, Hervé Memiaghe, Lisa Korte, David Kenfack,
Alfonso Alonso and Brendan Bohannan. Data analysis and writing were primarily
performed by myself. Hervé Memiaghe, Lisa Korte, David Kenfack, and Alfonso
Alonso performed the tree community census and Hervé provided the data for
analysis. Brendan Bohannan filled the advisory role on this project and as such
aided in the conception of the design as well as contributed edits to the text.
Supplementary material for this chapter can be found in Appendix A.
INTRODUCTION

Biogeography describes the distribution of taxa over space and time, and it
has led to fundamental insights into the mechanisms maintaining and generating
species diversity. Numerous studies have established that microbial communities
can exhibit biogeographic patterns, and in many cases these patterns are
qualitatively similar to those of macro-organisms (Hillebrand et al., 2001; Green et
al., 2004; Horner-Devine et al., 2004). Microbial biogeographic patterns, however,
tend to be much weaker than those of macro-organisms. For example, the
accumulation of taxa with increasing area and the decay of community similarity
with geographic distance (two very well studied biogeographical patterns) tend to
be lower for microorganisms than for plants and animals (Hillebrand et al., 2001;
Green et al., 2004; Horner-Devine et al., 2004; Zhou et al., 2008). It is as yet unclear

why this occurs.



Understanding why microorganisms differ quantitatively from plants and
animals in their distribution is important for several reasons. First, biogeographic
patterns can provide insight into the fundamental processes that determine
biodiversity. Quantitative differences in biogeographic patterns could suggest that
these fundamental processes are different for microbes and larger organisms.
Second, biogeography forms a foundation for conservation and environmental
management, including bioprospecting. Understanding whether or not microbial
and plant/animal biogeography are governed by different rules is important for
designing effective management and conservation strategies (Diamond, 1975;
Simberloff & Abele, 1982; Soule & Simberloff, 1986).

Some have suggested that microbes have weak biogeographic patterns
because they are fundamentally different in ways that alter their biogeography; for
example, due to high abundance, longevity, or dispersal abilities (Finlay, 2002).
Others however, have suggested that these differences are artifacts of how microbial
biogeography is studied (Woodcock et al., 2006; Martiny et al., 2011). These
artifacts could include: 1) that the operational taxonomic units (OTUs) used for
characterizing microbes are not an appropriate analog to plant or animal species
(Tiedje, 1995; Fuhrman & Campbell, 1998; Horner-Devine et al., 2004; Storch &
Sizling, 2008), 2) microbial communities tend to contain high numbers of inactive
individuals and most microbial surveys do not distinguish active from inactive
individuals (Lennon & Jones, 2011; Blagodatskaya & Kuzyakov, 2013), 3) the spatial
scales over which biogeographic patterns are assessed differ between microbial and

plant/animal studies (e.g. Hillebrand et al., 2001), and 4) microbial communities
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tend to be of much higher diversity than plant/animal communities, and thus more
prone to severe undersampling, which in turn may result in under-estimating rates
of taxonomic turnover (Woodcock et al., 2006). We consider the implications of
each of these potential artifacts below.

How taxonomic groups are defined strongly differs between macro-
organisms and microorganisms. For microbial taxa, morphological traits are rarely
useful for separating lineages, and the physiological measurements necessary to
distinguish taxa are possible only for the minority of taxa that can be grown in
culture. Thus, researchers commonly delineate taxa using the sequence similarity of
marker genes (most commonly ribosomal genes (Pace, 1997)). This sequence
similarity is used to create operational taxonomic units (OTUs), defined by an
arbitrary sequence similarity cutoff (e.g. 97%). It has been suggested that OTUs
defined at 97% sequence similarity tend to contain much higher levels of diversity
than typical plant or animal species, and thus may be more comparable to a higher
taxonomic level, e.g. a genus or family (Horner-Devine et al., 2004; Hanson et al.,
2012). It has been demonstrated that the choice of OTU similarity cutoff can impact
diversity patterns (Storch & Sizling, 2008) including biogeographic patterns
(Horner-Devine et al., 2004).

Not all microbial taxa are active in a given place and time (Lennon & Jones,
2011). Numerous microbial taxa are capable of entering a state of dormancy (i.e.
physiological inactivity), and the percentage of microbial cells in this state can be as
high as 80-97 percent in certain environments(Lennon & Jones, 2011;

Blagodatskaya & Kuzyakov, 2013). This pool of inactive taxa has been likened to a
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seed bank in that member taxa may emerge into a state of activity/growth in
response to various biotic or abiotic cues much like plant seeds in the soil. The
typical DNA-based surveys used to assess microbial community membership do not
distinguish between active and inactive taxa. Locey (2010) argued that if dormancy
increases the rate of immigration (by allowing immigrants to avoid initial adverse
conditions) and decreases the rate of extinction (by allowing taxa to avoid death),
then microbial communities containing dormant taxa should exhibit lower temporal
turnover since the likelihood of a newcomer being a new species would decrease
over time (Locey, 2010). The same argument could be used for spatial turnover, i.e.
that over time the seed bank should tend to accumulate most regional taxa
regardless of whether they are suited to the local environment. Thus, including
inactive taxa in our surveys could decouple community turnover from
environmental turnover and result in an underestimation of rates of community
turnover.

[t is well established that biogeographic patterns can change quantitatively
with spatial scale. This is true for both microbes (Franklin & Mills, 2003; Martiny et
al,, 2011) and larger organisms (Preston, 1960; Nekola & White, 1999; Condit et al,,
2002; Tuomisto et al., 2003; Soininen et al., 2007). It has been suggested that
environmental filtering is a more important driver of biogeographic patterns at
smaller spatial scales (Preston, 1960; Martiny et al., 2006, 2011) while dispersal
limitation and/or diversification are more important drivers of large-scale spatial
patterns (Papke et al., 2003; Whitaker et al., 2003; Green et al., 2004)- although

dispersal limitation can also play a role at local scales as well (Bell, 2010; Martiny et
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al,, 2011). Microbial and plant/animal biogeographic surveys are often performed at
different spatial scales and this could potentially confound our interpretations of
how the diversity of these groups scales quantitatively. Including, for example, more
small-scale spatial comparisons in a survey could make rates of community
turnover appear lower when compared to a survey comprised mainly of large-scale
comparisons.

Finally, incomplete sampling (aka under-sampling) of communities is a
problem that exists throughout ecology (Cam et al., 2002) but is particularly
pronounced for microbial communities, which tend to be especially diverse. By
under-sampling a community our surveys tend to be biased against rare community
members. Rare members are often more restricted in range and hence could be
important in determining biogeographic patterns. Woodcock et al. (2006) showed
that the rate at which microbial species richness increases with area can be strongly
influenced by the intensity of sampling effort (Woodcock et al., 2006). However, it
has also been suggested that rare taxa exert a relatively minimal effect on microbial
biogeographic patterns compared to the effects of species abundances and levels of
population aggregation (Nekola & White, 1999; Morlon et al., 2008). The impacts of
under-sampling on biogeography in environmental surveys has rarely been
assessed and, to our knowledge, never in the context of accounting for the
differences between microbial and plant/animal biogeographic patterns.

Here we compare the rates of the decay of taxonomic similarity over
geographic distance between the soil microbial community and the tree community

at the Rabi plot, Gabon, a research site established for the purposes of studying

13



spatial ecology and terrestrial biogeography. The distance decay of community
similarity is a fundamental pattern in the biogeography of plant/animal (Nekola &
White, 1999; Condit et al., 2002; Tuomisto et al., 2003; Soininen et al., 2007; Morlon
et al.,, 2008) and microbial (Hillebrand et al., 2001; Green et al., 2004; Horner-Devine
et al.,, 2004; Fierer & Jackson, 2006; Bell, 2010; Zinger et al., 2014) taxa. Our design
allows us to compare this relationship across spatial scales ranging from
centimeters to 100s of meters. We test the following hypotheses: 1) microbial
species definitions will influence the rate at which microbial community similarity
changes over space, 2) excluding inactive microbial taxa will result in the steepening
of microbial distance-decay patterns, 3) microbial and tree distance decay patterns
will become more similar when compared at the same spatial scales, and 4) the
effects of under-sampling a community can account for the differences between

microbial and tree distance-decay rates.

MATERIALS AND METHODS
Experimental Design

Samples were taken at the Smithsonian Center for Tropical Forest Science’s
(CTFS) 25 ha plot located near the Rabi oil field in Southwestern Gabon, adjacent to
the Gamba Complex of Protected Areas (Lee et al., 2006) at the end of the dry season
in September 2013. This site is ideal for testing questions in microbial
biogeography. It was established for the purposes of studying spatial ecology and
terrestrial biogeography; for example, it is extensively mapped, and it has a spatial

grid system (with permanent ground markers) that extends across the entire site.
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Moreover, the CTFS plot at Rabi is particularly advantageous in that the tree
community has been completely censused (Memiaghe et al., 2016), which allows for
direct comparisons between spatial patterns of trees and microbes in the same
landscape.

Within the 25 ha plot, we sampled using a spatially explicit nested sampling
scheme (Supp. Fig. 1a) whereby three 100 m2 quadrats were established with 10 m?,
1 m2, 0.1 m? and 0.01 m? quadrats nested within each. This design has been
previously implemented to measure spatial turnover (Rodrigues et al., 2013), and
gives high coverage of a range of spatial scales. Soil cores were taken from the
corners of each quadrat giving a total of 39 samples. Soil cores were taken using
standard coring methods to a depth of 15 cm, following the removal of the litter
layer. For each sampling point three representative soil cores were taken,
homogenized, then either subsampled and preserved for molecular analysis
(described below) or kept on ice and transported back to the US for soil chemical
analysis (described below).

Tree census data were obtained for all individuals greater than 1 cm
diameter at breast height (dbh) for all areas of the 25 ha plot overlapping with the
soil bacterial census (Memiaghe et al., 2016, Supp. Fig. 1b). To assess tree
community turnover, the composition of each of the 20 m x 20 m plots included in

the study were compared.
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Molecular analysis

From each set of homogenized soil cores, 3 ml (approximately 1 g) of soil was
added to 9 ml Lifeguard solution (Mobio, California, USA) in the field, then shipped
cold and stored at -80° C in order to stabilize nucleotides for later extraction. Soil
DNA and RNA were co-extracted from each sample using MoBio’s Powersoil RNA
Isolation kit with the DNA Elution Accessory Kit (MoBio, California, USA) following
manufacturer’s instructions, using 3 ml of the soil:Lifeguard mixture (~ 0.25 g).
Extractions were quantified using Qubit (Life Technologies, USA). RNA was reverse
transcribed to cDNA using Superscript III first-strand reverse transcriptase and
random hexamer primers (Life Technologies, USA).

The V3 and V4 region of the 16S rRNA gene of the DNA and cDNA were PCR
amplified using the primers 319F and 806R (Fadrosh et al,, 2014). Sequencing
libraries were prepared using a 2-step PCR with a dual-indexing approach (Kozich
et al.,, 2013; Fadrosh et al,, 2014). In short, the first round of amplification consisted
of 22 cycles with Phusion HiFi polymerase using an equimolar blend of six forward
and reverse primers. The same blend of all 6 forward and reverse primers for each
sample were used in order to control for any potential bias that could be introduced
by adding the heterogeneity spacers immediately upstream of the 319F and 806R
primer sequences. Variable length spacers were added in order to avoid problems
that arise when sequencing libraries of similar amplicon length on the Illumina
platform. Round 1 products were cleaned using Agencourt AMPure XP (Beckman
Coulter, California, USA), then amplified for an additional 6 cycles using Phusion

HiFi. Step 2 adds the sequences required for cluster formation on the Illumina

16



flowcell. The final library was sent to the Dana-Farber Cancer Institute Molecular
Biology Core Facilities for 300bp paired-end sequencing on the Illumina MiSeq

platform.

Soil Chemical Analysis

Soil chemical parameters were measured from each soil core to estimate the
impact on microbial community composition by A & L. Western Agricultural Lab
(Modesto, CA, USA). In total, percent organic matter (loss on ignition (Dean, 1974)),
extractable phosphorus (Weak Bray (Kamprath & Watson, 1980) & sodium
bicarbonate (Olsen, 1954)), extractable cations (K, Mg, Ca, Na), sulfate-S (Fox et al,,
1964), pH, buffer pH, cation exchange capacity (CEC, (Chapman, 1965)), and percent

cation saturation were measured.

Data processing and statistical analysis

Paired end reads were joined then demultiplexed in QIIME (Caporaso et al.,
2010) before quality filtering. Primers were removed using a custom script.
UPARSE was used to quality filter and truncate sequences (416bp, EE 0.5) (Edgar,
2013). Sequences were retained only if they had an identical duplicate in the
database. Operational taxonomic units (OTUs) were clustered de novo at 97% using
USEARCH (Edgar, 2010). OTUs were checked for chimeras using the gold database
in USEARCH. We used a custom script to format the UCLUST output for input into
QIIME. To assign taxonomy, we used repset from UPARSE in QIIME using

greengenes version 13_5 (RDP classifier algorithm). Finally, we rarefied to 3790
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observations per sample in QIIME to achieve approximately equal sampling depth,
which excluded 4 samples.

After quality filtering, demultiplexing, and OTU clustering, statistical analyses
were performed in the R platform (R Development Core Team, 2010). Canberra
pairwise community distances were calculated for both the bacterial and tree
communities using the vegdist function in the package ‘vegan’ (Oksanen et al.,
2015). Canberra was chosen because of its incorporation of abundance data and
sensitivity to rare community members (Jost et al., 2011). Turnover was estimated
for both the bacterial and tree communities by regressing pairwise similarity
against pairwise geographic distance (Nekola & White, 1999). Mantel tests were
used to test for significant associations between geographic and community
distance in base R. Distance-decay slopes were compared using the function
diffslope in the package ‘simba’ (Jurasinski & Retzer, 2012), which employs a
random permutation approach to the distances and calculates the difference in
slopes. The p-values computed are the ratio between the number of cases where the
differences in slope exceed the difference in slope of the initial configuration and the
number of permutations.

The relative impacts of the environment and geographic distance on
microbial community dissimilarity were assessed using multiple regression on
distance matrices as implemented by the MRM function in the ‘ecodist’ package
(Goslee & Urban, 2007) in R. Environmental dissimilarity was calculated using the
Gower general dissimilarity coefficient (Gower, 1971) as implemented by the

function daisy in the ‘cluster’ package (Maechler et al., 2016) in R. The influence of
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individual soil parameters on community dissimilarity was assessed using a
redundancy analysis as implemented by the rda function in ‘vegan’ (Oksanen et al.,

2015) following Hellinger transformation of the community data.

OTU clustering experiment

To test whether species definition impacts biogeographic patterns, OTUs
were clustered at 95%, 97%, 99%, and 100% similarity thresholds, each time using
the aforementioned bioinformatic pipeline. Clustering at these levels resulted in
1179, 2243, 6611, and 14,864 OTUs, respectively. OTU tables were rarefied to 3696,
3100, 3324, and 2521 observations per sample (the minimum number of
observations per sample that would allow us to retain all samples), respectively, to
achieve approximately equal sampling depth. Linear models of community turnover
(described above) were compared against the tree community turnover linear
model for each OTU threshold using the random permutation approach described

above.

