Gravitational-Wave Astronomy:
Modelling, detection, and data

analysis

Alejandro Torres Forné

Doctorat en Fisica
Departament d’Astronomia i Astrofisica

Universitat de Valéncia

TESIS DOCTORAL
2017



VNIVERSITAT ® VALENCIA

Gravitational-Wave Astronomy:
Modelling, detection, and data

analysis

Alejandro Torres Forné

Doctorat en Fisica
Departament d’Astronomia i Astrofisica

Universitat de Valeéncia

TESIS DOCTORAL

Directores:

José Antonio Font
Pablo Cerda Duran

Mayo 2017



A Angel, a Rosario y a Laura.

A los petimetres y a los parolos.






Agradecimientos

Esta tesis doctoral nunca habria sido posible sin la ayuda, el apoyo y los consejos

de muchas personas.

Primero quiero agradecer a mis dos directores Prof. Toni Font y Prof. Pablo
Cerda-Duran por haberme guiado durante todo el desarrollo de la tesis, por sus
siempre acertados consejos y por su paciencia aguantando mis constantes visitas

a sus respectivos despachos.

También quiero dar las gracias a Antonio Marquina y a José Marfa Ibafiez.
A Antonio por haber sido la persona clave en el desarrollo de la parte de data
analysis y por lo mucho que he aprendido con sus explicaciones. A José Maria
quiero agradecerle sus consejos, sus comentarios desde la experiencia y sobre

todo por animarme siempre cuando encontrabamos alguna dificultad.

A Elena Cuoco quiero agradecerle su hospitalidad en mis multiples visitas
a Pisa. También darle las gracias por haberme incluido en sus colaboraciones
y por haber sido en parte responsable de que el grupo de Valencia se uniera a
la colaboracién Virgo y por iniciar el grupo de Machine Learning dentro de la
colaboracién Virgo/LIGO.

Agradecerles a Jade Powell, Ik Siong Heng, Marco Cavaglia y Daniele Trifiro
las facilidades que me dieron para unirme a su proyecto conjunto, resolviendo

mis dudas y creando un entorno perfecto para trabajar.

También quiero darles las gracias a todos los miembros del Departamento de
Astronomia y Astrofisica, en especial a Manel, a Feli, a Lupe y Enric, porque
ellos el motor que hace que el departamento funcione. Afortunamente siempre
estan ellos atentos a los plazos, a los documentos que hay que entregar y sobre
todo al bienestar general de todos.

A mis companeros, Nico, Jose, Jesus, Vass, Nicolas, Tomasz, Isa, Adri y Jens
porque sin ellos estos 4 anos no habrian sido ni la mitad de divertidos. Siempre
recordaré las risas, los spoilers inesperados, la radio de Baza, a Juan Antonio

Chistoso y las mil y una anécdotas que hemos compartido.



También quiero dar las gracias a mis amigos los parolos, los petimetres y
los locos porque todos y cada uno son personas increibles. En especial, y sin
que sirva de démerito de los demas, quiero darles las gracias a Juan, a Rafa,
a Carlos, a Buris, a Pablo, a Maria, a Claudia, a Marta, a Silvia, a Josete, a
David y a Nadyl, porque a pesar de que a muchos los conozco desde hace mas
de 20 anos, su amistad, su confianza y su apoyo son indispensables para mi.

Finalmente, quiero hacer mencion especial a mi familia, a mis padres y mi
hermana, por su apoyo y su carifio y porque sin ellos no serfa la persona que soy
ahora.

Esta investigacién ha sido financiada por el MICINN (AYA 2010-21097-C03-01), MINECO
(MTM2011-28043) and by the Generalitat Valenciana (PROMETEO-2009-103).



Acknowledgements

This doctoral thesis would never have been possible without the help, support
and advice of many people.

First I want to thank my supervisors Prof. Toni Font and Prof. Pablo
Cerdé-Duran for guiding me during all the development of the thesis, for their
always successful advice and for their patience enduring my constant visits to
their respective offices.

I also want to thank Antonio Marquina and José Maria Ibafiez. To Antonio
for having been the key person in the development of the data analysis part and
for how much I have learned with his explanations. To José Maria I want to
thank for his advice, his comments from the experience and above all for always
encouraging me when we find some difficulty.

To Elena Cuoco I want to thank for her hospitality on my multiple visits to
Pisa. I also thank for including me in her collaborations and for having been
partly responsible for the group of Valencia to join the collaboration Virgo and
for start the Machine Learning group within the Virgo / LIGO collaboration.

I thank Jade Powell, Ik Siong Heng, Marco Cavaglia and Daniele Trifiro for
the facilities they gave me to join their joint project, solving my doubts and
creating a perfect working environment.

I also want to thank all the members of the Department of Astronomy and
Astrophysics, especially Manel, Feli, Lupe and Enric, because they are the engine
that makes the department work. Fortunately, they are always attentive to the
deadlines, the documents to be delivered and, above all, the general welfare of
all.

To my mates Nico, Jose, Jesus, Vass, Nicolas, Tomasz, Isa, Adri and Jens
because without them these 4 years would not have been as funny as have been.
Always remember the laughs, the unexpected spoilers, the radio of Baza, Juan
Antonio Chistoso and the thousand and one stories we have shared.

I also want to thank my friends of the parolos, the petimetres and the locos,

because they are the family that you choose and I am fortunate to have so many



vi

incredible people nearby. In particular, and without being a demeanor of others,
I want to thank Juan, Rafa, Carlos, Buris, Pablo, Maria, Claudia, Marta, Silvia,
Josete, David and Nadyl, because in spite of the fact that I have known many
of them for more than 20 years, our friendship, trust and mutual support are
indispensable for me.

Finally, I want to make a special mention to my family, especially my parents
and my sister, for their support of all the decisions I have made, for their
unconditional love and because without them, I never became the person I am

now.

This research have been funded by the Spanish MICINN (AYA 2010-21097-C03-01),
MINECO (MTM2011-28043) and by the Generalitat Valenciana (PROMETEO-2009-103).



Abstract

During this thesis, I have worked on three main topics of research related
with gravitational-wave astronomy, namely (i) on the numerical modelling of
astrophysical sources of gravitational waves, (ii) on the detector characterization
and classification of transients of noise, and (iii) on the development of new

methods for data analysis.

In the context of numerical relativity I have simulated accretion processes
onto neutron stars to study the so-called hidden magnetic field scenario. I
have developed a 1D model and performed a parameter-space study aimed
at determining under which conditions this scenario can be a viable model to
explain the low magnetic fields observed in some central compact objects in
supernova remnants.The cause of those low values of the magnetic field is still
unclear. Previous numerical simulations suggested that the magnetic field can
be compressed to the surface of the star due to the pressure exerted by the
infalling fluid. Our results show that the accretion rate required to compress
the magnetosphere of a typical pulsar is modest. Therefore, this scenario should
not be regarded as particularly unusual. However, our results also show that it
is fairly complicated to compress the magnetic field if it is stronger than 10'# G,
which are the typical values found in magnetars, since the required accretion

rate would cause the star to collapse to a black hole.

To this day, the physical mechanisms behind core-collapse supernovae explo-
sions and their subsequent evolution are still not entirely known. The information
contained in the gravitational-wave signal produced by this type of sources can
greatly help determining the physics involved in the explosions. This thesis
presents the first results of a project aimed at inferring some of those physical
parameters from the study of gravitational-wave signals from core-collapse. I
have studied the existing relationship between the modes of oscillation of the
proto-neutron star that forms after the collapse of a massive star and the spec-
trum of the gravitational signal. The model handles the oscillations of the

proto-neutron star as the perturbations of a system in equilibrium. We compare
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the data from the gravitational-wave signal generated by the simulation of the
collapse of a massive star with the time-frequency distribution of the different
modes of oscillation, obtaining a remarkably close correspondence between them.

Detectors of gravitational waves are affected by many sources of noise due
to the extreme sensitivity required to measure the small-amplitude variations
caused in the distance between test masses by passing gravitational waves. The
search for the sources of noise and their subsequent elimination is a fundamental
task. This thesis presents results of a collaborative project to automatically
classify and remove noise transients (glitches) produced in the advanced LIGO
and Virgo detectors. Some of these transients may be particularly problematic
because they can be misinterpreted as true gravitational-wave signals. The
three methods employed in the project are able to correctly classify 95% of
detected glitches. Since all three methods use different strategies to perform the
classification, they are complementary, so that transients not classified by one of
the methods may be classified by the other two.

In spite of the efforts to reduce the noise of interferometers, it is inevitable that
part of the noise may affect and bury actual gravitational-wave signals. There are
many data-analysis methods designed to extract signals from noisy backgrounds.
During this thesis I have explored the performance of denoising algorithms based
on the concept of Total Variation. These algorithms, which do not require any a
priori information about the signal, have been shown to be highly efficient for
noise suppression in the context of image processing. Our pioneering results
for gravitational-wave signals show that the algorithms can remove enough
noise to produce distinguishable signals in the two scenarios we have considered,
signals mixed with Gaussian noise and with real detector noise. One of the
most interesting future applications of this line of work is the combination of
these methods with other common techniques of gravitational-wave analysis
(e.g. Bayesian inference) to improve the results. Finally, in an attempt to bridge
the gap between numerical modelling and data analysis, this thesis has also
explored the use of dictionary-learning techniques with numerical-relativity
waveform templates in order to reconstruct signals embedded in Gaussian noise.
These techniques offer a number of possibilities, not only to extract signals from
noise, but also to classify glitches or to extract physical parameters from detected

signals.



Resumen

Introduccién

La deteccién directa de la primera senal de ondas gravitatorias, el 14 de Sep-
tiembre de 2015, puede considerarse uno de los mayores hitos cientificos de
todos los tiempos. No solo porque supone la confirmacién de la tltima de las
predicciones de la Teoria de la Relatividad General de Albert Einstein, sino
porque anticipa una autentica revoluciéon en el campo de las astrofisica, com-
parable a la producida con la invencién del telescopio por Galileo Galilei en
1609. Este descubrimiento ha inaugurado un nuevo tipo de astronomia, la
astronomia de ondas gravitatorias. Se abre as{ una nueva ventana al universo
que permitiréd el estudio de procesos fisicos producidos en regiones no accesibles
al espectro electromagnético, con lo que se podra obtener informacién clave
sobre la estructura de los agujeros negros, la evolucién estelar, la ecuacién de
estado de las estrellas de neutrones o el universo primitivo. En esta tesis he
trabajado fundamentalmente en tres temas de investigacion relacionados con las
ondas gravitatorias, como son, (i) el modelado numérico de fuentes astrofisicas
de radiacién gravitatoria, (ii) la caracterizacién y clasificacion del ruido presente
en los detectores interferométricos, y (iii) el desarrollo de nuevas técnicas de

analisis de datos de senales gravitatorias.

Objetivos

El objetivo global de la presente tesis es estudiar los diferentes aspectos que se
incluyen en campo de la astronomia de ondas gravitatorias. Cada uno de los
tres apartados, modelado, deteccién y andlisis de datos, tienen sus objetivos
generales que a su vez se pueden desarrollar en objetivos especificos dentro de
cada estudio realizado.

El modelado de fuentes astrofisicas de radiacién gravitatoria es clave para
entender los procesos fisicos que llevan a la generacién de una determinada senal

gravitatoria susceptible de ser detectada. Por lo tanto, el objetivo general de esta



seccion es conocer de manera general los distintos tipos de fuentes astrofisicas
de senal gravitatoria y las métodos de relatividad numérica empleados en las
simulaciones. En este contexto se han estudiado dos escenarios particulares, el
proceso de acrecién sobre estrellas de neutrones magnetizadas y los modos de

oscilacién de protoestrellas de neutrones.

Mis especificamente, se han estudiado los procesos de acrecion sobre estrellas
de neutrones que dan origen a un fenémeno conocido como “enterramiento” del
campo magnético. El objetivo es averiguar bajo qué condiciones es posible que
dicho fenémeno proporcione una explicacién véalida para los inusualmente bajos
valores del campo magnético observados en algunas estrellas de neutrones que
se encuentran en el centro de restos de supernovas. La explicacion de dichos
valores del campo magnético es todavia causa de controversia en la actualidad.
Simulaciones numéricas previas sugieren que es posible que el campo magnético
se comprima hasta la superficie de la estrella debido a la presion ejercida por el

fluido acretante.

El estudio de los modos de oscilacion de protoestrellas de neutrones proce-
dentes del colapso gravitational de estrellas masivas se engloba dentro de un
proyecto mas amplio cuyo objetivo es obtener un modelo sencillo que permita
obtener informacién sobre los parametros fisicos del progenitor de la supernova
a partir de su impronta en la posible sefial gravitatoria detectada. Este proyecto
se puede dividir en tres pasos esenciales. El primero es estudiar los modos
de oscilaciéon de una protoestrella de neutrones a partir de los datos de una
simulacién numérica y comprobar la correspondencia de la distribucién tiempo-
frecuencia de dichos modos con el diagrama tiempo-frecuencia (espectrograma)
de la senal gravitatoria obtenida de la simulacién. El segundo paso consiste
determinar la relacién entre los parametros fisicos del progenitor y la distribucién
tiempo-frecuencia de los corresponientes modos de oscilaciéon. Finalmente, el
ultimo paso consistira en realizar un modelo sencillo que relacione los modos de
oscilacién con la onda gravitatoria e implementarlo en el software de inferencia
Bayesiana LALInference desarrollado por la colaboraciéon LIGO/Virgo.

La siguiente seccién de la presente tesis doctoral se centra en el estudio de
los detectores de ondas gravitatorias. El objetivo global consiste en conocer
dicho detectores, su principio de deteccién y las diversas fuentes de ruido que
limitan su sensibilidad. La deteccion y eliminacién de transitorios de ruido es una
prioridad dentro de la colaboracién LIGO/Virgo. Este proceso, conocido como
caracterizacién del detector, es clave para conseguir la sensibilidad necesaria para
detectar sefiales gravitatorias, y, en el caso de se produzcan, que éstas tengan la

suficiente significacién estadistica. Méas concretamente, dentro de la colaboracién
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LIGO/Virgo se han puesto en marcha varios proyectos para clasificar y eliminar
dichos transitorios de ruido. Asi pues, los objetivos de esta parte de la tesis
son colaborar en el desarrollo del c6digo WDF-ML, diseniado por la Dr. Elena
Cuoco dentro de la colaboracion Virgo, y utilizar dicho cédigo para detectar y
clasificar transitorios de ruido usando datos de los detectores LIGO.
Finalmente, la dltima parte de la tesis estd dedicada a desarrollar y testar
métodos de analisis de datos y aplicarlos al contexto de la astronomia de

ondas gravitatorias. El objetivo fundamental es desarrollar nuevas técnicas

de eliminacién de ruido que permitan mejorar las posibilidades de deteccién.

Para ello se han estudiado dos técnicas diferentes. La primera estd basada en
el concepto de Variacién Total. Desarrollado ampliamente en el contexto de
tratamiento de imagenes, esta clase de métodos no se han utilizado hasta ahora
para el tratamiento de sefiales gravitatorias. El objetivo de este trabajo consiste
en adaptar dichas técnicas al escenario particular de la astronomia de ondas
gravitatorias y comprobar su eficacia para eliminar ruido. La segunda técnica
esta basada en el uso de diccionarios para reconstruir una senal mezclada con
ruido. Al igual que el primer método, esta técnica ha resultado ser muy eficiente
cuando se ha usado con imagenes. Los objetivos principales son dos, por un
lado generar diccionarios basados en sefiales de ondas gravitatorias de diferente

tipologia y, por otro lado, aplicarlos para extraer senial de un entorno ruidoso.

Metodologia

Para estudiar los procesos de acrecién sobre estrellas de neutrones magnetizadas
se ha desarrollado un modelo 1D basado en la solucién del problema de Riemann
magnetohidrodinamico. Las condiciones particulares de nuestro escenario, campo

magnético perpendicular a la velocidad del fluido acretante, permiten usar

la descripcién del problema de Riemann propuesto por Romero et al. [2005].

Ademaés de los parametros principales del escenario astrofisico, como son la tasa
de acrecién y el valor del campo magnético de la estrella, se ha estudiado la
influencia de otros pardmetros fisicos, como la masa y la ecuaciéon de estado de
la estrella de neutrones, la composicién quimica del fluido y la configuracién
geométrica del campo magnético. Con todos estos ingredientes, se ha obtenido
una expresion sencilla de la relacion entre tasa de acrecién y el campo magnético
que permite distinguir en qué casos este escenario es valido.

A dia de hoy, los mecanismos fisicos involucrados en la explosién de supernovas
y su posterior evolucién todavia no se conocen con seguridad. La informacién

contenida en la senal de la radiacién gravitatoria que producen este tipo de fuentes
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es muy importante para determinar la fisica implicada en dichas explosiones. En
esta linea de investigacién, esta tesis incluye resultados iniciales de un proyecto
destinado a obtener algunos de los parametros fisicos de los progenitores de
supernovas a partir del estudio de la posible sefial gravitatoria producida. Para
ello, se ha estudiado la relacién existente entre los modos de oscilaciéon de la
protoestrella de neutrones que se forma tras el colapso del nicleo de una estrella
masiva y el espectro de la senal gravitatoria. Nuestro modelo aproxima las
oscilaciones de la protoestrella de neutrones como perturbaciones de un sistema
en equilibrio. A partir de los datos proporcionados por la simulacién numérica
del colapso de una estrella masiva, se ha comparado la distribucién tiempo-
frecuencia de los diferentes modos de oscilacién con la sefial gravitatoria generada
por la simulacién, obteniendo una correspondencia muy significativa entre ambas

magnitudes fisicas.

La extrema sensibilidad que requiere la medicién de las mintsculas variaciones
en la distancia que separa las masas prueba de un detector interferométrico al
paso de una onda gravitatoria, hace que tales detectores se vean afectados por
innumerables fuentes de ruido. La busqueda de las fuentes de ruido y su posterior
eliminacion es, por tanto, una tarea fundamental para garantizar el éxito de la
nueva astronomia de ondas gravitatorias. En este contexto, la presente tesis
incluye resultados de un proyecto de colaboracién en el cual se ha intentado
clasificar y eliminar de manera automaética los transitorios de ruido (cominmente
denominados ‘glitches’ en inglés) que aparecen en los detectores avanzados LIGO
y Virgo. Algunos de estos ruidos transitorios son particularmente dafiinos pues
pueden ser muy semejantes a una sefial gravitatoria real. El primer paso ha
consistido en estudiar los diferentes tipos de ruido presentes en los detectores
de ondas gravitatorias. El c6digo WDF-ML es un generador de eventos (busca
excesos de potencia en la trama de datos y genera un aviso cada vez que encuentra
uno) basado en transformaciones wavelet. Con la lista de eventos, se aplican
técnicas de aprendizaje automatico para buscar correlaciones entre los eventos
y dividirlos en diferentes grupos segtin sus caracteristicas. Esta clasificacion se
compara con las obtenidas por otros dos métodos (desarrollados dentro del la
colaboracién LIGO/Virgo) demostrando que los tres son capaces de clasificar

correctamente el 95% de los transitorios detectados.

A pesar de los enormes esfuerzos realizados para reducir el ruido de los
detectores interferométricos, es inevitable que parte del mismo se mezcle con
la sefial gravitatoria. En la actualidad, existen muchos métodos destinados
a extraer la sefial del fondo de ruido, muchos de ellos basados en técnicas de

estadistica bayesiana. Durante una buena parte de esta tesis, he explorado la



posibilidades de utilizar algoritmos para la eliminaciéon de ruido basados en
el concepto de variaciéon total. Estos algoritmos, que no requieren ninguna
informacién a priori sobre la senal, han demostrado ser altamente eficientes para
la eliminacién de ruido en el contexto de tratamiento de imagenes. Nuestros
resultados, aplicados de forma pionera en esta tesis en el andlisis de senales
de radiacién gravitatoria, muestran que los algoritmos de variacién total son
capaces de eliminar suficiente ruido como para producir senales gravitatorias
distinguibles, tanto si éstas han sido inicialmente mezcladas con ruido gausiano
como si lo han sido con ruido real del detector LIGO. Uno de los aspectos
mas interesantes de esta linea de investigacién es la posible combinacién de
estos métodos con otros técnicas comunes del andlisis de ondas gravitatorias,
pues puede conducir a mejorar notablemente los resultados. La metodologia
utilizada ha sido la siguiente: primero se ha modificado el algoritmo basado
en variaciéon total para adaptarlo a las caracteristicas propias de las senales
gravitatorias. El primer paso para testar cualquier algoritmo de eliminacién
de ruido es analizar sus capacidades en un entorno controlado, usando ruido
simulado con un espectro de frecuencias similar al de los detectores reales, pero
que no contenga transitorios de ruido, para una vez determinados los pardmetros
del algoritmo que producen los mejores resultados, iniciar el estudio con datos

reales procedentes de los detectores LIGO.

Por dltimo, en un intento de acortar la brecha entre el modelado numérico
y el analisis de datos, he explorado también en esta tesis el uso de técnicas de
aprendizaje automético de diccionarios basados en plantillas de radiacién gravi-
tatoria proporcionadas por simulaciones de relatividad numérica para reconstruir
formas de onda mezcladas con ruido gaussiano. Estas técnicas ofrecen muchas
posibilidades, no solo para extraer senales, sino también para clasificar transito-
rios de ruido o para extraer parametros fisicos de sefiales detectadas. Primero se
han generado dos diccionarios diferentes basados en distintas tipologias de senal
gravitatoria, como son senales procedentes del colapso de estrellas compactas y
seniales generadas por binarias de agujeros negros. Seguidamente se han estudi-
ado diversos casos tipicos para determinar en que casos la extraccién de senales

del fondo de ruido se realiza con éxito.
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Conclusiones

Acrecién sobre estrella de neutrones y el escenario de campo mag-

nético enterrado.

Hemos estudiado el proceso de submergencia del campo magnético en una
estrella de neutrones recién nacida durante la etapa de acrecién hipercritica
posterior a la explosion de una supernova de colapso gravitacional. Este es uno
de los posibles escenarios propuestos para explicar el campo dipolar externo
aparentemente bajo de los CCOs. Nuestro enfoque se ha basado en soluciones
1D del problema de Riemann relativista, que proporcionan la ubicacién de la
frontera esférica (magnetopausa) que coincide con una solucién de acrecién
externa no magnetizada con una soluciéon de potencial de campo magnético
interno. Para una masa y una intensidad de campo magnético determinadas, la
magnetopausa sigue moviéndose hacia la estrella si la presién total del fluido
acretante excede la presién magnética debajo de la magnetopausa. Explorando
una amplia gama de masas acumuladas y las intensidades de campo, hemos
encontrado las condiciones para las que la magnetopausa alcanza el punto de
equilibrio por debajo de la superficie de la estrella de neutrones, lo que implica
el enterramiento del campo magnético. Nuestro estudio ha considerado varios
modelos con diferente entropia especifica, composicién, y masas de la estrellas
de neutrones, y ha demostrado que estos parametros no tienen un impacto
importante sobre los resultados.

