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Anot cija

Perspekt kais luminiscences nanomateri lu pielietojums ir saist ts ar medic nu
un molekul ro biolo iju. Medic niskaj  diagnostik  un terapij  luminiscences
nanomateri li ir daudzsološi mar ieri optiskaj  att lveidošan  un luminisc još
iez šan , kas auj izmantot jaunas neinvaz vas diagnostikas metodes un kompleksas
vit s funkcijas in vivo nov rošanu. Šaj  darb  ir izveidots aktu lo nanoizm ru
luminiscences komplekso oks du (LaPO4:Ce,Tb; YVO4:Eu; Y3Al5O12:Ce (YAG:Ce);
ZnWO4; NiWO4) sistem tiska spektroskopiska p juma kopsavilkums ar m i,
izmantojot luminiscences spektroskopiju ar ener ijas un laika izš iršanu, izanaliz t
elektronu relaks cijas procesus. Eksperimenti ir veikti, izmantojot Eiropas sinhrotronu
centrus: 1) Superlumi galastaciju uz eksperiment s l nijas I pie DORIS III
uzglab šanas gredzena DESY sinhrotron  (Hamburg , V cij ); 2) FinEst ondulatoru
luminiscences galastaciju pie MAX III uzglab šanas gredzena MAX IV sinhrotron
(Lund , Zviedrij ). P jumi ir fokus ti uz ener ijas p rneses procesiem retzemju jonu
optiskaj s p rej s. Lai sniegtu papildu inform ciju par elektronu strukt ru un elektronu
ierosmi nanofosforos, tiek apl kota daž du parametru, piem ram, temperat ras,
piemais juma jonu koncentr cijas un s kotn  ierosin  st vok a ietekme. Darb  ir
konstat ta iev rojama atš ir ba luminiscences paš s starp nano un makroskopiskiem
analogiem. Ieg tie rezult ti par da, ka mazs nanoda u izm rs un nanoda u virsma
ir atbild gi par  izmai m nanoizm ru komplekso oks du luminiscences paš s.



Abstract

The most ambitious and fascinating application of luminescent nanomaterials is
probably related to medicine and molecular biology. Here, luminescent nanomaterials
are promising tags for optical imaging and fluorescent labelling to allow for novel
techniques of non-invasive diagnosis and in vivo observation of complex vital
functions. The current work is a summary of the systematic spectroscopic studies of
actual nanosized luminescent complex oxides (LaPO4:Ce,Tb; YVO4:Eu; Y3Al5O12:Ce
(YAG:Ce); ZnWO4; NiWO4)  with  an  attempt  to  analyse  the  electronic  relaxation
processes performed using energy and time-resolved luminescence spectroscopy. The
experiments have been carried out utilising European synchrotron centres: i) The
Superlumi endstation of I3 line of DORIS III storage ring at DESY (Hamburg,
Germany); ii) The luminescence endstation of the FinEst undulator beamline of MAX
III storage ring at MAX IV (Lund, Sweden). The examinations focused on the energy
transfer processes within the rare-earth ions leading to the optical transitions. The
influence of the different parameters such as temperature, doping concentration, and
initial excited state were treated to provide complementary information concerning the
electronic structure as well as electronic excitations in nanophosphors. A significant
difference in luminescence properties between the nano and macroscopical analogues
was found in the current work. The results achieved show that small nanoparticle size
and loss centres related to the surface of a nanoparticle are responsible for changes in
the luminescence properties of nanosized complex oxides.
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Comparative analysis of the luminescent properties of nanocrystalline LaPO4:Ce,Tb and YVO4:Eu

luminescent materials with macrocrystalline analogues, commercially produced by Philips, has

been performed under excitation by pulsed vacuum ultraviolet (VUV) synchrotron radiation,

ranging from 3.7-40 eV. Special attention was paid to VUV spectral range, which is not reachable

with commonly used lamp and laser sources. Our results clearly show distinct difference in the

excitation spectra for nano- and macrocrystalline samples, especially at energies, when the spatial

separation of electron-hole pairs is comparable with sizes of nanoparticles. Differences in the

region of multiplication of the electronic excitations are also demonstrated and discussed. VC 2011
American Institute of Physics. [doi:10.1063/1.3634112]

I. INTRODUCTION

Oxide luminescent materials LaPO4 and YVO4 doped

with lanthanide ions have been extensively studied as pro-

spective materials in the fields of high-resolution optical

devices, such as color television cathode ray tubes, high-

pressure mercury lamps, electroluminescent and field emis-

sion displays, or as nanophosphors for biological labeling

and bifunctional magnetic-luminescent nanocomposites.1–16

These phosphors are characterized by their high energy-

conversion efficiency, purity in spectral colors, and high

thermal stability. They have the advantage over the currently

used sulfide phosphors in stability in vacuum and absence of

corrosive gas emission under electron bombardment.17

One of the materials discussed in this paper is YVO4:Eu.

Since Levine and Palilla1 in 1964 developed the Eu3þ-doped

YVO4 as a red phosphor for the commercial applications in

color television cathode ray tube displays and high-pressure

mercury lamps, there has been extensive study on this mate-

rial doped with different lanthanide ions, such as Er3þ,

Sm3þ, and Dy3þ. Luminescence properties of YVO4:Eu3þ

crystals and related materials have been studied for more

than three decades.1–3,6,7,15,18–21 The absorption spectrum of

YVO4 shows strong and broad bands in the ultraviolet (UV)

region. The absorption transition involved is a charge trans-

fer from oxygen 2p to the vanadium 3d states, forming

excited (VO4)3� molecular complex. Considerably small

Stokes shift of the emission from such (VO4)3� vanadate

group leads to favorable conditions for thermally activated

energy migration. Thus, bulk YVO4:Eu3þ shows strong red

emission under UV illumination due to efficient energy

transfer from excited (VO4)3� complex anions to Eu3þ

activator ions. Quantum yields as high as 70% are reported,

providing the bulk YVO4:Eu3þ material as one of the most

important phosphor compounds.

In 1998, Hasse and Riwotzki first applied the hydrother-

mal method in the synthesis of lanthanide-doped YVO4

nanocrystalline powers, which were weakly dispersed as an

aqueous colloid.3 In 2000, Huignard et al.6 gained the con-

centrated colloidal solutions of well-dispersed YVO4:Eu3þ

nanoparticles by precipitation reactions at room temperature.

Later, they synthesized colloidal YVO4:Eu3þ nanoparticles

with a diameter of � 8 nm,7 and in the colloids, the

YVO4:Eu3þ nanoparticles also have a relatively high quan-

tum efficiency and brightness in comparison with the other

rare-earth doped nanophosphors.3,6,7 Consequently, the lumi-

nescence properties of YVO4:Eu3þ nanoparticles have

aroused great interest. Among the different host materials

researched, much attention has been given especially to

YVO4:Eu3þ also, because it can be crystallized at low tem-

peratures to obtain much smaller nanocrystals more easily.

Nevertheless, YVO4:Eu nanoparticles have still comparably

low (about 20%) quantum yield,3,4,21 which is much lower

than the quantum yield for bulk YVO4:Eu. One of the possi-

ble reasons of low luminescence efficiency in YVO4:Eu

nanoparticles could be surface loss processes. In order to

suppress them, it was suggested to apply core shell layers of

YF3 around YVO4:Eu nanoparticles.22 Comparison of lumi-

nescence properties for bulk, nano, and core-shelled nano

YVO4:Eu will be extremely useful for the understanding of

surface loss processes, as well as it could help modify nano-

sized YVO4:Eu in order to get nanopowders with high quan-

tum yield.

Another material discussed in this paper, lanthanum

phosphate (LaPO4), also known as monazite, has been widely

used as a phosphor and proton conductor, as well as in sen-

sors, lasers, ceramic materials, catalysts, and heat-resistant
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materials. This is due to its interesting properties, such as very

low solubility in water, high thermal stability, high index of

refraction, and so on.23–27 Rare earth orthophosphates as host

matrices—and LaPO4 in particular—also exhibit quite a good

ionizing and particle radiation as well as photochemical stabil-

ity. This is why LaPO4 has been also suggested as a prospec-

tive waste form for high-level nuclear waste.28,29

In recent years, LaPO4 has been also shown to be a use-

ful host lattice for lanthanide ions to produce phosphors that

emit in a broad range of colors.23,27,30–32 Even in 1963, it

was already known that LaPO4:0.01Ce3þ is a “short lumines-

cence delay time phosphor” and emits ultraviolet (UV) light,

which peaks spectrally at about 340 nm, when excited with

cathode rays, and its luminescence decay time is about 24

ns.33 Doping with different types of rare earth ions (Eu3þ,

Ce3þ, Tb3þ, Nd3þ, Er3þ, Pr3þ, Ho3þ, Yb3þ, Tm3þ) in

macro- as well as nanosized LaPO4 has been frequently

reported in the literature. Among all these phosphate-type

phosphors, trivalent cerium (Ce3þ) and terbium (Tb3þ)

co-activated LaPO4 (LaPO4:Ce,Tb) bulk powder is known as

most efficient because of the high-efficiency energy transfer

between Ce3þ and Tb3þ.23,27,30–32 Bulk LaPO4:Ce,Tb is also

intensely used as an excellent green emitting phosphor for

fluorescent lamps.27,34,35 Nowadays, LaPO4:Ce,Tb is known

as one of the most promising highly luminescent green phos-

phors which is one of the best candidates for biomedical

applications, such as fluorescence resonance energy transfer

(FRET) assays, biolabeling, optical imaging, or

phototherapy,36–38 where green emission from Tb3þ is

highly important. However, under UV excitation (for

instance, under 254-nm radiation of mercury discharge

lamps), only forbidden f-f transitions of Tb3þ in LaPO4

could be excited and, therefore in this case, Tb3þ emission is

not efficient. On the other hand, allowed f-d transition in a

Tb3þ ion lays at much higher energies, i.e., at VUV spectral

range. Thus, in order to effectively absorb relatively low

energy UV light, a sensitizer should be used. In LaPO4 phos-

phor, Ce3þ ions with effective 4f-5d absorption behave as

the sensitizer, whereas Tb3þ ions act as the luminescent cen-

ter. Indeed, under UV excitation of Ce3þ ion, a 4f1! 4f05d1

transition occurs. After energy transfer from Ce3þ to Tb3þ, a

green Tb3þ emission resulting from 5D4 ! 7FJ relaxation

takes place. Despite luminescence properties of bulk

LaPO4:Ce,Tb, as well as energy transfer processes between

Ce3þ and Tb3þ ions, which have been intensively studied

before,34,39–42 we have recently suggested alternative mecha-

nism of energy transfer via the so-called impurity trapped

exciton states in nanosized LaPO4:Ce,Tb43 by analogy with

some other wide bandgap materials.44–46

Most of the studies reported in the literature were per-

formed using laser or ultraviolet lamps as an excitation sour-

ces, while, for instance, LaPO4 belongs to the class of

wideband-gap materials, and its experimental bandgap was

reported to be around 8.0 eV.47,48 To extend the excitation

energy range, in this paper, we use the pulsed synchrotron

radiation, which, due to its broad and continuous spectrum,

is a very useful tool for the investigation of optical and lumi-

nescence properties of wideband-gap materials,49–54 where

UV and VUV excitations are dominant.

II. EXPERIMENT

A. Nanophosphors synthesis

Both types of luminescent LaPO4:Ce,Tb and YVO4:Eu

nanopowders were produced via a microwave-accelerated

synthesis in ionic liquids. This method was described in

detail elsewhere.22,55–57

The crystallinity of as prepared LaPO4:Ce,Tb is proven

by powder x ray diffraction (PXRD) pattern55 as well as by

high-resolution transmission electron microscopy (HRTEM).

Both types of method—as expected—indicate the nanopar-

ticles to crystallize with the monazite type of structure. With

the assumption of spherical particles, a mean particle diame-

ter of 8–10 nm is calculated using Scherrer’s equation. This

value agrees with that determined by electron microscopy.55

The dopant concentration of 45 mol. % Ce3þ and 15 mol. %

Tb3þ is quite common for LaPO4:Ce,Tb phosphors.34 Due to

the similar radii of the three-valent rare-earth ions, phase

separation does not occur.34,35 The composition and the

amount of dopants are confirmed by energy-dispersive x ray

analysis (EDX). Pressed pellets of the as-prepared nanopow-

der show values of: 39 (1) mol. % La (expected 40 mol. %),

46 (1) mol. % Ce (expected 45 mol. %), and 15 (1) mol. %

Tb (expected 15 mol. %). Commercial macroscopic LaPO4:-

Ce,Tb powder with the same dopants level was also used in

the current study as a reference material in the luminescence

measurements.