RNA- vs DNA-inferred community comparison

To ask whether distinguishing the active bacterial community members from
the inactive members would impact biogeographic patterns, we inferred bacterial
community membership using two molecular methods: analysis of community RNA
and analysis of community DNA. By inferring community membership via RNA we
enrich for taxa that are active, whereas communities inferred via DNA will tend to

include a higher proportion of inactive members. Distance-decay linear regression
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slopes were compared between the RNA- and DNA-inferred communities clustered
at the 97% OTU similarity threshold using the aforementioned permutation

approach.

Spatial scale

To assess whether bacterial community distance-decay rates more closely
resemble tree community distance-decay at the same spatial scale, we subset the
bacterial community to only include comparisons at the same spatial scale as trees.
We also asked whether bacterial distance-decay patterns differed at different spatial
scales by subsampling our data to include only small- to medium-scale comparisons
(tens of centimeters to tens of meters) and medium- to large-scale comparisons

(tens of meters to hundreds of meters).

Effects of undersampling

We used rarefication to assess the impact of undersampling on
biogeographic patterns for both tree and bacterial communities. We wrote a custom
R function (provided in the supplementary code) that repeatedly subsamples (1000
times) a community at a given depth and computes a distance-decay linear
regression for each sampling event. For this study we used a 97% OTU cutoff for the

DNA-inferred community.

20



RESULTS & DISCUSSION

Community similarity (1- Canberra dissimilarity) significantly decreased
with geographic distance for both the bacterial (Mantel r = 0.55, p = 0.001) and tree
(Mantel r = 0.47, p = 0.001) communities (Fig. 1). The soil chemical environment
showed slight spatial autocorrelation over the distances covered (Mantel r = 0.11, p
< 0.01), but was relatively uniform. Variation in the soil chemical environment
overall was not significantly correlated with bacterial community turnover (Partial
Mantel r = 0.14, p = 0.10) after having controlled for the effects of distance. There
were, however, certain soil chemical attributes that were significantly associated
with bacterial community structure (pH and S).

The rate at which community similarity decayed over space differed
significantly between the bacterial and tree communities (difference in slope: 0.02,
p < 0.001) with the tree community exhibiting a sharper rate of turnover (-0.0358 +
0.001) than the bacterial community (Fig. 1, -0.0148 + 0.0007). This finding is
consistent with many other observations that microbial communities often exhibit
more gradual distance-decay patterns (Hillebrand et al., 2001) and accumulate new
taxa at a lower rate over space (Green et al., 2004; Horner-Devine et al., 2004)

relative to plant and animal communities.
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Figure 1: Distance-decay plot of the bacterial community (inferred from DNA, OTU

cutoff = 97%) versus the tree community on the Rabi plot, Gabon.

The impact of OTU clustering

Various studies have suggested that broadening taxonomic resolution (for
example, by comparing genera or families, rather than species) can decrease the
strength of biogeographic patterns (Horner-Devine et al., 2004; Storch & Sizling,
2008; Hanson et al.,, 2012), although not always (Green & Bohannan, 2007). We
asked whether altering the sequence similarity cutoff we used to define our taxa
(analogous to moving from subspecies to species to genera and families) could
impact the rate of bacterial community turnover in our data. Neither broadening (i.e.
to 95%) nor narrowing (i.e. to 99 and 100%) the sequence similarity cutoffs altered

the rate of community turnover (Fig. 2). The range of taxonomic similarity values,
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however, did change with taxonomic definition, as expected. Broader cutoffs tended
to exhibit higher levels of taxonomic similarity while narrower cutoffs exhibited
lower ranges of taxonomic similarity.

Our results are in contrast to Horner-Devine et al. (2004) who reported that
narrowing the sequence similarity cutoff for taxon definition resulted in a steeper
bacterial distance-decay slope. There are a number of potential explanations for
why we did not observe this in our study. Our findings might be different because
the contribution of environmental variation to bacterial community turnover was
lower in our study than that reported by Horner-Devine et al. (2004). If the distance
decay of community similarity is driven strongly by the distance decay of
environmental similarity, and if narrowing taxonomic resolution results in groups
with narrower environmental tolerances, then a steeper distance decay pattern
should result. Another possibility is that the traits required for survival under any
given set of environmental conditions were strongly phylogenetically conserved in
the taxa in our study. This would result in less of an impact of changing taxonomic
(i.e. phylogenetic) resolution on the breadth of environmental tolerances (and

ultimately, the rate of distance-decay).
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Figure 2: The impacts of changing OTU threshold on distance-decay patterns of soil

bacterial community at the Rabi plot, Gabon.

Excluding inactive taxa

The soil environment contains especially high proportions of physiologically
inactive (i.e. dormant) microbial taxa (Lennon & Jones, 2011; Blagodatskaya &
Kuzyakov, 2013) and most DNA-based microbial surveys include both active and
inactive taxa. In contrast, biogeographic surveys of plants and animals rarely include
dormant individuals (e.g. seeds). Given that dormancy can allow taxa to persist
outside of optimal environmental conditions, the inclusion of inactive taxa could
decouple microbial community turnover from environmental turnover. We
hypothesized that if landscape level distance-decay relationships are largely driven

by environmental turnover, then including inactive taxa in a microbial survey would
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flatten the distance-decay slope. Thus, by excluding the inactive taxa (and focusing
solely on the active taxa) we would expect the microbial distance-decay slope to
become steeper and that this could - at least in part- account for the differences in
biogeographic patterns between trees and microbes in our study

Excluding inactive taxa, however, did not result in a steeper distance-decay
slope in our study (Fig. 3). The RNA-inferred (active) distance-decay slope (-0.0116
+ 0.001) was significantly flatter than the DNA-inferred (active + inactive) distance-
decay slope (-0.0149 + 0.0007, Difference in slope = 0.0033, p = 0.01) and both
community distance-decay rates were lower than the tree community distance-
decay rate (-0.0358 + 0.0012). For both communities, geographic distance was a
more important predictor of community variation than turnover in the soil chemical
environment. Variation in the DNA-inferred community structure was more
predictable overall by our meta-data (geographic distance and soil chemical
environment) than the RNA-inferred community. In fact, variation in the soil
chemical environment was not a significant predictor of variation in the RNA-
inferred community.

Our observation is at odds with our expectation that the RNA-inferred
community would more closely track the soil chemical environment than the DNA-
inferred community, since the DNA-inferred community could include dormant taxa
that are not interacting with their local environment. This hypothesis does,
however, rely on the assumption that the environmental factors responsible for
microbial activity are spatially autocorrelated. Alternatively, if climatic variables

such as rainfall events -which tend to be relatively uniform over a landscape- are
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stronger determinants of soil activity, then we would expect the active community

to be more uniform over space, which is what we observed.
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Figure 3: Distance-decay patterns of DNA- and RNA-inferred bacterial communities

at the Rabi plot, Gabon.

Spatial scale

Both plant/animal and microbial communities have been reported to have
different drivers of biogeographic patterns at different spatial scales (Preston, 1960;
Whitaker et al., 2003; Soininen et al., 2007; Bissett et al., 2010; Martiny et al., 2011;
Hanson et al,, 2012). Studies of microbial biogeography are often conducted at
smaller spatial scales than those of plants and animals (although not always

(Horner-Devine et al., 2004)), and this could result in differences in the relative

26



strength of the biogeographic patterns observed. We asked first whether comparing
microbial and tree communities at the same spatial scale might account for the
discrepancy between tree and microbial distance-decay patterns and second
whether there was an alternate spatial scale at which the bacterial distance-decay
slope might resemble more closely that of trees. However microbial distance-decay
slope across all scales did not significantly differ from the slope derived from the
subset of spatial distances shared with trees (difference in slope = 0.0006, p = 0.27,
Fig. 4). Thus, when compared at the same spatial scales, the microbial distance-
decay slope was still significantly shallower than the tree distance-decay slope
(difference in slope = 0.022, p < 0.001). At the small (centimeters to meters) scale
subset, the distance-decay slope was not significantly different from zero, although
it tended to be shallower than the distance-decay slope calculated from the entire
dataset. At the largest subset (hundreds of meters) the slope was slightly shallower
than the slope derived from the entire dataset (difference in slope = 0.0058, p =
0.001). It has previously been reported that distance-decay rates at smaller spatial
scales tended to be lower than those calculated from datasets spanning a larger
range of spatial scales (Franklin & Mills, 2003; Morlon et al., 2008; Martiny et al.,
2011). Martiny et al. (2011) also showed that larger spatial scales tended to exhibit
steeper distance-decay slopes than slopes derived from the entire dataset. Although
this was not the case for our largest spatial subsets, our largest subset was still at a
smaller spatial scale and spanned less spatial scales than their survey. Thus
adjusting for differences in scale does not seem to account for the differences in

microbial and tree distance-decay slopes in our study.
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Figure 4: The distance-decay slope of soil bacterial communities considered at

spatial subsets.

Sampling effort

Undersampling communities is a problem that exists throughout ecology
(Cam et al.,, 2002). This problem is particularly pronounced in microbial ecology
where exhaustively sampling any environment can be impractical if not impossible.
In most studies of microbial communities collector’s curves are far from saturation,
and unique taxa continue to accumulate with increased sampling effort
(Rosenzweig, 1995; Woodcock et al., 2006). Undersampling can lead to a weakening
of biogeographic patterns if taxa have a positive frequency-abundance relationship
(Sloan et al., 2006; Woodcock et al., 2006), whereby abundant community members
tend to be more widespread and less abundant taxa tend to be more restricted in

distribution. This occurs because undersampling results in decreased detection of
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low abundance taxa (with restricted distributions) and the community will thus
appear to have less taxonomic turnover across space. Both microbial and
plant/animal communities have been reported to have positive frequency-
abundance relationships (Thompson et al., 1998; Sloan et al., 2006; Ostman et al,,
2010), and indeed both the tree and bacterial communities in our study showed
such a pattern (Supp. Fig. 2a,b).

We simulated the effects of under-sampling on the distance-decay
relationship by using rarefication on both the tree and bacterial communities. For
both communities we saw the same trend; the more thoroughly sampled a
community was, the steeper the distance-decay rate (Fig. 5a). We then asked
whether the effects of sampling effort could account for the differences in the
distance-decay slope between trees and microbes. We found that if we sampled the
bacterial community as deeply as we could, the distance-decay slope was within the
95% CI range of the tree community when the tree community was dramatically
undersampled (Fig. 5b). Therefore if the tree community were as dramatically
undersampled as most bacterial surveys tend to be, the tree distance-decay slope
would be flattened to within the range of most microbial surveys. This finding is
congruent with results reported by Woodcock et al. (2006) where it was shown that
lower sampling effort could flatten the slope of the taxa-area relationship (although
they did not compare these slopes to those of plant or animal communities). Thus
sampling effort alone can sufficiently explain the discrepancy between the distance-

decay slopes of trees and soil microbial communities in our study.

29



>
-0.015
°
©
I {
w
0.4 05
-
o

-0.020
1

03
-
1
‘e &
/
o-a,: ©

-0.025

02

-0.030

DD Slope
@
Taxonomic Similarity (Canberra)

- Bacteria (9000)
Bacteria (3000)

= Bacteria _— Tree (25)
= Tree - = Tree (250)

-0.035

0.0

3000 7000 9000 25 50 250 2 0 2 4 6

Rarefication level log Distance (m)
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1000 sampling efforts at each level of rarefication. B) Sampling effort can account

for the differences in distance-decay rate between bacteria and trees.

CONCLUSION

Microbial biogeographic patterns are frequently observed to be weaker than
the same patterns in plant and animal communities, and a number of explanations
have been proposed. Here we demonstrate that in the same landscape, microbial
and tree communities showed different community turnover rates (i.e. distance-
decay relationships with different slopes), with the tree community turnover
considerably steeper. We first asked whether the DNA sequence similarity cutoff
used to define bacterial taxa had an influence on the rate at which community
similarity changed over space. The range of community similarity values changed

with the similarity cutoff used, but the slope of the distance-decay relationship did
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not, indicating that taxonomic resolution in this system does not account for our
observed differences in distance-decay slope. We next tested the hypothesis that
microbial distance-decay relationships are flattened by the inclusion of inactive taxa
in microbial surveys. Excluding the majority of inactive taxa from our survey by
inferring the community via RNA (rather than DNA) sequence analysis also did not
account for the difference between tree and microbial distance-decay rates. We
next asked whether only comparing microbial and tree communities over the same
spatial scales could account for the differences in distance decay slope. At the same
spatial scales, the two communities continued to show the same level of difference
in distance-decay slope as they did at different spatial scales. Finally, we asked
whether sampling effort could account for the discrepancy between the tree and
bacterial community turnover. We show that by sampling the bacterial community
as deeply as our data allow and under-sampling the tree community, we can arrive
at two statistically indistinguishable slopes. Hence of all the hypotheses tested, our
data seem to only support the idea that sampling effort is driving the differences
between the distance-decay relationships of soil microbes and trees in our study
system.

Whether our findings are generalizable across other environments,
taxonomic groups, or spatial scales remains untested, but since frequency-
abundance relationships are so common across taxa it seems likely that the
influence of sampling effort on biogeographic patterns will be common across other
systems. Our results underpin the importance of deeper sampling if we are to learn

about the ecology of endemic microbial taxa. Furthermore, our findings support the
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idea that microbial taxa not only qualitatively fit the same biogeographic patterns as
plants and animals, but they may do so quantitatively as well. Indeed more intensive
sampling efforts of microbial taxa may reveal that the spatial scaling of microbial

diversity is not so fundamentally different from that of plants and animals.

BRIDGE

In Chapter I my results indicate that microbial communities may not
necessarily scale differently in space than tree communities if we equalize sampling
efforts across communities. This suggests that principles in the spatial ecology of
macro-organisms (e.g. the decay of community similarity over space or the increase
in species richness with area) not only qualitatively apply to microbial communities,
but they may do so quantitatively as well. My data also demonstrate that soil
microbial communities in tropical rainforests tend to show a positive frequency-
abundance relationship, whereby abundant taxa tend to be more widespread
spatially and low abundance taxa tend to have more spatially-restricted ranges.
Incorporating spatial concepts such as these has played an instrumental role in
conservation efforts and management strategies of natural reserves. Low
abundance taxa with geographically-restricted ranges are generally considered to
be threatened in fragmented habitats or environments undergoing change since
they tend to be more ecologically specialized and prone to stochastic extinction
events due to their low abundance. Thus what Chapter II suggests, but does not
directly address, is that numerous low abundance (spatially restricted) taxa in

rainforest soils could be vulnerable to the effects of environmental change. In the
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following chapter I explore the concept of microbial responses to environmental
change in a similar environment to Chapter II. The area where I conducted my study
is in a state of rapid conversion to agriculture and thus contains a mosaic of sites
representative of the land conversion process. I selected sites in this area that were
in close proximity to one another and that were representative of each of the
primary stages in the conversion of forest to agriculture (i.e. a forest site, a recently
burned site, a plantation site, and an abandoned plantation site). In this study I look
for indications of biotic homogenization in the soil microbial communities and I
distinguish the physiologically active taxa from the dormant taxa to test the
hypothesis that the active fraction of the community is more susceptible to the

impacts of environmental change.
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CHAPTERIII
RESPONSE OF SOIL BACTERIAL COMMUNITIES TO CONVERSION

OF CONGO BASIN RAINFOREST TO AGRICULTURE

This chapter is co-authored by myself and Brendan Bohannan. I primarily
performed the sample processing, data analysis, and writing. Brendan Bohannan
filled the advisory role on this project and as such aided in the conception of the
design and the sample collection in the field, as well as contributed edits to the text.

