
A note on Julia and MPI, with code examples

Michael Creel

June 2015

Universitat Autònoma de Barcelona, Barcelona Graduate School of Economics, and
MOVE

Abstract

This note explains how MPI may be used with the Julia programming language. An example of
a simple Monte Carlo study is presented, with code. The code is intended to serve as a general
purpose template for more relevant applications. A second example shows how the template code
may be adapted to perform a Monte Carlo study of the properties of an Approximate Bayesian
Computing estimator of actual research interest. All of the code is available at https://github.
com/mcreel/JuliaMPIMonteCarlo.

Keywords: Julia programming language; message passing interface; Monte Carlo; approxi-
mate Bayesian computing

Julia (http://julialang.org) is a fairly new programming language that is oriented to-
ward scientific computing. Development began in 2009, and the current release version
as of May 2015 is 0.3.8. While this low release number indicates that the language is
still evolving quickly, nevertheless, it is already stable enough to warrant development
of code for research. Julia also has a reasonably complete set of features of interest to
economists, such as methods for optimization, probability distributions, data manipula-
tion, plotting, and so forth1. Julia is a high level language with syntax that is as readable
as that of Matlab or Python, but through use of just in time compilation, the developers
aim to provide performance similar to that of C, a compiled language. Julia is a free and
open source language, and it runs on all popular operating systems. The combination
of all of these features makes the language a very appropriate choice for research and
teaching in economics.

This note shows how Julia may use the message passing interface (MPI) for paral-
lel computing on multicore computers or clusters of computers. Because MPI is such
a widely used method of achieving high performance computing for challenging prob-
lems, it is very useful to be able to use this method with Julia, as existing code for other
languages can easily be adapted. A major advantage of using MPI is code portability:

1 See http://pkg.julialang.org/ for a list - there is even a preliminary Dynare package.

1

https://github.com/mcreel/JuliaMPIMonteCarlo
https://github.com/mcreel/JuliaMPIMonteCarlo
http://julialang.org
1155810
Texto escrito a máquina
Post-print of: Michael Creel "A Note on Julia and MPI, with Code Examples" Computational economics (Springer Verlag), Vol. 48 (2016) , p. 535-546, ISSN 0927-7099. The final version is available at DOI: 10.1007/s10614-015-9516-5

1155810
Cuadro de texto

1 Julia Resources for Economists 2

the same code will run on a notebook, a powerful desktop, a cluster, or a supercomputer.
While Julia does provide other mechanisms for parallel computing such as parallel for
loops and distributed arrays, these methods are not well suited to all problems or all
hardware configurations, so having access to the MPI framework is an important exten-
sion. Fortunately, the MPI package for Julia makes access to MPI a simple matter. This
note covers installation and use of the MPI package, and gives some basic examples, in-
cluding a very basic Monte Carlo study. The note then goes on to show how the same
framework may be easily adapted to study the properties of an econometric estimator of
actual research interest. This is an Approximate Bayesian Computing (ABC) estimator
that uses adaptive importance sampling and local linear nonparametric regression, ap-
plied to the estimation of a structural auction model. This estimator is computationally
intensive, so the ability to speed up computations is important when studying its prop-
erties. It is shown that it is possible to accelerate computations by a factor of 9X, using a
single multicore computer. Because of the portability offered by MPI, greater speedups
could easily be obtained by running exactly the same code on a cluster or supercomputer.

The paper is organized as follows: The first section gives a description of some of
the resources available to economists who are interested in the Julia language. The sec-
ond introduces the MPI package for Julia, and the third second discusses using MPI for
conducting Monte Carlo exercises. A final section offers brief conclusions.

1 Julia Resources for Economists

While use of Julia in economics is still quite limited, some early adopters have made ma-
terials available that illustrate how Julia may be used in economics, and their enthusiasm
for the language may provide a stimulus to those who are doubting whether or not to
experiment with the language:

• Sargent and Stachurski’s Quantitative Economics (Sargent and Stachurski, 2014) is
a web page that provides a number of lectures on quantitative economic modeling,
with code examples in Python and Julia. Regarding these languages, they state:
“Our point prediction is that these will be the two most important languages for
scientific computing in the medium term, for economics and more broadly. Both
are modern, well designed, open source, high productivity languages. Julia is a
recent arrival specifically orientated towards scientific computing that mixes high
productivity and high performance.” The code library for the lectures can be very
easily installed in Julia simply by executing the command Pkd.add(“QuantEcon”)

in a running Julia instance.

