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Abstract

Blazars are a type of active galactic nuclei (AGNs) which are among the most en-

ergetic and violent astrophysical objects, alongside γ-ray bursts (GRBs). The phys-

ical processes, and, in particular, the relativistic jet itself in which the high energy

radiation detected by the terrestrial and space observatories is generated, has been

attracting the attention and interest of astronomers and astrophysicists since their dis-

covery. In the present thesis, we investigate the internal shock (IS) model in which

two magnetized shells of plasma, with cylindrical geometry, collide forming shock

waves, which propagate throughout the plasma accelerating electrons (thermal and

nonthermal) in their wake. Those electrons interact with the magnetic field of the jet

producing magnetobremsstrahlung emission, which is detected by observations. In

this model we also consider that the surroundings of the jet in which this collision

takes place are filled with a monochromatic photon field, which emulates the more

complex broad line region (BLR) of the AGN. Both photons from the external field

and those produced in situ are Compton upscattered by the accelerated electrons.

The main work of the present thesis has been the search of signatures imprinted

on the double bump spectral energy distribution (SED) of blazars that may uncover

the degree of the shell magnetization and the profile of the electrons energy distribu-

tion (EED) injected at the shock front. We have approached the problem numerically,

so that a fair fraction of the work has consisted on improving already existing sophis-

ticated numerical tools or developing new ones from scratch. We have used these

numerical tools to simulate the IS model and reproduce broadband SEDs of blazars.
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Abstract

To validate our methodology and put bounds on the parameters of our model, ob-

servational data has been analyzed so that the generated SEDs are able to reproduce

generic observational data and inferred physical trends.

From the Compton dominance and the spectral index of γ-ray photons obtained

in our models, we infer that a fair fraction of the blazar sequence could be explained

by the shells magnetization; the negligibly magnetized models describing the Flat

Spectrum Radio Quasars (FSRQs) region, whereas moderately magnetized shells fall

into the BL Lacertae object (BL Lac) region. On the other hand, by including thermal

electrons into the population of injected particles and using a numerical tool which

reproduces the low energy region of the magnetobremsstrahlung (MBS) emission, we

have found that the valley which separates the synchrotron and inverse-Compton (IC)

components grows deeper when thermal dominated distributions are injected at the

shock front. A slightly varying synchrotron peak between 1011–1013 Hz, in contrast

with a parameters dependent IC component. These effects induce a scattering in the

vertical direction of the Compton dominance-synchrotron peak plane. From this clear

fact, we cautiously suggest that the proportions of the thermal/nonthermal electrons

have a prominent role explaining the location of blazars in that plane.
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Preface

This thesis aims to reveal the physics underlying the phenomenology observed in

blazars. The reasons why blazars find themselves among the most appealing Astro-

physical objects known and why they are fascinating objects that have stimulated the

creativity of several generations of astronomers and astrophysicists will be addressed

in Chapter 1.

In Chapter 2 we will elaborate on the physical background on which the MBS and

the blazars IS model resides. We will start with the dynamics and electrodynamics of

a charged particle immersed in a homogeneous magnetic field. We will continue with

the description of the dynamics of colliding shells in the IS model, based on Mimica

& Aloy (2012). The last part of this chapter gives an overview of the different types

of distributions of particles, the model employed for the injection of particles at a

shock front and the evolution of particles in a shocked region in two regimes: with

and without including a radiative cooling term active over a finite period of time.

In Chapter 3 we will enclose a detailed description of the numerical techniques

and methods developed and used during my stay in the Computer Aided Modeling of

Astrophysical Plasma (CAMAP) research group with Prof. Miguel Ángel Aloy and

Dr. Petar Mimica. The first part of that chapter is focused on the Internal Shocks

code developed by Mimica & Aloy (2012), which is the cornerstone of the present

work. In the second part we present a detailed description of the code CHAMBA: a new

computational tool which intends to reproduce the emissivity out of single charged

particles moving with arbitrary speed, and also of distributions of particles of arbi-
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Preface

trary profile in a magnetic field. Our published works (Rueda-Becerril et al. 2014b,

2017) are results out of a systematic and consistent use of these tools.

Chapter 4 is based on research performed in the CAMAP research group with

Prof. Miguel A. Aloy and Dr. Petar Mimica, as a continuation of the previously

published work (Mimica & Aloy 2012). The work was published in 2014: J. M.

Rueda-Becerril, P. Mimica, & M. A. Aloy. The influence of the magnetic field on

the spectral properties of blazars. Monthly Notices of the Royal Astronomical Soci-

ety, 438:1856–1869, Feb. 2014b. doi: 10.1093/mnras/stt2335. RMA14. The work

consisted in expanding the parameter space for the internal shocks model of blazars

previously scanned with the code developed by Dr. Petar Mimica and Prof. Miguel

A. Aloy. The aforementioned code was supplemented with the possibility of com-

puting the photons spectral index of the synthetic models (described in §4.5.1). The

observational data was obtained from the Fermi LAT Second AGN Catalog (2LAC)

database1. We performed all the simulations in this chapter in the supercomputer

Tirant.

Chapter 5 is based on research performed in the CAMAP research group with

Prof. Miguel A. Aloy and Dr. Petar Mimica. The work was published in 2017: J. M.

Rueda-Becerril, P. Mimica, & M. A. Aloy. On the influence of a hybrid thermal–

non-thermal distribution in the internal shocks model for blazars. Monthly Notices

of the Royal Astronomical Society, 468:1169–1182, June 2017. doi: 10.1093/mnras/

stx476. RMA17. The results described correspond to simulations made by using

the internal shocks code (Mimica & Aloy 2012) with a hybrid thermal-nonthermal

particles distribution injected (§2.4.2.2), the finite-time particles evolution scheme

(§2.4.3.2) and the new numerical tool CHAMBA (§3.2). All the simulations where

performed using the servers of the Department of Astronomy of Astrophysics of the

University of Valencia: Fujiserver1 and ARC1.

Astrophysics has meant to me like walking into the wild. I never knew what I

was going to find but every step has brought joy and enlightenment. Knowing a bit

of the phenomena which take place out there has been like breathing fresh air in the

woods, which enriches your lungs and brings you peace, or like a heavy rain, which

soaks you with the vital liquid but it is too much that you have to run for shelter.

The process of proposing the development of new numerical tools like CHAMBA, has

1https://heasarc.gsfc.nasa.gov/W3Browse/all/fermilac.html
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helped me to get a feeling of what is out there. The process of writing it, on the other

hand, has been like climbing a mountain: you never know if you are going to get there

or if nature is going to send a storm and make you draw back. We started to climb

from high-energy-electrons base camp. We planned the route there, keeping an eye

on the weather at all moment for any storm forecast. During the days in base camp

we had to deal with fundamental questions like whether it is worth it to go beyond

the transrelativistic heights, which so many explorers have gone up and down with

great skill over and over for decades, or stay at the foothills of magnetobremsstrah-

lung mountain. With a blazarian impulse we decided to leave the tranquility of base

camp and hit the crag. We came across unstable (numerical) gravel ravines, climb

and rappel steep cliffs and monumental crags. Ergs and ergs of vertical walls. There

were moments where no grip was on sight, praying for the rope to hold. Fortunately

for our expedition it did, and we made it to the cyclotron peak.

JMRB
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Chapter1

Introduction

In the present chapter a brief history and state-of-the-art observations and theoretical

models of blazars are described.

1.1 Active Galactic Nuclei

An active galactic nucleus (AGN) is a region of a galaxy that is brighter than normal,

typically associated with the presence of a super massive black hole (SMBH) in the

galactic center. Its luminosity can reach values ∼1045 erg s−1. The observations of

these objects start in the early XX century when astronomers began to realize that

the nuclei of some galaxies had optical emission lines. The first systematic study

of the optical emission from these objects was performed by Seyfert (1943). A few

years earlier Jansky (1932) discovered a strong radio signal, which he thought to be

associated with the Sun, albeit later he concluded that the emission came from the

center of the Milky Way (Jansky 1935). These studies are considered a breakthrough

for the development of radio astronomy, which saw great progress in the following

years. During these years the identification and measurement of the structure of radio

sources also made large advances not only in radio but also in optical, e.g.: Vir A

(M87), and Cyg A (Shields 1999). Jennison & Das Gupta (1953) discovered that the

structure of Cyg A was best modeled as a two-component source, both components

having approximately the same intensity (see Figure 1.1). A short time later a jet

structure emanating from the nucleus of M87 was observed by Baade & Minkowski
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1. Introduction

(1954). A decade later Schmidt (1963) discovered the first quasi-stellar object (QSO):

3C 273.

Figure 1.1: Cygnus A observed by the VLA at 5 GHz (Image courtesy of NRAO/AUI).

A high variability of these objects and their large redshifts have been measured

(Matthews & Sandage 1963; Greenstein & Schmidt 1964; Schmidt & Matthews

1964), proving them to be active, extragalactic and being hosted by a galaxy. How-

ever, the theoretical foundation of the physics responsible for this emission was not

clear. Alfvén & Herlofson (1950) proposed the synchrotron process as responsible

for the radio emission coming from the Sun and radio stars. With this idea Kiepen-

heuer (1950) tried to explain the Galactic radio background as synchrotron radiation

coming from ultrarelativistic electrons accelerated by the interstellar magnetic fields,

taking into account relativistic corrections to the emitted frequency, and later sup-

ported by the corrections1 by Ginzburg (1982). Moreover, Burbidge (1956) estimated

that in order to explain the high luminosities in the optical and radio coming from

M87, the energy supplied to the electrons in the jet, assuming that they are moving

in a magnetic field . 10−2 G, had to be & 1049 erg. Furthermore, De Young & Ax-

ford (1967) pointed out that the estimated strength of the intergalactic magnetic field

would not be enough to collimate the material ejected from the nucleus of, e.g., Cyg

A. Disregarding other possible relativistic effects, they proposed that the jet structure

is more likely dynamic rather than in hydrostatic equilibrium with the intergalactic

1The calculations by Kiepenheuer (1950) carried an error by using the synchrotron approximation
for frequencies ν ≪ νc (see §2.2.4) for the case of ν > νc
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medium and bering its own magnetic field. This was done by balancing the internal

pressure of the jet material with the ram pressure of the intergalactic medium and

estimating that the mass of the jet is ∼ 2 × 106M⊙, the density of the jet material &

10−30 g cm−3 and the time required to stop it . 2 × 105 yr, this being comparable to

the actual age of Cyg A.

Until that point there was no preferred candidate to explain the nature of the

central object of these kind of radio sources. Reasoning from first principles Lynden-

Bell (1969) proposed that the objects in the nuclei of, e.g., M87, Cyg A or Sgr A,

result from the collapse of old quasars with a mass ∼ 109M⊙, and that a flat disk of

gas encompasses these objects. He was the first to propose a model containing both a

SMBH and an accretion disc (AD). After several decades and many observations in

the whole electromagnetic spectrum, astrophysicists proposed the following scenario

for AGNs, which has been so far the most accepted one (Urry & Padovani 1995): A

SMBH is surrounded by a luminous AD. Close to the AD the clouds producing broad

emission lines (broad line region (BLR)) orbit, and further out there is a thick dusty

torus (TD) (or possibly a warped disk). Above the AD there is a hot corona. Finally,

the radio jets are launched from a region close to the black hole (BH), and farther

above, surrounding the jet, there are clouds which produce the narrow emission lines,

called the narrow line region (NLR) (see Figure 1.2).

1.1.1 AGNs zoo

The AGN classification is a challenging topic. The classes of AGNs are multivariate,

i.e. they depend not only on the observed morphology but also on spectral character-

istics and detection criteria (e.g., Urry & Padovani 1995; Tadhunter 2008; Dermer &

Giebels 2016). The first division is made according to their radio loudness; i.e., their

radio to optical flux ratio
F5

FB

& 10, (1.1)

where F5 and FB are the radiation flux at 5 GHz and at the B-band (445 nm). In the

optical, AGNs can be classified by the brightness and width of their emission lines:

broad and bright or narrow and weak.

Along the history of the understanding of AGNs, their taxonomy, divisions and

unification have undergone several changes depending on the observational technique

used, orientation or morphology of the objects (see Urry & Padovani 1995; Tadhunter
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Figure 1.2: AGNs outline (not in scale). Credit: P. Padovani
.

2008, for a deep review on the consensus of AGNs classification). However, state of

the art observations (e.g. Husemann et al. 2016) have shown that AGNs may change

of type in time and therefore their spectral features are not necessarily orientation or

morphology-wise dependent but maybe other kind of phenomena (e.g., tidal disrup-

tion events (TDEs)), have to be considered. Here we will mention the families the

author found exemplary for the context of the present work:

Seyfert 1 Spiral galaxies with broad permitted and forbidden2 emission lines

Seyfert 2 Spiral galaxies with narrow forbidden lines.

NLRG Narrow line radio galaxies (NLRGs) are radio loud galaxies with nar-

row emission lines. This kind of galaxies includes the Fanaroff-Riley radio

galaxies (Fanaroff & Riley 1974):

FR I The hotspots (brightest regions) are closer to the nucleus of the

galaxy and the source becomes fainter as one approaches the outer re-

gion. The jets of these galaxies often appear symmetric in radio.

2The forbidden lines are the spectral lines corresponding to the absorption or emission associated
to the less likely transitions of the electrons in an atom.
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Figure 1.3: Multiwavelength
light curves in γ-rays, opti-
cal R band, X-rays and radio.
Credits Marscher et al. (2010).

FR II The hotspots are farther from the nucleus of the galaxy. Their

morphology consists in more collimated jets and well recognizable radio

lobes.

FSRQ Flat Spectrum Radio Quasars (FSRQs) are radio loud galaxies with

broad emission lines.

There is a third species of AGNs, which shows extremely variable spectrum (see

Figure 1.3). What characterizes these objects is their small angle to the line of sight

of the observer. If the object is radio quiet the object is called a broad absorption line

quasar (BAL QSO). Otherwise we are facing a blazar3.

3The name blazar was coined by the astronomer Edward Spiegel in 1978 to designate those objects
with strong nonthermal broadband continuum and narrow emission lines.
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1.2 Blazars

Blazars are a kind of highly variable and radio loud AGNs whose features are best

explained by nonthermal radiation from a relativistic jet closely aligned to the line of

sight of the observer (e.g. Blandford & Rees 1974). The relativistic plasma moves

along the jet, which is the channel along which the central engine supplies momen-

tum and energy to the extended radio structures, reaching distances of 0.1–1 Mpc

from the nucleus (Urry & Padovani 1995). The broadband continuum of blazars

goes from radio frequencies to γ-rays, developing a double bump in their spectral

energy distribution (SED) (see below). Blazars typically represent less than 5% of

all AGNs (Ajello et al. 2009, 2012)

Figure 1.4: Broadband emission of blazars. Credit: A.E. Wehrle/M.A. Catanese/J.H. Buck-
ley/Whipple Collaboration.

These objects are named after BL Lacertae (see Figure 1.5), first observed by
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Figure 1.5: BL Lacertae
in the optical band (red).
This figure was made us-
ing the Aladin sky at-
las web applet (Bonnarel
et al. 2000; Boch & Fer-
nique 2014), using the
second Digitized Sky Sur-
vey (DSS2).

Hoffmeister (1929) showing high variability emission lines, but at that time it was

categorized as an irregular variable star in the Milky Way. Later Schmitt (1968)

identified BL Lac with the radio source VRO 42.22.01, finding its radio spectrum to

be polarized. A decade later Oke & Gunn (1974) observed that the spectra coming

from it showed absorption lines typical of an ordinary giant galaxy with redshift

z = 0.07.

Blazars are commonly classified according to the relative strength of their ob-

served spectral components. Each component is associated to the contribution of a

relativistic jet (nonthermal emission), to the AD and to the BLR (thermal radiation),

and to the light from the host, usually a giant elliptical galaxy (Urry et al. 2000). The

broadest component of the spectrum is the nonthermal one, and it spans the whole

electromagnetic frequency range, usually displaying two broad peaks or “humps”

(see Figure 1.4). The lower-frequency peak ranges between 1012–1017 Hz (radio and

X-rays), while the high-frequency spans from X-rays to γ-rays, and is believed that is

caused by the inverse-Compton (IC) scattering (Jones et al. 1974; Hoyle et al. 1966;

Fossati et al. 1998).

Depending on the features displayed by their emission lines, blazars can be fur-
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ther subdivided into (Sambruna et al. 1996):

BL Lac BL Lacertae objects (BL Lacs) have featureless emission lines or show

only weak absorption lines. Their synchrotron peak frequency ranges between

radio and X-rays.

FSRQ FSRQs are characterized by broad emission lines. Their synchrotron

peak is found between radio an near infrared.

Moreover, depending on the peak frequency of their SEDs synchrotron component

(νobs
syn), blazars have been recently further subclassified into low-synchrotron peaked

(LSP), intermediate-synchrotron peaked (ISP) and high-synchrotron peaked (HSP)

(e.g. Finke 2013). In the former group we can find low-frequency-peaked BL Lac

objects (LBLs) and most FSRQs with νobs
syn <1014 Hz, in the intermediate group we

find intermediate-frequency-peaked BL Lac objects (IBLs) few FSRQs with νobs
syn

≈1014–1015 Hz, and in the latter group we find high-frequency-peaked BL Lac ob-

jects (HBLs) with νobs
syn >1015 Hz (Sambruna et al. 1996; Abdo et al. 2010a; Giommi

et al. 2012a).

1.2.1 Blazar models

As we have mentioned above, there is a broad consensus that the low frequency peak

is due to the synchrotron emission from relativistic electrons gyrating in a magnetic

field. As for the high frequency peak, as mentioned before, it may be the result of

IC scattering. To account for observations, different ideas have been put forward

about where the seed photons for IC scattering come from. For instance: IC syn-

chrotron photons intrinsic to the jet result in synchrotron self-Compton (SSC) emis-

sion (Bloom & Marscher 1996), upscattering of soft photons from a blackbody AD

(Dermer & Schlickeiser 1993), upscattering of photons initially from an AD and then

scattered by the BLR (Sikora et al. 1994), upscattering of photons coming from the

TD (Kataoka et al. 1999) are all examples of external inverse-Compton (EIC) emis-

sion.

So far it is unknown where in the jet all the aforementioned emission processes

take place. There are several points of view on this regard. For instance, there was

a proposal by Blandford & Königl (1979) saying that the radiation comes from inho-

mogeneities in the jet such as accelerated blobs of plasma or shock waves that travel

8
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along the jet. This model belongs to the so called multi-zone models. There are oth-

ers in this group like the conical standing shock (Jorstad & Marscher 2004; Marscher

et al. 2008), which proposes that the bright, compact, quasi-stationary features in the

innermost regions of the jet revealed by VLBA4 and VLBI5 observations (Jorstad et al.

2005; Fromm et al. 2013) is accounted for by conical standing shocks; these shocks

recollimate the ejected material at ultrarelativistic speeds, producing the γ-ray flares.

Also the turbulent extreme multi-zone model, introduced by Marscher (2014), con-

siders not only ultrarelativistic material crossing the a recollimation shock but also

turbulent plasma, accounting for the polarization features in the radio “cores”. An-

other model is the spine-layer which proposes a jet with subrelativistic external flow

surrounding a much faster inner flow (Henri & Pelletier 1991; Ghisellini et al. 2005).

On the other hand, the observation of “knots” or blobs in jets of AGNs has led

to propose one-zone models for blazars, which attempt to account for flare emission

in the observed spectra (Rees 1978). The most popular, and yet most successful up

to date, is the shock-in-jet model in which it is assumed that instabilities in the jet,

or the intermittent ejection of plasma by the central engine, produce internal shocks

(ISs) at some point along the jet (Marscher & Gear 1985; Spada et al. 2001).

1.2.2 The blazar zone

The blazar zone is where most of the kinetic energy of the jet is transformed into

radiation and where it is assumed that particles are being accelerated (e.g. Bykov

et al. 2012). The size of the blazar zone has been estimated to be of 1015–1017 cm

(Georganopoulos et al. 2001). Some models suggested that γ-rays are produced

within the BLR and that the γ-ray emitting radius ranges roughly between 0.03–0.3

pc (Ghisellini & Madau 1996, see Figure 1.6). It has also been argued that in relativis-

tic jets of powerful blazars the γ-rays emission regions are within cavities formed by

the BLR. However, it has also been observed that the emission region is outside the

BLR (e.g. Agudo et al. 2011).

Regarding the particle population of the radiating material in jet there are two

main contending models: leptonic and hadronic. In the leptonic model the high-

energy emission is produced by relativistic electrons which are accelerated through

4Very Long Baseline Array is a system of radio antennas located in New Mexico, USA.
5Very-long-baseline interferometry is a technique used in astronomy for imaging radio sources.
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Figure 1.6: Schematic view of the
blazar zone for the model where
high energy emission occurs in the
BLR.
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shocks or magnetic reconnection that IC upscatter both low frequency photons from

the external medium (EIC) and synchrotron photons produced in the jet (SSC). The

hadronic model assumes that the relativistic protons (that may be present in the jet be-

sides electrons) are able to produce the high energy emission via proton-synchrotron

radiation (for which strong magnetic fields are required) and energy losses due to

photomeson production and pair production (Begelman et al. 1990; Mannheim 1993;

Mücke et al. 2003)

So far we have not discussed the fact that the magnetic fields are ubiquitous in

AGNs. In fact, little is known about the true role that the magnetic field play in

the emission of blazars since, depending on the model and the distance from the

central engine, the magnetic field has a different influence on the phenomena in the

jet; for instance, the magnetic field strength determines the efficiency of electron

acceleration at shocks. Nevertheless, detailed studies of the magnetic field strength

and geometry have proved useful for approaching to resolve this issue (e.g. Porth

et al. 2011; Mimica & Aloy 2012; Janiak et al. 2015).
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Figure 1.7: Compton domi-
nance versus synchrotron peak
frequency. Credit: Finke
(2013).

1.2.3 The blazar sequence

In an attempt to unify blazars there are hints suggesting that there is an evolutionary

trend among these sources. The SED peaks of high luminosity sources shift to higher

frequencies in low luminosity sources; i.e., there seems to be an evolutionary trend

from FSRQs then to LBLs and finally towards HBLs (Fossati et al. 1998; Böttcher &

Dermer 2002). With the aim of clarifying this trend a new parameter was introduced

by Finke (2013) which is the Compton dominance:

AC :=
LIC

Lsyn
, (1.2)

whereLIC andLsyn are the luminosities of the IC and synchrotron components of the

SED. It has been observed that in the AC-νobs
syn plane there is an “L”-shaped transition

from FSRQs to BL Lacs showing the luminosity decrease of the IC component (see

Figure 1.7).

By modelling blazar SEDs Ghisellini et al. (1998) found that this sequence can be

accounted for by the increasing role of the external photon field in the cooling factor

of relativistic electrons in the jet, since the time evolution of the electrons Lorentz

factor, γ, is governed by (see §2.4.3):

γ̇ = −4
3

cσT
uB + uext

mec2
γ2 (1.3)

where uB and uext are the magnetic and external photon field energy densities. Based

on this, models have been proposed where uext takes a range of values, or is given as
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a function of the distance to the central engine, rather than having a constant value

(Ghisellini & Tavecchio 2009; Sikora et al. 2009; Saito et al. 2015).

1.3 The internal shocks model

Shock waves are ubiquitous in nature. In astrophysics they are typically regarded as

regions where particles are accelerated and important radiation processes take place.

In AGNs, particularly in blazars, there has been some evidence that shock waves

appear in the jet. Their origin may be due to either instabilities in the jet flow, arising

from the jet/ambient interaction or from the magnetic field topology, or to the non-

linear evolution of an inhomogeneous or time-variable jet generation (e.g. Begelman

& Kirk 1990; Baring 2012). As mentioned above, the IS (or shock-in-jet) model had

an important role in the understanding of the blazar spectra and has been successful

in explaining many of the features of the blazar variability and flares.

The internal shocks model for blazars considered in this work rests on the idea

that that a central engine ejects shells of plasma with different mass, energy and

velocity. This translates into the presence of relative motions in the relativistic jet.

Early blobs will decelerate (cool down, with bulk Lorentz factor ΓR) as they move

further away from the central engine (e.g. Rees & Mészáros 1994). Faster shells (with

bulk Lorentz factor ΓL) will catch-up with the slow ones at a time tcollision producing

“collisions” (see Figure 1.8). During the collision process the plasma is shocked,

dissipating energy in the form of acceleration of particles, and in turn as radiation. If

magnetic fields are dynamically negligible, two shocks form separated by a contact

discontinuity (CD): one propagating into the slower shell (forward shock; FS) and

another one slowing down the faster shell (reverse shock; RS).

This model was first proposed almost thirty years ago by Rees (1978) accounting

for the optical knots in the M 87 jet, and later by Marscher & Gear (1985). It was not

until the beginning of the past decade that the IS model was revived (e.g. Spada et al.

2001; Bicknell & Wagner 2002; Mimica et al. 2004), and since then this scenario

has been thoroughly explored using analytic and (simplified) numerical modelling

(Kobayashi et al. 1997; Daigne & Mochkovitch 1998; Spada et al. 2001; Bošnjak et al.

2009; Daigne et al. 2011) and by means of numerical hydrodynamics simulations

(Kino et al. 2004; Mimica et al. 2004, 2005, 2007).
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ΓL ΓR
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θ

Figure 1.8: Representation of the internal shocks scenario at t > tcollision. Here the shells are
modeled as cylinders with no sideways expansion and immersed in a external radiation field.
The grey regions correspond to the unshocked material. The green regions correspond to the
shocked material. Photons illuminating the shocked and produced by external sources are
represented with orange zig-zagging arrows. The direction towards the observer is denoted
by the red dashe line. This line forms an (small) angle θ with respect to the direction of
propagation of the colliding shells.

More recently, the effects of strong magnetic fields on the shell collisions have

been taken into account. Given the fact that synchrotron emission from the accel-

erated particles in the shocked plasma fits considerably well the observations, the

emitting plasma must be magnetized, to some extent. However, the degree of mag-

netization of the jet flow has not yet been determined, and whether the radiation we

observe results from the dissipation of its magnetic energy in addition to its kinetic

energy is not known, either. In the case of moderate or strong magnetic fields the IS

scenario has to be modified to account for the differences in the dynamics (e.g., the

suppression of one of the two shocks resulting in a binary collision Fan et al. 2004;

Mimica & Aloy 2010) and the emission properties of the flares (Mimica et al. 2007;

Mimica & Aloy 2012; Rueda-Becerril et al. 2014b, 2017).
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1.3.1 Acceleration efficiency

The IS model assumes that a fraction ǫe of the shock power is transferred to the

charged particles and, by means of some acceleration process (e.g. first-order Fermi

process; Fermi 1954), these particles are injected into the unshocked material at the

shock front. Even in the case in which a plasma is very weakly magnetized (i.e.,

microscopic magnetic fields tight the particles constituting the plasma, which is as-

sumed to be collisionless), stochastic magnetic fields will be produced in situ by

shocks through, e.g., the Weibel instability (Weibel 1959; Medvedev & Loeb 1999;

Gruzinov & Waxman 1999), converting the free energy of counter-streaming flows

into small-scale (skin-depth) magnetic fields. For practical purposes, it is commonly

assumed that another fraction ǫB of the internal energy density of the plasma is trans-

formed into a magnetic field, whose orientation in space is expected to be random

(e.g. Joshi & Böttcher 2011; Mimica & Aloy 2012).

The values of ǫe and ǫB are up to date unknown. Although, advances have been

made on the expected values, both from the observational data (see Santana et al.

2014; Kumar & Zhang 2015), as well as from particle-in-cell (PIC) simulations

(e.g. Nishikawa et al. 2003; Hededal et al. 2004; Nishikawa et al. 2005; Sironi &

Spitkovsky 2009; Sironi et al. 2013). Moreover, lower boundaries to the fraction of

dissipated power have been estimated by Mimica & Aloy (2010) through numerical

magnetohydrodynamics (MHD) modeling.

1.3.2 Distribution of particles

From the observed synchrotron spectra of blazars it has been shown that they fit a

power-law at its highest frequencies (between optical and X-rays, e.g. Ginzburg &

Syrovatskii 1965; Fossati et al. 1998). This evidence tells us that somewhere in a

blazar particles are being accelerated in such a way that they follow a power-law in

energies (Rybicki & Lightman 1979), or equivalently in Lorentz factors γ, with a

cutoff at a maximum value γmax. Ever since this idea was proposed by Ginzburg &

Syrovatskii (1963), a pure power-law distribution has been considered for the theoret-

ical modeling of blazars. In order to comply with the relativistic regime in which the

synchrotron radiation is emitted, the Lorentz factor distribution of the emitting elec-

trons is customary lower-bounded at a suitably prescribed minimum Lorentz factor

γmin (see §2.4.1.2).
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1.4. Numerical treatment of the MBS emission

In other astrophysical scenarios this spectrum profile (power-law) has been ob-

served as an extension or “tail” of a thermal distribution, e.g. : neutron stars, accre-

tion disks, supenovae, γ-ray bursts (GRBs) (e.g. Ghisellini et al. 1988; Li et al. 1996;

Özel et al. 2000; Pe’er & Casella 2009). Moreover, PIC simulations have shown

that in relativistic shocks a “hybrid” thermal-nonthermal distribution is naturally pro-

duced in shocked plasma models. These kind of distributions range velocities from

subrelativistic to ultrarelativistic (see Spitkovsky 2008; Sironi & Spitkovsky 2009;

Sironi et al. 2013).

Despite the fact that there is evidence of hybrid distributions (HDs) in relativistic

astrophysical scenarios, this kind of distributions have not been deeply studied in the

IS model of blazars.

1.4 Numerical treatment of the MBS emission

It has been observed in the spectra of GRBs and AGNs that magnetic fields in their

jets play a very important role by their radiative signature. It has been typically as-

sumed that electrons in collisionless shocks are efficiently accelerated until they reach

ultrarelativistic energies. Hence, their emission is properly computed as a result of

the synchrotron process. However, as we have pointed out in §1.3.2, it is not unlikely

that the distribution of shock-accelerated electrons extends towards the moderately

relativistic and even sub-relativistic regime. In this case the nice analytical properties

of the synchrotron emission mechanism must be replaced by the more accurate mag-

netobremsstrahlung (MBS) emission. As we shall see in §2.2, a detailed treatment of

the spectral evolution of electrons emitting MBS radiation requires involved numeri-

cal calculations of integrals performed over sums of infinite series (each of the series

terms corresponding to a different harmonic of the gyrofrequency). In this section

we review some previous efforts to compute the MBS in astrophysical plasma. The

numerical details of such efforts are discussed more throughly in §2.2.

Analytic expressions for the transrelativistic regime were found by Wild & Hill

(1971) using accurate approximations of the Bessel functions. Their approximations

have been useful for later works building more accurate expressions for the MBS

emission and absorption (e.g. Robinson & Melrose 1984; Klein 1987; Wardziński

& Zdziarski 2000; Fleishman & Kuznetsov 2010). Later Petrosian (1981) approx-

imated the power radiated (Eq. (2.15)) for a single electron replacing sums of har-
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monic contributions by integrals over a continuous distribution of such harmonics.

Such approximation is valid in the regime where the harmonics are so close to each

other that they are indistinguishable; i.e., for the cases where the frequency is much

larger than the gyrofrequency (see §2.2.5). This approach produces a typical relative

numerical error between 20 and 30%. Nevertheless, it has been used in different

works afterwards (e.g. Ghisellini et al. 1988; Wardziński & Zdziarski 2000; Fleish-

man & Kuznetsov 2010). Unfortunately, it does not deal with the harmonics in the

MBS emission which appear at low frequencies; i.e, near the gyrofrequency, and it is

precisely that spectral range that is of interest for this thesis.

On the other hand, over the years numerical methods and techniques that deal

with the full cyclosynchrotron emission have been improving. An extensive and

concise numerical approach was first performed by Brainerd & Lamb (1987). This

method was implemented to calculate the emissivity from a thermal, nonthermal and

hybrid distributions in GRBs and applied to fit the photon flux obtained from observa-

tions, achieving accurate results. Mahadevan et al. (1996) and later in Wolfe & Melia

(2006) artificially broadened the harmonics by a small amount in order to facilitate

the numerics.

Pe’er & Waxman (2005) developed a code with split regimes in which for fre-

quencies 200 times the gyrofrequency and Lorentz factors lower than 10, the full

expression for MBS (see §2.2.2) was computed, and above that threshold the clas-

sical synchrotron expression (e.g. Rybicki & Lightman 1979; Jackson 1999) was

employed. A similar approached was made by Fleishman & Kuznetsov (2010) by

placing a frequency boundary below which the harmonic structure is recovered, and

above which the analytic expressions found by Petrosian (1981) and Wild & Hill

(1971) are used.

One of the main difficulties in the computation of the MBS emission stems from

the interplay between integrals containing Dirac δ-functions with non-trivial argu-

ments and the presence of sums over series of harmonics. Solving this difficulty nu-

merically may be done by either performing analytically those integrals containing

the Dirac δ-functions or employing the Dirac δ-functions and using that to compute

the limits for the sums over harmonics. The latter option has the advantage that it

limits analytically the number of terms to be added up in a sum, which may have an

infinite number of contributing terms (a priori), and for which there are no mathe-
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matical criteria to ensure numerical convergence. This methodology has been used

recently, and proved to be an accurate approach for calculating the harmonics (e.g.

Marcowith & Malzac 2003; Leung et al. 2011; Pandya et al. 2016; Rueda-Becerril

et al. 2017)

1.5 Motivation

In an attempt to understand blazar observations, many models and hypothesis have

been proposed over the years, giving us different ideas about the physics involved in

high energy processes. Still, there is not enough observational evidence that can tell

us the precise level of importance that each physical processes has in the production

of the observed high energy emission (e.g., it is well known that magnetic fields may

play an important role in relativistic outflows, but we do not know the jet magneti-

zation nor do we know with certainty whether the magnetic fields play any role at

all role in the dissipation processes in the jet). There are models that have been pro-

posed to classify and unify AGNs (and blazars in particular). However, we do not

know with certainty that these models describe the true nature of AGNs.