Supplementary material for this chapter can be found in Appendix B.

INTRODUCTION

Land use change is occurring disproportionately faster in the tropics relative
to the rest of the world (Houghton, 1994; Dirzo & Raven, 2003). The primary
motivation for this change is agricultural development (Foley et al., 2005; Laurance
et al,, 2014). The tropical ecosystems under threat tend to be exceptionally diverse
and play critical roles in global biogeochemical cycles. Ecosystem conversion for
agriculture has been shown to have a pronounced impact on both above- and below-
ground biotic communities (Hooper et al., 2012; Rodrigues et al., 2013; Mueller et
al., 2014) and understanding the response of communities to such environmental
changes is a global priority (Cardinale et al., 2012). Understanding the response of
microbial communities to ecosystem conversion is especially challenging. Microbial
communities are diverse, abundant and, because most microbial taxa cannot be

easily distinguished morphologically or through laboratory culture, they must be
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studied indirectly through methods such as metabarcoding (i.e. surveying taxa by
surveying gene regions amplified from environmental samples; Pace, 1997). Such
methods often do not distinguish between actively growing and dormant or dead
individuals, which is problematic because soil microbial communities are
characterized by high levels of dormancy (Lennon & Jones, 2011; Blagodatskaya &
Kuzyakov, 2013). To date, there has been little effort to compare microbial
responses to land use change across the tropics, and even less effort to investigate
the response of the active fraction of the community to environmental change.

Of the numerous studies documenting microbial responses to tropical land
use change, few have focused on Africa (Laurance et al.,, 2014). Most studies have
focused instead on the neotropics-especially the Amazon Basin. While these regions
both contain large tracts of tropical rainforest and share a relatively similar climate,
they differ in numerous ways such as the predominant forms of agriculture
(Laurance et al.,, 2014), land management practices (Naughton-Treves & Weber,
2001), and geologic history (Livingstone, 2001) including parent material of the soil.
Each of these factors has been shown to alter soil microbial community composition
(Drenovsky et al., 2004; Berg & Smalla, 2009; Lauber et al., 2013; Ofek et al., 2014).
Thus, in order to gain a broader understanding of biotic responses to tropical
environmental change, it is imperative that our studies be expanded to other
regions of the tropics such as Africa.

Tropical deforestation has been linked to a number of pronounced changes
to soil microbial communities and microbially-mediated ecosystem functions. In the

Amazon, this includes a loss of endemic taxa and a decrease in community spatial

35



turnover (Rodrigues et al.,, 2013; Hamaoui et al., 2016; Navarrete et al., 2015b), as
well as various alterations to ecosystem functions including those in the nitrogen
and methane cycles (Neill et al., 1997b, 2005; Fernandes et al., 2002). We are aware
of only two studies to focus on microbial responses to African land use change
(Bossio et al.,, 2005; Sul et al,, 2013), and both reported alterations to microbial
community composition following land use change and/or implementation of
different agricultural management practices. Each of these studies utilized DNA-
barcoding to survey microbial communities, and it is well established that DNA-
based surveys do not distinguish active cells from inactive (dormant or dead) cells.
Thus it is unclear from these studies whether the changes they report are occurring
uniformly across all taxa present, or whether the active fraction of the community is
disproportionately impacted. Making this distinction could be important for
understanding how environmental change impacts microbially-mediated functions,
since the active fraction of the community is more intimately interacting with the
environment and contributing directly to ecosystem function.

We asked whether the responses of soil microbial communities to land use
change in the Central African nation of Gabon were similar to those reported for
other tropical regions. We used the distance-decay of community similarity to
approximate spatial turnover (Nekola & White, 1999) and estimated alterations to
the spatial ecology of soil microbial communities following land use change. We
surveyed the community via RNA in order to distinguish the active fraction of taxa
from the inactive fraction. We also surveyed communities via DNA in order to

directly compare our findings to past studies. Gabonese forests are included in the
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Guineo-Congolian regional center of endemism, making these ecosystems relatively
representative of the Congo Basin at large (White, 2001). We chose sites that are
broadly representative of the slash-and-burn cycle in Central Africa (Laurance et al.,
2006), including a forested plot, a plot that had very recently been deforested and
burned, an established manioc/banana plantation plot, and a limited number of
samples from an abandoned plantation. We tested the following hypotheses: 1),
converted sites will have numerous indications of biotic homogenization in the soil
microbial community 2) the recently burned site will have a more pronounced
change in microbial community diversity patterns than the plantation site, and 3)
the community surveyed via RNA (i.e. the more physiologically active fraction of the
community) will exhibit a stronger response to land use change than the community

surveyed via DNA (the “total” community).

MATERIALS & METHODS
Sampling site

Central Africa contains up to 1.8 million km? of contiguous tropical moist
forest, making it the second largest block of tropical moist forest in the world, after
the Amazon Basin (Wilkie & Laporte, 2001). Central African rainforest is renowned
for its exceptionally high levels of biodiversity and endemism (White, 2001; Lee et
al., 2006; Butler & Laurance, 2008) and is rapidly being deforested and transformed
(Naughton-Treves & Weber, 2001). The nation of Gabon contains more than 10% of
the contiguous tropical moist forest in Africa (Wilkie & Laporte, 2001; Lee et al,,

2006), and the majority of these forested areas are either currently leased as long-
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term logging concessions or are at risk from agricultural conversion (Collomb et al.,
2000; Laurance et al., 2006; Lee et al., 2006).

Our study was performed in southwestern Gabon near the Gamba Complex
of Protected Areas (Lee et al,, 2006). Agricultural conversion in this region follows
the typical slash-and-burn practices of most tropical regions whereby forests are
selectively logged and the remaining vegetation is burned. The following season, the
plantation crops (typically manioc, yucca, or banana) are planted and harvested for
1-3 years. Following the last harvest, plantations are abandoned and secondary
forest develops. We selected sites representative of this cycle including a recently
burned site, an active manioc and banana plantation, an abandoned plantation, and
an adjacent intact forest. Including a burned plot allowed us to better discern the
impact of ecosystem conversion (i.e. logging and burning) from the impact of
agriculture (planting and managing cropland). We chose to survey one site across
each of four land types, rather than performing higher levels of replication on fewer
land types. The sites we selected were in close proximity (all within <6 km of each
other) to one another, allowing us to minimize the confounding effects of distance
on community comparisons. The soil type (entisol) was consistent across our sites
and tended to be sandy in texture - which is typical of Southwestern Gabon (Delegue
et al.,, 2001). Sites are found at the following coordinates: burned site (2° 44' 48" S,
10° 8' 54" E), plantation (2° 44' 58" S, 10° 8' 51" E), abandoned plantation (2° 45’
39" S,10°8' 49" E), and adjacent forest (2° 44' 46" S, 10° 8' 52" E).

Sampling Design
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Soil samples were taken at the end of the Gabonese dry season (September
24-27,2013). We established plots within each of the aforementioned sites. Each
plot consisted of a nested sampling scheme (Rodrigues et al., 2013) where a 100-m?2
quadrat was established with 10-m?2, 1-m?2, 0.1-m?, and 0.01-m? quadrats nested
within. Soil cores were taken to a depth of 15 cm (after removal of leaf litter) from
the corners of each quadrat (N=13 samples per site, N=4 samples in abandoned
plantation). For each point, 3 cores were taken, homogenized, and then subsampled.
From the homogenized mixture, 3 ml (approximately 1 g) of soil was added to 9 ml
Lifeguard solution (Mobio, California, USA) in the field, then shipped cold and stored
at -80° C in order to stabilize nucleotides for later extraction. Our spatially explicit
design allows for the estimation of species richness (local and regional) as well as

spatial turnover (beta diversity)(Anderson et al., 2011).

Extraction, PCR, and Sequencing

Soil DNA and RNA were co-extracted using MoBio’s Powersoil RNA Isolation
kit with the DNA Elution Accessory Kit (MoBio, California, USA) following
manufacturer’s instructions. Extractions were quantified using Qubit (Life
Technologies, USA). RNA was reverse transcribed to cDNA using Superscript I11
first-strand reverse transcriptase and random hexamer primers (Life Technologies,
USA).

The V3 and V4 region of the 16S rRNA gene of the DNA and cDNA were PCR
amplified using the primers 319F and 806R (primarily targeting Bacteria and

limited coverage of Archaea). Sequencing libraries were prepped using a 2-step PCR
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with dual-indexing approach (Kozich et al., 2013; Fadrosh et al., 2014). In short, the
first round of amplification consisted of 22 cycles with Phusion HiFi polymerase.
Round 1 products were cleaned using Agencourt AMPure XP (Beckman Coulter,
California, USA) then amplified for an additional 6 cycles using Phusion HiFi to add
the sequences required for cluster formation on the Illumina flowcell. The final
library was sent to the Dana-Farber Cancer Institute Molecular Biology Core

Facilities for 300 PE sequencing on the Illumina MiSeq platform.

Soil Chemical Analysis

Soil chemical parameters were measured from each soil core to estimate the
impact on microbial community composition by A & L. Western Agricultural Lab
(Modesto, CA, USA). In total, percent organic matter (loss on ignition (Dean, 1974)),
extractable phosphorus (Weak Bray (Kamprath & Watson, 1980) & sodium
bicarbonate (Olsen, 1954)), extractable cations (K, Mg, Ca, Na), sulfate-S (Fox et al.,
1964), pH, buffer pH, cation exchange capacity (CEC, (Chapman, 1965)), and percent
cation saturation were measured. Pearson’s correlation tests were performed on all
pairs of chemical parameters to test for autocorrelation and reduce the number of
chemical variables used in our models. Pairs of variables that were highly correlated

(R2> 0.6, P<0.05) were reduced to a single variable.

Data processing and statistical analysis
Paired end reads were joined then demultiplexed in QIIME (Caporaso et al.,

2010) before quality filtering. Primers were removed using a custom script.
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UPARSE was used to quality filter and truncate sequences (416bp, EE 0.5) (Edgar,
2013). Sequences were retained only if they had an identical duplicate in the
database. Operational taxonomic units (OTUs) were clustered de novo at 97%
similarity using USEARCH (Edgar, 2010). OTUs were checked for chimeras using
the gold database in USEARCH. We used a custom script to format the UCLUST
output for input into QIIME. To assign taxonomy, we used repset from UPARSE in
QIIME using greengenes version 13_5 (RDP classifier algorithm). Finally, we rarefied
to 3790 in QIIME to achieve approximately equal sampling depth, which excluded 4
samples.

Statistical analyses were performed in the R platform (R Development Core
Team, 2010). Canberra pairwise community distances were calculated using the
vegdist function in the package ‘vegan’ (Oksanen et al., 2015). Canberra was chosen
because of its incorporation of abundance data and sensitivity to rare community
members (Jost et al.,, 2011). Ordinations were created using non-metric
multidimensional scaling (NMDS) using the function metaMDS in the ‘vegan’
package. Vectors of environmental variables were projected in the ordinations using
the envfit function in the ‘vegan’ package (Oksanen et al., 2015) using only
significantly-associated (P < 0.05) variables. OTU richness was used for the
estimation of alpha diversity; however results were qualitatively similar using the
Shannon or Simpson indices. The Chaol estimator was used to approximate gamma
(i.e. landscape-level) taxonomic richness- error bars indicate standard error
measurements (Chao et al,, 2009). Turnover rates of each land type were estimated

by regressing pairwise similarity (1- Canberra distance) against pairwise
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geographic distance between samples (Nekola & White, 1999). We excluded the
abandoned plantation from this analysis because of the low number of samples.
Mantel tests were used to test for significant associations between geographic and
community distance and partial Mantel tests were used to estimate the relative
contribution of environmental heterogeneity and geographic distance on variation
in community dissimilarity in the ‘vegan’ package in R. Distance-decay slopes were
compared using the function diffslope (package ‘simba’), which calculates the
difference in slope and employs a random permutation approach to calculate a P-
value (Jurasinski & Retzer, 2012). The P-values computed are the ratio between the
number of cases where the differences in slope exceed the difference in slope of the
initial configuration and the number of permutations. Figures were either created
using base R or the ‘ggplot2’ package (Wickham, 2009).

In order to identify differentially active taxa, we used the DESeq2 function
(Love et al., 2014) as implemented in QIIME (Caporaso et al.,, 2010). Low abundance
samples were excluded prior to performing the analysis and the abandoned
plantation was excluded because of its limited number of samples. Our application
of this function tests for enrichment of taxa in the RNA-inferred community relative
to the DNA-inferred community in each land type using an estimate of dispersion
and log-fold change from a negative binomial generalized linear model. Taxa that
were deemed differentially active (i.e. those with a positive log-fold change in the
RNA and Pqqj < 0.05) were then subsetted from the rarefied DNA-inferred
community matrix in order to compare patterns in their abundance, diversity, and

spatial patterning across land types. To approximate the contribution of soil
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chemical variables in structuring the differences in composition of the differentially
active taxa, community matrices were first Hellinger transformed, then tested
against all soil chemical variables using a redundancy analysis (RDA) using the
functions decostand and rda, respectively, in the ‘vegan’ package. The most
explanatory model was selected using stepwise model selection based on

permutation tests using the function ordistep in the ‘vegan’ package.

RESULTS
The DNA-inferred community is altered by land use

Soil microbial community composition differed among land types (F339 =
2.13,R2=10.15, P <0.001). The four land types (forest, burned, plantation, and
abandoned plantation) clustered separately in NMDS space (Fig. 1a); the burned and
plantation sites, however, showed more overlap relative to the other sites,
indicating higher taxonomic similarity. Various soil chemical attributes were
significantly associated with differences in community structure. For example,
forest communities tended to be associated with levels of soil organic matter (OM),
which were higher in forest soils than the converted sites (Supplementary Table 1).
The burned communities tended to be associated with nitrate-nitrogen (NO3-N) and
sulfur (S)- both of which tended to be highest in the burned site. The plantation
communities tended to be associated with phosphorus (P) and potassium (K), both
of which were highest in the plantation site. Finally, the abandoned plantation
communities tended be associated with elevated magnesium (Mg) levels. The forest-

to-burned transition showed a decrease in the relative abundance of the phyla
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Acidobacteria, Proteobacteria, Firmicutes, and AD3, as well as an increase in
Actinobacteria (Supp. Figure 1a). The burned-to-planted conversion was associated
with a decrease in Actinobacteria, back to within the range of relative abundance of
the forest samples, as well as an increase in Acidobacteria back to the forest levels.
The forest site had a higher number of endemic taxa (400) relative to the burned
site (~175) and the plantation site (~300, Supp. Fig. 2a). The taxa that were unique
to the forest tended to be much more restricted in range relative to the taxa that
were shared between the forest and burned sites or between the forest and
plantation sites (Supp. Fig. 2b).

Alpha diversity (OTU richness within samples) varied by land type (One-way
ANOVA F339=4.9, P < 0.01, Fig. 1b) with the most pronounced change being a loss of
richness in the burned site relative to the other sites (Tukey’s HSD Pqq4; <0.05).
Levels of alpha diversity were statistically indistinguishable between the forest,
plantation, and abandoned plantation sites. The same trend was found for gamma
(i.e. landscape-level) diversity (Fig. 1c), where the forest site showed higher
estimated OTU richness (1891 + 61 OTUs) than the burned site (1621 + 63 OTUs),
and the plantation site showed levels of diversity similar to the forest (1845 + 68
OTUs).