The details of the synthesis procedure of YVO4:Eu

nanopowders, as well as the result of the sample’s character-

izations by means of electron microscopy, energy loss spec-

troscopy, infrared spectroscopy, dynamic light scattering

(DLS), and x ray diffraction analysis (XRD), have been

reported in Ref. 22. According to electron microscopy, DLS,

and XRD, the presence of uniform and highly crystalline par-

ticles, 12–15 in diameter, is validated. As-prepared particles

turn out to be non-agglomerated and redispersible. Commer-

cial bulk YVO4:Eu powder (with particle size several

microns) from Phillips was also characterized by means of

UV-VUV luminescence spectroscopy for comparison. The

dopant level in nanosized YVO4:Eu was 15 mol. %, whereas

bulk YVO4:Eu was typically doped with 5 mol. %. In order

to minimize possible surface-related losses, YVO4:Eu nano-

particles have been covered by a nonluminescent 1-2 nm

thickness YF3 layer, as was described in Ref. 22. Such a

sample is denoted in the paper as YVO4:Eu@YF3.

B. Luminescence characterization

In the present study, luminescence properties of nano-

phosphors in the UV-VUV spectral range were studied with

pulsed synchrotron radiation from the DORIS III storage

ring of the Deutsches Elektronen-Synchrotron DESY (Ham-

burg, Germany). The Superlumi experimental station of

HASYLAB was used for the measurements of emission and

excitation spectra.58 The excitation spectra were recorded in

the 330-30 nm (3.7-40 eV) spectral range with a spectral re-

solution of 0.3 nm. Excitation spectra of sodium salicylate

were normalized to equal synchrotron radiation intensities

impinging onto the sample. Luminescence spectra in the UV
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and visible/infrared range were recorded with a monochro-

mator (SpectraPro-308i, Acton Research Corporation)

equipped with a liquid nitrogen-cooled CCD detector

(Princeton Instruments) and a photomultiplier (HAMA-

MATSU R6358P). The spectral resolution of the analyzing

monochromator was typically 11 nm. Emission spectra were

corrected for the spectral response of the detection system.

Powders were slightly pressed into pellets and installed onto

the sample holder of a flow-type liquid helium cryostat.

It is necessary to note that both materials belong to the

class of radiation-resistant oxide materials in which radiation

damage occurs via particles elastic collisions only; that is not

the case for 3.7-40 eV photons.59,60

III. RESULTS AND DISCUSSION

A. LaPO4:Ce,Tb

Let us start with demonstration of distinctions in lumi-

nescence properties (especially in the VUV range) between

bulk and nanosized LaPO4:Ce,Tb. Emission spectra of Tb3þ

and Ce3þ ions for both bulk and nanosized LaPO4:Ce,Tb are

demonstrated in Fig. 1. The spectra were excited by 250-nm

photons, which correspond to a 4f1 ! 4f05d1 transition in

the Ce3þ ion. From Fig. 1, it is clearly seen that a significant

discrepancy between emission spectra for bulk and nano

samples takes place. Detailed analysis of the emission spec-

tra was done in Ref. 54, taking into account fine structures of

both Ce3þ and Tb3þ emission bands. It was suggested there

that a strong perturbation of the crystal field of rare-earth

ions due to a small nanoparticle size leads to the changes in

the emission spectra.

The excitation spectra for both Ce3þ and Tb3þ emissions

are depicted in Figs. 2(a) and 2(b) for the bulk and the nano-

sized LaPO4:Ce,Tb samples, respectively. The excitation

spectrum of Ce3þ emission in the 4.0–6.5 eV range for the

bulk LaPO4:Ce,Tb (Fig. 2(a)) ordinates due to 4f-5d transi-

tion in Ce3þ ion in LaPO4 matrix. This spectrum is com-

posed of five bands peaking at 4.46 eV, 4.76 eV, 5.2 eV, 5.8

eV, and 6.05 eV, which are due to the transition from the

ground state 2F5/2 (4f1) to the five crystal-field split levels of

the 2D (5d1) excited state in the LaPO4 lattice. These bands

are similar to those observed for cerium-doped LaPO4 and

reported before in Ref. 61.

The low energy part of the excitation spectrum of Tb3þ

emission, where f-f transition in Tb3þ occur (4.0–5.6 eV), is

very close to the excitation spectrum of Ce3þ emission (Fig.

2(a)). Note, according to Ref. 61, such intensive excitation is

practically negligible in the excitation spectrum of Tb3þ

emission in terbium-doped LaPO4. Taking into account that

f-f transitions of Tb3þ emission are not effective in this spec-

tral range, it is naturally concluded that the intensive excita-

tion of Tb3þ emission in the 4.0–5.6 eV range appears due to

energy transfer from Ce3þ to Tb3þ. On the other hand, f-d

transitions in Tb3þ ions become dominant at energies higher

than 5.6 eV and, therefore, Tb3þ emission can be excited

directly, i.e., without energy transfer via Ce3þ states. A

crystal-field splitting is responsible for a prodigious structure

of the Tb3þ excitation spectrum at energies higher than 5.6

eV (Fig. 2(a)). In this case, the transitions from the ground

state 7F (4f8) to the lowest 7D (4f75d) and to the lowest 9D

(4f75d) term leads to formation of ten bands in the Tb3þ

excitation spectrum (Fig. 2(a)) in the 5.6–7.7 eV range.

These bands are described in detail in Ref. 12 for terbium-

doped bulk LaPO4.

The excitation spectrum for Ce3þ emission in nanosized

LaPO4:Ce,Tb has intensive bands in the 3.5–6.5 eV spectral

range (Fig. 2(b)), which are qualitatively similar to the corre-

sponding excitation obtained for bulk LaPO4:Ce,Tb in Fig.

FIG. 1. (Color online) Emission spectra of Tb3þ and Ce3þ ions (inset) in the

macroscopic and nanosized LaPO4:Ce,Tb under excitation in the Ce3þ

absorption band (250 nm) at 10 K.

FIG. 2. (Color online) Excitation spec-

tra of Ce3þ (340 nm) and Tb3þ (542 nm)

emissions in the macroscopic (a) and

nanosized (b) LaPO4:Ce,Tb at 10 K. The

positions of crystal-field split Ce3þ and

Tb3þ bands in LaPO4:Ce and LaPO4:Tb

obtained in Ref. 61 are demonstrated by

red and blue scale lines for comparison.
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2(a). On the other hand, the excitation spectrum of Tb3þ

emission in the nano sample is drastically changed compared

with the bulk one. Indeed, the part of the excitation spectrum

due to f-d transitions in the Tb3þ ion (5.6 eV and higher) is

significantly suppressed in nano LaPO4:Ce,Tb. This result is

in contradiction to the Tb3þ excitation spectrum in the bulk

sample, where significant contribution of f-d transition in

Tb3þ was detected in the 5.6–7.7 eV range (Fig. 2(a)). It

means that Tb3þ ions practically cannot be directly excited

in nanosized LaPO4:Ce,Tb, but could be excited after energy

transfer from Ce3þ only. We suggest that, due to small nano-

particle size and high impurity concentration, Tb3þ and Ce3þ

ions are closely distributed, i.e., no isolated Tb3þ ions in

nanoparticles. Since a cerium concentration is three times

higher than a terbium one, Ce3þ ions “shield” Tb3þ ions, and

Ce3þ ions’ excitation is very probable.

In fact, the distinctions in the excitation spectra between

bulk and nano samples for both Ce3þ and Tb3þ emissions

are especially well demonstrated in Fig. 3 and Fig. 4. First of

all, it is evident that, exploring the low energy part of the

excitation spectra, a redshift is detected in the excitation

spectra for the nano sample (pointed by arrows on Fig. 3).

This redshift looks the same for both Ce3þ and Tb3þ emis-

sions. As we already mentioned above, Tb3þ emissions are

excited via Ce3þ states at energies below 5.6 eV. Therefore,

it is natural that the excitation spectrum of Tb3þ has similar

peculiarities comparing with the excitation spectrum of Ce3þ

emission in this spectral range. It is supposed that the red-

shift of the excitation spectra is due to perturbation of 5d lev-

els of Ce3þ ions in nanosized LaPO4:Ce,Tb. As a result of

such perturbation, the 5d excited state is slightly shifted and

Ce3þ excitation spectrum in nano LaPO4:Ce,Tb is shifted to

the low energy side, comparing with the corresponding spec-

trum for the bulk sample.

Other significant differences between the excitation

spectra for bulk and nano LaPO4 (Fig. 3) are clearly revealed

in the 6.5-8.5 eV spectral range. Taking into account

bandgap energy of LaPO4 (8 eV), the excitation bands in this

spectral range could belong to excitonic excitation bands

(including self-trapped and/or bound excitons). Optical prop-

erties of excitons are extremely sensitive to nanoparticle

size, due to the increasing role of surface effects. Thus, the

changes in the excitation spectra in the 6.5-8.5 eV spectral

range could be induced by the nanoparticle’s surface on the

excitons in nanosized LaPO4. For instance, the excitation

bands of the bound exciton near Ce3þ are well resolved in

the 6.5-8.0 eV range in bulk LaPO4:Ce,Tb, whereas these

bands are significantly smoothed and suppressed in the nano-

powder (Fig. 3(b)), obviously due to surface influence.

Important information could be retrieved from Fig. 4

examining the excitation spectra at energies higher than 8

eV. In contrast to the bulk material, both Ce3þ and Tb3þ

emissions practically could not be excited in the nanopow-

ders if the excitation energy exceeds the bandgap energy of

FIG. 3. (Color online) Comparison of

excitation spectra of Tb3þ (542 nm) (a)

and Ce3þ (340 nm) (b) emissions for

bulk and nanosized LaPO4:Ce,Tb at 10

K in 3.5–10 eV spectral range.

FIG. 4. (Color online) Comparison of

excitation spectra of Tb3þ (542 nm) (a)

and Ce3þ (340 nm) (b) emissions for

bulk and nanosized LaPO4:Ce,Tb at 10

K in wide spectral range (3.5–40 eV).

Black arrows point out the initial stage

of MEE processes.
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LaPO4. This fact clearly indicates that there is no energy

transfer from the LaPO4 matrix to the Ce3þ and Tb3þ ions in

nanoparticles. Processes occurring under high energy excita-

tions could be briefly considered as follows: After high

energy excitations (higher than 8 eV), electrons in the con-

duction band and holes in the valence band are created. In

the bulk sample, after some relaxations, electrons and holes

are trapped by dopants, forming excited Ce3þ and Tb3þ ions,

and their radiative relaxation leads to Ce3þ and Tb3þ emis-

sions. On the other hand, electrons and holes in the nanopar-

ticles could be easily trapped by surface defects, where their

non-radiative relaxation occurs. Such process is a competing

relaxation channel, comparing with the radiative relaxation

(luminescence), and it should be very efficient in nanopar-

ticles, where the role of surface states is dominated. There-

fore, it is suggested that electrons and holes effectively

trapped by the nanoparticle’s surface and such surface-

related loss processes are a main reason of luminescence

vanishing under high energy excitations in nanosized

LaPO4:Ce,Tb. Negligible luminescence intensity of nano-

sized LaPO4:Ce,Tb under high energy excitation definitely

restricts these materials’ utilization in some practical appli-

cations, for instance, as so-called “slow scintillators” for

security applications.

The shape of the excitation spectra in the bulk LaPO4

sample could depend on many different processes and

parameters, which are considered in detail elsewhere. One of

the most interesting processes occurring under high energy

excitations is so-called multiplication of electronic excita-

tions (MEE). MEE processes’ creation means that two or

more luminescence centers are created per one absorbed

photon. For a successful realization of MEE processes, the

excitation energy of the photon must exceed a threshold

energy Eth¼ 2Eg, where Eg is the bandgap energy. MEE

processes in wide bandgap materials were studied in detail in

Refs. 62 and 63; however, such processes could be also suc-

cessfully realized in semiconductor nanocrystals.64,65 It is

clearly seen from Fig. 4 that, for bulk LaPO4:Ce,Tb, the rise

of the excitation intensity for both Ce3þ and Tb3þ emissions

starts at about 15-17 eV. This value is very close to the value

of 2Eg, keeping in mind that Eg in LaPO4 is 8 eV.