Nuestra principal conclusion ha sido que, dada la modesta masa acumulada
requerida para enterrar los campos magnéticos tipicos encontrados en estrellas de
neutrones, el escenario CCO no es inusual. Por el contrario, la masa acumulada
requerida para enterrar el campo magnético de un magnetar es tan grande,
que es mas probable que la estrella de neutrones colapse a un agujero negro.
Sin embargo, nuestro enfoque 1D, aunque suficiente para obtener una buena
aproximacion al problema, no tiene en cuenta otros efectos, como la conveccion,
que podrian modificar los resultados.

La extensién natural de nuestro estudio inicial del escenario del campo
magnético enterrado implica la realizacién de simulaciones numéricas 2D. Sin
embargo, esto no es una tarea ficil debido a una serie de razones: (a) la gran
diferencia entre los valores de la presién magnética y la presion térmica en algunos
de los regimenes extremos de este escenario, puede dar lugar a inexactitudes
numéricas o incluso a la terminacién normal de la ejecucién del codigo; (b)
el acoplamiento entre la magnetosfera y el fluido caliente debe ser manejado

con cuidado para evitar posibles efectos de sobrecalentamiento. Atun asi, las
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simulaciones 2D son esenciales para mejorar nuestra comprensiéon del proceso de

enterramiento del campo magnético tras una explosién de supernova.

Oscilaciones lineales del espectro de protoestrellas de neutrones.

El estudio de la fisica involucrada en el colapso del nicleo de estrellas masivas
y la posterior emisién de ondas gravitatorias no es bien conocida. Ademds, el
modelado numérico de este tipo de sistemas es computacionalmente muy costoso;
por ejemplo, las simulaciones en 3D pueden llevar varios meses en los actuales
superordenadores. Por lo tanto, no es posible inferir la fisica de las posibles
sefniales gravitatorias detectadas, como se hace en el caso de las sefiales producidas
por binarias de agujeros negros. Estos tltimos son sistemas significativamente
mas simples que las supernovas de colapso gravitacional y en su andlisis pueden
emplearse multiples formas de onda basadas en relatividad general (usando
enfoques postnewtonianos) e incluso la relatividad numérica para la fase de
fusion, para hacer coincidir el filtro con formas de onda gravitacionales reales.
En esta seccion de la tesis nuestra meta ha sido disenar un modelo sencillo pero
robusto, basado en la teoria de los modos normales de oscilacién de un sistema
esférico, que permita inferir pardmetros fisicos del progenitor a partir de una

sefial de colapso gravitacional dada.

Como primer paso hemos determinado si los modos de oscilaciéon de la
protoestrella de neutrones pueden estar relacionados con el espectro de ondas
gravitatorias del progenitor. Para ello, se ha utilizado un modelo 1D para
obtener la funcién propia de los modos de oscilacién a partir de los datos de una
simulacién numérica existente y de vanguardia de este tipo de escenario. Una vez
identificado el origen de los modos, hemos separado los distintos tipos. Nuestros
resultados muestran que existe una clara correspondencia entre el espectro de
los modos y el espectro de las ondas gravitatorias. Por lo tanto, parece posible
analizar una senial gravitatoria procedente del colapso del ntcleo de estrellas
masivas en términos de los modos de oscilacién de la protoestrella de neutrones.

Habiendo cumplido esta necesaria prueba de concepto, planeamos dar el sigu-
iente paso en un futuro proximo. La idea es realizar varias simulaciones numéricas
unidimensionales cambiando los parametros del progenitor para estudiar la de-
pendencia de la distribucién tiempo-frecuencia (y posiblemente relajando la
aproximacién de Cowling empleada en el trabajo actual). El objetivo final de
este estudio es desarrollar un modelo que relacione los parametros del progenitor
del colapso con los correspondientes modos de oscilacion de la protoestrella

de neutrones (y, por lo tanto, con el espectro de ondas gravitatorias) que nos
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permita inferir los parametros directamente del espectro de ondas gravitatorias

sin necesidad de realizar costosas simulaciones numeéricas.

Clasificacién de transitorios de ruido.

La presencia de transitorios de ruido (glitches) en los canales de senal de los
detectores avanzados LIGO/Virgo es un efecto inevitablemente ligado a la
extrema sensibilidad requerida para detectar este tipo de senales producidas
a distancias cosmolodgicas. Existen dos estrategias posibles para eliminarlas, o
al menos limitar su impacto. Una de ellas es tratar de determinar el origen y
tomar las medidas necesarias para resolver el problema que causa el transitorio
de ruido. Si esto no es posible o no se puede determinar el origen de los mismos,
la estrategia consiste en vetar los datos y no utilizarlos para ciencia. Las técnicas
automaticas de clasificacién de transitorios de ruido que se presentan en esta tesis
pueden contribuir a mejorar ambas estrategias. Por un lado, pueden relacionar
la informacién proporcionada por los canales auxiliares de detecciéon con los
datos del canal de senal gravitatoria y ayudar a determinar la causa de un tipo
determinado de transitorio. Por otro lado, la determinacién del tipo de glitch
automaticamente puede ayudar a los algoritmos de veto.

Nuestros resultados han demostrado que los tres métodos numéricos emplea-
dos pueden clasificar los transitorios de ruido en datos de LIGO avanzado con
una precision del 95%. Ademds, el uso de tres métodos sobre los mismos datos es
una estrategia ganadora ya que los glitches no detectados por uno de los métodos
pueden ser clasificados por los otros, aumentando la eficiencia general. Ademaés,
el método WDF-ML incluye un generador de eventos diferente al utilizado en
los detectores LIGO/Virgo y, por lo tanto, puede utilizarse para comprobar
los eventos generados por este ultimo. Nuestros tres métodos son ejemplos de
cémo los métodos de aprendizaje automatico pueden aplicarse a la astronomia
de ondas gravitatorias. Desde su uso en los subsistemas de detector y disefio
de hardware hasta su uso en el a&mbito del analisis de datos, existen una gran
variedad de métodos de aprendizaje automéatico para mejorar las posibilidades
de deteccion de senales de ondas gravitatorias.

Hay algunas mejoras interesantes que planeamos aplicar a los métodos de
clasificacién de transitorios. Para empezar, el procedimiento de blanqueamiento
de los datos realizado por el algoritmo WDF-ML se mejorard usando una técnica
conocida como blanqueamiento adaptativo [Cuoco, Cella, and Guidi 2004].
También se pueden realizar mejoras mediante el uso de un conjunto de formas de
onda preclasificadas como entrenamiento o explorando el uso de algoritmos de

aprendizaje con diccionarios, como el presentado en esta tesis, para el problema



xvii

especifico de clasificacién de glitches. También vale la pena mencionar el proyecto
Gravity Spy, financiado por la NSF, que tiene como objetivo la creacién de
grupos de formas de onda clasificadas a través de un programa de ciudadano-
ciencia (Zooniverse) [Zevin et al. 2016, Simpson, Page, and De Roure 2014]. El
potencial de las clasificaciones de glitches se maximiza si los conjuntos de datos
pueden ser empleados en tiempo real. Para lograr este objetivo, la eficiencia
computacional de nuestros algoritmos tendra que mejorar. El proyecto para
construir un cédigo maés eficiente, anadiendo capacidades de paralelizacion e
incluso capaz de funcionar con GPUs, ha comenzado en el momento de redactar
esta tesis y continuard en un futuro cercano en estrechas colaboraciones con la
Dra. Elena Cuoco (EGO) Y Massimiliano Razzano (Universidad de Pisa).

Métodos TV para la eliminacién de ruido en ondas gravitatorias.

Nuestro estudio de los métodos de variacion total en el contexto de la astronomia
de ondas gravitatorias, introducido en esta tesis, comienza realizando pruebas
en condiciones de ruido sencillas, como es el caso del ruido gaussiano. Este paso
inicial ha sido necesario para entender el comportamiento de estos métodos y
explorar su espacio de parametros y determinar los valores que producen los
mejores resultados. Este estudio inicial ha conducido a resultados interesantes.
El méas importante es que los dos algoritmos que hemos utilizado para resolver el
problema ROF son capaces de eliminar el ruido con éxito y recuperar una senal
gravitatoria reconocible. Hemos encontrado que la eleccién del parametro de
regularizacién A es crucial para obtener resultados adecuados. Por lo tanto, es
importante idear una estrategia para hallar el intervalo de los valores adecuado
de A\. Como la varianza del ruido en un detector de ondas gravitatorias es
desconocida, no es posible utilizar el principio de discrepancia para determinar el
parametro de regularizacién. Como resultado, realizar una busqueda heuristica
basada en algin estimador de calidad (como el PSNR o el SSIM) parece ser la
mejor solucién.

El caso gaussiano nos ha permitido comprender el efecto que la eleccién de A
tiene en las diferentes escalas del problema variacional. Se ha hecho necesario
utilizar diferentes valores de A\ para recuperar diferentes partes de la senal
descritas por diferentes escalas (frecuencial o temporal). En el caso de las senales
de binarias de agujeros negros, este efecto es mas evidente que para las senales
de colapso gravitacional, ya que son significativamente més largas. En particular,
hemos visto que la parte de bajas frecuencias de la senial se puede recuperar con
mayor precision utilizando un valor de A menor que el requerido para recuperar

la parte correspondiente a la fusién y la oscilacién del agujero negro resultante.
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Con las lecciones aprendidas con el caso gaussiano, hemos considerado un
escenario realista, utilizando datos reales del detector LIGO en su configuracién
inicial. Hemos empleado solamente el método rROF, porque es el método que
da los mejores resultados en el dominio del tiempo, evitando los problemas con
los bordes que aparecen generalmente en el dominio de la frecuencia. También
hemos modificado el algoritmo para utilizarlo iterativamente. Este cambio
produce una dependencia més suave con A, aumentando el intervalo de valores
apropiados. Sin embargo, el coste computacional también aumenta ya que el
algoritmo tiene que ser ejecutado mas veces. También hemos observado que la
componente de baja frecuencia del ruido presente en los detectores es dificil de
eliminar utilizando sélo los métodos de variacién total. Esto se relaciona con el
hecho de que las propiedades de eliminacién de ruido de estos métodos dependen
de la escala. Como los algoritmos rROF reducen la variacion total de la senal de
entrada, las frecuencias més altas se eliminaran mas rapido que las inferiores. Sin
embargo, se puede usar rROF con un valor bajo de A para aislar las componentes
de baja frecuencia y luego eliminarlas. Ademas, hemos combinado el algoritmo
rROF con dos métodos adicionales, un preprocesamiento basado en un filtrado
sencillo y un método de blanqueamiento. Nuestro estudio ha demostrado que
los métodos basados en variacién total pueden mejorar los resultados de ambos
algoritmos, conduciendo a senales identificables. Incluso con el ruido real del
detector, los métodos de variacion total son una herramienta interesante que se
puede combinar con otros enfoques comunes dentro del contexto del anélisis de

datos de ondas gravitatorias.

Los algoritmos para eliminar el ruido de una senal gravitatoria presentados en
esta tesis constituyen una linea de investigacién muy prometedora para continuar
en un futuro préximo. Hasta ahora, s6lo hemos explorado dos algoritmos basados
en la liberalizacion de la ecuacién de Euler-Lagrange para resolver el problema
ROF. Seria interesante implementar el algoritmo dual-primal y comparar los
tres métodos en las mismas condiciones, tratando de determinar cudl es el mejor
algoritmo para usar en cada caso. También vale la pena explorar atin mas la
relacién del parametro de regularizacion A con las diferentes escalas, con el fin
de diseniar un algoritmo con un A ajustable que produzca los mejores resultados
para cada condicion de ruido. En este contexto, el algoritmo basado en parches
como non-local means [Buades, Coll, and Morel 2011] puede ser una herramienta
muy util. Ademads, para comprobar las posibles mejoras introducidas al utilizar
un método de eliminacién de ruido basado en variacién total como paso previo
a los algoritmos de deteccion de sefiales y estimacion de parametros, se hace
necesario realizar un estudio combinado. Por tltimo, también se mencionan
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los algoritmos basados en grafos, que han recibido gran atencién en los tltimos
anos. Aplicarlos a los datos de ondas gravitatorias puede ser un proyecto muy

interesante.

Métodos de eliminacién de ruido en ondas gravitatorias basadas en

diccionarios.

También hemos estudiado las capacidades del aprendizaje basado en diccionarios
para recuperar senales de ondas gravitatorias de un fondo dominado por el
ruido. Nuestro algoritmo LASSO ha sido probado usando senales de dos fuentes
principales, estallidos de ondas gravitatorias generados por el colapso del nicleo
de estrellas en rotacién y chirps procedentes de la fusion de dos agujeros negros.
Para obtener los respectivos diccionarios, hemos utilizado el 80% de las formas
de onda para realizar el entrenamiento, el 15% para la validacién, es decir, para
obtener el mejor conjunto de parametros que produce los mejores resultados, y
el ultimo 5% de las formas de onda para evaluar el método. Una caracteristica
interesante de LASSO es que, para la mayoria de las realizaciones de ruido
gaussianas que hemos considerado, devuelve cero si la sefial de entrada no puede
ser reconstruida por los elementos del diccionario. Como resultado, el método
puede proporcionar una reconstruccién de senial bastante clara. Por otra parte,
una limitacién intrinseca del método es que los resultados dependen fuertemente
de la seleccién del parametro de regularizaciéon A, cuyo valor é6ptimo no puede
establecerse a priori, y debe ser estimado mediante estudios de validacion.

Existe una gran variedad de técnicas de aprendizaje automatico en la lit-
eratura. En esta tesis s6lo hemos considerado una de ellas, pero en un futuro
préximo planeamos implementar métodos adicionales para realizar los calculos
del algoritmo LASSO de manera mas eficiente. El calculo de la soluciéon para un
vector de 256 muestras tarda tipicamente unas pocas decenas de ms en un orde-
nador Apple iMac con procesador Intel Core i7 y 16 Gb de Ram. El mayor coste
computacional se asocia con la tarea de aprendizaje. Reducir el tiempo necesario
en esta parte del método es una cuestion clave para aplicar el método en tiempo
real a los datos reales generados por los detectores. En los proximos meses, las
versiones avanzadas de LIGO y Virgo iniciaran de nuevo las observaciones con
una sensibilidad mejorada, aumentando el nimero de detecciones. El desarrollo
de técnicas de andlisis de datos sofisticadas que mejoren las oportunidades de
deteccion, especialmente para eventos con baja relacién senal a ruido, es, por
tanto, un esfuerzo crucial.

Aplazamos para un estudio futuro el andlisis de la tasa de falsa alarma

con glitches simulados (o reales) usando métodos de aprendizaje basados en
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diccionarios. Creemos que este anilisis, junto con los estudios de validacién
utilizando ruido real, son obligatorios antes de usar diccionarios en los algoritmos
de un detector. Para evitar los falsos positivos causados por transitorios de
ruido, es posible emplear diccionarios construidos a partir de una coleccién de
transitorios conocidos, lo que permitiria utilizar LASSO como un clasificador
de transitorios de ruido. Por otra parte, como todos los métodos discutidos
en este trabajo se han desarrollado originalmente para la reconstruccién de
imégenes (datos 2D), tenemos la intencién de aplicarlos en espectrogramas de

ondas gravitatorias.
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Chapter 1

Introduction

During the course of the investigation that has led to the present thesis, I
have worked on three main lines of research, namely (a) Numerical modelling of
astrophysical systems such as neutron stars (NS), (b) classification and character-
ization of instrumental noise in gravitational-wave (GW) detectors, and (¢) GW
data analysis with techniques that had not been employed within such a context
before. My research has been carried out within the Relativistic Astrophysics
Group of the University of Valencia (UV), a group which plays a significant
role in the field of numerical relativity, with relevant contributions regarding
formulations of the equations of relativistic hydrodynamics (GRHD) [Marti,
Ibafiez, and Miralles 1991, Banyuls et al. 1997] and magneto-hydrodynamics
(GRMHD) [Antén et al. 2006] as well as simulating different scenarios of rela-
tivistic astrophysics. Given the group’s background, the natural starting point
of this thesis involved numerical modelling of astrophysical systems using codes
and methods developed by the group (and elsewhere) throughout the years.
Halfway through my doctoral studies, however, the first direct detections ever
of GWs by the Laser Interferometer Gravitational-Wave Observatory (LIGO)
interferometers, took place [Abbott et al. 2016b, Abbott et al. 2016d]. These
exceptional discoveries affected the research plans of this thesis which had to be
adjusted to make room for the exciting new prospects of analyzing actual GW
signals from real astrophysical systems. Part of the Relativistic Astrophysics
Group at UV — me included — joined the Virgo Collaboration on the 1st of
July 2016, eager to play an active role within the growing GW international
community. By joining the Virgo Collaboration, I initiated new research projects
with a number of coworkers from the LIGO Scientific Collaboration and the

Virgo Collaboration. Part of the work done within those collaborations on
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the topic of detector characterization is discussed in the present thesis. Other
projects are still ongoing at the time of writing, but the results will be published
in the near future.

The detection of GWs also boosted the research I had started doing (pre-
detection) on data-analysis techniques based on Total-Variation (T'V) methods.
These algorithms, which do not need any a priori information about signals,
have been originally developed and fully tested in the context of image process-
ing. We adapted them and pioneered their use in the specific context of GW
astronomy, applying them, in particular, to denoise two paradigmatic examples
of numerically-simulated GW signals, namely bursts produced from the core
collapse of rotating stars and waveforms from binary-black-hole mergers. These
techniques can be combined with other standard techniques in data analysis and
may be potentially implemented in a detector’s pipeline.

Further work I carried out on the GW data-analysis front had to do with
machine-learning algorithms, which have experienced a huge development in
recent years. Machine-learning techniques are driving a revolution in data-
analysis science, particularly in the context of massive datasets (i.e. Big Data).
In this line of research, we have developed and tested a specific method based on
learned dictionaries. The dictionaries are built from so-called “atoms” obtained
out of numerical relativity waveform templates, and, after a learning step, they
can nicely dig out a signal buried in a noisy background.

The link between numerical relativity and GW astronomy is obviously strong.
As new detections arrive, especially involving astrophysical sources containing
matter, more simulations will be required to infer the physical parameters of
the progenitor sources. This thesis also discusses the first results of a project
on parameter estimation I have recently started and which relates both topics.
In particular, the project aims at inferring physical parameters of a progenitor
star undergoing rotational core-collapse by studying the effects of the oscillating
modes of the resulting proto-neutron star (PNS) on the GW spectrum.

I turn next to provide further content on these three main lines of research

carried out in this work: numerical modelling, detection, and data analysis.

1.1 Numerical modelling

Regarding numerical modelling, T have worked on two topics, (a) matter accretion
onto magnetized NSs, and (b) oscillation modes of PNSs formed dynamically

following the gravitational collapse of a rotating progenitor.



1.2 Gravitational-wave detection and detector characterization

In the former topic, my investigation has focused on the study of the so-called
hidden magnetic-field scenario [Young and Chanmugam 1995], an intriguing
situation in which the magnetic field of a PNS might be temporarily buried as
a result of accretion of matter behind the supernova shock. This problem was
investigated using axisymmetric numerical simulations with the CoCoNuT code.
However, the simulations were hampered by a number of numerical issues not
yet entirely addressed. The complexity of the simulations has to do with the
coupling of the supersonically infalling unmagnetized fluid with the force-free
magnetosphere and with the high-density magnetized region describing the NS.
Due to the numerical difficulties encountered, we had to make do with simulations
of the much simpler spherically symmetric case. This situation, however, proved
sufficient to obtain the limiting values of the accretion rates and magnetic-field
strengths that characterize the hidden magnetic-field scenario. Our approach
included as many physical ingredients as possible, namely different realistic
equations of state and initial models with varying magnetic-field configurations
and neutron-star masses.

The second topic on numerical modelling has dealt with the study of the
oscillation spectra of PNSs. For this work I have used data from the simulation
performed by Cerdd-Durédn et al. [2013] which explored the dynamics and GW
signature of the collapse of a low-metallicity rapidly-rotating progenitor to a
PNS, the subsequent long phase of accretion that ensues, and the final formation
of a rotating black hole (BH). This project has tried to identify and classify
the different oscillating modes resulting from the linear-perturbation analysis.
The time-frequency distribution of those modes has been compared with the
spectrogram of the corresponding GW signal obtained from the numerical
simulation. A very clear and revealing correspondence between the two types
of modes has been found, which may provide a procedure to infer progenitor
parameters out of the GW spectrum. This is a stimulating possibility which will

be fully investigated in the near future.

1.2 Gravitational-wave detection and detector

characterization

The epoch-making detections of the transient GW signals GW150914 and
GW151226 during the first observing run of the two Advanced LIGO (aLIGO)
interferometers [Abbott et al. 2016b, Abbott et al. 2016d] has marked the start
of GW astronomy. GW150914, detected with unexpectedly high signal-to-noise
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(SNR) ratio (SNR~24) and with a statistical significance greater than 5.10, is
in excellent agreement with numerical-relativity waveforms [Mroué et al. 2013,
Campanelli et al. 2006] for the final few cycles (chirp), merger (burst) and
subsequent ringdown of the coalescence of two stellar-origin BHs in a binary
system. GW151226, also the result of a binary-black-hole merger, was recovered
with similar statistical significance but with a SNR~13. Its initial black-hole
masses, 14.2Mg and 7.5M¢, are lower than in the case of GW150914, 36 M and
29M L. As a result, GW151226 spent almost 1 s in the LIGO frequency band,
increasing in frequency and amplitude from 35 to 450 Hz over about 55 cycles.
Contrary to GW150914, matched filtering with waveform templates from general
relativity was essential to detect GW151226, jointly with unmodeled searches,
due to the smaller strain amplitude and the longer time interval [Abbott et al.
2016d].

At present, the two alLIGO interferometers are well within the second observ-
ing run (O2), which is expected to finish towards the end of August 2017. At the
same time, the commissioning of the European detector Advanced Virgo [Accadia
et al. 2012] is well underway, aiming at start observing in the second half of 2017,
while the Japanese detector KAGRA [Aso et al. 2013] is still under construction.
Simultaneous observational campaigns of these four detectors, five with the later
addition of the recently-approved LIGO India, will also increase considerably
the rate of detections along with their statistical significance and the accuracy
of the sky location of each event [Abbott et al. 2016b].