Levels of pairwise similarity among forest microbial communities exhibited
the strongest relationship with spatial distance of all sites (Mantel r = 0.78, P <
0.01), as well as the steepest distance-decay slope (slope =-0.02 + 0.002, P < 0.001,
Fig. 1d). Levels of community similarity in the burned site had a weaker relationship

with spatial distance (Mantel r = 0.41, P = 0.05) as well as a significantly weaker
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distance-decay slope relative to the forest (slope =-0.004 + 0.001, difference in

slope = 0.016, P = 0.001). The relationship between community similarity and

distance was also weaker in the plantation (Mantel r = 0.39, P = 0.05) relative to

forest and showed a weaker distance-decay slope compared to the forest site (slope

=-0.007 + 0.001, difference in slope = 0.013, P = 0.001). The distance-decay slope of

plantation communities was slightly steeper than that of the burned site (difference

in slope = 0.003, P = 0.05).
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Figure 1: Land use change impacts soil microbial community diversity in the

Central African nation of Gabon. A) Microbial community composition clusters by

land use, non-metric multidimensional scaling (NMDS) of Canberra dissimilarities
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showing significant (P < 0.05) environmental vectors. OM: organic matter, Mg:
magnesium percent saturation, NOs-N: nitrate nitrogen, S: sulphate-sulfur, P: weak
bray phosphorus, and K: potassium percent saturation. B) OTU richness across
conversion sites, significant differences assessed using Tukeys HSD of one-way
ANOVA. C) Gamma (landscape-level) diversity from Chao1l estimator with standard
error bars. D) The rate of distance-decay of community similarity (1- Canberra
dissimilarity) significantly differs (P < 0.05) by land use. Analyses for the abandoned
plantation were excluded from panels C and D due to lack of statistical power from

low sample numbers.

The response of the RNA-inferred community to land use is stronger than that of the
DNA-inferred community

We distinguished active microbial taxa from the total pool of microorganisms
using two techniques: 1) by inferring community structure via RNA-barcoding of
16S rRNA, and 2) by identifying the members that are differentially abundant in the
RNA-inferred community relative to the DNA-inferred community. The former
assumes that by surveying the community via RNA-barcoding, we are enriching for
the taxa that are actively growing and transcribing the rRNA gene (heretofore
referred to as the active community), while the latter distinguishes the taxa that are
differentially active (heretofore referred to as the differentially active taxa) given
their abundance in the RNA pool relative to the DNA pool.

The changes to the active (RNA-inferred) community across our sites were

qualitatively similar to the changes observed in the DNA-inferred community-
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although the effect size of changes tended to be stronger in the active community.
Taxonomic membership of the active community varied significantly across the four
sites (F338 = 2.25, R2 = 0.15, P < 0.001). There was also slight variation in community
structure between the active community and the DNA-inferred community (F1,3s
=1.01, R2=0.05, P < 0.001). The four sites clustered distinctly in NMDS space (Supp.
Fig. 3a). The forest-to-burn conversion was associated with a decrease in the
relative abundance of the phyla Actinobacteria, Acidobacteria, and Firmicutes as well
as an increase in Proteobacteria, while the burned-to-plantation transition resulting
in the reverse of all four of these phylum-level changes (Supp. Fig. 1). The
compositional shifts in the active community across sites were predicted by the
same soil chemical factors as the DNA-inferred community, but with two additional
significant predictors: cation exchange capacity (CEC; associated with the burned
site communities), and soil pH (associated with the plantation site communities).
The alpha diversity (OTU richness) of the active community varied significantly by
site (F338 =9.1, P < 0.001), and was significantly lower in the burned site relative to
the other sites (Tukey’s HSD on one-way ANOVA P < 0.001), which were
indistinguishable from one another (Supp. Fig. 3b). The gamma diversity followed a
similar qualitative trend to the DNA-inferred community (i.e. a loss of diversity in
the burned site and some recovery in the plantation, Supp. Fig. 3¢), but with several
exceptions: 1) the diversity estimate for the forest site was higher in the active
community than in the DNA-inferred community (2057 + 76 OTUs versus 1891 + 61
0TUs), 2) the magnitude of change between the forest and burned sites was larger

in the active community relative to the DNA-inferred community (a loss of ~654
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active OTUs versus a loss of ~270 0TUs), and 3) the estimated richness of the
plantation site was below the range of forest richness (1739 + 56 OTUs) and hence
did not fully “recover” to the level of richness in the forest as it did in the DNA-
inferred community.

The forest active community showed a significant distance-decay trend in
community similarity over space (Mantel r = 0.84, P = 0.001, slope =-0.021 + 0.001,
Supp. Fig. 3d). Similar to the DNA-inferred community, this distance-decay pattern
was notably weaker in the burned site (slope =-0.003 + 0.001), so much so that the
relationship was no longer significant (Mantel r = 0.27, P = 0.11). The magnitude of
the change in distance-decay slope between the forest and burned sites was slightly
larger in the active community than the DNA-inferred community (Difference in
slope = 0.0174 versus 0.0163). Community similarity showed a marginally
significant distance-decay relationship in the plantation (Mantel r = 0.40, P = 0.056,
slope =-0.008 + 0.001), and this slope was significantly steeper than the burned site
(difference in slope = 0.004, P =0.012) and significantly weaker than the forest site
(difference in slope = 0.013, P = 0.001). The average distance to centroid - a
measure of beta diversity- tended to decrease across the chronosequence (F33s =
3.14, P = 0.036, Supp. Fig. 4). This trend was qualitatively-similar in the DNA-
inferred community, but not significant (F336 = 2.63, P = 0.065).

When we removed the effect of geographic distance, partial mantel tests
showed that DNA-inferred communities in the forest were more similar under
similar environmental conditions (Mantel r = 0.52, P = 0.055, Table 1), and when we

removed the effect of environmental similarity, the effects of geographic distance on
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community similarity were no longer significant (r = 0.52, P = 0.302). The opposite
was the case for the active community, showing a significant relationship with
distance after removing the effect of environmental similarity (r = 0.65, P = 0.007),
but not vice versa (r = 0.31, P = 0.143). The active communities in the burned site
tended to be more similar under similar environmental conditions once we
removed the effect of geographic distance (Mantel r = 0.52, P = 0.004), and active
community similarity was no longer correlated with geographic distance after
removing the effect of environmental similarity (r = 0.16, P = 0.198). Neither
relationship was significant for the DNA-inferred community in the burned site.
Lastly, community similarity was related to environmental similarity (after
removing the effect of geographic distance) in the plantation for both the active and
the DNA-inferred community; however the relationship was stronger for the active
community (rpna = 0.41, P = 0.025, rrna = 0.63, P = 0.001). After removing the effect
of environmental similarity in the plantation, the distance-decay relationship was

no longer significant for the DNA-inferred community or the active community.
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Table 1: The influence of geographic distance and habitat heterogeneity on DNA-
inferred and RNA-inferred bacterial communities. Partial mantel test summary
statistics showing 1) the effect of environmental similarity after removing the effect
of geographic distance and 2) the effect of geographic distance after removing the

effect of environmental similarity. P values estimated from 1000 permutations.

Env. Simil. Geog. Dist.

r p r p
Forest DNA 0.52 0.055 0.12 0.302
Forest RNA 0.31 0.143 0.65 0.007
Burned DNA 0.24 0.146 0.34 0.07
Burned RNA 0.52 0.004 0.16 0.198
Plantation DNA 0.41 0.025 0.21 0.192
Plantation RNA 0.63 0.001 0.11 0.252

The differentially active taxa increase in abundance and richness in impacted sites

We distinguished the differentially active taxa by testing for enrichment of
OTUs in the RNA-inferred community relative to the DNA-inferred community in
each land type. Taxa that were deemed differentially active (i.e. those with a positive
log-fold change in the RNA and Paqj < 0.05) were then subsetted from the rarefied
DNA-inferred community matrix. The proportion of differentially active taxa in the
DNA-inferred community differed by site (F233 = 24.4, P < 0.001), with the forest
and burned sites showing significantly lower proportions of differentially active
taxa relative to the plantation (Tukey’s HSD P < 0.001, Fig. 2a). Of these taxa, 22

(11%) were shared between all sites, 18 (9%) were unique to the forest, 12 (6%)
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were unique to the burned site, and 46 (23%) were unique to the plantation site
(Fig. 2a). The average within-sample alpha diversity of the differentially active
community was significantly less diverse in the forest than the burned and
plantation sites (Fz33 = 46.7, P < 0.001, Tukey’s HSD P < 0.001 for each site
comparison, Fig. 2b). The variability in the community composition of differentially
active taxa in the forest was best explained by soil cation exchange capacity (CEC,
F111= 2.2, P=0.005), while the compositional variation of the differentially active
taxa in the plantation was best explained by soil CEC and pH (F1,11 = 2.2, P = 0.05,
F111 = 2.4, P=0.005, respectively). Compositional shifts in the differentially active
burned site community were not related to any soil chemical factors. The forest-to-
burned transition consisted of an increase in the relative abundance of the phyla
Actinobacteria and Acidobacteria as well as a decrease in Planctomycetes (Supp. Fig.
5). The burned-to-planted transition consisted of a decrease in the relative
abundance of the phyla Actinobacteria (back to within the range of the forest) and
an increase in Planctomycetes.

The differentially active community in the forest exhibited significant spatial
turnover (Mantel r = 0.72, P = 0.002, slope =-0.028, Fig. 2c): The rates of spatial
turnover of the differentially active community in the burned and plantation sites
were substantially weaker (slope =-0.003 & -0.008, respectively), and neither of
these relationships were significant (Mantel rourned = 0.12, P = 0.26, Mantel rpiant. =

0.12, P=0.27).
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Figure 2: The abundance, composition, and diversity of the differentially active taxa

vary by land use. A) The proportion of differentially active taxa in the DNA-inferred

is highest in the plantation B) Plantations have the highest number of unique

differentially active taxa, C) the within-sample OTU richness of the differentially

active taxa is highest in disturbed (burned and plantation) sites, and D) the

distance-decay of community similarity of the differentially active community is

strongest in the forest, dashed lines indicate a non-significant trend (P > 0.05).
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DISCUSSION

Land use change is occurring at a disproportionately faster rate in the tropics
than in other parts of the world (Houghton, 1994; Dirzo & Raven, 2003; Laurance et
al,, 2014). Understanding biotic responses to land use change in these highly diverse
regions is a priority if we are to predict and/or mitigate changes to these
communities. While numerous studies have estimated microbial responses to land
use change in the neotropics (particularly in the Amazon Basin) few have focused on
changes happening in the African tropics. My results indicate that bacterial
communities in Central African rainforest soils respond strongly to ecosystem
conversion. We documented biotic homogenization in response to conversion, as
well as other changes to bacterial community attributes. Furthermore, we observed
that the active fraction of the community (those taxa detected using RNA
metabarcoding) tended to respond more strongly to ecosystem conversion.
Moreover, if we distinguish the differentially active taxa- the taxa that are likely to
be highly active- we see an additional story emerging; namely that the highly active
taxa tend to increase in proportion and richness in impacted sites, but decrease in
spatial diversity.

Biotic homogenization can take many forms including changes to diversity,
life history strategies, and the spatial patterning of taxa, as well as a loss of endemics
(Olden & Poff, 2003; Olden et al., 2004; Smart et al., 2006). These trends have been
reported for soils in the Amazon Basin undergoing agricultural transformation. Here
we report that these responses also appear to be elicited under African land use

change. While it is not necessarily surprising that converting a rainforest to
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agriculture adversely impacts the native biota, testing whether microbial responses
follow a similar trend across other regions of the tropics is an important step in
predicting the effects of environmental change. Rodrigues et al. (2013) reported a
weakening of microbial spatial patterning (namely a decrease in the distance-decay
rate) in Amazonian cattle pasture relative to nearby primary rainforest. Our data
show a similar trend: the distance-decay of community similarity has a significantly
shallower slope in the converted sites (burned and planted) relative to the nearby
rainforest. This trend could be driven by several alterations to the landscape. On the
one hand, deforestation could be facilitating higher rates of microbial dispersal at
the landscape level, decreasing the rate at which communities differentiate over
space. On the other hand, the conversion process could be homogenizing the soil
environment, which in turn could be homogenizing the microbial communities. My
data provides evidence for the latter explanation: environmental distance-decay
rates followed the same trends as the communities (i.e. the forest soil exhibited the
highest rate of distance-decay and the burned and plantation soils were significantly
lower). Our partial mantel tests also suggested that variation in communities in the
burned and plantation site was largely driven by environmental variation.

Our design allowed me to distinguish the impact of ecosystem conversion
(slash-and-burn) from plantation management, giving us a number of new insights
from this comparison. In nearly all cases, the burned site appeared to be more
impacted than the plantation site. For example, the distance-decay slope was much
shallower in the burned site than in the plantation site. Species richness both within

samples and at the landscape-level was also lowest in the burned site. This
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observation suggests that the act of slash-and-burn conversion may be stronger
than the impact of planting and growing crops. Rodrigues et al. (2013) showed an
increase in microbial species richness in cattle pasture relative to the rainforest.
Forest and plantation microbial richness were indistinguishable in our study. This
difference could be specific to the form of agriculture. Amazonian cattle pasture are
planted with African grasses such as Urochloa (Boddey et al., 2004), which provide
the soil environment with high levels of labile carbon in the form of root exudates
(Dias-Filho et al., 2001). Gabonese plantation crops tend to be less dense, with large
patches of exposed soil in between individual plants, which could reduce the
belowground carbon input from agriculture (and indeed we did not observe an
increase in soil carbon in the plantations, unlike the Amazonian pastures). Hence the
increase in richness under cattle pasture could be driven by higher plant density
and/or increased belowground productivity. My study suggests that ecosystem
conversion (as opposed to planting) has a greater impact on the soil bacterial
community, and that the impacts of planting and agricultural management on the
soil bacterial community may be crop-specific.

There have been a number of reports of changes in soil bacterial community
composition in response to land use change (Bossio et al., 2005; Jesus et al., 2009;
Rodrigues et al., 2013; Alele et al.,, 2014; Navarrete et al., 2015b, 2015c). One notable
change reported from cattle pasture conversion sites in the Amazon is a shift in the
dominance of oligotrophic taxa such as Acidobacteria to copiotrophic taxa such as
Firmicutes and Actinobacteria (Rodrigues et al., 2013; Navarrete et al., 2015b,

2015c). Our RNA and DNA-inferred communities both show a decrease in
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Acidobacteria from the forest to the burned site, followed by a recovery in the
plantation. The recovery in the Gabonese plantation system (where levels of organic
matter decrease) and not in the Brazilian pasture system (where carbon increases)
suggests that carbon may be playing a role in these shifts. Navarrete et al. (2015b)
show that in a DNA-inferred community, Actinobacteria increase in relative
abundance in converted cattle pasture in the Amazon. Interestingly we see the same
pattern in our DNA-inferred community, but see the opposite trend in the RNA-
inferred community. Actinobacteria are known spore-formers and could therefore
be tolerating the ecosystem conversion in a dormant state but not necessarily be
increasing in activity. Thus it appears that some of the compositional shifts
following conversion may be generalizable across tropical regions and that this may
be driven by a common response to changes in soil organic matter.