• Aruoba and Fernández Villaverde’s paper A Comparison of Programming Lan-
guages in Economics (2014) compares a number of programming languages by
solving a stochastic growth model using value function iteration. They find that
“Julia, with its just-in-time compiler, delivers an outstanding performance. Execu-

http://quant-econ.net/jl/index.html
http://economics.sas.upenn.edu/~jesusfv/comparison_languages.pdf
http://economics.sas.upenn.edu/~jesusfv/comparison_languages.pdf

2 MPI and Julia 3

tion speed is only 2.64 to 2.70 times slower than the speed of C++. Julia is slightly
faster than Java and close to 4 times faster than Matlab. Given how close Julia’s
syntax is to Matlab’s, the fact that it is open-source, and that the language has been
designed from scratch for easy parallelization, many researchers may want to learn
more about it.”

• Bradley Setzler’s blog Julia/Economics (Setzler, 2014) is “a tutorial series for economists
learning to program in the Julia language.” It provides code examples and discus-
sion of econometric methods, including use of pmap() for parallel computing. This
provides an alternative method to the MPI-based methods discussed in this note.

• Sébastien Villemot presented an introduction to Julia at the 2014 CEF conference
(Villemot, 2014). This covers the features of the language and offers performance
tips using examples such as the Hodrick-Prescott filter and the solution of a rational
expectations model using value function iteration.

• Creel and Kristensen (2015a) use Julia and MPI to select statistics out of a large
candidate set, for subsequent use in Approximate Bayesian Computing. Their code
is available at http://www.runmycode.org/companion/view/1116 .

This list is likely to become out of date fairly quickly, but it will provide an economist
who is a new user of Julia with a set of materials that will help to get started.

2 MPI and Julia

The Julia language has a number of mechanisms for parallel computing, including paral-
lel for loops, distributed and shared arrays, and the pmap() and @spawn methods. Some
of these possibilities, for example, shared arrays, are not yet mature as of version 0.3.8.
Other methods, such as @spawn, may be somewhat cumbersome and unnatural for the
sorts of computations that economists are likely to require. The pmap() method is well
illustrated in an example of bootstrapping on Bradley Setzler’s blog, mentioned above.
Even though these methods might be used, and while they may become more efficient
and easier to use in the future, the well-known and well-tested method of parallel com-
puting using MPI is already available to Julia users, in the same form that it has been
available for a number of years to users of languages such as C, Fortran, Octave, R, Ox
and Python. The accumulated experience with these and other languages, and the avail-
able code base, are resources that may profitably be brought to bear when programming
using Julia.

The “message passing interface” (MPI) is a standard that specifies the syntax and se-
mantics for a set of methods of data interchange within C and Fortran computer pro-
grams. Many implementations have been developed by different providers. A well
known implementation is Open MPI (www.open-mpi.org), which is what was used to
run the examples given below. MPI is one of the primary data interchange methods that

http://juliaeconomics.com
http://econforge.github.io/posts/2014/juil./28/cef2014-julia/
http://www.runmycode.org/companion/view/1116
www.open-mpi.org

3 Basic Example 4

is used to run parallel programs on clusters and supercomputers. MPI may be made
available to higher level languages through the use of “wrapper functions” which allow
high level languages such as Ox or Python to make use of C or Fortran code. Julia has
excellent support for using C and Fortran code, so it is not surprising that wrappers for
MPI functions have become available for Julia.

Within economics, MPI is already fairly well known. Early descriptions and simple
examples of use of MPI in economics were given by Swann (2002), Racine (2002), Creel
(2005), and Doornik, Hendry and Shepard (2006). Examples of use of MPI in the course
of serious research in economics are given by Creel and Kristensen (2012, 2015a, 2015b)
and the EMM code by Gallant and Tauchen (Gallant and Tauchen, 2013), which has been
used in a number of research papers.