We live in an era when the existing and the upcoming observatories all around the

world (including those in space) observe the universe in many spectral bands so that

we expect that in the next years much more information about all kinds of objects

(blazars among them) will be obtained. However, the impossibility of replicating in

the laboratory the necessary conditions to observe and measure the process that pro-

duces e.g., blazars flares has favoured the continuous development of sophisticated

numerical codes that perform simulations of these processes. These simulation help

us obtain a physical insight into the astrophysical phenomena (either by comparison

with the existing observational data or by predicting the properties of future events).

The state of the art codes for blazars incorporate as much macro- and microphysics

as the computational capabilities allow. Typically, a trade-off between the two exists;

i.e., one needs to decide how much effort to devote to the large scales (e.g., MHD

processes), and how much to the small scales (e.g., shock acceleration). In our work

we constantly try to improve our modeling on both sides of the dynamic range of

scales present in blazars.

The IS model for blazars has succeeded in modeling observational data (e.g.

Böttcher & Dermer 2010). In the present thesis we attempt, based on previous works

17



1. Introduction

(Böttcher & Dermer 2010; Mimica 2004; Mimica & Aloy 2012; Mahadevan et al.

1996; Leung et al. 2011), to go further in exploring the IS scenario in order to find

the fingerprint in the SEDs and light-curves of the shell magnetization (macro-scales),

and of the properties of the particles injected at the shock front (micro-scales). We

take into account the existence of sub- and transrelativistic particles in the injection,

and therefore a full cyclotron, synchrotron and cyclo-synchrotron emission processes

are considered.

18



Chapter2

Theoretical background

2.1 Reference frames

In order to evaluate the radiation seen by a distant observer, we need to compute

quantities and transform them among five different reference frames:

Comoving frame of the fluid: the frame moving with the fluid in which the elec-

trons energy distribution (EED) is at rest. This frame coincides with the ref-

erence frame of the contact discontinuity (CD) in the collision of two shells.

Thus, we will refer to them indistinguishably and use primed symbols to refer

to quantities computed in this frame. In order to avoid cluttering the formu-

lae with indices, the exception to this rule are the values of the Lorentz factor

(γ) and the velocity (β) of the electrons measured in this frame, as well as the

thermodynamic variables (e.g., the number density, n, the temperature, T , the

pressure, P, or the specific internal energy, ǫ), which will always refer to the

comoving frame and, therefore will be unprimed. We explicitly point out that

we assume that the EED is isotropic in the comoving frame of the fluid.

Electron rest frame: this is the reference frame where the electrons are at rest, and

is denoted by double primed quantities.

Laboratory frame: the frame in which we set up the hydrodynamic simulations and

that remains at rest with respect to the AGN. In that frame the colliding shells

are seen to move at relativistic speeds. We will employ unprimed symbols to
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2. Theoretical background

express physical quantities in this frame of reference. Lorentz factors will be

denoted with Γ in this frame, to not confuse them with the electrons Lorentz

factor measured in the comoving frame.

Distant observer frame: the frame of an observer who is close enough to be unaf-

fected by cosmological effects. Variables in this frame will be denoted with

the subscript or superscript “obs”.

Earth observer frame: this frame is akin to that of the distant observer, but it is lo-

cated at cosmological distances. The only difference with respect to the distant

observer is the cosmological transformations induced by the finite redshift at

which the source is located.

2.2 Magnetobremsshtrahlung

The radiation from charged particles traversing a magnetic field is known as MBS

(e.g. Ginzburg et al. 1954; Ginzburg & Syrovatskii 1965)1. Depending on the speed

v of the particles, this radiation is categorized into cyclotron radiation (v ≪ c) and

synchrotron radiation (v ∼ c). Both regimes have been studied broadly and accurate

analytic expressions for each have been developed (e.g. Schwinger 1949; Crusius

& Schlickeiser 1986; Blumenthal & Gould 1970). However, the cyclosynchrotron

radiation, i.e., the transrelativistic regime of MBS, has no analytic description yet

which does not involve infinite sums over harmonics. In this chapter we will describe

the equations governing this phenomenon.

2.2.1 Motion of a point charge in a uniform, static magnetic field

Let us consider a charged particle with rest mass mq and charge qe following a trajec-

tory r′(t′) with velocity β(t′)c, where c is the speed of light, t′ ≥ 0 is the time variable

1The term magnetobremsstrahlung was being used in the mid fifties and sixties mainly by Vi-
taly Lazarevich Ginzburg (see Ginzburg, Getmantsev, & Fradkin 1954; Ginzburg & Syrovatskii 1965).
However, at those times the term synchrotron radiation was widely spread in the scientific community
so the standardization of magnetobremsstrahlung as the kind of radiation produced by charged parti-
cles in a magnetic field could not happen. Besides, at the same time Burbidge (1959) suggested that
synchrotron radiation should be avoided, suggesting instead the term acceleration radiation to describe
cosmic radio emission.
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2.2. Magnetobremsshtrahlung

measured in the comoving fluid frame2, in a uniform magnetic field B
′ = B′ ẑ, where

B′ ≡ ‖B′‖ is the magnitude of the magnetic field and ẑ the unit vector in the z direc-

tion. As long as the particle does not move parallel to the magnetic field (i.e., β ∦ B
′),

it will experience a force due to the magnetic field. Such force is known as Lorentz

Force. The equations which describe its trajectory are (Jackson 1999; Rybicki &

Lightman 1979; Longair 2011):

d(γβ)
dt′

=
qe

mqc

(
β ∧ B

′) , (2.1)

dE′

dt′
= 0, (2.2)

where

γ =
1√

1 − β2
, (2.3)

is the Lorentz factor and β ≡ ‖β‖. Since the particle possesses no potential energy

the total energy E′ is purely kinetic. From Eq. (2.2) we can infer that the speed of

the particle is constant since the total energy is constant, and so is the Lorentz factor.

With this in mind, Eq. (2.1) can be rewritten as follows:

d(γβ)
dt′

= β ∧ ωB, (2.4)

where

ωB =
qeB

′

γmqc
=
ωg

γ
(2.5)

whose magnitude ωB ≡ ‖ωB‖ is the gyration angular frequency, or angular gyrofre-

quency, and ωg ≡ ‖ωg‖ is called the cyclotron angular frequency. Let us choose as

initial conditions

r
′(0) =



r′0

0

0


, β(0) = β



sin(α′) cos(φ′α)

sin(α′) sin(φ′α)

cos(α′)


, (2.6)

where β ≡ ‖β‖, φ′α is the azimuth angle of the velocity (phase angle) and α′ the polar

angle. Since in our coordinate system the magnetic field is aligned with z-axis, the

2The motion of charged particles may be worked out in vacuum, but since we aim to apply the
equations here derived to distributions of charged particles immersed in a fluid, we refer the equations
of motion to the fluid comoving frame.
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2. Theoretical background

Figure 2.1: Emission and pitch an-
gles. In the present figure we de-
pict the polar and azimuthal com-
ponents of the pitch and emission
angles by shifting the velocity and
Poynting vectors to the magnetic
field origin or coordinates. x

y

z

B′

ν′

φ′

ϑ′

qe

β

φ′α

α′

polar angle is in fact the angle formed between the magnetic field and the velocity

vector (pitch angle, see Figure 2.1). We know that in a regular circular motion the

phase angle is related to the time variable as φ′α(t
′) = ωBt′. Taking this into account

and with the initial conditions (2.6), the solution of (2.4) is:

r
′(t′) = r

′(0) +



rg sin(ωBt′)

rg cos(ωBt′)

βct′ cos(α′)


, β(t′) =

1
c



rgωB cos(ωBt′)

−rgωB sin(ωBt′)

βc cos(α′)


(2.7)

which describes a helix with gyration radius (see Figure 2.2):

rg =
γmqc2β sin(α′)

qeB′
=

cβ sin(α′)
ωB

. (2.8)

The quantity rg is also known as the Larmor radius. For the case of an electron and

of a proton

rg

∣∣∣∣
mq=me

≈1.704 × 105
(
γ

100

) (1 G
B′

)
cm, (2.9a)

rg

∣∣∣∣
mq=mp

≈3.13 × 108
(
γ

100

) (1 G
B′

)
cm, (2.9b)
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B′

rg

β

qe

Figure 2.2: Trajectory of a
charged particle in a uniform
magnetic field.

2.2.2 Power spectrum by a point charge in a uniform magnetic field

Accelerated charged particles emit electromagnetic waves. The process of radiation

studied in the present thesis is known as cyclotron if γ ∼ 1 and synchrotron if γ ≫ 1.

As mentioned before, the generic name for the radiation from a particle with an

arbitrary value of γ is MBS (Ginzburg et al. 1954; Ginzburg & Syrovatskii 1965).

In order to know the energy radiated by a particle under the influence of a magnetic

field it is necessary to know the electromagnetic fields beforehand.

From classical electromagnetic theory, the values of the fields due to the accelera-

tion of a point charge at any point in space and at any moment in time can be derived

from the Lienard-Wierchert potentials (see Jackson 1999, §14.1), which are the elec-

tromagnetic potentials evaluated at the retarded time. Without lose of generality, let

us now chose our coordinate system oriented such that we can define

̺ := x
′ − r

′ = ‖x′ − r
′‖(sin(ϑ′), 0, cos(ϑ′)

)T
, (2.10)

̺∗ := ˆ̺ − β, (2.11)

where x′ is a point in space and ϑ′ denotes the angle between the emitted radiation

and the magnetic field (see Figure 2.1), so that ̺ ≡ ‖̺‖, ˆ̺ ≡ ̺/̺, ̺∗ ≡ ‖̺∗‖ and

ˆ̺∗ ≡ ̺∗/̺∗. The electric and magnetic fields due to a moving charge derived from
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2. Theoretical background

the Lienard-Wierchert potentials then read (Jackson 1999):

E
′(x
′, t′) = qe


̺∗

γ2(1 − ˆ̺ · β)3̺2
+

ˆ̺ ∧
(
̺∗ ∧ β̇

)

c (1 − ˆ̺ · β)3̺



∣∣∣∣∣∣∣∣
t′=t̃

, (2.12)

B
′(x
′, t′) = ˆ̺ ∧ E(x

′, t′)
∣∣∣
t′=t̃
. (2.13)

where E′ is the electric field and t̃ ≡ t′ − ̺(t̃)/c is the retarded time. The first term in

Eq. (2.12) is known as the velocity field and it decays as ̺−2, whereas the acceleration

field (the second term), decays as ̺−1. The acceleration field of both the electric and

magnetic fields are transversal to ˆ̺ . These constitute the radiation field. One can

obtain the radiated power spectrum per steradian, ηω′ (in units of erg s−1 Hz−1 sr−1),

by performing the Fourier transform of the radiation field (see Jackson 1999, §14.5):

ηω′ =
q2

eω
′2

4π2c

∥∥∥∥∥∥

∫ ∞

−∞
dt̃ ˆ̺ ∧ ( ˆ̺ ∧ β) exp

{
iω′

(
t̃ − ˆ̺ · r

c

)}∥∥∥∥∥∥
2

. (2.14)

Substituting (2.7) in (2.14) we get (see Melrose & McPhedran 1991; Oster 1961,

for the detailed derivation):

ην′(γ, µ′, µ′α) =
2πq2

eν
′2

c

∞∑

m=1


(µ′ − βµ′α)2

1 − µ′2
J2

m(z) + β2
(
1 − µ′2α

) (dJm(z)
dz

)2 δ(ym),

(2.15)

where µ′ := cos(ϑ′) and µ′α := cos(α′) (see Figure 2.1) and we have used the fact

that ω′ = 2πν′. In the above equation m annotates the number of the contributing

harmonic,

ym ≡
mνg

γ
− ν′(1 − βµ′αµ′), (2.16)

z ≡
ν′γβ

√
1 − µ′2

√
1 − µ′2α

νg
, (2.17)

Jm(x) is a Bessel function of order m and δ(x) the Dirac δ-function. Hereafter we

will be using the quantity νg as well as νB (defined below), which correspond to the

cyclotron frequency and gyrofrequency. From Eq. (2.5) we get

νB =
ωB

2π
=

qeB′

2πγmqc
, (2.18)

νg =
ωg

2π
=

qeB′

2πmqc
. (2.19)
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2.2. Magnetobremsshtrahlung

Using Eqs. (2.18) and (2.19) for the case of an electron; i.e., qe = e, the charge of the

electron, and mq = me, the mass of the electron,

νg ≈ 2.799
(

B′

1 G

)
MHz, (2.20a)

νB ≈ 2.799 × 104
(
100
γ

) (
B

1 G

)
Hz, (2.20b)

2.2.2.1 The resonance condition

The resonance condition (also known as the Doppler condition, e.g. Melrose &

McPhedran 1991; Oster 1961) arises when the argument ym of the δ-function is zero;

i.e.,
mνg

γ
− ν′(1 − βµ′αµ′) = 0. (2.21)

Whenever this conditions is fulfilled, the contribution to the emitted power is non-

zero for this harmonic. For slow electrons (γ ∼ 1), first harmonics (small values of

m) will dominate appearing as emission lines, while for ultrarelativistic ones (γ ≫ 1)

the peak of the power radiated shifts to larger values and the spectrum turns into a

continuum (see Figure 3.11).

2.2.2.2 The radiated power

The final step to obtain the power spectrum (erg s−1 Hz−1) of a single particle is inte-

grating Eq. (2.15) over emission angles, i.e., computing the integral:

P′ν′(γ, α
′) =

∫
π

0

∫ 2π

0
dφ′ dϑ′ ην′(γ, ϑ′, α′), (2.22)

For the purposes of the present work, we do not perform this integral here, but defer

that to the following sections, since its value critically depends on the approximations

used.

2.2.3 Cyclotron power

The electromagnetic waves from nonrelativistic particles gyrating in a magnetic field

are known as cyclotron radiation. In the limit where the particle moves with small

β, and mβ ≪ 1, the first few harmonics in (2.15) are dominating the emission. The

Bessel functions can be reduced to simpler expressions and the integrals in Eq. (2.22)
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can be performed, arriving to the expression for the power radiated, which is given

by (Bekefi 1966; Schwinger 1949; Hirshfield et al. 1961)

P′m(β) =
q2

eν
2
g

2π2c

(m + 1)m2m+1

(2m + 1)!
β2m. (2.23)

In Figure 2.3 we plot the above expression for an electron with β = 0.2 and 0.1 (cf.

Figure 1a of Mahadevan et al. 1996). The m-th harmonic of the power radiated is

normalized to the total power P′T, defined as the sum over all the harmonics3. We

note that for both cases the first harmonic is ∼102 larger than the second harmonic.

The slower the particle the smaller is the relative contribution by the subsequent

harmonics.

0 1 2 3 4 5
m

10−6

10−5

10−4

10−3

10−2

10−1

100

P
′ m
/
P
′ T

β = 0.1

β = 0.05

Figure 2.3: Power radiated in the cyclotron regime. The blue and red lines represent the
radiated power normalized to the total emitted power in all the harmonics, P′T, for an electron
with β = 0.1 and 0.2, respectively.

2.2.4 Synchrotron power

When an extremely relativistic particle spirals around a magnetic field, it emits elec-

tromagnetic waves known as synchrotron radiation. This kind of radiation was first
3For simplicity and without loss of accuracy in the results, the total power radiated was calculated

as P′T =
∑10

m=1 P′m, i.e., limiting the infinite sum to the first 11 terms.

26



2.2. Magnetobremsshtrahlung

reported to have been observed in the laboratory by Elder, Gurewitsch, Langmuir, &

Pollock (1947) in a 70 MeV synchrotron at the General Electric Research Laboratory.

Ever since, this radiation mechanism has been studied thoroughly both theoretical

and experimentally.

The total unpolarized power per unit frequency of the synchrotron radiation is

given by (Schwinger 1949; Pacholczyk 1970; Ginzburg & Syrovatskii 1965; Blu-

menthal & Gould 1970; Rybicki & Lightman 1979)

P′ν′(α
′, γ) =

√
3q3

e B′ sinα′

mqc2
F

(
ν′

ν̄c

)
(2.24)

where

ν̄c :=
3
2
γ3νB sinα′ =

3
2
γ2νg sinα′ (2.25)

is the critical frequency of a charged particle with certain pitch angle α′ and

F(X̄c) = X̄c

∫ ∞

X̄c

dx K 5
3
(x) ≈



4π
√

3Γ
(

1
3

)
(

X̄c

2

) 1
3

, X̄c ≪ 1

(
πX̄c

2

) 1
2

exp
{
−X̄c

}
, X̄c ≫ 1

. (2.26)

where Kn(x) is a modified Bessel function of second kind (Abramowitz & Stegun

1972, §9.6) and X̄c ≡ ν′/ν̄c. The last part of the equation gives the asymptotic expres-

sions for small and large X̄c (Rybicki & Lightman 1979; Dermer & Menon 2009).

The shape of function F is shown in Figure 2.4, as well as its asymptotic approxima-

tions. We can gauge that the maximum emission occurs at νmax
syn ∼ 0.29ν̄c (red vertical

line in Figure 2.4).

In a randomly oriented magnetic field on small scales compared to the size of the

system but large compared to the Larmor radii of the gyrating particles Eq. (2.24)

can still be applied. The average over pitch angles in this scenario can be performed

resulting in the following expression for the emitted power per unit frequency:

P′ν′(γ) =

√
3q3

e B′

mqc2

∫ 1

−1
dµ′αP′ν′(α

′, γ) =

√
3q3

e B′

mqc2
CS (Xc). (2.27)

Note that in the previous expression the variable

Xc ≡ X̄c sinα′ =
2ν′

3γ3νB
, (2.28)
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has been introduced to account for the average over pitch angles. We also note that

Xc ≡ ν′/νc, where

νc :=
3
2
γ3νB =

3
2
γ2νg (2.29)

is the synchrotron critical frequency. For the case of an electron

νc ≈ 41.989
(
γ

100

)2
(

B′

1 G

)
GHz. (2.30)

The exact analytical expression of CS (Xc) was derived by Crusius & Schlickeiser

(1986, hereafter CS86), which reads:

CS (Xc) =
π

2
Xc

(
W0, 43

(Xc)W0, 13
(Xc) −W 1

2 ,
5
6
(Xc)W− 1

2 ,
5
6
(Xc)

)

≈



1.80842X
1
3
c , Xc ≪ 1

π

2

(
1 − 11

18Xc

)
exp {−Xc} , Xc ≫ 1

. (2.31)

where Wk,m(Xc) are the Whittaker functions (Abramowitz & Stegun 1972, Chapter

13) and the rightmost member contains the asymptotic expansions for high and low

values of Xc. This means that the synchrotron radiation peak frequency, νmax
syn will be

in radio at the extremely high frequency band (EHF) for an ultrarelativistic electron

radiating in a magnetic field with strength of B′ = 1 G. In contrast to the cyclotron

regime where γ ∼ 1 and for B′ = 1 G, νc ≈ 4.2 MHz ∼ νg.

In Figure 2.4 we depict the function CS (Xc) and its asymptotic approximations

for Xc ≪ 1 and Xc ≫ 1 in dashed and dotted lines, respectively.

2.2.5 Transrelativistic MBS (cyclo-synchrotron) power

As we have seen before, the power radiated from slow and ultra-fast charges can be

well approximated. However, the intermediate regime has been a challenge. Pet-

rosian (1981) found an analytic expression for mildly relativistic moving charges.

More specifically, an approximation was found, but only valid for γ2 ≪ ν′/νg. Ac-

cording to Eq. (8) of Petrosian (1981), the power radiated by a single electron particle,

for the specific case of slowly varying pitch angle, reads:

P′P81
ν′ (ϑ′, γ) =

e2νg

c

(
πν′

νg

)1/2

γ−1
[(

1 +
2 cot2(ϑ′)
γ2

) (
1 − β2 cos2(ϑ′)

)1/4
]
Z2m

max (2.32)
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Figure 2.4: Functions F(x) and CS (x) of the synchrotron radiation in red and blue, respec-
tively, given by (2.26) and (2.31) as a function of Xc (Eq. (2.28)). In dashed lines we show
the asymptotic approximations for Xc ≪ 1 while the dotted lines display the approximations
for Xc ≫ 1. The circles and vertical lines shows the position of the maximum value of each
function.

where,

Zmax =

τp exp
[(

1 + τ2p
)−1/2

]

1 +
(
1 + τ2p

)1/2
, m =

ν′

γνb

(
1 + τ2p

)
, τp ≡ βγ sin(ϑ′). (2.33)

On the left panel of Figure 2.5 we have plotted Eq. (2.32) for charged particles

with Lorentz factors γ = 1.05, 1.25, 1.5 and 2.0 in black, red, blue and green lines,

respectively. The integral over emission angles of (2.32) was calculated by Ghisellini

et al. (1988), and reads:

P′GGS88
ν′ (γ) =

π
2e2νg

3c

1 + 2
(
γ2 − 1

) 1 + γ log


γ − 1

(
γ2 − 1

)−1/2






−1/2

× exp


2ν′

νg

1 + γ log


γ − 1

(
γ2 − 1

)−1/2





 (2.34)
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On the right panel of Figure 2.5 we have plotted Eq. (2.34) for charged particles

with Lorentz factors γ = 1.05, 1.25, 1.5 and 2.0 in black, red, blue and green lines,

respectively.
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Figure 2.5: Transrelativistic approximations of MBS power radiated. On the left panel we
show the approximation by Petrosian (1981, eq. (8)); Eq. (2.32) for ϑ′ = π/2. On the right
panel we show the approximation by Ghisellini et al. (1988, eq. (8)); Eq. (2.34). The Lorentz
factor of the charged particles described here are γ = 1.05, 1.25, 1.5 and 2.0 in blue, orange,
green and red lines, respectively. The gray region covers the range of frequencies for which
the approximation is mostly valid; i.e., γ2 ≪ ν′/νg.

2.2.6 Emissivity from a distribution of charged particles

In this section we will describe the emissivity due to a distribution of charged par-

ticles in a uniform magnetic field using the results obtained in the previous section.

Let us consider a distribution of particles immersed in a uniform magnetic field, as
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2.2. Magnetobremsshtrahlung

described above. In this scenario each particle will move with its own pitch-angle.

The general formulas for the MBS emissivity will be described here.

2.2.6.1 The emission coefficient

The emission coefficient is defined as the energy emitted per unit time, per unit vol-

ume, per unit solid angle and per frequency (see Rybicki & Lightman 1979, Chapter

1),

j′ν′ =
d4E′

dt′dV ′dΩdν′
, (2.35)

where j′
ν′ has units of erg s−1 cm−3 Hz−1 sr−1. Assuming that our system of particles

emits isotropically, the emission coefficient takes the form (Rybicki & Lightman

1979)

j′ν′ =
1

(4π)2

∫ ∞

1
dγ n(γ)P′ν′(γ) (2.36)

where n(γ) is the particle density at a certain Lorentz factor γ (in units of cm−3)

P′ν′(γ) =
∫ 2π

0

∫ 1

−1
dφ′αdµ

′
α

∫ 2π

0

∫ 1

−1
dφ′dµ′ ην′(γ, ϑ′, α′). (2.37)

The extra 1/4π factor in front of the integral in (2.36) comes from the angular nor-

malization of the isotropic particle distribution function. Let us assume that we have

a uniform magnetic field B′ = B′ ẑ (as at the beginning of this chapter) and that

the distribution of charged particles n(γ) is immersed in it. Each charge will spiral

following a trajectory described by Eq. (2.7).

Since ην′(γ, ϑ′, α′) is independent of φ′α and φ′, the corresponding integrals over

these variables are straightforward. The final expression for P′
ν′(γ) is then,

P′ν′(γ) = (4π)2 2πq2
eν
′2

c

∫ 1

−1

∫ 1

−1
dµ′αdµ

′ ην′(γ, µ′, µ′α). (2.38)

Inserting the last result into Eq. (2.36) we get

j′ν′ =
2πq2

eν
′2

c

∫ ∞

1

∫ 1

−1

∫ 1

−1
dγdµ′αdµ

′ n(γ)ην′(γ, µ′, µ′α). (2.39)

This equation will be implemented numerically in Chapter 3.
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2.3 Internal shock dynamics, particles acceleration and

how an external observer sees it

As it was mentioned in §1.3, in the IS model it is supposed that there is an inter-

mittency in the material ejection process by a central engine of the AGN. This inter-

mittency means that the engine may launch shells of plasma with varying properties

into the outflow. The faster shells can catch up with slower shells in front, causing

shell collisions and the formation of shocks in the outflow. Acceleration of particles

takes place in the shocked region, and the emission from these particles produces the

observed broadband spectrum. In this section we will describe the dynamics of these

shocks and the main radiation processes involved. In addition, the analysis here de-

scribed will be focused on the leptonic model (see §1.2.1), i.e. it is assumed that the

population of particles responsible for the observed radiation is composed by leptons,

more specifically electrons.

2.3.1 Shock dynamics

Since the jet is highly collimated we assume that the geometry of the emission region

to be cylindrical (e.g. Böttcher & Dermer 2010; Joshi & Böttcher 2011; Mimica &

Aloy 2012, see Figure 1.8). Assuming that the shock accelerated particles dissipate

most of their internal energy through radiation, we can neglect any adiabatic losses

(Dermer & Menon 2009, § 11.1). This means that the system will suffer neither

lateral nor longitudinal expansion. Indeed, numerical simulations have shown that

during the time that the shocks propagate through the shells, the jet suffers negligible

sideways expansion (Mimica et al. 2004; Mimica 2004).

2.3.1.1 Riemann solver

With the above considerations we approximate the shells as two cylinders of cold

plasma4, which at the moment of contact, both have a width ∆r and cross-sectional

radius R, measured in the AGN reference frame (see Figure 1.8). The total jet lumi-

4A plasma is said to be cold when its thermal energy is negligible compared to the bulk kinetic (or
the sum of the magnetic and kinetic) energy. We assume that by the time they start colliding the shells
have stopped accelerating and have converted most of their thermal energy into kinetic.
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2.3. Internal shock dynamics

nosity (power) of the jet is defined as (see Mimica & Aloy 2010, 2012):

L := πR2ρc3βlΓ
[
Γ(1 + ǫ + χ + σ) − 1

]
. (2.40)

The number of electrons in each (unshocked) shell can be computed using the follow-

ing expression (see Eq. (3) of MA12):

n =
L

πR2mpc3βlΓ
[
Γ(1 + ǫ + χ + σ) − 1

] , (2.41)

where mp is the proton mass, βl the bulk speed the shell in units of c, Γ = (1−β2
l )−1/2

the bulk Lorentz factor of the shell, ǫ is the specific internal energy, χ := P/ρc2 ≪ 1

is the ratio between the thermal pressure P and the rest-mass energy density, with ρ

as the fluid rest-mass density, and σ the jet magnetization (Eq. (2.44) below).

With this configuration and, once the number density, the thermal pressure, the

magnetization, and the Lorentz factor of the faster and of the slower shell have been

determined, the collision of magnetized shells can be simplified to a one-dimensional

Riemann problem5. Hence, we can make use the exact Riemann solver of Romero

et al. (2005) to compute the evolution of the shell collision. In particular, we compute

the properties of the shocked shell fluid (shock velocity, compression factor, magnetic

field) which we then use to obtain the synthetic radiative outcome.

The innermost shell: is the faster shell ejected at a later time. In the Riemann prob-

lem this shell corresponds to the left state.

The outermost shell: is the slower shell, ejected at an earlier time. In the Riemann

problem this shell is the right state.

The equation of state (EoS) employed for the Riemann problem was the TM EoS

(de Berredo-Peixoto et al. 2005; Mignone et al. 2005), which is an approximation to

the relativistic ideal gas EoS, more commonly known as the Synge EoS, and reads:

ǫ =
3
2
χ +

[
9
4
χ2 + 1

]1/2

− 1 (2.42)

5A Riemann problem is an initial value problem consisting of two uniform states located to the left
and to the right of a “virtual” membrane. After the membrane is released, the breakup of the initial
discontinuity displays a self-similar evolution in many hyperbolic systems of conservation laws as, e.g.,
the one formed by the relativistic MHD governing equations.
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By means of numerical relativistic magnetohydrodynamics (RMHD) parametric

study based on the Riemann problem described above, Mimica & Aloy (2010) ob-

tained the region in the σR-σL plane where either two shocks form as a result of the

collision (the forward shock (FS) and the reverse shock (RS) shocks), or a shock and

a rarefaction form, or two rarefactions (a forward and a reverse rarefaction) are gener-

ated. In the present thesis we will not consider those cases where rarefactions appear.

Rather, we will focus on the shell magnetizations for which both shocks exists.

2.3.1.2 Magnetization

Theoretical models propose that poloidal fields (i.e., parallel to the shell propaga-

tion direction) decay with distance to the AGN central engine faster than that of

toroidal fields (perpendicular to the shell propagation direction, see e.g. Blandford

& Rees 1974). At parsec scales the poloidal magnetic field will be negligible (e.g.

Komissarov 2012). Accordingly, the large-scale magnetic field B′mac is assumed to

be perpendicular to the direction of propagation of the shells.

With this magnetic field setup, in a one-dimensional Riemann problem in RMHD

the quantity

B :=
B′

ρ
(2.43)

is constant across shocks and rarefactions (but jumps accross the CD, see Romero

et al. 2005), where B′ and ρ are the comoving magnetic field and the fluid density,

respectively. The magnetization is defined as

σ :=
B′2

4πρc2
=
B2ρ

4πc2
. (2.44)

Unless said otherwise, hereafter we will denote with subscript i the quantities

in the unshocked regions (downstream); i may be R or L, which correspond to the

slower and faster shells, respectively. With subscript S we will denote quantities at a

shocked region (upstream); S may refer to either the FS or the RS. For instance, σL

and ΓL correspond to the magnetization and bulk Lorentz factor, respectively, of the

faster shell while σR and ΓR to the same quantities but of the slower shell. Likewise

βFS denotes the speed of the FS and βRS the speed of the RS.
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Once the shock starts to move away from the CD, the shocked plasma suffers a

compression. The density in the shocked region can be written as

ρS = rSρi (2.45)

where rS is the compression factor (see Eq. (2.52)), and ρi is the density in the un-

shocked region. In the unshocked region the magnetization is σi and, using the fact

that B is a constant across the shock, we have that in the shocked region:

σS =
B2ρS

4πc2
=
B2rSρi

4πc2
= rSσi . (2.46)

As can be seen from Eq. (2.46), the magnetization increases linearly with the shock

compression factor. It follows from Eq. (2.46) that the magnetic field strength in the

shocked region is

B′S,mac =

√
4πc2ρSrSσi. (2.47)

As in MA12 and RMA14, we assume that there exists a stochastic magnetic

field, B′S,st, which is produced in situ due to the collision of the shells. By definition

its strength is a fraction ǫB of the internal energy density of the shocked shell u′S,

obtained, in our case, by the exact Riemann solver:

B′S,st =

√
8πǫBu′S. (2.48)

Using relations (2.47) and (2.48), the total strength of an isotropic and stochastic

magnetic field in the shocked region is

B′S =
√

B′2S,st + B′2S,mac. (2.49)

2.3.1.3 Shocks kinematics

As was mentioned before, the scenario we want to study is that in which both shocks

appear (see Mimica & Aloy 2012, for details about the conditions when this happens).

Assuming this is the case, from the moment the shells establish contact, three waves

appear: the FS, the RS and the CD. The CD moves with the shocked fluid; i.e., its

speed is the bulk speed of the shocked plasma, βl. In the reference frame of the CD,

which is the same as the comoving fluid frame (§2.1), the FS moves in the positive

direction and the RS in the negative direction (see Figure 2.6). The laboratory frame
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velocities of these shocks are βFSc and βRSc, respectively. When refering to only a

single shock, we will denote its velocity in the laboratory frame as βSc. Knowing the

velocity of the CD and the unshocked shell velocity in the laboratory frame allows

us to compute the velocity of any of the shells in the comoving fluid frame,

β′i =
βi − βl

1 − βlβi

, (2.50)

while the velocity of any of the shocks in the CD frame is

β′S =
βS − βl

1 − βlβS
. (2.51)

As stated in Eq. (2.45), the shocked shell suffers a compression as the shock wave

crosses. The compression factor is given by (Mimica & Aloy 2010)

rS =
βl − βS

βi − βS
(2.52)

Consequently, the width of the compressed shell in the CD frame is

∆r′S = ΓrS∆ri, (2.53)

and the time it takes the shock to cross the shell is (see Figure 2.6)

t′cr,S :=
∆r′S
c|β′S|

(2.54)

2.3.1.4 Kinematics in the Earth observer frame

Let us consider an Earth observer whose line of sight makes an angle θ with the

jet axis (assumed to be along the x axis, see Figure 1.8). In the laboratory frame

the shock happens at position x and at a certain time t = tcollision, whereas in the CD

reference frame the collision happens at x′ = 0 and t′ = 0 (see Figure 2.6). Assuming

that the emitting source is located at a luminosity distance dL, (at a corresponding

redshift z), we define the time at which the observer sees the radiation emitted from

x at time t (both measured in the lab frame) as

tobs := (1 + z)
(
t − xµobs

c

)
(2.55)
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Figure 2.6: Space-time diagram of the internal shocks model as seen in the CD reference
frame (primed coordinates). The red dot corresponds to the time, tcollision, and place where
the shells make contact, which in the primed frame is the origin. The green lines that arise at
this point correspond to the FS and RS. The gray regions trace world volumes of the shells.
The light green region corresponds to the world volume of the shocked region. The black
dots correspond to the moment at which the shocks have crossed the faster shell, in the case
of the RS, and the slower shell in the case of the FS. In red dotted lines we depict the light
cone of the contact discontinuity.

where µobs := cos θ. From relativistic kinematics we know that

t = Γ

(
t′ +

x′βlµobs

c

)
, (2.56a)

x = Γ
(
x′ + βlµobst

′c
)
. (2.56b)

Substituting (2.56) in (2.55) we get that

tobs

1 + z
= Γt′(1 − βlµobs) +

Γx′

c
(βl − µobs), (2.57)

which, solving (2.57) for t′, leads us to an expression for the time in the CD reference

frame, as a function of the observer time tobs and the distance from the CD x′:

t′ = D
[

tobs

1 + z
+
Γx′

c
(µobs − βl)

]
, (2.58)
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where

D :=
1

Γ(1 − βlµobs)
(2.59)

is the Doppler factor.