Distinguishing active taxa from the total pool of community members is an
important step toward linking community structure and ecosystem function
(Nannipieri et al., 2003), especially in environments that contain high proportions of
inactive taxa (Lennon & Jones, 2011). Since active members are more likely to
interact with their environment, our expectation was that environmental change
would elicit a stronger response in the active (RNA-inferred) community than in the
DNA-inferred community (which includes inactive taxa). We thus hypothesized that
the active community would exhibit larger changes to diversity and show trends
that were undetectable in the total pool. Nearly all changes to diversity showed
similar qualitative trends between the active (RNA-inferred) community and the

DNA-inferred community. This included a separation of community structure by
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land type, a loss of alpha diversity in the burned site, a loss of gamma (landscape)
diversity in the burned site, as well as a weakening of the community distance-decay
rate in the burned and plantation sites. The soil chemical factors structuring the
active community were also largely similar to those structuring the DNA-inferred
community, which has been shown to be the case in northern hardwood forest soils
as well (Romanowicz et al.,, 2016). From a quantitative perspective, the magnitude
of change tended to be larger in the active community than the DNA-inferred
community. For example, the change of alpha diversity across land types exhibited a
higher effect size in the active than the DNA-inferred community (F33s = 9.1 in RNA
versus F339 = 4.9 in DNA). The difference in community distance-decay slope across
sites was also slightly larger in the active community than the DNA-inferred
community (Difference in slope = 0.0174 in RNA versus 0.0163 in DNA in the burned
site). Moreover, gamma diversity had a higher proportional change across land
types in the active community than the DNA-inferred community. The active
community tended to show a decrease in beta diversity (average distance to
centroid); while this was qualitatively similar in the DNA-inferred community, it
was only statistically significant in the active community. Previous work has shown
that the active community was more responsive to soil drying and rewetting than
the DNA-inferred community (Barnard et al., 2013). Work on aquatic microbial
communities in the South China Sea has also shown that variation in the active
community is more predictable by environmental variables, suggesting that the
active community is slightly more sensitive to the environment relative to the DNA-

inferred community (Zhang et al., 2014). Thus while changes to the active
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community in our system may be qualitatively similar to changes in the DNA-
inferred community, the changes tend to be more pronounced in the active
community, and this is consistent with reports from other systems.

It has been suggested that rRNA may not be a reliable indicator of microbial
activity because cellular concentrations of rRNA do not scale with growth rate
uniformly across lineages, and that certain taxa may be producing rRNA even in
relative states of metabolic inactivity (Blazewicz et al., 2013). Although we were
conservative in our inferences about how changes to the RNA-inferred community
might translate to activity alterations, we took our analysis one step further by using
a probabilistic model to distinguish the differentially active taxa. This approach
allowed us to identify taxa that were overly enriched in the RNA given their
abundance in the DNA. Using this approach we were able to detect new trends and
develop future hypotheses regarding how environmental change impacts microbial
communities. The proportion of differentially active taxa tended to vary by land
type, with the highest proportions found in the plantation site. The plantation site
also tended to have more unique differentially active taxa than all other sites. Levels
of richness in the differentially active taxa were also higher in impacted sites
(burned and plantation) relative to the forest. A number of studies have suggested
that tropical rainforest soils tend to be an oligotrophic environment favoring life
history strategies of slow growth, stress tolerance, and high substrate affinity, and
that agricultural soils tend to favor strategies related to faster growth and low
substrate affinity (Rodrigues et al., 2013; Navarrete et al., 2015a; Mueller et al.,

2016). Thus, if agricultural soils are overall a less stressful environment that is more
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amenable to fast growing taxa, then our finding that these sites harbor a higher
proportion and richness of differentially active taxa may not be surprising. We see
support for this trend in the increase in relative abundance of members of the
Actinobacteria (a phylum reported to contain copiotrophic taxa, Naverette et al.
2015b) in the differentially active community in the burned and plantation sites
relative to the forest. Our data also suggest that the spatial turnover of the
differentially active taxa may follow a similar trend under land use change as seen
for the community as a whole. Thus while the differentially active taxa may increase
in proportion and richness in converted sites, these taxa may also be susceptible to
spatial homogenization.

Tropical ecosystems are home to tremendously high levels of biological
diversity and are intimately involved in global biogeochemical cycling. It is therefore
imperative that our understanding of the impact of environmental change in these
regions continues to expand. Our study illustrates that biotic homogenization
following land use change can follow similar trends in the African tropics as it does
in the neotropics, even if the land management practices and crops differ. While this
finding is of concern, the fact that microbial responses may follow predictable
trends presents an opportunity for those interested in mitigating the impacts of
environmental change on the soil community. Our results also show that the active
fraction of the community follows similar - but more pronounced - trends as the
DNA-inferred community, indicating that predicting alterations to this fraction of
the community may not require an alternate conceptual framework. Finally, by

distinguishing the taxa that are likely to be especially active, we have revealed that
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these taxa are proportionately more abundant and species rich in impacted sites
than in the forest, indicating a potential shift in microbial life history strategies. Our
work contributes towards a broader understanding of the numerous ways in which
land use change can impact microbial communities and may help guide future land

management strategies towards minimizing impacts.

BRIDGE

In Chapter III I showed that Central African rainforest soil communities are
susceptible to biotic homogenization and that these communities follow trends that
are largely similar to other tropical soil communities undergoing conversion to
agriculture. The fact that microbial communities in the soil contain such high
proportions of dormant taxa can make the task of linking variation in microbial
community attributes to variation in the functions they mediate exceptionally
challenging. I distinguished the active fraction of the community from the total pool
of community members -which includes dormant and some dead taxa. My results
revealed that the active fraction exhibits a more pronounced response to
environmental change, which could be an indication of a disruption to community
functions. In the next chapter, I explore the concept of community structure-
function relationships in a region of the Amazon undergoing conversion to cattle
pasture. Soils in this region have been shown to shift from a methane sink
(exhibiting net methane consumption) to a methane source (exhibiting net methane
emission) following conversion to cattle pasture. Methane flux is primarily governed

by two microbial processes: methanogenesis (methane production) and
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methanotrophy (methane consumption). It has remained unclear whether the shift
in methane flux observed in the Amazon Basin is driven by physico-chemical
alterations to the soil (e.g. changes in compaction or O levels) or changes to the
community of microorganisms that govern these processes. Since microbial taxa are
capable of horizontally exchanging genes, the task of linking variation in microbial
community processes to variation in individual organisms can be difficult. For this
reason, some have proposed that measuring the gene content of a community (i.e.
the presence and abundance of genes encoding the cellular machinery that perform
a given function) may be a more direct link to community processes. I measured the
microbial gene content in Amazonian forest soils and cattle pasture soils with the
specific goal of investigating changes to the collection of microorganisms that
mediate methane flux. Taking this approach provides me with a unique view of a
microbial community undergoing dramatic changes from agricultural conversion
and it allows me to develop a conceptual model for how these community changes

could translate into changes in ecosystem function.
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CHAPTERIV

Conversion of Amazon rainforest to agriculture alters

community traits of methane-cycling organisms

This chapter is co-authored by myself, Ann Klein, Babur Mirza, Susanne Tringe,
James Tiedje, Jorge Rodrigues, Klaus Niisslein, and Brendan Bohannan. I primarily
performed the data analysis, and writing along with help from Ann Klein. Brendan
Bohannan filled the advisory role on this project and as such aided in the conception
of the design and the sample collection in the field, as well as contributed edits to

the text. Supplementary material for this chapter can be found in Appendix C.

INTRODUCTION

Land use change poses one of the largest threats to global biodiversity (Foley
et al., 2005). In tropical regions, this process is occurring disproportionately faster
than in any other region worldwide (Dirzo & Raven, 2003; Laurance et al., 2014). In
the Amazon Basin, the primary motivation for land use change is conversion to
cattle pasture. This process has been shown to alter soil chemistry (de Moraes et al.,
1996; Herpin et al., 2002; Rodrigues et al., 2013), as well as soil microbial
biodiversity and functional traits (Jesus et al., 2009; Rodrigues et al., 2013; Mueller
et al.,, 2014; Paula et al., 2014), which may be responsible for the alteration of a
number of ecosystem processes governed by soil microbes such as methane
emission (Verchot et al., 2000; Fernandes et al., 2002).

Methane is a potent greenhouse gas with a global warming potential that is
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34 times higher than CO; (over a 100-year time frame) (Myhre et al., 2013). It is well
established that forest soils throughout the Amazon Basin generally act as methane
sinks, but when forests in the Amazon Basin are converted to cattle pasture, the
underlying soils can shift from methane sink to source (Steudler et al., 1996;
Verchot et al.,, 2000; Fernandes et al., 2002; Carmo et al., 2012). It is not known what
factors are responsible for this shift. Most of the proposed explanations have
focused on physico-chemical alterations to the soil (e.g. increased water-filled pore
space and decreased O diffusion) driving increased methanogenesis (Steudler et al.,
1996; Fernandes et al., 2002), yet few have investigated how the conversion process
alters the communities and traits of microorganisms responsible for these
processes.

Two counteracting microbial processes control biogenic methane emission:
methanogenesis and methanotrophy. These processes are both governed by a suite
of phylogenetically conserved community traits (Martiny et al., 2013). Methane flux
rates have been associated with the community composition (Seghers et al., 2003;
Maxfield et al., 2008; Bodelier et al., 2013; McCalley et al., 2014), abundance and
activity (Freitag & Prosser, 2009; Freitag et al., 2010) of both methanogens and
methanotrophs. Thus, there is precedent to suggest that shifts in methane-cycling
community traits could alter rates of methane flux. Moreover, each of these
functional groups can be further divided by differences in specific traits. Within the
methanotrophs, methanotrophic Gammaproteobacteria (also referred to as Type |
methanotrophs), Alphaproteobacteria (also referred to as Type Il methanotrophs),

and Verrucomicrobia (also referred to as Type III methanotrophs) differ in their
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physiology, substrate affinity, and life history strategies (Hanson & Hanson, 1996;
Ho et al., 2013; Knief, 2015). Within the methanogens, acetoclastic,
hydrogenotrophic, and methylotrophic taxa display different life history strategies,
utilize different substrates for methanogenesis, and can generate methane at
different rates (Conrad, 1999; Hedderich & Whitman, 2013).

Applying trait-based approaches to microbial ecology can provide an
alternative perspective on community responses to environmental change (Green et
al., 2008). Such approaches can reveal, for example, shifts in functional potential
(i.e. gene content), taxonomy (e.g. diversity or composition), or life history strategies
(Barberan et al., 2012; Krause et al., 2014). Life history strategies generally refer to
an organism’s investments in survival, growth, and reproduction. Documenting
changes in life history strategies has played an important role in understanding how
plant and animal communities respond to environmental changes, but this approach
has rarely been applied to microbial communities (Fierer et al., 2007), mainly due to
the difficulty of cultivating the majority of microbial taxa. Ho et al. (2013) classified
methanotrophic microorganisms into the Competitor-Stress tolerator-Ruderal life
history framework (Grime, 1977) using physiological measurements of cultured
representatives and habitat range data. This framework divides taxa among three
primary strategies: “Competitors” (exhibiting fast growth under high nutrient or
substrate conditions), “Stress Tolerators” (tolerating low or variable substrate
availability), and “Ruderals” (performing optimally in frequently disturbed sites).
Under this system, Alphaproteobacteria methanotrophs are primarily classified as

Stress Tolerators -performing better under conditions of low or variable methane
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or Oz availability, while Gammaproteobacteria methanotrophs are more variable,
spanning from Competitor to Ruderal- implying that they perform better under
conditions of high substrate availability or in frequently disturbed sites. Using a
trait-based framework such as this provides a new way to assess microbial
responses to environmental change, and will help contribute to our understanding
of the relationship between community attributes and ecosystem function.

Here, we apply a trait and life history-based framework to ask how methane-
cycling communities differ between primary rainforest and cattle pasture derived
from primary rainforest in the Western Amazon. We use environmental
metagenomics to provide a more comprehensive assessment of microbial
community traits than can be obtained by culture-dependent methods or culture-
independent methods which rely on sequencing of individual target genes. First, we
investigate changes in the abundances of methane-cycling taxa, their functional
traits, and their life history strategies. Second, we compare the abundance of genes
involved in methane-cycling pathways. Finally, we discuss how changes to these
community traits are consistent with the shift from methane-sink to source

previously reported from this site.

MATERIALS AND METHODS
Site Description and Sampling

Our study was performed at the Amazon Rainforest Microbial Observatory
(ARMO) site (10°10°5” S and 62°49°27” W). This site was selected as representative

of the current agricultural expansion in the Western Amazon. It is located in the
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Brazilian state of Rond6nia, which has experienced the highest percentage of forest
loss of any state in the Brazilian Amazon (Rodrigues et al., 2013). Agricultural
conversion in this region typically follows the following stages: 1) selective logging
of valuable timber, 2) slash-and-burn deforestation of the remaining vegetation, and
3) aerial seeding of members of the non-native fast-growing grass genera Urochloa
(formerly Brachiara) or Panicum in order to establish pasture for cattle ranching.
Pastures may be burned periodically in order to control the invasion of weeds.
Herbicides, tillage, or chemical fertilizers are not commonly used. The vegetation
and soil characteristics at this site have been described in detail elsewhere (Neill et
al., 1997a; Feigl et al., 2006).

Ten soil cores were collected from ARMO in April 2010 (5 soil cores from
primary rainforest and 5 from a 38 year-old converted pasture). Soil was sampled to
a depth of 10 cm (after removal of the litter layer) using standard coring methods
and homogenized. Samples were frozen on the spot, transported on dry ice, and

stored at -80° C until extraction.

Soil DNA Extraction and Sequencing

DNA was extracted from five soil subsamples per core (i.e. 50 extractions per
10 soil cores) following the same protocol described in Mirza et al. (2014). DNA
from the subsamples was pooled, and 3-5 ug of DNA were used from each sample.
Metagenomic libraries were constructed from 10 samples using the Illumina TruSeq
kit with ~270 bp insert sizes. Sequencing of 150 bp paired-end reads was

performed on the Illumina HiSeq platform. In total, 21 lanes were sequenced to
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produce 6.4 billion paired-end reads, resulting in an average of 636 million (£12%)

reads per sample.

Bioinformatics and Statistics

Functional and taxonomic annotations were obtained using the MG-RAST
pipeline (Meyer et al., 2008). Raw sequences were uploaded to MG-RAST, and
paired-end reads were joined using fastg-join as part of the MG-RAST pipeline.
Single end reads that could not be joined were retained. After merging paired-end
reads, a total of 6.3 billion sequences with an average length of 171 bp were
processed through the MG-RAST pipeline. All other pipeline options were left as
default (i.e. trimming of low quality bases, removal of artificial replicate sequences,
and filtering of sequences with greater than 5 ambiguous bases). Hierarchical
functional annotations were generated using the SEED subsystems (Overbeek et al.,
2014) and organismal annotations were obtained via the MG-RAST M5RNA
database (Wilke et al., 2012) which assigns taxonomy strictly from ribosome-
encoding genes including those from the SILVA, RDP, and Greengenes databases
(Wilke et al., 2015). We used the “Representative Hit” classification method for
organismal annotation, which selects a single, unambiguous annotation for each
feature and assigns taxonomy. Default parameters (e-value cutoff = 1e-5, Min. %
identity = 60%, Min. alignment length cutoff = 15) were used for both the functional
and taxonomic annotations. Low quality sequences (16.4%) were removed prior to
assignment of remaining sequences: rRNA genes (0.5%), predicted proteins with

known functions (21.7%), predicted proteins with unknown functions (47.9%), and
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sequences without any rRNA genes or predicted proteins (13.5%). We obtained
usable annotations for approximately 22.2% of the total sequences (0.5% rRNA
genes + 21.7% predicted proteins with known functions).