The aLLIGO detectors are two 4 km interferometers at Hanford, Washington
(H1) and Livingston, Louisiana (L1) [Harry and Collaboration 2010, Aasi et al.
2015b]. The European 3 km advanced interferometer Virgo is located in Cascina,
Italy [Acernese et al. 2008]. The duty cycle of the detectors and their sensitivity
to astrophysical signals is determined by noise sources caused by the instruments
themselves and by their environment. In particular, as the detector noise is
non-Gaussian and non-stationary, short-duration transients significantly limit
the sensitivity of searches for transient astrophysical sources such as compact
binary coalescences [Flanagan and Hughes 1998]. GW detectors contain many
environmental and instrumental sensors, which produce auxiliary channels of
data to monitor the detector behavior and track the causes of short-duration
noise artifacts. Auxiliary channels that are not sensitive to gravitational waves
can be used to identify noise transients, also known as “glitches”, in the detector

IThere is a third candidate event, labelled LVT151012 [Abbott et al. 2016a], which corre-
sponds to the merger of a BBH with a SNR ~ 9.7. However, its low statistical significance
(1.70) does not to allow to claim it as a detection.
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output and veto those events [Smith et al. 2011, Ajith et al. 2014, Aasi et al.
2015a]. As the network of advanced detectors approaches design sensitivity,
the number of detections is expected to increase. Adding further detectors to
the network will increase the number of possible sources of noise and the time
involved to identify their origin. Transients which occur in any one detector
will limit the joint analysis time for the network. Understanding the sources of
noise transients in the detectors will become increasingly more important as the
sensitivity of the detectors increase.

Regarding this topic of research, the thesis presents results on the development
and testing of three methods to automatically detect and classify glitches in
the data of the 7th engineering run (ER7) of advanced LIGO. This has two
interesting applications. Firstly, the automatic classification of known glitches
can be combined with veto techniques to remove corrupted segments of data,
hence reducing the noise background. Secondly, classification methods may
discard GW signal candidates as actual glitches, hence increasing the significance

of the detections.

1.3 Gravitational-wave data analysis

Despite the recent discoveries, noise removal remains one of the most challenging
problems in GW data analysis. There exist a number of noise sources that
limit the possibilities of detection [Martynov et al. 2016]. The most limiting
source of noise for frequencies below a few tens of Hz is gravity-gradient
noise. Thermal noise due to Brownian motion is dominant at intermediate
frequencies, while shot noise, produced by quantum fluctuations of the laser,
becomes prominent at frequencies above ~ 150 Hz, difficulting detection above 2
kHz. Nevertheless, searches for GW bursts up to frequencies of 5 kHz have been
performed [Abadie et al. 2012]. To add more complexity, transient spurious noise
signals (glitches) due to instrumental or environmental sources, may potentially
disturb astrophysical signals. Glitches might mimic GW signals increasing the
false-alarm rate and producing a decrease in the detectors’ duty cycles. A huge
effort in commissioning and detector characterization [Christensen et al. 2010]
has been done to reduce the effect of glitches. Improving glitch identification
and classification [Powell et al. 2015, Powell et al. 2017] would improve detection
efficiency but there will always be a chance for false positives in the detectors.

GW interferometers are designed to be sensitive to waveforms produced
by different astrophysical mechanisms. Sources can be separated in groups

depending on how well-known and modeled their waveforms are. Specific
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data-analysis techniques have been developed for each type of signal (for a
review see Jaranowski and Krolak [2005] and references therein). Transient
gavitational-wave signals from compact binary coalescence (CBC), either from
binary neutron stars (BNS) or binary black holes (BBH), are well studied and the
corresponding waveforms can be calculated with high accuracy. These systems
are nowadays modeled using the effective-one-body formalism (EOB) [Buonanno
and Damour 2000] which combines post-Newtonian methods [Blanchet, Damour,
and Iyer 1995, Blanchet et al. 2004] with numerical relativity and perturbation
theory [Nagar and Rezzolla 2005]. This technique allows to generate template
banks efficiently. This is the main reason matched-filtering is the most common
method for CBC detection [Owen and Sathyaprakash 1999, Sathyaprakash and
Schutz 2009, Abbott et al. 2016a] in which filters correlate signals with templates.
A trigger associated with a specific template is generated when the filter output
excess a certain threshold. In addition to EOB waveforms, other waveform
families are needed to cover as much parameter space as possible (see Abbott

et al. [2016¢] and references therein).

Matched-filtering becomes however unpractical for well-modeled but continu-
ous sources, like spinning NS, due to the large computational resources it would
require. Nevertheless, as such signals are very stable and have long duration, a
coherent integration can be performed. In addition, the data from all detectors
can be compared, which increases the SNR of this type of events. Roughly
speaking there are two main methods to fulfill this comparison, cross-correlation
and coherent methods [Bose, Pai, and Dhurandhar 2000]. The former directly
compare the data streams from a pair of detectors to search for a common signal
within uncorrelated noise while the latter generalize the concepts of excess power
and cross-correlation to take full advantage of having three or more data streams.
The duration and the sky coverage (all-sky or targeted) [Palomba 2012] can vary
depending of the type of source which is sought for.

In contrast with CBC and continuos sources, the non-spherical gravitational
collapse of massive stars produces a short (~ms) duration (prompt) signal (but
see e.g. Cerdd-Durdn et al. [2013] for the case of collapsars where the duration of
the signal is dominated by the accretion timescale, considerably longer) with a
significant power in the kHz frequency band. In addition to core-collapse super-
nova, other astrophysical sources as cosmic string cusps [Damour and Vilenkin
2005], NS glitches [Van Eysden and Melatos 2008, Sidery, Passamonti, and
Andersson 2010], magnetar flares [Ciolfi et al. 2011, Zink, Lasky, and Kokkotas
2012], BBH, BNS, and NSBH mergers, and BH accretion disks [Mewes et al.

2016] can also produce GW transients or “bursts”. Such signals, in particular
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core-collapse bursts, can only be modeled imperfectly, and the computational
requirements for obtaining the corresponding waveforms from numerical rela-
tivity simulations and the parameter space are much larger than in the case of
binary systems. Therefore, a bank of templates cannot be built with sufficient
accuracy to meet the requirements of matched-filtering. For burst signals, the
time-frequency analysis of the signal in all the detectors, related to each other
with cross-correlation and coherent methods, is the best option. With initial de-
tectors, several complete all-sky, all-time burst searches were performed [Abadie
et al. 2012] and another one has also been carried out during advanced LIGO’s
first observing run (O1) [Abbott et al. 2016¢|. These techniques, used in tandem
with electromagnetic observations, can increase the possibilities of identifying a
GW burst [Abbott et al. 2009].

The detection confidence of unmodeled astrophysical sources has significantly
improved in recent years. In particular, coherent approaches over a network
of GW detectors have proven to be very effective [Thrane and Coughlin 2015,
Klimenko et al. 2016], increasing the detection confidence of long-duration (above
several seconds) burst signals which are less sensitive to the presence of most
noise transients. In contrast, short-duration bursts are more affected by detector
glitches and specific pipelines based on Bayesian inference have been developed to
differentiate between signals and noise transients, namely BayesWave [Littenberg
et al. 2016], either alone or in combination with coherentWaveBurst [Kanner
et al. 2016], and oLIB [Lynch et al. 2015]. Other approaches, like those of Rover
et al. [2009] and Engels, Frey, and Ott [2014], have proven to be effective
for estimating physical parameters and for the reconstruction of burst signal

waveforms from (Gaussian) noisy environments.

In this thesis we deviate from the standard approaches used in the GW
data analysis community by assessing a method based on TV-norm algorithms
[Rudin, Osher, and Fatemi 1992] for denoising and detection of gravitational
waves. This assessment is carried out both, for signals embedded in additive
Gaussian noise as for signals embedded in actual detector noise, namely that
of LIGO’s S6 run in its initial configuration. Arguably, the main advantage of
this technique is that no a priori information about the astrophysical source or
about the signal morphology is required to perform the denoising. This feature
allows us to obtain satisfactory results for data from two different numerically-
relativity-generated catalogs of gravitational waveforms comprising signals with
very different structure. Moreover, we also adapt dictionary-learning algorithms,

which have been extensively developed in the last few years and successfully
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applied in the context of image processing, to GW data. By building dictionaries
from numerical relativity templates of both, BBH mergers and bursts of rotational
core collapse, we show how machine-learning algorithms based on dictionaries
can be also successfully applied for GW denoising.

1.4 Organization of the thesis

The rest of the thesis is organized in five parts:

Part IT discusses numerical modelling and contains three chapters. Chapter 2
presents a brief summary of the general relativistic MHD equations and the
Riemann problem, with emphasis on the specific configuration of the magnetic
field used in Chapter 3, which presents the results of the one-dimensional
parametric study of accretion onto NSs and the hidden-magnetic-field scenario.
This part closes with Chapter 4 which deals with the study of the oscillation
spectra of PNS.

In Part III we focus on detector characterization. The first chapter in this
part, Chapter 5, introduces the problem of noise in GW detectors, describing
the main sources and gives some examples of the noise transients (glitches)
that limit the detection. Chapter 6 reports the results of the work done in the

glitch-classification project.

Part IV discusses the data-analysis techniques we have developed during
this thesis along with the results accomplished. We present a brief theoretical
introduction to these methods and algorithms in Chapter 7, focusing on the most
important methods developed to denoise images and signals. The results of the
application of TV methods to both Gaussian noise and real noise from LIGO data
are presented in Chapter 8 and Chapter 9, respectively. Finally, the last chapter
of this part, Chapter 10, presents the results of applying dictionary-learning

algorithms to extract GW signals embedded in Gaussian noise.

A summary of the results reported in the thesis and the outlook to possible

future extensions of this work are presented in Part V.

Finally, Part VI contains two appendices. On the one hand, Appendix A
describes the specific formulation of the Discrete Fourier Transform (DFT) we
employ in this work and the method we use to generate Gaussian noise. On the
other hand, Appendix B gives a succinct description of the two GW catalogs we

use to perform the tests in the data-analysis part.
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1.5 Conventions

Throughout this thesis we use a spacelike metric signature (-,+,+,+) and ¢ =
G = 1 (geometrized) units, where ¢ stands for the speed of light and G is
Newton’s gravitational constant. We absorb the factor 1/v/4m appearing in the
GRMHD equations in the definition of the magnetic field B, i.e. the units of
the magnetic field are v/4w Gauss. This system of units is known as Heaviside-
Lorentz [Jackson 1962]. As customary, Greek indices run from 0 to 3, Latin
indices from 1 to 3, and we use Einstein’s summation convention for repeated

indices. Vector and tensor variables are indicated in boldface.
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Chapter 2

Numerical relativity and
MHD

General Relativity (GR) is the theory of gravity that best describes the strong-
field scenarios distinctive of the central engines responsible of the most energetic
processes observed in the Universe, either in high-energy astrophysics (involving
electromagnetic radiation) or in the newborn GW astronomy. High-energy
radiation from NSs and accreting BHs, the production of relativistic radio jets
in active galactic nuclei, the kHz quasi-periodic oscillations in low-mass X-ray
binaries, the coalescence of binary systems of NSs and BHs, and events related
with the gravitational collapse of massive stars, including the generation of
gamma-ray bursts (GRB) and the emission of gravitational waves, are examples

of present-day research in astrophysics where GR is required.

In general, understanding the complex dynamics of those scenarios is beyond
the scope of analytic approaches (except when idealised physical conditions
and unrealistic symmetries are assumed) and demands multidimensional, time-
dependent, and highly accurate numerical simulations. Numerical relativity (NR)
simulations in particular! play a fundamental role in the field of GW astronomy.
The study of the astrophysical scenarios where detectable gravitational radiation
is generated, either in vacuum (as in the the binary BH hole problem) or in
those which involve matter, badly need simulated gravitational waveforms to

infer the underlying physics and dynamics.

I Numerical relativity is the field of research of GR devoted to solving numerically Einstein’s
equations for the dynamics of the gravitational field on supercomputers [Alcubierre 2008,
Baumgarte and Shapiro 2010, Shibata 2015].



Numerical relativity and MHD

The goal of is this chapter is to present a brief overview of the NR equations
and numerical methods which are specifically employed for the simulations
presented in this work. The field of NR is much too wide to be properly covered
in this manuscript. The interested reader is addressed to recent text-books and
review articles for further details [Alcubierre 2008, Font 2008, Baumgarte and
Shapiro 2010, Rezzolla and Zanotti 2013, Shibata 2015].

2.1 General relativistic magneto-hydrodynamics

In relativistic astrophysics, there are situations where, along with the gravita-
tional field, the magnetic field also plays an important role in the dynamics and
may affect the evolution of the system. For example, the internal structure of NS
stars is determined by their intense magnetic field, of the order of 10'2 — 10'3 G
or even larger, ~ 10'* —10'® G in the case of magnetars. In such a circumstance,
the dynamics of the system is described by a coupled system of time-dependent,
partial differential equations, comprising the general relativistic MHD equations
and the Einstein gravitational field equations. During the last 20 years, many
efficient numerical implementations of those equations have been developed,
yielding considerable progress in the field of NR (see in particular Font [2008]
and references therein for an overview of state-of-the-art approaches to solve the
GRMHD equations).

We adopt the 3+1 formalism [Lichnerowicz 1944] to foliate the spacetime
into a set of spacelike hypersurfaces. In this formulation, the line element can

be written as,
ds® = —(a? — BiB")dt* + 2B;dx'dt + ;;da’da? (2.1)

where a (lapse function), 3¢ (shift vector) and ;; (spatial metric) are functions

of the coordinates ¢, x*. The Eulerian observer is the one whose four-velocity m,

1 .
nt = E(l, —-f"), (22)
is perpendicular to the hypersurfaces of constant coordinate time t.
When matter is present in the spacetime, another observer can be naturally
introduced, the so-called comoving observer. This observer moves with the fluid
with four-velocity u. The three-velocity of the fluid measured by an Eulerian

observer reads,
i i
5 U I}
v'=—— + —
au @

while v; = u;/W and W = aul is the Lorentz factor.

(2.3)

)
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The electromagnetic field in GR is described by the (Faraday) electromagnetic
tensor F'*”. It is worth to define the dual of the electromagnetic tensor *F+”

1
*EH = 5n*“MFM, (2.4)

with 9*¥*? being the volume element. The Maxwell equations can be written in

terms of the electromagnetic tensor as,

V,*F¥ = 0, (2.5)
V,FY = 4xJH, (2.6)

where V,, stands for the covariant derivative and J* is the electric four-current.

According to Ohm’s law, the latter can be in general expressed as
JH = pgutt + o F*u,,, (2.7)

where p, is the proper charge density measured by the comoving observer and o

is the electric conductivity.

In the so-called ideal MHD limit, the conductivity of the fluid is infinite
(perfect conductor) and the temporal component of the electric field vanishes
for an Eulerian observer, E# = (0, —eijkvak), where €5, is the permutation
tensor and B* is the magnetic field. In this case, Maxwell’s equations reduce to
the divergence-free condition plus the induction equation for the evolution of
the magnetic field.

— —

V-B = 0 (2.8)

Lo (ﬁé) V x Kaﬁ'— 5) X B} ) (2.9)

Nl

where v := ,/7;; and V is the covariant derivative associated with the spatial

3-metric.

The evolution of a magnetised fluid (a plasma) is governed by the conserva-
tion laws of energy momentum V, T = 0 and baryon number (conservation
equation) V,J" = 0, where the rest-mass current is given by J* = pu*, and p
denotes the rest-mass density. For a magnetised fluid, the energy-momentum
tensor is the combination of the energy-momentum tensor of the fluid and of

the electromagnetic tensor,
" = Toa + Tenr- (2.10)
The fluid component is given by,

TIé‘Llllllid = phu”uy + pgl“” (211)
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where h = 1+ e+ P/p is the relativistic enthalpy, € is the specific internal energy,
p the fluid pressure, u* is the four-velocity and ¢g"” is the metric. An equation

of state (EoS) relates all these thermodynamical quantities.

In the ideal MHD limit, the energy-momentum tensor of the electromagnetic
field can be defined in terms of the magnetic field b* measured by a comoving

observer,

1
T, = (u“u” + ng”> b — b, (2.12)

where b* = b*b,,. Joining Eq. (2.11) and Eq. (2.12), the total energy-momentum
tensor reads as,

v b2 v b2 v v
™ = ph+5 utu” + p+§ ghr —bHbY. (2.13)

As shown by Antén et al. [2006], the equations of GRMHD, together with the
induction equation, can be cast as a first-order, flux-conservative hyperbolic
system, in a similar way as it was done by Banyuls et al. [1997] in the purely
hydrodynamical case. This system of equations is nowadays known as the
Valencia formulation of ideal GRMHD. The set of conserved quantities of the

system is given by

D = pW, (2.14)

S; = (ph + bQ)WQ’Ui — Oébibo, (2.15)
2

T = (ph+ vV HW? - (p + b2) —a?(°)? - D, (2.16)

The explicit form of the flux-conservative, hyperbolic system of GRMHD equa-

tions reads,

L (B 0 g )

where \/—g = «,/7 and the state vector and flux vector are given by,

D

U = , (2.18)
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D
. Siot+ (p+ ) 8 — b B /W
F = g S (2.19)
w5+ (p+ 5 ) vi - at B /W
’f}in _ ’lN)k’Bi
with 7% = v* — % The corresponding sources S are given by
0
v aguj )
S - TH (W — ngéj) ’ (2.20)

w0 Olna _ ur 0
a(T Oxh T FV#)

Ok
where 0% = (0,0,0)7, 6% is the Kronecker delta, and I‘,‘i# are the Christoffel
symbols associated with the four-metric. Note that the above system of equations

contain components of the magnetic field measured by both a comoving observer
and an Eulerian observer. They are related by

Biv,

po = B (2.21)
«Q

b= % (2.22)

The state of the fluid is uniquely described by the primitive variables which
conform a vector w = [p, u;, €] or by the vector of conserved variables U =
[D, S;,7]. Note that one can be obtained from the other following Eq. (2.16).

2.2 The Riemann Problem

The Riemann problem? is an initial value problem with discontinuous data, given
a linear (or non-linear) hyperbolic system of conservation laws. For example,
consider the 1D linear problem,

U, +U, =0, (2.23)
where U; := 90U /0t and U,, := OU/Ox. The initial conditions at the left and

right states of the initial discontinuity
Uy if <0

U(z,0) = (2.24)
Ur if >0

2The analytic solution of the Riemann problem in relativistic MHD will be necessary when
discussing the results of Chapter 3.
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completely determine the evolution of the Riemann problem and how the dis-
continuity evolves with time.

Many numerical codes use finite-difference or finite-volume methods to com-
pute the solution of a conservative system of equations, after a discretization of
the computational domain. In the process of discretization (say, using piecewise
constant data), at the interface of each pair of adjacent numerical cells a Riemann
problem arises. The evolution of the system can thus be obtained through the
solution of a sequence of Riemann problems along the computational grid, as
Godunov [1959] first showed in 1959 for the equations of classical hydrodynamics.
For this reason, the Riemann problem has gained an enormous importance in
the field of numerical relativistic hydrodynamics and MHD.

In general, the solution of the Riemann problem cannot be obtained analyti-
cally (e.g. for microphysical EoS or for the GRMHD equations) and numerical
approaches are required. Those approzimate solutions derive from the solution of
the Riemann problem for a reformulated system of equations, i.e. cast in a locally
linear form (see Toro [2013] for details). The exact solution of the Riemann
problem in one-dimensional special relativistic hydrodynamics was found by
Marti and Miiller [1994]. This seminal work has been extended to account for
more general situations by Pons, Marti, and Miiller [2000] and Rezzolla, Zanotti,
and Pons [2003] (including transverse speeds) and by Giacomazzo and Rezzolla
[2006] (for 1D special relativistic MHD). The analytic solution of the Riemann
problem is not only important to understand fundamental issues of wave propa-
gation in relativistic hydrodynamics and MHD but also to test modern numerical
codes written in conservation form and based on approzimate Riemann solvers,
i.e. the so-called high-resolution shock-capturing (HRSC) schemes [LeVeque
1992]. These methods rely on the shock-capturing property which ensures that
the numerical scheme converges to the correct Rankine-Hugoniot conditions
across discontinuities. HRSC methods guarantee that the wave propagation of
hyperbolic systems of conservation laws (such as the relativistic hydrodynamics

and MHD systems) is accurate and correctly captured.

2.2.1 The Riemann problem in GRMHD

When the magnetic field of the initial states is tangential to the discontinuity
and orthogonal to the fluid velocity, the exact solution of the Riemann problem
was derived by Romero et al. [2005]. The general, exact solution of the Riemann
problem in relativistic MHD was obtained by Giacomazzo and Rezzolla [2006].

It comprises a set of seven nonlinear waves: two fast magnetosonic waves, two
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slow magnetosonic waves, two Alfvén waves and a contact discontinuity at which
only the density may be discontinuous. We discuss next the exact solution of
the Riemann problem in GRMHD that will be employed in the results reported
in Chapter 3.

For an ideal magneto-fluid, the energy-momentum tensor T#” and Maxwell

dual tensor F**” can we rewritten as

T = phutu’ + g p — bHYY (2.25)
F* = yfp — Vbt (2.26)

where h =1+4¢ + p/p +b?/p is the specific enthalpy including the contribution
of the magnetic field and p = p + b?/2 is the total pressure.

The particular configuration of the Riemann problem discussed in Chapter 3
is w* = W(1,v%,0,v*) and b* = (0,0,b,0). Therefore, the term V,b"b” in
the conservation of the stress-energy tensor, vanishes. Hence, the conservation
equations reduce to the purely hydrodynamical case with the only contributions
from the magnetic field appearing in the total pressure and specific enthalpy, and
an additional continuity equation for the evolution of the transverse magnetic
field. We have extended the previous work using a more general EoS instead of
the polytropic EoS used in the original work.

The Riemann problem in this particular configuration is described in terms
of three characteristics, one entropy wave and two fast magneto-sonic waves.
The initial problem with two states L (left) and R (right) breaks up into four
states,

IW. L.CRW_R,

where W indicates a fast magnetosonic shock wave or a rarefaction wave and C
indicates the contact discontinuity.

Solving the Riemann problem entails finding the intermediate states (L., Ry)
and the position of the waves which separates the four states (see Romero et al.
[2005]). The functions W_, and W, determine the functions v} (p) and v§_(p)
respectively. The condition,

vg. (Bx) = VI (Px) = 0%, (2.27)
determines the pressure p, and the flow velocity v¥ at the intermediate states.
The functions v§, (p) are defined by
) ifp<ps
) ip>ps

3>

R5(

vg.(p) = { S5 (2.28)

3>
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where R5(p) (S%(p)) denotes the family of all states which can be connected
through a rarefaction (shock) with a given state S (L, R) ahead of the wave.
Once p, and v¥ have been obtained the remaining quantities can be computed.
The goal is, therefore, to find the relation between the pressures of states ahead
(a) and behind (b) the waves (rarefaction or shock) with the normal velocity of
the state behind wvy.

If p < p. the wave is a rarefaction wave (a self-similar continuous solution),
otherwise the solution is a shock wave. In our case [see Romero et al. 2005] the
ordinary differential equation that allows to obtain the solution for a rarefaction

wave is given by

dv® _i(1+b2/(phcs))\/il+/iz(1—wQ)@ (2.29)

1= (v*)? h2 + A2 pw

where A = hWv?, w = ¢ +v4 — v, va = b*/ph is the Alfvén velocity and

1 9p

Cs =\/n 3p

is the sound speed. The integration of Eq. (2.29) allows to connect
S

the states ahead and behind the rarefaction wave. Rarefaction waves conserve
entropy, hence, all the thermodynamical variables and the differential of p must
be calculated at the same entropy of the initial state. From this equation, the

normal velocity behind the rarefaction can be obtained directly,

v¥ = tanhC, (2.30)
with
A 1 1+ vF
= —1 a
¢ 2 0g<11}f§)
Bo (14 b2/(phes))\/h + A2(1 — w?) ¢4
/ ( /( A))\/ : ( )7p. 231)
Pa h? + A2 pw

In the same way, the velocity inside the rarefaction can be obtained replacing
the thermal pressure p by the total pressure p.