B. YVO4:Eu

Emission spectra for bulk and two nano (as-grown and

YF3-covered) YVO4:Eu samples reveal the characteristic

Eu3þ emission lines (Fig. 5), which are well known in the lit-

erature.3,4,22,66 In contrast to the LaPO4:Ce,Tb phosphor con-

sidered above in Subsection III A, the bandgap of YVO4 is

comparably small (Eg � 3.4 eV). It means that, even under

comparably low 300-nm excitation, europium luminescence

could be excited only after energy transfer from the YVO4

matrix to Eu3þ ions with subsequent f-f radiative relaxation

(5D0! 7FJ transitions). Therefore, Eu3þ emission should be

very sensitive to surface-related losses in YVO4 nanopar-

ticles. Surface-related losses mean that electronic excitations

are captured by surface defects and/or imperfections with

subsequent non-radiative annihilation. Under band-to-band

excitation, electrons and holes form an excited intrinsic mo-

lecular complex (VO4)3�. The energy transfer from the

(VO4)3� complex to the activator ion leads to Eu3þ emis-

sion. However, electrons and holes could be also trapped on

the surface instead of the formation of the (VO4)3� complex.

Therefore, surface-related loss could be considered as one of

the competing relaxation channels under band-to-band exci-

tation in nanoparticles.

We did not compare quantum yields for three samples;

however, special experiment conditions were provided for in

order to compare intensities of luminescence for these three

samples. It is clear (Fig. 5) that luminescence intensity drops

down in the nanopowder, comparing with the bulk material.

On the other hand, after surface passivation by the core shell

layer, luminescence intensity could by significantly

increased.

It is interesting to note that, in contrast to the emission

spectra of LaPO4:Ce,Tb depicted in Fig. 1, the fine structure

of Eu3þ emission bands is well resolved even in YVO4:Eu

nanocrystals. It could mean that crystal field symmetry

around Eu3þ ions does not suffer from the nanoparticle’s

surface.

The excitation spectra for Eu3þ emission in the three

samples studied are depicted in Fig. 6–the low energy part is

shown in detail in Fig. 6(a), whereas the whole spectra are

demonstrated in Fig. 6(b). These spectra are normalized for

better comparison. At least three peaks could be resolved in

the excitation spectra for all samples studied: at 4 eV, 5 eV,

and 6 eV (Fig. 6(a)). Similar peaks were observed before for

bulk YVO4:Eu in Ref. 67 (dashed line in Fig. 6(a)). Taking

into account that similar excitation spectra are observed for

YVO4:Eu samples, which were produced by different meth-

ods, we can conclude that the structure of the excitation

spectra in the 3.5–7.0 eV spectral range has intrinsic nature.

For instance, we suppose that the density of states of vana-

date bands is responsible for the structure of the excitation

spectra.

The most significant distinction in the excitation spectra

between bulk and nano YVO4:Eu is observed in the high

energy part (Fig. 6(b)). The excitation spectrum for bulk

YVO4:Eu has a strong rise at energies higher than 10 eV,

reaching maximum at 30 eV. It is necessary to note that the

intensity of the excitation peak at 30 eV is very close to the

most intensive peak at 4 eV. Such strong intensive excitation

FIG. 5. (Color online) Emission spectra of Eu3þ ions in the macroscopic,

nanosized, and nanosized YF3-covered YVO4:Eu at 10 K.
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of Eu3þ emission with photons with energies near 25 eV

could have a practical application, for instance, in helium

discharge lamps, taking into account the first ionization

potential 24.581 eV of helium gas. Unfortunately, the origin

of the intensive excitation in the 10–40 eV range in bulk

YVO4:Eu is unclear so far, and further investigation is

required.

Exploring the excitation spectra for nanosized YVO4:Eu

and nanosized core shell-covered YVO4:Eu, we can con-

clude that MEE processes are strongly suppressed there.

Indeed, intensity of the excitation peak at 30 eV in nanosized

YVO4:Eu is about 30%, but in nanosized YVO4:Eu@YF, it

is about 10%, comparing with the bulk sample. The degrada-

tion of the excitation spectrum in nano YVO4:Eu could be

explained by an analogy with LaPO4:Ce,Tb, considered

above, i.e., by charge carriers trapping by surface defects

with subsequent non-radiative relaxation. On the other hand,

it is surprising that surface passivation by the nanoparticle

covering in the YVO4:Eu@YF sample does not increase the

intensity of the excitation peak in the 10–45 eV range. More-

over, the intensity of this peak even decreases. It was

expected that surface covering should passivate the surface

defects, which are responsible for surface losses’ processes,

but in reality, we got the opposite result. It is necessary to

note that the main difference between excitation spectra for

nano YVO4:Eu and YVO4:Eu@YF3 samples starts at ener-

gies higher than 10 eV (Fig. 6(b)) Taking into account that

the bandgap energy of YF3 is about 11 eV,51 it is supposed

that the YF3 layer around the YVO4:Eu nanoparticles works

as a “shield”, partially absorbing the excitation energy

intended for the YVO4:Eu core.

IV. CONCLUSION

Detailed investigation of luminescence properties of

nano and macro-sized LaPO4:Ce,Tb and YVO4:Eu phos-

phors has been done in a wide spectral range, including the

vacuum ultraviolet spectral range. It was demonstrated that

nanoparticles’ surface can drastically change emission and

excitation spectra of nanopowders, comparing with corre-

sponding bulk materials. Especially significant distinctions

between excitation spectra for nano and bulk materials were

observed under relatively high energy excitation (exceeding

10 eV). It was suggested that surface-related loss processes,

namely electron-hole pairs’ non-radiative annihilation at the

surface, are responsible for the suppression of energy trans-

fer processes from the host lattice to impurity ions and, sub-

sequently, for rare-earth emission degradation under high

energy excitations in nanosized materials.
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A B S T R A C T

Comparative analysis of bulk, non-coated and core-shelled nanocrystalline YVO4:Eu was performed by means of
time-resolved luminescence and VUV excitation luminescence spectroscopy techniques. Nanocrystalline
YVO4:Eu samples – both as-prepared and YF3 core-shelled – have been synthesized by means of a
microwave-assisted synthesis in ionic liquids, which allows to obtain 10–12 nm nanoparticles with high
crystallinity. The results show noticeable differences between bulk and nanocrystalline YVO4:Eu in photo-
luminescence experimental data, which explains by influence of the nanocrystal surface. A YF3 core-shell layer
around YVO4:Eu nanoparticles partially recovers the intensity of the Eu3+ emission. It is demonstrated that the
Eu3+ luminescence recovery is achieved at the expense of the suppression of the intrinsic emission but not due
to the passivation of surface loss centers in core-shelled nanocrystals. It is also shown that surface loss processes
are the reason of the degradation of energy transfer efficiency from the host lattice to Eu3+ under high-energy
excitations in vacuum ultraviolet spectral range.

1. Introduction

Europium doped yttrium vanadate (YVO4:Eu), developed in 1964
by Levine and Palilla [1], is one of the most important red phosphor
materials that is known for a variety of applications in luminescence
and displays, such as in cathode ray tubes, fluorescent lamps and
plasma displays [2]. Since YVO4:Eu is characterized by high energy-
conversion efficiency, brightness, color purity, inherent sturdiness and
excellent thermal stability, it is a promising material for the production
of optical devices. Luminescence and optical properties of YVO4:Eu

3+

single crystals and macroscopic powders have been intensively studied
for more than 30 years [1,3–8]. The absorption spectrum of YVO4

shows a strong band in the ultraviolet (UV) region. The absorption
transition stems from a charge transfer from oxygen 2p to the
vanadium 3d states, creating an excited (VO4)

3− molecular complex.
Relatively small Stokes shift of the intrinsic emission of the (VO4)

3−

vanadate group creates favorable conditions for thermally activated
energy migration. Therefore, bulk YVO4:Eu

3+ exhibits strong Eu3+ red
emission because of an efficient energy transfer from the excited
vanadate group to the Eu3+ ion. The quantum yield of bulk YVO4:Eu
is reported up to 70%, providing the bulk YVO4:Eu

3+ material as one of

the most important red phosphor compounds [9].
In recent years synthesis and characterization of YVO4:Eu nano-

crystals have been intensively studied [10–26]. Nanocrystalline
YVO4:Eu is relevant for all applications as bulk material, in addition,
thin-film application is another relevant type of application. The
integration of inorganic nanoparticles into polymer thin-films has been
used for the functionalization of polymer materials in marking,
signaling and labeling applications [27,28]. However, the most sig-
nificant application in biological labeling [29] and medicine [30] is
restricted for YVO4 due to its proven toxicity.

Several investigations are devoted to wet chemistry synthesis
techniques of rare earth doped YVO4 nanocrystals, such as sol-gel
processes [20–22,31,32], solution combustion synthesis [16,33], mi-
croemulsions [34], co-precipitation reactions [35], and solvothermal
methods [36]. Huignard et al. described an optimized synthesis of
colloidal well-dispersed YVO4:Eu nanocrystals through direct precipi-
tation from Y3+ and VO4

3- salt in water, using citrate complexing agents
to limit the particles size up to 8 nm and to increase their stability
[11,37]. Recently new strategies of aqueous synthesis of crystalline
YVO4:Eu nanoparticles were reported, for instance, a method based on
a rigorous control of the pH and of the nucleation step via microwave
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heating, and allow a precise control of composition, nanostructure, and
surface states of the luminescent nanoparticles [38]. In the current
study YVO4:Eu nanoparticles have been prepared by means of a
microwave-assisted synthesis in ionic liquids, which allows to produce
10–12 nm luminescent nanoparticles with high crystallinity [39].

Despite of huge progress in YVO4:Eu nanoparticles’ synthesis, still
one of the most significant drawbacks of nanocrystalline YVO4:Eu is its
comparably low (up to 20%) quantum yield [10,11], which is much
lower than the quantum yield of bulk material. One of the possible
reasons of low luminescence efficiency in YVO4:Eu nanoparticles are
surface loss processes, which could be partially suppressed by surface
passivation. For instance, recently it was demonstrated that core shell
layers around YVO4:Eu nanoparticles can significantly improve their
luminescence efficiency [23,25,40].

In this paper, we present a comparative study for bulk, nanosized
and YF3 core-shelled europium doped YVO4 by means of photolumi-
nescence analysis (both steady state and time-resolved) in wide
spectral range including vacuum ultraviolet spectral range. The main
goal of this study is to clarify the role of surface states influencing the
luminescence as well as vibration properties and to obtain information
about non-radiative relaxation channels in nanocrystalline YVO4:Eu.

2. Experiment

2.1. Nanophosphors synthesis

YVO4:Eu nanopowders were produced via a microwave-accelerated
synthesis in ionic liquids. The details of synthesis procedure of
YVO4:Eu nanopowders as well as the result of sample characterization
by means of electron microscopy, energy loss spectroscopy, infrared
spectroscopy, dynamic light scattering (DLS), and X-ray diffraction
analysis (XRD) have been reported in [40]. According to electron
microscopy, DLS and XRD, the presence of uniform and highly
crystalline particles, 12–15 in diameter is validated. The as-prepared
nanoparticles turn out to be non-agglomerated and redispersible. The
dopant level in nanosized YVO4:Eu was 15 mol-%, whereas bulk
YVO4:Eu is typically doped with 5 mol%. In order to minimize possible
surface related losses YVO4:Eu nanoparticles have been covered by a
non luminescent YF3 layer, 1–2 nm thickness, as it was described in
[40]. Such sample is denoted in the paper as YVO4:Eu@YF3.

Commercial bulk-YVO4:Eu powder (with particle size of several
microns) provided by Phillips was also characterized by means of
luminescence spectroscopy for comparison.

2.2. Luminescence characterization

2.2.1. Time-resolved experiments
Comparative analysis of time-resolved luminescence properties

under excitation of wavelength tunable pulsed solid-state laser
PG401/SH pumped by PL2143/Pre-T (pulse duration ~30 ps) from
Ekspla was performed. Luminescence decay kinetics were measured by
Bruker Optics SPEC 250IS/SM monochromator/spectrometer coupled
to a Streak Scope C4334 (time resolution better than 30 ps) from
Hamamatsu. For temperature measurements from 25 to 300 K the
samples have been placed into closed cycle He cryostat DE202N from
Advanced Research Systems. LakeShore 325 temperature controller
(accuracy ± 1 K) has been applied to control the temperature of the
samples. To record luminescence spectra 266 nm excitation wave-
length was used.