Since we are interested in tracking down the evolution of the particles injected

behind each shock during the collision it is convenient to introduce the age of the

particle distribution (in the CD frame). We define it as a time since the shock passes

a given point x′, i.e. as the difference between the measured time t′ and the time at

which the shock was at x′:

t′a,S := t′ − x′

β′Sc
. (2.60)

Finally, substituting (2.58) and (2.51) into (2.60), the age of particles located at x′

that are observed at a time tobs reads (e.g. Böttcher & Dermer 2010; Mimica & Aloy

2012)

t′a,S = D
[

tobs

1 + z
− x′

c

1 − βSµobs

βS − βl

]
. (2.61)

2.3.2 Particle injection behind shock fronts

Let us assume that the injection of particles occurs during a period ∆t′acc and a region

πR2
∆r′acc downstream the shock (e.g., Böttcher & Dermer 2010). ∆t′acc and ∆r′acc are

related by (Böttcher & Dermer 2010)

∆t′acc =
∆r′acc

βSc
, (2.62)

and ∆r′acc is parameterized as proportional to the proton Larmor radius (2.9b); i.e.,

∆r′acc = ∆acc
Γ
′
i
mpc2

eB′S
, (2.63)

where Γ′
i

is the bulk Lorentz factor of each of the shells measured in the CD frame.

The proportionality constant ∆acc tells how large is the injection region in terms

of the proton Larmor radius (e.g., Böttcher & Dermer 2010). As mentioned before,

we are going to take a fraction ǫe of the internal energy of the shock as the energy

injection rate into the acceleration region, whose size and characteristic time scale

are described by the previous two equations, thus:

dE′inj

dt′
= πR2ǫeu′S

∆r′acc

∆t′acc
(2.64)

38



2.3. Internal shock dynamics

2.3.2.1 Maximum Lorentz factor of accelerated particles

The cooling time-scale of particles with Lorentz factor γ in the comoving frame is

(Bednarz & Ostrowski 1996)

Tcool =
γ

γ̇
. (2.65)

The maximum Lorentz factor (injection cut-off) is obtained by balancing the cooling

time scale with the acceleration time scale. In the special case of the synchrotron and

inverse-Compton cooling we have γ̇ ∝ γ2 and (e.g., MA12)

γmax =


3m2

ec4

4πaacce3B′S


1/2

(2.66)

Among others, the parameter aacc tells us how many cycles crossing the shock

front the electron needs before it reaches the maximum energy.

2.3.3 Nonthermal radiation from the shocked region

After the electrons are accelerated the amplified magnetic fields in the shocked region

B′S will cause them to gyrate triggering the MBS process (see §2.2.1). We assume

that the emission is isotropic. In the shocked region the MBS photons may interact

with the ultrarelativistic electrons in what is known as the SSC scattering, which is an

special case of the IC process whose seed photons are emitted by MBS (see §3.1.1).

Moreover, the jet is assumed to be immersed in a cold monochromatic photon field

with energy density uext and frequency νext as seen in the AGN frame (see Figure 1.8).

Interactions of this photon field with the high energy electrons are also considered to

take place via inverse-Compton scattering.

2.3.3.1 Radiative transfer

In order to calculate the energy flux νobsFνobs in the observer rest frame, first we have

to solve the radiative transfer equation in the optically thin regime in the CD rest

frame (Rybicki & Lightman 1979)

dI′
ν′

ds′
= j′ν′ , (2.67)

where I′
ν′ is the specific intensity of a beam, in units of erg s−1 cm−2 sr−1 Hz−1, which

has traveled a distance ds′. The most important radiation processes considered con-
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tributing to I′
ν′ : MBS, SSC and EIC. The MBS emissivity is described in §2.2 and is

computed as described in §3.2.5.2.

Following the treatment of Mimica (2004), to compute the IC emissivity we as-

sume that the spectrum of the incoming radiation is a power-law. We assume that

both the incoming and the outgoing emission are isotropic in the CD frame. The

numerical calculation of SSC and EIC emissivities are described in §3.1.1.

2.3.3.2 Flux detected by a distant observer

Making use of Eqs. (2.58), (2.59) and (2.51), we get that, for each shock, the time

since the shock acceleration took place is related to the time of observation and x′ by

t′a,FS = D
[

tobs

1 + z
− x′

c

1 − βFSµobs

βFS − βl

]
, (2.68a)

t′a,RS = D
[

tobs

1 + z
− x′

c

1 − βRSµobs

βRS − βl

]
. (2.68b)

Noting that Eq. (2.68a) is to be used for x′ ≥ 0, and (2.68b) for x′ < 0. t′
a,S ≤ 0 means

that the shock has not crossed that position yet and therefore particles have still not

been accelerated and, consequently, no contribution to the emission has to be taken

into account from there.

The observed luminosiy in the CD reference frame is (e.g. MA12)

ν′L′ν′(tobs) = πR2
∫ x′max(tobs)

x′min(tobs)
dx′ν′ j′ν′

[
t′a,S(tobs, x

′)
]
, (2.69)

where j′
ν′ is the emissivity (2.36). The limits of the integral in Eq. (2.69) depend on

two factors. The radiation activity happens since the onset of the shock; i.e., starting

at t′
a,S = 0, and it lasts until the respective shock meets the edge of the shell. Given

that we are assuming that both shocks exist, from (2.68) we get that the limits of the

integral (2.69) are

x′min(tobs) = max
(
Γctobs(βRS − βl)

(1 + z)(1 − βRSµobs)
,−∆r′L

)
, (2.70a)

x′max(tobs) = min
(
Γctobs(βFS − βl)

(1 + z)(1 − βFSµobs)
,∆r′R

)
, (2.70b)
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2.4. Particle distribution

where ∆r′L and ∆r′R are the widths of the left and of the right shells measured in the

CD frame, related to their respective width in the laboratory frame by

∆r′i = Γi∆ri (2.71)

Finally, knowing that in the observer rest frame (e.g. Dermer 2004)

νobs =
D

1 + z
ν′, (2.72)

Fνobs =
1 + z

d2
L

D3L′ν′ , (2.73)

we get that the energy flux νobsFνobs received by the observer is

νobsFνobs(tobs) =
πR2D4

d2
L

∫ x′max(tobs)

x′min(tobs)
dx′ν′ j′ν′[t

′
a(tobs, x

′)]. (2.74)

2.4 Particle distribution

A population of particles at certain moment t is described by an energy distribution

function which depends on the nature of the particles, the interactions among them

and the medium in which they are immersed. In this section we will describe the

main distribution functions of a plasma (charged particles) and how to deal with their

evolution.

2.4.1 Kinds of particles distribution

There are two main kinds of particle velocity distribution functions: thermal and

nonthermal. More precisely, if the distribution of velocities is Maxwellian (Maxwell-

Boltzmann if the speed of the particles is non-relativistic, or Maxwell-Jüttner (Jüttner

1911) if the particles are relativistic, we are talking about a thermal distribution, oth-

erwise the distribution is nonthermal. In the present thesis the particles of interest are

electrons and we will describe the distributions composed mainly of them (although

they may be part of a plasma composed of other particles as well). Nevertheless, the

formalism here presented can be extended to other kinds of charged particles, e.g.

protons or ions.
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2.4.1.1 Thermal particles

The most general thermal distribution function, expressing the probability distribu-

tion per unit Lorentz factor of relativistic thermal particles is the normalized Max-

well-Jüttner distribution (Chandrasekhar 1939; Jüttner 1911). This distribution is

temperature, T , dependent and reads:

nth(γ) =
γ2β

ΘK2(1/Θ)
exp

(
− γ
Θ

)
. (2.75)

where Θ := kBT/mqc2 is the dimensionless temperature of the charged particles, kB

is the Boltzmann constant and K2(x) is the modified Bessel function of the second

kind. In Figure 2.7 we show the shape of (2.75) for electrons (i.e., mq = me) with

different temperatures.
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Θe = 100

Figure 2.7: Maxwell-Jüttner distribution function of electrons with different dimensionless
temperatures Θe. In black, red, blue, green and purple we show the distribution function for
temperatures Θe = 0.1, 1, 5, 10, 100, respectively.

Calculating the first moment of the distribution (2.75) we obtain the average

Lorentz factor of the thermal distribution

〈γ〉 =
∫ ∞

1
dγ γnth(γ) = 3Θ +

K1(1/Θ)
K2(1/Θ)

. (2.76)

42



2.4. Particle distribution

2.4.1.2 Nonthermal particles

As it was mentioned in §1.3.2, the detection of cosmic rays on Earth have shown

that the accelerated particles which produce the observed spectra are described by

a power-law distribution, rather than a thermal distribution (e.g. Bykov et al. 2012).

We define a nonthermal power-law distribution in the following way:

nnth(γ) = n(γmin)
(
γ

γmin

)−q

H (γ; γmin, γmax) , (2.77)

where γmin and γmax are the lower and upper cut-offs of the power-law interval,

n(γmin) is the number density at the lower cut-off and q is the power-law index.

H(x; a, b) is the interval function defined as:

H(x; a, b) :=


1, a ≤ x ≤ b

0, elsewhere
. (2.78)

We note that, while the thermal distribution can be described by only two param-

eters (T and the normalization constant), one needs four parameters to describe the

nonthermal power-law distribution, namely, γmin, γmax, n(γmin) and q.

2.4.2 Injection of particles at a shock

It was shown by Bell (1978b) that in the vicinity of (nonrelativistic) shock fronts

charged particles are accelerated downstream into a power-law distribution and esti-

mated the rate of particles injected upstream crossing the shock (Bell 1978a). Later,

Kirk & Schneider (1987) provided a solution for the case of relativistic shocks, mak-

ing the first steps towards understanding this kind of shocks. Great advances have

been made ever since on the understanding of these waves and the particles acceler-

ation processes that may develop therein (e.g. Begelman & Kirk 1990; Bednarz &

Ostrowski 1996, 1998). Nowadays, sophisticated numerical codes have proved use-

ful tools for the understanding of relativistic shocks and particles acceleration (e.g.

Achterberg et al. 2001; Sironi et al. 2013).

In the present section we will reproduce the formalism described in MA12 (p.

2637) and RMA17 (pp. 1170–1171) for a power-law and hybrid thermal-nonthermal

distributions, respectively, expanding the intermediate steps.
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2.4.2.1 Injection of a pure power-law distribution

Most IS models for blazars assume that the radiation is produced by a power-law

energy distribution of nonthermal electrons accelerated behind the shock (Spada

et al. 2001; Mimica et al. 2004; Böttcher & Dermer 2010). More specifically, from

Eq. (2.77), the number density of nonthermal particles per unit time and unit Lorentz

factor injected in the comoving frame is

dnnth

dt′ dγ
= Q0γ

−qH(γ; γnth
min, γ

nth
max), (2.79)

where Q0 is the normalization constant in units of number density per unit of proper

time (cm−3 s−1).

As we inject electrons at a number rate described by Eq. (2.79), we also inject

energy in the nonthermal population at a rate (MA12)

dE′inj

dt′
= mqc2V ′accQ0γ

nth
min

qP

γnth

max

γnth
min

, 1 − q

 , (2.80)

where the function P(a, s) is an integral over the power-law segment given by (3.1),

whose careful numerical treatment will be described in detail in the following chapter.

V ′acc is the comoving volume where the acceleration takes place, which for the case

of cylindrical shells of cross-sectional radius R (see §2.3.1),

V ′acc = πR2
∆r′acc, (2.81)

where ∆r′acc is given by (2.63).

The upper cut-off γnth
max is given by (2.66), whereas the lower cut-off is obtained

by, firstly, assuming that the number of accelerated particles is related to the number

of particles crossing the shock front by

dN′inj,i

dt′
= ζeπR2niΓiβSc = Q0γ

nth
min

q+1P

γnth

max

γnth
min

,−q

 (2.82)

where ζe is the fraction of charges accelerated into the power-law distribution. Sec-

ondly, solving Eq. (2.80) for Q0,

Q0 = γ
nth
min
−q

dE′inj,i

dt′

/
mqc2V ′accP


γnth

max

γnth
min

, 1 − q

 (2.83)
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Finally, from Eqs. (2.64), (2.82) and (2.83), we get

P

γnth

max

γnth
min

, 1 − q



γnth
minP


γnth

max

γnth
min

,−q



=
ǫeu′S

ζeΓinimqc2
. (2.84)

from which γnth
min can be computed. Calculating γnth

min from the last equation guarantees

that γnth
min ≤ γ

nth
max

6.

2.4.2.2 Injection of a hybrid thermal-nonthermal distribution

The motivation for the study of a HD sprang from recent PIC simulations of weakly

magnetized relativistic shocks (e.g., Sironi et al. 2013). In these simulations it has

been found that the energy distribution of particles at the shock front follows a ther-

mal distribution plus a high energy power-law tail. As it is mentioned in §2.4.1.1,

relativistic thermal particles are described by (2.75) so that the number density of

thermal particles per unit time and unit Lorentz factor reads

dnth

dt′ dγ
= Qth

γ2β

ΘK2(1/Θ)
exp

(
− γ
Θ

)
, (2.85)

where Qth is the thermal normalization factor in units of the number density per unit

of proper time (cm−3 s−1).

An approximation to a HD has been proposed by Giannios et al. (2009). It con-

sists of a thermal distribution below some threshold Lorentz factor and a power-law

tail above it. The value of the threshold and the number of particles in each part

are determined by specifying the proportion of nonthermal particles. Zdziarski et al.

(1990) and Li et al. (1996) use a similar approach, joining the thermal and nonthermal

distributions at the mean Lorentz factor of the Maxwell-Jüttner distribution, given by

Eq. (2.76).

As mentioned in the previous section, in the standard IS model a fraction ǫe of

the energy dissipated at the shock accelerates the electrons into a pure power-law

distribution. In this alternate procedure for the description of the injected particles

behind a shock we avoid both finding a break Lorentz factor and estimating the value

6Despite the fact that a monoenergetic distribution is unlikely to occur, is not discarded in the
present formalism.
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of ǫe. As an alternative, we will consider first the following assumption: all thermal

energy dissipated at the shock is used to accelerate both thermal and nonthermal

particles (RMA17). Of all this energy, a fraction ζe is transferred to the nonthermal

population while the rest (1 − ζe) goes to the thermal one. In other words,

ζe
dE′inj

dt′
=mqc2V ′accQ0γ

nth
min

qP

γnth

max

γnth
min

, 1 − q

 , (2.86)

(1 − ζe)
dE′inj

dt′
=mec2V ′accQth〈γ〉. (2.87)

Secondly, let us consider the energy spectrum of all particles. For that we add up

Eqs. (2.79) and (2.85),

dninj

dt′dγ
= Q0γ

−qH(γ; γnth
min, γ

nth
max) + Qth

γ2β

ΘK2(1/Θ)
exp

(−γ
Θ

)
. (2.88)

Integrating Eq. (2.88) in Lorentz factor we obtain the number of (thermal and

nonthermal) particles per unit time injected by the shock,

dN′inj

dt′
= Qth + Q0γ

nth
min

q+1P

γnth

max

γnth
min

,−q

 . (2.89)

On the other hand, we note that the number of injected particles per unit of proper

time is given by an equation similar to the first equality of Eq. (2.82), but disregarding

ζe since now we consider that all electrons are aceelerated and that ζe now denotes

the fraction of accelerated particles that are nonthermal. Thus, we have

dN′inj

dt′
= πR2niΓiβSc. (2.90)

By assuming that the partition of the number of injected particles is the same as that

of the injected energy we set the following relations for the normalization coefficients

in Eq. (2.89)

Q0γ
nth
min

q+1P

γnth

max

γnth
min

,−q

 = ζe
dN′inj

dt′
(2.91)

Qth = (1 − ζe)
dN′inj

dt′
(2.92)
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From Eqs. (2.91) and (2.92) we find that

Q0 =
ζeQth

(1 − ζe)γnth
min

q+1P

γnth

max

γnth
min

,−q



. (2.93)

Finally, from Eqs. (2.86), (2.87) and (2.93) we arrive at the following expression:

P

γnth

max

γnth
min

, 1 − q

 = 〈γ〉γnth
minP


γnth

max

γnth
min

,−q

 , (2.94)

from which we compute the lower cut-off of the nonthermal distribution γnth
min in the

same manner as for a pure power-law plugging in the expression the average Lorentz

factor 〈γ〉 is given by Eq. (2.76).

2.4.3 Particles evolution

In this chapter we expand on the treatment of the nonthermal particles described in

Section 3.2.1 of Mimica (2004). Assuming no fluid adiabatic expansion or compres-

sion and no difusion (i.e., the particles are advected with the fluid) we can write the

kinetic equation
∂n(γ, t′)
∂t′

+
∂

∂γ

[
γ̇n(γ, t′)

]
= Q(γ, t′), (2.95)

where n(γ, t′) is the number density of particles at comoving time t′ with Lorentz

factor γ, γ̇ are the radiative energy losses of a particle with Lorentz factor γ, and Q is

the source term i.e., the injection of particles with Lorentz factor γ at a time t′. Since

we are considering only synchrotron and inverse-Compton losses, we can write the

radiation loss term in the form (Dermer & Menon 2009)

γ̇ ≡ dγ
dt′
= −ν0γ2 (2.96)

where ν0 > 0 depends on the magnetic energy density and (or) on the radiation field

energy density. Solving Eq. (2.96) we get

γ(t′) =
γ(0)

1 + ν0γ(0)t′
, (2.97)

where γ(0) is the Lorentz factor of a particle at t′ = 0. In Figure 2.8 we trace the time

evolution of the Lorentz factor γ(t′) (Eq. (2.97)) for three different values of γ(0).
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∆t′t′ t′

γ

t′ − γmax − γ(0)
ν0γ(0)γmax

t′ +
γ(0) − γmin

ν0γminγ(0)

Figure 2.8: Injection region and cooling trajectories in the γt′–plane. In blue and green dots
we highlight the values of t′min and t′max, respectively.

By solving (2.97) for γ(0) we may backtrack the initial Lorentz factor of a particle

whose Lorentz factor is γ(t′) after it cools during a time t′; i.e.,

γ(0) =
γ(t′)

1 − ν0γ(t′)t′
. (2.98)

Following Gratton (1972) we make the next transformations:

τ(γ, t′) := t′ +
1

ν0γ(t′)
, (2.99a)

Ψ(γ, t′) := ν0γ2(t′)n(γ, t′), (2.99b)

J(γ, t′) := ν0γ2(t′)Q(γ, t′), (2.99c)

where τ > 0 is our new time variable. Substituting (2.99) in (2.95) we arrive at the

following ordinary differential equation for Ψ:

dΨ
dτ
= J. (2.100)
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whose general solution is:

Ψ =

∫ τmax

τmin

dτ̃J. (2.101)

2.4.3.1 The case without source term

Let us consider first the case where Q0 ≡ Q(γ(0), t′) = 0. For this case we have the

trivial solution for Eq. (2.100):

Ψ = Ψ0, (2.102)

where Ψ0 is a constant determined by Eq. (2.99b) at t′ = 0. Let us consider the

case of an initial power-law distribution (§2.4.1.2, Eq. (2.77)), for which the solution

reads (Mimica 2004)

Ψ0 = n(γmin)γq

minν0γ
2−qH(γ; γmin, γmax). (2.103)

Substituting the above result into (2.99b) and taking into account that the evolution

of the Lorentz factor is given by Eqs. (2.97) and (2.98), the final solution for n(γ, t′)

reads (Mimica 2004)

n(γ, t′) = n(γmin)
(
γ

γmin

)−q(
1 − ν0γt′

)q−2
H

(
γ;

γmin

1 + ν0γmint′
,

γmax

1 + ν0γmaxt′

)
, (2.104)

which is the so-called Kardashev solution (Kardashev 1962). This solution is con-

strained to the fact stated above that τ > 0, or else γ < 1/ν0t′, which for a distribution

with finite Lorentz factor is always fulfilled.

Following the set-up of (Mimica 2004), in Figure 2.9 we show the evolution of a

distribution of the particles according to (2.104). The initial setup of the distribution

is γmin = 10, γmax = 104 and q = 2.2. We can appreciate that the particles pile up at

low Lorentz factor, consistent with the cooling they are experiencing.

2.4.3.2 The case with a power-law source term

Let us consider now the case where the source term Q(γ, t′) follows a power-law in

Lorentz factor, i.e., it is described by:

Q(γ, t′) = Q(γmin, t
′)
(
γ

γmin

)−q

H (γ; γmin, γmax) , (2.105)
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Figure 2.9: Evolution of a power-law distribution with radiative energy losses and no source
term. Initially γmin = 10, γmax = 104, and power-law index q = 2.2 (blue line). In orange,
green, red, and purple we show the distribution at t′ = 0.01/ν0γmin, 0.1/ν0γmin, 0.5/ν0γmin

and 1/ν0γmin, respectively.

and, following model 2 in Gratton (1972), let us assume that there are no relativistic

particles present until t′ = 0 (i.e., n(γ, 0) = 0) when the injection of particles (2.105)

is turned on. Solving (2.99a) for γ(t′) we get

γ(t′) =
1

ν0(τ − t′)
(2.106)

Substituting Eqs. (2.105) and (2.106) in (2.99c) we arrive to the following result:

J = Q(γmin, t
′)γq

minν
q−1
0 (τ − t′)q−2

H

(
1

ν0(τ − t′)
; γmin, γmax

)
, (2.107)

The solution (Eq. (2.101)) to the kinetic equation with the source term (2.107) reads

Ψ = Q(γmin, t
′) = Q(γmin, t

′)γq

minν
q−1
0

∫ ςmax

ςmin

dς ςq−2, (2.108)

where ς ≡ τ − t′, ςmin ≡ τmin − t̄min, ςmax ≡ τmax − t̄max, τmin ≡ τ(t̄min) and

τmax ≡ τ(t̄max). The values [t̄min, t̄max] define the time interval in which the injec-

tion of particles is active (see Eq. (2.113)). In order to find the proper value of ςmin
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and ςmax let us constrain first the injection of particles to happen during a finite period

of time7
∆t′. In other words, Q(γ, t′ > ∆t′) = 0. Therefore the injection region, in

the γ–t′ plane, is (see the red area of Figure 2.8):

γmin ≤ γ(t′) ≤ γmax, (2.109a)

0 ≤ t′ ≤ ∆t′. (2.109b)

Let us consider now a particle with Lorentz factor γ̄ at a time t̄ in the injection

region. Making use of relations (2.97) and (2.98) we get that for such particle:

γ̄(t̄) =
γ(t′)

1 − ν0γ(t′) (t′ − t̄)
, (2.110)

with 0 ≤ t̄ ≤ min{t′,∆t′}.
Substituting (2.110) for the left-hand-side of (2.109a) we get that

t̄ ≤ γ(t
′) − γmin

ν0γ(t′)γmin
+ t′. (2.111)

In the same manner for the right-hand-side of (2.109a) we get that

t̄ ≥ γ(t
′) − γmax

ν0γ(t′)γmax
+ t′. (2.112)

From Eqs. (2.111) and (2.112) we can conclude that

t̄min = max
{

0, t′ − γmax − γ(t′)
ν0γ(t′)γmax

}
, (2.113a)

t̄max = min
{

t′,∆t′, t′ +
γ(t′) − γmin

ν0γ(t′)γmin

}
. (2.113b)

In Figure 2.8 we depict (2.113a) and (2.113b) in blue and green dots, respectively.

Substituting (2.113) into (2.110) we get

γ̄min ≡ γ̄(t̄min) = max {γ(0), γmax} , (2.114a)

γ̄max ≡ γ̄(t̄max) = min
{
γ(t′),

γ(t′)
1 − ν0γ(t′)(t′ − ∆t′)

, γmin

}
. (2.114b)

7We note that this assumption improves the treatment of the particle injection in Mimica (2004),
where the injection was assumed to always be turned on.
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At this point we have the means to calculate the integral boundaries in (2.108).

From the above relations we have that

ςmin = τmin − t̄min = max
{

1
ν0γ(0)

,
1

ν0γmax

}
, (2.115a)

ςmax = τmax − t̄max = min
{

1
ν0γ(t′)

,
1

ν0γ(t′)
− t′ + ∆t′,

1
ν0γmin

}
. (2.115b)

Accordingly, applying the change of variable ς̂ ≡ ς/ςmin in Eq. (2.108), we get

Ψ(τ) = Q(γmin, t
′)γq

min(ν0ςmin)q−1P
(
ςmax

ςmin
, 2 − q

)
. (2.116)

The numerical treatment will be described in the following chapter, §3.1.1.1.

Finally, the solution for the number of particles reads

n(γ, t′) = Q(γmin, t
′)γq

minγ
−2ν−1

0 γ
1−q

highP
(
γhigh

γlow
, 2 − q

)
(2.117)

where,

γlow = max
{
γ(t′), γmin,

γ(t′)
1 − ν0γ(t′)(t′ − ∆t′)

}
, (2.118a)

γhigh = min {γ(0), γmax} . (2.118b)

This formalism allows us to model the shock injection and synchrotron and IC

cooling of particles in finite volume and during a finite time.
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Chapter3

The blazars code

In this chapter we will describe the improvements the author of this Ph.D. thesis

has undertaken on the previous code (Mimica & Aloy 2012). Furthermore, we will

describe in detail the new set of routines developed to compute the MBS emission

from relativistic magnetized plasma.

3.1 The Internal-shocks code

The code developed in Mimica & Aloy (2012) is an adaptation of the code SPEV (see

Mimica et al. 2009) to a cylindrical geometry. It was motivated by previous works

where cylindrical shells were used to simulate ISs in blazars (Böttcher & Dermer

2010; Joshi & Böttcher 2011). In Figures 3.1–3.3 we sketch a general (and rather

coarse) structure of the code. Blue nodes denote subroutines belonging to the version

of the code used in Mimica & Aloy (2012); Rueda-Becerril et al. (2014b), while

nodes in green refer to the new tools developed by the author of this PhD thesis.

The first stage is called Precompute. In this stage, given an input parameters file:

(a) the Riemann problem is solved, (b) the EED (hybrid or power-law) is initialized

as described in §§2.3 and 2.4, (c) the normalization coefficients of the EED at each

shock front are calculated, (d) synchrotron/MBS emissivity is calculated for discrete

time steps corresponding to a range of EED ages that are needed to correctly com-

pute the observed emission (see Figure 3.2a and also 2.3.1.4), (e) time integration of

synchrotron/MBS emissivity is performed for each time step (see Figure 3.2b), and
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3. The blazars code

(f) emissivity and time integrals are saved into an HDF5 file.

During the second stage (Postcompute) the synchrotron, EIC and SSC light

curves are calculated (see Figure 3.3). This stage is highly parallelized using MPI1.

In the rest of this section we will describe the new tools implemented to the

Internal shocks code.

3.1.1 Numerical inverse-Compton radiation

In the present thesis we treat the IC radiation according to Mimica (2004, the in-depth

development can be found therein). This technique has been applied to the IS model

in previous works (e.g. Mimica & Aloy 2012; Rueda-Becerril et al. 2014b). In the

present section we will describe new numerical tools that have been developed and

applied to compute the IC radiation from a power-law distribution of electrons.

3.1.1.1 Power-law integrals

We need to rewrite the expression in Mimica (2004) used to calculate the emissivity

of SSC and EIC scattering in order to compute these processes with the new MBS

emissivity. Following Mimica (2004), we start by defining the following functions:

P(a, s) :=
∫ a

1
dx x−s (3.1)

Q(a, s) :=
∫ a

1
dx x−s log(x) (3.2)

Q2(a, s) :=
∫ a

1
dx x−s log2(x) (3.3)

where a > 1.

1MPI (Message Passing Interface) is a standard used for the distributed-memory parallelism (i.e.,
parallel computation on a cluster of machines that do not share the same memory so that the calcula-
tion needs to be coordinated by sending messages between them). More information can be found at
http://www.mpi-forum.org
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read

model.params

solv

precompute

plasma

temperature

number density of

unshocked material

shock

exists?

HYB?

zero particles
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initialize hybrid
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shock

active?

Romero et al. (2005)

END

set shock
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set shock

inactive

model.pre.h5

read
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No
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Figure 3.1: Flow chart of the Precompute stage.
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Figure 3.3: Postcompute.
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3. The blazars code

These integrals take the values:

P(a, s) :=



1 − a1−s

s − 1
, s , 1

log (a), otherwise

, (3.4)

Q(a, s) :=



1 − a1−s [1 + (s − 1) log (a)
]

(s − 1)2
, s , 1

log2 (a)
2
, otherwise

, (3.5)

Q2(a, s) :=



2 − a1−s

(s − 1)3

[
2 + (s − 1)

{
2 + (s − 1) log (a)

}
log (a)

]
, s , 1

log3 (a)
3
, otherwise

. (3.6)

However, numerically, the cases in which s ≈ 1 are potentially problematic be-

cause of a division by a very small number. Thus, when s ≈ 1 we make use of Taylor

series expansion around s = 1 of the analytic results obtained for s , 1, i.e.,

P(a, s) ≈ log(a) − 1
2

(s − 1) log2(a) + O(s − 1)2, (3.7)

Q(a, s) ≈1
2

log2(a) − 1
3

log3(a)(s − 1) + O(s − 1)2, (3.8)

Q2(a, s) ≈1
3

log3(a) − 1
4

log4(a)(s − 1) + O(s − 1)2. (3.9)

We note that there is no need to treat a in a special way since we always expect

a > 1. We introduce a threshold value ε∗ and define the following functions aided

by their Taylor expansions (3.7)–(3.9) and newly defined logarithmic functions (see

Appendix A):

P∗(a, s) :=



1 − a1−s

s − 1
,

1
6

(s − 1)2Log3(a) > ε∗

Log1(a) − 1
2

(s − 1)Log2(a), otherwise

, (3.10)

Q∗(a, s) :=



1 − a1−s [1 + (s − 1)Log1(a)]

(s − 1)2
,

1
8

(s − 1)2Log4(a) > ε∗

1
2
Log2(a) − 1

3
(s − 1)Log3(a), otherwise

, (3.11)

Q∗2(a, s) :=
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3.1. The Internal-shocks code



2 − a1−s

(s − 1)3
[2 + (s − 1) {2

+ (s − 1)Log1(a)} Log1(a)] ,
1
10
Log5(a)(s − 1)2 > ε∗

1
3
Log3(a) − 1

4
(s − 1)Log4(a), otherwise

. (3.12)
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s − 1 = 10−3

s − 1 = 10−4

Figure 3.4: Relative errors of P∗(x + 1, s),Q∗(x + 1, s) and Q∗2(x + 1, s) for two s − 1 =
10−3 and 10−4 (solid and dashed lines respectively). We show the relative errors of func-
tions (3.10) (black lines), (3.11) (red lines) and (3.12) (blue lines) with respect to the first
branch of P, Q and Q2, respectively.

In Figure 3.4 the relative error of P∗(x + 1, s),Q∗(x + 1, s) and Q∗2(x + 1, s) are

shown for two power-law indices: s − 1 = 10−3 and 10−4 (solid and dashed lines

respectively). The relative errors are computed with respect to their first branch; i.e.,

with respect to P,Q and Q2 for s , 1. Significant numerical noise appears as s gets

close to 1 due to the fact that the P∗, Q∗ and Q∗2 are very sensible to the value of s.
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3. The blazars code

The relative error of P∗ and Q∗ decreases for x & 0.06. Besides, the behavior of Q2

(blue lines) for x < 0.1 is unreliable. We expect that in our simulations s will often

take values very close to 1, therefore we need to resort to the starred functions.

Eqs. (2.90), (2.91), (2.96) and (2.97) from Mimica (2004) read

PM04(a, b, α) :=
∫ b

a

dxxα =



bα+1 − aα+1

α + 1
, α , −1

log
(

b
a

)
, α = −1

, (3.13)

QM04(a, b, α) :=
∫ b

a

dxxα log(x),

=



bα+1 log(b) − aα+1 log(a) − PM04(a, b, α)
α + 1

, α , −1

1
2 log(ab)PM04(a, b, α), α = −1

, (3.14)

RM04(a, b, c, d, α, λ) :=
∫ d

c

dxxλPM04(xa, xb, α)

= PM04(a, b, α)PM04(c, d, α + λ + 1), (3.15)

SM04(a, b, c, d, α, λ) :=
∫ d

c

dxxλPM04(xa, b, α)

=



bα+1PM04(c, d, λ) − aα+1PM04(c, d, α + λ + 1)
α + 1

, α , −1

log
(

b
a

)
PM04(c, d, λ) − QM04(c, d, λ), α = −1

. (3.16)

The above functions were rewritten in terms of P∗,Q∗ and Q∗2 as follows

PM04(a, b, α) =aα+1P∗
(
b

a
,−α

)
, (3.17)

QM04(a, b, α) =aα+1
[
Q∗

(
b

a
,−α

)
+ log (a)P∗

(
b

a
,−α

)]
, (3.18)

RM04(a, b, c, d, α, λ) =cλ+α+2aα+1P∗
(
d

c
,−λ − α − 1

)
Q∗

(
b

a
,−α

)
, (3.19)

SM04(a, b, c, d, α, λ) = − cλ+1bα+1
∫ d/c

1
dxxλ

∫ ax/b

1
dyyα (3.20)

where 0 < a < b and 0 < c < d.
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3.1. The Internal-shocks code

The case of (3.20) has not been reduced to the starred functions since it had to be

treated piecewise owing to the fact that the upper limit of the innermost integral de-

pends on the variable of integration of the outermost integral. Making use of Eq. (3.7)

we establish a tolerance εint

SM04(a, b, c, d, α, λ) =


cλ+1

α + 1

{
bα+1P∗

(
d
c
,−λ

)
− (ac)α+1

× P∗
(

d
c
,−(α + β + 1)

)}
, 1

6 (α + 1)2Log3
(

b
ad

)
> εint

cα+λ+2aα+1
[
Log1

(
b
ac

)
P∗

(
d
c
,−λ

)

−Q∗
(

d
c
,−λ

)
+ 1

2 (α + 1)
{
Log2

(
b
ac

)

×P∗
(

d
c
,−λ

)
− 2Log1

(
b
ac

)

×Q∗
(

d
c
,−λ

)
+ Q∗2

(
d
c
,−λ

)}]
, otherwise

. (3.21)

In our simulations the tolerance was set to εint = 10−9.