Shock waves should fulfill the so-called Rankine-Hugoniot conditions [Lich-
nerowicz 1967, Anile 1989]:

putln, = 0, (2.32)
[T"]n, = 0, (2.33)
[F*"]n, = 0, (2.34)



2.2 The Riemann Problem

23

where n,, is the unit normal to a given surface and [H| = H, — H, being H,
and Hp the boundary values.

The invariant j can be directly obtained from these equations,
j = VVsDa(‘/s - U(f) == WeDb(Ve - UZ) ) (235)

where V is interpreted as the coordinate velocity of the surface that defines the
position of the shock wave and Wy is the Lorentz factor of the shock.
The normal flow speed in the post-shock state, v, can be extracted from the

Rankine-Hugoniot equations [see Romero et al. 2005, for a detailed discussion],

7 ] Ws Dy — Aa
o= (haWavszr(p".p)) (2.36)
j
N WP 1 -t
X (haWa + (Py — Pa) ( ;.U“ + PRI )) . (2.37)

Using the definition of mass flux the shock velocity Vs can be expressed as,

vt PaWave £ iV + s We(1 — vg)’
’ paWe + 52

(2.38)

These expressions, together with the Lichnerowicz adiabat for this particular
case [see Pons, Marti, and Miiller 2000, for details],

poy_ (P ha
[h7] = (pb+pa>, (2.39)

allows to write p, as a function of p, and the preshock state a, thought the
expression
R T (2.40)
o]
Using the positive (negative) root of j2 for shock waves propagating towards the

right (left), equation (2.40) allows one to obtain the desired relation between

the post-shock normal velocity vj and the post-shock pressure pj.






Chapter 3

Accretion onto neutron
stars and the hidden

magnetic field scenario

The results of this chapter have been originally published in:

Torres-Forné, A., Cerda-Durédn, P., Pons, J. A., and Font, J. A. “Are pulsars
born with a hidden magnetic field?” Monthly Notices of the Royal Astronomical
Society, 456(4), 3813-3826 (2016).

3.1 Astrophysical motivation

Central Compact Objects (CCOs) are isolated, young NSs which show no radio
emission and are located near the centre of young supernova remnants (SNRs).
Three such NSs, PSR E1207.4-5209, PSR J0821.0-4300, and PSR J1852.3-0040,
show an inferred magnetic field significantly lower than the standard values for
radio-pulsars (i.e. 10'2 G). The main properties of these sources are summarised
in Table 3.1. In all cases, the difference between the characteristic age of the NS
T.= P/ P and the age of the SNR indicates that these NSs were born spinning
at nearly their present periods (P ~ 0.1 — 0.4 s). This discovery has challenged
theoretical models of magnetic field generation, that need to be modified to
account for their peculiar properties.

The first possible explanation for the unusual magnetic field found in these
objects simply assumes that these NSs are born with a magnetic field much

lower than that of their classmates. This value can be amplified by turbulent
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Table 3.1 Central Compact Objects in Supernova Remnants. From left to right the columns
indicate the name of the CCO, the age, the distance d, the period P, the inferred surface
magnetic field, Bs, the bolometric luminosity in X-rays, Ly 101, the name of the remnant, the
characteristic age, and bibliographical references.

CCO Age d P By Ly bol SNR Te References
(kyr) (kpe) (s) 10MG  (ergs ) (Myr)
J0822.0-4300 37 22 0112 065 6.5 x10% Puppis A 190 1,2
1E 1207.4-5209 7 22 0424 2 25x10% PKS1209-51/52 310 2, 3,4,5,6,7
J185238.6-+004020 7 7 0.105 0.61 5.3 x 10% Kes 79 190 8,9, 10, 11

References: (1) Hui and Becker 2006, (2) Gotthelf, Halpern, and Alford 2013, (3) Zavlin et al. 2000, (4)
Mereghetti et al. 2002, (5) Bignami et al. 2003, (6) De Luca et al. 2004, (7) Gotthelf and Halpern 2007, (8) Seward
et al. 2003, (9) Gotthelf, Halpern, and Seward 2005, (10) Halpern et al. 2007, (11) Halpern and Gotthelf 2010

dynamo action during the PNS phase [Thompson and Duncan 1993, Bonanno,
Urpin, and Belvedere 2005] . In this model, the final low values of the magnetic
field would reflect the fact that the slow rotation of the NS at birth does not
suffice to effectively amplify the magnetic field through dynamo effects. However,
recent studies have shown that, even in the absence of rapid rotation, magnetic
fields in PNS can be amplified by other mechanisms such as convection and the
standing accretion shock instability (SASI) [Endeve et al. 2012, Obergaulinger,
Janka, and Aloy 2014].

An alternative explanation is the hidden magnetic field scenario [Young and
Chanmugam 1995, Muslimov and Page 1995, Geppert, Page, and Zannias 1999,
Shabaltas and Lai 2012]. Following the supernova explosion and the NS birth,
the supernova shock travels outwards through the external layers of the star.
When this shock crosses a discontinuity in density, it is partially reflected and
moves backwards (reverse shock). The total mass accreted by the reverse shock
in this process is in the range from ~ 10~*M, to a few solar masses on a typical
timescale of hours to days [Ugliano et al. 2012]. Such a high accretion rate
can compress the magnetic field of the NS which can eventually be buried into
the NS crust. As a result, the value of the external magnetic field would be
significantly lower than the internal ‘hidden’ magnetic field. Bernal, Lee, and
Page [2010] performed 1D and 2D numerical simulations of a single column of
material falling onto a magnetised NS and showed how the magnetic field can
be buried into the NS crust.

Once the accretion process stops, the magnetic field might eventually reemerge.
The initial studies investigated the process of reemergence using simplified 1D
models and dipolar fields [Young and Chanmugam 1995, Muslimov and Page
1995, Geppert, Page, and Zannias 1999] and established that the timescale for
the magnetic field reemergence is ~ 1 — 107 kyr, critically depending on the

depth at which the magnetic field is buried. More recent investigations have
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confirmed this result. Ho [2011] observed similar timescales for the reemergence
using a 1D cooling code. Vigand and Pons [2012] carried out simulations of
the evolution of the interior magnetic field during the accretion phase and the
magnetic field submergence phase.

In the present chapter we study the feasibility of the hidden magnetic field
scenario using a novel numerical approach based on the solutions of 1D Riemann
problems (discontinuous initial value problems) to model the compression of
the magnetic field of the NS. The two initial states for the Riemann problem
are defined by the magnetosphere and by the accreting fluid, at either sides
of a moving, discontinuous interface. Following the notation defined in Michel
[1977], the NS magnetosphere refers to the area surrounding the star where the
magnetic pressure dominates over the thermal pressure of the accreting fluid.
The magnetopause is the interface between the magnetically dominated area and
the thermally dominated area. The equilibrium point is defined as the radius at
which the velocity of the contact discontinuity is zero.

The chapter is organized as follows. In Sections 3.2 to 3.4.1 we present the
model we use to perform our study. We describe in these sections the equation
of state (EoS) of the accreting fluid, the spherically symmetric Michel solution
characterising the accreting fluid, and all the expressions needed to compute
the potential solution for the magnetic field in the magnetosphere. Section 3.5
contains the main results of this work. After establishing a reference model,
we vary the remaining parameters, namely entropy, composition and the initial
distribution of the magnetic field, and study their influence on the fate of the
magnetic field. Finally, in Section 3.6 we discuss our findings and summarise

the main results of our study.

3.2 The reverse shock and the fallback scenario.

At the end of their lives, massive stars (Mgar 2 8 M) possess an onion-shell
structure as a result of successive stages of nuclear burning. An inner core,
typically formed by iron, with a mass of ~ 1.4M; and ~ 1000 km radius
develops at the centre, balancing gravity through the pressure generated by
a relativistic, degenerate, v = 4/3, fermion gas. The iron core is unstable
due to photodisintegration of nuclei and electron captures, which result in a
deleptonization of the core and a significant pressure reduction (y < 4/3). As a
result, the core shrinks and collapses gravitationally to nuclear matter densities
on dynamical timescales (~ 100 ms). As the centre of the star reaches nuclear

saturation density (~ 2 x 10'* g cm~2), the EoS stiffens and an outward moving



28

Accretion onto neutron stars and the hidden magnetic field scenario

(prompt) shock is produced. As it propagates out the shock suffers severe
energy losses dissociating Fe nuclei into free nucleons (~ 1.7 x 105! erg/0.1My),
consuming its entire kinetic energy inside the iron core (it stalls at ~ 100 —
200 km), becoming a standing accretion shock in a few ms. There is still debate
about the exact mechanism and conditions for a successful explosion, but it is
commonly accepted that the standing shock has to be revived on a timescale
of <1 s by the energy deposition of neutrinos streaming out of the innermost
regions, and some form of convective transport for the shock to carry sufficient

energy to disrupt the whole star [see Janka et al. 2007, for a review on the topic|.

Even if the shock is sufficiently strong to power the supernova, part of the
material between the nascent NS and the propagating shock may fall back into
the NS [Colgate 1971, Chevalier 1989]. Determining the amount of fallback
material depends not only on the energy of the shock but also on the radial
structure of the progenitor star [Fryer 2006]. Most of the fallback accretion is
the result of the formation of an inward moving reverse shock produced as the
main supernova-driving shock crosses the discontinuity between the helium shell
and the hydrogen envelope [Chevalier 1989]. For typical supernova progenitors
(10— 30 M) the base of the hydrogen envelope is at 7y ~ 10! cm to 3 x 10!2 cm
[Woosley, Heger, and Weaver 2002], which is reached by the main shock on
a timescale of a few hours. The reverse shock travels inwards carrying mass
that accretes onto the NS. It reaches the vicinity of the NS on a timescale of
hours, about the same time at which the main supernova shock reaches the
surface of the star [Chevalier 1989]. By the time the reverse shock reaches the
NS, the initially hot PNS has cooled down significantly. In its first minute of
life the PNS contracts, cools down to 7' < 10! K and becomes transparent to
neutrinos [Burrows and Lattimer 1986, Pons et al. 1999]. In the next few hours
the inner crust (p € [2 x 10,2 x 10!] g ecm™3) solidifies but the low density
envelope (p < 2 x 10! g cm™3), which will form the outer crust on a timescale
of 1 — 100 yr, remains fluid [Page et al. 2004, Aguilera, Pons, and Miralles 2008].

Understanding the processes generating the magnetic field observed in NSs,
in the range from ~ 10'° G to ~ 10'® G, is still a open issue. Most likely,
convection, rotation and turbulence during the PNS phase play a crucial role in
field amplification [Thompson and Duncan 1993]. However, at the time in the
evolution that we are considering (hours after birth), none of these processes can
be active anymore and the electric current distribution generating the magnetic
field will be frozen in the interior of the NS. These currents evolve now on the
characteristic Hall and Ohmic timescales of 10*-105 yr [Pons and Geppert 2007,
Pons, Miralles, and Geppert 2009, Vigano et al. 2013], much longer than the
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timescale t,.. during which fallback is significant, which can be estimated as the

free-fall time from the base of the hydrogen envelope

1 7’3 1/2
tace ~ 5 (GL) . (31)

This ranges from 30 minutes to several days for the typical values of rg and a
M =1.4Mg.

The total mass accreted during this phase is more uncertain. Detailed 1D
numerical simulations of the shock propagation and fallback estimate that typical
values range from 10~%Mg to a few solar masses [Woosley and Weaver 1995,
Zhang, Woosley, and Heger 2008, Ugliano et al. 2012]. If more than a solar mass
is accreted, the final outcome would be the delayed formation of a BH, hours to
days after core bounce. Chevalier [1989] and Zhang, Woosley, and Heger [2008]
showed that the accretion rate is expected to be maximum when the reverse
5/3

shock reaches the NS and decreases as t~°/° at later times. Therefore, the total

amount of accreted mass is dominated by the fallback during the first few hours.

Given the theoretical uncertainties, we assume for the rest of this work that
a total mass of 6M € [107°5Mg, M.y is accreted during a typical timescale
of tace € [103,10%] s, being dMpax ~ 1M the amount of mass necessary to
add to the NS to form a BH hole. Therefore, the typical accretion rate during
fallback is M € [107,1073] M, /s, which, for practical purposes, we assume to
stay constant during the accretion phase. This accretion rate, even at its lowest

value, exceeds by far the Eddington luminosity

Mc? M
=5x100 ———— 3.2
LEdd x (IOQM@/S> ’ ( )

with Lrqq = 3.5 x 103 erg s~! the Eddington luminosity for electron scattering.

In the hypercritical accretion regime, the optical depth is so large that
photons are advected inwards with the flow faster than they can diffuse outwards
[Blondin 1986, Chevalier 1989, Houck and Chevalier 1991]. As a result the
accreting material cannot cool down resulting in an adiabatic compression of
the fluid. The dominant process cooling down the accreting fluid and releasing
the energy stored in the infalling fluid is neutrino emission [Houck and Chevalier
1991]. At temperatures above the pair creation threshold, Tpai ~ 10'° K, pair
annihilation can produce neutrino-antineutrino pairs, for which the infalling
material is essentially transparent and are able to cool down very efficiently the

material as it is decelerated at the surface of the NS or at the magnetopause.
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Therefore, the specific entropy, s, of the fallback material remains constant all

through the accretion phase until it decelerates in the vicinity of the NS.

The value for s is set at the time of the reverse shock formation. Detailed 2D
numerical simulations of the propagation of the shock through the star [Scheck
et al. 2006, Kifonidis et al. 2003, Kifonidis et al. 2006] show that typical values
of s ~ 20 kp/nuc are found at the reverse shock. At this stage of the explosion
the flow is highly anisotropic due to the Rayleigh-Taylor instability present in
the expanding material and the Richtmyer-Meshkov instability at the He/H
interface. Those instabilities generate substantial mixing between hydrogen
and helium and even clumps of high-entropy heavier elements (from C to Ni)
rising from the innermost parts of the star. Therefore, the fallback material
has entropy in the range s ~ 1 — 100 kg/nuc and its composition, although
it is mostly helium, can contain almost any element present in the explosion.
3D simulations show qualitatively similar results regarding the entropy values
and mixing [Hammer, Janka, and Miiller 2010, Joggerst, Almgren, and Woosley
2010, Wongwathanarat, Miiller, and Janka 2015].

Outside the NS, the expanding supernova explosion leaves behind a low
density rarefaction wave which is rapidly filled by the NS magnetic field, forming
the magnetosphere. For the small magnetospheric densities, the inertia of the
fluid can be neglected, and the magnetosphere can be considered force-free.
The fallback reverse shock propagates inwards compressing this magnetosphere.
The boundary between the unmagnetised material falling back and the force-
free magnetosphere, i.e. the magnetopause, can be easily compressed at long
distances (r > 108 cm ) due to the large difference of the pressure of the infalling
material with respect to the magnetic pressure. The dynamical effect of the
magnetosphere only plays a role at r < 108 c¢m, i.e. inside the light cylinder for
most cases. The precise radius where the magnetic field becomes dynamically
relevant is estimated later in Section 3.4.2. Only in the case of magnetar-like
magnetic fields and fast initial spin (P < 10 ms) this consideration is not valid,
although this is not the case for CCOs.

To conclude this scenario overview, we note that the magnetospheric torques
will spin-down the NS on a characteristic timescale [Shapiro and Teukolsky 1983]
given by

P B, \ 2/ P\’

for a typical NS with radius 10 km and mass 1.4My. B, is the value of the

magnetic field at the pole of the NS. The value of the moment of inertia is
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1.4 x 10* g cm?. At birth, the spin period of a NS is limited by the mass-
shedding limit to be P > 1 ms [Goussard, Haensel, and Zdunik 1998]. If all NSs
were born with millisecond periods, purely magneto-dipolar spin-down would
limit the observed period of young NSs (10* yr) to

B \2
Pops,10tyr S 5.5 <1015G> S. (3.4)
For magnetic fields B < 1.4 x 10'® G this criterion fails for the vast majority of
pulsars and all CCOs (P 2 0.1 s) and therefore the measured spin period must be
now very close to that hours after the onset of the supernova explosion. Detailed
population synthesis studies of the radio-pulsar population clearly favour a
broad initial period distribution in the range 0.1-0.5 s [Faucher-Giguére and
Kaspi 2006, Gullén et al. 2014], rather than fast millisecond pulsars. Therefore,
from observational constraints, it is reasonable to assume that progenitors of
pulsars (including CCOs) have spin periods of P ~ 0.1 — 0.5 s at the moment
of fallback. For such low rotation rates, the NS can be safely considered as a
spherically symmetric body and its structure can thus be computed by solving
the Tolman-Oppenheimer-Volkoff (TOV) equation.

3.3 Stationary spherical accretion

We model the fallback of the reverse shock as the spherically symmetric accretion
of an unmagnetised relativistic fluid. The stationary solutions for this system
were first obtained by Michel [1972] for the case of a polytropic EoS. Here, we
extend this work to account for a general (microphysically motivated) EoS. The
equations that describe the motion of matter captured by a compact object,
i.e. a NS or BH, can be derived directly from the equations of relativistic

hydrodynamics , namely the conservation of rest mass,

VuJt =0, (3.5)
and the conservation of energy-momentum,

vV, T" =0, (3.6)

where we use the notation V, for the covariant derivative and the density current

J# and the (perfect fluid) energy-momentum tensor TH" are given by

JE o= put, (3.7)
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T = phuyu, +pgu . (3.8)

In the above equations p is the rest-mass density, p is the pressure and h is the
specific enthalpy, defined by h = 1 + ¢ + p/p, where ¢ is the specific internal
energy, ut is the four-velocity of the fluid and g,, defines the metric of the
general spacetime where the fluid evolves. Assuming spherical symmetry and a

steady state we have

d

%(Jl\/jg) = 0, (3'9)
Lmveg) = o, (310)

where g = det(gu,). The exterior metric of a non-rotating compact object is

given by the Schwarzschild metric

—1
ds* = —(1—2M>dt2+(1—2M> dr?
T

r

+  r%(d6? +sin? 0 dp?). (3.11)

In Schwarzschild coordinates Egs. (3.9) and (3.10) can be easily integrated to
obtain [cf. Michel 1972]

pur? = Oy, (3.12)

h? (1 - ¥ + u2> = Oy (3.13)

where C and Cs are integration constants and v = u”. To obtain an adiabatic
solution for the accreting fluid, we differentiate Eqgs. (3.12) and (3.13) at constant

entropy and eliminate dp

dulpe 2 <1—2M+u2>_1]
u r
+ % 2V2—Af<1—2i\4+u2>_1]=0, (3.14)
where
V2= % %’; 8 (3.15)
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Figure 3.1 Illustrative accretion solution for an accretion rate M = 10~5Mg /s and entropy
per baryon s = 80 kp/nuc. The left panel shows the density (green-dashed line, left axis),
pressure (red-solid line, right axis) and ram pressure (blue-dotted line, right axis). The right
panel shows the absolute value of the fluid velocity (blue-dashed line) and the sound speed
(green-solid line). The two lines cross at the critical point.

The solutions of this equation are those passing through a critical point where
both terms in brackets in equation (3.14) are zero, i.e. those fulfilling

2u3 = %,
Tec
V: o= (1 -3ud)7t, (3.16)

where sub-index c indicates quantities evaluated at the critical point. The critical
point can be identified as the sonic point, i.e. the point where the velocity of
the fluid equals its own sound speed. After some algebra, it can be shown that
the constant C; in Eq. (3.12) is related to the accretion rate M by

M = —47C. (3.17)

Thereby we can obtain the accretion solution by simply selecting the mass
accretion rate and the specific entropy of the fluid, which fixes the two constants
Cy and Cy. We note that, for each pair of values, the system (3.16) has two
solutions, although only one represents a physical accretion solution (ju| — 0 at
r — 00). In this case the fluid is supersonic for radii below the critical radius

and subsonic above. Fig. 3.1 displays one illustrative accretion solution for

a mass accretion rate M = 107°Mg /s and entropy per baryon s = 80kg /nuc.

For the accreting material, we use the tabulated Helmholtz EoS [Timmes and
Swesty 2000], which is an accurate interpolation of the Helmholtz free-energy of
the Timmes EoS [Timmes and Arnett 1999]. Timmes EoS, and Helmholtz EoS

by extension, include the contributions from ionised nuclei, electrons, positrons
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and radiation. By default, Timmes EoS uses the rest mass density p [g/cm?],
temperature T' [K] and composition as input. For convenience, we have developed
a search algorithm that allows to call the EoS with different thermodynamical
variables as input (e.g. p, s and composition as inputs for the adiabatic flow of
accreting material). Helmholtz EoS also requires the mean mass number A and
the mean atomic number Z.

At low densities, p < 6x107 g ecm ™3, and temperatures, T < 2x10° K, nuclear
reactions proceed much slower than the accretion timescale and the composition
remains frozen during the accretion. We fix the composition to that at the reverse
shock formation point. Given the uncertainties, we consider two possibilities in
this regime, either pure Helium or pure Carbon. At temperatures T' > 2 x 10° K
nuclear burning becomes fast enough to change the composition. For T' 2>
4x10% K the fluid reaches nuclear statistical equilibrium (NSE) on a significantly
shorter timescale than the accretion timescale [see e.g. Woosley, Heger, and
Weaver 2002]. To deal with the high temperature regime, 7' > 2 x 10° K,
we have tried three different approaches: 1) unchanged composition of the
accreting material, 2) compute the NSE composition at a given temperature and
density using a thermonuclear reaction network with 47 isotopes [Timmes 1999,
Seitenzahl et al. 2008] and 3) simplified burning with four transitions: *He for
T <2x10° K, °°Ni for 2x 10 > T > 5x10° K, *He for 5x10° > T > 2x101° K
and protons and neutrons for T' > 2 x 10'° K. We use the publicly available
routines of the Hemlholtz EoS and the NSE equilibrium kindly provided by the
authors!.