2.2.2. Synchrotron radiation based experiments
Utilizing synchrotron radiation for luminescence studies in UV and

VUV spectral range have been successfully applied for many types of
inorganic solids: wide band gap fluorides [41,42], chlorides [43],
bromides [44], iodides [45], complex oxides [46–48] and even
nanocrystalline semiconductor structures [49], and two-dimensional

systems [50].
Luminescence properties of YVO4:Eu nanophosphors in the current

study have been studied utilizing two synchrotron radiation facilities.
In the DORIS III storage ring of the Deutsches Elektronen-Synchrotron
DESY (Hamburg, Germany) synchrotron radiation from bend magnet
was utilized, whereas undulator I3 beamline of MAX III storage ring of
MAX IV (Lund, Sweden) was applied. Both facilities were used for the
measurements of emission and excitation spectra of materials in
question. In the Superlumi beamline [51] of DORIS III (Photon
Science, DESY) the excitation spectra were recorded in the 330–
30 nm (3.7–40 eV) spectral range with a spectral resolution of
0.3 nm. Luminescence spectra in the UV and visible/infrared range
were recorded with a monochromator (SpectraPro-308i, Acton
Research Corporation) equipped with a liquid nitrogen cooled CCD
detector (Princeton Instruments) and a photomultiplier
(HAMAMATSU R6358P). The spectral resolution of the analyzing
monochromator was typically 11 nm. The same registration equipment
was utilized on the mobile luminescence endstation [42] installed on
the FinEst branch of the I3 beamline [52,53] of MAX III ring (MAX IV-
Lab). Excitation spectra of sodium salicylate were normalized to equal
synchrotron radiation intensities impinging onto the sample. Emission
spectra were corrected for the spectral response of the detection
system. Powdered samples were slightly pressed into pellets and
installed onto the sample holder of a flow-type liquid helium cryostat
allowing a temperature manipulation from 10 to 350 K.

3. Results and discussion

3.1. Emission spectra

Emission spectra of bulk and the two nanocrystalline (as-prepared
and YF3-shelled) YVO4:Eu samples are shown in Fig. 1. They reveal the
characteristic Eu3+ emission lines (Fig. 1), which are well known in
literature [10,12]. These spectra are identical under any excitation in
the 3.7–40 eV energy range observed on both synchrotron based
endstations. One can see that the luminescence intensity of Eu3+ drops
down for the nanocrystalline sample in comparison to the the bulk
material. On the other hand, after surface passivation by YF3 core-shell
layer, luminescence intensity significantly recovered.

Since the band gap of YVO4 is about Eg≈3.8 eV [54] even under
comparably low energy UV excitation, the Eu3+ luminescence could be
excited only after energy transfer from the YVO4 lattice to the Eu3+ ions
with subsequent f-f radiative relaxation (5D0→

7FJ transitions).
Therefore, Eu3+ emission should be very sensitive to surface related
losses of the YVO4 nanoparticles. Surface related losses mean that
electronic excitations are trapped by surface defects and/or imperfec-
tions with subsequent non-radiative annihilation. Under band-to-band

Fig. 1. High resolution luminescence spectra of Eu3+ in bulk, nano and core-shell
layered nano YVO4:Eu under UV excitation at 10 K.
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excitation the excited intrinsic molecular complex (VO4
3−)* is created.

The energy transfer from the (VO4
3−)* complex to an activator ion

resulting in characteristic Eu3+ emission. However, electrons and holes
during their thermalization could be efficiently trapped by surface loss
centers instead of forming an excited (VO4

3−)* complex with subse-
quent energy transfer to Eu3+ ions. Therefore, non-radiative relaxation
on the nanoparticle's surface could be considered as one of the most
relevant competing relaxation channels in nanoparticles. Obviously,
surface passivation of YVO4 nanoparticles by yttrium fluoride layer
leads to a suppression of some surface loss centers, and thus, increases
the efficiency of the Eu3+ emission.

Another competing relaxation pathways is related to radiative
relaxation of excited (VO4

3−)* molecular complexes. It is known that
an excited (VO4

3−)* molecular complex itself is efficient intrinsic
luminescence center in YVO4. This intrinsic emission stems from
3T1–

1A1 radiation [1]. Thus, additionally to the Eu3+ emission lines
shown with high resolution in Fig. 2, the broad intrinsic luminescence
has been also detected in the blue spectral range (Fig. 2). This relatively
wide emission band at about 450 nm has been observed in the bulk and
nanocrystalline samples, while it is negligibly small or even absent in
the emission spectrum of the YVO4:Eu@YF3 core-shell sample. The
position and shape of the intrinsic emission bands in the bulk and
nanocrystals are the same at low temperature. On the other hand, the
temperature dependence of the intrinsic emission is different for the
bulk and the nanopowders (Fig. 3). In the case of nanocrystals, the
intrinsic emission band tends to be shifted toward the low energy side
if temperature increases, whereas the position of the corresponding
band in the bulk remains the same at any temperature. A similar red
shift of the emission band is known for other complex oxide
compounds taking the form of ABO4 with A standing for a monovalent
alkaline, divalent alkaline earth, or trivalent lanthanide metal ion, and
B for W, Mo, V, or P. In accordance to literature [41,55] the red-shifted
emission band in ABO4 materials is related to perturbed or defected
metal-oxide molecular complexes. Hence, the red-shifted broad emis-
sion band in the nanocrystalline sample stems from (VO4

3−)* molecular
complexes, which are close to the nanoparticle's surface.

From the temperature dependence depicted in Fig. 3, furthermore,
it is possible to estimate activation energies for thermal quenching of
intrinsic emission in bulk and nanocrystals using Mott and Seitz
equation (see details in [56]). So, the values of activation energies
59 meV and 35 meV have been obtained for the bulk and nanopowders,
respectively. This difference in values of activation energies is an
additional evidence that the emission centers being responsible for

blue intrinsic emission of the bulk and of the nanocrystals are different:
the regular and the surface related (VO4)

3− complexes in bulk and
nanocrystals, respectively.

Returning back to the emission spectra in Fig. 2, we would like to
note that the intensity of the broad blue emission in respect of the Eu3+

line intensity is the highest for the non-covered nanocrystals, while it is
absent for the YVO4:Eu@YF3 nanocrystals. We could not observe any
intrinsic emission for this sample under any excitation in our measure-
ments (up 40 eV). This means that the YF3 protection shell around the
YVO4:Eu nanoparticle core not only increases the intensity of the Eu3+

emission due to passivation of surface loss centers but also because of
switching off the relevant competing relaxation channels – the intrinsic
luminescence of (VO4

3−)*.
We suggest the following scenario to explain the behavior of

intrinsic emission in nanosized YVO4:Eu and core-shell YVO4:Eu@
YF3 samples. Excited (VO4

3−)* molecular complex is tend to have a
quick energy transfer to neighbouring activator ions. Taking into
account that (VO4)

3- molecular complexes are a part of the host lattice,
obviously, its concentration in any case is higher than the concentra-
tion of Eu3+. Since radiative f-f transition on Eu3+ is forbidden,
furthermore, this process is a relatively slow (please see the decay
kinetics below) and each Eu3+ ion cannot accept energy again while
being in the excited state. There are some residual excited (VO4

3−)*

complexes that relax radiatively in the bulk sample leading to the blue
intrinsic emission band (Fig. 2(a)). On the other hand, energy transfer
from (VO4

3−)* complexes to Eu3+ ions is restricted by the size of the
nanocrystallites. Some amount of excited (VO4

3−)* centers are able to
transfer energy to the nearest Eu3+ ions only, whereas a long-distance
energy transfer is restricted in the nanoparticles. The energy transfer
occurs via similar (VO4

3−)* complexes, however, surface allocated
(VO4

3−)* complexes are perturbed by surface, and therefore, they are
distinguished from the corresponding volume complexes. Altogether,
surface (VO4

3−)* complexes terminate the energy transfer, i.e., by
reaching surface (VO4

3−)* complexes, radiative decay takes place
producing the broad blue emission band (Fig. 2(b)). The energy
transfer via (VO4

3−)* centers is quick but the nanoparticle size is small,
so that the probability of energy transfer to Eu3+ or to the nanoparti-
cle's surface is more-or-less similar. Hence, the intensities of the Eu3+

and blue emissions are comparable (Fig. 2(b)).
The absence of the intrinsic emission band in YVO:Eu@YF3

nanoparticles can be explained by the similarity between surface and
volume (VO4)

3− centers. Thus, excited (VO4
3−)* centers near the core

surface do not terminate the energy transfer any longer, but they can
still transfer energy back to neighboured (VO4

3−)* complexes in the

Fig. 2. Luminescence spectra of intrinsic emission in bulk, nano and core-shelled nano
YVO4:Eu under UV excitation at 10 K. Emission lines of Eu3+ are measured with low
spectral resolution. (For interpretation of the references to color in this figure, the reader
is referred to the web version of this article.)

Fig. 3. Temperature dependencies of the intrinsic emission bands in bulk (a) and
nanocrystalline (b) YVO4:Eu under UV excitation.
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nanoparticle volume until non-excited Eu3+ ion is found. Due to the
small size of the nanocrystals, the probability of energy transfer to Eu3+

ions with such conditions is very high. Our model successfully explains
the absence of the blue intrinsic emission and the simultaneous
increase of the intensity of Eu3+ in the emission spectrum of core-shell
layered YVO4:Eu@YF3 depicted in Fig. 2(c).

3.2. Time-resolved luminescence

The comparison of the decay kinetics of Eu3+ emission under
266 nm excitation at room temperature for bulk, nanocrystalline and
core-shell nanocrystalline YVO4:Eu is given in Fig. 4. It is important to
note that the decay kinetics of the Eu3+ luminescence does not depend
on the temperature in contrast to the decay kinetics of the intrinsic
emission (see below). The decay kinetics of the bulk sample (Fig. 4) is
exponential with constant decay time of about 1 ms, which is typical for
Eu3+ luminescence [2]. On the other hand, the decay kinetics of Eu3+

luminescence in both uncoated and core-shell layered nanocrystalline
samples do not obey the single exponential law. These two decay
kinetics (black and blue lines in Fig. 4) are identical and significantly
faster than the corresponding decay kinetics of bulk-YVO4:Eu. This
finding can be explained by an energy transfer from the excited state of
Eu3+ to quench centers as discussed before for many nanophosphors
[10,57]. The origin and the specific nature of these surface loss centers
are unknown. Due to the similarity of the decay kinetics of Eu3+

emission for the uncoated and the core-shell YVO4:Eu nanoparticles,
however, we can suppose that the YF3 core-shell structure does not
remove surface loss centers resulting in this decay-kinetics shortening.
This means that the recovery of the Eu3+ emission intensity (Fig. 1) in
core-shell nanoparticles is achieved at the expense of the suppression
of the intrinsic (VO4)

3− emission and not due to the passivation of
surface loss centers..

In contrast to the Eu3+ decay kinetics (Fig. 4), the decay kinetics of
the blue intrinsic emission are temperature dependent for both bulk
and nanocrystals (Fig. 5). Fig. 5 demonstrates the normalized decay
kinetics of the intrinsic emission for bulk and nanosized YVO4:Eu
under 266 nm laser excitation. These decay kinetics are non-exponen-
tial at any temperature. This result contradicts to the data of YVO4

single crystals where intrinsic luminescence has a single exponential
decay in a wide temperature range [58]. A deviation from a single
exponential decay means that both bulk and nanosized samples exhibit
non-radiative relaxation centers. When increasing the temperature, the
probability of non-radiative transitions increases and the decay kinetics
of the intrinsic luminescence becomes faster. However, it is clearly
visible from Fig. 5 that the temperature quenching is much more
pronounced for the nanocrystalline sample where the decay kinetics

shortening starts already at temperatures higher than 50 K, whereas
the threshold for the temperature quenching of bulk-YVO4:Eu is higher
than 100 K. Accordingly, non-radiative relaxation centers (most likely
surface loss centers) play a more significant role for the intrinsic
luminescence degradation of the nanocrystalline samples rather than
for the bulk sample. Taking into account that the blue intrinsic
emission of the nanocrystals stems from surface-allocated (VO4)

3−

complexes, the decay kinetics behavior in Fig. 5 is consistently
explained..