3.1.1.2 Emissivity from Compton upscattering of monochromatic seed

photons

Let us consider the following incoming intensity of the external radiation field in the

CD frame is:

I′ν′ = I′ν′in
δ(ν′ − ν′ext), (3.22)

in units of erg cm−2 s−1 sr−1 Hz−1, where Iν′ in and ν′ext are the intensity and frequency

of the incoming photons measured in the CD frame, and δ(x) is the Dirac delta-

function. Setting our coordinate system such that in the laboratory frame (at rest

with respect to the AGN) the direction of motion of the electron makes an angle

θin ≡ arccos(µin) with the incoming photon, and an angle θout ≡ arccos(µout) with

the scattered photon. The transformation of the intensity to the rest frame of the

electrons, where physical quantities are denoted with a double prime, reads (Rybicki

& Lightman 1979)

I′′ν′′(µ
′′
in) = I′ν′

(
ν′′

ν′

)3

, (3.23)

where µ′′in = cos(θ′′in), and θ′′in is the angle corresponding to θin, but measured in the

rest frame of the electrons. The dependence on the angle of the incoming photon
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3. The blazars code

comes from the fact that in the rest frame of the electron the isotropy of the pho-

ton field is lost due to relativistic effects. Frequencies ν′ and ν′′ are related by the

relativistic Doppler formula (e.g. Rybicki & Lightman 1979)

ν′ = ν′′γ(1 + βµ′′in) (3.24)

where γ and β are the Lorentz factor and speed of the electron in the CD frame.

Inserting (3.23) and (3.24) into (3.22) we get the intensity of the radiation field as

seen by the electron; i.e.,

I′′ν′′ =
I′
ν′ in

γ3(1 + βµ′′
in

)3
δ
[
ν′′γ

(
1 + βµ′′in

)
− ν′ext

]
. (3.25)

For the sake of brevity the intermediate steps to arrive to the total emissivity are

not included in the present thesis, although the procedure is well known and can be

found in the literature (e.g. Blumenthal & Gould 1970; Rybicki & Lightman 1979;

Dermer & Menon 2009). In previous works EIC seed photons, which surround the

shock region, have been treated as monochromatic and isotropic in the AGN (i.e.,

laboratory) frame (e.g. Böttcher & Dermer 2010; Mimica & Aloy 2012).

The description of the radiation field in the context of the internal shocks model

is best suited in the reference frame of the CD. As mentioned before, this frame

coincides with the fluid comoving frame and, also, with the reference frame of the

electrons. In the latter frame, we denote the frequency and energy density of the

external radiation field as ν′ext and u′ext, respectively2.

Let us consider our system constituted by electrons following a power-law distri-

bution, given by (2.77), with power-law index q. For an isotropic radiation field, as

seen in the comoving frame, I′
ν′in
= cu′ext, and assuming an isotropic cross section, the

total scattered photons emissivity at frequency ν′ is (Mimica 2004)

2The transformation from the AGN frame to the CD frame is as follows (e.g., Böttcher & Dermer
2010; Mimica & Aloy 2012):

νext = Γν
′
ext, uext = Γ

2u′ext,

where the primed quantities are in the CD rest frame, and Γ corresponds to the Lorentz factor of the CD
measured in the laboratory/AGN frame.
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3.1. The Internal-shocks code

j′ν′ = cσTu′extν
′
ext
−1

n(γmin)γq

minw(1−q)/2

×



PM04


w

γ2
max∗
,

w

γ2
min

,
q − 1

2



−PM04


w

γ2
max∗
,

w

γ2
min

,
q + 1

2

 , 1
4 ≤ w ≤ γ2

min

PM04

(
w

γ2
max∗
, 1,

q − 1
2

)

−PM04

(
w

γ2
max∗
, 1,

q + 1
2

)
, γ2

min < w ≤ γ2
max∗

0 otherwise

, (3.26)

where w ≡ ν′/4ν′ext, and the Klein-Nishina cut-off (see Blumenthal & Gould 1970;

Aloy & Mimica 2008) is taken into account by defining the effective upper cut-off

γmax∗ := min
(
γmax,

mec2

hν′ext

)
. (3.27)

We note that Mimica (2004) did not consider the Klein-Nishina cut-off.

In Figure 3.5 we show in black lines the scattered emissivity from seed photons

of a monochromatic external field with ν′ext = ν
′
1 = 1014 Hz (left axis). In analogy to

Figure 2.7 of Mimica (2004), the EED considered were power-law distributions (see

§2.4.1.2) with γmin = 15, γmax = 3 × 106 and different power-law indices q = 1.1,

1.5, 2.25, 3.0 and 4.03. The vertical blue lines in Figure 3.5 denote significant sharp

turns in the spectrum. First of all, at around 4γ2
minν

′
ext (note that the monoenergetic

photon field is set up with ν′ext = ν
′
1), we observe the EIC photons upscattered by

their interaction with the electrons of the smallest energy in the distribution (i.e.,

those with γ = γmin). In this particular case, the Klein-Nishina cut-off corresponds

to the second of the factors of Eq. (3.27). Thus the spectrum drops quickly off at

frequencies ≃ 4(mec2/(hν′ext))
2ν′ext, if the EED is sufficiently flat (i.e., for q = 1.1

and q = 1.5; solid and dotted black lines in Figure 3.5). Steeper EED also attain

the Klein-Nishina cut-off at the same location, though at a much smaller value of j′
ν′

and, thus, it is not displayed in the range of the plot (see the dashed, dot-dashed and

dot-do-dashed black lines in Figure 3.5).

3This value of γmax corresponds to aacc(B′S/1 G) ≈160.449 in Eq. (2.66).
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Figure 3.5: Inverse-Compton emissivity from a δ-like and a power-law distribution of seed
photons off a power-law distribution of electrons with γmin = 15, γmax = 3 × 106 and index
q = 1.1, 1.5, 2.25, 3.0 and 4.0 in solid, dotted, dashed, dot-dashed and dot-dot-dashed lines,
respectively. Black lines (left axis) correspond to a δ-like spectrum (3.26) with ν′ext = 1014

Hz, whereas red lines (right axis) represent the emissivity due to an incoming power-law
spectrum (3.28) with l = 0.7, ν′1 = ν

′
ext and ν′2 = 1016 Hz (cf. Figure 2.7 Mimica 2004).

3.1.1.3 Emissivity from Compton upscattering of a power-law distribution of

seed photons

Let us assume now that the intensity of the incoming photons follows a power-law

spectrum in the CD frame; i.e.,

I′ν′ = I′ν′1

(
ν′

ν′1

)−l

H(ν′; ν′1, ν
′
2) (3.28)

where ν′1 and ν′2 are the lower and upper limits of the spectrum, respectively, l the

spectral index, and H(x; a, b) is given by (2.78). Analogously to (3.26), the total

emissivity of the scattered photons with a power-law spectrum off a power-law distri-
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bution is (Mimica 2004)

j′ν′ = σTn(γmin)γq

minI′ν′1
(4ν′1)l

ν′−l

×



GISO
1

(
γ−2

max∗, γ
−2
min,w2,w1,

q − 1
2
,

2l − q − 1
2

)
,

1
4
<
ν′

4ν′1
< γ2

min

GISO
1

(
γ−2

max∗, γ
−2
min,w2, γ

2
min,

q − 1
2
,

2l − q − 1
2

)

+GISO
2

(
γ−2

max∗, 1, γ
2
min,w1,

q + 1
2
,

2l − q − 1
2

)
,
ν′

4ν′2
≤ γ2

min ≤
ν′

4ν′1

GISO
2

(
γ−2

max∗, 1,w2,w1,
q − 1

2
,

2l − q − 1
2

)
, γ2

min <
ν′

4ν′2
≤ γ2

max∗

0 otherwise

, (3.29)

where

w1 ≡ min
{
ν′

4ν′1
, γ2

max∗

}
, (3.30a)

w2 ≡ max
{
ν′

4ν′2
,

1
4

}
, (3.30b)

and

GISO
1 (a, b, c, d, α, λ) := RM04(a, b, c, d, α, λ) − RM04(a, b, c, d, α + 1, λ), (3.31)

GISO
2 (a, b, c, d, α, λ) := SM04(a, b, c, d, α, λ) − SM04(a, b, c, d, α + 1, λ). (3.32)

As above, the intermediate steps were excluded to avoid the repetition of equations

from previous works in the present thesis. The goal here is to focus on the results.

Employing the starred functions ((3.10), (3.11) and (3.12)), we take the same pa-

rameters as in Figure 2.7 of Mimica (2004). In Figure 3.5 we show in red lines (right

axis) the total scattered photons emissivity due to an incoming power-law spectrum

photons field (3.28) with l = 0.7, ν′1 = 106 Hz and ν′2 = 1010 Hz. Solid, dotted,

dashed, dot-dashed and dot-dot-dashed lines correspond to power-law EEDs with

index q = 1.1, 1.5, 2.25, 3.0 and 4.0, respectively.

The shape of the spectrum in this case shares some similarities to the case of

an incoming monochromatic photon field (§3.1.1.2). For instance, the spectral peak

happens above 4γ2
minν

′
ext, but it is broader than in the monochromatic case, with a

relatively flat region extending up to 4γ2
minν

′
2. However, the Klein-Nishina cut-off
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corresponds to the first of the factors of Eq. (3.27)) in this case. The spectrum drops

off more slowly at high-frequencies, with a shallower decay extending between ≃
4γ2

maxν
′
1 and ≃ 4γ2

maxν
′
2, if the EED is sufficiently flat (i.e., for q = 1.1 and q = 1.5;

solid and dotted red lines in Figure 3.5).

In a nutshell, the IC emissivity will be given by Eq. (3.26) if the incoming

seed photons are monochromatic. If that is not the case, but rather the spectrum

is continuous in a frequency range [ν′min, ν
′
max], the intensity is approximated as a

collection of piecewise power-law segments. More specifically, provided that the

spectrum follows a power-law with spectral index li in the interval [ν′
i
, ν′

i+1], where

ν′min ≤ ν
′
i
< ν′

i+1 ≤ ν′max, the specific intensity at frequency ν′ in that interval reads

I′ν′ ≈ I′ν′
i

(
ν′

ν′
i

)−li

H(ν′; ν′i , ν
′
i+1), (3.33)

in which case we apply Eq. (3.29) to each piecewise power-law segment of the whole

incoming photon spectrum. This procedure is computationally much more efficient

than performing numerically the integrals required to compute the inverse Compton

emissivity.

3.1.1.4 Computing the SSC seed photons in the shocked region

With all the above treatment we are in place to solve the radiative transfer Eq. (2.67)

in the shocked region of our IS model (see §2.3) in order to evaluate the SSC emission

of seed photons. We know a priori that the electrons in the shocked region will suffer

a loss of energy as time passes (see §2.4.3), which implies that the emissivity depends

on the position x and (observer) time tobs at which it is measured. In other words, for

a point in the jet axis the angle averaged intensity reads (Mimica & Aloy 2012)

I′ν′(tobs, x
′) =

1
2

∫
π

0
dϕ′

∫ L(ϕ′)

0
ds′ j′ν′

(
t′(tobs) −

s

c
, x′ + s′ cosϕ′

)
, (3.34)

where ϕ′ is the polar angle in our current system of coordinates, L(ϕ′) is the length

of the segment in the direction ϕ′ from which the synchrotron/MBS emission has

had time to arrive to point x′ at a time t′(tobs). The values of x′ and t′(tobs) are given

by (2.70) and (2.68), respectively.
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3.2 CHAMBA

The numerical evaluation of Eq. (2.15) is tremendously challenging both analytical

and numerically since it requires performing the integral over an infinite sum of

Bessel functions and their derivatives. As we have mentioned, several techniques

have been used to compute such integral. In this section we focus on the implementa-

tion details of the code Computational HArmonics for full MagnetoBremsstrahlung

Applications (CHAMBA) developed for an efficient computation of radiation coming

from charged particles in a magnetic field (see §2.2) in the sub, trans and ultrarela-

tivistic regimes.

3.2.1 Preamble

The treatment of MBS emissivity by transrelativistic electrons made by Petrosian

(1981) relies on the following simplification:

∑

s

f (s) ≃
∫

ds f (s) (3.35)

where f (s) correspond to the addends in Eq. (2.15). Such approximation is valid

in the regime where the harmonics are so close to each other that they are indistin-

guishable and the spectrum can be considered as a continuum. That is, an analytic

expression was found for the cases where ν′ ≫ νg (see §2.2.5), with a typical relative

error between 20 and 30% with respect to the exact result. Its success notwithstand-

ing, it does not deal with the harmonics in the MBS emission that appear at low

frequencies near νg, which is, in fact, the spectral range that is of interest for the

present thesis.

Numerical methods and techniques that deal with the full cyclo-synchrotron e-

mission have been improving. An extensive and concise numerical approach was

first performed by Brainerd & Lamb (1987) who applied a Simpson-like method on

a cubic fitted function to approximate the sum over harmonics:

n+∆n∑

i=n−∆n

fi ≈
[
(∆n − 1)(2∆n − 1)

6∆n
+ 1

]
( fn−∆n + fn+∆n) +

[
(∆n − 1)(4∆n + 1)

3∆n
+ 1

]
fn

(3.36)

where fi are the addends in Eq. (2.15). Moreover, this method was implemented to

calculate the emissivity from thermal, nonthermal and hybrid distributions in GRBs
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and applied to fit the photon flux obtained from observations, achieving accurate

results.

Another strategy to tackle the difficulties that harmonics bring about has been by

direct summation plus a δ-function broadening by means of a “kernel”, which is a

function that satisfies:

lim
∆x→0

f (x, x0,∆x) = δ(x − x0). (3.37)

This technique was used by Mahadevan et al. (1996) and later improved in Wolfe &

Melia (2006).

Meanwhile, Pe’er & Waxman (2005) developed a code with split regimes. That

is, while the frequency and Lorentz factor over which the calculations are performed

fulfill that ν′ < 200νg and γ < 10, respectively, the full expression for MBS (see

§2.2.2) was computed. Otherwise, the classical synchrotron expression (e.g. Rybicki

& Lightman 1979; Jackson 1999) is employed. A similar approached was made

by Fleishman & Kuznetsov (2010), placing a frequency boundary below which the

harmonic structure is recovered, and above which the analytic expressions found by

Petrosian (1981) and Wild & Hill (1971) are used.

3.2.2 Kernel based treatment

In a first stage of the construction of the code, the MBS was treated following Ma-

hadevan et al. (1996, hereafter MNY96). In their numerical code the Dirac δ-function

in (2.15) is approximated with a kernel function; i.e., the power radiated for a single

electron can be written as follows

P′ν′(β) =
2πe2νg

c

∫ 1

0
dµ′α

∫ 1

−1
dµ′

X2

1 − βµ′αµ′
∞∑

m=1

S m fm(X), (3.38)

where

X :=
ν′

νg
=
ν′

γνB
, (3.39)

is the normalized frequency or harmonic frequency,

S m :=
(µ′ − βµ′α)2

1 − µ′2
J2

m(z) + β2
(
1 − µ′α

2
) (dJm(z)

dz

)2

, (3.40)

and fm(X) is the kernel function which satisfies that

lim
X→Xm

fm(X) = δ(X − Xm), (3.41)
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where

Xm :=
m

γ(1 − βµ′αµ′)
, (3.42)

is the central frequency around which we will evaluate (3.38).

3.2.2.1 Comparison of different kernels

To approximate the Dirac δ-function MNY96 use the following kernel:

f MNY96
m (X) =

15
16∆X

[
1 −

(
2
∆X2

)
(X − Xm)2 +

(
1
∆X4

)
(X − Xm)4

]
. (3.43)

where

∆X ≡ κXm, (3.44)

and κ is a tunable constant (typically much smaller than 1). Despite the fact that

(3.43) has compact support and satisfies condition (3.37), we found that this kernel

function excludes some contributions to the power radiated due to its sharpness (see

§3.2.2.3). This because f MNY96
m is set to zero for X > Xm + ∆X and X < Xm − ∆X.

In order to enclose as much contribution as the numerical calculations can afford we

implemented the approximation of the Dirac δ-function as a limit case of a Gaussian

distribution

δ(x − x0) = lim
∆x→0

1
√
π∆x

exp
{
−
(

x − x0

∆x

)2
}
. (3.45)

In Figure 3.6 we compare the Gaussian kernel

f Gauss
m (X) =

1
√
π∆X

exp

−
(
X − Xm

∆X

)2
 , (3.46)

with (3.43) for β = 0.2, 0.4 and 0.8 in black, red and blue lines, respectively. We can

appreciate that at high frequencies the contribution to the power radiated is ignored

when using (3.43).

3.2.2.2 Comparison using kernels computed with different tolerance

In order to avoid an infinite summation but consider as much radiated contribution

as possible, we approximated the summation in Eq. (3.38) by introducing a tolerance

factor, ε, defined as follows:

ε = 1 −
∑M

m=1 S m
∑M+1

m=1 S m

. (3.47)

69



3. The blazars code

10−1 100 101 102

X

10−6

10−5

10−4

10−3

10−2

10−1

100
P
′ ν
′
(β

)c
/
2π

e2 ν
g

Gaussian
MNY96

Figure 3.6: Comparison of kernels. Numerical emissivities of one electron with β = 0.2,
0.4 and 0.8, shown in black, red and blue, respectively.

In Figure 3.7 we present the behaviour of the harmonics for different tolerances

for a constant kernel and using κ = 0.05. Black, red and blue lines are the power

spectra for particles with speeds β = 0.2, 0.4 and 0.8, respectively. On the left panel

are the calculations with a Gaussian distribution and on the right panel the calcu-

lations with the kernel defined in MNY96. On the left panel we can see that for

slow electrons (β = 0.2 and 0.4), there are only small differences between the spec-

tra, which means that a relatively large tolerance can be used in order to accumulate

the most contribution of radiation. On the right panel we find that the kernel used in

MNY96 needs a smaller tolerance in order to get the correct radiation contribution

for higher frequencies. In a nutshell, the Gaussian kernel needs less terms in the sum

than f MNY96
m .

3.2.2.3 Comparison using kernels with different width

The width of the kernel is controlled by (3.44) and it is also responsible for how

much contribution is added to the power radiated. In order to track how much of the

contribution is lost we performed a test with different values of κ. In Figure 3.8, like
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Figure 3.7: Emissivity of one electron with β = 0.2 for varying tolerance (Eq. (3.47)). Left:
numerical evaluation of the MBS emissivity using a Gaussian kernel. Right: same evaluation
but for the kernel in Eq. (21) of MNY96.

Figure 3.7, we make a comparison of the power radiated for single particles with β =

0.2, 0.4 and 0.8 for different values of κ. On the left panel we have the results using

f Gauss
m . We can see that a broad kernel (solid line) overestimates the power radiated at

high frequencies but converges as the κ is reduced. On the right panel are the results

using f MNY96
m .

3.2.2.4 Integrals over angles

To compute the integrals over angles in (3.38) we first approximated both integrals us-

ing a power-law integration technique developed in Mimica (2004). However, given

that the limits of the integral are −1 and 1 in the case of the integral over µ′ (or

between 0 and 1 in the case of the integral over µ′α), we considered that a Gauss-

Legendre quadrature with 120 nodes (evaluated numerically) would be more suitable

for the integral over emission angles, while for the pitch angles a Romberg integra-

tion routine Press et al. (1992) was employed.
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Figure 3.8: Emissivity of one electron employing a varying kernel width, ∆X. The left panel
corresponds to the Gaussian kernel while the right panel to the kernel in Eq. (21) of MNY96.
The emissivity in both panels is normalized to that of an electron with β = 0.2.

3.2.2.5 Performance

To show the computational time that it takes to calculate the power radiated for a

single velocity and a single frequency, in Figure 3.9 we display the performance of

the code described above. The blue dots correspond to the wall clock time that it

took the code to calculate the power radiated by a particle with β = 0.8 and χ = 0.1,

0.5, 1, 5, 10, 50, 100, 500 and 103. We can see that for X ≃ 100 the elapsed time

for a single frequency becomes ≈ 200 times larger than at X ≃ 10−1, and for X ≃
1000, the computational times grows to 4 orders of magnitude. The computational

consequences are such that in practice it is unrealistic to take into account a large

number of harmonic frequencies to reconstruct with accurately the MBS spectral

radiated power for electrons with arbitrary Lorentz factor.

A way to tackle such handicap is the parallelization of the numerical code. The

parallel version of the code is based on an OpenMP4 implementation of the algorithm

4OpenMP (Open Multi-Processing) is a library for running parallel computations on a system with
shared-memory, see http://openmp.org
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for the γ and X nested loops5.
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Figure 3.9: Elapsed time for different frequencies calculating the MBS radiated power by an
electron with γ = 10. Blue circles correspond to those calculations made using the kernels
approach with a Gaussian function, κ = 2.5 × 10−3 and ε = 10−8. The orange triangles
correspond to the calculations made using the no-delta approach (see §3.2.3)

3.2.2.6 Methodological conclusions

In this section we have described and assessed a methodology to tackle the problem

of computing the MBS emission in the sub and mildly relativistic regimes. We have

compared two different kernels and found out that a Gaussian kernel, with the proper

width, is more efficient at the moment of accounting for most of the radiated power.

Nonetheless, the fact that the summation has to be cut at some tolerance produces a

noisy spectrum profile, which may cause severe numerical issues when attempting to

calculate the spectral evolution from a dynamic distribution of particles. Not to men-

tion that in the transrelativistic regime and at high frequencies the code was highly

inefficient. So we ruled out this methodology to compute the harmonics contribu-

5The results displayed in Figures 3.6–3.8 were obtained using the parallelized version of the nu-
merical code
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tions to the MBS. Instead, we employ a different approach that is described in the

next sections.

3.2.3 The no-δ approach

To get the efficiency and accuracy needed for a proper numerical code we decided

to face this issue in the same spirit as previous works like Leung, Gammie, & Noble

(2011, hereafter LGN11). Such procedure starts with the integration of Eq. (2.38)

trivially over pitch angles, µ′α, exploiting the presence of the δ-function (in LGN11

this integral was made over Lorentz factor γ). Our reason to not follow exactly their

procedure was because in the time-dependent code by MA12 (see §3.1) the integral

over Lorentz factors is performed dynamically and it is not affordable to calculate the

harmonics at every time step.

Indeed, if we look at the δ-function in Eq. (2.15)

δ(ym) =
1
νg
δ

(
m

γ
− X(1 − βµ′µ′α)

)
, (3.48)

and using the resonance condition (2.21), we have the following expression for µ′α:

µ′α =
γX − m

γXβµ′ . (3.49)

We can use the condition that |µ′α| < 1, to set upper and lower boundaries for the

summation in Eq. (2.15); i.e., we need to solve the system of inequalities

γX − m

γXβµ′ < 1 and
γX − m

γXβµ′ > −1, (3.50)

for m we arrive to the following expressions:

m > γX(1 − βµ′), (3.51a)

m < γX(1 + βµ′). (3.51b)

Since the values of m must be integer, from Eqs. (3.51a) and (3.51b) we define6

m+ := ⌊γX(1 + βµ′)⌋, (3.52a)

m− := ⌈γX(1 − βµ′)⌉. (3.52b)

6The upper and lower limits here found would have the same form if the integral of µ′ had been
performed instead of over µ′α. This due to the symmetry between µ′ and µ′α in (2.21)
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The case µ′ = 0 (emission perpendicular to the magnetic field) seems to be a

pathological case in Eq. (3.49), although in the original expression of the radiated

power (Eq. (2.15)) is not. Later in this section we will describe the numerical proce-

dure followed to avoid it.

Finally, substituting (3.52) into (2.38) and integrating over µ′α we obtain an ex-

pression without any δ function for the power radiated by a single charge:

P′ν′(γ) =
8π3e2νgX2

c

∫ 1

−1
dµ′

1
Xβ|µ′|

×
m+∑

m=m−


(
µ′ − βµ′α

)2

1 − µ′2
J2

m(z) + β2(1 − µ′2α )
(
dJm(z)

dz

)2

∣∣∣∣∣∣∣
µ′α=

γX−m

γXβµ′

, (3.53)

where the factor before the summation symbol is |dym/dµ′α|−1, which comes from

one of the properties of the δ-function.

Given the above result, let us now define the following functions:

Ĩ1(X, γ) := X2
∫ 1

−1
dµ′

1
Xβ|µ′|×

×
m+∑

m=m−


(
µ′ − βµ′α

)2

1 − µ′2
J2

m(z) + β2(1 − µ′2α )
(
dJm(z)

dz

)2

∣∣∣∣∣∣∣
µ′α=

γX−m

γXβµ′

, (3.54)

and

Ĩ2(X, γa, γb) :=
∫ γb

γa

dγ n(γ)X2I1(X, γ). (3.55)

where γa and γb are generic input values corresponding to the upper and lower values

of Lorentz factor interval in which the calculation of Eqs. (3.54) and (3.55) will be

performed.

In terms of the integral quantities, if we discretize the Lorentz factor of the elec-

tron distribution in M bins, {γi}Mi=1, the MBS emission coefficient for an isotropic

distribution of electrons (2.36) reads

j′ν′ =
1

(4π)2

M−1∑

i=1

Ĩ2

(
ν′

γνB
, γi, γi+1

)
(3.56)

Analogously to the kernels approach, the integration over µ′ in Eq. (3.54) is per-

formed using a Gauss-Legendre quadrature (see §3.2.2.4) and assuming isotropic

emission. At this stage the evaluation of the integrand at µ′ = 0 was avoided by
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taking an even number of nodal points (specifically, 120 nodes). The numerical eval-

uation of the Bessel functions were performed using the tool my Bessel J developed

in LGN11, which therein are shown to be faster than the intrinsic FORTRAN Bessel

functions or even the GSL libraries.

In Figure 3.10 we show Ĩ1(X, β) in solid lines for β = 0.2, 0.4 and 0.8 in black, red

and blue, respectively, in contrast with the Gaussian kernel calculations performed in

§3.2.2 for the same cases (dashed lines). It is evident that both approaches provide

qualitatively similar harmonic contributions, but in the case of the no-δ approach,

they are free of uncertainties related to the choice of the kernel function or its param-

eterization. For that matter, in Figure 3.9 we can appreciate that the present approach

(orange triangles) is more efficient by a factor 100 compared to the kernel based treat-

ment. Not to mention that, as far as accuracy is concerned, the analytical boundaries

obtained for the summation in (3.53) guarantee that all contributions to the radiated

power are considered using finite sums.
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Figure 3.10: Plot of Ĩ1(X, γ) for β = 0.2, 0.4 and 0.8 in black, red and blue solid lines,
respectively. For comparison, dashed lines correspond to the results from the kernel based
treatment with a Gaussian kernel (cf. 3.6).
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3.2.4 Building the single particle’s radiated power table

The calculation of the function I1(X, γ) becomes computationally expensive for large

values of X and γ since the number of harmonics needed to be taken into account for

the emitted power to be computed accurately enough increases dramatically. In the

need of an efficient procedure to calculate the ultrarelativistic and high energy regime,

a methodology based on approximate analytic functions was developed.

Moreover, in terms of computational time it is highly inefficient to calculate the

emissivity at each time step of the spectral evolution of a system, not even for a

synchrotron emitting shell collision, whose expression is analytical (see §2.2.4) and

more straightforward to implement in a code. A way to sidestep this computational

problem for the MBS emission is to build a table for (3.54) and another one for (3.55)

as here will be described.

3.2.4.1 The RMA function

As we have seen in §2.2.4, the formula for the pitch-angle averaged synchrotron

power of a single ultrarelativistic electron was derived by CS86. Afterwards an ap-

proximation was discovered by Schlickeiser & Lerche (2007, hereafter SL07). Ac-

cording to the latter the function (2.31) is approximated by

CS (Xc) ≃ S L(Xc) :=
X
− 2

3
c

0.869 + X
1
3
c exp(Xc)

. (3.57)

where, now in terms of X, Xc = 2X/3γ2 (see Eq. (2.28)). Both (2.31) and (3.57)

reproduce a continuous spectrum for arbitrary γ. In particular, these formulae do not

take into account that for frequencies . νB the emission is null (see the abrupt decay

of the MBS emissivity for small values of X in Figure 3.10). Nevertheless, (3.57) is

analytic, a fact that makes it very convenient for a fast numerical implementation.

In order to determine the region in the X–γ space where Eq. (3.57) holds with

sufficient accuracy we must consider two restrictions. On the one hand, as numerical

calculations of the cyclo-synchrotron radiated power were performed, it was soon

found that the frequency of the first harmonic behaves as

X1(γ) =
1
γ
. (3.58)
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where X1(γ) denotes the normalized frequency of the first harmonic of an electron

with Lorentz factor γ. On the other hand, the synchrotron limit (ultrarelativistic limit)

happens for γ ≫ 1.
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Figure 3.11: Single electron radiated power as a function of normalized frequency computed
for different speeds (cf. with Figure 2 of MNY96). See text for a detailed explanation. This
figure is based on Figure 1 from RMA17

The Figure 3.11 shows the power radiated by single electrons with different ve-

locities or, equivalently, Lorentz factors (RMA17, p. 1172). In the non-relativistic

limit (e.g., for β = 0.2; Figure 3.11 violet solid line) the spectrum is dominated by the

first few harmonics (first terms in the sum of Eq. (2.38)), which results in a number

of discrete peaks flanked by regions of almost no radiated power. The first harmonic

(m = 1) peaks at X ≃ 1 (a consequence of the resonance condition, as mentioned

above). As the electron velocity increases (β = 0.6, 0.9 and γ = 5; Figure 3.11

orange, green and blue solid lines, respectively) the gaps between the peaks of the

emitted power are progressively filled. In addition, the spectrum broadens towards
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ever smaller and larger values of X, and an increasing number of harmonics shows

up. At higher Lorentz factors it makes sense to compare the continuum synchrotron

approximation for the electron emitting power with the MBS calculation. For that

we display the cases with γ = 10, 40 and 100 in Figure 3.11 with lines colored in red,

black and brown, respectively. The different line styles of the latter cases correspond

to distinct approximations for the computation of the MBS power. Solid lines corre-

spond to the numerical evaluation of Eq. (2.38) (the most accurate result). Dashed

lines depict the computation of the synchrotron power as in SL07 (Eq. (3.61)). Dotted

lines correspond to the emitted power calculated according to Eq. (3.63). The differ-

ence between the three approximations to compute the radiated power decreases as

the Lorentz factor increases7.

With these results in mind and for numerical convenience, we define γup ≡ 20 as a

threshold for when to use Eq. (3.57) since for γ > γup the evaluation of I1 slows down

dramatically given the fact that the number of terms needed to accurately compute it

(Eq. (3.54)) rapidly increases. Furthermore, in order to reduce the overestimation of

emission for X . X1 we defined the function

RMA(Xc, γ) :=



XcCS (Xc), Xc >
2acoff

3γ2
X1(γ)

0, otherwise
, (3.59)

where acoff is a numerical constant which sets the location of the cut-off and, as it will

be shown later on, its value plays an important role when the emissivity is calculated.

Let us, for the moment, take acoff = 0.8 (later it will be proven to be numerically an

appropriate value), so that, using (3.58),

RMA(Xc, γ) =


XcCS (Xc), Xc > 0.53γ−3

0, otherwise
. (3.60)

Moreover, according to SL07, the pitch-angle averaged synchrotron power of an elec-

tron having Lorentz factor γ can be written as

P′SL07
ν′ (γ) = 1.315 × 10−28νg XcCS (Xc) erg s−1 cm−3. (3.61)

Comparing the previous expression with (3.53) and taking into account Eq. (2.36)

one obtains for sufficiently relativistic electrons

XcCS (Xc) ≈ Ĩ1(X, γ), (3.62)
7This paragraph is taken from pp. 1172 and 1173 of RMA17
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and employing the new RMA function (3.60) the resulting electron power becomes

P′RMA
ν′ (γ) = 1.315 × 10−28νg RMA(Xc, γ) erg s−1 cm−3. (3.63)

Looking back into Figure 3.11 we find that, indeed, for γ > γup, both the exact

calculation and the approximation given by P′RMA
ν′ (γ) match rather well. Indeed, the

difference becomes fairly small for X ≫ 1.

3.2.4.2 Minimum Lorentz factors for X < X1

This subsection is taken from Appendix B1 of RMA17. In order to minimize the nu-

merical problems caused by sharp drops in the power radiated at low Lorentz factors

(keeping X constant, see Figure 3.12), a Lorentz factors cut-offs array {γ̂min} was de-

signed. Such array is built prior to the calculation of the integral over Lorentz factors

in (2.36).

In 3.2.5.3 we will show the cut-off criterion chosen to include as much power

as possible while avoiding at the same time the zero emission frequencies below

X1(γ). We follow a similar procedure to construct the array {γ̂min(X)} in the range

frequencies range X < X1; i.e., γ̂min(X) = acoff/X.

3.2.4.3 Minimum Lorentz factors for X ≥ 100

This subsection is taken from Appendix B2 of RMA17. In order to find γ̂min(X) in

this part of the spectrum a two-step procedure is required:

1. For every X the bisection method was employed to find the value of γ at which

Ĩ1 is well below its maximum value.

2. A linear fit (in logarithmic space) was performed with the values of γ found in

the previous step.

The fit obtained from the above procedure was:

γ̂min(X) = exp
{
0.491 log(X) − 2.212

} ≈ 0.109X1/2. (3.64)

where X ≥ 100. We used this formula obtained from the fit to estimate the values of

γ̂min(X) in this region.
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Figure 3.12: Similar to Figure 3.11 but for a fixed X. The black and red lines depict the
radiated power for X < X1. The break at low γ is set by hand considering the cut-off criteria
described in Sec. 3.2.4.1. The blue and green lines correspond to X1 ≤ X < 100. The orange
and magenta lines correspond to X ≥ 100. This figure is Fig. 1.13 from RMA17.