The functional annotations had an average of 1.2 million + 136 000
observations per sample. The organismal annotations had an average of 304 000 +
76 000 observations per sample. Annotation tables were subsampled to achieve
equal sampling depth across samples. The functional annotation table was rarefied
to 1.05 million observations per sample and the organismal table was rarefied to
195 000 observations per sample. All analyses were performed using the R
statistical environment (R Development Core Team, 2010) including the vegan
package (Oksanen et al., 2015).

We constructed functional group community matrices by selecting only
species previously reported in the literature as methanotrophs or methanogens
(Supplementary Tables 1 & 2, respectively). Community composition differences
were statistically tested using a permutational multivariate ANOVA (PERMANOVA)
on Bray Curtis community distances (Bray & Curtis, 1957) and Euclidean distances
(ter Braak, 1995) in the case of acetoclastic methanogens because of its treatment of
absences. Shannon diversity, species richness, Simpson diversity, and Pielou’s
evenness were used to assess varying aspects of functional group diversity and were
compared across sites using a two-sample two-tailed t-test. The abundance of genes
encoding methane-cycling functions were compared across samples using a two-
sample two-tailed t-test. A Shapiro-Wilk Normality test was performed before all ¢t-

test comparisons to verify normal distribution of the data and log transformation of
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counts was used when necessary to achieve normality. Comparison of proportions
or ratios across land types was performed by first logit transforming the proportion
or ratio (Warton & Hui, 2011), and then testing using a two-sample one-tailed t-test
because of a priori hypotheses regarding the direction of change. For all box plots,
the box represents the interquartile range (Q1-Q3), the line represents the median
(Q2), the whiskers represent the minimum and maximum non-outlier values below
Q1 and above Q3, respectively, and any points outside represent outliers.
Methanotroph genera were characterized under the Competitor-Stress
tolerator-Ruderal functional classification (Grime, 1977) proposed for
methanotrophs by Ho et al. (2013) (Supplementary Table 3). While we are far from
having a comprehensive understanding of the life history strategies of all
methanotroph taxa (Knief, 2015), traits relevant to life history strategy such as pH
and temperature ranges/optima have been shown to be phylogenetically conserved
(Krause et al., 2014) in methanotroph lineages, allowing us to putatively assign the
taxa detected in our study to life history strategies based on their taxonomic
relatedness to the taxa classified by Ho et al (2013). Once taxa were placed into life
history groups, the relative abundances of the groups were compared using a two-
sample two-tailed t-test. Ratios of these groups were first logit-transformed then

compared using a two-sample two-tailed ¢-test.

RESULTS & DISCUSSION
Shifts in the proportion of methanotrophs in the methane-cycling community

Methane flux is the net balance between methane production and methane
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consumption. Thus changes to the balance of the organisms that mediate these
processes, or genes encoding the cellular machinery by which these processes take
place, could alter methane flux. The forest site where our study was conducted has
been shown to exhibit net negative methane flux (methane consumption), even in
the wet season (Fernandes et al., 2002). In contrast, the cattle pasture where we
sampled was shown to exhibit positive methane flux (methane emission), even in
the dry season (Fernandes et al., 2002). One of our primary findings is that the
proportion of methanotroph sequences relative to methanogen sequences is
significantly lower in the pasture compared to the forest (Fig. 1a). This was driven
by a significant decrease in methanotroph abundance in the pasture and no
significant change in the methanogen abundance across land types. Furthermore,
we estimated the potential for methanotrophy and methanogenesis from the
abundance of genes encoding methane monooxygenases (MMO) and methyl
coenzyme M reductase (MCR), respectively. The proportion of MMO genes in the
genes coding for these processes shows a trend similar to our taxonomic results
(Fig. 1b), driven by a decrease in MMO gene abundance and an increase in MCR gene
abundance. A shift in these proportions could impact the amount of methane
consumed relative to the amount of methane produced, leading to changes in the net

flux of methane from the soil.
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Figure 1: The proportion of methanotrophs differs between forest and
pasture. A. The proportion of methanotrophs in the methane-cycling community:
methanotrophs/(methanotrophs + methanogens) calculated from rRNA organismal
annotations. B. The proportion of methane monooxygenase (MMO) genes within the
genes unique to methane-cycling: MMO/(MMO + MCR). MMO is methane mono-
oxygenase; a methanotrophy gene marker. MCR is methyl-coenzyme M reductase; a
methanogenesis gene marker. Significant differences between forest and pasture

are denoted as: * P < 0.05.

Shifts in taxonomic groups

Our annotations recovered sequences from Gammaproteobacteria,
Alphaproteobacteria, and Verrucomicrobia methanotrophs (Supplementary Table 1),
as well as methanogen sequences from the orders Methanobacteriales,

Methanococcales, Methanocellales, Methanomicrobiales, Methanosarcinales, and
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Methanopyrales (Supplementary Table 2).

Methanotrophic taxa. We observed numerous changes to methanotroph community
traits that suggest that methanotrophy is altered following conversion of forest to
pasture. Methanotroph communities were compositionally different across the two
land types (Bray-Curtis R?=0.41, P < 0.05). The forest community exhibited a
significantly higher average pairwise dissimilarity than the pasture community
(Bray-Curtis, P < 0.05), indicating a higher variability in community membership in
the forest. The methanotroph community did not differ in richness, Shannon
diversity, Simpson diversity, or evenness across land types. However, when the
Proteobacteria methanotrophs were considered separately, Shannon diversity,
Simpson diversity, and evenness were significantly higher in the pasture (P < 0.05).

Of the three primary types of methanotrophs at our sites
(Alphaproteobacteria, Gammaproteobacteria, Verrucomicrobia), the
Alphaproteobacteria methanotrophs varied more between the land types (Fig. 2).
Neither Gamma- nor Verrucomicrobia methanotroph communities differed in
composition, diversity, abundance or evenness across the land types. The
Alphaproteobacteria methanotrophs, however, showed a significantly lower relative
abundance in pasture, as well as significant compositional differences across forest
and pasture soils (Bray-Curtis R2=0.65, P < 0.01). The Alphaproteobacteria
methanotrophs also exhibited significantly higher Shannon diversity and evenness
in pasture, relative to forest. The two most abundant Alphaproteobacteria genera

(Methylocella and Methylosinus) were the only genera to significantly change in
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abundance between land types, with both showing a decrease in the pasture. The
changes observed in Alphaproteobacteria methanotrophs could be of concern
because numerous Alphaproteobacteria taxa have been shown to be capable of
consuming atmospheric levels of methane (Holmes et al., 1999; Kolb, 2009),
suggesting that these organisms can take up methane even in environments where
methane is not produced directly. Due to the short read lengths of our data, we
lacked the taxonomic/phylogenetic resolution to identify these high-affinity
methanotrophs (i.e. members of upland soil clusters alpha and gamma (reviewed in
Kolb 2009)) at the species or strain level. Other studies, including one in the tropics
(Knief et al., 2005), have reported lower abundance of Alphaproteobacteria
methanotrophs in agricultural or grassland soils relative to forest soils and have
reported decreases in Alphaproteobacteria methanotrophs following deforestation
(Singh et al., 2007; Nazaries et al., 2013). For example, in Thailand Knief et al. (2005)
observed a lower abundance of Alphaproteobacteria methanotrophs (along with a
decrease in methane consumption) in agricultural soils relative to tropical forest
soils. Thus, the changes we report are in accordance with other reports from
agricultural conversion sites and may influence the methane uptake rates of the

soils in which they are found.
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Figure 2: Differential response of methanotroph types to land use change. The
relative abundance of Gammaproteobacteria, Alphaproteobacteria, and
Verrucomicrobia methanotroph rRNA annotations in rainforest and pasture soils.

Significant differences between forest and pasture denoted as: ** P < 0.01.

Life history strategies of methanotrophs

We grouped methanotroph genera identified in our study according to the
Competitor-Stress Tolerator-Ruderal framework proposed by Ho et al. (2013, see
Supplementary Table 3)(Ho et al., 2013). We observed that the ratio of Stress
Tolerators (S) to Ruderals (R, aka Disturbance Specialists) was significantly lower in
the pasture (P < 0.001, Fig. 3). This change was driven by a significant decline in the
Stress Tolerator group in the pasture (P < 0.01) and a marginally significant
increase in the Ruderal group (P = 0.05) in the pasture. Other strategies
characterized as Stress Tolerator (C-S and S-R) were also significantly lower in the

pasture (P < 0.01) compared to the forest. No other groups were significantly
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different across the two land types. This could be indicative of a larger trend
suggested by other research (Rodrigues et al., 2013; Navarrete et al., 2015a, 2015b)
whereby tropical rainforest soils harbor microbial communities that are more
stress-tolerant or K-selected (i.e. oligotrophic) than those of agricultural soils.

By integrating our data into a life history framework we are able to gain a
new perspective on the environment as experienced by the microbial community.
Much of the differentiation in life history strategies is across the stress gradient. We
speculate that because of the stronger fluctuations in temperature, moisture, and
oxygen in the pasture soils - likely due to increased exposure and decreased light
attenuation- ruderal (disturbance specialist) life history strategies will be favored.
By contrast, the forest soil environment, although more heterogeneous over space,
may be more stable over time (but overall less rich in nutrients or substrate) and
hence favor stress tolerator life history strategies which grow more slowly but
tolerate low nutrient conditions. This low substrate environment may also favor
strategies exhibiting facultative substrate usage. Several Alphaproteobacteria taxa
have been shown to be facultative methanotrophs (as reviewed in Ho et al. (2013))-
one of which (Methylocella) significantly decreases in the pasture (P < 0.01). This
may help to explain why the stress tolerator group is significantly higher in forest.
Disturbance specialists would likely persist under adverse conditions such as those
of pasture soils but grow rapidly under periodic shifts to optimal conditions. We see
other evidence for this strategy in increases in genes related to dormancy and
sporulation (P < 0.01, Supplementary Fig. 1a) and spore DNA protection (P < 0.001,

Supplementary Fig. 1b) in pasture soils. These changes in life history traits are likely
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to influence broader patterns of ecosystem functioning (e.g. C cycling) and may
serve as a means to assess ecosystem changes, much like a bioindicator, to inform

management practices.

C: Competitor Forest-to-Pasture Ratio

S: Stress Tolerator
R: Ruderal
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Figure 3: Methanotroph life history strategies vary across rainforest and
pasture soils. Life history strategies of methanotroph genera were categorized
along three axes (Competitor, Stress tolerator, Ruderal, or combinations thereof)
according to the recommendations of Ho et al. (2013). Triangles are color-coded by
the forest-to-pasture abundance ratio of that strategy group. Significant differences

between forest and pasture are denoted as follows: ** P <0.01,* P=0.05.

Methanogenic taxa
The relative abundance of methanogenic microorganisms did not significantly differ
across land types. There were, however, compositional differences between forest

and pasture soils. The communities were significantly different in composition
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across land types (Bray-Curtis R?2=0.61, P<0.001). The average pairwise
dissimilarity was higher in the forest soils than the pasture soils (similar to that
observed for the methanotroph community), indicating more variation in
community membership in the forest than the pasture. We observed no significant
differences in diversity or evenness across sites. The proportion of acetoclastic
methanogens in the methanogen community was significantly higher in the pasture
than the forest (P < 0.01, Supplementary Fig. 2a), driven by a slight (but not
significant) increase of acetoclasts and a slight (but not significant) decrease of
hydrogenotrophs. When considered separately, the diversity patterns of these two
functional groups also varied across forest and pasture. Both groups differed
significantly in composition across land types (acetoclast: Euclidean R?=0.30, P <
0.01, hydrogenotroph: Bray R2=0.64, P < 0.05). However, changes in diversity across
land types were not consistent between the acetoclast and hydrogenotroph
communities. The acetoclasts had a significantly higher species richness in the
pasture (P < 0.05), while the hydrogenotroph community had a significantly lower
species richness (P < 0.05), Simpson diversity (P < 0.01), Shannon diversity (P <
0.05), and evenness (P < 0.05) in the pasture. Six of the eight acetoclast taxa were
unique to the pasture. Within the five orders of hydrogenotrophs there was also a
differential response to land use change. The second most abundant
hydrogenotrophic order in the forest (Methanopyrales) was completely absent in
pasture, while the most abundant hydrogenotrophic order in the pasture
(Methanocellales) was more than an order of magnitude less abundant in the forest.

This differential response could be the result of variable life history strategies
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within this functional group, an interesting avenue for future research.

Changes in gene content
Methanotrophy genes

To investigate the potential for methane oxidation in forest and pasture soils,
we analyzed differences in the relative abundance of genes that code for the
methane monooxygenase enzyme as well as genetic markers for
Gammaproteobacteria and Alphaproteobacteria methanotrophs. The methane
monooxygenase enzyme is unique to methanotrophs and is the only currently
known way that aerobic methanotrophs can utilize methane-derived carbon
(Anthony, 1991; Hanson & Hanson, 1996). This enzyme has two forms: soluble
methane monooxygenase (sMMO) and particulate methane monooxygenase
(pMMO)(Hanson & Hanson, 1996). The particulate form has a higher substrate-
specificity and cells containing pMMO tend to have a higher methane affinity and
thus may play a role in the consumption of atmospheric methane (Hanson &
Hanson, 1996). Similar to another study at this site (Paula et al. 2014), we observed
that the relative abundance of genes encoding enzymes in the pMMO pathway was
significantly lower in pasture soils (P < 0.01, Fig. 4a). In contrast, genes for sMMO
did not differ in abundance between forest and pasture (Fig. 4b). We, however, were
not able to distinguish between pMMO and the higher-affinity isoenzyme pMMO?2
(Tchawa Yimga et al., 2003) due to limitations of the database used for annotations
and our short read lengths.

There are two biochemical pathways for assimilation of carbon from

78



methane by methanotrophs: the ribulose-monophosphate pathway (used by Type I
methanotrophs) and the serine pathway (used by Alphaproteobacteria
methanotrophs)(Hanson & Hanson, 1996). Despite observing changes to the relative
abundance and composition of Alphaproteobacteria methanotrophs, we did not
detect changes in the abundance of genes involved in the ribulose-monophosphate
or serine pathways. We attribute these results to the broader involvement of these
pathways in one-carbon metabolism (methylotrophy), resulting in these pathways

being shared by more groups than just methanotrophs (Anthony, 1991).