3.3. Excitation spectra

Excitation spectra in the UV and VUV spectral range of the Eu3+

emission of all three samples are depicted in Fig. 6. These spectra are
normalized on maximum for better comparison. The excitation spectra
of the bulk sample (red line in Fig. 6) reveal a number of excitation
peaks in the low energy part, thus, at 4 eV, 5 eV, 6 eV, 9 eV and 12 eV.
The first two excitation peaks are as well detected in the excitation
spectra of both nanocrystalline samples, whereas the latter three peaks
are poorly resolved. In accordance with literature, all these peaks stem
from molecular transitions on the (VO4

3−)* complex [2]. The low

Fig. 4. The decay kinetics of Eu3+ emission in three YVO4:Eu
3+ samples: bulk,

nanocrystals, and core-shell layered nanocrystals. (For interpretation of the references
to color in this figure, the reader is referred to the web version of this article.)

Fig. 5. The temperature dependence of the decay kinetics of intrinsic blue emission in
bulk (a) and nanocrystalline (b) YVO4:Eu

3+.

Fig. 6. The excitation spectra of Eu3+ emission in three YVO4:Eu
3+ samples: bulk,

nanocrystals, and core-shell layered nanocrystals. (For interpretation of the references to
color in this figure, the reader is referred to the web version of this article.)
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intensity of the high-energy transitions (excitation peaks at 6 eV, 9 eV
and 12 eV) could be explained by the perturbation of high-energy
molecular states by nanoparticle surface.

At energies higher than 12 eV, the excitation spectra of the bulk and
of uncovered nanocrystalline YVO4:Eu are similar. Each spectrum
contains three broad excitation bands marked as A, B and C (Fig. 6).
The most intensive peak B can be attributed to the transition from 4p
orbitals of Y3+ to the conduction band [2]. Similar excitation peaks at
about 30 eV are known for other yttrium containing compounds [59–
61]. The high-energy peak C, in fact, is a tail of the excitation peak at
45–50 eV, which demonstrates the transition from vanadium 4p states
to the conduction band [2]. The peak A can be assigned to a plasmon
excitation [2]. All three high-energy peaks (A, B and C) are significantly
more intensive for the bulk sample. Indeed, the intensity of the
excitation peak B of nanosized YVO4:Eu is about 30% less intense
and about 10% less intense for core-shell YVO4:Eu@YF3 in comparison
to bulk-YVO4:Eu. The reduction of the excitation spectrum of nano-
sized YVO4:Eu could be explained by surface trapping of hot electrons,
which were excited from yttrium and vanadium core orbitals to the
conduction band. The surface passivation of core shell YVO4:Eu@YF3

samples does not help to increase the intensity of the excitation peak in
the 12–45 eV range. Since the band-gap energy of the YF3 shell is about
11 eV [59], it is supposed that the YF3 shell around YVO4:Eu
nanoparticles serves as a “shield” that partially absorbs the excitation
energy.

Fig. 7 confirms the tendency of the surface relaxation under high-
energy excitation. This figure demonstrates the comparison of the
excitation spectra of impurity (Eu3+) and intrinsic (blue) emissions in
bulk (a) and nanocrystalline (b) YVO4:Eu

3+. It is clearly seen that the
excitation spectra of the two emissions of the bulk sample are identical
(Fig. 7(a)), whereas the efficiency of Eu3+ emission is significantly
lower than the efficiency of the intrinsic emission. The most prominent
difference between the efficiency of Eu3+ and the intrinsic emissions is
observed in the 10–40 eV spectral range. The inset of Fig. 7(b) shows
the intensity ratio of the Eu3+ emission and the intrinsic emission. The
ratio I(Eu)/I (intrinsic) drops below 0.5 in the 10–40 eV spectral range.
This is an additional argument demonstrating that electrons and holes
in the nanoparticles under high-energy excitation tend to be trapped by
surface defects with subsequent relaxation via radiative recombination
within (VO4

3−)* complexes. Such process represents a competing
relaxation channel to the radiative relaxation on Eu3+ ions and,
therefore, leads to a reduction of the Eu3+ emission under high-energy
excitation..

4. Conclusions

The comparative analysis of bulk-YVO4:Eu, uncoated nanocrystal-
line YVO4:Eu and core-shell YVO4@YF3 nanocrystalls has been per-
formed by means of time-resolved luminescence and VUV lumines-
cence spectroscopy techniques. The main focus this study were paid to
the influence of the nanoparticle surface on the luminescence processes
in YVO4:Eu and the role of the YF3 shell regarding the Eu3+ emission.
The results can be summarized as follows:

1) Additionally to Eu3+ emission a blue intrinsic emission band has
been observed for bulk and nanocrystalline YVO4:Eu. Despite of the
similarity of the blue emission the responsible emission centers are
different in bulk material and nanocrystals. The (VO4

3−)* molecular
complex on the nanoparticle's surface is the origin of this blue
intrinsic emission in nanocrystals, whereas regular lattice (VO4

3−)*

molecular complexes are well-known emission center in bulk-YVO4.
The blue intrinsic emission stemmed from surface related (VO4)

3−

molecular complex in nanocrystals is a strong relaxation channel,
which competes with the Eu3+ emission. It is suggested that
efficient blue emission is one of the reasons of a strong degradation
of the Eu3+ luminescence in YVO4:Eu nanocrystals.

2) The intrinsic blue emission is absent in core-shell YVO4@YF3

nanocrystals. It is suggested that the YF3 shell around the
YVO4:Eu nanoparticles transforms the surface related (VO4

3−)* into
regular one switching off a strong competing relaxation channel.
This is a main reason of a strong recovery of intensity of Eu3+

luminescence of the core-shell YVO4:Eu@YF3 nanocrystalls.
3) The efficiency of the energy transfer from host lattice to the Eu3+

ions depends on the excitation energy. It is suggested that surface
loss processes, namely electron-hole non-radiative relaxation as
well as a radiative relaxation within surface related (VO4

3−)*

molecular complexes, are the reason of the degradation of energy-
transfer efficiency from host lattice to Eu3+ under high energy
excitations. This fact definitely restricts the use of nanocrystalline
YVO4:Eu as a phosphor for the transformation of high energy
excitations into visible light.
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1 Introduction Bulk cerium doped Y3Al5O12 
(YAG:Ce) is an important and well-known luminescent 
material that had been studied for more than 40 years. This 
compound became as one of the most popular materials 
among others because of its high radiation and chemical 
stability as well as efficient yellow-green luminescence  
([1, 2] and references therein). Luminescent nanocrystals 
or nanophosphors (including YAG:Ce) recently received 
increased attention because of their potential application in 
medicine and biophysics (labeling, signaling, and biomedi-
cal purpose) [3]. Generally, nanophosphors of various in-
organic compounds in form of nanopowders and nanoce-
ramics have been successfully synthesized during the last 
decade all over the world thanks to rapidly developed nano-
technologies. It was reported that YAG:Ce nanopowders 
have been successfully synthesized by means of many 
techniques, which include co-precipitation method [4],  
hydrothermal process [5], Pechini method [6], sol–gel 
method [7]. Resent researches of YAG:Ce are mostly fo-
cused on the synthesis, characterization and applications of 
YAG:Ce in form of nanopowders [8, 9], nanoceramics 
[10–13] and single crystalline films [14, 15]. 

The main goal of the current investigation is a study of 
the luminescence properties of nanosized YAG:Ce under 
high energy excitations including vacuum ultraviolet 
(VUV) range, which is important for biolabelling, radiation 

therapy applications and scintillators. In our study we ap-
plied synchrotron radiation, which has significant advan-
tages over the radiation of ordinary sources. The main ad-
vantages of synchrotron radiation are the extended wave-
length range attained, that gives broad and continuous 
spectrum. In recent works it was shown how important is 
to use synchrotron radiation in investigation of optical and 
luminescence properties of wide band gap insulators [9, 
16–20] as well as of nanocrystalline and two-dimensional 
semiconductors [21, 22]. 

 
2 Results and discussion The luminescence meas-

urements were carried out using pulsed synchrotron radia-
tion at the Superlumi station at Photon Science (DESY, 
Hamburg) [23]. Luminescence spectra in the UV and visi-
ble range were recorded with a spectrograph SpectraPro-
308i (Acton Research Corporation) equipped with a pho-
tomultiplier (Hamamatsu R6358P). The spectral resolution 
of the analysing monochromator was typically 11 nm. 
Emission spectra were corrected for the spectral response 
of the detection systems. The excitation spectra were re-
corded with spectral resolution of 0.3 nm. The excitation 
spectra were normalized to equal quantum intensities of 
synchrotron radiation falling onto sample by means of so-
dium salicylate as reference. The exciting pulse duration is 
125 ps, while the instrumental time resolution of the regis-

Time-resolved luminescence properties of Ce3+ doped
Y3Al5O12 (YAG) nanocrystals have been studied by means of
vacuum-ultraviolet excitation spectroscopy. It was discovered
that additionally to the regular Ce3+ yellow-green emission
which is well-known luminescence in YAG, new emission
covering a broad spectral range from 2.7 eV to 3.5 eV was re-

 vealed in the luminescence spectra for all YAG:Ce nanocrys-
tals studied. This blue-UV emission has fast decay time about
7 ns as well as intensive well-resolved excitation band peak-
ing at 5.9 eV and, in contrast to green Ce3+ emission, practi-
cally is not excited at higher energies. The origin of the blue-
UV emission is tentatively suggested and discussed. 
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tration system was 1 ns. Emission decay kinetics have been 
measured in 196 ns time window. All experiments were 
carried out at room temperature. 

YAG:Ce nanopowders have been synthesized by 
means of a modified sol–gel method similar to that used by 
Pechini, which described in details elsewhere [24]. The 
nanopowders were characterized by means of Scherrer 
method, Williamson–Hall method, X-ray powder diffrac-
tion and BET methods [10]. The average particle size was 
estimated to be about 20 nm. Cerium ions concentration in 
YAG:Ce nanopowders varied from 0.5% to 5.0%. 

The luminescence spectra of YAG:Ce nanopowders 
under high energy excitation (exceeding band gap energy 
of YAG) are shown in Fig. 1(a–e). In these figures one can 
see that all spectra demonstrate only yellow-green emis-
sion of regular Ce3+ in YAG. There are no significant dif-
ferences in the spectra shapes depending on Ce3+ concen-
tration. The emission spectrum for the single crystal 
(Fig. 1(f)) also does not reveal any principle differences 
compared to the emission spectra of the nanopowders. On 
the other hand, the emission spectra of YAG:Ce 
nanopowders are drastically changed if excitation energy is 
below the band gap energy of YAG. In this case, addition-
ally to the yellow-green emission of the regular Ce3+ 
(peaking at 520 nm) an intensive emission in the blue-UV 
spectral range was observed in all nanopowders studied 
under 210 nm (5.9 eV) excitation (Fig. 1(g–l)). The inten-
sity of the blue-UV depends on Ce3+ concentration in the 
YAG nanopowders. One can see that this emission can 
reach up to 75% of the intensity of the regular Ce3+ emis-
sion in 0.5% doped nanopowder and it suppresses strongly 
if Ce3+ concentration in nanopowders increases from 0.5% 
to 5%. It  is  important  to  note that  in  contrast  to  nano- 

 

 
Figure 1 Emission spectra of YAG:Ce nanopowders having dif-
ferent Ce3+ content under 115 nm (10.78 eV) (a–e) and 210 nm 
(5.9 eV) (g–l) excitations. The luminescence spectra of the 
YAG:Ce single crystal under corresponding excitations are given 
for comparison (f, m). All spectra are scaled at 520 nm (2.4 eV). 

powders,  only the regular Ce3+ emission band with maxi-
mum at 2.4 eV (520 nm) was detected for single crystal 
under any excitations.  