The MPI interface for the Julia language is described at https://github.com/JuliaParallel/
MPI.jl. To build the package, CMake, and a working MPI installation for C and For-
tran are required. The results reported here were obtained on systems running Debian
GNU/Linux. On such a system, one can install Julia, CMake and Open MPI using the
command apt-get install julia cmake openmpi-bin. Once the dependencies are
installed, the MPI package is installed by executing Pkg.update() then Pkg.add("MPI")

from the Julia prompt.

3 Basic Example

Most new MPI users will probably want to know how to send and receive messages. The
example example1.jl, which accompanies this paper, illustrates this. The code is:

1 import MPI
2 function main()
3 MPI.Init()
4 comm = MPI.COMM_WORLD
5 size = MPI.Comm_size(comm)
6 rank = MPI.Comm_rank(comm)
7 recv_mesg = zeros(100,1)
8 if rank == 0
9 send_mesg = rand(100,1)

10 for i = 1:size-1
11 MPI.Send(send_mesg, i, 0, comm)
12 end
13 else
14 MPI.Recv!(recv_mesg, 0, 0, comm)
15 end
16 m = mean(recv_mesg,1)
17 sleep(rank*2)
18 println("Results on rank ",rank,": ",m)
19 MPI.Barrier(comm)
20 MPI.Finalize()

https://github.com/JuliaParallel/MPI.jl
https://github.com/JuliaParallel/MPI.jl

4 Monte Carlo 5

21 end
22 main()

The following brief discussion goes over this example, which may be sufficient in
order to understand how to use MPI-enabled Julia code, such as the Monte Carlo example
code in the next section. For learning to write MPI-enabled Julia code, a separate study
of basic MPI would be needed. Line 1 shows how to make the functions in the MPI
package available. Lines 3-7 are very standard for MPI programs. Line 3 initializes MPI
communications. Line 4 establishes the MPI communicator, which is a handle to a set of
processes on the physical computer(s), the elements of which can communicate with one
another. Line 5 determines the size of the communicator, and Line 6 lets each parallel
instance of the program determine its own rank in the communicator. Lines 7 creates
an array to hold data that will be exchanged. Lines 8-15 allow for processes to take one
of two paths. The process with rank=0 (as determined in Line 6) sends a message to all
other nodes, while the other processes in the communicator receive the message from
rank 0. In Lines 16-18, each node reports some results. Line 19 ensures that all ranks
reach the same point, before the communicator is shut down, in Line 20. Note that Line
17 causes each rank to pause for an amount of time related to the rank number, which
ensures that the output from different processes printing results to the screen will not be
mixed together.

To run this, one executes a command like mpirun -np 5 julia example1.jl from
the system prompt (not the Julia prompt). The “5” in this command means that 5 ranks
are to be used. The output is

1 michael@yosemite:~/Desktop/Papers/JuliaMPI$ mpirun -np 5 julia example1.jl
2 Results on rank 0: [0.0]
3 Results on rank 1: [0.45776271888466374]
4 Results on rank 2: [0.45776271888466374]
5 Results on rank 3: [0.45776271888466374]
6 Results on rank 4: [0.45776271888466374]
7 michael@yosemite:~/Desktop/Papers/JuliaMPI$

Rank 0 reports the mean of the array of zeros, while the other ranks report the mean of
the 100 uniform number that were generated in Line 9. Line 17 has caused the ranks to
report their results in order. This simple example has introduced some basic ideas, such
as different code paths within the communicator, sending and receiving, barriers, and so
forth. With these ideas, one can understand simple MPI programs.

4 Monte Carlo

Monte Carlo studies are a basic part of investigation in econometrics, to study and verify
properties of estimators. Monte Carlo studies have an embarrassingly parallel struc-
ture, which means that the replications are independent of one another and may run

http://en.wikipedia.org/wiki/Embarrassingly_parallel

4 Monte Carlo 6

simultaneously, without any interaction. Such problems are ideal candidates for paral-
lel computing (see Creel, 2005, for discussion and references). The MPI methods seen
in the example1.jl example are almost enough to write a general purpose Monte Carlo
function. In this section we present a general purpose function to do Monte Carlo and
illustrate it with two examples, a simple one involving approximating π, and a more
realistic one that investigates the properties of an econometric estimator.