3.2.4.4 Minimum Lorentz factors for X1 ≤ X < 100

This subsection is taken from Appendix B3 of RMA17. After several attempts our

calculations showed that in the region where 1 ≤ X < 100 there is practically no zero

radiation region in the γ direction (see Figure 3.13). Since this region is above the

first harmonicX1, neither the two criteria mentioned above can be used here since the

profile of Ĩ1 is too steep at γ ∼ 1 (see Figure 3.12, solid green and blue lines). Apply-

ing a bisection method led to oscillating γ̂min(X), which in turn produces numerical

problems when interpolating from the table. We therefore verified that a constant,

close to 1 threshold produces good results in this region. Thus, we employ the input

parameter γth
min for this purpose. A typical value used is γth

min ≈ 1.005037815 which

corresponds to the Lorentz factor of a particle with β = 0.1. The exact value γ = 1
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cannot be used as threshold because it corresponds to β = 0, which causes problems

in e.g., the corresponding Lorentz factor, the resonance condition (Eq. (2.21)) and

the subsequent equations.

100 101 102 103

γ

10−3

10−1

101

103

105

107

X

10−6

10−5

10−4

10−3

10−2

10−1

100

Ĩ 1
Figure 3.13: X2I1 as a function of X and γ. The emission is zero in the light blue region. We
also note that for arbitrary γ there is a sufficiently low X so that the emission is in the form
of harmonics.

3.2.4.5 Chebyshev interpolation

As we have mentioned before, it is computationally expensive to calculate P′
ν′(γ) at

runtime. For this purpose, we built a high resolution table in the parameter space

region X ∈ [Xmin,Xmax] and γ ∈ [γth
min, γ

th
max]8. We name this table spTable, which

consists of NX × Nγ points in the X × γ directions. The evaluation of I1 is com-

puted with different procedures depending on the range in which tabular points are
8We must point out that these values are part of the input parameters needed to construct spTable.

Nonetheless, the nomenclature here used was picked in order to be consistent with the upper and lower
values of the thermal component of the HD (see §2.4.2.2) used in Chapter 5 and avoid an overwhelming
number of symbols.
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calculated. For X ≤ 100 and γ ≤ γup we directly use the numerical integration of

Eq. (3.54) with the no-δ methodology (§3.2.3), while for X > 100 and γ > γup we

resort to the RMA function (Eq. (3.60)) The evaluation of X2I1(X, γ) in non tabular

points is performed by interpolating among the nodes of the built up table. After

experimenting with a number of possibilities, we find out that a Chebyshev interpola-

tion in the direction of γ is extremely accurate and optimal for our purposes. In order

to improve the computational efficiency, we store together with the tabular data, the

Nγ coefficients needed for a Chebyshev interpolation of X2I1(X, γ) in the γ direction

for each of the Xi ∈ [Xmin,Xmax], i = 1, . . . ,NX, in the interval [γ̂min,i/γ
th
max, 1] (i.e.,

we store also NX × Nγ Chebyshev coefficients in addition to the tabular data). The

Chebyshev coefficients (3.65) (below) were computed according to the algorithm by

Press et al. (1992, § 5.8), which is based on the following:

Theorem. Let f (x) be an arbitrary function in the interval [−1, 1], and if N coeffi-

cients c j, j = 1, . . . ,N, are defined by

c j =
1
2

N∑

k=1

f (xk)T j−1(xk), (3.65)

where

Tn(x) = cos(n arccos(x)) (3.66)

are the Chebychev polynomials of order n and

xk = cos


π

(
k − 1

2

)

n

 , (3.67)

the position of the k-th zero (or nodes) of Tn(x) in the interval [−1, 1]; then the

approximation formula

f (x) ≈


N∑

k=1

ckTk−1(x)

 −
1
2

c1 (3.68)

is exact for x equal to all of the N zeros of TN(x).

3.2.4.6 Reconstruction of X2I1(X, γ) using the interpolation table

The usage of spTable is a two-step procedure: (a) Chebyshev interpolation (3.68)

from the Chebyshev coefficients (3.65), and (b) a linear interpolation in the X direc-

tion using the values obtained in the first step.
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3. The blazars code

Provided that γ > γ̂min, the function Ĩ1 is reconstructed for the desired γ and after-

wards a linear interpolation is performed for the desired X using its closest neighbors

(upper and lower) from spTable. The accuracy of the reconstruction routine can

be seen in Figure 3.14. The size of spTable for this test was 1024 × 1024. The

interpolation was done in 500 × 500 points in the same region of the X–γ plane as

the spTable. In the later set of points (which are not coincident with any of the

tabulated points of Ĩ1), we compute directly the value of Ĩ1 and compared it with the

interpolated values. As can be seen, the relative error in a majority of the points is

. 1%. We can also observe in Figure 3.14 that the largest relative errors concentrate

close to the boundaries of the X − γ plane where the MBS emissivity is zero.
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Figure 3.14: Similar to Figure 3.13, but showing the relative error between the data obtained
using numerical integration and the values interpolated from the table. The resolution of the
plot is 1024 × 1024 points.
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3.2.4.7 The new RMA function

We attempted to continue along the lines similar to that of SL07 by fitting our numer-

ical results with

C̃S (Xc; λ1, λ2, λ3) :=
X
−λ1
c

λ2 + X
λ3
c exp(Xc)

. (3.69)

Although the quality of the approximation of SL07 to CS86 is acceptable, we de-

cided instead to follow Finke et al. (2008) so that an improvement to the RMA func-

tion (3.60) uses a piece-wise approach

RMAfit(Xc) :=


1.80842 X
1
3
c , Xc < 0.00032

exp {A0 + A1Log1(Xc) + A2Log2(Xc)

+A3Log3(Xc) + A4Log4(Xc) + A5Log3(Xc)} , 0.00032 ≤ Xc ≤ 0.65

exp {B0 + B1Log1(Xc) + B2Log2(Xc)

+B3Log3(Xc) + B4Log4(Xc) + B5Log3(Xc)} , 0.65 < Xc ≤ 15.58

π

2

(
1 − 11

18Xc

)
exp(−Xc) Xc > 15.58

, (3.70)

where the Log functions are the logarithmic functions in Table A.1 and the coeffi-

cients Ai, Bi, i = 1, . . . , 5, are found coefficients of a polynomial fit (in the logarithmic

space), whose values appear in Table 3.1.

i Ai Bi

0 −0.78716264 −0.82364552
1 −0.70509337 −0.83166861
2 −0.35531869 −0.52563035
3 −0.06503312 −0.22039315
4 −0.00609012 0.01669180
5 −0.00022765 −0.02865070

Table 3.1: Coefficients of the polynomial fit for the new RMA function.

In the upper panel of Figure 3.15 we show in thick solid black line the CS func-

tion (2.31) and in red solid line the approximation by SL07. Solid and dashed green
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lines correspond to the asymptotic approximations of CS (Xc) for Xc ≪ 1 and Xc ≫ 1,

respectively (also given in the two branches of (2.31)). Solid and dashed orange lines

correspond to the polynomial fits found by Finke et al. (2008). And finally, solid and

dashed blue lines correspond to the polynomial fits found for the new RMA function

as described above. In the lower panel we depict the relative error of each line of the

upper panel with respect to the black line. While it is true that the analytical formula

found by SL07 is a good approximation to CS , it should be emphasized that the rel-

ative error is between 10–20% in a wide range of the spectrum of Xc, and though

it does decrease as the CS function approaches its asymptotic regimes, the overall

value is not even close to 1%. On the contrary, we can appreciate that the polynomial

fits are certainly below the error threshold of 1% in their respective range of Xc in

which they are evaluated. Besides, the polynomial fit presented in this thesis was

computed in a such a manner that the error at the joint points with the asymptotic ap-

proximations was . 1% without compromising the accuracy of the region of interest.

Taking all this into account, with the use of (3.70) the new RMA function reads

RMA(Xc, γ) =


XcRMAfit(Xc), Xc > 0.53γ−3

0, otherwise
. (3.71)

In Figure 3.16 we show the same results as in Figure 3.13, but in this case Eq. (3.71)

is used.

3.2.5 Numerical evaluation of the emissivity

In this section we describe how a second table is built by evaluating Ĩ1 using the

aforementioned spTable. This is an intermediate step that allows us to use this new

table used to compute the emissivity (Eq. (2.36)) numerically.

3.2.5.1 The construction of the interpolation table

We first consider a discretization of the Lorentz factor of the electrons {γi}Mi=1, where

γ1 and γM correspond to the minimum and maximum Lorentz factors of the given

distribution.

After a detailled testing, we found that a direct numerical integration of Eq. (3.55)

may lead to numerical noise in the final result due to the extremely large amplitude
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Figure 3.15: Upper panel: different approximations to compute the CS function (2.31)
(black solid line) and asymptotic approximations to it in the limits Xc ≪ 1 and Xc ≫ 1.
Lower panel: relative error between the CS function and the different formulae employed to
approximate it. See text for the explanation.

oscillations of the integrand in the subrelativistic limit. Therefore, we reformulate the

numerical evaluation of Eq. (3.55) assuming that the integrand in that equation can

be approximated by a piecewise power-law distribution, so that in each power-law
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Figure 3.16: Same as Figure 3.13, but showing Ĩ1 computed using the new RMA function.

segment we have

I2

(
X, qi, γi, γi+1; γth

max

)
=

(
γth

max

)1−qi

∫ γi+1/γ
th
max

γi/γ
th
max

dξ ξ−qi Ĩ1

(
X, ξγth

max

)
(3.72)

where qi is the index of the power-law approximation to the EED within the interval

[γi, γi+1] and ξ := γ/γth
max. To compute Ĩ2 (equation (3.55)), we define the function

I3(ξ,X, q) :=
∫ 1

ξ

dξ̂ ξ̂−q Ĩ1(X, ξ̂γth
max). (3.73)

Rewriting I2 in terms of I3 we get

I2

(
X, qi, γi, γi+1; γth

max

)
=

(
γth

max

)1−qi

[
I3

(
γi

γth
max
,X, qi

)
− I3

(
γi+1

γth
max
,X, qi

)]
. (3.74)
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The integral depends on the same three parameters variables as Eq. (3.73). We

use the standard Romberg method (see §3.2.2.4) to compute its value for each triplet

(ξ,X, q). In this way, a three dimensional array is built for I3. As before, we apply

the Chebyshev interpolation (see §3.2.4.5), in the ξ direction, in order to construct

an interpolation table, where also the Chebychev coefficients (3.65) for I2 (hereafter

disTable) are stored to improve the numerical efficiency.

3.2.5.2 Computation of emissivity using an interpolation table

The total emissivity j′
ν′ (Eq. (3.56)) is computed as the sum of the individual contri-

butions of each of the power-law segments in which the original distribution has been

discretized, but approximating the original function Ĩ2 by I2. The contribution from

the segment i reads

j′ν′,i =
πe2νb

2c
n(γi)γ

qi

i
I2

(
X, qi, γi, γi+1; γth

max

)
. (3.75)

As an example, in Figure 3.17 we present the emissivity from power-law distribu-

tion (2.77) of electrons with γmin = 1.01, γmax = 100 and various power-law indices

(q = 2.1, 2.5, 2.9, 3.3, 3.7 and 4.1). For comparison, the dashed lines show the emis-

sivity from power-law distributions of electrons with the same power-law indices but

employing the standard formula for the synchrotron radiated power (CS86). With the

numerical treatment and interpolation tables explained in the previous sections, we

are able to reproduce the synchrotron regime and take into account the emissivity by

subrelativistic, transrelativistic and ultrarelativistic electrons. We can also appreciate

that the oscillations of the emissivity take place for frequencies . 107 Hz. Such os-

cillations are both numerical an real. The real oscillations can be found by realizing

that they appear at the same frequency and with more or less the same magnitude for

all power-law indices. For instance, at ν ∼2 × 106, 3 × 106, 7 × 106 and 9 × 106 Hz

we can see that the same oscillations arise. On the contrary, numerical oscilla-

tions can be recognized by the noise-like shape in the spectra; .e.g., at ν ∼3 × 106,

4 × 106 and 7 × 106 Hz. For that matter, in our algorithm those peaks, or “noise”,

are modulated at runtime in order to diminish any possible contamination. These

numerical issues can be caused by the narrowness and steepness characteristic of the

emission lines-like cyclotron radiated power, which provokes numerical difficulties

at the moment of integrating the spectra.
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Figure 3.17: Emissivity from a power-law distribution for different power-law indices. In
blue, orange, green, red, purple and brown solid lines we present the emissivity from power-
law distributions of electrons having q = 2.1, 2.5, 2.9, 3.3, 3.7 and 4.1, respectively (cf.
Figure 7 in Wolfe & Melia 2006). Solid and dashed lines correspond to our computation of
the MBS emissivity and to the synchrotron emissivity evaluated with the formula of CS86,
respectively.

The following paragraph belongs to the §4.2.2 of RMA17, p. 1172. The dis-

cretization of disTable in the X–γ plane is not uniform. Many more points are

explicitly computed in the regime corresponding to low electron energies and low

emission frequencies than in the rest of the table. In this regime harmonics dominate

the emissivity and accurate calculations demand a higher density of tabular points. In

the ultrarelativistic regime the emission is also computed numerically. There, we use

the table produced in MA12 (hereafter uinterp) that includes only the synchrotron

process computed with relative errors smaller than 10−5. Note that in the ultrarela-

tivistic regime the errors made by not including the contribution of the MBS harmon-

ics are negligible. We use both tables in order to cover a wider range of frequencies

and Lorentz factors than would be possible if only disTable were to be used (due

to prohibitively expensive calculation for high frequencies and Lorentz factors). In

Figure 3.18 we sketch the different regions of the X–ξ space spanned by our method

to assemble a single (large) table. Whenever our calculations require the combina-
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tion of X and ξ that falls in the blue region, we employ disTable to evaluate the

emissivity, otherwise we use uinterp. In the particular case when γi < γ
th
max < γi+1,

the emissivity is computed using both tables as follows:

j′ν′,i =
πe2νg

2c
n(γi)γ

qi

i

(
IdisTable2 (X, qi, γi, γ

th
max; γth

max)

+ I
uinterp

2 (X, qi, γ
th
max, γi+1; γth

max)
)
. (3.76)

γ
<

1
X

ξ

Xmax

Xmin

ξmin 1

uinterp

disTable

Figure 3.18: Illustration of the different regions of the X–ξ plane spanned by the distinct
approximations employed to compute the values of emissivity according to Eq. (3.75). Xmin

and Xmax are generic values for upper and lower limits of X for the table disTable and
ξmin ≡ γth

min/γ
th
max. For a given qi, a combination of ξ and X in the blue region means that

disTable is employed. The red area corresponds to the physically forbidden regime where
γ < 1 and, therefore, there is no MBS emission. The thin orange strap corresponds to the
area of low speeds 1 ≤ γ < γ1 excluded from the table. The present figure and caption
corresponds to Figure 2 and caption from RMA17.

3.2.5.3 Estimating the cut-off for the RMA function

In order to constrain the analytic function RMA (both (3.60) and (3.71)) so that it

approximates the MBS spectrum, a proper value of acoff must be set. The rest of

this paragraph corresponds to an edited extract of Appendix A in RMA17, p. 1181.

In Figure 3.19 we show the relative error of the emissivity using the RMA(Xc, γ)

function (3.60) compared to the full MBS treatment. We assume a pure power-law
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distribution of electrons with different power-law indices for two different values

of the cut-off constant: acoff = 0.8 and acoff = 1. The magnetic field for this test

was B′ = 10 G and the minimum and maximum Lorentz factors γnth
min = 5, γnth

max =

500, respectively. At low frequencies the errors are large because there the emission

is dominated by harmonics and is thus not well represented by a continuous RMA

function. Nevertheless, choosing an appropriate value for acoff can decrease the errors

in that region from ∼ 350% (acoff = 1, right panel) to ∼ 25% (acoff = 0.8, left panel).

The relative error of the cases with power-law indices q < 0 are always below 1,

and is somewhat lower for acoff = 1 than for acoff = 0.8. However, since we want

the relative error to be the lowest for all power-law indices, we choose the cut-off

constant acoff = 0.8. Further scanning of the values of acoff showed that a decrement

of this parameter rises the relative error at low frequencies.
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Figure 3.19: The relative error between emissivity for a power-law distribution of electrons
computed from the MBS interpolation tables and performing a numerical integration of the
RMA function. Each of the different colours represent cases with different power-law indices,
q, of the nonthermal EED. In the left and right panels we show the relative error considering
acoff = 0.8 and acoff = 1 in Eq. (3.59), respectively. This figure and caption correspond to
Figure A1 in RMA17.

3.2.6 The algorithm

The construction of the interpolation tables for a numerically efficient evaluation of

the MBS emission is performed with an ancillary program, which is independent of

CHAMBA. Constructing and assembling the interpolation tables is a rather involved

process, as we have seen in the previous sections. Aiming to give a proper perspec-

tive of the work needed to arrive to the final product presented in this thesis, in Fig-
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ure 3.20 we sketch the flowchart of these ancillary programs to construct spTable

(Figure 3.20a) and disTable (Figure 3.20b).

(a) (b)

Figure 3.20: Flowcharts of the algorithms followed to construct spTable (left) and
disTable (right).

We point out that constructing the interpolation tables is computationally expen-

sive and, therefore, we have implemented its calculation in parallel (using OpenMP)
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to reduce the time to build them.

3.2.6.1 Performance of the tables construction

To test the performance we tracked the wall clock time for different sizes of the tables.

These tables were constructed in the users shared server ARC1 of the Department

of Astronomy and Astrophysics of the University of Valencia, subject to potential

hyperthreding due to users sharing resources. In Table 3.2a are the construction

times of spTable, while in Table 3.2b the construction times of disTable.

Nγ NX 16 cores

64 64 8 209.467
64 128 13 665.200

128 64 15 032.170
128 128 21 930.001

(a) spTable performance

Nγ NX Nq 16 cores 32 cores

64 64 25 7.523 1.959
64 128 25 8.335 10.184

128 64 25 13.567 14.601
128 128 25 29.455 23.369

64 64 50 13.112 4.452
64 128 50 17.945 16.217

128 64 50 27.902 23.276
128 128 50 50.996 46.901

(b) disTable performance.

Table 3.2: Wall clock computation time (in seconds) for different-sized spTable (left), using
16 computing cores, and disTable (right) tables using 16 or 32 computing cores.
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Chapter4

The influence of the magnetic field

on the spectral properties of blazars

In the present chapter we enclose an adapted version of the article RMA14, pp. 1857–

1867.

4.1 Abstract

We explore the signature imprinted by dynamically relevant magnetic fields on the

SED of blazars. It is assumed that the emission from these magnetohydrodynamic

evolution we compute by numerically solving Riemann sources originates from the

collision of cold plasma shells, whose problems. We compute the SEDs including the

most relevant radiative processes and scan a broad parameter space that encompasses

a significant fraction of the commonly accepted values of not directly measurable

physical properties. We reproduce the standard double hump SED found in blazar

observations for unmagnetized shells, but show that the prototype double hump struc-

ture of blazars can also be reproduced if the dynamical source of the radiation field is

very ultrarelativistic both, in a kinematically sense (namely, if it has Lorentz factors

& 50) and regarding its magnetization (e.g., with flow magnetizations σ ≃ 0.1). A

fair fraction of the blazar sequence could be explained as a consequence of shell mag-

netization: negligible magnetization in FSRQs, and moderate or large (and uniform)

magnetization in BL Lac objects. The predicted photon spectral indices (Γph) in the
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γ−ray band are above the observed values (Γph,obs . 2.6 for sources with redshifts

0.4 ≤ z ≤ 0.6) if the magnetization of the sources is moderate (σ ≃ 10−2).

4.2 Modeling dynamics and emission from internal shocks

In this section we summarize the method of MA12, which is used to model the dy-

namics of shell collisions and the resulting nonthermal emission (we follow Sections

2, 3 and 4 of MA12). We also discuss the three families of numerical models used in

this work.

We assume that a fraction ǫe of the dissipated kinetic energy is used to accelerate

electrons in the vicinity of shock fronts. We keep ǫe fixed in this work aiming to

reduce the number of free parameters. We do not expect its possible variation to

influence our results qualitatively (e.g., Böttcher & Dermer 2010, show in Figure 7

that a change in ǫe does not change the Compton dominance AC).

In order to compute synthetic time-dependent multi-wavelength spectra and light

curves, we assume that the dominant emission processes resulting from the shocked

plasma are synchrotron, EIC and SSC. The EIC component is the result of the up-

scattering of near infrared photons (likely emitted from a dusty torus around the

central engine of the blazar or from the broad line region) by the nonthermal electrons

existing in the jet. We further consider that the observer’s line of sight makes an angle

θ with the jet axis.

4.2.1 Models

The main difference between this work and MA12 is that we allow for shell Lorentz

factors and the viewing angle θ to vary. Table 4.1 shows the spectrum of model param-

eters that we consider in the next sections. In order to group our models according to

the initial shell magnetizations we denote by letters W, M, S, S1 and S2 the following

families of models:

W: weakly magnetized, σL = 10−6, σR = 10−6,

M: moderately magnetized, σL = 10−2, σR = 10−2,

S: strongly magnetized, σL = 1, σR = 10−1,
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4.2. Modeling dynamics and emission from internal shocks

S1: strongly and equally magnetized, σL = 10−1, σR = 10−1, and

S2: strongly magnetized, σL = 10−1, σR = 1.

The remaining three parameters, the Lorentz factor of the slower (right) shell, ΓR, the

relative Lorentz factor,

∆g := 1 − ΓR

ΓL
, (4.1)

(ΓL being the Lorentz factor of the faster/left shell) and the viewing angle θ can take

any of the values shown in Table 4.1. We have considered three families of strongly

magnetized models (S, S1 and S2), which differ in the distribution of the magneti-

zation of the interacting shells. Our reference strongly magnetized model family is

the S, since in MA12 we found that these models have the maximum dynamical ef-

ficiency. This set of models is supplemented with two additional families of models:

S1, which accounts for shells having the same (high) magnetization, and S2, with

parameters complementary of the S-family, and having the peculiarity that the collid-

ing shells do not develop a forward shock (instead they form a forward rarefaction;

see MA12) if ∆g . 1.5, so that they only emit because of the presence of a reverse

shock. For clarity, when we refer to a particular model we label it by appending

values of each of these parameters to the model letter. For instance, S-G10-D1.0-T3

is the strongly magnetized model with ΓR = 10 (G10), ∆g = 1.0 (D1.0) and θ = 3◦

(T3). If we refer to a subset of models with one or two parameters fixed we use

an abbreviated notation, where we skip any reference to the varying parameters in

the family name. As an example of this abbreviated notation, in order to refer to all

weakly magnetized models with ΓR = 10 and θ = 5◦ we use W-G10-T5, while all

moderately magnetized models with ∆g = 1.5 are M-D1.5. We perform a systematic

variation of parameters in order to find the dependence of the radiative signature on

each of them separately, as well as their combinations by fixing, e.g. the Doppler

factor D (Eq. (2.59)) of the shocked fluid. We perform such a parametric scan for a

typical source located at redshift z = 0.5.

2The chosen value for q is representative for blazars according to observational (Ghisellini et al.
1998; Kardashev 1962) and theoretically deduced values (Böttcher & Dermer 2002). It also agrees with
the ones used in numerical simulations of blazars made by (Mimica 2004) and (Zacharias & Schlick-
eiser 2010).
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Parameter value

ΓR 10, 12, 17, 20, 22, 25, 50, 100
∆g 0.5, 0.7, 1.0, 1.5, 2.0
σL 10−6, 10−2, 10−1, 1
σR 10−6, 10−2, 10−1, 1
ǫB 10−3

ǫe 10−1

ζe 10−2

∆acc 10
aacc 106

R 3 × 1016 cm
∆r 6 × 1013 cm
q 2.6
L 5 × 1048 erg s−1

uext 5 × 10−4 erg cm−3

νext 1014 Hz
z 0.5
θ 1, 3, 5, 8, 10◦

Table 4.1: Parameters of the models. ΓR is the Lorentz factor of the slow shell, ∆g, σL and
σR are the fast and slow shell magnetizations, ζe and q are the fraction of electrons acceler-
ated into power-law Lorentz factor (or energy) distribution and its corresponding power-law
index1, ∆acc and aacc are the parameters controlling the shock acceleration efficiency (see
Section 3.2 of MA12 for details), L, R and ∆r are the jet luminosity, jet radius and the initial
width of the shells, uext and νext are the energy density and the frequency of the external ra-
diation fiel in the reference frame of the AGN (see Section 4.2 of MA12 for details), z is the
redshift of the source and θ is the viewing angle. Note that ΓR, ∆g, σL, σR and θ can take any
of the values indicated.

4.3 Results

Here we present the main results of the parameter study, grouping them according

to the families defined in §4.2.1, so that the results for the weakly, moderately and

strongly magnetized shell collisions are given in §§4.3.1, 4.3.2 and 4.3.3, respectively.

To characterize the difference between models we resort to compute their light curves,

average spectra, and their spectral slope Γph and photon flux Fph (assuming a relation

Fνobs ∝ ν−Γph+1; see § 4.5.1) in the band where the observed photon energy is above

200 MeV. In the rest of the text we will refer to this band as γ-ray band.
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4.3.1 Weakly magnetized models

In Figure 4.1 we show the light curves at optical (R-band), X-ray (1–10 keV) and

γ-ray (1 GeV) energies for two different values of the relative shell Lorentz factor,

i.e., for two values of the parameter ∆g while keeping the rest fixed. The duration

of the light curve depends moderately on ∆g, as can be seen from the difference in

peak times for optical and γ-ray light curves. The time of the peak of the light curve

in each band depends on the dominant emission process in that band: synchrotron

and EIC dominate the R-band and the 1 GeV emission and peak soon after the shocks

cross the shells. The SSC emission dominates the X-rays (dashed lines in Figure 4.1),

and its peak is related to the physical length of the emission regions. The X-ray peak

occurs later due to the fact that synchrotron photons from one shocked shell have to

propagate across a substantial part of the shell volume before being scattered by the

electrons in the other shell (see § 6.2 of MA12 for more details). The corresponding

average flare spectra are shown in the left panel of Figure 4.2, where we also display

(inset) Γph as a function of the photon flux Fph in the γ-ray band.

As can be seen from Figure 4.2, the parameter ∆g has a very strong influence on

both peak frequencies and peak fluxes (see also §5.8 of Böttcher & Dermer 2010).

In particular, the synchrotron peak shifts steadily to ever higher frequencies (from

≃ 1012 Hz for ∆g = 0.5 to ≃ 1015 Hz for ∆g = 2.0), with a similar trend for the IC

peak. Fph has a maximum for ∆g = 0.7, and then it decreases monotonically. The

reason for this non monotonic behavior is that in the model with the smallest ∆g, W-

G10-D0.5-T5, the SSC and EIC components (black dot-dashed and dot-dot-dashed

lines in the left panel of Figure 4.2, respectively) are of equal importance in the γ-ray

band, but increasing ∆g leads to the domination of the spectrum by SSC (e.g., orange

dot-dashed and dot-dot-dashed lines in Figure 4.2 show the SSC and EIC components

of W-G10-D2.0-T5, respectively). For the parameters and observational frequencies

of blazars, the Klein-Nishina cutoff affects the EIC, but does not affect the SSC peak

(see § 4.2 of MA12 or § 3.1 of Aloy & Mimica (2008)). Therefore, the SSC peak can

increase with ∆g, while the EIC peak cannot. In the model W-G10-D2.0-T5 the SSC

peak enters the γ-ray band, thus causing the flattening of the spectrum. Finally, the

appearance of a non-smooth IC hump in the spectrum happens when ∆g is low (see

the case of ∆g = 0.5 in Figure 4.2). This result suggests that flares with a smooth IC

spectrum in weakly magnetized blazars are likely produced by shells whose ∆g & 0.5
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4. Influence of the magnetic field on the spectral properties of blazars

Figure 4.1: Light curves for the weakly magnetized models W-G10-D0.5-T5 (black lines)
and W-G10-D2.0-T5 (orange lines). The light curves in R-band, hard X-ray band (1–10 keV)
and at 1 GeV are shown as full, dashed and dot-dashed lines, respectively. The time of the
peaks of the R-band and 1 GeV light curves correspond to the moment the shocks cross the
respective shells (first the RS, and then the FS). A steep decline after the peak is partly due
to the assumed cylindrical geometry, since in a conical jet the high-latitude emission would
smooth out the decline.

(i.e., relative Lorentz factor is larger than ≃ 1.1).

Table 4.2 lists a number of physical parameters in the shocked regions of the

models shown in the left panel of Figure 4.2. As can be seen, the increase in ∆g has

as a consequence a moderate increase in the compression ratio and the magnetic field

in the shocked regions, as well as an increase in the number of injected electrons in

the both shocks (FS and RS).

The nonthermal electrons in weakly magnetized models are in a slow-cooling

regime, as inferred from the fact that γc/γmin & 1. The typical magnetic field is of

the order of 1 G and is of the same order of magnitude, though slightly larger in the
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Figure 4.2: Left panel: average spectra for weakly magnetized models W-G10-T5 (i.e.,
with fixed ΓR = 10 and θ = 5). The spectrum of each model has been averaged over the time
interval 0 − 1000 ks. In addition, for the models W-G10-D0.5-T5 and W-G10-D2.0-T5 we
show the synchrotron, SSC and EIC contributions (dashed, dot-dashed and dot-dot-dashed
lines, respectively). The blue line shows the spectrum of the model (σL, σR) = (10−6, 10−6)
of MA12. The inset shows the spectral slope Γph as a function of the photon flux Fph in the
γ-ray band. We use the same band and the spectral slope definition as in Abdo et al. (2009).
Right panel: same as left panel, but for the models W-D1.0-T5.

reverse than in the forward shocked region. The difference becomes larger for higher

∆g (see §4.3.3 for a more detailed discussion of this point).

Next we consider the case in which ΓR is increased, and repeat the previous

experiments, but fixing ∆g = 1, i.e., we consider the series of models W-D1.0-T5

(right panel of Figure 4.2). We note that increasing the Lorentz factor of the slower

shell yields a reduced flare luminosity. This behavior results because, for the fixed

viewing angle (θ = 5◦) and ∆g, increasing the Lorentz factor of the slower shell

implies that both shells move faster, and the resulting shocked regions are Doppler

dimmed (for an illustration of the case when both ΓR and ∆g are varied see Figure 6 of

Joshi & Böttcher 2011). However, the most remarkable effect is that for values ΓR &

17, we note a qualitative change in the IC part of the spectrum. The EIC begins to

dominate in γ-rays. Since, as discussed above, the peak of the EIC spectrum is shaped

by the Klein-Nishina cut-off, for frequencies & 1023 Hz there is no dependence on

ΓR. However, since the synchrotron peak flux decreases with increasing ΓR, this

means that the IC-to-synchrotron ratio of peak fluxes increases with ΓR. The weak

dependence of the γ-ray spectrum on ΓR can also be seen in the inset of the right

panel of Figure 4.2, where the points for ΓR & 17 accumulate around Γph . 2.35 and
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Fph ≃ 3 × 10−8 cm−2 s−1.

4.3.2 Moderately magnetized models

The second family of models contains cases of intermediate magnetization σL =

σR = 10−2. The left panel of Figure 4.3 shows the effect of the variation of ∆g

on the average spectra for the models M-G10-T5. The blue line corresponds to the

moderately magnetized model in MA12. It can be seen that for ∆g & 1, a flatten-

ing of the spectrum below the synchrotron peak starts to become noticeable. This

effect becomes even more pronounced for the strongly magnetized models (see next

section). Low values of ∆g tend to reduce much more the IC spectral components

than the synchrotron ones. This trend is also noticeable in weakly and strongly mag-

netized models. Thus, regardless of the magnetization, very small values of ∆g may

not be compatible with observations. In the γ-ray band, an increase in ∆g causes an

increase in Fph and a variation in Γph characterized by a maximum, where Γph ≃ 2.9,

for ∆g = 1.
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Figure 4.3: Left panel: same as left panel of Figure 4.2, but for the moderately magnetized
models M-G10-T5, i.e., σL = 10−2 and σR = 10−2. Right panel: same as right panel of
Figure 4.3, but for variable ΓR while keeping fixed ∆g = 1 and θ = 5o (models M-D1.0-T5).
For models M-G10-D1.0-T5 and M-G25-D1.0-T5 (i.e., models with ΓR = 10, 25) dashed,
dot-dashed and dot-dot-dashed lines show the synchrotron, SSC and EIC contributions, re-
spectively.

Table 4.3 shows the microphysical parameters of the shocked regions in these

models. As ∆g grows, the magnetic field and the number of injected particles in-

crease at the region swept by the forward shock, while the electrons transition from
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a moderate or intermediate-cooling regime to fast-cooling one. A noticeable differ-

ence with respect to the weakly magnetized models is that now the comoving mag-

netic field in the region swept by the reverse shock decreases as ΓL increases with

increasing ∆g (or, equivalently, Γ). This is a consequence of keeping the jet luminos-

ity and the shell magnetization constant while increasing the Lorentz factor of the

faster shell.

Let us consider now the spectral variations induced by a changing ΓR and fixed

∆g (right panel of Figure 4.3). In contrast to what has been seen in weakly magne-

tized models (§4.3.1; Figure 4.2), for ΓR & 20, the two IC contributions are compa-

rable (for smaller values of ΓR the SSC component dominates the IC spectrum). For

ΓR = 10 the maximum of the EIC emission is 100 times smaller than the correspond-

ing SSC maximum, while for ΓR = 25 the EIC peak is higher than the SSC peak, and

indeed it is expected to keep growing as the bulk Lorentz factor goes further into the

ultrarelativistic regime. Similar to the right panel of Figure 4.2, the Klein-Nishina

cut-off causes the coincidence of EIC spectra at ≃ 1023 Hz. This effect is also seen in

the Fph-Γph plot, where for ΓR & 17 the photon flux is approximately constant3, with

a slight decrease in Γph as ΓR grows.

Shell magnetization, ∆g and ΓR are related to the intrinsic properties of the emit-

ting regions. It is also interesting to explore the effects on the SED of varying extrin-

sic properties of the models, such as the viewing angle θ, while keeping the intrinsic

ones constant. Figure 4.4 shows the result of changing the jet orientation. With

increasing θ both the synchrotron and IC maxima decrease. As it can be noticed

looking at the brown lines, the maxima drop almost in a straight line with positive

slope. To illustrate this fact, we show the spectrum normalized to the Doppler factor

D3 in the left panel of Figure 4.5.4 As can be seen, the synchrotron spectra coincide

for all models (assuming the frequency is normalized by D), while the IC spectral

fluxes decrease with increasing θ. For comparison, in the right panel of Figure 4.5

we normalize the spectra by D4. In this case the IC spectra below the peak (cooling

break) coincide, while the synchrotron part gets less luminous with decreasing angle.