The excitation spectra for the regular yellow-green 
Ce3+ emission in one of YAG:Ce nanopowders (0.5% Ce3+ 
concentration) as well as in the single crystal are shown in 
Fig. 2(a), while Fig. 2(b) depicts the excitation spectrum of 
the blue-UV (at 400 nm) emission observed in one of the 
nanopowdered samples (also 0.5% Ce3+ concentration). 
Note, the excitation spectra in Fig. 2 are typical for all na-
nopowders studied and their shapes are poorly cerium con-
centration dependent. The excitation spectrum of the regu-
lar Ce3+ emission in the single crystal reveals several exci-
tation bands in the transparency region of YAG (Fig. 2(a)): 
~340 nm (3.7 eV), 270 nm (4.59 eV), 220 nm (5.6 eV), 
and 205 nm (6.05 eV) (see arrows in Fig. 2(a)). These  
excitation bands in YAG:Ce3+ have been reported in many 
studies before and the peak maxima, which depend to 
some extent upon temperature and the concentration of 
Ce3+ are analysed in detail in [9, 25–27]. These excitation 
peaks stem from the splitting of 5d1 excited state of Ce3+ in 
the crystalline field of D2 symmetry, when Ce3+ ion is in-
corporated into the YAG lattice substituting Y3+ ion. The 
corresponding excitation bands of the regular Ce3+ emis-
sion in nanopowders are poorly resolved due to their in-
creased broadening. Therefore, the excitation spectrum 
represents  a  broad  shapeless  band  (blue  dashed line in 

 

 
Figure 2 Excitation spectra of the regular Ce3+ emission in 
YAG:Ce single crystal and one of nanopowders (0.5%) (a). Exci-
tation spectrum of the blue-UV emission band in one of the 
YAG:Ce nanocrystalline samples (0.5%) (b). The arrows in (a) 
indicate the spectral positions of regular Ce3+ excitation peaks 
known in literature for bulk YAG:Ce (see details in the text). 
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Fig. 2(a)) covering a spectral range from 200 nm to 350 nm. 
Additionally to the excitation bands due to 4f–5d transitions 
the strong excitation is observed in the excitonic spectral 
range in YAG:Ce single crystal just below the band gap 
energy of YAG (8 eV). It is clearly seen (Fig. 2(a)) that ex-
citonic excitations are strongly suppressed in the nanocrys-
talline sample. This fact was already observed and dis-
cussed in detail elsewhere [9]. The excitation curves at  
energies higher than 8 eV are identical for the single crystal 
and nanopowders. The excitation spectrum of Ce3+ emis-
sion in YAG in the 8–40 eV spectral range has been studied 
in detail in [28] where the rise of Ce3+ intensity at energies 
exceeding 8 eV was explained by the direct impact excita-
tion of Ce3+ centers by hot photoelectrons as well as by the 
multiplications of electronic excitation processes. 

The excitation spectrum of blue-UV emission (400 nm) 
depicted in Fig. 2(b) drastically differs from the excitation 
spectra of the regular Ce3+ emission shown in Fig. 2(a). 
The excitation spectrum of the blue-UV emission contains 
a strong main peak at 210 nm (5.9 eV) with the well-
resolved shoulder at 240 nm (5.17 eV) and the low energy 
peak at about 330 nm. The result shown Fig. 2(b) indicates 
that the excitation spectrum of the blue-UV emission is not 
comparable with the excitation bands of the regular Ce3+ 
emission observed for both single and nanocrystalline 
samples in the 4–8 eV spectral range (Fig. 2(a)). Therefore, 
the excitation spectrum of the blue-UV emission cannot be 
simply explained in term of crystal field splitting of 5d1 
state of the regular Ce3+ ion. 

Another remarkable feature of the excitation spectra of 
the blue-UV emission (Fig. 2(b)) is that this emission can-
not be effectively excited at energies higher than the band 
gap energy in YAG (8 eV). This experimental result shows 
that there is extremely weak energy transfer efficiency 
from YAG lattice to the emission center responsible for the 
blue-UV emission band in YAG:Ce nanocrystals. 

Emission decay kinetics of both regular yellow-green 
and the blue-UV emissions in YAG:Ce nanocrystals are 
shown in Fig. 3. The decay kinetic of the regular Ce3+ 
emission observed in the single crystal is shown also in 
Fig. 3(a) for comparison. It is known that the Ce3+ emis-
sion in YAG single crystal has a characteristic decay time 
constant about 80 ns [8]. On the other hand, the decay time 
constant in nanocrystals usually is faster than in bulk due 
to non-radiative relaxation induced by surface loss centers 
which always occur on nanoparticles’ surface [8, 29, 30]. 
Obviously, total decay time of the regular Ce3+ emission in 
the single crystal as well as in the most of nanocrystals 
(Fig. 3(a)) is much slower than the time window of the reg-
istration system. Nevertheless, one can see that there is a 
strong decay time dependence on Ce3+ concentration in 
YAG:Ce nanocrystals studied: emission decay is faster in 
those YAG:Ce nanocrystals having a higher Ce3+ concen-
tration. This dependence in Fig. 3(a) indicates that increas-
ing Ce3+ concentration ions leads to increased number of 
Ce3+ ions on surface sites of nanoparticles where the influ-
ence of surface loss centers is strong. 

 
Figure 3 Decay kinetics of the regular yellow-green (a) and the 
blue-UV (b) emissions for YAG:Ce nanocrystals having differ-
ent Ce3+ concentration. The decay kinetic of the regular yellow-
green emission band for the single crystal is given for comparison 
in (a). 

 

The decay kinetics of the blue-UV emission (Fig. 3(b)) 
have a completely different behaviour. First, the blue-UV 
emission decays much faster than the yellow-green one: 
the decay time constant of the blue-UV emission can be 
roughly estimated as about 6–8 ns. Secondly, there is not 
significant dependency of the decay curves displayed in 
Fig. 3(b) on the Ce3+ concentration in the nanocrystals ex-
amined. 

Distinguished emission and excitation spectra as well 
as emission decay kinetics observed in YAG:Ce nanocrys-
tals for the yellow-green and the blue-UV emission bands 
indicate that these emissions belong to the different emis-
sion centers. The origin of the yellow-green emission is 
evident, the regular Ce3+ ion substituting Y3+ site 3+

Y(Ce ). 
Luminescence properties of this center in the nanocrystal-
line samples can be described and explained adhering to 
the analogy with the bulk YAG:Ce. On the other hand, the 
origin of the blue-UV emission center is debatable. 

The blue-UV emission obtained in our study should be 
distinguished from the intrinsic defect-related lumines-
cence known in YAG. The emission band of antisite de-
fects and F+ centers are peaking at 302 nm (4.1 eV) and 
390 nm (3.15 eV) respectively [9, 13, 14], while the blue-
UV emission in Fig. 1 covers spectral range from 360 nm 
(3.4 eV) to 460 nm (2.7 eV). Similar emission bands at 
3.1 eV and 3.3 eV were observed in YAG:Ce nanocrystals 
in [8] and [9], respectively. In contrast to the emission 
shown in Fig. 1 the emissions at 3.1 eV [8] and 3.3 eV [9] 
were reported for the sample with unknown Ce3+ concen-
tration and quality and they were relatively narrow and 
much weaker than the blue-UV bands shown in Fig. 1. 
Therefore, we can summarize that to our knowledge the 
blue-UV luminescence observed in the current study for 
the YAG:Ce nanocrystals covering a broad spectral range 
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and having high intensity is not reported in literature be-
fore. Taking into account that the XRD analysis did not re-
veal any difference in structure of the nanocrystals and 
bulk YAG [10, 11] we suggest that the blue-UV emission 
occurs due to reduced size of the nanoparticles. The 
nanoparticle’s size is about 20 nm and definitely such 
nanoparticles cannot induce quantum confinement effects 
in the nanocrystals studied. However, the contribution of 
surface drastically increases in nanoparticles having such 
particle size. Therefore, the nanoparticles can have a sig-
nificant numbers of specific centers related to the nanopar-
ticle’s surface (or located close to the surface), which are 
not typical for the corresponding bulk material. Further-
more, since the intensity of blue-UV emission depends 
strongly on the Ce3+ concentration (Fig. 1(g–l)) we suggest 
that the center responsible for the blue-UV emission is 
Ce3+ ion in some specific site of YAG lattice. This specific 
site for Ce3+ ion should be unusual for bulk YAG:Ce be-
cause we did not detect the blue-UV emission in the crystal 
under any excitations (Fig. 1(f, m)). It is suggested that 
without any charge compensation Ce3+ ion can success-
fully substitute Al3+ site in YAG forming 3+

AlCe  center. It is 
known, that Al3+ sites in YAG have the nearest surround-
ings of two types: tetrahedral and octahedral. If the Ce3+ 
replaces the Al3+ ions, that are located in octahedral posi-
tions, it has 6-coordinated nearest surroundings, while tet-
rahedral 3+

AlCe  is 4-fold-coordinated. In any case 3+
AlCe  ion 

has another symmetry because regular CeY
3+ ion nearest 

surroundings is 12-fold-coordinated. It means that there is 
absolutely different crystal field splitting of 5d excited 
state for 3+

AlCe  and 3+
YCe  centers. Hence, 3+

AlCe  and 3+
YCe  cen-

ters have spectrally different emission bands: the blue-UV 
and yellow-green, respectively. The difference in the crys-
tal field splitting for 3+

AlCe  and 3+
YCe  centers is confirmed 

also by their excitation spectra (Fig. 2), which are abso-
lutely different for different emission centers. The exist-
ence of two types of non-equivalent Al3+ sites in YAG 
means that there are two types of 3+

AlCe  centers in nanocrys-
tals. It explains unusual broadening the blue-UV emission. 

Since ionic radii of the aluminium and cerium are dif-
ferent (1.15 Å for Ce3+ and 0.675 Å for Al3+) the formation 
of 3+

AlCe  in bulk YAG:Ce is impossible. However, in con-
trast to bulk YAG:Ce nanoparticles have a big surface area 
where a relatively large Ce3+ ion can successfully substi-
tute Al3+ site on nanoparticle’s surface. Surface origin of 

3+
AlCe  in YAG:Ce nanocrystals is also confirmed by the fol-

lowing experimental facts: (i) there is a strong concentra-
tion quenching of the intensity of the blue-UV emission 
(Fig. 1(g–l)); (ii) there are unusual fast decay kinetics of 
the blue-UV emission (Fig. 3(b)) comparing with the regu-
lar yellow-green luminescence (Fig. 3(a)). Indeed, increas-
ing Ce3+ concentration leads to the high concentration of 

3+
AlCe  ions in restricted surface area creating favourable 

conditions for non-radiative cross-relaxation processes re-
sulting to the degradation of the blue-UV emission band 
(see evolution in Fig. 1(g–l). Furthermore, nanoparticle’s 
surface always has some amount of surface loss centers, 

which significantly increase the probability of non-
radiative processes shortening emission decay time. Obvi-
ously, the influence of surface loss centers is stronger if 
luminescence centers are close to the nanoparticle’s sur-
face. Since the decay time of the blue-UV emission is 
much faster than the yellow-green one, we conclude that 

3+
AlCe  centers stem from surface site or in the close vicinity 

of nanoparticle’s surface. Note, the decay kinetics of the 
blue-UV emission do not contain any slow decay compo-
nent similar to the decay time of the regular Ce3+ emission. 
It means that there are no 3+

AlCe  centers in volume of 
nanoparticles. 

In order to confirm the suggested model of the emis-
sion center responsible for the intensive blue-UV emission 
there are several forthcoming research activities should be 
implemented. EPR, EXAFS of YAG:Ce nanocrystals defi-
nitely can highlight the local structure of the center respon-
sible for the blue-UV emission, while luminescence studies 
of undoped YAG nanocrystals can elucidate the role of in-
trinsic defects. These forthcoming experiments can also 
elucidate the existence of another phase in nanocrystals. 
Microinclusions of perovskite phase in garnets are quite 
typical phenomena [31] and it can strongly influence lumi-
nescence properties of garnets. 