3.4 Non-magnetised accretion and pile-up

Before considering the case of magnetised accretion onto a NS, we study the
case of non-magnetised accretion. For the span of accretion rates considered
in this work, the sonic point of the accreted fluid is located at r > 23500 km
at entropy s = 10 kg /nuc, and hence the fallback material falls supersonically
onto the NS. Inevitably an accretion shock forms at the surface of the star,
which propagates outwards. The accreted fluid crossing the shock will heat up,
increasing its specific entropy and will fall subsonically. The high entropy of
this material (Sspock € [70 —300] kp/nuc) and the compression that experiments
as it flows inwards raises the temperature beyond the pair creation threshold,
Toair = 10'° K, and the fluid will cool efficiently via neutrino-antineutrino

annihilation. Therefore, the kinetic energy of the supersonically accreting fluid

Thttp://cococubed.asu.edu/code_ pages/codes.shtml
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Figure 3.2 Dependence of the burial depth (blue solid lines), d R, with the accreted mass, § M
(bottom axis), for a M = 1.4Mg NS using APRDH EoS. Note, that positive values of the
depth increase downwards. Regions occupied by the outer crust, inner crust and core appear
with different colours and labeled. The region occupied by the accreted material is plotted
with a gray crosshatch pattern. The top axis shows the total mass of the NS after accretion,
M+ 0M. Above M = 2.25 M the configuration is unstable and the object will collapse to a
BH.

is mostly transformed into thermal energy as it crosses the accretion shock and
then is dissipated to neutrinos close to the NS surface. Chevalier [1989] showed
that the accretion shock will eventually stall at a certain radius as an energy
balance is found. The radius of the stalled shock depends only on the accretion
rate M and is located at about Renock ~ 107 — 108 km. In some estimates below
in this work we use the values provided in Table 1 in Houck and Chevalier [1991],

based in a more realistic treatment of the accretion and neutrino cooling.

The final fate of the neutrino-cooled material falling steadily onto the NS
surface is to pile up on top of the original NS material forming a layer of new
material. In order to study the effect of the pile up we consider a NS of mass
M and radius R. If we add a mass M to the equilibrium model, the new
NS will have a new radius Rye, smaller than the original one. The original
surface of the star, will now be buried at a depth dR, i.e. the new surface will
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be located at a distance dR over the old surface. Although trivial, the last
statement is important because most of the discussion below in this work is
carried out in terms of §R and in terms of distances with respect to the original
NS surface. Therefore it makes sense to try to compute what is the dependence
of the burial depth, J R, with the total accreted mass, dM. In order to compute
this dependence we use the TOV equations to solve a sequence of NS equilibrium
models starting with M and progressively increasing to M + dM for different
values of M. For each model in the sequence we compute §R as the distance
between the radius enclosing a mass M and the surface of the star, i.e. the
radius enclosing M + §M. Given the small values of I M, we integrate the TOV
equations using a simple forward Euler method, with a step limited to relative
variations of density of 107° and a maximum step of 10 cm. We have computed
the relation between 6 R and 6 M for four different NS masses, M = 1.2, 1.4, 1.6,
1.8 and 2.0M. We have used several realistic EoS in tabulated form, namely
four different combinations using either EoS APR [Akmal, Pandharipande, and
Ravenhall 1998] or EoS L [Pandharipande and Smith 1975] for the core and EoS
NV [Negele and Vautherin 1973] or EoS DH [Douchin and Haensel 2001] for
the crust. For each case we compute the sequence up to the maximum mass;
beyond that mass, the equilibrium model is unstable and it will collapse to
a BH in dynamical timescales. All EoS allow for equilibrium solutions with
maximum mass consistent with recent observations of a NS with mass close
to 2M¢, [Demorest et al. 2010, Antoniadis et al. 2013]. The blue solid line in
Fig. 3.2 shows the dependence of § R with § M for a 1.4My NS with the APRDH
EoS. All other EoS and NS masses show similar behaviour. For all EoS, any
amount of accreted mass larger than ~ 10~*M, will sink the original NS surface
to the inner crust, and for 6M ~ 0.1Mg the entire crust is formed by newly
accreted material. The bottom line is that, if the accreted material is able to
compress the magnetosphere and deposit itself on top of the NS, the magnetic
field trapped with the fluid may be buried into the NS crust, and depending on
the conditions (accreted mass and magnetic field strength), the burial depth
could be as deep as the inner crust. We study next the impact of magnetic fields

in the vicinity of the NS, namely the magnetosphere, in the burial process.

3.4.1 Potential magnetospheric solution

For simplicity in the following discussion we use a reference model with the
APRDH EoS and M = 1.4M. This model results in a a NS with coordinate
radius R = 12.25 km. The effect of the EoS and the NS mass are discussed
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Figure 3.3 Magnetic field lines (black lines) for three different positions of the magnetopause
for the same initial distribution of the magnetic field (red lines) with B, = 1013 G. The dashed
line represents the NS surface.

later in the text. Given that both the magnetosphere and the accreted material
involve low energy densities compared with those inside the NS, the spacetime
outside the NS can be regarded as non-self-gravitating and approximated by the
Schwarzschild exterior solution.

The magnetosphere extends between the NS surface and the magnetopause,
which will be assumed to be a spherically symmetric surface at the location of the
infaling reverse shock. We model this region using the force-free magnetic field
approximation, J x B = 0, J being the electric current and B the magnetic field.
We neglect the currents resulting from the rotation of the star. Consequently the
magnetic field has a potential solution, solution of the relativistic Grad-Shafranov
equation. In spherical coordinates, the magnetic field vector components are
related to the vector potential A as,

A 1

B, = ——00A 1
" TQSinﬁae ¢ (3.18)
A -1

B, = 0, (3.20)

where EA?% = /7B; and 7 is the determinant of the spatial metric. If we assume
axisymmetry, the unique nonzero component of the electric current is the ¢

component,
Jy = sin 0 [3T(T'Bg) - BQBT} . (3.21)
Imposing the force-free condition, we obtain,

—JsBy = 0, (3.22)
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JyB, = 0. (3.23)

Since B,., By # 0, the only possible solution is J, = 0. As we want an expression
that only depends on the vector potential, we replace Eqgs. (3.18) and (3.19) in

equation (3.21) resulting in

-1 1. (9pA,
Jo sin 6 rar(ar)A¢ — 7’7260 ( )}

in 6 sin 6

cot 0
r2

1
= —8TTA¢ — T—2899A¢ + 89A¢ =0. (324)

We discretise this expression using second order finite differences and solve
the resulting linear system of equations using a cyclic reduction algorithm
[Swarztrauber 1974]. We impose Dirichlet boundary conditions on A, at the
surface of the NS to match with the interior value of the radial component of
the magnetic field. Our aim is to describe a magnetosphere, which is confined
within a certain radius, Rump, defining the magnetopause. Magnetic field lines at
the magnetopause are parallel to this interface and they enter the NS along the
axis. Therefore, they correspond to lines with Ay = 0, which we use as Dirichlet
boundary condition at R, to solve the Grad-Shafranov equation. We can
obtain the field distribution after the compression by simply changing the radius
where the boundary conditions are imposed. The evolution of the magnetic field
geometry before and after compression is shown in Fig. 3.3 for three illustrative
cases.

For the interior magnetic field, which determines the boundary conditions
at the surface of the star, we use two different magnetic field distributions, a
dipolar magnetic field (dipole hereafter) and a poloidal field generated by a
circular loop of radius r = 4 x 10° cm [Jackson 1962] (loop current hereafter).
Following Gabler et al. [2013], it is useful to introduce the equivalent magnetic
field, B*, which we define as the magnetic field strength at the surface of a
Newtonian, uniformly magnetised sphere with radius 10 km having the same
dipole magnetic moment as the configuration we want to describe. It spans the
range B* € [101° — 10'6] G.

3.4.2 Magnetosphere compression

In the case of a fluid accreting onto a force-free magnetosphere, the magnetopause
will remain spherical and will move inwards as long as the total pressure of the
unmagnetised fluid, piot = P + Pram , €xceeds that of the magnetic pressure,

Pmag, of the magnetosphere. If we approximate the magnetopause as a spherical
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boundary between the spherically symmetric accreting solution described in

Section 3.3 and the potential solution computed in Section 3.4.1, its properties

can be described as the solution of a Riemann problem at the magnetopause.

Since the magnetic field of the initial state is tangential to the magnetopause,
we can use the exact solution of the Riemann problem developed by Romero
et al. [2005]. A succinct summary of the details of the implementation of the

Riemann solver can be found in Chapter 2.

For illustrative purposes the left panel of Fig. 3.4 shows the solution of
the Riemann problem for a supersonic fluid accreting from the right into a
magnetically dominated region (magnetosphere) on the left. The figure displays
both the density (left axis, solid lines) and the fluid velocity (right axis, dashed
lines). The initial discontinuity is located at = 0. The right constant state
of the Riemann problem corresponds to the accreting fluid with an entropy
of s = 10 kg/nuc and accretion rate of M = 10~7 My /s. The left constant
state corresponds a state with magnetic pressure B2/2. The figure plots the
corresponding solutions for different values of B around the equilibrium (indicated
in the legend).

Looking at the upper panel of Fig. 3.4 from left to right, the first jump in
density corresponds to the contact discontinuity, point at which, as expected,
the velocity remains continuos. The next discontinuity is a shock wave, where
both the density and velocity are discontinuous, and both decrease. For low
magnetic fields, B < 10'°G, the low magnetic pressure on the left state cannot
counteract the total pressure of the accreting fluid and the contact discontinuity
advances to the left at a velocity equal to that of the accreting fluid; a shock
front is practically nonexistent. As the magnetic field is increased the velocity
of the contact discontinuity decreases and it becomes zero at about B = 10'3
G. We identify this point as the equilibrium point, since no net flux of matter
crosses z = 0. Around this equilibrium point, an accretion shock appears, which
heats and decelerates matter coming from the right. The equilibrium point
corresponds to a solution in which the matter crossing the shock has zero velocity,

i.e. it piles up on top of the left state as the shock progresses to the right.

The actual accretion of matter onto a magnetically dominated magnetosphere
is expected to behave in a similar way as the described Riemann problem. At
large distances (low B) the magnetopause (contact discontinuity) is compressed
at the speed of the fluid. As the magnetosphere is compressed, the magnetic
field strength raises and at some point an equilibrium point is found, beyond

which the magnetosphere impedes the accretion of the fluid.
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Figure 3.4 Density (solid lines, left axis) and velocity (dashed lines, right axis) profiles of
the solution of the Riemann problem for several values of the magnetic field. Initially the
discontinuity is set at z = 0, an accreting fluid at > 0 and a magnetised fluid at < 0, with
constant magnetic field B. The upper panel shows the case of supersonic accretion of a fluid
with specific entropy s = 10k /nuc and M =107 Mg/s at t = 0.3 s . The bottom panel
shows the case of subsonic accretion of a fluid with s = 2000kp /nuc and M =10"% Mg /s at
t=0.3s.
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In the bottom panel of Fig. 3.4 we show for the sake of completeness the
solution for a subsonic accreting fluid. In accreting NS this regime is probably
unrealistic, since very large specific entropy is necessary (s = 2000kp /nuc in the
example plotted). In this case the solution is qualitatively different; instead of
a shock, a rarefaction wave is formed for B below the equilibrium point. For

larger values of B, an accretion shock is formed.

3.4.3 Setup

Our goal is to study the conditions under which the magnetic field of a new-born
NS can be buried by fallback material during a supernova. We have spanned a
large range of values for both, the magnetic field strength and the accretion rate,
proceeding as follows. We obtain the distance from the NS surface where the
magnetosphere and the accreting fluid are in balance, i.e. the radial point where
the velocity of the contact discontinuity is zero. We reduce our 2D configuration
to a 1D Riemann problem by restricting the evaluation of the equilibrium point
to the equatorial plane of the NS, due to the fact that the magnetic pressure is
maximum at the equator. Therefore, if the magnetic field can be buried in this
latitude, it will be buried in all latitudes of the NS.

The code developed by Romero et al. [2005] requires as input the knowledge
of the density, velocity, thermal pressure, and magnetic pressure at both left and
right states of the initial discontinuity. In all cases we consider, the left state
corresponds to the force-free magnetosphere while the right state is occupied
by the accreting fluid. To obtain the magnetic pressure of the left state we find
the solution of the Grad-Shafranov equation (see Section 3.4.1). This allows to
locate the position of the magnetopause where the Riemann problem must be
solved. Since the inertia of the fluid at the magnetosphere can be neglected in
front of the magnetic pressure, the value of the density on the left state is set to
yield an Alfvén velocity near to one , the thermal pressure is set to be at least
six orders of magnitude lower than the magnetic pressure, and the velocity is
set to zero. On the other hand, the values on the right state are fixed to the
corresponding values of density, pressure and velocity of the stationary spherical

accretion solution (see Section 3.3) and the magnetic pressure is set to zero.

A sketch of the different stages of the accretion process is shown in Fig. 3.5.

The plots depict the location of the NS (including its core and inner and outer
crust), the magnetosphere, the magnetopause, and part of the region where
material is falling back. Each region is shaded in a different colour for a simple

identification. Note that the scale ratio of the different regions is not preserved in
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Figure 3.5 Sketch of the representative stages of the accretion process. The upper panel shows
the initial state of the process. The left column shows the expected evolutionary path for a
low magnetic field (B < 103 G) while the right column correspond to a typical high magnetic
field case (e.g. B > 1013 G). A mass accretion rate of 107° Mg /s is assumed. The scale ratio
of the different regions is not preserved. See main text for details.
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the figure. The upper panel in Fig. 3.5 shows the initial state of the process. The
panels on the left column show the expected evolution for a low magnetic field
case (e.g. B <1013 G) while those on the right column correspond to a typical
high magnetic field case (e.g. B > 10'3 G). In general, the value of B separating
between the two regimes depends on the accretion rate. For this figure we have
chosen a value of the magnetic field that corresponds to a representative example
of our results (see Section 6), for which M = 10~°Mg /s. At the beginning of
the evolution, the reverse shock falls over the magnetosphere. The magnetic
field lines are confined inside the magnetosphere, which is shown in white on the
diagram. Depending on the position of the sonic point, which in turn depends
on the values of the specific entropy and the accretion rate, the motion of the
reverse shock may be either supersonic or subsonic. We limit the qualitative
description of the evolution below to the case of a supersonic reverse shock as in

the subsonic case no accretion shock forms, as shown in Section 3.4.2.

The middle two panels in both evolutionary tracks show only qualitative
differences in the size of the resulting magnetosphere after its compression and
in the amplitude of the instabilities that may arise in the magnetopause (see
below). Therefore, our description can be used for either path keeping this
quantitative differences in mind. The evolution on the left column shows the
case where the magnetic pressure is weak compared with the ram pressure of the
fluid. In this case the magnetosphere shrinks significantly until the equilibrium
point is reached (Ryp; zero speed contact discontinuity) close to the NS surface
at Ry ~ 10 km. If the infall of the reverse shock is supersonic an accretion shock
will appear simultaneously. The location of this accretion shock is shown on
the horizontal axis of the four middle panels. As a result, the velocity of the
reverse shock is reduced due to the presence of a region of subsonic accretion
behind the accretion shock. Nevertheless, as through the accretion shock the
momentum is conserved, the compression is not affected. The evolution on the
right column, where the magnetic pressure is stronger, is qualitatively similar,
only the accretion shock is located further away from the NS surface and the

magnetosphere is not so deeply compressed.

As we will discuss below in more detail, the compression phase is unstable
against the growth of Rayleigh-Taylor instabilities and the development of
convection on the dynamic timescale. Therefore, the fluid and the magnetic
field lines can mix, which provides a mechanism for the infalling fluid to actually
reach the star. As the fluid reaches the NS, the mass of the star grows from M
to M and its radius increases from R to R, encompassing the twisted magnetic

field lines a short distance away. The mass accreted 0 M forms part of the new
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crust of the NS, whose final radius will depend on the total mass accreted during
the process. The bottom panels of the diagram depict a magnified view of the
NS to better visualise the rearrangement the mass of the star and the magnetic
field undergo. If the radius Ry, of the equilibrium point is lower than the new
radius Ry, all the magnetic field lines will be frozen inside the NS new crust,
as shown in the bottom-left plot of Fig. 3.5 which corresponds to the end of
the accretion process for a low magnetic field evolution. On the contrary, if the
magnetic field is high, as considered on the evolutionary path on the right, the
equilibrium point Ry, is far from the surface of the NS. Although part of the
infalling matter may still reach the star and form a new crust, the mechanism
is not as efficient as in the low magnetic field case. This is depicted in the
bottom-right panel of the figure.

In our approach, that we discuss in more detail in the section on results, we
compare the distance obtained by the Riemann solver for the location of R,
(zero speed in the contact discontinuity) with the increment of the radius of
the NS, 0 R, due to the pile up of the accreting matter. If the radial location
of the equilibrium point Ry, is lower than R (as in the bottom-left panel of
Fig. 3.5) we conclude that the magnetic field is completely buried into the NS
crust. On the contrary, if Ry, > dR, our approach does not allow us to draw
any conclusion. In this case, multidimensional MHD numerical simulations must

be performed to obtain the final state of the magnetic field.

3.5 Results

We turn next to describe the main results of our study. In order to be as
comprehensive as possible, we cover a large number of cases which are obtained
from varying the physical parameters of the model, namely the composition and
entropy of the accreting fluid, the mass of the NS, and the initial magnetic field
distribution. For all possible combinations of these parameters the outcome of
the accretion process depends both on the magnetic field strength and on the
mass accretion rate. This dependence is presented in the following sections in a
series of representative figures. A summary of all the combinations considered

and the description of the model parameters can be found in Table 3.2.

3.5.1 Reference model

We use as a reference model the one corresponding to an accreting fluid with

s =10 kp/nuc, and composed essentially by Helium. The nuclear reactions to
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Table 3.2 Models considered in this study.

Model # Composition Entropy NS Mass MF distribution
kg /nuc Mo

Reference He + NSE 10 14 loop current
1 He + NSE 100 1.4 loop current
2 He + NSE 1000 1.4 loop current
3 He + NSE 5000 14 loop current
4 He 10 1.4 loop current
5 He 100 14 loop current
6 He 1000 14 loop current
7 He 5000 14 loop current
8 C + NSE 10 14 loop current
9 C + NSE 100 14 loop current
10 C + NSE 1000 14 loop current
11 C 4+ NSE 5000 1.4 loop current
12 He 10 14 dipole
13 He 1000 1.4 dipole
14 He 10 1.2 loop current
15 He 10 1.6 loop current
16 He 10 1.8 loop current
17 He 10 2.0 loop current

reach nuclear statistical equilibrium are also allowed in this model. The mass of
the NS is 1.4 Mg and the magnetic field is generated by a loop current in the
NS. The results are shown in Fig. 3.6. The solid lines in this figure represent
the distance 0 R of the equilibrium point (position of the magnetopause) above
the NS surface as a function of the total accreted mass M. The limit of the
horizontal axis is given by the maximum mass that can be accreted without
forming a BH. Each line corresponds to a different value of the initial magnetic
field, indicated in the legend of the figure. The yellow area represents the region
in which the accretion of the reverse shock is supersonic and the black dotted
line shows the limit of the accretion shock. The dashed red line shows the
radial location of the new surface of the star due to the accretion of the infalling
matter. The lines which cross the dashed red line have the equilibrium point
inside the crust of the NS and, therefore, the corresponding magnetic fields will
be buried into the crust. However, for the lines that are in the white area, the

equilibrium point is not close enough to the NS surface and the magnetic field

can not be buried. Note that for initial values of the magnetic field B > 10'% G,

the magnetic field is never buried for all mass accretion rates considered.

An alternative view of this result is shown in Fig. 3.7. The goal of this figure

is to provide a clearer representation of the dependence of the equilibrium point
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Figure 3.6 Distance above the star of the equilibrium point above the star as a function of
the total mass accreted dM for each value of the magnetic field (solid lines) for the reference
model. The yellow area indicates the region where the accretion flow is supersonic. The dotted
line represents the limit of the accretion shock. The red area marks the outer crust of the NS
after accretion, while the green and blue areas display the inner crust and the core respectively,
as shown in Fig. 3.5.

with the span of values of the magnetic field and the total mass accreted we are
considering. The figure shows the isocontours where the equilibrium point is
equal to the increment of the radius of the NS, i.e. Ry, = 0R. The two lines
plotted (dotted, t = 10% s, and solid, t = 103 s) correspond to the limits of
the total accretion time, which relates the accretion rate M and the total mass
increment § M. The black area indicates the values of the maximum mass of the
NS beyond which it will form a BH. The dark orange region represents the span
of values of M and B* where we cannot assure that the magnetic field could
be buried completely. The light orange area, on the other hand, represents the
cases where the magnetic field is totally buried. The results show that for low
values of the magnetic field (B* < 10'G) the field can be buried even with the
lowest accretion rates we have considered. As expected, as the accreted mass
increases it is possible to bury the magnetic field for larger initial field values,
up to a certain maximum. Indeed, for B* > 2 x 10'* G we cannot find any

accretion rate which can bury the magnetic field.



3.5 Results 47
s = 10 kg/nuc
Black Hole Formation
I (e . /
S /A
EQ Buried Field O
— 1072 D
=
-3
10 Not buried?
1074
107 L 1T %) T3 1T 15
10 10 10°° 10™ 10 10™

B* [G]

Figure 3.7 Outcome of the accretion depending on the total accreted mass (§M) and the initial
magnetic field (B*) for the reference model. For the two accretion times considered, t = 103 s
(dark brown) and t = 10* s (light brown), the respective line splits the parameter space in a
region where the magnetic field will be buried (left side) or not completely buried (right side).
Above certain 6 M a BH will be formed. The dashed line represents the fit shown in Eq. (3.25).

3.5.2 Models with higher specific entropy

We turn next to analyse the behaviour of the magnetic field compression when the
accreting fluid has higher specific entropy than in the reference model, keeping
the same conditions for the composition, mass and magnetic field distribution
(Models 1, 2 and 3 in Table 3.2). Fig. 3.8 shows the results for values of the
specific entropy of s = 100 kg/nuc, 1000 kg/nuc and 5000 kg /nuc compared
with the reference model (s = 10 kg /nuc). For the model with specific entropy
100 kp/nuc, the results are very similar to the reference model as both lines almost
perfectly overlap. For larger specific entropy the difference is more noticeable;
for s = 1000 kp/nuc and 5000 kp/nuc, the burial/reemergence boundary of the
parameter space is shifted toward larger magnetic fields, i.e. higher entropy
material compress the magnetosphere more easily and it is possible to bury larger
magnetic fields. This behaviour can be understood if one considers that the
equilibrium point is a balance between the total pressure of the infall material,
Dot = P + Pram ~ p + pv?, and the magnetic pressure of the magnetosphere.

For low specific entropy, the total pressure is dominated by the ram pressure

and changes in s do not produce significant changes in the equilibrium point.

Above a certain threshold, the thermal pressure p dominates the total pressure

and increasing s induces a larger compression of the magnetosphere, shifting
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Figure 3.8 Similar to Fig. 3.7 but for the models with different specific entropy for the accreting
fluid (namely, models 1 to 3 and reference). All cases are shown for a total accretion time of
102 s. Each line ends at the maximum mass of the corresponding model.

the equilibrium point downwards. For realistic values of the specific entropy
in supernovae, s ~ 10 — 100 kp/nuc [Scheck et al. 2006, Kifonidis et al. 2003,
Kifonidis et al. 2006], we expect the ram pressure to be dominant and hence
the influence of s to be minimal. Even for an unrealistically large value of the
specific entropy, 5000 kg /nuc, the maximum magnetic field that can be buried
increases one order of magnitude at most, and only for the largest mass accretion
rates considered.