Methanogenesis genes

The overall abundance of all genes related to methanogenesis did not
significantly differ between land types (Fig. 4c). However, the relative abundance of
genes encoding the common marker enzyme, methyl coenzyme M reductase, was
significantly higher in the pasture than the forest (P < 0.01, Fig. 4d). Genes involved
in methanogenesis from methylated compounds (an alternative pathway by which
methane can be produced) were also significantly more abundant in the pasture (P
< 0.05, Supplementary Fig. 2b). This pathway has not been the focus of many
landscape-level studies, and it is unclear to what extent these changes might
influence soil methane emissions. Finally, we observed that genes encoding two
enzymes involved in the production of acetate (formyltetrahydrofolate synthetase
and the beta subunit of the acetyl-CoA synthase) were significantly more abundant
in the pasture (P=0.05, P<0.05, respectively). This indicates that the potential to

synthesize acetate (the substrate for acetoclastic methanogenesis) is higher in
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pasture and could be related to the increase in the proportion acetoclastic
methanogens we observed in the pasture soils.
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Figure 4: Functional genes related to methane cycling respond differently to
land use change: A) The relative abundance of genes encoding particulate methane
monooxygenase (pMMO). B) The relative abundance of genes encoding soluble
methane monooxygenase (sMMO). C) The relative abundance of genes involved in
the methanogenesis pathway. D) The relative abundance of genes encoding the
methyl-coenzyme M reductase enzyme. Significant differences between forest and

pasture are denoted as follows: ** P <0.01,* P < 0.05.

Previous research has shown that forest soils are methane sinks while
agricultural (including pasture) soils are methane sources (Maxfield et al., 2008;

Nazaries et al., 2013) . This is true of tropical soils, including soils in the Amazon
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basin (Steudler et al., 1996; Verchot et al., 2000; Carmo et al., 2012), and specifically
those at the site at which our study was conducted (Fernandes et al., 2002). The
causes of this difference remain unknown. Researchers have proposed that
increased water filled pore space and decreased O diffusion in pasture and
agricultural soils are responsible for this trend through the reduction in oxygen and
a subsequent increase in methanogenesis, which is a strictly anaerobic process
(Verchot et al., 2000). However, other studies have correlated increases in methane
fluxes with changes in the methanotroph community (e.g. community structure,
diversity, and activity (Seghers et al., 2003; Maxfield et al., 2008; Bodelier et al.,
2012, 2013)). Evidence from our study suggests that changes to the methane-
cycling community could be playing a role in the observed shift from methane sink
to source (Fernandes et al., 2002) at our site. Although we observed some
differences in the methanogen communities of forest and pasture (most notably a
change in the relative abundance of acetoclasts), there were few large-scale shifts to
the methanogen community (e.g. the abundance of methanogens did not change
across sites, nor did the abundance of total genes involved in methanogenesis
pathways). In general we observed much larger and more varied differences
between forest and pasture for the methanotroph community. Among the most
striking differences we observed were a decrease in the abundance of
methanotroph taxa, a decline in the proportion of methanotrophs in methane-
cycling community, a decrease in pMMO abundance, a decrease in the relative
abundance of Alphaproteobacteria methanotrophs, and a decrease in the

methanotroph Stress Tolerator-to-Ruderal ratio. Hence the shift to methane
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emission at our site may be due, at least in part, to altered methane consumption
rates caused by changes to methanotroph community traits.

Our work illustrates the importance of using environmental metagenomics to
address questions regarding microbial functional ecology. Rather than perform
shallow sequencing on samples from a number of different pastures and forests, we
chose to deeply sequence replicate samples from a limited number of sites, in order
to detect low-abundance functional genes. Although this approach restricted our
scale of inference to the sites we sampled, rather than forests and pastures across
the tropics, the results we report could not have been obtained without deep
metagenomic sequencing. The depth at which we performed sequencing allowed us
to investigate changes to rare genetic traits that are difficult to assess without PCR
amplification (i.e. those involved in methanotrophy or acetate production). Our gene
annotations yielded a wide breadth of genes; 13 418 different genes, 245 of which
have the potential to be directly involved in the cycling of methane. We were able to
detect methanotrophic taxa (e.g. Methylocella, which is not known to have pMMO
(Dedysh et al., 2000)) that would not have been detected using PCR-based, culture
independent methods (i.e. amplification of pmoA gene regions). The use of
metagenomics also allowed us to simultaneously survey taxa and genes across
multiple functional groups. Finally, our work is an example of the power of
combining trait inference from metagenomics with life history theory to generate
novel hypotheses regarding the functional responses of microorganisms to
environmental change (Barberan et al,, 2012).

Although a variety of studies have investigated the impact of land use change
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on methane-cycling organisms, to our knowledge this is the first to do so in the
Amazon Basin using metagenomics. The majority of past studies have focused on
temperate regions where rates of agricultural conversion have been relatively low
over the last 50 years. Tropical regions, in contrast, are currently facing a faster rate
of land use change than any other region (Dirzo & Raven, 2003; Foley et al., 2005;
Laurance et al., 2014), and the Amazon Basin is facing the highest rate of all tropical
regions. Several studies have reported increases in methane flux from soil in the
Amazon as a result of agricultural development (Steudler et al., 1996; Verchot et al.,
2000; Fernandes et al., 2002; Carmo et al., 2012). Our study shows that there are
numerous alterations to methane-cycling community traits, many of which have
been linked to variation in methane flux in other studies (Seghers et al., 2003;
Maxfield et al., 2008; Bodelier et al., 2012, 2013). Thus we suggest that alterations to
soil microbial communities could be one of the driving factors behind the shift from
methane sink to source following land use change in the Amazon (Fernandes et al.,

2002).

83



CHAPTERV
CONCLUSION

Synthesis

Studying the spatial distribution of organisms has played a central role in the
development of many fundamental principles in ecology and evolution.
Incorporating microbial life forms into a spatial framework that is consistent with
macro-organisms, however, has been a challenge both conceptually and
quantitatively (Martiny et al., 2006; Hanson et al., 2012). Ever since it was shown
that microbial communities tend to exhibit much weaker spatial patterns than
macro-organismal communities, ecologists have been puzzled by this disparity. Are
microorganisms fundamentally different from macro-organisms, or is this disparity
somehow a product of how we conceptualize or measure microbial communities?
This notion not only brings into question the universality of some of the most
foundational principles in ecology, but it also has the potential to impact the
strategies we use to conserve communities and the functions they perform. Indeed
the idea that microbial communities change over space means that alterations to the
environment could disrupt their spatial ecology and potentially drive the extinction
of microbial lineages. Thus, our basic understanding of microbial spatial and
functional ecology must be expanded in order to minimize our impacts on these
communities.

Incorporating spatial and functional ecology can help us better understand
microbial communities and their responses to environmental change. Predicting

community responses to change requires a fundamental understanding of the
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factors structuring microbial communities. In Chapter II, I demonstrated that
bacteria and trees showed very different spatial patterns, bringing into question
whether microbial and macro-organismal communities are shaped by different
spatial processes. I showed that this difference in spatial patterning could not be
explained by differences in species definition, spatial scale, or community activity.
Rather, it appears that these differences are likely an effect of undersampling. Both
microbial and tree community members followed a frequency-abundance
relationship whereby abundant members were more widespread and low
abundance members were more restricted in range. Hence by under-sampling a
community (a problem which is particularly pronounced in highly complex
microbial communities), we tend to miss many of the taxa that are low-abundance
and restricted in range, driving the underestimation of spatial diversity. What this
suggests is that microorganisms and macro-organisms may not be so fundamentally
different in their spatial scaling, and since conservation strategies tend to
incorporate perspectives on the spatial distributions of taxa (Diamond, 1975), this
finding suggests we may not need an alternate framework to incorporate microbes
into our conservation strategies.

Biotic homogenization includes a loss of local diversity, a loss of spatial
diversity, and a loss of endemic taxa (Olden & Poff, 2003; Olden et al., 2004; Smart et
al., 2006). These trends have been documented in microbial communities in regions
undergoing agricultural conversion in the Amazon Basin (Rodrigues et al., 2013). It,
however, has remained unclear whether land use change in other regions of the

tropics would drive similar responses. In Chapter III, I show that the same
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indicators of biotic homogenization can also be detected in Central Africa. Most
related work has compared an intact ecosystem (such as a rainforest) to an
established agricultural system (such as a pasture or plantation). [ was able to gain
an additional perspective by incorporating a recently burned site into my design. In
nearly all cases the burned site appeared more impacted, showing for example,
larger losses in species richness, spatial diversity, and landscape diversity. The
plantation site, in contrast, seemed much less impacted, being for the most part
indistinguishable from the forest site in diversity. This additional perspective shows
that the act of ecosystem conversion (i.e. the slash-and-burn process), as opposed to
the act of planting and managing land, may be the driving force behind community
change in this system. Furthermore, I asked whether the active fraction of the
microbial community (as opposed to the total community that includes active and
inactive taxa) is responding to land use change in a similar manner. Although it
seems logical to distinguish the active taxa in a community if one is interested in
ecosystem function, to date there has been little effort to do so in the context of
environmental change, and especially not in the tropics. In almost all cases the
active fraction followed the same trends as the total community, however this
fraction tended to exhibit a more pronounced response (e.g. larger losses of species
richness and larger changes to the rate of spatial turnover). Other studies have
illustrated that the active community is more responsive to seasonal changes
(Barnard et al,, 2013) and that it is shaped to a larger extent by the environment

(Zhang et al., 2014) relative to the total community. My work contributes to this
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body of work by suggesting that the active community may also be more responsive
to environmental change.

Community responses to environmental change are often accompanied by
changes to ecosystem function. Land use change in the Amazon Basin, for example,
has been linked to numerous changes to microbially-mediated functions such as
nitrogen- and methane-cycling (Fernandes et al., 2002; Neill et al., 2005).
Connecting measurements of these processes to changes in community structure is
a considerable challenge in communities characterized by high levels of diversity.
Many processes also vary in their levels of phylogenetic conservatism (Martiny et
al,, 2013), making it even more difficult to predict processes from observations of
individual taxa. One approach researchers use to circumvent this problem is to
survey the gene content of a community (i.e. the metagenome) as opposed to
surveying the individual taxa (Fierer et al., 2014). In this way the presence and
abundance of the genes encoding a given process may be a more suitable proxy for
that process than the taxa capable of performing that process. In Chapter IV, I
applied this approach to Amazonian soils to investigate shifts in the methane-
cycling community following conversion to cattle pasture. Soils at these sites have
previously been reported to shift from a methane sink (showing net consumption of
methane) to a methane source (showing net methane emission) following
conversion to agriculture and it has remained unclear whether this shift is driven by
physico-chemical alterations to the soil (e.g. changes in soil compaction or O
content) or whether this is driven by changes to the community of microorganisms

that perform these processes (Fernandes et al., 2002). Methane flux is governed by
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two microbial processes: methane production and methane consumption. My work
illustrates that there are numerous alterations to the methane-cycling community
and that the methane consumption process is more impacted by ecosystem
conversion than the methane production process. This includes a decrease in the
genes encoding the enzymes responsible for methane consumption, a pronounced
change in the composition of methane-consuming bacteria, and a shift in the life
history strategies employed by these taxa. This is a strong indication that this
functional shift could be driven by changes to the community of microorganisms
performing these processes. Moreover, it illustrates that this function, which is a
balance between two processes, could be largely changing because of a perturbation
to one process (methane consumption). This work highlights the perspective gained
from implementing a metagenomic approach in studies of environmental change,
and it contributes a new conceptual framework of community structure-function

relationships in a changing environment.

Moving microbial ecology from descriptions to predictions

Microbial communities shape the chemical composition of the planet. In this
way, the functions these communities perform can play a decisive role in the fate of
our planet. Moving from descriptions of community structure to predictions of
community function is an important step forward if we are to better estimate the
impacts of our actions on the environment. Understanding the relationship between
community attributes and ecosystem function has been a central goal of ecology,

and this task will only become more important in a changing environment.
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Microbial communities are characteristically highly complex and have many
attributes that set them apart from the rest of life (e.g. dormancy and horizontal
gene transfer). These nuances make understanding the relationship between
variation in community attributes and variation in the functions these communities
mediate particularly challenging, but this provides an excellent opportunity to
expand the generality of ecological principles. In my work I have begun to ask how
microbial communities scale with space and how microbial activity can help us
better understand the impacts of environmental change. I have also asked how
microbial gene content (as opposed to taxonomic composition) can provide an
alternative perspective on a system undergoing changes in ecosystem function. My
goal in this work has been to explore the many attributes of microbial communities
in the hope of mitigating future changes to these communities and better predicting

their functions.
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APPENDIX A

SUPPLEMENTARY INFORMATION FOR CHAPTERII

Supplementary Figure 1: Sampling scheme for A) soil microbial communities
using a spatially explicit nested design, and B) tree communities taken on 20m x

20m quadrats on the Rabi CTFS plot, Gabon.
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Supplementary Figure 2: The frequency-abundance relationship for A) Bacteria

and B) Trees in the Rabi plot, Gabon.
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APPENDIX B

SUPPLEMENTARY INFORMATION FOR CHAPTER III
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Supplementary Figure 1: Phylum-level changes to the composition of the DNA-

and RNA-inferred communities across the slash-and-burn chronosequence.

92



>

300 400
1 |

Number of endemic taxa
200
I

=3
8 4
o

Forest Burned Plantation
B = . =
g = i :
s ° ' :
& : :
z o : .
§ 3
2 )
@
= )
g =
§ ° °
3
S o |
© | I 1 ’
T T T
Unique (forest) Shared (w/ Burned) Shared (w/ Plant.)

Supplementary Figure 2: The abundance and spatial distribution of endemic taxa
is impacted by land use change. A) The total number of endemic taxa (in the DNA-
inferred community) across sites. B) Forest endemics tend to be more spatially

restricted than the taxa that are shared between the forest and the impacted sites.
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Supplementary Figure 3: Changes to the active (RNA-inferred) community
qualitatively follow the same trend as the DNA-inferred community, but are slightly
more pronounced. A) Composition of the active community clusters by land use,
non-metric multidimensional scaling (NMDS) of Canberra dissimilarities showing
significant (P < 0.05) environmental vectors. OM: organic matter, K: potassium
percent saturation, P: weak-bray phosphorus, pH: soil pH, S: sulphate-sulfur, CEC:
cation exchange capacity, NO3-N: nitrate nitrogen, and Mg: magnesium percent
saturation B) within-sample OTU richness of the active community across
conversion sites, significant differences assessed using Tukeys HSD on one-way
ANOVA. C) Gamma (landscape-level) diversity of the active community from Chao1l

estimator showing standard error bars. D) The rate of distance-decay of active
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community similarity (1- Canberra dissimilarity) significantly differs (P < 0.05) by

land use. Dashed line indicates a non-significant (P > 0.05) trend.
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Supplementary Figure 4: Beta-diversity (average distance to centroid) tends to
decrease across the slash-and-burn chronosequence. Based on Canberra distances.

Significant differences assessed using Tukey’s HSD of one-way ANOVA results.
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Supplementary Figure 5: Phylum-level composition of the differentially active taxa
differs across land use. Differentially active taxa are defined as those taxa with a

significant (Pagj < 0.05) enrichment in the RNA relative to the DNA.

Changes to soil chemistry across land types

The chemical profiles of the soil were significantly different among land
types (PERMANOVA on Gower Distance R =0.61, P < 0.001). The largest change to
soil organic matter (OM) was a 2-fold decrease in average from the forest to burned
site and decreasing further in the plantation (Supp. Table 1). Na levels as well as
cation exchange capacity (CEC) of the soil increase from the forest to burned site
then decrease in the plantation and abandoned plantation. Nitrate-nitrogen (NO3-N)

and sulfate-sulfur (S) follow the same trend, increasing at first in the burned sites
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then decreasing. Weak Bray phosphorus (P1) incrementally increase from the forest
to burned sites then the burned to plantation sites, but decrease in the abandoned

plantation. Finally, the pH of the soil increases from forest to plantation.