 
3 Conclusion In conclusion, the intensive blue-UV 

emission has been discovered in nanocrystalline YAG:Ce. 
Analysing time-resolved luminescence characteristics ob-
tained in a wide spectral range we suggested that Ce3+ ions 
substituting Al3+ in nanoparticle’s surface are responsible 
for the blue-UV emission observed in YAG:Ce nanocrys-
tals. Depending on Ce3+ concentration the intensity of the 
blue-UV emission can reach up to 75% of intensity of the 
regular yellow-green emission in YAG:Ce nanocrystals. 
Intensive blue-UV emission makes possible a utilizing  
of nanocrystalline YAG:Ce in radiation therapy. Both  
blue-UV and yellow-green emissions in nanocrystalline 
YAG:Ce cover spectral range from 350 nm to 650 nm pro-
viding unique opportunity for the fabrication of a new type 
of actual white luminescent material based on one type of 
impurity ion only. 
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Abstract: The photoluminescence spectra and luminescence excitation spectra of pure microcrystalline and
nano-sized ZnWO4 as well as the ZnxNi1−xWO4 solid solutions were studied using vacuum ultraviolet (VUV)
synchrotron radiation. The samples were also characterized by x-ray powder diffraction. We found that:
(i) the shape of the photoluminescence band at 2.5 eV, being due to radiative electron transitions within
the [WO6]6− anions, becomes modulated by the optical absorption of Ni2+ ions in the ZnxNi1−xWO4 solid
solutions; and (ii) no significant change in the excitation spectra of Zn0.9Ni0.1WO4 is observed compared
to pure ZnWO4. At the same time, a shift of the excitonic bands to smaller energies and a set of peaks,
attributed to the one-electron transitions from the top of the valence band to quasi-localized states, were
observed in the excitation spectrum of nano-sized ZnWO4.
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1. Introduction

Sanmartinite (ZnWO4) belongs to a wide group of
wolframite-type tungstates having the general formula
AWO4 with A2+ = Mg2+,Mn2+,Fe2+,Co2+,Ni2+,Zn2+,

∗E-mail: akalin@latnet.lv (Corresponding author)
†E-mail: a.kuzmin@cfi.lu.lv

and Cd2+ [1]. It is a technologically important mate-
rial, which finds applications such as scintillation de-
tectors, laser-active hosts, optical fibers, sensors, and
phase-change optical recording media [2–7]. In addition,
ZnWO4 shows highly efficient (> 50%) picosecond mul-
tiple Stokes and anti-Stokes generation when used as
a Raman-active crystal in solid-state lasers, based on
stimulated Raman scattering (SRS) [5, 8]. In the latter
case, the strong SRS-active Raman mode at 907 cm−1 is
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the internal stretching W-O Ag-mode in the WO6 octa-
hedra [5, 8]. The tuning of the mode frequency can be
achieved in tungstate solid solutions. Three such systems
are known based on zinc tungstate: ZnWO4-FeWO4 [9],
ZnWO4-MnWO4 [9], and ZnWO4-NiWO4 [10]. The latter
system finds also application as a yellow ceramic pigment
[10].

The optical and luminescent properties of wolframite-type
ZnWO4 have been widely studied in the past more than
once. In particular, the intrinsic luminescence band, ob-
served at room temperature at about 2.5 eV, has been at-
tributed to a charge transfer between oxygen and tung-
sten ions in the [WO6]6− anions [11–14]. The contribu-
tions from defects and distorted tungsten-oxygen octahe-
dra have been also observed [15–17]. Up to now, most fun-
damental studies on tungstates have been performed on
single-crystal samples. In this work we present the results
on nano-sized ZnWO4 and microcrystalline ZnxNi1−xWO4

solid solutions using vacuum ultraviolet (VUV) synchrotron
radiation spectroscopy.

2. Experiment

Pure ZnWO4 and the solid solutions ZnxNi1−xWO4

(x = 0.1− 0.9) were synthesized using a co-precipitation
technique [18, 19]. All chemicals used were analytic grade
reagents (purity 99%, “Reahim”) without further purifi-
cation. Pure ZnWO4 was prepared by the reaction of
ZnSO4·7H2O and Na2WO4·2H2O at room temperature
(20°C), pH 8, and a reaction time of 1-2 hours. The wa-
ter solutions of the two salts were prepared by dissolving
10 mmol of the salt in 100 ml of double-distilled water
with vigorous stirring. Next they were mixed in 1:1 molar
ratio, and white precipitates appeared immediately. Af-
ter completion of the precipitate reaction, the precipitate
was filtered off, washed several times with distilled water,
and dried in air for 12 hours at 80°C thus resulting in the
white-colored nano-sized ZnWO4 powder [19]. Previous
structural studies indicated that the ZnWO4 powder as
prepared has particles of size below 2 nm and a relaxed
ZnWO4 structure [19]1.

The nano-sized powder was next annealed in air for
4 hours at 400°C and 800°C. Annealing above 400°C
results in the growth of crystallites, so that material be-
comes microcrystalline [19]. The yellow-colored solid so-
lutions ZnxNi1−xWO4 (x = 0.1−0.9) were prepared by first

1 A. Kuzmin, A. Kalinko, J. Timoshenko, HASYLAB Annual
Report 2009:
http://hasylab.desy.de/annual_report/files/2009/2009560.pdf

mixing proper amounts of water solutions of ZnSO4·7H2O
and Ni(NO3)2·6H2O salts and further following the same
preparation procedure. After drying, the obtained solid
solutions were annealed in air for 4 hours at 800°C.
The samples’ crystallinity and phase composition (for-
mation of solid solution) were controlled by x-ray pow-
der diffraction (XRD). The XRD patterns (Fig. 1) were
recorded at 20°C using a Bragg-Brentano powder diffrac-
tometer with a graphite monochromator in the diffracted
beam to eliminate the specimen’s fluorescence. A con-
ventional tube with a copper anode (Cu Kα radiation)
was used as x-ray source. The measurements were per-
formed in the angle range 2θ = 5 − 70° with the step
∆(2θ) = 0.05°. The XRD data (ICSD No. 81937) for mon-
oclinic (P2/c) ZnWO4 from [20] were used for comparison.

Figure 1. X-ray diffraction patterns of the microcrystalline ZnWO4
and ZnxNi1−xWO4 solid solutions annealed at 800°C.
(Only a few patterns are shown for clarity).

The photoluminescence spectra were measured using
pulsed YAG:Nd laser excitation (4.66 eV, 8 ns) at 20°C.
The excitation spectra were collected at room temper-
ature exploiting ultraviolet (UV) and vacuum ultraviolet
(VUV) synchrotron radiation (3.6 − 20 eV) emitted from
the DORIS III storage ring at the SUPERLUMI station
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(HASYLAB DESY, Hamburg). The measurement proce-
dure has been described in details elsewhere [21, 22].

Table 1. Lattice parameters (a, b, c, β) and unit cell volume (V )
of monoclinic (P2/c) ZnWO4 (x = 1) and ZnxNi1−xWO4
(x = 0.1− 0.9) solid solutions annealed at 800°C.

x a (Å) b (Å) c (Å) β (°) V (Å3)
1 4.69 5.72 4.93 90.7 132.4

0.9 4.69 5.73 4.94 90.5 132.9
0.8 4.67 5.69 4.93 90.3 131.1
0.7 4.67 5.70 4.92 90.4 130.9
0.6 4.68 5.70 4.94 90.5 131.5
0.5 4.66 5.70 4.93 90.2 131.1
0.4 4.65 5.70 4.93 90.0 130.7
0.3 4.64 5.69 4.93 90.1 130.3
0.1 4.61 5.68 4.92 90.0 129.0

3. Results and discussion
The XRD patterns in Fig. 1 indicate that pure ZnWO4

and the ZnxNi1−xWO4 solid solutions are formed after an-
nealing at 800°C. The XRD pattern of pure ZnWO4 was
indexed using the standard data (Inorganic Crystal Struc-
ture Database (ICSD) No. 81937) for monoclinic (P2/c)
ZnWO4 from [20]. Upon substitution of Zn2+ by Ni2+ ions,
the positions of the Bragg peaks in the XRD patterns
shift slightly in the direction of larger scattering angles
for increasing nickel content due to a decrease of the lat-
tice parameters (Table 1). Upon increasing nickel content
(x), the variation of the c parameter is small (∼ 0.01 Å),
but the values of the a andb parameters decrease by
∼ 0.08 Å and ∼ 0.04 Å, respectively. Also the unit
cell volume decreases from V = 132.4 Å3 in ZnWO4 to
V = 129.0 Å3 in Zn0.1Ni0.9WO4. The results reported in
Table 1 are in agreement with that found in the litera-
ture for pure tungstates (ZnWO4 [10, 20] and NiWO4 [23])
and ZnxNi1−xWO4 solid solutions [10]. Note that the unit
cell volume in NiWO4 (V = 127.7 Å3) [23] is expected
to be smaller by only about 3.5% than that of ZnWO4

(V = 132.3 Å3) [20].
The phase of the ZnxNi1−xWO4 solid solutions remains
monoclinic wolframite-type, and the appearance of any
other phases was not observed, in agreement with [10].
Such behaviour can be expected from the close size of
Zn2+ and Ni2+ ions [24] and is in agreement with previous
findings in [10]. Note that the Bragg peaks in the XRD
patterns in Fig. 1, for example, the three Bragg peaks
(11-1), (111), and (020) located at 2θ = 31°, are slightly
better resolved than in [10].
The photoluminescence spectrum of pure ZnWO4 powder

consists of a broad band, peaked at about 2.5 eV (Fig. 2).
When mixed with NiWO4, the ZnxNi1−xWO4 solid solu-
tions are readily formed, and the luminescence spectrum
splits into three sub-bands, centred at ∼ 2.26 eV, ∼ 2.5 eV,
and ∼ 3.0 eV. Note that the photoluminescence spectra in
Fig. 2 have been normalized at the band maximum, and
their intensity should not be compared. In fact, addition
of nickel results in a reduction of the total photolumi-
nescence signal. We believe that the photoluminescence
in the solid solutions has origin similar to that in pure
ZnWO4, however it is modulated by the self-absorption
effect due to the presence of the Ni2+ ions.

Figure 2. Photoluminescence of microcrystalline pure ZnWO4
(x = 1) and the ZnxNi1−xWO4 solid solutions annealed at
800°C.

In pure ZnWO4 the origin of the main band at 2.5 eV has
been previously assigned to radiative electron transitions
within the [WO6]6− anions [11, 12]. At the same time, the
band at ∼ 2.3 eV has been attributed to recombination
of e-h pairs localized at oxygen-atom-deficient tungstate
ions [15, 16] or distorted WO6 octahedra [17].
The origin of the last band at 3.0 eV appearing in the
solid solutions is attributed to the interference between
the broad luminescence band of the WO6 groups and the
absorption band of the NiO6 groups. The self-absorption
effect is caused by the intensive transition at ∼ 2.72 eV
from the ground state 3A2g to the excited state 3T1 of Ni2+

(3d8) ions [10, 25] in distorted octahedral coordination [23].
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The presence of this absorption band results in a notch
at 2.7 eV in the emission band, thus making the peak at
∼ 3.0 eV more pronounced.

Figure 3. Room temperature (20°C) excitation spectra of pure
ZnWO4 and Zn0.9Ni0.1WO4. (a) 560 nm emission in pure
ZnWO4, obtained from nano-sized ZnWO4 by annealing
at 400°C (solid squares) and 800°C (open circles). (b)
405 nm (open squares), 490 nm (solid circles) and 590 nm
(crosses) emission in Zn0.9Ni0.1WO4.

The excitation spectra are similar for pure ZnWO4 and
10% Ni-doped ZnWO4 powders (Fig. 3). They consists
of a strong band at ∼ 4.0 eV having the excitonic origin
[11, 12]. The intensity of the excitation spectra starts to
grow in the energy region above ∼ 11 eV due to the begin-
ning of the multiplication of electronic excitation (MEE)
process [11, 12]. In this process, a secondary electron-hole
(e-h) pair is created due to the inelastic scattering of a
sufficiently ‘hot’ photoelectron, having an energy exceed-
ing twice that of the band gap value. Further increase of
the excitation energy results in deeper valence electrons
starting to participate in the MEE process. Finally, when
the photon energy reaches ∼ 17 eV, i.e., ≈ 2Eg+EV where

Figure 4. Room temperature (20°C) excitation spectra of the 400 nm
and 650 nm emissions in pure as-prepared nano-sized
ZnWO4, dried in air for 12 hours at 80°C. The bands due
to one-electron transitions are indicated by vertical arrows.

Figure 5. Band structure diagram for wolframite-type ZnWO4 from
[27]. The energy zero is set at the Fermi energy level. The
one-electron transitions, corresponding to the peaks (see
Fig. 4) in the excitation spectra of nano-sized ZnWO4, are
indicated by vertical arrows.

Eg ≈ 4.6−4.9 eV is the band gap energy [11, 26, 27], and
EV ≈ 7.5 eV (Fig. 5) is the valence band width [27], the
electrons from the bottom of the valence band participate
in the MEE process, and the intensity of the excitation
spectra exhausts [11, 12]. Note also that the excitation
spectra in Fig. 3 are weakly modulated by a fine structure
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giving rise to several peaks at about 6, 8, 9.5, 12, 15, and
17 eV: among these the last four peaks are better visible.
These energies correlate with the one-electron transitions
from the top of the valence band to the conduction band
as supported by our LCAO (linear combination of atomic
orbitals) calculations [27].