3.5.3 Models with different NS mass

We consider next the effect of the NS mass, within astrophysically relevant limits.
According to observations [see Lattimer 2012, and references therein] the lower
limit for the NS mass is around 1.2 M. The maximum achievable mass of a
NS is strongly dependent on the equation of state [Lattimer and Prakash 2005].
Nowadays, there are a few observations that support the existence of pulsars
and NS with masses greater than 1.5 M), in particular an observation of a
~ 2 Mg NS [Demorest et al. 2010, Antoniadis et al. 2013]. For this reason, we
explore the results for several values of the NS mass between 1.2 My and 2 M.
The results are shown in Fig. 3.9, where each line corresponds to a model with
different NS mass as indicated in the legend. The results for all masses are very
similar. In general we observe that for more massive NS, a higher accreted mass

is needed to bury the magnetic field. Our interpretation is that higher mass
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Figure 3.9 Similar to Fig. 3.7 for the models with different NS mass: 1.2 Mg, 1.6 Mg , 1.8 Mg,
2.0 M (models 14, 15, 16 and 17 and reference). All cases are shown for a total accretion
time of 103 s. Each line ends at the maximum mass of the corresponding model.

NS have lower radii and hence we have to compress more the magnetosphere to
successfully bury it into the crust. Therefore, a higher accreted mass is needed
to bury the field for NS with larger mass (smaller radius). Since the radius
difference between a 1.2 and a 2 Mg NS is small, the impact of the NS mass
on the burial is minimal. The maximum value of the magnetic field which can
be buried is ~ 2 x 10'* G in all cases. For smaller NS masses slightly larger
values of the magnetic field can be buried due to the ability to support a larger
accreted mass. We conclude that the burial of the magnetic field is not crucially

sensitive to the NS mass.

3.5.4 Models with different EoS

Fig. 3.10 shows the comparison of the results for the reference model when using
the four different equations of state described in section 3.4. For M = 1.4 M,
the coordinate radius of these NS models is 12.25 km for APRDH, 12.11 km for
APRNYV, 15.77 km for LDH and 15.37 km for LNV. Since the maximum mass

is sensitive to the EoS, each line ends at different points in the §M vs B* plot.

The use of APRDH or APRNV EoSs leads to almost indistinguishable results
(the two lines lay on top of each other). This is expected since the radius of this
two models differs only by about 1%, because the EoS are very similar and only
differ at low densities (at the crust). The LDH and LNV EoSs allow the burial

of a larger magnetic field for a given accreted mass, in comparison with APRDH
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Figure 3.10 Similar to Fig. 3.7 for the models with different EoS, a NS of mass 1.4M¢ and
specific entropy of the accreting fluid 10kg /nuc All cases are shown for a total accretion time
of 103 s. Each line ends at the maximum mass of the corresponding model.

and APRNV. The maximum magnetic field that can be buried in the LDH and
LNV models is ~ 6 x 10'* G and ~ 5 x 10'* G respectively, which is about a
factor 2 larger than for the APRDH EoS. In general, for a M = 1.4 Mg, EoS
resulting in a larger NS radius allow to bury larger magnetic fields for a given
oM. Given that the results of this work are meant to be an order-of-magnitude
estimate of the location in the parameter space of the limit between burial and
reemergence, a difference of a factor 2 due to the EoS, does not change the main
conclusions of this work. For practical purposes the APRDH EoS can be taken

as a good estimator for this limit.

3.5.5 Remaining models

We do not observe any significant differences with respect to the reference model
in the results for the models with different initial composition of the reverse shock
(models 8 to 11) or the ones using the NSE calculations (models 4 to 7). As a
result we do not present additional figures for these models since the limiting lines
overlap with those of the reference model. The observed lack of dependence is
due to the fact that the FEoS only depends on the electron fraction, Y,. This value

is obtained from the ratio between the mean atomic mass number (A) and the
mean atomic number (Z). For both cases of pure Helium and pure Carbon, this
ratio is equal to Y, = 0.5 and, consequently, the values of pressure and density

for the accreting fluid are almost identical, producing differences in the results
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below the numerical error of our method 2. In the case of the NSE calculation,
the reason is similar. For low entropies (s = 10 — 100 kg /nuc) the temperature is
not sufficiently high to start the nuclear reactions and the composition remains
constant throughout the accretion phase. For higher entropies, although the
value of the electron fraction may differ from 0.5 during the accretion process,
the differences produced in the thermodynamical variables lead to changes in the
results of the Riemann problem still below the numerical error of the method.

Regarding the initial distribution of the magnetic field, we do not observe
either any significant difference in the results in the two cases that we have
considered, loop current and dipole. Given that we are comparing models with
the same effective magnetic field, B*, and thus the same magnetic dipolar
moment, the magnetic field is virtually identical at long radial distances and
the only differences appear close to the NS surface. In practice the magnetic
field structure only changes the details of the burial in the cases in which the
equilibrium point is close to the burial depth (the limiting line plotted in the
Figs. 3.7 to 3.10), but it does not change the location of the limit itself in a
sensitive way. As a conclusion, we can say that the dominant ingredient affecting
the burial of the magnetic field is the presence of a dipolar component of the
magnetic field but, for order-of-magnitude estimations, a multipolar structure of
the field is mostly irrelevant.

3.6 Discussion

Assuming an accretion time of 1000s, our findings can be summarised by a
general condition, rather independent on the model details, relating the required
total accreted mass to bury the magnetic field with the field strength. An
approximate fit is (see dashed line in Fig. 3.7)

sM B 23
My <2.5 > 1014> ' (3:25)

The most important caveat in our approach is that we are restricted to a
simplistic 1D spherical geometry, which does not allow us to consistently account
for the effect of different MHD instabilities that can modify the results. We also
note that our scenario is quite different from the extensively studied case of X-ray
binaries, in which the NS accretes matter from a companion but at much lower

rates (sub-Eddington) and matter is mostly transparent to radiation during

2The numerical error is dominated by the calculation of the equilibrium point, which is
computed with a relative accuracy of 1074,
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accretion. In that case, matter cools down through X-ray emission during the
accretion process. Davidson and Ostriker [1973] and Lamb, Pethick, and Pines
[1973] already noticed this fact and predicted that the accretion will most likely be
channeled through the magnetic poles, in analogy to the Earth’s magnetosphere.
In the context of X-ray binaries, Arons and Lea [1976] and Michel [1977] were
able to compute equilibrium solutions with a deformed magnetosphere and a
cusp like accretion region at the magnetic poles. However, as the same authors
pointed out, these systems are unstable to the interchange instability [Kruskal
and Schwarzschild 1954], a Railegh-Taylor-like instabilitiy in which magnetic
field flux tubes from the magnetosphere can raise, allowing the fluid to sink.
This might allow for the formation of bubbles of material that fall through the
magnetosphere down to the NS surface. In the case of a fluid deposited on top of
a highly magnetised region, modes with any possible wavelength will be unstable
[Kruskal and Schwarzschild 1954], however, in practice these instabilities are
limited to the size of the magnetosphere (~ Ry,p) in the angular direction. As
the bubbles of accreted material sink, magnetic flux tubes raise, as long as their
magnetic pressure equilibrates the ram pressure of the unmagnetised accreting
fluid [Arons and Lea 1976]. Therefore, in a natural way, the equilibrium radius
computed in Section 3.4.2 roughly determines the highest value at which the

magnetic field can raise.

This accretion mechanism through instabilities has been shown to work in
the case of X-ray binaries in global 3D numerical simulations [e.g. Kulkarni
and Romanova 2008, Romanova, Kulkarni, and Lovelace 2008]. In the case of
the hypercritical accretion present in the supernova fallback, Rayleigh-Taylor
instabilities have been studied by Payne and Melatos [2004], Payne and Melatos
[2007], Bernal, Lee, and Page [2010], Bernal, Page, and Lee [2013], Mukherjee,
Bhattacharya, and Mignone [2013a], and Mukherjee, Bhattacharya, and Mignone
[2013b]. The simulations of Bernal, Page, and Lee [2013] also show that the
height of the unstable magnetic field over the NS surface decreases with increasing
accretion rate, for fixed NS magnetic field strength, as expected. Using the
method described in Section 3.4.2 we have estimated the equilibrium height over
the NS surface for the 4 models presented in Fig. 9 of Bernal, Page, and Lee
[2013], for their lower accretion rates (M < 1076 Mg /s). Our results predict
correctly the order of magnitude of the extent of the unstable magnetic field
over the NS surface. Therefore, our simple 1D model for the equilibrium radius
serves as a good estimator of the radius confining the magnetic field during the
accretion process, although details about the magnetic field structure cannot be

predicted. Another important difference with the binary scenario is the duration
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of the accretion process. In X-ray binaries, a low accretion rate is maintained
over very long times, so that instabilities have always time to grow. In our
case, hypercritical accretion can last only hundreds or thousands of seconds, and
depending on the particular values of density and magnetic field, this may be
too short for some instabilities to fully develop. This issue is out of the scope of
this paper and deserves a more detailed study.

Our main conclusion is that a typical magnetic field of a few times 10'2
G can in principle be buried by accreting only 1072 — 1072M, a relatively
modest amount of mass. This estimate has interesting implications: since it is
likely that most NSs can undergo such an accretion process, and the field would
only reemerge after a few thousand years [Geppert, Page, and Zannias 1999,
Vigano and Pons 2012], the CCO scenario is actually not peculiar at all and we
expect that most very young NSs show actually an anomalously low value of the
magnetic field. On the contrary, magnetar-like field strengths are much harder
to screen and the required accreted mass is very large, in some cases so large
that the NS would collapse to a BH. We also stress that the concept of burial of
the magnetic field refers only to the large scale dipolar component, responsible
for the magnetospheric torque spinning down the star. Small scale structures
produced by instabilities can exist in the vicinity of the star surface, and this

locally strong field is likely to have a visible imprint in the star thermal spectrum,

as in Kes 79 [Shabaltas and Lai 2012], without modifying the spin-down torque.

However, the high field burial scenario should not be very common because
both, high field NSs are only a fraction to the entire population, and only a part

of them would undergo the fallback episode with the right amount of matter.

This is consistent with the recent results of Bogdanov, Ng, and Kaspi [2014]

who searched for the hidden population of evolved CCOs among a sample of

normal pulsars with old characteristic ages but close to a supernova remnant.

None of the eight sources studied was found to have a luminosity higher than
1033 erg/s, which would have been an evidence of a hidden strong field. They
all show X-ray luminosities in the 0.3-3 keV band of the order of 103! erg/s (or
similar upper limits), consistent with the properties of other low field NSs with
B ~ 10'? G. Thus, these sample of sources are not likely to be linked to the
family of descendants of Kes 79-like objects, but there is no contradiction with
these being pulsars with reemerged normal fields. Finally, we note that the slow
reemergence process on timescales of kyrs mimics the increase of the magnetic
field strength, and it is therefore consistent with a value of the braking index
smaller than 3 [Espinoza et al. 2011], which should be common for all young

pulsars in this scenario.






Chapter 4

Linear-oscillation spectrum

of proto-neutron stars

4.1 Gravitational waves in the collapse of mas-

sive stars

The collapse of massive stars, i.e. those stars with a mass larger than about 8 M),
is among the most important sources of gravitational waves. Collapsing stars
produce rich and complex waveforms, which could provide ample information
about the phenomenology of the scenario, specially when combined with obser-
vations of their electromagnetic emission and neutrino emission. The outcome of
those events is either a neutron star or a black hole, typically (but not necessarily
in the latter case) accompanied by a supernova explosion. The modelling of
core collapse supernova requires a wide variety of physical ingredients, including
general relativity, a nuclear-physics-motivated EoS, and a detailed description of
neutrino interaction [see e.g. Janka et al. 2007, for a review|. For sufficiently com-
pact stellar cores a black hole is likely to form instead of a neutron star [O’Connor
and Ott 2013], although those cases not always coincide with the most massive
stars [see e.g. Ugliano et al. 2012]. Recent studies have shown that, even if a
black hole is formed, a successful explosion is still possible provided sufficient
rotation is present in the core [Obergaulinger and Aloy 2017]. In addition, it
is necessary to model complex multidimensional effects and instabilities, such
as convection, the standing accretion shock instability (SASI) and turbulence,

which are crucial for the development of a successful supernova explosion.
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The numerical modelling of this scenario is computationally challenging
and even today, with the use of the largest scientific supercomputing facilities
available, we are only starting to understand the physics involved and we are
probably still far away from having detailed waveforms. Unlike the BBH case, it
is currently not possible to relate uniquely and unambiguously the properties
of the progenitor stars (mass, rotation rate, metallicity, magnetic fields) with
the resulting waveforms. The reasons are the complex non-linear dynamics
associated with the evolution of a fluid interacting with neutrino radiation,
the stochastic and chaotic behaviour of instabilities (both during and prior to
the collapse of the star), the uncertainties in stellar evolution of massive stars
(specially regarding the treatment of convection, magnetic fields and angular
momentum transport) and the uncertainties in the nuclear and weak interactions

necessary for the EoS at high densities and neutrino radiation, respectively.

Despite the difficulties, impressive progress has been made in the last decade
regarding waveforms. The core bounce is the part of the waveform which is best
understood [Dimmelmeier, Font, and Miiller 2002]. Its frequency (at about 800
Hz) can be directly related to the rotational properties of the core [Dimmelmeier
et al. 2008, Abdikamalov et al. 2014a, Richers et al. 2017]. However, fast-rotating
progenitors are not common and their bounce signal will be probably difficult to
observe in typical non-rotating galactic events, due to its high frequency and low
amplitude. More interesting is the signal related to the post-bounce evolution of
the newly formed proto-neutron star (PNS). The main sources of gravitational
waves in that case are convection and the excitation of highly damped modes
in the PNS by the accreting material and instabilities (SASI). A number of
groups have identified features in the gravitational-wave signal as associated
with g-modes in the PNS and SAST in either 2D simulations [Murphy, Ott,
and Burrows 2009, Miiller, Janka, and Marek 2013, Cerda-Durdn et al. 2013]
or 3D simulations [Kuroda, Kotake, and Takiwaki 2016, Andresen et al. 2017].
Typically the waveforms last for about 500 ms until the supernova explodes
[see e.g Miiller, Janka, and Marek 2013] or, in the case of black hole formation,
the typical duration is above 1 s [Cerd4-Durédn et al. 2013]. Typical frequencies
raise monotonically with time due to the contraction of the PNS, whose mass
is steadily increasing. Characteristic frequencies of the PNS can be as low as
~ 100 Hz, specially those related to g-modes, which make them a perfect target
for ground-based interferometers with the highest sensitivity at those frequencies.
Two regions in the PNS appear to be susceptible to g-modes [Cerdd-Durdn et al.
2013, Andresen et al. 2017, Kuroda, Kotake, and Takiwaki 2016], namely the

surface of the PNS and the innermost cold core of the PNS. In those two regions,
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the specific entropy increases with the radius, resulting in convectively stable
regions in which buoyancy acts as a restoring force. Interestingly, quasi-radial
modes in rotating cores produce a distinctive frequency-decreasing pattern in the
waveforms that signals the formation of a black hole as its frequency approaches
zero [Cerda-Durdn et al. 2013]. All these results imply that it may be possible
to infer the properties of PNS based on the identification of mode frequencies
in their waveforms, without the necessity of a complete understanding of the

details about the physics involved in the core-collapse scenario.

The idea of identifying the properties of PNS based on the study of the
frequencies of their normal modes of oscillation is not new. Studies of PNS
asteroseismology have been reported in a number of works [see e.g. Reisenegger
and Goldreich 1992, Ferrari et al. 2004, Passamonti et al. 2005, Camelio et
al. 2017]. The common approach in those cases is to study the oscillations
in PNS as linear perturbations of a spherical equilibrium star (which we call
“background model” hereafter). This results in an eigenvalue problem, whose
solutions are the normal oscillation modes of the PNS. In most of the previous
work a fairly simplified description of the post-bounce evolution of the PNS
has been considered. Recently, Sotani and Takiwaki [2016] Have performed a
linear perturbation analysis of PNS, based on simple fits to realistic 1D core-
collapse simulations, to study the evolution of the mode frequencies up to several
hundreds of ms after bounce. Fuller et al. [2015] performed a Newtonian linear
perturbation analysis using more realistic profiles from 2D simulations, but they
restricted their analysis to the bounce signal of rapidly-rotating progenitors and
did not consider the post-bounce evolution. So far, the presence of a standing
shock above the PNS surface has not been taken into account and the oscillations
have been limited to the interior of the PNS by imposing boundary conditions
at the PNS surface!.

In the work presented in this chapter, we have developed a method to perform
the linear-perturbation analysis in general relativity of a background model,
which is the result of multi-dimensional core-collapse simulations including the
PNS and the hot-bubble region up to the shock location. This allows us to
compare directly the frequencies of the modes obtained by our analysis with
the actual frequencies in the gravitational-wave spectrum of the very same
simulation. This analysis provides a proof of principle that asteroseismology
is indeed possible in the core-collapse scenario, despite the complexities of the

IThe exception being Fuller et al. [2015] that considered the PNS surrounded by a low-
density accreting region and imposed outgoing sound-wave boundary conditions in the outer
boundary.
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system, and will serve as a basis for future work on PNS parameter inference

based on gravitational-wave observations.

4.2 Black-hole-forming model 350C

In this work we concentrate our efforts in applying our analysis to a single core-
collapse model. The idea is to understand in detail the spectrum of eigenmodes
of the coupled physical system formed by the PNS and the shock wave. To
accomplish this goal, we have developed and tested a numerical code that
computes and automatically classifies eigenmodes of a model we simulated
previously (and hence can confidently use to text our approach), before applying
this tool to larger sets of models. For this study we choose the 2D simulation
performed by Cerd4-Durdn et al. [2013] using the general-relativistic code
CoCoNuT [Dimmelmeier, Font, and Miller 2002, Dimmelmeier et al. 2005]. The
progenitor is a low-metallicity 35M, star at zero-age main-sequence from Woosley
and Heger [2006]. This progenitor has a high rotation rate and is usually regarded
as a progenitor of long GRBs. The LS220 EoS [Lattimer and Swesty 1991] was
used in the simulation to describe matter at high densities along with a simplified
leakage scheme to approximate neutrino transport. The core of the progenitor
collapses after 342.7 ms, forming a PNS and an accretion shock, after which
an accretion phase ensues. The infalling matter crosses the stalled shock, heats
up and falls through the hot bubble in which particles can dwell for some time
before reaching the surface of the PNS, due to convection and the SASI. Finally,
after 1.6 s, the PNS becomes unstable to radial perturbations and collapses to a
black hole. During this time the highly-perturbed PNS is an efficient emitter of
gravitational waves, as Fig. 4.1 shows.

Throughout all the accretion phase we compute the eigenmodes of the region
including the PNS up to the shock location. The size of this region varies in time
as the shock position changes. At post-bounce time, this region is approximately
at hydrostatic equilibrium and flow velocities are small compared to the speed
of sound (supersonically falling matter becomes subsonic as it crosses the shock).
Therefore, we can study linear perturbations of a background, provided by the
result of the simulation at a given time. This approach is possible as long as
the typical evolution timescales of the background are much longer than the
inverse of the frequency of the modes studied. In our case, the structure of
the PNS varies in a timescale of ~ 100 ms, which limits the validity of our
approach to frequencies larger than ~ 10 Hz. Moreover, despite its relatively

high rotation frequency, centrifugal forces are not dominant when compared to
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Figure 4.1 Waveform of the GW signal computed in the core-collapse simulation of Cerda-
Durén et al. [2013]. The progenitor is a low-metallicity 35 Mg star at zero-age main-sequence
from Woosley and Heger [2006].

gravitational forces [see Cerdd-Durédn et al. 2013]. To simplify the analysis, we
perform angular averages of all quantities to compute an effective 1D model,
which will be used to perform the linear perturbation analysis. Since the shock
is not completely spherical in the simulation but deformed by the presence of
the SASI, angular averages have to be performed with care. We first compute
the averaged shock location, then rescale the radial profiles of all quantities to

the average shock radius and finally perform the angular average.

For our analysis it is interesting to define three different regions between
the centre of the star and the position of the accretion shock. These regions
are displayed in Fig. 4.2. The inner cold core (in blue) is the area between
the centre and the radius at which the specific entropy is lower than 3 kg per
baryon, marked in the figure as r¢oq. It is not easy to define the surface of
the PNS. Above the cold inner core there is a broad hot mantle of 10 — 20 km
where the density decreases rapidly. The neutrinosphere, r,,, is typically located
just bellow the surface and could be regarded as a proxy for the PNS radius.
However, it tends to underestimate the size of the PNS slightly. We found that

3 is a much better proxy for

the point where the density becomes 10" g cm™
the PNS surface, and we use its value, 7,,,, as a definition of the PNS surface
location in this work. Finally, the position of the shock is labeled in Fig. 4.2

as Tshock.- 10 summarise, the three regions are: region I, corresponding to the
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Figure 4.2 Representation of the different regions of the PNS considered. (See main text for
details.)

inner core, region II, defined as the region between the core and the surface of
the PNS, corresponding to the PNS mantle, and region III, which is the area
between the surface and the shock, corresponding to the hot bubble.

4.3 Linear perturbations of a spherically-

symmetric background

We start our analysis with the description of the perturbations of a spherically-
symmetric, self-gravitating, equilibrium configuration. Classically, this analysis
was performed in Schwarzshild coordinates [Thorne and Campolattaro 1967]. The
interested reader is addressed to Kokkotas and Schmidt [1999] and to Friedman
and Stergioulas [2013] for detailed information on linear perturbations of compact
stars and asteroseismology.. In our work we will use isotropic coordinates instead,
which are closer to the gauge condition used in the numerical simulations
being analysed (CFC approximation, Isenberg [2008] and Wilson, Mathews,
and Marronetti [1996]). Moreover, the derivation of the equations in these
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coordinates also bears resemblance with the equations in the Newtonian case
[see Reisenegger and Goldreich 1992], which makes it easier to identify the role
of the different terms in the equations and interpret the solutions. This choice of
gauge also makes it straightforward to perform the mode analysis of Newtonian
simulations.

Let us consider a 3 + 1 foliation of spacetime in coordinates (¢, z"), in which

the metric can be written as
ds? = g datda” = (B'8; — ®)dt? + 2B;dtda’ + i da’da? (4.1)

where $¢ is the shift 3-vector, « is the lapse function, and 7i; is the spatial 3-
metric. In isotropic coordinates, the background metric of a static and spherically-

symmetric configuration can be written as
ds?® = gudatdr” = —o2dt? + 1/J4fijdxidxj, (4.2)

where 9 is the conformal factor and f;; is the flat spatial 3-metric. In the
spherically-symmetric and static limit, Einstein’s equations for the CFC metric
read

Ay = —27)°E, (4.3)
A(ap) = 2man)® [E 4 28], (4.4)
where A is the Laplacian operator with respect to the flat 3-metric. In this
case 3; = 0 and 7;; = ¢¥*fi;. The energy-momentum content couples to the
spacetime geometry through the projections of the energy-momentum tensor,
T, onto the 3 + 1 foliation

E = o?T%, S; = —(Toi — T;; %), (4.5)

Let us consider a perfect fluid. Its energy-momentum tensor is given by
T = phutu” + Pg"” (4.7

where p is the rest mass density, P is the pressure, u* is the 4-velocity, h =
1+ e+ P/p is the specific enthalpy, and € is the specific internal energy. It is
useful to define the energy density as e = p(1 + ¢).