Thus, we find a remarkable agreement among the normalized spectra obtained from

3We point out that differences smaller than . 0.1 in Γph are probably not distinguishable from an
observational point of view.

4We note that the normalization in e.g. left panel of Figure 4.5 is equivalent to theD3+α of Dermer
(1995) if we take into account that we do not only normalize the SED by the Doppler factor but also
the frequencies.
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Figure 4.4: Same as Figure 4.3, but for variable θ. ΓR = 10 and ∆g = 1.0 have been fixed,
i.e., models M-G10-D1.0 are shown. For easier visualization the synchrotron and IC spectral
maxima of different models have been marked by boxes and connected by brown lines.

the same source but with different viewing angles, if we scale all the spectra byD3.

4.3.3 Strongly magnetized models

The third model family considers the strongly magnetized models where σL = 1 and

σR = 0.1. The left panel of Figure 4.6 shows the dependence of the average spec-

tra on ∆g. Strongly magnetized models in moderately relativistic flows (i.e., having

moderate values of ΓR) dramatically suppress the IC spectral component. However,

with increasing values of ∆g the IC component broadens in frequency range and

grows moderately. Another remarkable fact of strongly magnetized models is that

for ∆g > 1.0 the synchrotron spectrum ceases to be a parabolic, single-peaked curve

and becomes a more complex curve where the contributions from the FS and the

RS are separated, since the peak frequencies of the synchrotron radiation produced
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Figure 4.5: Left panel: same as left panel of Figure 4.4, but dividing the frequencies by D
and the SED byD3. Right panel: same as right panel of Figure 4.4, but normalizing the SED
byD4.

at the FS and at the RS differ by two or three orders of magnitude. The reason

is the strong magnetic field in the emitting regions: magnetization in the shocked

regions increases proportionally to their compression factors r f and rr, respectively

(see Eq. (2.46) in §2.3.1.2), i.e. the shocked regions are even more magnetically domi-

nated than the initial shells. In Table 4.4 we see that the electrons in the reverse shock

of the strongly magnetized models are fast-cooling. In fact, for ∆g & 1.5 the injected

electron spectrum is almost mono-energetic. In these models the lower cutoff γminr

is about a factor of 30 larger than γmin f . Since the synchrotron maximum of the fast-

cooling electrons is determined by the lower cutoff, the synchrotron spectrum of the

RS peaks at a frequency which is (γmin f /γminr)
2 ≈ 103 times higher than that of the

FS. This can be seen in left panel of Figure 4.6, where dashed and dot-dashed lines

show the respective spectra of the RS and FS of the model S-G10-D2.0-T5. The

dominance of the EIC component for ΓR & 20 and ν & 1021 Hz appears to be a prop-

erty tightly related to the increment of ΓR (right panel of Figure 4.6). In this case, the

EIC component “replicates” the synchrotron peak associated to the forward shock of

the collision, modulated by the Klein-Nishina cut-off for large values of ΓR. Because

of this effect, progressively larger values of ΓR increase the Compton dominance, i.e.

the trend is to recover the standard double-hump structure of the SED as ΓR rises.

We have tested that for ΓR = 50 and 100,the IC spectral component becomes almost

monotonic and concave (Figure 4.7). For ΓR & 50, the SED becomes akin to that

of models with moderate or low shell magnetization, but the IC spectrum displays
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Figure 4.6: Left panel: same as left panel of Figure 4.2, but for the strongly magnetized
models S-G10-T5, i.e., σL = 1 andσR = 0.1. For the cases ∆g = 0.5, 2.0 we show the reverse
and forward shock contributions to their spectra in dashed and dot-dashed lines, respectively.
While at small values of ∆g the contribution of the RS dominates fully the spectrum, at larger
values of ∆g the FS contribution has increased relative to the RS one, and is an order of
magnitude stronger than the former one in the case of the model with ∆g = 0.5. This also
explains a second (higher) peak in the synchrotron domain, as well as a flattening in the γ-
ray band. Right panel: same as right panel of Figure 4.3, but for strongly magnetized models
S-D1.0-T5.
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Figure 4.7: Same as Figure 4.6,
but for high ΓR cases. For each
model the synchrotron, SSC and
EIC contributions are shown us-
ing dashed, dot-dashed and dot-dot-
dashed lines, respectively.

a plateau rather than a maximum. As the Lorentz factor increases (ΓR & 50), our

models form a flat spectrum in the soft X-ray band rather than a minimum between

two concave regions. We note that the spectrum of the ΓR = 100 model displays very

steep rising spectrum flanking the IC contribution because we have fixed a value

of the microphysical parameter aacc = 106. Smaller values of such parameter tend

to broaden significantly both the IC and the synchrotron peak (Böttcher & Dermer
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4. Influence of the magnetic field on the spectral properties of blazars

2010, see e.g.,). Hence, we foresee that a suitable combination of microphysical and

kinematical parameters would recover a more “standard” double-hump structure.

Figure 4.8: Left: Same as the left panel of Figure 4.6 for the family S1-G10-T5. Right:
Same as the left panel of Figure 4.6 for the family S2-G10-T5. In the S2-family, the forward
shock is either non-existing (for ∆g . 1.5) or extremely weak. We add in the figure the
contribution to the spectrum of the forward shocks of the models with ∆g = 1.5, 2. Note the
difference in the stencil of the vertical axis with respect to the left panel.

We also find that the SED of strongly magnetized models is very sensitive to

relatively small variations of magnetization between colliding shells. To show such

a variety of phenomenologies, we display in Figure 4.8 the SEDs of the families S1-

G10-T5 (left panel) and S2-G10-T5, right panel, i.e., considering only the variations

in the SED induced by a change in ∆g. The three families of strongly magnetized

models only have differences in magnetization within a factor 10. Clearly, when the

faster shell is less magnetized than the slower one (the case of the S2-family), the

models recover a more typical double-hump structure, closer to that found in actual

observations. We note that for contribution to the SED of the forward shock in the

S2-family is either non-existing, because these models do not form a FS or, if a FS

forms, it is very weak (see dashed lines in the right panel of Figure 4.8).

For completeness, we consider how the SED changes when varying the viewing

angle (Figure 4.9). In these models, increasing θ lowers the total emitted flux all

over the spectral range under consideration. The Compton dominance for θ . 8◦

remains constant. To explain this behavior, we shall note that fixing both ΓR and ∆g,

increasing θ is equivalent to decrease the Doppler factorD. Theoretically, it is known

that the beaming pattern of a relativistically moving blob of electrons that Thompson-

scatters photons from an external isotropic radiation field changes as D4+α (α being
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Figure 4.9: Same as Fig-
ure 4.4, but for strongly mag-
netized models S-G10-D1.0.

the spectral index of the radiation), while the beaming pattern of radiation emitted

isotropically in the blob frame (e.g., by synchrotron and SSC processes), changes

as D3+α (Dermer 1995). Left and right panels in Figure 4.10 show the spectra from

Figure 4.9 normalized toD3 andD4, respectively. Thus, we expect that the reduction

of the Doppler factor results in a larger suppression of the IC part of the SED, only

if it is dominated by the EIC contribution, as compared with the dimming of the

synchrotron component. In the models at hand (S-G10-D1.0), the IC spectrum is

dominated by the SSC component, and thus, reducing θ simply decreases the overall

luminosity.
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Figure 4.10: Left panel: same as Figure 4.9, but normalizing the SED by D3. Right panel:
same as Figure 4.4, but normalizing the SED byD4.
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4.4 Discussion and conclusions

We have extended the survey of parameters started in MA12 for the internal shocks

scenario by computing the multi-wavelength, time-dependent emission for several

model families chiefly characterized by the magnetization of the colliding shells. In

this section we provide a discussion and a summary of our results.

4.4.1 Intrinsic parameters and emission

In what follows, we consider the effect that changes in intrinsic jet parameters (mag-

netization, ∆g and ΓR) have on the observed emission.

4.4.1.1 Influence of the magnetic field

As was discussed in § 6.1 of MA12, the main signature of high magnetization is

a drastic decrease of the SSC emission due to a much smaller number density of

scattering electrons (Eq. (2.41)). As will be stated in §4.4.1.3, this decrease can

be offset by increasing the bulk Lorentz factor (at a cost of decreasing the overall

luminosity). However, extremely relativistic models (from a kinematical point of

view), tend to form plateaus rather than clear maxima in the synchrotron and IC

regimes, and display relatively small values of Γph. Indeed, the photon spectral index

manifest itself as a good indicator of the flow magnetization. Values of Γph & 2.6

result in models where the flow magnetization is σ ≃ 10−2, while either strongly or

weakly magnetized shell collisions yield Γph . 2.5. The observed degeneracy we

have found in the case of strongly magnetized and very high Lorentz factor shells is

a consequence of the fact that either raising the magnetization or the bulk Lorentz

factor, the emitting plasma enters in the ultrarelativistic regime. Which of the two

parameters determines most the final SED, depends on the precise magnitudes of σ

and Γ.

Another way to correlate magnetization with observed properties can be found

representing the Compton dominance AC as a function of the ratio of IC-to-synchro-

tron peak frequencies νobs
IC /ν

obs
syn (see §4.5.2). Models with intermediate or low mag-

netization occupate a range of AC roughly compatible with observations, while the

strongly magnetized models tend to have values of AC hardly compatible with those
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observed in actual sources, unless collisions in blazars happen at much larger Lorentz

factors than currently inferred (see §4.4.3).

4.4.1.2 Influence of ∆g

∆g is a parameter which indicates the magnitude of the velocity variations in the jet.

From the average spectra shown in the left panels of Figures 4.2, 4.3 and 4.6 we see

that the increase of ∆g leads to the increase of the Compton dominance parameter

(see also Figure 4.11), the effect being more important for either weakly or moder-

ately magnetized models than for strongly magnetized ones (for which the Compton

dominance is almost independent of ∆g, or even AC decreases for large values of that

parameter). Furthermore, the total amount of emitted radiation also increases with

increasing ∆g, as is expected from the dynamic efficiency study (Mimica & Aloy

2010), and confirmed by the radiative efficiency study of MA12. Finally, for low val-

ues of ∆g the EIC emission is either dominant or comparable to the SSC one, while

SSC becomes dominant at higher ∆g.

Looking at the physical parameters in the emitting regions (Tables 4.2–4.4), we

see that the increase in ∆g leads to the increase in the compression factor r f and

rr of the FS and RS. The effect is strongest for the weakly magnetized models. This

increase has as a consequence the increase in the number density of electrons injected

at both, the FS and the RS. A similar argument can be made for the magnetic fields

in the emitting regions, since the magnetic field undergoes the shock compression as

well (see §2.3.1.2).

In the insets of left panels of Figures 4.2, 4.3 and 4.6 we see that in γ-rays the

increase of ∆g generally reflects in the increase of the photon flux and a decrease of

the spectral slope Γph. Because of the sensitivity of the photon spectral index in the

γ−ray band, we foresee that the change in Γph can be a powerful observational proxy

for the actual values of ∆g and a distinctive feature of magnetized flows. Comparing

equivalent weakly (Figure 4.2; left) and moderately magnetized models (Figure 4.3;

left), we observe that the maximum Γph as a function of ∆g increases by ∼ 15% due

to the increase in magnetization, and the value of ∆g for which the maximum Γph

occurs also grows, at the same time that Fph decreases by a factor of 50.

We have also found that sufficiently large values of ∆g tend to produce a double-

peaked structure in the synchrotron dominated part of the SED. When the relative
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4. Influence of the magnetic field on the spectral properties of blazars

difference of Lorentz factors grows above ∼ 1.5, the contributions arising from the

FS and the RS shocks peak at different times, the RS contribution lagging behind

the FS contribution and being more intense, and occurring at larger frequencies than

the latter. The reason for this phenomenology can be found looking at Table 4.4 and

noting that γminr becomes very large and comparable to γmaxr for ∆g & 1.5. For

these models γminr ≫ γmin f and the frequency of the RS spectral peak is almost 103

times larger than the frequency of the FS spectral peak. The effect is the flattening

of the synchrotron spectrum, or even an appearance of a second peak. This trend is

even more clear when the magnetization of the shells is increased, so that the most

obvious peak in the UV domain happens for strongly magnetized models (compare

the left panels of Figures 4.2, 4.3 and 4.6). The observational consequences of the

appearance of this peak are discussed below (§4.4.3).

4.4.1.3 Influence of ΓR

ΓR is the parameter which determines the bulk Lorentz factor of the jet flow, to a

large extent. From Eq. (2.41) we see that the increase in ΓR leads to a decrease of

the number density in the shells, a trend which is seen in the right panels of Fig-

ures 4.2, 4.3 and 4.6, since it reduces the emitted flux. Another effect is the decrease

in dominance of SSC over EIC as ΓR increases. A related feature is the flattening of

the γ-ray spectrum (see figure insets). A consequence of the increasing importance

of the EIC is the shifting of the IC spectral maximum to higher frequencies, until

the Klein-Nishina limit is reached. For moderately magnetized models (right panel

of Figure 4.3) the IC maximum becomes independent of ΓR.

The IC emission in the strongly magnetized models (right panel of Figure 4.6)

is dominated by SSC for low values of ΓR. However, as ΓR is increased, the higher-

frequency EIC component becomes ever more luminous. While none of the models

in Figure 4.6 reproduces the prototype double-peaked structure of blazar spectra, the

increase of the EIC component with ΓR indicates that perhaps larger values of ΓR

might produce a blazar-like spectrum. We have shown in Figure 4.7 that the average

spectra for strongly magnetized models where ΓR is allowed to grow up to 100 dis-

play again a double-peaked spectrum, albeit with a much lower luminosity than the

models with lower bulk Lorentz factors.
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4.4.1.4 External radiation field

In this work we did not consider the sources of external radiation in such a detail as

was recently done by e.g. Ghisellini & Tavecchio (2009). These authors show that,

for a more realistic modeling of the external radiation field, the IC component might

be dominating the emission even for a jet with σ ≃ 0.1. We note, however, that

the difference between their and our approach is that we model the magnetohydrody-

namics of the shell collision, while they concentrate on more accurately describing

the external fields. In our model the magnetic field not only influences the cooling

timescales of the emitting particles, but also the shock crossing timescales, making

direct comparison difficult, especially for σ & 1 where the dynamics changes sub-

stantially (see, e.g., MA12).

In our models, we take a monochromatic external radiation field with a frequency

νext in the near infrared band, and with an energy density uext that tries to mimic, in a

simple manner, the emission from a dusty torus or the emission from the broad line

region. More complex modeling, such as that introduced by Giommi et al. (2012a)

can be incorporated in our analysis, at the cost of increasing the number of parameters

in our set up.

4.4.2 The effect of the observing angle

Increasing θ results in a Doppler deboosting of the collision region and a significant

reduction of the observed flux. The decrease of the flux comes along with a mod-

erate decrease of Γph explained by the different scaling properties with the Doppler

factor of the SSC and EIC contributions to the SED. From theoretical grounds, one

expects that the synchrotron and SSC contributions to the SED scale asD3 for, while

D4 is the correct scaling for the EIC spectral component. Such a theoretical infer-

ence is based on assuming a moving spherical blob of relativistic particles. In our

case, instead a blob we have a pair of distinct cylindrical regions moving towards

the observer. The practical consequence of such a morphological difference is that

the synchrotron radiation is roughly emitted isotropically, and thus, it scales as D3

(left panels of Figures 4.5 and 4.10), but the IC contributions are no longer isotropic

and thus do not scale either as D3 nor as D4. The effect is exacerbated when strong

magnetizations are considered (compare the right panels of Figures 4.5 and 4.10).
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4.4.3 Comparison with observations

It has been found in several blazar sources that their SEDs have more than two peaks.

Particularly, in some cases a peak frequency of ∼ 1015 Hz (e.g., Lichti et al. 1995;

Pian et al. 1999) is seen (a UV bump), which is assumed to come purely from the

optically thick accretion disk (OTAD) and from the BLR. In recent works, thermal

radiation from both OTAD and BLR are considered separately in order to classify

blazars (Giommi et al. 2012a, 2013). In the present work, we have shown that a

peak in the UV band can arise by means of nonthermal and purely internal jet dy-

namics. This “nonthermal” blue bump is due to the contribution to the SED of the

synchrotron radiation from the reverse shock in a collision of shells with a sufficiently

large relative Lorentz factor (see left panels of Figures 4.2, 4.3 and 4.6). We suggest

that such a secondary peak in the UV domain is an alternative explanation for the

thermal origin of the UV bump. In Giommi et al. (2012a), the prototype sources

displayed in their Figure 1 all have synchrotron and IC components of comparable

luminosity. In our case, the strength of the UV peak is larger for the models pos-

sessing the strongest magnetic fields. In such models, the IC part of the spectrum is

strongly suppressed and, thus, they are not compatible with observations. However,

moderate magnetization models display synchrotron and IC components of similar

luminosity. In addition, an increase in the relative Lorentz factor of the interacting

shells produces UV bumps which are more obvious and with peaks shifted to the

far UV. According to Giommi et al. (2012a), the spectral slope at frequencies below

the UV-bump ranges from αr−BlueBump ∼ 0.4 to ∼ 0.95. We cannot directly compute

such slope from our data, since we have limited ourselves to compute the SED above

1012 Hz. However, we find compatibility between our models and observations from

comparison of the spectral slope at optical frequencies, where it is smaller than in

the whole range [5 GHz, νBlueBump]. Extrapolating the data from our models, values

∆g & 1.5 combined with shell magnetizations σ ≃ 10−3 could accommodate UV

bumps with peak frequencies and luminosities in the range pointed out by current

blazar observations.

It has to be noted that the intergalactic medium absorption at frequencies be-

tween ∼ 1015 and 3 × 1017 Hz is extremely strong, and is not incorporated into our

models. Such an extrinsic suppression of the emitted radiation will impose a (redshift-

dependent) upper limit to the position of the observed UV peak, below the intrinsic
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reverse shock synchrotron peaks of our moderately and strongly magnetized models

(see e.g., orange line in the left panel of Figure 4.6 which peaks at ∼ 1017 Hz). In

other words, due to the absorption we expect the observed RS synchrotron peak of

such a spectrum to appear at UV frequencies (instead of in X-rays), thus providing

an alternative explanation for the UV bump.

The current observational picture shows that there are two types of blazar pop-

ulations with notably different properties. Among other, type defining, properties

that are different in BL Lacs and in FSRQ objects we find that their respective syn-

chrotron peak frequencies νobs
syn are substantially different. BL Lacs have synchrotron

peaks shifted to high frequencies, in some cases above 1018 Hz (e.g., Mkn 501). In

contrast, FSRQs are strongly peaked at low energies (the mean synchrotron frequency

peak is ν̄obs
syn ≃ 1013.1; Giommi et al. 2012a).

For the typically assumed or inferred values of the Lorentz factor in blazars

(namely, Γ < 30), the locus of models with different magnetizations is different in the

AC vs νobs
syn graph (Figure 4.11). While weakly magnetized models display AC & 3,

the most magnetized ones occupy a region AC . 0.1. In between (0.1 . AC . 3)

we find the models with moderate magnetizations (σ ≃ 10−2). Moreover, we can

classify the weakly magnetized models as IC dominated with synchrotron peak in

the IR band. According to observations (Finke 2013; Giommi et al. 2012b), this re-

gion is occupied by FSRQs, while the moderately magnetized cases fall into the area

compatible with data from BL Lacs.

Strongly magnetized models are outside of the observational regime. However,

the quite obvious separation of the locus of sources with different magnetizations is

challenged when very large values of the slowest shell Lorentz factor (ΓR & 30) are

considered. The path followed by models of the family S-D1.0-T5 (red dash-dotted

line in the lower part of Figure 4.11), heads towards the region of the graph filled by

the weakly magnetized models as ΓR is increased. This increase of AC corresponds

to the fact we have already pointed before: there is a degeneracy between increas-

ing magnetization and increasing Lorentz factor (Figure 4.7). Higher values of ΓR

yield more luminous EIC components, making that strongly magnetized models re-

cover the typical SED of blazars, tough with a much smaller flux than unmagnetized

models.

Comparing our Figure 4.11 with Figure 5 of Finke (2013), we find that the Comp-
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ton dominance is a good measurable parameter to correlate the magnetization of the

shells with the observed spectra. Moderately magnetized models are located in the

region where some BL Lacs are found, namely, with 0.1 . AC . 1 and 1014 Hz

. νobs
syn . 1016 Hz. We also find that models with high and uniform magnetization

(σL = σR = 0.1; S1-G10-T5 family), and large values of the relative Lorentz factor

∆g & 1 (dot-dot-dashed lines in Figure 4.11 and orange lines and symbols in Fig-

ure 4.12), may account for BL Lacs having peak synchrotron frequencies in excess

of 1016 Hz and AC . 0.1. There is, however, a region of the parameter space which is

filled by X-ray peaked synchrotron blazars with 0.1 . AC . 1 that we cannot easily

explain unless seemingly extreme values ∆g & 2 are considered. We point out that

the most efficient way of shifting νobs
syn towards larger values is increasing ∆g. Such a

growth of νobs
syn comes with an increase in the Compton dominance, as is found obser-

vationally for FSRQ sources (Finke 2013). Comparatively, varying ΓR drives moder-

ate changes in νobs
syn, unless extreme values ΓR & 50 are considered. We must also take

into account that the synchrotron peak frequency is determined by the high-Lorentz

factor cut-off γmax. Most of our models display values γmax & 104 in the emitting

(shocked) regions. For comparison, in Finke (2013) γmax = 106 is fixed for all his

models. The small values of γmax in our shell collisions are due to the microphysical

parameters we are using, in particular, our choice of the shock acceleration efficiency

aacc, which was motivated by Böttcher & Dermer (2010). For the models and pa-

rameters picked up by Böttcher & Dermer (2010), they find that neither the peak

synchrotron frequency, nor the peak flux were sensitively dependent on the choice of

aacc (if the power-law Lorentz factor index q > 2). However, γmax shows the same de-

pendence on aacc than on the magnetic field strength: γmax ≃ 4.6× 107(aaccB[G])−0.5.

In practice, thus, we find a degeneracy in the dependence on both aacc and B for our

models.

Considering the location of the strongly magnetized models with σL = 1, and

σR = 0.1 in the AC vs νobs
syn graph (Figure 4.11), they appear as only marginally

compatible with the observations of Finke (2013), where almost all sources have

AC > 10−2. Since in such models is difficult to obtain AC > 10−2, unless the micro-

physical parameters of the emitting region are changed substantially (e.g., lowering

aacc). This seems to indicate that strongly magnetized models with sensitively differ-

ent magnetizations of the colliding shells (in our case there is a factor 10 difference
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Figure 4.11: Compton dominance AC as a function of the synchrotron peak frequency νobs
syn

for the three families of models corresponding to collisions of the three kinds of magnetized
shells. We also display the Compton dominance for the families of strongly magnetized mod-
els S1 and S2. The different lines are drawn to show the various trends when considering
models where we vary a single parameter and keep the rest constant. The variation induced
by the change in ∆g, ΓR and θ is shown with black, red and blue lines, respectively. The
numbers denote the value of the varied parameter and the line type is associated to the mag-
netization, corresponding the solid, dashed and dot-dashed lines to weakly, moderately and
strongly magnetized shells, respectively. Double-dotted-dashed and dotted-double-dashed
lines correspond to the additional models of the families S1-G10-T5 and S2-G10-T5, respec-
tively.

between the magnetization of the faster and of the slower shell) are in the limit of

compatibility with observations, and that even larger magnetizations are banned by

data of actual sources. MA12 found that the combination σL = 1, σR = 0.1, brings

the maximum dynamical efficiency in shell collisions (∼ 13%), and that has been

the reason to explore the properties of such models here. Models with large and uni-

119



4. Influence of the magnetic field on the spectral properties of blazars

form magnetization σL = σR = 0.1 display a dynamical efficiency ∼ 10%, quite

close to the maximum one for a single shell collision, and clearly bracket better the

observations in the AC vs νobs
syn plane.

The family of S2-models with σL = 0.1, σR = 1 is complementary to the S-

family, but in the former case, only a RS exists, since the FS turns into a forward

rarefaction (MA12), if ∆g . 1.5. These models possess a larger Compton dominance

(10−2
. AC . 4×10−2) than those of the S-family (Figure 4.11), and their locus in the

Fph vs Γph plane (Figure 4.12; green line and symbols) is much more compatible with

observations. Since the synchrotron emission of the S2-family is only determined by

the RS, if ∆g . 1.5, or dominated by the RS emission if ∆g & 1.5, the synchrotron

peak tends to be at higher frequencies than in the S and S1 families.

The value of Γph has also been useful to differentiate observationally between

BL Lacs and FSRQs. According to Abdo et al. (2010b) the photon index, provides

a convenient mean to study the spectral hardness, which is the ratio between the

hard sub-band and the soft sub-band (Abdo et al. 2009). In Figure 4.12 we com-

pare the values of Γph computed for our three families of models with actual obser-

vations of FSRQs and BL Lacs from the 2LAG catalog (Ackermann et al. 2011).

We only represent values of such catalog corresponding to sources with redshifts

0.4 ≤ z ≤ 0.6, since our models have been computed assuming z = 0.5. We note that

the values of Γph calculated from fits of the γ−ray spectra in our models with moder-

ate magnetization (red colored in the figure) fall just above the observed maximum

values attained in FSRQs (ΓFSRQ
ph,obs . 2.6), if the Lorentz factor of the slower shell is

ΓR ∼ 10. However, models with moderate magnetization and larger Lorentz factors

ΓR & 15 display photon indices fully compatible with FSRQs and photon fluxes in

the lower limit set by the technical threshold that prevents Fermi to detect sources

with Fph . 2 × 10−10 photons cm−2 s−1. BL Lacs exhibit even flatter γ−ray spectra

than FSRQs, with observed values of the photon index ΓBLLac
ph,obs . 2.4. Values Γph & 2

are on reach of both strongly or weakly magnetized models. Nevertheless, the photon

flux of strongly magnetized models falls below the current technical threshold. Be-

ing conservative, this under-prediction of the gamma-photon flux could be taken as a

hint indicating that only models with small or negligible magnetization can reproduce

properly the properties of FSRQs, LBLs, and perhaps IBL sources, while HBLs and

BL Lacs have microphysical properties which differ from the ones parametrized in
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this work. According to Abdo et al. (2009), the photon index is a quantity that could

constrain the emission and acceleration processes that may be occurring within the jet

that produce the flares at hand. Particularly, we have fixed a number of microphysical

parameters (ǫB, ǫe, aacc, etc.) to typically accepted values, but we shall not disregard

that X-ray, synchrotron-peaked sources have different values of the aforementioned

microphysical parameters. On the other hand, our values of Γph are not fully pre-

cise, the reason being the approximated treatment of the Klein-Nishina cutoff. Being

not so conservative, we may speculate that our current gamma ray detectors cannot

observe sources with sufficiently small flux (Fph . 3 × 10−11 photons cm−2 s−1) to

discard or confirm that strongly magnetized blazars may exist.
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Figure 4.12: Comparison between our numerical models and those sources (FRSQs and BL
Lacs) whose redshift is 0.4 ≤ z ≤ 0.6 in the 2LAG catalog (Ackermann et al. 2011). The
size of the symbols associated to our models grows as the parameter which is varied does.
For instance, in the case of models M-G10-D1.0, the smaller values of θ correspond to the
smaller red circles in the plot.
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4.4.4 Conclusions and future work

In the standard model, the SEDs of FSRQs and BL Lacs can be fit by a double

parabolic component with maxima corresponding to the synchrotron and to the IC

peaks. We have shown that the SEDs of FSRQs and BL Lacs strongly depends on

the magnetization of the emitting plasma. Our models predict a more complex phe-

nomenology than is currently supported by the observational data. In a conservative

approach this would imply that the observations restrict the probable magnetization

of the colliding shells that take place in actual sources to, at most, moderate values

(i.e., σ . 10−1), and if the magnetization is large, with variations in magnetization

between colliding shells which are smaller than a factor ∼ 10. However, we have also

demonstrated that if the shells Lorentz factor is sufficiently large (e.g., ΓR & 50), mag-

netizations σ ≃ 1 (Figure 4.7) are also compatible with a doble hump. Therefore, we

cannot completely discard the possibility that some sources are very ultrarelativistic

both in a kinematically sense and regarding its magnetization.

We find that FSRQs have observational properties on reach of models with neg-

ligible or moderate magnetic fields. The scattering of the observed FSRQs in the AC

vs νobs
syn plane, can be explained by both variations of the intrinsic shell parameters

(∆g and ΓR most likely), and of the extrinsic ones (the orientation of the source).

BL Lacs with moderate peak synchrotron frequencies νobs
syn . 1016 Hz and Compton

dominance parameter 0.1 & AC & 1 display properties that can be reproduced with

models with moderate and uniform magnetization (σL = σR = 10−2). HBL sources

can be partly accommodated within our model if the magnetization is relatively large

and uniform (σL = σR = 10−1) or if the magnetization of the faster colliding shell is

a bit smaller than that of the slower one (σL = 10−1, σR = 1). We therefore find that

a fair fraction of the blazar sequence can be explained in terms of the intrinsically

different magnetization of the colliding shells.

We observe that the change in the photon spectral index (Γph) in the γ−ray band

can be a powerful observational proxy for the actual values of the magnetization

and of the relative Lorentz factor of the colliding shells. Values Γph & 2.6 result

in models where the flow magnetization is σ ∼ 10−2, whereas strongly magnetized

shell collisions (σ > 0.1) as well as weakly magnetized models may yield Γph . 2.6.

The EIC contribution to the SED has been included in a very simplified way in

this work. We plan to improve on this item by considering more realistic background
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field photons as in, e.g., Giommi et al. (2012a). We expect that including seed pho-

tons in a wider frequency range will modify the IC spectrum of strongly magnetized

models or of models with low-to-moderate magnetization, but large bulk Lorentz fac-

tor. Finally, the microphysical parameters characterizing the emitting plasma have

been fixed in this manuscript. In a follow up work, we will explore the sensitivity of

the results (particularly in moderately to highly magnetized models) to variations of

the most significant microphysical parameters (e.g., aacc, ǫB, ǫe, etc).

4.5 Appendices

The following subsctions enclose an editted version of the appendices in the article

RMA14, pp. 1868–1869.

4.5.1 Photon index

The spectral index of a source measures the frequency dependence of its nonthermal

radiation flux density. We assume that the photon flux Fph in a certain frequency

range can be approximated by

Fph ∝ ν
−Γph

obs . (4.2)

where Γph is the spectral index. In other words, the spectral index gives a mea-

sure of the slope of the radiation flux in logarithmic scale, within a frequency range

[νobs, νobs +∆νobs]. If we have the radiation flux at two sufficiently close frequencies,

the spectral index is calculated in the following manner:

Γph = log
(

Fνobs,1

Fνobs,2

)/
log

(
νobs,1

νobs,2

)
(4.3)

The value of Γph has also been useful to differentiate observationally between BL

Lacs and FSRQs. According to Abdo et al. (2010b) the photon index, provides a

convenient mean to study the spectral hardness, which is the ratio between the hard

sub-band and the soft sub-band (Abdo et al. 2009).

In the present section we describe a way to obtain the photon index in the γ-ray

band from synthetic SEDs, specifically in the range 10−1–1 GeV. First of all, we

must take into account that

Fph =
1
h

∫ νobs
max

νobs
min

dνobs
νobsFνobs

ν2obs

, (4.4)
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with Fph is in units of photons cm−2 s−1 and h is the Planck constant. Discretizing the

frequency range and using the approximation νobsFνobsν
−2
obs ∝ ν

−s
obs at each sub-interval,

we get that

Fph ≈
νs

obs,i

h
f (νobs,i)P

(
νobs,i+1

νobs,i
, s

)
, (4.5)

where

f (νobs) :=
νobsFνobs

ν2obs

. (4.6)

By using formula (4.3) and approximation (4.5) we can calculate the spectral index

at each sub-interval. With a linear least-squares routine the final photon index Γph is

calculated.

4.5.2 Relation between AC and FIC/Fsyn

Some parts of the following section contains extracts from Appendix B of RMA14,

p. 1868. In a previous study made by Mimica & Aloy (2012) regarding the Compton

to synchrotron fluences ratio FIC/Fsyn, where FIC and Fsyn are the fluences of the IC

and synchrotron component, respectively. A trend was found by comparing it with

the Compton to synchrotron peak frequencies ratio νIC/νsyn. Both ratios are Doppler

shift independent likewise AC .

In Figure 4.13 (upper panel) we present a plot of the Compton dominance pa-

rameter as a function of the ratio of peak frequencies νIC/νsyn, since these properties

can be directly measured from observations. The models here considered correspond

to the ones described in the next chapter. The lower Compton dominance happens

for strongly magnetized models (σL = 1, σR = 0.1, dot-dashed lines in the figure),

while the weakly magnetized shell collisions (σL = σR = 10−6) display the larger

AC . According to AC , there is a factor of more than ten in Compton dominance when

considering shells with magnetizations σ ∼ 10−2, as compared with basically unmag-

netized models. We also note that models with varying viewing angle θ are shifted

along diagonal lines in the plot (blue lines in Figure 4.13). This is also the case for

families of models in which we vary ΓR above a threshold (magnetization dependent)

such that the IC spectrum is dominated by the EIC contribution (red lines in Fig-

ure 4.13). If the IC spectrum is dominated by the SSC contribution, changing ΓR

yields a horizontal displacement in the plot. Models with varying ∆g display a simi-

lar drift as those in which θ is changed in the case of the moderately magnetized shell
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Figure 4.13: Upper panel: Compton dominance, AC , as a function of νobs
IC /ν

obs
syn. Lower panel:

Same as the upper panel, but replacing νobs
IC /ν

obs
syn by the ratio of peak fluxes Fobs

IC /F
obs
syn . The

models and the lines in this figure correspond to the models studied in Chapter 4 (see Ta-
ble B.3).

collisions. The trend is not so well defined in case of weakly magnetized models, and

for strongly magnetized models, the Compton dominance is rather insensitive to ∆g,

though lower values of ∆g yield larger values of νobs
IC /ν

obs
syn.