The excitation spectra in nano-ZnWO4 detected at 400 nm
and 650 nm, are close to that from the crystal (Fig. 4).
However, a strong band of the excitonic origin is shifted
to smaller energies below ∼ 4.0 eV, due to a decrease
of the optical band gap caused by disorder [28]. The
presence of local structural relaxation in nano-ZnWO4 is
confirmed by the extended x-ray absorption fine structure
(EXAFS) studies2 and is in agreement with the recent
Raman and luminescence results [19]. A set of peaks ob-
served at 6, 9, 12, and 16 eV in Fig. 4 is attributed to the
one-electron transitions from the top of the valence band
to quasi-localized states. Such interpretation is in agree-
ment with the first principles LCAO calculations [27] of the
band structure for wolframite-type ZnWO4 (Fig. 5). The
LCAO calculations show that the valence band of ZnWO4,
having largely O 2p character, is separated by the band
gap of 4.6 eV from the bottom of conduction band, which
is dominated by W 5d states [27]. Therefore, the peaks
located between 5 eV and 17 eV in excitation spectra of
nano-ZnWO4 (Fig. 4) are of charge transfer type from oxy-
gen to tungsten.

4. Conclusions

The luminescence spectra and luminescence excitation
spectra of pure microcrystalline and nano-sized ZnWO4

and the ZnxNi1−xWO4 solid solutions were studied using
vacuum ultraviolet (VUV) synchrotron radiation.

The addition of nickel to ZnWO4 increases the intensity
of emission at ∼ 2.3 eV due to a distortion of WO6 oc-
tahedra. The excitation spectra are similar in pure and
Zn0.9Ni0.1WO4 powders showing strong excitonic band at
∼ 4.0 eV and the effect from multiplication of electronic
excitation (MEE) process above ∼ 11 eV.

The shift of the excitonic band in the excitation spectra of
nanosized ZnWO4 is caused by the local structural relax-
ation. In nanosized ZnWO4, a number of bands is observed
in the excitation spectra due to one-electron transitions
from the top of the valence band to quasi-localized states.

2 A. Kuzmin, A. Kalinko, J. Timoshenko, HASYLAB Annual
Report 2009:
http://hasylab.desy.de/annual_report/files/2009/2009560.pdf
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Photoluminescence and excitation spectra of microcrystalline and nanocrystalline nickel tungstate

(NiWO4) were measured using UV-VUV synchrotron radiation source. The origin of the bands is

interpreted using comparative analysis with isostructural ZnWO4 tungstate and based on the results

of recent first-principles band structure calculations. The influence of the local atomic structure re-

laxation and of Ni2þ intra-ion d–d transitions on the photoluminescence band intensity are

discussed. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4959010]

Introduction

Metal tungstates (MWO4) have received considerable

interest from both theoretical and technological point of

view due to their excellent combination of the optical, piezo-

electric, ferroelectric and other properties.1,2 The optical

properties of different metal tungstates can be controlled by

their composition and many wide band-gap tungstates are

found to be promising materials for scintillator

applications.3–10

Among them, nickel tungstate (NiWO4) finds applica-

tions in catalysis,11–14 as humidity15 and gas16 sensor, a pho-

toanode in photovoltaic electrochemical cell,17 a pigment18

and in microwave19 and electrochromic20,21 devices. These

applications are tightly connected to its electronic structure

being scarcely studied in the past. The electronic band struc-

ture of NiWO4 was calculated recently using first-principles

spin-polarized periodic linear combination of atomic orbitals

(LCAO) method in Ref. 22. The photoluminescence proper-

ties of NiWO4 powder and sol-gel derived NiWO4 films, cal-

cined above 600 �C, were investigated at room temperature

under pulsed Xenon discharge lamp excitation in Ref. 23, in-

dicating the presence of a broad blue-green (2.07–3.54 eV)

photoluminescence band.

In this work, we present original results on the photolu-

minescence and excitation spectra of microcrystalline and

nanocrystalline NiWO4, obtained using UV-VUV synchro-

tron radiation spectroscopy. The experiments were carried

out at SUPERLUMI beamline (HASYLAB at DESY,

Hamburg) using 4–20 eV synchrotron radiation from

the DORIS storage ring for excitation.24 This experimental

set-up is a unique tool for investigations of different types of

wide band gap materials.24–33 The interpretation of the pho-

toluminescence and excitation spectra is given based on the

comparative analysis with isomorphous ZnWO4 tungstate32

and using the results of LCAO calculations22 and the Ni(Zn)

K-edge and W L3-edge x-ray absorption spectroscopy

studies.

Experimental and calculation details

NiWO4 and ZnWO4 powders were synthesized using

coprecipitation technique by mixing two aqueous solutions

of Na2WO4–2H2O and Ni(NO3)2�6H2O or ZnSO4�7H2O salts

in bi-distilled water at room temperature (20 �C). The pH

value of the solution was equal to eight. The tungstate sedi-

ment was subsequently washed, filtrated and, after drying,

annealed in air for 4 h at 80 �C (nanocrystalline sample with

crystallites size below 2 nm) and 900 �C (microcrystalline

sample). More details can be found in Ref. 32.

The photoluminescence (Fig. 1) and excitation (Fig. 2)

spectra were collected at 7–300 K exploiting ultraviolet

(UV) and vacuum ultraviolet (VUV) synchrotron radiation

(3.6–20.0 eV) emitted from DORIS III storage ring at

SUPERLUMI station (HASYLAB DESY, Hamburg).

The low-temperature (10 K) Ni(Zn) K-edge and W L3-

edge x-ray absorption spectra were measured in transmission

mode at the HASYLAB/DESY C bending-magnet beamline.

The x-ray radiation was monochromatized by a detuned

Si(111) double-crystal monochromator, and the beam inten-

sity was measured using two ionization chambers filled with

argon and krypton gases. The x-ray absorption spectra were
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analyzed using the EDA software package34 following con-

ventional procedure.35 Radial distribution functions (RDFs)

G(R) (Fig. 3) for Ni(Zn)–O and W–O bonds in microcrystal-

line and nanocrystalline Ni(Zn)WO4 were obtained by the

regularization-like method34,36,37 from the Ni(Zn) K-edge

and W L3-edge extended x-ray absorption fine structure

(EXAFS) spectra. Theoretical scattering amplitude and

phase shift functions, employed in the EXAFS simulations,

were calculated for NiWO4 and ZnWO4 crystallographic

structures by the ab initio FEFF8 code38,39 using complex

exchange-correlation Hedin–Lundqvist potential.

Results and discussion

Photoluminescence spectra

Both tungstates NiWO4 and ZnWO4 have monoclinic

wolframite-type structure (space group P2/c) with two for-

mula units (Z ¼ 2) per primitive cell.40 All metal atoms (Ni,

Zn, and W) are six-fold octahedrally coordinated by oxygen

atoms. The presence of two non-equivalent oxygen atoms

results in metal-oxygen octahedron distortion,41 which is the

largest for WO6 octahedron and the smallest for NiO6 octa-

hedron (Fig. 3).

FIG. 1. The photoluminescence spectra of microcrystalline (left panel) and nanocrystalline (right panel) Ni(Zn)WO4 powders excited by 13.8 eV photons.

FIG. 2. Left panel: Excitation spectra of microcrystalline and nanocrystalline NiWO4 at T ¼ 7 and 80 K. The bands due to the one-electron transitions are indi-

cated by vertical arrows. Right panel: Electronic band structure diagram for wolframite-type NiWO4 from Ref. 22. The energy zero is set at the Fermi-energy

level. The one-electron transitions, corresponding to the peaks at 6, 9, 12, 13.5, and 16 eV in the excitation spectrum of NiWO4 are indicated by vertical

arrows.
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The photoluminescence spectrum of microcrystalline

ZnWO4 powders consists of a broad band, peaked at about

2.5 eV (Fig. 1). The origin of the band has been previously

assigned to radiative electron transitions within the [WO6]6�

molecular complex.42,43 In NiWO4, the same photolumines-

cence band has irregular asymmetric shape, which is close to

that observed previously in solid solutions ZncNi1–cWO4.32

The origin of such band shape can be attributed32 to the self-

absorption effect, i.e., to a modulation of optical absorption

by the intense intra-ion transition within Ni2þ (3d8) ions

from the ground state3 A2g to the excited state3 T1.44

The maximum of the photoluminescence band in nano-

NiWO4 is located at 2.7 eV, thus being shifted by �0.32 eV

to higher energy compared to nano-ZnWO4.45 Such blue-

shift can be explained by a difference in the relaxation of

WO6 octahedra in the two tungstates, which is directly evi-

denced by our W L3-edge EXAFS data (Fig. 3).

Radial distribution functions G(R) for Ni/Zn–O and

W–O bonds in microcrystalline and nanocrystalline

Ni(Zn)WO4 are shown in Fig. 3. The shape of the RDFs con-

firms unambiguously that the WO6 octahedra in both tung-

states are strongly distorted. The relaxation of the first shell

WO6 and Ni(Zn)O6 octahedra in nanocrystalline Ni(Zn)WO4

is clearly observed. Note that in the case of WO6 octahedra

the relaxation affects both shortest (at 1.8–1.9 Å) and longest

(at 2.1–2.2 Å) W–O bonds. The nearest group of the W–O

bonds relaxes stronger in NiWO4 (by �0.07 Å) than in

ZnWO4 (by �0.02 Å), thus being responsible for a differ-

ence in the position of the photoluminescence bands in the

two nanotungstates.

Finally, we would like to note that no significant temper-

ature effect has been observed on the photoluminescence

spectra of microcrystalline and nanocrystalline NiWO4 in

the temperature range 7–80 K. Also the photoluminescence

spectra of micro-NiWO4 at T ¼ 80 K show weak dependence

on the excitation wavelength (4.96 or 13.8 eV).

Excitation spectra

The excitation spectra of microcrystalline NiWO4 show

some temperature dependence in the range from 7 to 80 K

due to the lattice expansion (left panel in Fig. 2). They differ

from that for ZnWO4 from Ref. 32 due to the difference of

about 1 eV in the band gaps: Eg ¼ 3.6 eV (Ref. 46) for

NiWO4, but Eg ¼ 4.6 eV for ZnWO4.47 As a result, the

strong excitonic band clearly visible at �4.5 eV for ZnWO4

(Ref. 32) is not observed in the present data for NiWO4 due

to the spectrometer range limitations: the excitonic band is

expected to be located below 3.7 eV.

The interpretation of the excitation spectra can be done

using the electronic band structure diagram calculated for

NiWO4 in Ref. 22 using the first-principles spin-polarized

periodic linear combination of atomic orbital (LCAO) meth-

od. The valence band of NiWO4 is dominated by oxygen 2p-

states hybridized with nickel 3d(t2g, eg")-states, whereas

tungsten 5d-states and nickel 3d(eg#)-states contribute large-

ly into the bottom of conduction band.22

The broad bands at 5–6, 8–10, 12, 13.5, and 16 eV are

due to the one-electron transitions (arrows in the right panel

of Fig. 2) from the top of the valence band. These transitions

are even more pronounced in the case of nano-NiWO4 due

to quasi-localized nature of the involved electronic states.

Note that such transitions have been also observed previous-

ly in nano-ZnWO4.32

Conclusions

Microcrystalline and nanocrystalline NiWO4 powders

were studied by UV-VUV synchrotron radiation spectrosco-

py in comparison with isomorphous ZnWO4 tungstate. The

photoluminescence and excitation spectra were interpreted

using the results of the first-principles LCAO calculations22

and the local structural information from the Ni(Zn) K-edge

and W L3-edge x-ray absorption spectroscopy studies.

Similar to the case of ZnWO4,42,43 the photolumines-

cence spectra of both microcrystalline and nanocrystalline

NiWO4 powders originate in the [WO6]6� molecular com-

plex. However, their intensity is strongly modulated by the

optical absorption of Ni2þ ions (intra-ion d–d transitions). In

nano-NiWO4, the photoluminescence band maximum is

shifted to shorter wavelengths due to the strong relaxation of

WO6 octahedra.

The excitation spectra are similar in microcrystalline

and nanocrystalline NiWO4 powders. They consist of a num-

ber of bands due to the one-electron transitions across the

band gap from the top of the valence band to the electron

states in the conduction band and above. The bands are more

FIG. 3. Radial distribution functions (RDFs) G(R) for Ni(Zn)–O and W–O bonds within the first coordination shells of metal atoms in microcrystalline (solid

lines) and nanocrystalline (dashed lines) Ni(Zn)WO4, obtained from the analysis of the Ni(Zn) K-edge and W L3-edge EXAFS spectra at 10 K.
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pronounced in nano-NiWO4 due to quasi-localized character

of the involved electronic states.
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