4.1 Approximating π

If one were to throw random darts at a square target, the expected value of the proportion
of darts that land in a circle inscribed in the square is π/4: see http://en.wikipedia.

org/wiki/File:Pi_30K.gif2. This leads us to the following code which approximates
π :

1 reps = Int(1e6) # desired number of MC reps
2 results = zeros(reps,1)
3 for sofar = 1:reps
4 results[sofar,:] = 4.*(norm(rand(2,1)) .< 1.)
5 end
6 println("pihat: ", mean(results))

Running this gives:

1 michael@yosemite:~/Desktop/Papers/JuliaMPI/Pi$ time julia pi.jl
2 pihat: 3.139056
3

4 real 0m1.243s
5 user 0m1.272s
6 sys 0m0.444s
7 michael@yosemite:~/Desktop/Papers/JuliaMPI/Pi$

We see that the approximation seems to work, and that it is pretty quick. There’s clearly
no need to parallelize this code, but nevertheless, this code has the basic structure of a
Monte Carlo study: the computations in lines 3-5 of the program are a number of in-
dependent repetitions of the same calculation. Here’s a version that can make use of a
general purpose MPI-enabled Monte Carlo program :

1 include("montecarlo.jl")
2

3 function pi_wrapper()
4 pihat = 4.*float((norm(rand(2,1)) .< 1.))
5 end
6

7 # this function reports intermediate results during MC runs
8 function pi_monitor(sofar, results)

2 We make the unrealistic assumption that one never misses the target completely!

http://en.wikipedia.org/wiki/File:Pi_30K.gif
http://en.wikipedia.org/wiki/File:Pi_30K.gif

4 Monte Carlo 7

9 # examine results every 2.5*10^5 draws
10 if mod(sofar,2.5e5)==0.
11 m = mean(results[1:sofar,:],1)
12 println("reps so far: ", sofar)
13 println("pihat: ", m)
14 println()
15 #if sofar == size(results,1)
16 # writedlm("mcresults.out", results)
17 #end
18 end
19 end
20

21 # do the monte carlo: 10^6 reps of single draws
22 function main()
23 reps = Int(1e6) # desired number of MC reps
24 nreturns = 1
25 pooled = Int(50000)
26 montecarlo(pi_wrapper, pi_monitor, reps, nreturns, pooled)
27 end
28

29 main()

This code has put the computation that is repeated into a function, in Lines 3-5. Lines 7-19
define a function that can be used to monitor results during the course of the Monte Carlo
replications. Note that final results can be written to disk if Lines 15-17 are uncommented.
Finally, Lines 22-24 define arguments, and Line 26 calls the general purpose Monte Carlo
function. This function is general purpose, because the computations that are repeated
are defined by the first argument, and the results that are displayed are defined by the
second argument. Running this code is done from the system prompt, as we need to use
mpirun, just as in the example of the previous section:

1 michael@yosemite:~/Desktop/Papers/JuliaMPI/Code/Pi$ time mpirun -np 5 julia
pi_mpi.jl

2 reps so far: 250000
3 pihat: [3.13328]
4

5 reps so far: 500000
6 pihat: [3.1348719999999997]
7

8 reps so far: 750000
9 pihat: [3.1357706666666667]

10

11 reps so far: 1000000
12 pihat: [3.13508]
13

14

4 Monte Carlo 8

15 real 0m14.094s
16 user 0m36.284s
17 sys 0m10.388s
18 michael@yosemite:~/Desktop/Papers/JuliaMPI/Code/Pi$

The code takes more than 10 times longer than the simple version! Actually, this is not
surprising. The computations are very simple, so any gains from parallel execution are
wiped out by the communication overhead introduced by using MPI, plus the use of the
monitoring function, which does not exist in the simple serial code. To see where the
communication overhead is incurred, let’s examine the montecarlo.jl code, which is
called in line 26 of the previous listing:

1 import MPI
2 function montecarlo(mc_eval::Function, mc_monitor::Function, reps, n_returns,

pooled=1, sleeptime=0.)
3 blas_set_num_threads(1)
4 # set up the MPI communicator
5 MPI.Init()
6 comm = MPI.COMM_WORLD
7 MPI.Barrier(comm)
8 rank = MPI.Comm_rank(comm)
9 commsize = MPI.Comm_size(comm)