If we consider the Bianchi identities and the conservation of the number of
baryons (continuity equation) the GRHD equations written in the coordinate

basis read )

1 *¢]
0 VAD)+ =0, [VADv*] =0, (4.8)
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where v is the determinant of the three-metric, I‘ﬁu is the Christoffel symbol
associated with the four-metric, W = 1/+4/1 — v;v? is the Lorentz factor and the

conserved quantities are

D = pW, S; = phW?v;, E = phW? — P. (4.11)
The Eulerian and “advective” velocities are, respectively,
g _ut P *i_ u’ i i
v=t i mwiopl (1)

Let us consider a solution of the hydrodynamics equations that is in equilib-
rium (9; = 0) and is static (v® = 0). In this case Eq. (4.9) reads

1
p—hazP = —81- Ina = Gi7 (413)

where G; is the gravitational acceleration, in the Newtonian limit, whose only
non-zero component is G, = G. The solution of Eq. (4.13) corresponds to the

unperturbed state or background solution.

Let us consider linear adiabatic perturbations of the hydrodynamics equations
with respect to the background equilibrium configuration. We denote Eulerian
perturbations of the different quantities with 4, e.g. for the rest-mass density
p, the Eulerian perturbation is dp. The linearised equations are obtained by
substituting p — p + dp, and so forth, in Eqs. (4.8-4.10). Note that p, P, etc,
correspond to the background value in the linearised equations. Furthermore,
we consider the Cowling approximation, i.e. we do not take into account
perturbations of the metric (da = 6 = 637 = 0). We discuss below the impact

of this approximation in our results.

We denote as &° the Lagrangian displacement of a fluid element with respect
to its position at rest. Its value is related to the advective velocity as

& = dv*t. (4.14)

The Lagrangian perturbation of any quantity, e.g. p, is related to the Eulerian
perturbations as
Ap =6p+E0ip. (4.15)
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The linearised version of Eq. (4.8) and (4.9) are
% - (aigi €9 \/f) , (4.16)
ph Ordv; + ad;0P = —6 (ph) 0;«, (4.17)

where /f is the determinant of the flat 3-metric. We use spherical coordinates
{r,0,¢} in the following, in which \/f = r%sinf. Since we are considering
adiabatic perturbations, Eq. (4.10) does not add additional information to the
problem.

The condition of adiabaticity of the perturbations implies that

AP oP P
= =h2==-T 4.1
Ap dp G p b (4.18)

adiabatic
where cg is the relativistic speed of sound and I'y is the adiabatic index. This
allows us to write

5 (ph) = (1 + 012) §P — ph&'B;, (4.19)

S

where

"Toh I, P

is the relativistic version of the Schwarzschild discriminant. Since the background

(4.20)

is spherically symmetric, the only non-zero component is B, = B.
The radial and angular parts of equation (4.17) are given by
o¢”

phipta=? 5z + 0P =8 (ph) G (4.21)
h 4 -2 28759 _
phy a™"r 2% + 0p0P =0, (4.22)

0¥
a2
where we have used that, in the coordinate basis, the covariant components of
the velocity are given by v, = ¥*6v", dvg = r2p*6v? and Sv, =12 sin? Gyov?.

We perform an expansion of the perturbations with a harmonic time de-

phipta=?r?sin? 0 +0,0P =0, (4.23)

pendence of frequency o and a spherical-harmonic expansion for the angular

dependence
6P = 6P Ve, (4.24)
& =np YVime ", (4.25)
¢ =n %agnme—i”, (4.26)
£9 =L 0, Yime . (4.27)

r2sin26 7
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Here we only consider polar perturbations, because axial (torsional) oscillations
are not possible in non-rotating stars. The quantities 7,7, and the scalar
perturbations with the hat, i.e. JP are only function of the radial coordinate.
For [ # 0, by inserting the spherical-harmonic expansion into equations (4.21)-
(4.22) we obtain:

— o2phipta=2n, + 0,6P = 5 (ph) G, (4.28)
—o?phipta=2n, + 6P =0. (4.29)

From Eq. (4.29) we get
6P =qo’n, , (4.30)

where for simplicity we have defined ¢ = ph a2y
Using Egs. (4.30) and (4.19) to simplify Egs. (4.16) and (4.28) we obtain

2 1 0.P o) e 9 9 B
arnr+{r+rlp +6w] T+a263(a L*)nL =0, (4.31)
N? 1
3r7u—(1—02) nr—i—[&«lnq—G(l—FCQﬂ nL =0, (4.32)
where N is the relativistic Brunt-Vaiséld frequency defined as
2 2
2 _ A iy @

and L is the relativistic Lamb frequency defined as

2
5 o Sl(l+1)
;C :%CS 742 .

(4.34)

To simplify the discussion we define the coefficients A, B, C and D in Eqgs. (4.31)
and (4.32) such that the equations take the form
Opny = Any + Bny, (435)
oL =Cnr+ Dn,. (4.36)

4.3.1 Plane-wave limit

kr

In the plane-wave approximation 7,,171 ~ e**", we can write the following

dispersion relation
—k* —ik(A+ D)+ AD — BC = 0. (4.37)

The real part of k is non zero, i.e. locally there exist plane-wave solutions, if and
only if
4BC < (A — D)% (4.38)
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Therefore, a sufficient condition to have a real part of k is that BC' < 0 and
hence
(0 =L (0? = N?*) >0 — Re(k)#0. (4.39)

In cold NSs, typically £2 >> N2, thus the solutions can be either 02 > £2 > N?
(acoustic modes) or 02 < N2 < £2 (g-modes). However, in the physical core-
collapse situation considered in this chapter we deal with a new-born PNS.
Therefore, the PNS is still hot and surrounded by an extended mantle and those
simplifying assumptions do not hold.

4.3.2 G-modes limit

G-modes can appear in regions of the star where buoyancy acts as a restoring
force. In those regions the Brunt-Viisild frequency is such that A2 > 0, i.e. the
regions are stable to convective instabilities. It is possible to obtain approximate
solutions for the g-modes in a star by neglecting sound waves in the system. The
calculation of g-modes in this approximation can be used to have a rough idea
of what are the typical g-mode frequencies of PNSs. It also serves as a basis to
identify which modes belong to the g-mode class when the full analysis without
approximation is performed. It is possible to remove acoustic waves from the
system by taking the limit of Egs. (4.31) and (4.32) when the speed of sound
tends to infinity, ¢ — oco. In this limit the equations read

, I(1+1
8ﬂ7r+[ +6 ﬂ Nr — (t )mzo, (4.40)
Y r
N2
OrnyL — (1 - (72) Ny + [0rIng — G)n. = 0. (4.41)

4.3.3 Acoustic-modes limit

Similarly to the previous case, it is also possible to remove buoyancy from the
system by considering only modes supported by sound waves, i.e. p-modes. The
acoustic limit is reached by setting B = 0, and therefore, N? = 0. The resulting
system of equations reads,

2 . 4
Oy + [T “ 16 ﬂ nr + v (e =L%)nL =0, (4.42)

ph ) a?c?

1
8r77J_ — Nr + |:87‘ lnq -G (1 + 2>:| nL = 0. (443)

Cs
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4.3.4 Boundary conditions

We impose boundary conditions at the shock location. The shock is a sonic point
in which the flow decelerates from a supersonic regime (outside) to a subsonic
regime (inside). Therefore, all the characteristic curves in the inner part of the
shock, where we need to impose boundary conditions, are pointing inwards; a
wave propagating outwards from the inside will stall when reaching the shock
location. In other words, any (radial) perturbation at the shock location should

have zero displacement

gr‘shock =0 — 77T|shock =0. (444)

At the origin (r = 0) it is sufficient to impose regularity [see Reisenegger and
Goldreich 1992]
Mrelr—o = 1 |ry o771 (4.45)

4.3.5 Eigenmode computation

The procedure to compute the eigenmodes (“modes” hereafter) entails the
integration of Eqs. (4.31) and (4.32) from the centre of the PNS to the shock
for different values of o. Initial data at the origin is somewhat arbitrary as
long as it fulfils Eq. (4.45). Those values of ¢ such that 7, vanishes at the
shock correspond to eigenvalues of the system. Accurate eigenvalues can be
obtained by finding the roots of 7, |shock () = 0 (e.g. using the bisection method),
where 7). |shock (w) is the value of 7, |shock after integrating for a given value of o.
The integration of Egs. (4.31) and (4.32) is performed by means of a backward
Euler scheme. The same numerical procedure is employed when computing the
approximate g-modes, Eqgs. (4.40) and (4.41), and the approximate p-modes,
Egs. (4.42) and (4.43). Hereafter, we refer as “approximate modes” to the
solutions of the latter two approximate systems, to distinguish them from the
“complete modes” (usually just referred as “modes”) resulting from the complete
system of equations. Fig. 4.3 shows an example of the absolute value of both,
the radial and the perpendicular components of the eigenfunction corresponding
to a frequency of 2608 Hz calculated 1 s after core bounce. In this case both
components have several nodes inside the domain. The number of nodes is used
as a basis for the identification and classification of the different modes, as we

show in the next sections.
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Figure 4.3 Absolute values of the radial component 7, (blue line) and of the perpendicular
component 77, (orange) of one example mode computed = 1 s after core bounce. The mode
frequency is 2608 Hz. The y-axis represents the normalised amplitude in logarithmic scale,
while the z-axis is the radius in km which ends at the shock.

4.3.6 Energy and radiated power

In the Newtonian limit, the energy stored in a mode with a certain amplitude

can be approximated as

0_2

Tshock 2
E= ?/ prin? +1(+ 1)%]d (4.46)
0

The integrand can be identified as the energy density £. Following Thorne [1969]

it is possible to compute the total radiated power? in gravitational waves by

each mode,
1 (I 4+ 1)1 +2) [ drgltt  preveac 07?2
P,=— 5p rit2d 4.4
978 (-1 @+ / proary s (447)
where A2 )
R o

4.4 Mode classification

In addition to the simple classification of the modes as a function of the frequency,
our goal is to classify the modes in a way which allows us to identify the

contribution of each mode to the GW emission. In this section we focus on the

2Note the change in the expression due to the use of coordinate basis instead of orthonormal
basis.
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Figure 4.4 Post-bounce time evolution of the frequency of the eigenmodes of the system. Modes
with the same number of nodes are represented with the same colour. Only modes with less
than five nodes are represented.

I =2,m = 0 modes. Modes for other values of [ look qualitatively similar and
will be discussed in the next section. Non-axisymmetric modes with m # 0, have
the same frequency as modes with m = 0, for the same value of [, and are not
considered.

4.4.1 Number of nodes

Our first attempt to classify the modes is according to their number of nodes. We
define the number of nodes as the number of sign changes of the radial function
7. However, in regions where the value of 7, is small, numerical discretisation
errors of the equations can induce small fluctuations of the eigenfunction that
may lead to a miscount of the number of nodes. Therefore, we try to minimise
as much as possible this error in our counting algorithm; for example we do not
count nodes as different unless they are more than a few numerical cells apart,
to avoid possible high-frequency numerical noise. However, there could still be
node miscounts in a few cases. While this issue could be solved by counting the
number of nodes manually, our aim is to build a fully automatised, and reliable,
algorithm for the mode classification.
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Fig. 4.4 shows the post-bounce evolution of the mode frequencies, with
modes classified in different colours according to their number of nodes. Some
interesting conclusions can be extracted from this figure. Our simple classification
in terms of the number of nodes allows to tell apart modes and to follow the
temporal evolution of their frequencies during the simulation. Note that other
classification methods are possible, as those based on the continuity of mode
frequency or similar characteristics. After ~ 200 ms, at which time the accretion
rate drops [see Cerdd-Durédn et al. 2013, for details] different types of modes
start to split away, and it becomes clear that there is a class of modes with a
rapidly-increasing frequency and another class in which the frequency barely
changes with time or even decreases. As we show in the next sections, these
two classes correspond approximately to p-modes and g-modes, respectively.
The jumps in frequency between consecutive times are due to changes in the
accretion-shock position, which is mainly due to SASI. We call fundamental mode
(or f-mode), ! f, the mode with zero radial nodes. In Fig. 4.4 this mode is shown
in blue and is clearly distinguishable starting from ~ 800 ms, with a frequency of
around 1000 Hz. Once the fundamental mode is identified it becomes apparent
that it separates two classes of modes: one class above the f-mode, in which
the number of nodes increases with increasing frequency and another class of

modes below the f-mode in which the number of nodes increases with decreasing

frequency. This is the expected behaviour of p-modes and g-modes, respectively.

Before ~ 800 ms there is no mode with zero radial nodes to be identified as
f-mode. The two classes of modes seem to mix and cross. At each crossing
there is a change on the number of nodes. This behaviour, the so-called avoided
crossing of frequencies, is typical in linear analysis of oscillations, when modes of
different nature (in this case p-modes and g-modes) have similar frequencies [see
e.g. Stergioulas 2003]. At these frequencies, although not exclusively, we expect

to also have hybrid modes, which are neither p-modes nor g-modes.

4.4.2 Mode identification

The previous analysis suggests that in the evolution of the new-born PNS there
exist at least two types of modes. To check if these classes correspond to the
theoretical separation in g-modes and acoustic-modes (p-modes), we compute
them in the approximations presented in Sections 4.3.2 and 4.3.3 and calculate
the number of nodes in each case. We label them as ‘g,, and 'p,,, respectively,
with index n being the number of nodes. Fig. 4.5 shows the results of both

approximate g-modes (crosses) and p-modes (stars). It is clear that for the
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approximate g-modes the number of nodes increases as the frequency decreases.
In contrast, for the approximate p-modes this relation is the opposite, increasing
the number of nodes with increasing frequency. This behaviour supports the
identification hypothesis we have done of the complete modes in the previous
section.

We turn next to analyse the time evolution of the frequency of both classes
of approximate modes. The fundamental approximate g-mode, labelled as 2gy,
has a frequency in the range f € [500,1000] Hz, varying non-monotonically but
slowly between the hydrodynamical bounce and the black hole formation at
the end of the simulation. The rest of g-modes have similar evolution albeit
at lower frequencies. This is the expected behaviour of g-modes living inside
the PNS, whose frequencies trace the surface gravity of the region generating
the modes. The fundamental approximate p-mode 2pg is the one with the
lowest frequency. As the system evolves all approximate p-mode frequencies
increase almost monotonically. This kind of modes correspond to standing sound
waves trapped between the surface of the PNS and the shock. As the shock
contracts during the evolution, the radial extent of this cavity decreases and
the frequency of p-modes increases. The short time-scale variability of those
modes is related to variations in the shock location due to the sloshing motions
associated with the SASI. Comparing both types of approximate modes one
observes several frequency crossings between modes of each kind. This fact
explains the hybridisation of the complete modes that was described in the

previous section. We check this hybridisation in detail below.

In view of these results, we have devised a method for classifying the complete
modes as p-modes or g-modes: we define the n** p-mode/g-mode, for a given
time, as the mode with the largest/lowest frequency with n nodes. Those
modes not falling in either category are classified as hybrid modes (h-modes,
hereafter). The result of this classification is shown in Fig. 4.6. It is interesting
to compare this figure with Fig. 4.5. There is clearly a good match between the
classification procedure of the complete eigenvalue problem and the frequencies
of the approximate g-modes and p-modes calculations, specially at frequencies
well above or below the fundamental-mode frequency. This makes us confident
that our procedure is accurately classifying different modes. We also note that
a careful look to both figures shows a tendency for complete modes to have
somewhat larger frequencies than their corresponding approximate modes. As
expected, hybrid modes appear mainly at the crossing of g-modes and p-modes,
although some may appear at different frequencies and may persist for the entire
evolution (see Fig. 4.6).
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Figure 4.5 Time-frequency diagram of the approximate modes computed in the g-mode limit
(crosses) and in the p-mode limit (stars). Modes with the same number of nodes are represented
with the same colour. Only modes with less than five nodes are represented.
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Figure 4.6 Time-frequency diagram of the modes of the complete problem separated in g-modes
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number of nodes are represented with the same colour. Only modes with less than five nodes
are represented.
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Figure 4.7 Radial component (7,-) of the first few modes of each class, 1 s after bounce. g-modes
are represented in blue, p-modes in orange, the f~mode in green, and the h-modes in red. The
vertical lines indicate the radial position of the three parts of the star as introduced in Fig. 4.2.
(See main text for details.)

Once the modes have been identified it is possible to examine in detail their
corresponding eigenfunctions. Figs. 4.7, 4.8 and 4.9 show, respectively, the
radial component, the perpendicular component, and the energy density of a
representative set of the complete modes. Attending to the shape of the modes,
one can see that modes within a class are somewhat similar, but with different
number of nodes. The vertical dashed lines in Figs. 4.7, 4.8 and 4.9 represent
the radial position of the different parts of the star we are considering. The
blue line is the limit of the iron core r¢,q. The orange line is the position of the
neutrinosphere r, and limits the lower radius of the PNS surface. Finally, the
green line represents the radius at which the density is lower than 10! g cm—3
and marks the position of the upper radius of the PNS surface. The relative
position of each radius at the time shown in these figures is the same as in
Fig. 4.2.

The energy density shown in Fig. 4.9 offers a complementary view to the
eigenfunctions, which is useful to further interpret the mode classification. All
the energy density of the 2f mode is located inside the star, between the core
and the surface, which we labelled as region II in Fig. 4.2. The mode 2hy4 is
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Figure 4.8 Same as Fig. 4.7 but for the perpendicular component (7).

also confined in the same region, differentiating itself from the g-modes and the
p-modes. The g-modes with an odd number of nodes have their energy density
confined inside the star, with part of it distributed in regions I and II, while
the p-modes with an odd number of nodes have it distributed in region III. The
g-mode 2g, displays a peculiar behaviour as its energy density is confined in
region III while the rest of g-modes belong to region I. Also the p-mode 2p, differs
from the others as its energy density is more similar to the h-mode 2h, than to
the other p-modes. It is currently unclear what can be the explanation for the

distribution of the energy density among the different regions. Understanding

this issue deserves a future study as it could improve our classification procedure.

To conclude this section we show in Fig. 4.10 the 2D representation of
both components of the modes 2p; and 2g;. The black dashed lines in this
figure indicate the zeros of the corresponding eigenfunction. The blue radial
line and the orange radial line represent the limits of the PNS core and of the

neutrinosphere, respectively. The larger values of the amplitude of each mode

are shown in yellow tones, while the lower values are shown in dark red colour.

The maximum amplitude of the p-mode (left panels) is concentrated in the

exterior part of the PNS, which is consistent with the interpretation of p-modes

being standing sound waves trapped between the PNS surface and the shock.
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Figure 4.9 Same as Fig. 4.7 but for the energy density (£).

However, there is an additional non-negligible component in the interior of the
PNS, due to the coupling of the acoustic waves with buoyantly-responding layers
in the interior. The right panels show the components of a g-mode that has its
maximum at the PNS interior. At this frequency the convectively stable regions
in the interior of the PNS allow for the formation of g-modes. However these
g-modes extend outside of the PNS up to the shock. The coupling of the PNS
surface with the shock is mediated by nodeless sound waves propagating in this

region.

4.5 Gravitational-wave emission

4.5.1 Comparison in the frequency domain

In the previous sections we have computed the eigenmodes of the system formed
by the PNS and the shock at any given time in the simulation. It is expected that,
if we perturb the system, some of those modes will be excited and gravitational
waves will be emitted at those particular frequencies. These perturbations are
indeed present in the simulation: the region between the PNS surface and the
shock is subject to competing instabilities, such as the SASI and convection,

that break spherical symmetry. In this region down-flowing plumes of cooled
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Figure 4.10 Polar-coordinates representation of both components of the modes 2p1

and 291.
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matter hit the PNS surface exciting the eigenmodes of the system. All these
perturbations translate into the gravitational-wave signal (see Fig. 4.1, whose
frequency spectrum is expected to be correlated with the frequencies of the
modes). In order to compare both we overplot the time-frequency distribution of
the modes with the spectrogram of the GW signal obtained from the simulation.
For this comparison we consider only modes with [ = 2 and [ = 4. The numerical
simulation of Cerdd-Duran et al. [2013] was performed assuming symmetry with
respect to the equatorial plane, therefore modes with odd [ are not present, and
are not considered here. Moreover, | = 0 modes were not considered in the
analysis, and will be considered elsewhere. We do not take into account [ = 6
or higher modes because those typically have less energy stored, and hence will

produce weaker gravitational-wave signals, than modes with lower [.

The results are shown in the spectrograms of Fig. 4.11. As a general con-
clusion, all of the features in the spectrograms have a corresponding eigenmode
tracing its evolution closely. But the inverse is not true, not every eigenmode
computed has a trace in the spectrogram. This is expected, since not every
mode has to be excited during the evolution or, even if excited, not every mode

can have a sufficiently high amplitude to leave an imprint in the GW signal.

From Fig. 4.11 it seems clear that the GW emission cannot be explained with
I = 2 modes alone and some [ = 4 features are also needed. This is particularly
true for the f mode (lower-right panel, in blue colour). During the first half a
second after the bounce, g-modes are the dominant GW emission mechanism
(upper panels). This is consistent with previous core-collapse simulations, in
which spectrogram features during the first half second (previous to the supernova
explosion) were interpreted as g-modes [see e.g. Miiller, Janka, and Marek 2013].
At later times, a component of the gravitational-wave signal with increasing
frequency appears. This component is perfectly fitted by 2p,, modes (upper-right
panel) at frequencies larger than ~ 1500 Hz. “p, modes do not appear to
contribute to the signal, and were probably not excited during the simulation.
Those p-modes were identified as SASI modes by Cerd4-Duran et al. [2013]
and Kuroda, Kotake, and Takiwaki [2016], because their frequency traces the
sloshing motions of the shock. This is expected because the acoustic waves
forming the p-modes play a main role in the advective-acoustic cycle responsible
for the SASI [Foglizzo and Tagger 2000, Blondin, Mezzacappa, and DeMarino
2003]. Below ~ 1500 Hz, the GW emission seems to be dominated by g-modes.
The most relevant ones are g-modes with n < 3 and | = 2 (upper-left panel).