As can be seen from Figure 4.13 (upper panel), there exists a very tight correla-
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tion between Fobs
IC /F

obs
syn and AC , which means that either AC or Fobs

IC /F
obs
syn can be used

interchangeably for the study of the global trends of the models MA12 and RMA14

(see Tables B.3 and B.4).
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Chapter5

On the influence of a Hybrid

Thermal-Non thermal distribution in

the Internal Shocks model for

blazars

In the present chapter we enclose an adapted version of the article RMA17, pp. 1174–

1179.

5.1 Abstract

Internal shocks occurring in blazars may accelerate both thermal and nonthermal

electrons. In this work we examine the consequences that such a hybrid (thermal/non-

thermal) EED has on the spectrum of blazars. Since the thermal component of the

EED may extend to very low energies. We replace the standard synchrotron pro-

cess by the more general MBS. Significant differences in the energy flux appear at

low radio frequencies when considering MBS instead of the standard synchrotron

emission. A drop in the spectrum appears in the all the radio band and a prominent

valley between the infrared and soft X-rays bands when a hybrid EED is considered,

instead of a power-law EED. In the γ-ray band an EED of mostly thermal particles

displays significant differences with respect to the one dominated by nonthermal par-
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ticles. A thermally-dominated EED produces a SSC peak extending only up to a

few MeV, and the valley separating the MBS and the SSC peaks is much deeper

than if the EED is dominated by nonthermal particles. The combination of these

effects modifies the Compton dominance of a blazar, suggesting that the vertical

scatter in the distribution of FSRQs and BL Lacs in the peak synchrotron frequency-

Compton dominance parameter space could be attributed to different proportions of

thermal/nonthermal particles in the EED of blazars. Finally, the temperature of the

electrons in the shocked plasma is shown to be a degenerated quantity for different

magnetizations of the ejected material.

5.2 Differences between MBS and standard synchrotron

spectra

In this section we show the importance of the introduction of the new MBS method

into our blazar model. We will first show the differences that arise from using differ-

ent approximations for the emission process assuming the same HD with a dominant

nonthermal component (§5.2.1) for each test. In the second test we compare the

spectra produced by a nonthermally dominated HD with that of a pure power-law

extending towards γ1 ≃ 1 (§5.2.2) by computing both MBS and pure synchrotron

emission.

For the evolution of the particles injected at shocks, we assume that the dominant

processes are the synchrotron cooling and the IC scattering off the photons produced

by the MBS processes (SSC1). We note that, in many cases, SSC cooling may be

stronger than synchrotron cooling, as we shall see in §5.3. To compute synthetic

time-dependent multiwavelength spectra and light curves, we include synchrotron

and synchrotron self-Compton emission processes resulting from the shocked plasma.

We further consider that the observer’s line of sight makes an angle θ with the jet axis.

A detailed description of how the integration of the radiative transfer equation along

the line of sight is performed can be found in § 4 of MA12 as well as in §2.3.3.1.

1For simplicity we keep the abbreviation “SSC” to denote the process of scattering of the non-
thermal emission produced by the local electrons off those same electrons, but it should be noted that
in our model the seed photons for the inverse-Compton scattering are produced by the (more general)
cyclo-synchrotron emission (§2.2).
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To avoid repeated writing of the parameter values when referring to our models,

we introduce a naming scheme in which the magnetization is denoted by the letters

S, M and W, referring to the following families of models:

W: weakly magnetized, σL = 10−6, σR = 10−6,

M: moderately magnetized, σL = 10−2, σR = 10−2, and

S: strongly magnetized, σL = 10−1, σR = 10−1.

The remaining four parameters L, ΓR, ∆g and ζe can take any of the values shown

in Table 5.1. When we refer to a particular model we label it by appending val-

ues of each of these parameters to the model letter. For the parameter ζe we use

Zm2, Zm1 and Z09 to refer to the values ζe = 10−2, 10−1 and 0.9, respectively.

Similarly, for the luminosity we write L1, L5, and L50 to denote the values 1047,

5 × 1047 and 5 × 1048 erg s−1, respectively. In this notation, W-G10-D1.0-Zm1-L5

corresponds to the weakly magnetized model with ΓR = 10 (G10), ∆g = 1.0 (D1.0),

ζe = 0.1 (Zm1) and L = 5 × 1047 erg s−1 (L5).

5.2.1 Spectral differences varying the emissivity for a fixed HD

In Figure 5.1 we display the instantaneous spectra of a weakly magnetized model

containing a HD where 90% of the particles populate the nonthermal tail of the EED

(model W-G10-D1.0-Z09-L1) taken at 10, 102, 103, 104 and 105 seconds after the

start of the shell collision. Solid, dotted and dashed lines show the emission com-

puted using the full MBS method (§3.2) and the direct numerical integration of the

analytic approximations RMA(Xc, γ) (equation 3.60)2 and the numerical integration

of the Crusius & Schlickeiser (1986) function employed in MA12 and RMA14 (re-

ferred hereafter as the standard synchrotron), respectively. The difference between

the first two and the third is in the presence of a low-frequency cut-off which causes

appreciable differences at early times. The purely synchrotron emission (dot-dashed

lines) always produces an excess of emission with respect to the other two. This

is explained by the fact that there is always a portion of the EED whose energy is

too low for it to be emitting in the observed frequencies in a more realistic MBS

2We point out that after the publication of RMA17, we have developed an improved version of the
RMA(Xc, γ) function, which we present in this thesis (§3.2.4.7).
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model (see Figure 3.11). The approximate formula RMA(Xc, γ) performs quite well

and its spectra mostly overlap the MBS ones, except close to the first turnover in the

spectrum (corresponding to the maximum of the emission from the lowest-energy

electrons). Despite the presence of a cutoff in RMA(Xc, γ), it still overestimates the

low-frequency emission just below the first harmonic, which explains the observed

slight mismatch.

Figure 5.1: Instantaneous spectra for a model including a HD in which 90% of the parti-
cles populate the nonthermal tail of the EED computed employing our new MBS numerical
method (full lines), using the direct numerical integration of RMA(Xc, γ) function (dotted
lines, see Eq. (3.60)), and using the direct numerical integration of the Crusius & Schlick-
eiser (1986) function (dot-dashed lines). The dynamical model employed corresponds to a
collision of weakly magnetized shells.

5.2.2 Spectral differences between an HD and a pure power-law EED

In the previous section we have seen that the differences between the MBS emissivity

and the pure synchrotron emissivity are relatively mild if we consider a hybrid, non-
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thermally dominated EED. To a large extend this happens because a HD is flanked

by a monotonically decaying tail at low electron energies (which indeed goes to zero

as the electron Lorentz factor approaches 1, see inset of Figure 5.2). Here we are in-

terested in outlining the spectral differences when the lower boundary of the EED is

varied. For that we consider two different EEDs, namely, a nonthermally dominated

HD (corresponding to model W-G10-D1.0-Z09-L1) and a pure power-law EED ex-

tending to γ1 ≃ 1. The rest of the parameters of our model, including the MBS

emissivity are fixed. To set up the pure power-law EED we cannot follow exactly

the same procedure as outlined in §2.4.2.2 because we must fix γ1 instead of obtain-

ing it numerically solving Eq. (2.84). Furthermore, we employ the same nonthermal

normalization factor Q0 for both the pure power-law EED and the HD.

In Figure 5.2 we show the spectral energy distribution corresponding to both the

HD and pure power-law EED cases. It is evident that there are substantial differ-

ences at frequencies below the GHz range and in the infrared-to-X-rays band. On the

other hand, the synchrotron tails above ∼ 1013 Hz are almost identical for both EED.

Correspondingly, the cyclo-synchrotron photons there produced are inverse Compton

upscattered forming nearly identical SSC tails above ∼ 1020 Hz.

5.2.3 Spectral differences between MBS and pure synchrotron for the

same power-law distribution

In the previous section we pointed out how different the SEDs may result for different

distributions. Let us now fix the same injected power-law EED starting from γ1 ≈ 1

and evaluate the emissivities corresponding to MBS and pure synchrotron processes.

In both cases the SSC is also computed. In Figure 5.2 we included the averaged SED

from a simulation with the same configuration as the pure power-law EED model

mentioned above but the radiation treatment was numerical standard synchrotron

(green lines). From 1010–1022 Hz the MBS spectrum is quite similar to that of a pure

synchrotron one, so that both emission models are observationally indistinguishable

in the latter broad frequency range. On the other hand, if we look into the MHz

band, we will find what we call the cyclotron break, which is the diminishing of the

emissivity from each electron due to the cut-off that happens at frequencies below νg
(Eq. (2.19)).

131



5. Influence of a HD in the IS model for blazars

106 108 1010 1012 1014 1016 1018 1020 1022 1024

νobs [Hz]

10−14

10−13

10−12

10−11

10−10
ν

o
b
s
F
ν

o
b
s

[e
rg

s−
1

cm
2
]

Hybrid
PPwL
Syn

100 102 104

γ

10−1

101

103

105

107

109

γ
d

n
/d
γ

d
t′

[c
m
−

3
s−

1
]

Figure 5.2: Comparison between the same hybrid model as in Figure 5.1 and a pure power-
law distribution with γnth

min ≃ 1. The red lines correspond to the former model while the
green and blue lines correspond to simulations with the latter distributions using our MBS
numerical method and numerical integration of Crusius & Schlickeiser (1986), respectively.
Dashed and dot dashed lines show the synchrotron and SSC spectral contributions to each of
the respective models. Inset: comoving frame evolution of the injected EEDs in each shock.
Blue and dark blue colors correspond to the EED for a pure power-law distribution injected at
the FS and at the RS, respectively. Red and dark red colors correspond to the HD distribution
injected at the FS and at the RS, respectively.

5.3 Parameter study

In order to assess the impact of the presence of a hybrid distribution composed by

thermal and nonthermal electrons we have performed a parametric study varying a

number of intrinsic properties of the shells. In the following subsections we examine

the most important results of our parametric study. In the Table 5.1 we show the

values of the parameters used in the present work. Some of them are fixed in the

following and are shown with a single value in Table 5.1. Among such parameters,
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we find the fraction of the internal energy density of the shocked shell converted into

stochastic magnetic field energy density, ǫB, the size of the acceleration zone, ∆acc,

and the number of turns around magnetic field lines in the acceleration zone that

electrons undergo before they cool down, aacc (see MA12, or §2.3.2.1, §2.3.2 of this

thesis for details). The cross-sectional radius and longitudinal size of the shells are

given by the parameters R and ∆r (see Figure 1.8), respectively.

One of the parameters kept constant in the previous studies is the total jet luminos-

ity L, which we now vary. We performed a number of test calculations to compute

the lower and upper limits of L that produce a spectrum qualitatively similar to that

of the source Mrk 421 (Krawczynski & Treister 2013). In the Table 5.1 we show the

range of variations of this and other parameters.

We perform our parametric scan for the typical redshift value of Mrk 421, namely,

z = 0.031. The viewing angle is fixed to θ =5◦ in all our models. The SEDs in this

work were computed by averaging over a time interval of 107 s.

5.3.1 The presence of the nonthermal population

The influence of the parameter ζe on the blazar emission was examined in Böttcher

& Dermer (2010), and is an essential model parameter in MA12 and RMA14 as

well (though in the latter two papers it was not varied). In this section we ex-

plore its influence by studying three different fractions of nonthermal particles: ζe =

0.9, 0.1, 0.01. In Figure 5.3 we show the averaged SEDs of the models with the

aforementioned values of ζe for the weakly (left panel) and moderately (right panel)

magnetized shells. In both panels we can appreciate that an EED dominated by

nonthermal particles produces a broader SSC component. The SSC component of

a thermally-dominated EED (W-G10-D1.0-Z09-L5 and M-G10-D1.0-Z09-L5) dis-

plays a steeper synchrotron-SSC valley, and the modelled blazar becomes γ-rays

quiet. The synchrotron peak frequency νobs
syn is only very weakly dependent on ζe.

According to their synchrotron peak frequency these models resemble LSP (Giommi

et al. 2012a, 2013).

5.3.2 Magnetization

In Figure 5.4 we show the average spectra produced by the IS model with different

combinations of the faster and slower shells magnetizations for a fixed EED with
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Figure 5.3: Averaged spectra of the weakly (left panel) and moderately (right panel) magne-
tized models for ζe = 0.9, 0.1 and 0.01 in blue, red and black lines respectively. Dashed lines
show the synchrotron component while the dot-dashed lines show the SSC component.

ζe = 0.9. In black, red and blue we represent the models with faster shell magne-

tization σL = 10−6, 10−2 and 10−1, respectively. The solid, dotted and dashed lines

correspond to a slower shell magnetization σR = 10−6, 10−2 and 10−1 respectively.

Consistent with the results in RMA14, the collision of strongly magnetized shells

produces a SSC component dimmer than the synchrotron component. A double

bump outline is reproduced by the model M-G10-D1.0-Z09-L1 (dashed, red line)

and all the models with σL = 10−6. For most models νsyn is situated at ∼1012 Hz.

However, for the cases with σL = 10−2, 10−1 and σR = 10−2, νsyn∼1013 Hz. In both

cases, these frequencies reside in the LSP regime. Remarkably, a change of 4 orders

of magnitude in σR results in an increase of . 2 in the observed flux in models with

an EED dominated by nonthermal electrons (ζe = 0.9; Figure 5.4 left panel). In the

case of models with a thermally-dominated EED (ζe = 0.1; Figure 5.4 right panel),

the change in flux under the same variation of the magnetization of the slower shell

is a bit larger, but still by a factor . 6. In both cases the larger differences when

changing σR happen in the decaying side of the spectrum occurring to the right of

either the synchrotron or the SSC peaks. The variation of the magnetization of the

faster shell yields, as expected (MA12; RMA14) larger spectral changes, especially

in the SSC part of the spectrum.

3The chosen value for q is representative for blazars according to observational (Ghisellini et al.
1998) and theoretically deduced values (Kardashev 1962; Böttcher & Dermer 2002). It also agrees with
the ones used in numerical simulations of blazars made by Mimica (2004) and Zacharias & Schlickeiser
(2010).
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Parameter value

ΓR 2, 10, 20
∆g 1.0, 2.0, 3.0, 5.0
σL 10−6, 10−2, 10−1

σR 10−6, 10−2, 10−1

ǫB 10−3

ζe 10−2, 10−1, 0.9
q 2.6
∆acc 10
aacc 106

L 1047, 5 × 1047, 5 × 1048 erg s−1

R 3 × 1016 cm
∆r 6 × 1013 cm
z 0.031
θ 5◦

Table 5.1: Model parameters. ΓR is the Lorentz factor of the slow shell, ∆g := ΓL/ΓR − 1
(ΓL is the Lorentz factor of the fast shell), σL and σR are the fast and slow shell magneti-
zations, ǫB is the fraction of the internal energy density at shocks that it is assumed to be
converted into stochastic magnetic field energy density (Eq. (2.48)), ζe and q are the frac-
tion of electrons accelerated into power-law Lorentz factor (or energy) distribution and its
corresponding power-law index3, ∆acc and aacc are the parameters controlling the shock ac-
celeration efficiency (see Section 3.2 of MA12 or §2.3.2.1, §2.3.2 -this thesis- for details), L,
R and ∆r are the jet luminosity, jet radius and the initial width of the shells, z is the redshift
of the source and θ is the viewing angle. Note that ΓR, ∆g, σL, σR and ζe can take any of the
values indicated.

5.3.3 Relative Lorentz factor ∆g

In Figure 5.5 we show the variation of the relative Lorentz factor, ∆g, for ζe =

0.1 and 0.9 (W-G10-D(1.0, . . ., 5.0)-Zm1-L1 and W-G10-D(1.0, . . ., 5.0)-Z09-L1).

The dashed and dot-dashed lines depict the energy flux coming from the FS and RS,

respectively. The model with ∆g = 1.0 results from the collision with a fast shell

having ΓL = 20, whereas the case ∆g = 5.0 assumes that the fast shell moves with

ΓL = 60 (i.e., slightly above the upper end of the Lorentz factor distribution for

parsec-scale jets; Lister et al. 2016). Both panels show that the larger the ∆g, the

higher the SSC bump. The colliding shells with relative Lorentz factor ∆g = 5.0

produced a spectrum with an SSC component one order of magnitude larger than its

synchrotron component. On the other hand, the colliding shells with relative Lorentz
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Figure 5.4: Averaged spectra for different fast shell magnetization, σL, with nonthermal
particles population fraction ζe = 0.9 and 0.1 (left and right panels, respectively). The
solid, dotted and dashed lines correspond to a magnetization of the slower shell σR =

10−6, 10−2 and 10−1, respectively. As was shown in RMA14, the strongly magnetized fast
shells do not display a prominent second bump at high frequencies. The synchrotron peak in
all cases and in both panels, does not surpass ∼1013 Hz.

factor ∆g = 1.0 produced a SSC component less intense than the synchrotron compo-

nent. Another important feature in these spectra is the emergence of a second bump

in the synchrotron component at the near infrared (1014 Hz), which corresponds to

emission coming from the reverse shock. The effect of changing ζe at high frequen-

cies is that the larger the nonthermal population of electrons the broader the SSC

component. Moreover, it can be seen that the FS cannot by itself reproduce the dou-

ble bump structure of the SED for blazars, and that the emission coming from the RS

dominates and clearly shapes the overall spectrum. More specifically, the emission

due to the RS is γ-ray louder than that of the FS.

The inclusion of a thermal population in the EED combined with a variation of

the relative shell Lorentz factor has a potentially measurable impact on the blazar

spectra modelling. If narrower SSC peaks and a much steeper decay post-maximum

are observed, that could identify the presence of a dominant thermal emission (Fig-

ure 5.5; right). The slope of the γ-to-TeV spectrum becomes steeper and more mono-

tonically decaying as ∆g increases for thermally-dominated EEDs.

5.3.4 Lorentz factor of the slower shell

In Figure 5.6 we depict the SEDs resulting from the collision of weakly magnetized

shells with different ΓR and ζe. The solid lines correspond to ζe = 0.9 (models
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Figure 5.5: Averaged spectra for different relative Lorentz factors and fractions of nonther-
mal particles. On the left panel we present the SED from a particle distribution with ζe = 0.9
while on the right panel we show the SED for the same conditions, but with ζe = 0.1. For the
models with ∆g = 1.0 (black lines) and ∆g = 5.0 (green lines) the FS and the RS individual
contributions are depicted in dashed and dot-dashed lines, respectively. The models depicted
are W-G10-D(1.0, . . ., 5.0)-Z09-L1 (left panel) and W-G10-D(1.0, . . ., 5.0)-Zm1-L1 (right
panel).

W-G(2, 10, 20)-D1.0-Z09-L1) while the dashed lines correspond to ζe = 0.1 (mod-

elsW-G(2, 10, 20)-D1.0-Zm1-L1). The general trend is that the brightness of the

source suffers an attenuation as ΓR increases, regardless of ζe. From Eq. (2.41) we

can see that an increase of the bulk Lorentz factor of a shell at constant luminosity

implies a lower particle density number. Therefore, less particles are accelerated at

the moment of the collision, which explains the overall flux decrease as ΓR increases.

Over almost the whole frequency range the brightness of models depends monoton-

ically on ΓR, brighter models corresponding to smaller values of ΓR. However, the

relative importance of the SSC component does not follow a monotonic dependence.

At the lowest value of ΓR the SSC component is brighter than the synchrotron com-

ponent by one order of magnitude; with a steeper decay at high frequencies, though.

This monotonic behavior is only broken in the vicinity of the synchrotron peak when

the beaming cone half-opening angle (∼ 1/ΓR) falls below the angle to the line of

sight (θ = 5◦). This explains the larger synchrotron peak flux when ΓR = 10 than

when ΓR = 2. In addition, models with ΓR = 20 (W-G20-D1.0-Z(09,m1)-L1) suffer

a greater attenuation due to Doppler deboosting (see Rueda-Becerril et al. 2014b).

In these models the half-opening angle of the beamed radiation is smaller than the

observer viewing angle, therefore the apparent luminosity decreases.
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Figure 5.6: Averaged spectra
for weakly magnetized shells
with varying slower shell bulk
Lorentz factor, ΓR, and two
different nonthermal particles
fractions: ζe = 0.9, 0.1, solid
and dashed lines respectively.

5.3.5 Total luminosity

The number of particles accelerated by the internal shocks is an important quantity in

our treatment of EEDs. The number of particles in each shell is dictated by Eq. (2.41).

Such a direct influence of the luminosity on the number of particles motivates us to

study the behaviour of the SEDs when this parameter is changed. In Figure 5.7 we

show the SEDs produced by the IS model with different total jet luminosities and

values of ζe (models W-G10-D1.0-Z(09, m1)-L(1, 5, 50)). With solid and dashed

lines we differentiate the HDs with ζe = 0.9, 0.1, respectively, and in black, red and

blue the luminosities L = 1047, 5 × 1047, 5 × 1048, respectively. The increase in flux

of the thermally or nonthermally dominated cases is rather similar, and follows the

expectations. An increase by 50 in the total luminosity L implies an overall increase

of 100 in the particle density according to Eq. (2.41). Hence, the expected increase

in flux in the synchrotron component is proportional to ni ∼ 100, while in the SSC

component it is proportional to n2
i
∼ 104.

5.4 Temperature vs. magnetization

The ratio between the thermal pressure and rest-mass density χ (which is propor-

tional to the fluid temperature) is calculated by the exact Riemann solver for each

shell collision. Assuming that the jet is composed of protons and electrons, the di-

mensionless temperature of the electrons in the plasma is Θe = χmp/me, where mp is
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Figure 5.7: Averaged spectra
for different jet total luminos-
ity. Solid and dashed lines
display the models with ζe =
0.9, 0.1, respectively. Differ-
ent color lines correspond to
different values of the jet lumi-
nosity (see legend).

the proton mass. In order to systematically explore the dependence of the tempera-

ture on the properties of the shells we solved a large number of Riemann problems for

different magnetizations and relative Lorentz factor. Here we present the behaviour

of Θe in the ISs model in order to obtain insight into the temperature of the thermal

component of the EED in the shocks. In Figure 5.8 we show the value of Θe as a

function of the magnetizations σL and σR for both FS and RS (left and right panels,

respectively).

The hottest region of the RS plane (σL < 1 and σR > 0.1) corresponds to the

coldest region in the FS plane. Indeed, comparing both figures we observe that the

RS is hotter than the FS wherever σL . 0.2 or σR > 0.1. As a result, in most of the

moderately and weakly magnetized models, the radiation produced by the population

of injected electrons that are thermally dominated could come from the RS. However,

for σR . 0.2 and σL & 0.2 the oposite true: the FS is hotter than the RS.

In Figure 5.9 we show the behavior of the electron temperature Θe in terms of

the relative Lorentz factor ∆g between the colliding shells for the FS and RS. In

accordance with figures 5.8, the reverse shock is hotter than the forward shock. As

the relative Lorentz factor ∆g grows the temperature of the reverse shock tends to

grow while the forward shock seems to be approaching asymptotically to a value,

which depends slightly on the magnetization (the larger the magnetization the smaller

the asymptotic temperature). Values ∆g > 5 are inconsistent with the blazar scenario,

for a fixed value ΓR = 10, since they would imply that the faster shell was moving at
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Figure 5.8: Dependence of
the electron temperature on
shell magnetization. The top
and bottom panels show the be-
haviour ofΘe in the FS and RS,
respectively. Contour lines of
selected temperatures are over-
laid in both panels.
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ΓL > 60 (in excess of the maximum values of the Lorentz factor for the bulk motion

inferred for blazars).

From figures 5.8 and 5.9 we can infer thatΘe does not only depend on the velocity

of the fluid but also on its magnetization. Therefore, we conclude that this degeneracy

makes the determination of Θe a very difficult task.

5.5 Discussion and conclusions

In this work we introduce a hybrid thermal-nonthermal electron distribution into the

internal shock model for blazars. To account for the fact that the thermal component

of the HD extends to very low electron Lorentz factors, we also introduce a cyclo-

synchrotron code that enables us to compute the nonthermal emission from electrons
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Figure 5.9: Temperature as a function
of the relative Lorentz factor. In this
figure we show the temperature of both
forward (full lines) and reverse (dashed
lines) shocks for the weakly (red lines)
and moderately (black lines) magne-
tized models. The value of the bulk
Lorentz factor of the slower shell for
both magnetization is ΓR = 10.

with arbitrary Lorentz factor. We show that our method for treating the temporal evo-

lution of the HD and the calculation of MBS emission can be performed efficiently

and with sufficient accuracy. The method is implemented as a generalization of the

numerical code of MA12 (see Chapter 3).

To test the influence of the fraction of nonthermal particles ζe in the overall HD

we apply the new method to the case of a blazar with L = 1047 erg s−1 (Figure 5.3).

Considering only MBS and SSC emission processes we see that increasing ζe (i.e.,

the distribution becoming more nonthermal) has as a consequence a shallower valley

between the two spectral peaks, while the SSC emission extends to higher energies.

In other words, a HD of mostly thermal particles emits only up to MeV (except when

∆g ∼ 5; see Figure 5.5). This would mean that the emission in the GeV range for the

thermally-dominated HD cannot come from the SSC and would have to be produced

by the EIC (not considered here). Furthermore, Figure 5.3 confirms that also for low

ζe highly-magnetized blazar jets seem to be observationally excluded because their

SSC peak is too dim.

Another effect of decreasing ζe is the shift of the SSC peak to lower frequencies

and the narrowing of the high-frequency spectral bump, while at the same time the

synchrotron peak and flux do not change appreciably. This means that (excluding

possible effects from varying EIC) the Compton dominance (ratio of internal Comp-

ton and cyclosynchrotron luminosity) can be changed by varying ζe, while the peak

MBS frequency remains constant. In other words, for all other parameters remaining

constant, the variations in ζe may explain the vertical scatter in the distribution of

FSRQs and BL Lacs in the peak synchrotron frequency-Compton dominance param-
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eter space (see e.g., Figure 5 in Finke 2013). Changing ζe appears to not be able to

change the blazar class.

Regarding the variations of the shell magnetization (§5.3.2), relative Lorentz fac-

tor (§5.3.3) and the bulk Lorentz factor (§5.3.4), the results are consistent with those

of RMA14 (see Chapter 4). In this work we performed a more detailed study of the

influence of the magnetization than in RMA14 since now we study 9 possible com-

binations of faster and slower shell magnetizations, instead of only three in RMA14.

The truly novel result of this work is that the RMA14 trend generally holds for the

thermally-dominated HD as well (right panel in Figure 5.4), with the difference that

the collision of (σL = 0.1, σR = 0.1) shells produces a double-peaked spectrum for

ζe = 0.1, while its nonthermally dominated equivalent does not (blue dashed lines

in Figure 5.4). Even so, the SSC component remains very dim for very magnetized

shells.

Regarding ∆g, the RS emission (dot-dashed lines in Figure 5.5) is crucial for

reproducing the blazar spectrum. Therefore, in the case of ζe ≪ 1 the temperature of

the RS is one of the most important parameters. Since this temperature increases with

∆g (Figure 5.9), the effect of ∆g on the MBS and the SSC peak frequencies and fluxes

is qualitatively similar to that of the nonthermal electron distribution (Figure 5.5; see

also RMA14). The changes induced by variations of ΓR (Figure 5.6) are independent

of the thermal/nonthermal EED content and agree with RMA14. The effects of the

increase in total jet luminosity are visible both for ζe = 0.1 and ζe = 0.9. Varying

the luminosity by a factor 50 increases the MBS flux by ∼ 102 and the SSC flux by

∼ 104. The relation between spectral components is very similar to the variations of

ΓR, i.e. the increase in L is similar to a decrease in ΓR.

Overall, we show that the inclusion of the full cyclo-synchrotron treatment, mo-

tivated by the significant low-energy component of the HD, has a moderate effect

on the blazar spectrum at optical-to-γ ray frequencies. However, at lower frequen-

cies (e.g., below 1 GHz) where the self-absorption may play a role the differences

between the synchrotron and the MBS will be more severe. We plan to include the

effect of absorption in a future work as well as the effects by EIC emission.
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Chapter6

Conclusions and future work

In the present chapter we enclose the overall conclusions and the outlook of the

present thesis We point out that more detailled conclusions have been spelled out at

the end of each individual chapter. Here we recap the most salient features of this

research.

6.1 Conclusions

To be able to perform consistent numerical simulations of astrophysical phenomena

robust, easy to maintain and resource-saving computational tools are necessary. In

order to be able to reproduce the observations of astrophysical objects on Earth, ad-

equate numerical tools must be chosen and a well structured algorithm needs to be

designed. For that purpose, one has to constantly keep up-to-date with state of the art

of the theory, numerical techniques and observations. Otherwise, one runs the risk of

misinterpreting the data and/or failing to correctly interpret them. In this thesis we

have presented the methodology used to simulate the SED of blazars, following the

shock-in-jet model.

Two complementary research projects have been presented here. They deal with

the internal shock model for magnetized relativistic outflows, and are applied to

blazars. The first one consisted of a parameter space scan that was performed using

the IS code (MA12). The numerical results (e.g., synthetic SEDs) were compared

with observational data (Chapter 4 and RMA14). This investigation stem from the
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hypothesis that the radiation produced at the shocks propagating through the magne-

tized shells should contain a signature (in the observed SED) of the degree to which

the shells are magnetized. We have found that, indeed, the magnetization plays an

important role, leaving easily identifiable patterns in the SEDs and in the AC–νobs
syn

plane. In the latter, we identified the parameters whose variations account for the

blazar sequence.

The second research project consisted of two sub-projects: the inclusion of ther-

mal electrons to the population of injected ones at the shock front, and the proper

treatment of MBS emission by nonrelativistic and transrelativistic electrons (Chap-

ter 5 and RMA17). The idea for the former arose from previous studies of the thermal

signatures in the light curves of GRBs (Giannios & Spitkovsky 2009), and from re-

sults out of PIC simulations (Sironi et al. 2013), which suggest that a large fraction of

the energy dissipated in weakly magnetized shocks probably goes into a distribution

of thermal electrons. This distribution extends from very low electron energies (i.e.,

Lorentz factors) to moderate electron energies, where it smoothly joins a power-law,

high-energy tail. Including a full treatment of the MBS emission, was triggered by

two basic facts. First of all, for consistency. Since the spectral radiated power of slow

and mildly relativistic electrons develop a shape far from continuous (Mahadevan

et al. 1996), contrary to what the synchrotron emission of ultrarelativistic electrons

predicts (Rybicki & Lightman 1979; Jackson 1999). On the second place, because

actual particle acceleration in shocks likely produces a broad electron distribution

extending from very low electron Lorenz factors (γ & 1) as we have commented.

Furthermore, even if initially the accelerated electrons possess large Lorentz factors,

they may eventually be cooled down by radiative or adiabatic loses. Hence, the lower

energy end of the electron energy distribution may approach the limit γ ∼ 1. In that

limit, the standard (ultrarelativistic) synchrotron approximation breaks down and a

complete MBS treatment becomes mandatory. We stress that, while the former ef-

fect could be ignored if the electron energy distribution is set up with a sufficiently

large minimum Lorentz factor, the latter effect is almost unavoidably hit in evolution-

ary models. One only needs to wait long enough until the adiabatic expansion of

the injected particles cools them down, or incorporate strong enough magnetic fields

for that to happen. The simulations that include these two effects revealed that the

presence of thermal (in addition to the nonthermal) electrons during the shock ac-
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celeration moderately affects the spectrum at optical-to-γ ray frequencies, while νobs
syn

suffers little variation. This means that the source location in the AC–νobs
syn plane will

suffer a vertical displacement; perhaps explaining a scatter of the FSRQ region and

LSP region.

6.2 Future work

On the code-development side and regarding the new RMA function (3.71), the op-

timal value of the parameter acoff must be estimated. To achieve this goal, we plan

to calculate and compare systematically the accumulated relative error between the

MBS emissivities using (3.71) and (3.56), for different values of acoff . We expect to

obtain a value which can help us reducing the branching of (3.71). In other words,

our intention is to find a fit which correctly takes into account the cut-off.

Regarding the IS model for blazars, further examination of the effects of the varia-

tions in magnetization and HDs including the full MBS emission on blazars SEDs are

a clear goal, for which we intend to include the effects of absorption and EIC emis-

sion. Microphysical processes in this scenario are critical to understanding how are

the particles being accelerated at relativistic shocks. The microphysical parameters

aacc and ∆acc, which regulate the acceleration timescale and the size of acceleration

region of the electrons, respectively, have already been studied and show novel ef-

fects in the light-curves of blazars. However, decisive studies are still pending and

we expect these results to be part of some future publication soon. However, not

only are the variations of parameters of the current version of the blazars code in

the pipeline, but we are already working on the implementation of the SSC cooling

(e.g. Chiaberge & Ghisellini 1999), as well as on the calculation the absorption coef-

ficient (e.g. Ghisellini & Svensson 1991) out of MBS process for direct application

to simulations of blazars.

In the astrophysical context, and regarding relativistic outflows in particular, the

present thesis sets a landmark for the exploration of phenomena beyond blazars. For

instance, the late-time flattening of light curves of GRBs afterglows, in the so called

deep Newtonian phase (e.g. Huang & Cheng 2003; Sironi & Giannios 2013), is an

ideal scenario in which the numerical tools showed in previous chapters could afford

means to explore GRB remnants. This is because at this stage the accelerated elec-
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6. Conclusions and future work

trons at the shock front of the blast wave become transrelativistic (Sironi & Giannios

2013), and thus the effects of both MBS and HD may become relevant.

Likewise, further comparisons with observations must be performed to prove

the model. However, since the emission region in our simulations is in sub-parsec

scales, data from higher resolved observations from the high-energy emission region

of blazars is needed in order to carry out proper comparisons of, e.g., the SEDs.
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AppendixA

Numerical logarithmic functions

While performing the integrals in the SSC and EIC calculations we may encounter

cases where the logarithmic function has an argument ∼1. In order to avoid numerical

pathologies and the loss of precision that may be compiler- or library-dependent, the

logarithmic functions were numerically extended on the basis of their Taylor series

expansion around 1. In this way we can control their behaviour regardless of the

way that a particular compiler or library treats the case of an argument being close to

1. In Table A.1 we describe the aforementioned functions, showing their respective

expansion and tolerance functions (the second term of the series expansion). If the

tolerance is below some threshold εlog then we use the series expansion up to the first

term, otherwise the intrinsic function of the programming language (i.e., FORTRAN,

C++ or Python) is called.
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A. Numerical logarithmic functions
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AppendixB

Constants, units and models

The system of units used in this thesis was CGS.