10

11 # containers and book keeping
12 contrib = zeros(pooled, n_returns)
13 results = zeros(reps, n_returns)
14 pernode = reps / (commsize - 1)
15

16 # check arg
17 if mod(pernode,pooled) != 0
18 if rank == 0
19 println("error \(montecarlo\): pooled must be even divisor of reps/(

ranks-1)")
20 end
21 MPI.Barrier(comm)
22 MPI.Finalize()
23 return 0
24 end
25

26 # workers’ code
27 if rank > 0
28 @inbounds for i = 1:pernode/pooled
29 # do work
30 for j = 1:pooled
31 contrib[j,:] = mc_eval()
32 end

4 Monte Carlo 9

33 MPI.Isend(contrib, 0, rank, comm)
34 end
35

36 else # frontend
37 sofar = 0 # results collected so far
38 done = false
39 while ~done
40 sleep(sleeptime) # flood control if job is costly
41 @inbounds for node = 1:commsize-1
42 # check for results
43 ready = false
44 ready, junk = MPI.Iprobe(node, node, comm)
45 if ready # get them if they’re ready
46 sofar +=1
47 if sofar*pooled <= reps
48 MPI.Recv!(contrib, node, node, comm)
49 results[sofar*pooled-pooled+1:sofar*pooled,:] = contrib
50 mc_monitor(sofar*pooled, results)
51 end
52 if sofar == reps/pooled
53 done = true
54 break
55 end
56 end
57 end
58 end
59 end
60 MPI.Barrier(comm)
61 MPI.Finalize()
62 end

One can see that there is a fair amount more going on than in the case of the simple
serial code. Line 3 restricts computations that use the linear algebra library to use a sin-
gle thread, because the model of parallelization being used is to parallelize the separate
Monte Carlo replications, rather than to try to parallelize individual replications, too. The
MPI communicator is set up in lines 4-9, just as before. Lines 16-24 check an argument,
and possibly report an error message. Then the code splits into two paths, one for worker
ranks (those with rank>0), which perform the Monte Carlo replications, and another for
rank 0, which collects and reports the results.

• Workers: In line 31, workers perform the computation that generates a single Monte
Carlo replication, by executing whatever function was passed as the first argument.
These results are collected, and when the specified number (the fourth argument
to the function) are accumulated, they are sent to node 0 in Line 33. The send
method, MPI.Isend(), is non-blocking, so that the worker can resume generating

4 Monte Carlo 10

more replications while the results are still being transmitted to rank 0. The reason
why a number of results are accumulated before sending them is to avoid excessive
communications overhead. The number of results to be pooled should be larger
when the underlying computation of each replication is less time consuming. Each
worker continues to generate results until it has performed its share of the total
replications, then it exits the main loop.

• Rank 0: The “frontend” rank starts its part of the main loop in line 36. In line 44, a
non-blocking probe is used to check, in turn, if any of the workers has sent results.
If, so, they are received in line 48, and stored in line 49. Line 50 calls the monitoring
function, which is specified as the second of the arguments to montecarlo.jl. Once
the requested number of replications has been received, the frontend node exits the
main loop.

• All nodes: After the main loop, lines 60 and 61 first synchronize all nodes, and then
shut down the MPI communicator.

Having seen the extra communication that the parallel version introduces, it is not sur-
prising that we observe a slow down for the π approximation. However, when the func-
tion that is called in line 31 of the previous listing is computationally intensive, then the
communication overhead will be small in relation to the part that is parallelized, and we
will observe an improvement from parallelization (see Creel and Goffe, 2008). This is the
case for the example in the next section.

4.2 Monte Carlo study of an ABC estimator of an auction model

The π example is simple, but it provides a template for more interesting applications.
Creel and Kristensen (2013) report results for an Approximate Bayesian Computing (ABC)
estimator of a structural auction model. That estimator relied on simple sampling from
the prior, using Algorithm 1 as described in Creel and Kristensen (2015a). In the same
paper, Algorithms 2 and 3 describe an adaptive importance sampling method for ABC
estimation, which was applied by Creel and Kristensen (2015b) for estimation of jump-
diffusion models, and which is used here for estimation of the auction example of Creel
and Kristensen (2013). The use of importance sampling should allow for computation of
a precise ABC estimator while using many fewer simulations than if sampling is done
directly from the prior. However, the construction of the importance sampling density
is somewhat computationally intensive in itself, because it involves adaptively select-
ing particles. For this reason, Monte Carlo study of the estimator is computationally
intensive, because each Monte Carlo replication involves constructing the importance
sampling density from scratch.