Supplemental Table 1: Chemical profiles of the four land types.

om P pH Na Buffer pH CEC K_PCT Mg_PCT  Ca_PCT NOs-N

(%) (ppm) (ppm) (meq/100g) (%) (%) (%) (ppm)
rest 6.95+11.73 ' 26.08+12 3.9+0.19 ' 10.184#4.24 ' 6.82+0.12 ' 1.99+1.41 3.86£0.92 ' 7.78+1.1 10.91#1.88 ' 2.62+0.43
drned 3.3940.82 | 83.084+20.97 | 3.98#0.21 | 25.89431.57 | 6.61+0.09 | 4.78+1.29 3.480.6 | 8.81%1.16 | 10.37+1.61 | 14.34%3.73
antation 2.45£0.49 | 157.08424.75 | 4.12+0.18 | 8.63+3 6.7240.06 | 2.76+0.83 4.56+0.88 | 7.94+1.03 |, 11.05+1.21 | 2.82+1.03
b. Plantation  ;43.084 |1825:866 |3.9410.23 |6.53:0.46 | 6.8£0.08 2.1340.62 2.240.8 11.2342.45 | 10.13+2.39 | 3.7840.85

97



APPENDIX C

SUPPLEMENTARY MATERIALS FOR CHAPTER IV

A) Dormancy and Sporulation B) Spore DNA Protection
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Supplementary Figure 1: Land use change impacts the relative abundance of
genes related to dormancy and spore protection. A) The relative abundance of
dormancy and sporulation genes is higher in pasture than forest soils. B) The
relative abundance of genes related to spore DNA protection is higher in pasture
relative to forest soils. Significant differences between forest and pasture are

denoted as follows: ** P < 0.01, *** P < 0.001.

98



A) Proportion Acetoclast B) Methanogenesis from methylated compounds
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Supplementary Figure 2: Land use change impacts methanogen community
composition and alternative pathway abundance. A) The proportion of
acetoclastic methanogens (relative to hydrogenotrophs) is higher in pasture than
forest soils. B) The relative abundance of genes related to methanogenesis from
methylated compounds is higher in pasture relative to forest soils. Significant
differences between forest and pasture are denoted as follows: **P < 0.01, * P <

0.05.

Supplementary Table 1: Methanotroph Classifications

Type Taxonomic classification

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; Methylobacter; Methylobacter sp. BB5.1;

Methylobacter sp. BB5.1

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; Methylobacter; Methylobacter sp. HG-1;

Methylobacter sp. HG-1

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; Methylobacter; uncultured Methylobacter

Gammaproteobacteria

sp.; uncultured Methylobacter sp.

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; Methylohalobius; Methylohalobius sp. IT-
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9; Methylohalobius sp. IT-9

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; Methylomicrobium; Methylomicrobium
album; Methylomicrobium album

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; Methylomicrobium; Methylomicrobium
buryatense; Methylomicrobium buryatense

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; Methylomicrobium; Methylomicrobium
pelagicum; Methylomicrobium pelagicum

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; Methylomonas; Methylomonas sp. LC 1;
Methylomonas sp. LC 1

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; Methylothermus; Methylothermus
subterraneus; Methylothermus subterraneus

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; Methylocaldum; Methylocaldum gracile;
Methylocaldum gracile

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; Methylocaldum; Methylocaldum sp. 05]-1-
7; Methylocaldum sp. 05]-I-7

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; Methylocaldum; Methylocaldum sp. E10a;
Methylocaldum sp. E10a

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; Methylocaldum; Methylocaldum
szegediense; Methylocaldum szegediense

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; Methylococcus; Methylococcus capsulatus;
Methylococcus capsulatus

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; Methylococcus; Methylococcus capsulatus;
Methylococcus capsulatus str. Bath

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; Methylothermus; Methylothermus

thermalis; Methylothermus thermalis

Alphaproteobacteria

Proteobacteria; Alphaproteobacteria; Rhizobiales; Beijerinckiaceae; Methylocapsa; Methylocapsa acidiphila;
Methylocapsa acidiphila

Proteobacteria; Alphaproteobacteria; Rhizobiales; Beijerinckiaceae; Methylocapsa; Methylocapsa aurea; Methylocapsa
sp. KYG

Proteobacteria; Alphaproteobacteria; Rhizobiales; Beijerinckiaceae; Methylocella; Methylocella palustris; Methylocella
palustris

Proteobacteria; Alphaproteobacteria; Rhizobiales; Beijerinckiaceae; Methylocella; Methylocella silvestris; Methylocella

silvestris
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Proteobacteria; Alphaproteobacteria; Rhizobiales; Beijerinckiaceae; Methylocella; Methylocella silvestris; Methylocella
silvestris BL2

Proteobacteria; Alphaproteobacteria; Rhizobiales; Beijerinckiaceae; Methylocella; Methylocella tundrae; Methylocella
tundrae

Proteobacteria; Alphaproteobacteria; Rhizobiales; Beijerinckiaceae; Methylocella; uncultured Methylocella sp.;
uncultured Methylocella sp.

Proteobacteria; Alphaproteobacteria; Rhizobiales; Beijerinckiaceae; Methylovirgula; Methylovirgula ligni;
Beijerinckiaceae bacterium BW872

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis echinoides;
Methylocystis echinoides

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis heyeri;
Methylocystis heyeri

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis hirsuta;
Methylocystis hirsuta

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis minimus;
Methylocystis minimus

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis parvus;
Methylocystis parvus

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis rosea; Methylocystis
rosea

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp. 10;
Methylocystis sp. 10

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp. 2-19;
Methylocystis sp. 2-19

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp. 39;
Methylocystis sp. 39

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp. 5FB1;
Methylocystis sp. 5FB1

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp. 5FB2;
Methylocystis sp. 5FB2

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp. 62/12;
Methylocystis sp. 62/12

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp. Ch22;
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Methylocystis sp. Ch22

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp.

Methylocystis sp. F10V2a

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp.

Methylocystis sp. H2s

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp.

Methylocystis sp. H9a

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp.

Methylocystis sp. IMET 10484

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp.

Methylocystis sp. KS3

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp.

Methylocystis sp. LW5

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp.

sp. M

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp.

Methylocystis sp. m1511

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp.

Methylocystis sp. m231

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp.

Methylocystis sp. Pi5/4
Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; Methylocystis sp
Methylocystis sp. WI14
Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylocystis; uncultured Meth

uncultured Methylocystis sp.

F10V2a;

H2s;

H9a;

IMET 10484;

KS3;

LWS5;

M; Methylocystis

m1511;

m231;

Pi5/4;

. WI14;

ylocystis sp.;

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylopila; Methylopila capsulata; Methylopila

capsulata

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylosinus; Methylosinus acidophilus;

Methylosinus acidophilus

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylosinus; Methylosinus sp.
Methylosinus sp. D15a

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylosinus; Methylosinus sp.

Methylosinus sp. LW2
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Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylosinus; Methylosinus sp. LW3;
Methylosinus sp. LW3

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylosinus; Methylosinus sp. PW1;
Methylosinus sp. PW1

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylosinus; Methylosinus sporium;
Methylosinus sporium

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylosinus; Methylosinus trichosporium;
Methylosinus trichosporium

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Methylosinus; Methylosinus trichosporium;
Methylosinus trichosporium OB3b

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; Pleomorphomonas; Pleomorphomonas oryzae;
Pleomorphomonas oryzae

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; unclassified (derived from Methylocystaceae);
methanotroph E10; methanotroph E10

Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylocystaceae; unclassified (derived from Methylocystaceae);

uncultured Methylocystaceae bacterium; uncultured Methylocystaceae bacterium

Verrucomicrobia

Verrucomicrobia; unclassified (derived from Verrucomicrobia); Methylacidiphilales; Methylacidiphilaceae;
Methylacidiphilum; Methylacidiphilum fumariolicum; Methylacidiphilum fumariolicum
Verrucomicrobia; unclassified (derived from Verrucomicrobia); Methylacidiphilales; Methylacidiphilaceae;
Methylacidiphilum; Methylacidiphilum infernorum; Methylacidiphilum infernorum V4
Verrucomicrobia; unclassified (derived from Verrucomicrobia); Methylacidiphilales; Methylacidiphilaceae;

Methylacidiphilum; Methylacidiphilum kamchatkense; Methylacidiphilum kamchatkense

Unknown

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; unclassified (derived from
Methylococcaceae); methanotroph FL-DIKO; methanotroph FL-DIKO

Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; unclassified (derived from
Methylococcaceae); Methylococcaceae bacterium ET-HIRO; Methylococcaceae bacterium ET-HIRO
Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; unclassified (derived from
Methylococcaceae); Methylococcaceae bacterium ET-SHO; Methylococcaceae bacterium ET-SHO
Proteobacteria; Gammaproteobacteria; Methylococcales; Methylococcaceae; unclassified (derived from

Methylococcaceae); Methylococcaceae bacterium T2-1; Methylococcaceae bacterium T2-1

Creno-

thrix

Proteobacteria; Gammaproteobacteria; Methylococcales; Crenotrichaceae; Crenothrix; Crenothrix polyspora;

Crenothrix polyspora
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Supplementary Table 2: Methanogen Classifications

Type Taxonomic classification

Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae; Methanobacterium;
Methanobacterium bryantii; Methanobacterium bryantii

Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae; Methanobacterium;
Methanobacterium formicicum; Methanobacterium formicicum

Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae; Methanobacterium;
Methanobacterium kanagiense; Methanobacterium kanagiense

Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae; Methanobacterium;
Methanobacterium oryzae; Methanobacterium oryzae

Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae; Methanobacterium;
Methanobacterium palustre; Methanobacterium palustre

Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae; Methanobacterium;
Methanobacterium sp. MB4; Methanobacterium sp. MB4

Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae; Methanobrevibacter;
Methanobrevibacter arboriphilus; Methanobrevibacter arboriphilus

Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae; Methanobrevibacter;

Methanobrevibacter ruminantium; Methanobrevibacter ruminantium

Hydrogenotroph

Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae; Methanobrevibacter;
Methanobrevibacter smithii; Methanobrevibacter smithii

Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae; Methanobrevibacter;
Methanobrevibacter smithii; Methanobrevibacter smithii ATCC 35061

Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae; Methanobrevibacter;
Methanobrevibacter smithii; Methanobrevibacter smithii DSM 2374

Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae; Methanosphaera;
Methanosphaera stadtmanae; Methanosphaera stadtmanae DSM 3091

Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae; Methanothermobacter;
Methanothermobacter thermautotrophicus; Methanothermobacter thermautotrophicus

Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae; Methanothermobacter;
Methanothermobacter thermautotrophicus; Methanothermobacter thermautotrophicus str. Delta H

Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae; Methanothermobacter;
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Methanothermobacter wolfeii; Methanothermobacter wolfeii

Archaea; Euryarchaeota; Methanococci; Methanococcales; Methanocaldococcaceae; Methanocaldococcus;
Methanocaldococcus vulcanius; Methanocaldococcus vulcanius M7

Archaea; Euryarchaeota; Methanococci; Methanococcales; Methanococcaceae; Methanococcus; Methanococcus
aeolicus; Methanococcus aeolicus

Archaea; Euryarchaeota; Methanococci; Methanococcales; Methanococcaceae; Methanococcus; Methanococcus
aeolicus; Methanococcus aeolicus Nankai-3

Archaea; Euryarchaeota; Methanococci; Methanococcales; Methanococcaceae; Methanococcus; Methanococcus
maripaludis; Methanococcus maripaludis C6

Archaea; Euryarchaeota; Methanococci; Methanococcales; Methanococcaceae; Methanococcus; Methanococcus
voltae; Methanococcus voltae A3

Archaea; Euryarchaeota; Methanomicrobia; Methanocellales; Methanocellaceae; Methanocella; Methanocella
paludicola; Methanocella paludicola SANAE

Archaea; Euryarchaeota; Methanomicrobia; Methanomicrobiales; Methanocorpusculaceae; Methanocorpusculum;
Methanocorpusculum bavaricum; Methanocorpusculum bavaricum

Archaea; Euryarchaeota; Methanomicrobia; Methanomicrobiales; Methanomicrobiaceae; Methanoculleus;
Methanoculleus chikugoensis; Methanoculleus chikugoensis

Archaea; Euryarchaeota; Methanomicrobia; Methanomicrobiales; Methanomicrobiaceae; Methanoculleus;
Methanoculleus thermophilus; Methanoculleus thermophilus

Archaea; Euryarchaeota; Methanomicrobia; Methanomicrobiales; Methanomicrobiaceae; Methanofollis;
Methanofollis liminatans; Methanofollis liminatans

Archaea; Euryarchaeota; Methanomicrobia; Methanomicrobiales; Methanospirillaceae; Methanospirillum;
Methanospirillum hungatei; Methanospirillum hungatei

Archaea; Euryarchaeota; Methanomicrobia; Methanomicrobiales; Methanospirillaceae; Methanospirillum;
Methanospirillum hungatei; Methanospirillum hungatei JF-1

Archaea; Euryarchaeota; Methanopyri; Methanopyrales; Methanopyraceae; Methanopyrus; Methanopyrus

kandleri; Methanopyrus kandleri AV19

Acetoclast

Archaea; Euryarchaeota; Methanomicrobia; Methanosarcinales; Methanosaetaceae; Methanosaeta; Methanosaeta
concilii; Methanosaeta concilii

Archaea; Euryarchaeota; Methanomicrobia; Methanosarcinales; Methanosaetaceae; Methanosaeta; Methanosaeta
harundinacea; Methanosaeta harundinacea

Archaea; Euryarchaeota; Methanomicrobia; Methanosarcinales; Methanosaetaceae; Methanosaeta; Methanosaeta

thermophila; Methanosaeta thermophila PT
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Archaea; Euryarchaeota; Methanomicrobia; Methanosarcinales; Methanosarcinaceae; Methanococcoides;
Methanococcoides burtonii; Methanococcoides burtonii DSM 6242

Archaea; Euryarchaeota; Methanomicrobia; Methanosarcinales; Methanosarcinaceae; Methanolobus;
Methanolobus zinderi; Methanolobus zinderi

Archaea; Euryarchaeota; Methanomicrobia; Methanosarcinales; Methanosarcinaceae; Methanosarcina;
Methanosarcina acetivorans; Methanosarcina acetivorans C2A

Archaea; Euryarchaeota; Methanomicrobia; Methanosarcinales; Methanosarcinaceae; Methanosarcina;
Methanosarcina barkeri; Methanosarcina barkeri str. Fusaro

Archaea; Euryarchaeota; Methanomicrobia; Methanosarcinales; Methanosarcinaceae; Methanosarcina;

Methanosarcina mazei; Methanosarcina mazei Go1l

Supplementary Table 3: Competitor-Stress Tolerator-Ruderal Methanotroph

Classifications

Genus Classification
Methylobacter C,C-R
Methylocaldum C,C-R, R
Methylococcus C,C-R, R
Methylomicrobium C,C-R
Methylomonas C,C-R
Methylocapsa S
Methylocella S
Methylocystis C-S,S,S-R
Methylosinus C-S,S,S-R
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