Name Symbol Value (≈) Units

Speed of light c 2.997 92 × 1010 cm s−1

Electron charge e 4.803 20 × 10−10 cm3/2g1/2s−1

Mass of electron me 9.109 39 × 10−28 g
Mass of proton mp 1.672 62 × 10−24 g
Blotzmann constant kB 1.380 65 × 10−16 erg K−1

Thomson crossection σT 6.652 46 × 10−28 cm2

Planck constant h 6.626 08 × 10−27 erg s

Table B.1: Physical constants constants in the CGS system.

Name Symbol Conversion factor Units

Solar mass M⊙ 1.988 55 × 1033 g
Jansky Jy 10−23 erg s−1 cm−2 Hz−1

Light year ly 9.460 73 × 1017 cm
Parsec pc 3.085 68 × 1018 cm

Table B.2: Astronomical constants and units in the CGS system.
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B. Constants, units and models

Name σR σL ΓR ∆g θ ζe L (erg s−1)

S-G10-D1.0-T3 0.1 1.0 10 1.0 3◦ 1.0 5 × 1048

W-G10-T5 10−6 10−6 10 0.5–2.0 5◦ 1.0 5 × 1048

M-D1.5 10−2 10−2 10–25 1.5 1–10◦ 1.0 5 × 1048

W-G10-D0.5-T5 10−6 10−6 10 0.5 5◦ 1.0 5 × 1048

W-G10-D2.0-T2 10−6 10−6 10 2.0 5◦ 1.0 5 × 1048

W-D1.0-T5 10−6 10−6 10–25 1.0 5◦ 1.0 5 × 1048

M-G10-T5 10−2 10−2 10 0.5–2.0 5◦ 1.0 5 × 1048

M-D1.0-T5 10−2 10−2 10–25 1.0 5◦ 1.0 5 × 1048

M-G10-D1.0-T5 10−2 10−2 10 1.0 5◦ 1.0 5 × 1048

M-G25-D1.0-T5 10−2 10−2 25 1.0 5◦ 1.0 5 × 1048

M-G10-D0.5-T5 10−6 10−6 10 0.5 5◦ 1.0 5 × 1048

M-G10-D1.0 10−2 10−2 10 1.0 1–10◦ 1.0 5 × 1048

S-G10-D2.0-T5 0.1 1.0 10 2.0 5◦ 1.0 5 × 1048

S-G10-T5 0.1 1.0 10 0.5–2.0 5◦ 1.0 5 × 1048

S-D1.0-T5 0.1 1.0 10–25 1.0 5◦ 1.0 5 × 1048

S1-G10-T5 0.1 0.1 10 1.0 5◦ 1.0 5 × 1048

S2-G10-T5 1.0 0.1 10 0.5–2.0 5◦ 1.0 5 × 1048

S-G10-D1.0 0.1 1.0 10 1.0 1–10◦ 1.0 5 × 1048

Table B.3: IS models (in order of appearance) studied in Chapter 4.
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AppendixC

Acronyms and symbols

C.1 Acronyms

BL Lac BL Lacertae object

EoS equation of state

2LAC Fermi LAT Second AGN Catalog

AD accretion disc

AGN active galactic nucleus

BAL QSO broad absorption line quasar

BH black hole

BLR broad line region

CAMAP Computer Aided Modeling of Astrophysical

Plasma

CD contact discontinuity

EED electrons energy distribution

EHF extremely high frequency band

EIC external inverse-Compton

FS forward shock

FSRQ Flat Spectrum Radio Quasar

GRB γ-ray burst
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Symbols

HBL high-frequency-peaked BL Lac object

HD hybrid distribution

HSP high-synchrotron peaked

IBL intermediate-frequency-peaked BL Lac object

IC inverse-Compton

IS internal shock

ISP intermediate-synchrotron peaked

LBL low-frequency-peaked BL Lac object

LSP low-synchrotron peaked

MBS magnetobremsstrahlung

MHD magnetohydrodynamics

NLR narrow line region

NLRG narrow line radio galaxy

OTAD optically thick accretion disk

PIC particle-in-cell

QSO quasi-stellar object

RMHD relativistic magnetohydrodynamics

RS reverse shock

SED spectral energy distribution

SMBH super massive black hole

SSC synchrotron self-Compton

TD dusty torus

TDE tidal disruption event

C.2 Symbols

aacc Acceleration efficiency parameter

AC Compton dominance

acoff cut-off parameter of the RMA function

∆acc Width of acceleration zone parameter

∆g Relative Lorentz factor

ǫB Fraction of the internal energy density of the

plasma transformed into magnetic field
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Symbols

ǫe Fraction of the shock power transferred to the

charged particles

Fph Photons flux

Γ Bulk Lorentz factor

γ Electron Lorentz factor

γc Cooling Lorentz factor

{γ̂min} Lorentz factors cutoffs array

Γph Photon spectral index

LIC Luminosity of the IC component of the SED

Lsyn Luminosity of the synchrotron component of the

SED

ν0 Particles cooling term

νB Gyrofrequency

ν̄c Critical frequency

νc Critical frequency for pitch angle π/2

νg Cyclotron frequency

νobs
IC Peak frequency of the SED IC component

νobs
syn Peak frequency of the SED synchrotron compo-

nent

r Compression factor

rg Larmor radius

RMA RMA function

σ Magnetization

tcr Shock crossing time

uB Magnetic energy density

uext External photon field energy density

X Harmonic frequency

Xc ν/νc

X̄c ν/ν̄c

z Redshift
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Tratamiento numérico de procesos

radiativos en choques internos de

flujos relativistas magnetizados

Los blázares son un tipo de núcleo activo de galaxia (AGN, por sus siglas en ingés)

que se encuentran entre los objetos astrofı́sicos más energéticos y violentos, a la par

de los brotes de rayos γ (GRB por sus siglas en inglés). Los procesos fı́sicos y, en

particular, el escenario del chorro relativista en el que se genera la radiación ultraen-

ergética detectada por observatorios terrestres y en órbita, han conseguido atraer la

atención e interés de los astrónomos y astrofı́sicos desde su descubrimiento. En la

presente tesis investigamos el modelo de choques internos (IS) cuya hipótesis consta

del choque de dos capas de plasma con geometrı́a cilı́ndrica, formando dos ondas

de choque que atraviesan las antedichas capas acelerando electrones a su paso: tanto

térmicos como no térmicos. Dichos electrones interaccionan con el campo magnético

presente en el chorro produciendo, de acuerdo con las observaciones, emisión mag-

netobremsstrahlung (MBS). En este modelo consideramos también que el chorro se

encuentra envuelto en un ambiente de fotones monocromático, que equivaldrı́a a la

región de banda ancha (BLR) de un AGN. Ambos tipos de fotones, los del medio

externo y los producidos in situ, eventualmente interaccionan con los electrones acel-

erados mediante la dispersión Compton inversa (IC).

El objetivo básico de la presente tesis ha sido la búsqueda de algún indicio que
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Tratamiento numérico de procesos radiativos en flujos relativistas

pudiera revelar las huellas dejadas tanto por la magnetización de las capas como por

la distribución energética de los electrones (EED) inyectados en el frente de choque,

en la distribución espectral de energı́a (SED). Nuestro enfoque ha sido numérico, lo

cual significa que se desarrollaron herramientas numéricas sofisticadas que hemos

usado sistemáticamente para simular el modelo de IS y reproducir las SEDs espec-

tralmente amplias de los blazares. Datos observacionales fueron empleados para

corroborar dichas simulaciones y delimitar el espacio de parametros para, de esta

forma, conseguir que nuestras SEDs sintéticas estuviesen en concordancia con las

observaciones.

Mostramos a partir de simulaciones que, si examinamos la dominancia Compton,

AC , y el ı́ndice espectral de fotones, Γph, en la banda de rayos γ, una parte con-

siderable de la sequencia de los blázares podrı́a ser explicada por la magnetización

de las capas; siendo las menos magnetizadas las que se encuentran en la región de

los radiocuásares de espectro plano (FSRQs), mientras que las capas medianamente

magnetizadas caen en la región de los objetos BL Lacertae (BL Lac). Por otra parte,

al incluir electrones térmicos en la población inyectada, y agregar una herramienta

numérica que nos permite reproducir la emisión MBS de electrones poco energéticos,

encontramos que el valle que separa las componentes sincrotrón e IC, se hace más

“profundo” cuando las distribuciones inyectadas en el frente de choque son domi-

nadas por electrones térmicos. Para estos casos descubrimos que el pico sincrotrón

varı́a ligeramente entre modelos (entre 1011–1013 Hz), al contrario de una compo-

nente IC sensible a la variación de parámetros. Este efecto induce una disperción ver-

tical en el plano dominancia Compton-pico sincrotrón, sugiriendo que quizá la pro-

porción de electrones térmicos sobre los no térmicos está relacionada con la posición

de los blázares en ese plano.

Prefacio

En el Capı́tulo 2 profundizamos en los conceptos fı́sicos sobre los que reside la

emisión MBS y el modelo de IS para blazars. Empezamos describiendo la dinámica

y electrodinámica de una partı́cula cargada inmersa en un campo magnético ho-

mogéneo. Continuamos con la descripción de la dinámica de de la colisión de dos

capas de plasma, como parte del modelo de IS, basándonos en el trabajo de Mimica

& Aloy (2012). La última parte de dicho capı́tulo consiste en la descripción de los
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Prefacio

diferentes tipos de distribuciones de partı́culas, cómo modelamos la inyección en un

frente de onda de choque y la evolución de partı́culas que se encuentran en una región

que ha sido afectada por una onda de choque, considerando tanto el caso en el que

no existe un término de enfriamiento en la ecuación de evolución como el caso en el

que sı́ se considera dicho término en un intervalo de tiempo finito.

En el Capı́tulo 3 se engloba la descripción de las técnicas numéricas y métodos

desarrollados y usados durante mi estancia en el grupo de investigación Computer

Aided Modeling of Astrophysical Plasma (CAMAP) con el Prof. Miguel A. Aloy y el

Dr. Petar Mimica. La primera parte de dicho capı́tulo está centrada en el código para

IS desarrollado por Mimica & Aloy (2012), el cual es la piedra angular de la presente

tesis. En la segunda parte describo detalladamente el código CHAMBA: una nueva

herramienta computacional cuya intención es la de reproducir la emisividad MBS

producida por una partı́cula cargada y por una distribución de partı́culas con perfil

arbitrario. Nuestras publicaciones (Rueda-Becerril et al. 2014b, 2017) corresponden

a resultados obtenidos del uso sistemático estas herramientas.

El Capı́tulo 4 está basado en la investigación hecha en el grupo CAMAP con el

Prof. Miguel A. Aloy y el Dr. Petar Mimica, como continuación del trabajo previa-

mente publicado por los miembros de este grupo (Mimica & Aloy 2012). Nuestro

trabajo fue sujeto a revisión por pares y publicado en 2014: J. M. Rueda-Becerril,

P. Mimica, & M. A. Aloy. The influence of the magnetic field on the spectral proper-

ties of blazars. Monthly Notices of the Royal Astronomical Society, 438:1856–1869,

Feb. 2014b. doi: 10.1093/mnras/stt2335. RMA14. Éste consistió en ampliar la ex-

ploración del espacio de parámetros del código para ISs desarrollado por el Dr. Petar

Mimica y el Prof. Miguel A. Aloy para simular el modelo de IS para blazars, in-

cluyendo el cómputo del ı́ndice espectral de fotones a partir de nuestras simulaciones

(descrito en §4.5.1). Los datos observacionales que se muestran en dicho trabajo

fueron obtenidos de la base de datos correspondiente al segundo catálogo de núcleos

activos de galaxias del instrumento LAT a bordo del satélite Fermi (Fermi LAT Sec-

ond AGN Catalog (2LAC), por sus siglas en inglés)1. Todas las simulaciones para

este trabajo fueron realizadas en el superordenador Tirant de la Universidad de

Valencia.

El Capı́tulo 5 está basado en la investigación hecha en el grupo CAMAP con

1https://heasarc.gsfc.nasa.gov/W3Browse/all/fermilac.html
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el Prof. Miguel A. Aloy y el Dr. Petar. Nuestro trabajo se sometió a revisión por

pares y resultó en un artı́culo publicado en 2017: J. M. Rueda-Becerril, P. Mimica,

& M. A. Aloy. On the influence of a hybrid thermal–non-thermal distribution in the

internal shocks model for blazars. Monthly Notices of the Royal Astronomical Society,

468:1169–1182, June 2017. doi: 10.1093/mnras/stx476. RMA17. Los resultados

ahı́ descritos son derivados de simulaciones hechas usando el código de IS (Mimica

& Aloy 2012) para distribuciones hı́bridas de partı́culas (térmicas y no térmicas).

Además de la implementación de la nueva herramienta numérica CHAMBA (§3.2)

La astrofı́sica ha sido para mi como salir a la aventura por la naturaleza. En

ningún momento supe con qué me iba a topar en el camino pero cada paso me ha

traı́do alegrı́a y nuevos aprendizajes. Saber un poco de los fenómenos que ocurren

allá arriba ha sido como respirar el aire fresco de los bosques, cuya brisa purifica los

pulmones y te llena de paz, o como una lluvia torrencial que te empapa de ese vital

lı́quido pero que es tanto que tienes que correr en busca de refugio. El proceso de

proponer el desarrollo de una nueva herramienta numérica como CHAMBA me ha ayu-

dado a tener una idea de lo que hay fuera. El proceso de escritura de dicho código,

por otro lado, ha sido como subir a una montaña: nunca sabes si conseguirás llegar a

la cima o si la naturaleza terminará enviando una tormenta que te obligará a replegar.

Nuestro ascenso empezó en el campamento base electrones ultra energéticos. Allı́

planeamos nuestra ruta, siempre al pendiente de cualquier previsión de tempestad.

Durante nuestros dı́as en el campamento base tuvimos que respondernos a cuestiones

fundamentales como si realmente vale la pena ir más allá de las cumbres transrela-

tivistas, a las que muchos exploradores han subido y bajado con gran destreza por

décadas, o quedarnos en las faldas del monte MBS. Con un impulso blazarı́stico de-

cidimos abandonar la tranquilidad del campamento base adentrarnos en el corazón

de la montaña. En el camino tuvimos que atravesar barrancos de grava (numérica)

inestable, escalar y rapelar despeñaderos y riscos impresionantes. Ergios y ergios de

paredes verticales. Hubo momentos, incluso, en los que no habı́a un solo agarre a

la vista, rezando por que la cuerda aguantara. Para fortuna de nuestra expedición lo

hizo, y conseguimos llegar a la cima ciclotrón.
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Objetivos

Objetivos

En un intento por entender las observaciones de blazares, se han propuesto muchos

modelos e hipótesis a lo largo de los años que han abierto un abanico de ideas sobre

la fı́sica involucrada en los procesos de altas energı́as que en ellos ocurren. Aún ası́,

no hay suficiente evidencia observacional que nos indique el grado de importancia de

cada proceso fı́sico que interviene en la producción de la emisión ultraenergética ob-

servada (p. ej., es bien sabido que los campos magnéticos juegan un papel importante

en los flujos relativistas, pero no conocemos la magnetización del chorro ni sabemos

con certeza si los campos magnéticos juegan un papel importante en los procesos de

disipación los chorros). Hay modelos que se han propuesto para clasificar y unificar

los AGNs (y blazars en particular). Sin embargo, no sabemos con certeza si estos

modelos describen la verdadera naturaleza de los AGNs.

Vivimos en una época en la que los observatorios existentes y venideros, tanto ter-

restres como espaciales, observan el universo en muchas bandas espectrales, de modo

que se espera que en los próximos años nueva información salga a la luz (valga la re-

dundancia electromagnética) de todo tipo de objetos astrofı́sicos; con los blázares en-

tre ellos. Sin embargo, la imposibilidad de replicar en el laboratorio las condiciones

necesarias para observar y medir los procesos que producen, p. ej., las fulguraciones

en blazares ha favorecido el desarrollo constante de códigos numéricos sofisticados

que ejecutan simulaciones de estos procesos. Dichas simulaciones nos ayudan a tener

una intuición fı́sica de los fenómenos astrofı́sicos; ya sea por comparación con los

datos observacionales existentes, o por la predicción de las propiedades de futuros

eventos. Los códigos de última generación para blázares incorporan tanta macro y

microfı́sica como las capacidades computacionales lo permitan. Tı́picamente, existe

un equilibrio entre ambas. Es decir, uno necesita decidir cuánto esfuerzo se dedica

a las escalas macroscópicas (p. ej., procesos MHD) y cuánto a las microscópicas

(p. ej., la aceleración en una onda de choque). En nuestro trabajo constantemente

tratamos de mejorar nuestro modelado a ambos rangos de las escalas dinámicas en

blázares.

El modelo de IS para blázares ha logrado modelar datos observacionales (e.g.

Böttcher & Dermer 2010). Uno de nuestros principales objetivos de la presente tesis

es el de ampliar el estudio del espacio de parámetros, iniciados por MA12, para

el modelo de IS mediante el cálculo de la emisión, dependiente del tiempo y para
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múltiples longitudes de onda, de varias familias de modelos; principalmente carac-

terizados por la magnetización de las capas. Partiendo de trabajos previos (Böttcher

& Dermer 2010; Mimica 2004; Mimica & Aloy 2012; Mahadevan et al. 1996; Le-

ung et al. 2011), pretendemos profundizar en la exploración del modelo de IS con el

plan de identificar en las SEDs y curvas de luz, las huellas dejadas por la magneti-

zación de las capas (macro escalas) y por las distintas propiedades de las partı́culas

inyectados en el frente de onda de choque (micro escalas). Tomamos en cuenta la ex-

istencia de partı́culas subrelativistas y transrelativistas en la población de partı́culas

inyectadas, por lo que englobamos los procesos de emisión ciclotrón, sincrotrón y

ciclo-sincrotrón.

Metodologı́a

En la presente tesis se estudian los mecanismos de emisión en blazars, una subclase

de AGN en la que un chorro relativista se propaga en dirección cercana a la lı́nea de

visión de un observador en la Tierra (Urry & Padovani 1995). Una componente im-

portante de la radiación observada en blazars es producida por la emisión no térmica

de dicho chorro. Su espectro muestra dos crestas muy anchas. La primera está situ-

ada entre radiofrecuencias y rayos X, mientras que la segunda aparece entre los rayos

X y los γ (p. ej. Fossati et al. 1998). Dependiendo de las frecuencias de máxima lumi-

nosidad y la intensidad de las lı́neas de emisión, los blazars pueden subdividirse en

objetos BL Lac y FSRQ (Giommi et al. 2012a). Existe un consenso general de que el

pico que aparece a bajas frecuencias se debe a la emisión sincrotrón de electrones rel-

ativistas que giran en un campo magnético. En cuanto que al pico a altas frecuencias,

actualmente hay dos modelos en disputa: (a) el modelo leptónico que propone que la

la emisión a altas energı́as es producida por los electrones relativistas que dispersan

mediante el proceso IC tanto a los fotones frı́os del medio externo (Compton inverso

externo; EIC) y a los fotones tipo sincrotrón producidos in situ en el chorro (auto–

Compton de sincrotrón; SSC), y (b) el modelo hadrónico que plantea la existencia

de protones relativistas en el chorro que, en presencia de campos magnéticos muy

intensos, son capaces de producir radiación ultraenergética a través tanto del proceso

sincrotrón directamente, como de cascadas electromagnéticas (véase Böttcher 2010,

para una discusión detallada de ambos modelos). En la presente tesis limitamos nue-

stro estudio al modelo leptónico.
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En este trabajo, nos concentramos exclusivamente en la contribución del chorro

relativista. El escenario de IS (p. ej. Rees & Mészáros 1994; Spada et al. 2001;

Mimica et al. 2004) ha sido exitoso en explicar muchas de las caracterı́sticas sobre

la variabilidad en blázares. Como hipótesis central se encuentra la idea de que la

presencia de movimientos relativos en el chorro relativista eventualmente producirá

choques de capas densas de plasma frı́o. En el transcurso de la colisión de dichas

capas, el plasma sufre los efectos del choque y parte de la energı́a cinética del chorro

es disipada en el relativamente débil IS, lo que explicarı́a las fulguraciones obser-

vadas en las curvas de luz de estos eventos. En las dos últimas décadas este escenario

ha sido explorado a fondo utilizando modelos analı́ticos y simplificados (Kobayashi

et al. 1997; Daigne & Mochkovitch 1998; Bošnjak et al. 2009; Daigne et al. 2011)

ası́ como también por medio de simulaciones de hidrodinámica numérica (Kino et al.

2004; Mimica et al. 2004, 2007).

Esta tesis continúa a lo largo de las lı́neas esbozadas en trabajos anteriores (Mim-

ica & Aloy 2012, MA12 de aquı́ en adelante), y extiende los trabajos publicados en el

periodo de doctorado (Rueda-Becerril et al. 2014b, 2017, RMA14 y RMA17 de aquı́

en adelante, respectivamente). MA12 extiende el trabajo sobre la disipación (eficien-

cia dinámica) de los ISs magnetizados (Mimica & Aloy 2010), incluyendo procesos

radiativos de una manera similar a los modelos detallados recientes para el cálculo de

la emisión de los ISs (Böttcher & Dermer 2010; Joshi & Böttcher 2011; Chen et al.

2011). En MA12 se asume que la luminosidad del flujo es constante, pero se varı́a

el grado de magnetización de las capas para investigar las consecuencias de dicha

variación en los espectros y curvas de luz observadas. Encuentran que la eficiencia

radiativa de una sola colisión de capas es máxima cuando una de ellas está altamente

magnetizada y la otra posee un campo magnético débil o casi nulo. De igual menera,

los autores proponen una manera de distinguir observacionalmente entre colisiones

de capas escasa y altamente magnetizadas por medio de la comparación entre las

frecuencias máximas y fluencias de las componentes sinctrotrón y IC.

Una de las limitaciones del estudio mostrado por MA12 es que sólo se varı́a la

magnetización de las capas (aunque cuberiendo una gama relativamente amplia del

potencial espacio de parámetros), dejando el resto de parámetros sin cambios. En

este trabajo se presentan los resultados de un estudio paramétrico más sistemático

en el que se consideran tres combinaciones de magnetizaciones de las capas que
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Mimica & Aloy (2012) consideraron de interés, pero variando tanto los parámetros

cinemáticos (el factor de Lorentz del fluido y la velocidad relativa de las capas) como

los parámetros extrı́nsecos (p. ej., el ángulo de visión θ del chorro), mientras que los

parámetros microfı́sicos se fijan a valores tı́picos.

La radiación emitida por blazes resulta de la disipación del flujo cinético y del

flujo tipo Poynting. En la presente tesis consideramos el modelo de IS, en el cual la

disipación antes mencionada es producida por la colisión de capas densas de plasma

frı́o dentro del chorro relativista (p. ej. Rees & Mészáros 1994; Spada et al. 2001;

Mimica et al. 2004). Cada colisión de dichas capas puede producir ISs que aceleran

a los electrones que son, a fin de cuentas, los responsables de la emisión observada.

Nos centramos también en estudiar la influencia de las propiedades de la EED en

la emisión observada. Giannios & Spitkovsky (2009) propusieron una EED; es de-

cir Maxwelliana más no térmica (denominada en lo subsiguiente como “distribución

hı́brida”, o simplemente HD) como una explicación de algunas de las caracterı́sticas

de la emisión temprana y de la posluminiscencia en GRBs. Para llevar a cabo di-

cho objetivo, introducimos una HD en nuestro código numérico y estudiamos cómo

afecta a las curvas de luz y espectros de emición en blázares.

No obstante, dado que la componente térmica en una HD la energı́a de los elec-

trones se extiende hasta regı́menes subrelativistas, necesitamos replantear el mecan-

ismo de emisión (sincrotrón) empleado hasta ahora. La radiación de partı́culas car-

gadas que atraviesan un campo magnético se conoce como MBS. Dependiendo de

la velocidad βc de las partı́culas, esta radiación se clasifica en ciclotrón si β ∼ 1,

y sincrotrón si β ∼ 1. Ambos regı́menes han sido estudiados ampliamente y se

han desarrollado expresiones analı́ticas precisas para cada uno (p. ej. Ginzburg &

Syrovatskii 1965; Pacholczyk 1970; Rybicki & Lightman 1979). Sin embargo, la

radiación ciclo-sincrotrón, es decir, el régimen transrelativista, no cuenta con una de-

scripción analı́tica sencilla. Cumpliendo con uno de los objetivos de la presente tesis,

en efecto, implementamos un modelo de emisión MBS en nuestro código, para poder

tratar con precisión la emisión en todos los rangos de energı́a de la EED.

Para la evolución de las partı́culas inyectadas en los choques, suponemos que

los procesos dominantes son el enfriamiento sincrotrón y la dispersión IC de los fo-

tones producidos por el prooceso EIC. Para calcular los espectros y curvas de luz

sintéticas, dependientes del tiempo y para múltiples frequencias, incluimos los pro-
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cesos de emisión sincrotrón y IC resultantes del plasma que ha sufrido el choque.

Consideramos además que la lı́nea de visión del observador respecto al eje del chorro

forma un ángulo θ. Una descripción detallada de cómo se realiza la integración de la

ecuación de transferencia radiativa a lo largo de la lı́nea de visión se puede encontrar

en la sección §2.3.

Conclusiones

Para poder realizar simulaciones numéricas consistentes de fenómenos astrofı́sicos,

se necesitan herramientas computacionales robustas fáciles de mantener y que sean

eficientes en el uso de los recursos computacionales disponibles. Para poder repro-

ducir las observaciones de los objetos astrofı́sicos en la Tierra, se deben elegir las

herramientas numéricas adecuadas y diseñar un algoritmo bien estructurado. Para

ello, hay que mantenerse al dı́a con los postulados teóricos, técnicas numéricas y ob-

servaciones más recientes. De lo contrario, se corre el riesgo de malinterpretar los

datos. En esta tesis hemos presentado la metodologı́a utilizada para simular los SEDs

de blázares, siguiendo el modelo de IS.

Aquı́ se han presentado dos proyectos de investigación complementarios. Ambos

tratan el modelo de ISs para los flujos relativistas magnetizados y se aplica a los

blázares. El primero consistió en la exploración del espacio de parámetros haciendo

uso del código para ISs (MA12). Los resultados numéricos (p. ej., SEDs sintéticas)

se compararon con datos observacionales (Capı́tulo 4 y RMA14). Esta investigación

partió de la hipótesis que la radiación producida en los choques que se propagan a

través de las capas magnetizadas debe contener la firma (en las SEDs observadas)

del grado de magnetización de dichas capas. Hemos encontrado que, de hecho, la

magnetización juega un papel importante y que, en efecto, deja patrones fácilmente

identificables en las SEDs y en el plano AC–νobs
syn. En este último, hemos identificado

los parámetros cuyas variaciones explican la secuencia de los blázares.

El segundo proyecto de investigación consistió en dos subproyectos: la inclusión

de electrones térmicos en la población de los inyectados en el frente de choque y

el tratamiento adecuado de la emisión MBS por electrones no relativistas y transrel-

ativistas (Capı́tulo 5 y Rueda-Becerril et al. 2017). La idea para el primero surgió

de estudios previos sobre la trazas térmicas en las curvas de luz de BRGs (Gian-

nios & Spitkovsky 2009), y de resultados obtenidos con simulaciones de partı́culas
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en céldas (PIC) (Sironi et al. 2013) que sugieren que una gran fracción de la energı́a

disipada en choques escasamente magnetizados probablemente termina en electrones

térmicos. En cuanto a un tratamiento completo de la emisión MBS, la motivación

para esto provino del hecho de que la potencia radiada espectral de electrones lentos

y ligeramente relativistas desarrollan patrones prácticamente discontinuos (Mahade-

van et al. 1996), al contrario de lo que la emisión sincrotrón de electrones ultrarel-

ativistas predice (Rybicki & Lightman 1979; Jackson 1999). Las simulaciones que

incluyeron ambos efectos revelaron que la presencia de electrones térmicos (además

de los no térmicos) durante la aceleración en el choque afecta razonablemente el es-

pectro a frecuencias entre el óptico y los rayos γ, mientras que las νobs
syn sufre muy poca

variación. Esto significa que la localización de la fuente en el plano AC–νobs
syn sufrirá

un desplazamiento vertical; tal vez dando explicación la dispersión de las fuentes en

la región de los FSRQs.

En el modelo estándar, las SEDs de FSRQs y BL Lacs pueden ser ajustados por

dos componentes parabólicas con máximos correspondientes a los picos sincrotrón

e IC. Demostramos que las SEDs de FSRQs y BL Lacs dependen ı́ntimamente de

la magnetización del plasma emisor. Nuestros modelos predicen una fenomenologı́a

aún más compleja que los que actualmente están respaldados por los datos observa-

cionales. Con un enfoque conservador, esto implicarı́a que las observaciones restrin-

gen la posible magnetización en el choque de capas que tiene lugar en las fuentes

reales a, a lo sumo, valores moderados (σ . 10−1). Aunque también hemos de-

mostrado que si el valor del factor de Lorentz del fluido de las capas es lo suficiente-

mente alto (p. ej. ΓR y ∆g), magnetizationes σ ≃ 1 también son compatibles con la

doble joroba en los espectros. Por tanto, no podemos descartar del todo la posibili-

dad de que algunas fuentes sean muy ultrarelativistas tanto en el sentido cinemático

como en el de su magnetización.

Encontramos que FSRQs tienen propiedades observacionales al alcance de mod-

elos con campos magnéticos despreciables o moderados. La dispersión de los FS-

RQs observados en el plano AC–νobs
syn puede explicarse por ambas variaciones de los

parámetros intrı́nsecos de los grumos (∆g y ΓR muy probable), y de los extrı́nsecos

(la orientación de la fuente respecto al observador en la Tierra). Por su parte, BL

Lacs con frecuencias sincrotrón máximas νobs
syn . 1016 Hz y parámetro de dominan-

cia Compton 0.1 & AC & 1 despliega propiedades que se pueden reproducir con
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modelos de moderada y uniforme magnetización (σL = σR = 10−2). Por lo tanto, en-

contramos que una buena fracción de la secuencia de los blázares puede ser explicada

en términos de diferentes magnetizaciones intrı́nsecas de las capas colisionantes.

En la presente tesis, introducimos una distribución de electrones térmica y no

térmica (hı́brida) en el modelo ISs para blázaress. Para explicar el hecho de que la

componente térmica de la HD se extiende a valores bajos del factor de Lorentz de los

electrones, también hemos desarrollado un código ciclo-sincrotrón que nos permite

calcular la emisión no térmica de electrones con un factor de Lorentz arbitrario. Se

muestra que nuestro método para el tratamiento de la evolución temporal de la HD y

el cálculo de la emisión MBS se puede realizar de manera eficiente y con suficiente

precisión. El método se implementa como una generalización del código numérico

de MA12.

Trabajo futuro

Respecto al desarrollo de nuestro código CHAMBA y la nueva función RMA (véase la

Eq. (3.71)), el valor óptimo del parámetro acoff debe ser estimado. Para lograr este ob-

jetivo, planeamos calcular y comparar sistemáticamente el error relativo acumulado

entre las emisividades MBS usando (3.71) y (3.56), para diferentes valores de acoff .

Esperamos obtener un valor que nos ayude a reducir las ramificaciones en (3.71). En

otras palabras, nuestra intención es encontrar un ajuste que apropiadamente tenga en

cuenta el corte.

Con respecto al modelo de IS para blázares, tenemos como objetivo claro realizar

exploraciones adicionales de los efectos en las SEDs de blázares debido a las varia-

ciones en la magnetización y HDs, incluyendo la emisión MBS completa, para lo

cual pretendemos incluir efectos como la absorción y emisión EIC. Los procesos mi-

crofı́sicos en este escenario son crı́ticos para entender cómo se aceleran las partı́culas

en los frentes de ondas de choque relativistas. Los parámetros microfı́sicos aacc y

∆acc que regulan la escala de tiempo de aceleración y el tamaño de la región de

aceleración de los electrones, respectivamente, ya han empezado a ser estudiados y

hemos encontrado nuevos efectos en las curvas de luz de blazars. Sin embargo, queda

pendiente un estudio definitivo y esperamos que estos resultados sean parte de alguna

publicación futura. Por otra parte, no sólo está en curso las variación de parámetros

de la versión actual del código para blázaress, sino que ya estamos trabajando en
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la implementación del enfriamiento SSC (p. ej. Chiaberge & Ghisellini 1999), ası́

como también el cálculo del coeficiente de absorción (Ghisellini & Svensson 1991)

del proceso MBS para su aplicación directa a las simulaciones de blázars.

En el contexto astrofı́sico, y en relación con los flujos relativistas en particular, la

presente tesis establece un punto de arranque para la exploración de fenómenos más

allá de blázars. Por ejemplo, el aplanamiento tardı́o de las curvas de luz de las pos-

luminiscencias de GRBs, en la llamada etapa newtoniana profunda (p. ej. Huang &

Cheng 2003; Sironi & Giannios 2013), es un escenario ideal en el que las herramien-

tas numéricas desarrolladas en la presente tesis podrı́an proporcionar un medio para

explorar los remanentes de GRBs. Y en efecto lo es porque en esta etapa los elec-

trones acelerados en el frente de choque de la onda expansiva se vuelven transrela-

tivistas (Sironi & Giannios 2013), y por lo tanto los efectos tanto de la emisión MBS

como de las HDs pueden ser relevantes.

Hace falta igualmente realizar más comparaciones de las simulaciones con ob-

servaciones para probar este modelo. Sin embargo, dado que la escala de la región

de la que se compila la emisión en nuestras simulaciones es sub-parsec, hacen falta

observaciones de las regiones de los blázares que emiten a altas energı́as tengan una

mayor resolución para poder hacer una comparación adecuada de, p. ej., sus respec-

tivas SEDs.
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