Julia code to perform a Monte Carlo study of the ABC estimator of the auction model,
using adaptive importance sampling, is provided, but it is not discussed, because the

4 Monte Carlo 11

methods have been described in the cited papers, and because the intention here is sim-
ply to show how parallelization can achieve a speedup of a Monte Carlo study of the
estimator. In order to perform a Monte Carlo study of the estimator, the following code
may be used:

1 include("Auction.jl") # load auction model code
2 include("AIS.jl") # the adaptive importance sampling algorithm
3 include("montecarlo.jl")
4

5 function AuctionWrapper()
6 # true theta
7 theta = [0.5 0.5]
8 # generate ’true’ aux. stat.
9 Zn = aux_stat(theta)

10 nParticles = 500 # particles to keep per iter
11 multiples = 5 # particles tried is this multiple of particle kept
12 StopCriterion = 0.1 # stop when proportion of new particles accepted is below

this
13 AISdraws = 5000
14 neighbors = 25
15 contrib = AIS_fit(Zn, nParticles, multiples, StopCriterion, AISdraws,

neighbors)
16 end
17

18 # the monitoring function
19 function AuctionMonitor(sofar, results)
20 if mod(sofar,100) == 0
21 theta = [0.5 0.5]
22 m = mean(results[1:sofar,1:end],1)
23 er = theta - m; # theta defined at top level, so ok to use
24 b = mean(er,1)
25 s = std(results[1:sofar,:],1)
26 mse = s.^2 + b.^2
27 rmse = sqrt(mse)
28 println()
29 println("reps so far: ", sofar)
30 println("mean: ", m)
31 println("bias: ", b)
32 println("st. dev.: ", s)
33 println("rmse.: ",rmse)
34 end
35 end
36

37 function main()
38 reps = 100 # desired number of MC reps
39 n_returns = 2

4 Monte Carlo 12

40 pooled = 1 # do this many reps b
41 montecarlo(AuctionWrapper, AuctionMonitor, reps, n_returns, pooled)
42 end
43

44 main()

This code is very similar to the code for computing π. The supporting code is loaded in
lines 1-3. Lines 5-16 specify the function to be Monte Carlo’d. The heart of this is in line
15, where the ABC estimator is computed. Lines 18-35 define the monitoring function,
which is a little more complex that the one used in the π example. Line 41 calls the same
general purpose Monte Carlo function as was used in the π example. The main difference
is that the function to be replicated, AuctionWrapper, which computes the econometric
estimator, is much more computationally demanding, because the function called in Line
15 is computationally intensive.

The file SerialRun.jl which is provided with this paper does 100 serial evaluations
of AuctionWrapper(), without using the montecarlo() interface. This code executes in
1308 seconds on a test computer. The test machine has 32 codes, 32GB of RAM, runs
Debian Linux, and has v0.4 of Julia installed. Running the code using 26 MPI ranks gives
the following:

1 michael@pelican:~/JuliaMPI/Auction$ time mpirun -np 26 julia AuctionMC.jl
2

3 reps so far: 100
4 mean: [0.4957610172450354 0.5127891688119225]
5 bias: [0.004238982754964593 -0.012789168811922491]
6 st. dev.: [0.027288166671378705 0.05802974658106408]
7 rmse.: [0.027615448848096438 0.0594223386207777]
8

9 real 2m22.140s
10 user 58m15.564s
11 sys 0m33.080s
12 michael@pelican:~/JuliaMPI/Auction$

We see that wall clock time (real, in the output above) was 2 minutes and 22 seconds,
or 142 seconds. The speedup is roughly 9X (1308/142=9.21). The reason that we do
not obtain a 20X speedup is because all of computational cores share the same CPU cache
resources, as the test machine is a single computer. If one were to use multiple computers,
in a cluster, which is a simple matter when parallelization is done using MPI, one would
experience less cache contention issues, and a greater speedup would be possible. We
see in this example that Julia with MPI is able to achieve a good speedup when the task
being parallelized is computationally expensive. Incidentally, the performance of the
ABC estimator is becoming apparent, in that we observe that bias and root mean squared
error are low over the 100 Monte Carlo replications.

5 Conclusion 13

5 Conclusion

This note has shown some examples of how the Julia language may use MPI for paral-
lelization. Parallelization using MPI has the advantage that code is portable: code can be
developed and tested on a lightweight portable computer, and then run on a powerful
cluster. The Julia language is fairly new, featuring an intuitive and comfortable syntax,
but it also has performance comparable to C and Fortran. It is also free, and it runs on all
of the popular operating systems. The ability to combine Julia with MPI leads to a pro-
gramming environment that is comfortable, powerful, free, OS agnostic, and portable.
This is a combination that should be attractive to many economists, and it is a feature
combination that may not be offered so completely by any other programming language.

References

Aruoba, S.B. and J. Fernández Villaverde (2014) A Comparison of Programming Lan-
guages in Economics http://economics.sas.upenn.edu/~jesusfv/comparison_languages.pdf.
Creel, M. (2005) User-friendly parallel computations with econometric examples, Compu-
tational Economics, 26, 107-128.
Creel, M. and W.L. Goffe (2008) Multi-core CPUs, clusters, and grid computing: A tuto-
rial, Computational Economics, 32, 353-382.
Creel, M. and D. Kristensen (2012) Estimation of dynamic latent variable models using
simulated nonparametric moments, Econometrics Journal, 15, 490-515.
Creel, M. and D. Kristensen (2013) Indirect likelihood inference (revised), UFAE and IAE
Working Papers, http://pareto.uab.es/wp/2013/93113.pdf.
Creel, M. and D. Kristensen (2015a) On selection of statistics for approximate Bayesian
computing (or the method of simulated moments), Computational Statistics & Data Analy-
sis, Available online 22 May 2015, http://dx.doi.org/10.1016/j.csda.2015.05.005.
Creel, M. and D. Kristensen (2015b) ABC of SV: Limited information likelihood inference
in stochastic volatility jump-diffusion models, Journal of Empirical Finance, 31, pp. 85-108.
http://dx.doi.org/10.1016/j.jempfin.2015.01.002.
Doornik, J.A., D.F. Hendry and N. Shephard (2006) Parallel computation in econometrics:
a simplified approach, in E. Kontoghiorgies (ed.) Handbook on Parallel Computing and
Statistics, Chapman & Hall/ CRC, London, pp. 449-476.
Gallant, A.R. and G. Tauchen (2013) EMM: a program for efficient method of moments
estimation, v2.6, User’s Guide, http://www.aronaldg.org/webfiles/emm/emm.tar.
Racine, J. (2002) Parallel distributed kernel estimation, Computational Statistics & Data
Analysis, 40, 293-302.
Sargent, T. and J. Stachurski (2014) Quantitative Economics http://quant-econ.net/jl/index.html.
Setzler, B. (2014) Julia/Economics http://juliaeconomics.com.
Swann, C.A. (2002) Maximum likelihood estimation using parallel computing: an intro-
duction to MPI, Computational Economics, 19, 145-178.

http://economics.sas.upenn.edu/~jesusfv/comparison_languages.pdf
http://economics.sas.upenn.edu/~jesusfv/comparison_languages.pdf
http://pareto.uab.es/wp/2013/93113.pdf
http://dx.doi.org/10.1016/j.csda.2015.05.005
http://dx.doi.org/10.1016/j.jempfin.2015.01.002
http://www.aronaldg.org/webfiles/emm/emm.tar
http://quant-econ.net/jl/index.html
http://juliaeconomics.com

5 Conclusion 14

Villemot, S. (2014). http://econforge.github.io/posts/2014/juil./28/cef2014-julia/ Julia
introduction at CEF 2014.

http://econforge.github.io/posts/2014/juil./28/cef2014-julia/

	Julia Resources for Economists
	MPI and Julia
	Basic Example
	Monte Carlo
	Approximating
	Monte Carlo study of an ABC estimator of an auction model

	Conclusion