Those with larger | do not appear to leave an imprint in the signal.
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In general, it is quite reassuring that all lowest-order modes (in terms of
[ and n) leave an imprint in the spectrograms. This is consistent with the
interpretation that perturbations excite mainly low-order modes and higher-
order modes do not contribute to the signal. Furthermore, this observation also
helps to decide which modes are relevant for the GW emission, irrespective of
the waveforms computed in the simulations. The only feature in the spectrogram
that cannot be explained by our eigenmode analysis is a component whose
frequency decreases in time from ~ 1000 Hz at about 1.2 s after bounce to 0 Hz
at the time of BH formation. This feature was interpreted in Cerda-Duran et al.
[2013] as a quasi-radial mode (I = 0), which is not possible to study within our
approach. The Cowling approximation does not appear to introduce large errors
in the eigenmode computation. Many of the modes show a small mismatch with
respect to the spectrogram, typically a small shift to larger frequencies, which is
probably caused by the Cowling approximation. In the near future we plan to
relax this approximation to analyse whether a closer agreement is found and

also to study the behaviour of quasi-radial modes.

4.5.2 Gravitational-wave radiation efficiency

In the previous section we have compared our eigenmode analysis with the
GW signal only in terms of frequency evolution. Unfortunately, the eigenmode
analysis does not allow us to predict what would be the amplitude of each mode
in the GW signature. This amplitude depends on two factors: the energy stored
in each mode and the efficiency of each mode to emit gravitational waves. In the
previous section we have also found indications that most of the energy of the
perturbations is stored in the lower-order modes. The energy E of a mode can
be computed from Eq. (4.46) and the radiated power P is given by Eq. (4.47).
Both quantities are proportional to the (unknown) eigenmode amplitude. The
ratio between both quantities 5

TaW = ik (4.49)
is the gravitational-wave timescale, which gives an idea of the characteristic time
in which the energy of a mode will be radiated in GWs. Modes with smaller
value of Tqw are expected to be more efficient emitters of GWs and will produce
a stronger imprint in the signal. We can also define the GW emission efficiency
as

(GW efficiency) = E%’ (4.50)
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Figure 4.11 Comparison of the spectrogram from the numerical simulation of Cerda-Duran
et al. [2013] with the time-frequency distribution of the I = 2 and I = 4 modes. Colour coded is
the GW power, with yellow indicating the highest values. The upper panels show the g-modes
(crosses) and the lower panels the p-modes (stars). Left and right panels show the [ = 2 and
I = 4 modes, respectively. The number of nodes are represented in different colours: blue (0),
orange (1), green (2), red (3), violet (4), and brown (5).
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Figure 4.12 Time-frequency diagram of the modes of the complete problem separated by Tqw.

Modes with lower values of Tqw are coloured in blue and the values scale to the larger values
in red. The upper row corresponds to g-modes (crosses), while the lower row corresponds to
p-modes (stars). The fundamental mode is represented with triangles. The colour bar shows
the logarithm of Tqw, in seconds.

where f is the frequency of the mode. This equation gives an idea of the fraction

of the mode energy radiated in GWs per oscillation cycle.

Fig. 4.12 shows the time-frequency diagram of 7qw for each mode. The
modes with lower value of 7w (colour coded) are stronger emitters of GWs
and the most efficient emitters (see Fig. 4.13). Comparing this figure with
Fig. 4.11, one can see that the 2p; mode (light-blue stars in Fig. 4.12) is the
most efficient emitter. This mode also coincides with the most prominent feature
in the spectrogram. Inspecting the definition of 7qw, one realises that

(n(20 + 1)!1)?

Teow X 21 )

~ (4.51)

where the dependence with n is a crude approximation and a consequence of
the different number of nodes in the integrands of Eqgs. (4.46) and (4.47). This
dependence produces a qualitatively different behaviour of p-modes and g-modes
in terms of 7qw. In both cases, the GW emission of high-order n modes is
expected to be suppressed. However, for p-modes, 7qw decreases for increasing

frequency. This compensates somewhat the suppression factor at high n and

allows the appearance of high order p-modes up to n = 5 in the spectrogram.

On the contrary, GW emission in high order g-modes is suppressed by both
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Figure 4.13 Time-frequency diagram of the modes of the complete problem separated their
efficiency. Modes with low values are coloured in blue and their values scale to the larger values
in red. The upper row corresponds to g-modes (crosses), while the lower row corresponds to
p-modes (stars). The fundamental mode is represented with triangles. The colour bar shows
the logarithm of the efficiency.

the high value of n and the low frequency, which results in no observed g-mode
frequencies for n > 3. It seems clear that our classification allows us to match
the features in the spectrogram with modes with low values of T7qw, i.e. with
high efficiency. Regarding I = 4 modes, the mode with lowest Tqw is the *p,
which explains the appearance of this feature in the spectrogram. Note that
when comparing [ = 2 and [ = 4 modes, there is a difference in 7qw of several
orders of magnitude. The reason for this difference is that, for perturbations
of a spherical background, | = 4 modes do not contribute to the quadrupolar
contribution of the GW emission, but exclusively to the octupolar component.
This component is highly suppressed by a 1/c? factor with respect to [ = 2
modes®. However, in the simulation, the PNS is deformed by the presence of
rotation and hence the | = 4 mode is able to contribute to the quadrupolar
radiation. This enhances emission from these modes, which are observed in the
GW spectrogram. Therefore, in order to properly capture the GW emission
properties of modes with [ # 2 in rotating cores, one should have to consider
corrections due to to deformations of the PNS. These corrections are out of the

scope of the present qualitative analysis and will be investigated in the future.

3This factor cannot be seen explicitly in Eq. (4.47) because of the use of units with ¢ = 1.
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We can also conclude that, for nonrotating cores, in which the background is
spherically symmetric, modes with [ # 2 cannot contribute significantly to the

GW emission, and one could restrict the analysis to [ = 2 modes.

4.6 Discussion

In this chapter we have reported results from the computation of the eigenmodes
of a physical system formed by a PNS and an accretion shock obtained from a
simulation of the core-collapse of a massive star. The goal has been to explore
if the spectrum of the GW signal emitted during the collapse to a PNS and
subsequent accretion phase leading to the formation of a black hole, can be
related to the oscillating modes of the system. To this aim we have computed
the number of nodes of each of the modes we have found. Mode classification
in terms of the number of nodes has shown that there are two basic sets of
modes, those with a number of nodes increasing with frequency and another
group that follows the opposite trend. The two families are neatly separated
by the so-called fundamental mode, a mode that has no radial nodes. The
comparison with the g-modes and p-modes obtained with the analysis of the
numerical simulation has allowed for an unambiguous identification of the two
groups of modes found. We have further compared the modes obtained with the
linear-oscillation approximation with the spectrogram of the GW signal obtained
in the numerical simulation finding a remarkable correspondence between both
results.
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Chapter 5

Introduction to

gravitational-wave detectors

The second generation laser interferometer GW observatories LIGO and Virgo
have been commissioned in the last two years. The two American advanced
LIGO detectors, located in Hanford (Washington) and Livingston (Louisiana),
along with the European advanced Virgo detector, situated in Cascina (Ttaly),
have been steadily upgraded to reach sensitivity levels that allowed to detect the
first gravitational signals ever. The much-awaited discovery, a truly milestone
in contemporary physics and astronomy, was finally achieved on September
14th 2015, when the two LIGO detectors captured the elusive, tiny spacetime
vibrations associated with the very last cycles of the inspiral and merger of two
stellar-origin BHs, and the resulting Kerr BH [Abbott et al. 2016b]. The signal,
dubbed GW150914, confirmed a one-hundred-year-old prediction from the theory
of general relativity, demonstrating for the umpteenth time that Einstein was
indeed right. More importantly, that infinitesimally small vibration opened,
lo and behold, the exciting prospect of studying the wonders of the Universe
through the GW channel, complementing electromagnetic observations (i.e. what
we know as traditional astronomy since the days of Galileo Galilei, more than
four centuries ago) and neutrino detections of cosmic origin. Multi-messenger
astronomy started to unfold on that 14th of September of 2015.

The detection of signal GW150914, followed shortly after by the detection of
GW151226, have been both a magnificent demonstration of the capabilities of the
state-of-the-art technology at work on advanced interferometric detectors. Those

detections, however, would have not been possible without the vast amount of



86

Introduction to gravitational-wave detectors

effort done by a large number of scientists in the LIGO Scientific Collaboration
and in the Virgo Collaboration in a challenging area of research known as
detector characterisation. Understanding the different sources of noise of these
detectors, their characterisation, as well as developing accurate techniques to
remove corrupted data, have all played crucial roles to achieve the required
sensitivity. In the present chapter we will briefly outline the basics of current
GW detectors, we will illustrate their (multiple) sources of instrumental noise
and the need to characterise the detectors. In particular, we will introduce the

glitch-classification project, whose results will be presented in the next chapter.

5.1 Detectors of gravitational waves

The first gravitational wave detectors were developed during the 1960s by Joseph
Weber. They consisted of massive (M ~ 1000 kg) cylindrical bars of aluminium.
The principle of detection in these instruments (nowadays called Weber bars)
relies on the mechanical vibration produced when a gravitational wave crosses
the bar. The sensitivity response of the instrument is a narrow band centred on
the resonance frequency of the cylinder. A transducer converts the mechanical
energy of the bar into electrical energy, and an amplifier increases the electrical
signal to record it. Due to their limited sensitivity (~ 102! in the most recent
version), and its narrow-band bandwidth, these kind of detectors have been

progressively abandoned in favour of detectors based in laser interferometry.

Laser interferometer detectors measure the stretching of spacetime and thus
the relative distance between two free-falling masses placed at the end of the
two arms of the interferometer. The changes in the space-time induced by a
gravitational wave produce variations in this distance directly related with the
amplitude of the incident wave. The principle of detection is based on the
spacetime metric describing a plane gravitational wave traveling e.g. in the
+2z direction of the so-called transverse traceless (IT'T) coordinate system [see
Thorne, Misner, and Wheeler 2000]

ds? = —cdt+ (14 hy (¢~ %)) art+ (1+h (t- 3) dy?+
+ 20 (t= 2) dady +d22, (5.1)

where the two independent polarisations of a gravitational wave, hy(t) and
hy« (t), induce a perturbation of the flat Minkowski metric at the origin of the

coordinate system; this is the so-called weak-field approximation.
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Moreover, the interferometers also fulfil the long-wavelength approximation,
which stands that if the reduced wavelength of the wave, A\ = \/2x is much
larger than the size of detectors arms L, the GW field can be treated as being
uniform (but time-dependent) in the space region that covers the entire detector.
With these two main approximations (for a detailed discussion see Jaranowski
and Krolak [2005]), it is possible to relate the changes in the phase of the
interferometric pattern measured by a photodiode A¢(t) with the detector
response h(t),

AP(t) = dmvyLh(t), (5.2)

where 1 is the laser central frequency. The response function h is a linear

combination of the two wave polarisations hy and hy,

h(t) = Fy (6)hy (t - zdé”) +F () (t - Zd(t)) , (5.3)

c

where z4(t) is the distance of the origin of the TT coordinate system with the
corner station of the interferometer. Functions F (¢) and F (t) are the beam
patterns of the interferometer. These functions relate the position on the sky of
the source of gravitational waves, the polarisation angle, and the location of the
detectors on Earth. The specific expression of the beam patterns can be found
in Jaranowski and Kroélak [2009].

From Eq. (5.2) and Eq. (5.3) it follows that the measurable sensitivity of a
gravitational wave depends directly on the length of the interferometer arms.
The sensitivity can further be improved using Fabry-Perot cavities, which employ
low-transmissivity mirrors to increase the number of trips that the light makes
inside the cavity before it reaches the photodiode at the output of the detector,
increasing the effective distance of the arms. The other important design factor
for interferometers is the laser power. To improve the possibilities of GW signal
detection, the interference patterns should be as sharp as possible. This is
achieved by increasing the laser power. However, building a laser with the
power required to operate at full sensitivity results practically impossible. To
solve this issue, the LIGO and Virgo detectors also recycle the laser power
using an additional mirror, called power-recycling mirror, at the entrance of
the interferometer. The light reflected by the arms follows a path back to the
recycling mirror, rather than to the photodetector. This light is reflected back
into the interferometer, increasing the total power inside the detector. The
advanced LIGO detector has incorporated an additional mirror, called signal-
recycling mirror. This technology allows to “tune” the detector’s response to the
frequency band of the GW and was incorporated successfully in the GEO600
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Figure 5.1 Simplified layout of the Advanced LIGO interferometers taken from Smith and
Collaboration 2009.

detector [Grote and Collaboration 2010]. Fig. 5.1 illustrates the optical scheme
of GW detectors.

5.2 Noise sources

Due to the minuscule amplitude of the spacetime vibrations caused by gravita-
tional waves (when they hit the Earth), GW detectors based on interferometry
have to be isolated from all significant non-gravitational-wave external phenom-
ena, either seismic, electromagnetic, or acoustic (see Pitkin et al. [2011] for a
detailed discussion). At the same time, they also have to be equipped with
the most sophisticated technology regarding high-power lasers, vacuum systems
(to avoid light dispersion), mirror coatings, suspension and seismic isolation
subsystems, and optics. However, despite the astounding sensitivity of current
advanced interferometers, the detection of gravitational waves is still terribly
limited by noise.

Any of the required technologies can be a potential source of noise. While
many of these can be controlled by design, there exist other sources of noise that
have an external origin and require auxiliary channels and sensors to measure

them and control them. The design of an interferometer is hampered by three
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main sources of noise, namely seismic noise, quantum noise, and thermal noise.
Other sources, such as laser frequency noise, photodetector dark noise, actuator
noise, etc, are classified as technical noises.

Thermal noise is produced by the vibration of the mirrors and the suspension
pendulums, designed to screen the ground vibrations, at the ends of the Fabry-
Perot cavities. In the test masses, the Brownian noise produced by mechanical
dissipation in the mirror coatings is the dominant source of thermal noise [Harry
et al. 2002, Cumming et al. 2012]. In the suspension system, the thermal noise
is due to the loss (violin modes) in the fused silica fibers [Hammond et al. 2012].

Quantum noise is an effect of the statistical fluctuations in detected photon
arrival rate (shot noise) and radiation pressure due to photon number fluctuations.
In particular, shot noise is inversely proportional to the square root of the number
of photons collected by the photodiode, which is proportional to the power of
the laser [Buonanno and Chen 2001]. Therefore, this type of noise can be
reduced by increasing the laser power and with an efficient control of the light
scattering. The former is accomplished through light-recycling techniques which
use additional mirrors that reflect the wasted light back into the interferometer
in the positions where light losses in the photodiode are largest (signal-recycling
mirror) and in the place where the laser beam is injected into the interferometer
(power-recycling mirror). The last main source of noise is due to gravity gradients.
Seismic waves produce density perturbations in the ground close to the test
masses, which in turn produce fluctuating gravitational forces on the masses.
This source of noise limits the possibilities of detection in the mHz frequency
range but is negligible above 11 Hz.

Fach noise source has a different impact on the instrument depending on the
frequency. The combination of all noise sources produces the so-called detector
sensitivity curve, which illustrates the dependence of the detection capabilities
with the frequency. Fig. 5.2 shows these curves for aLIGO (upper panel) and
Advanced Virgo (bottom panel), corresponding to the theoretical design of the
two instruments. The different noise sources are shown in different colours, white
the total noise or sensitivity curve is shown with a solid black curve in both

cases.

5.3 Transient noise sources

An important contribution to the noise budget of interferometers comes from
non-Gaussian transients of noise, also known as “glitches”. The nature of this

noise is purely instrumental or environmental. Transients constitute the sources
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Figure 5.2 Spectral sensitivity curves of Advanced LIGO [Aasi et al. 2015b] (upper panel) and
Advanced Virgo [Acernese et al. 2014] (bottom panel).

of noise that most limit the sensitivity of searches for short and poorly-modelled
astrophysical sources of gravitational waves, like unmodelled bursts and high-
mass binary coalescence signals. Advanced detectors contain many environmental
and instrumental sensors, which produce auxiliary channels of data that can be
used to monitor the detector behaviour, track the causes of short-duration noise
artefacts, and ultimately veto noise transient events [Smith et al. 2011, Ajith
et al. 2014, Aasi et al. 2015a).

These artefacts have a large variety of time-frequency-amplitude morphologies,
with the undesirable particularity that many of them can mimic a true GW
signal. To reduce the impact of glitches in the analysis of the collected data, the

coincidence criteria is applied, i.e a transient should appear in more than one
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Figure 5.3 Time-frequency plots of two typical glitches commonly found in interferometers. An
example of a “blip glicth” is show in the upper panels while the lower panels show an example
of a “whistle glitch”.

detector with a time delay less than or equal to the light-travel-time between
the observatories, to be worth of further consideration. If a signal only appears
in one observatory during this time window, it is rejected. However, the rate of
glitches at the advanced LIGO detectors is fairly large (see Abbott et al. [2016a])

and thus, accidental coincidence between the two detectors is non-negligible.

The situation will obviously improve when the Advanced Virgo detector joins the
observational campaigns of the two LIGO observatories. The impact of glitches
is not negligible. They reduce the significance of candidate GW events because
they increase the background loudness. If they occur sufficiently close to a
detected signal, they affect the estimation of the physical parameters, producing
broader uncertainties. Moreover, the veto techniques used to remove glitches
also reduce the amount of usable data. Therefore, to maximise the GW detection
rate, either the causes of the glitches must be identified and fixed within the
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detectors (in the best case scenario) or glitches must be removed from the data
set.

The origin of glitches is not completely clear. Some categories have known
causes, while others have causes yet to be identified. Fig. 5.3 shows two examples
of typical glitches found in interferometer data. The first row shows several
time windows of a blip glitch, whose origin is unknown. The second row shows
the type of glitch called whistle. Whistles are known to be caused by radio
signals at MHz frequencies that beat with Voltage Controlled Oscillators in the
interferometer control system, and have a typical morphology in the form of a
“W” or a “V”. As detectors are upgraded and evolve, new classes of glitches can
be found. Therefore, it is necessary to develop robust methods to identify and

characterise glitches. This is discussed in the following chapter.



Chapter 6

Glitch Classification

The results of this chapter have been originally published in:

Powell, J., Torres-Forné, A., Lynch, R., Trifiro, D., Cuoco, E., Cavaglia, M., Heng,
1.S., and Font, J.A., “Classification methods for noise transients in advanced
gravitational-wave detectors II: performance tests on Advanced LIGO data” ,
Classical and Quantum Gravity, 34, 034002 (2017).

Classification and categorization of noise transients in GW detectors using
individual channels of data may provide valuable clues for the identification
of their sources, which can be of great help to eliminate them [Powell et al.
2015, Mukherjee, Obaid, and Matkarimov 2010]. So far transient classification
has mainly been achieved by visual inspection of spectrograms. Automatic
classification is however essential for future detections of astrophysical GW

signals.

The goal of this chapter is to evaluate the performance of three methods for
fast classification of transients which have been developed for the analysis of
Advanced LIGO (aLIGO hereafter) and Virgo data, using glitches in actual data
from aLLIGO. Specifically, these methods are Principal Component Analysis for
Transients (PCAT), Principal Component LALInference Burst (PC-LIB) and
Wavelet Detection Filter with Machine Learning (WDF-ML). Previous work has
shown that these methods can classify artificial data sets with an efficiency up
to 95% [Powell et al. 2015].
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Figure 6.1 The mean binary NS star inspiral range for the two aLIGO detectors during ERT.
The Hanford detector had a higher range but also a higher glitch rate. The average range was
50-60 Mpc.

6.1 The Data

In this study we use data from the 7th aLIGO engineering run (ER7), which
began on the 3rd of June 2015 and finished on the 14th of June 2015. Engineering
runs are stretches of time where the detectors are operated as through in an
observing run, and allow the commissioning and the Detector Characterization
groups to adjust the operational parameters of the interferometer and find
and minimize many technical sources of noise, inproving the sensitivity for the
Observational runs. The average binary NS star inspiral range i.e. the distance
at which these sources can be detected, for both H1 and L1 detectors in data
analysis mode during ER7 was 50 — 60 Mpc [Areeda and Smith 2016]. The mean
range for both detectors is shown in Fig. 6.1.

6.1.0.1 Livingston.

In the period analyzed, data from L1 consists of 48 segments where the inter-
ferometer was locked and in data analysis ready mode. These data segments
vary in length from 1 second to ~ 7hours. We discard any segments of data
that are less than a minute in duration as a longer segment of data is required
to measure the power spectral density (PSD). The total discarded amount was
49 seconds of data. The total length of L1 data analyzed is ~ 87 hours.
Glitches of different types are often recognised by their shape in a spectrogram

such as those shown in Fig. 6.2. A description of the most common glitch types,
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Figure 6.2 Spectrograms of typical transient types found in the aLIGO Livingston ER7 data.
They are generated using the Omega scan tool in LigoDV-Web, which matches the data to
sine Gaussians. (a) A transient characterised by a tear drop shape in the spectrogram. (b) A
“whistle" glitch that often has a long duration and occurs at high frequencies. (c) A hardware
injection. (d) A transient type characterised by high frequency lines and lower frequency
features.

which have occurred in aLIGO data, are described in Smith [2016]. Fig. 6.2(a)
shows glitches characterised by a tear drop shape. Fig. 6.2(b) shows longer
duration transients known as “whistles”, which are caused by radio-frequency
beats [Smith 2016]. Only a small number of whistles (~ 11) were found in the
frequency (30-2048 Hz) and SNR range used in this study. Some other glitches
in the data that are not shown in Fig. 6.2 have energy content below 10 Hz or
are due to scattered light. Glitches span the entire frequency range considered
in this study. Some noise transients may have occurred due to the increased

microseism created by tropical storm “Bill” in the Gulf of Mexico [Areeda and
Smith 2016].

A number of hardware injections were also made during ER7. An example

is shown in Fig. 6.2(c). Hardware injections are artificial signals simulated by
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Figure 6.3 Examples of some of the most common transient types found in the Hanford ER7
data (a) A tear drop glitch. (b) Transients of this type have a large SNR and duration. They
created significant drops in the detectors range. (c¢) A high frequency transient type. (d) A
longer duration line occurring at the beginning of a number of data segments.

inducing a motion of the optics that can be used to test which auxiliary channels
are sensitive to gravitational waves [Smith et al. 2011, Ajith et al. 2014].

6.1.0.2 Hanford.

In the period analysed, data from the H1 detector consists of 50 segments
where the interferometer was locked and in data analysis ready mode. The
data segments vary in length from 1second to almost 14 hours. As with L1 we
discard any segments of data that are less than a minute in duration, which
was a total of 116 seconds of data. The total length of Hanford data analysed is
~ 141 hours.

The H1 data is highly non-stationary and contains many more transients
than the aLIGO L1 data. In particular, the H1 data contains many high SNR

transients that caused a significant drop in the binary NS star inspiral range.
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Figure 6.4 Classification procedures for the three different methods used in this study. (a)
PCAT applies principal component analysis to all transients detected in a stretch of data
and then applies a machine learning classifier to the principal component coefficients. (b)
PC-LIB uses a combination of principal component analysis and Bayesian model selection
to determine the glitch type. (c¢) WDF-ML applies a machine learning classifier to wavelet
coefficients obtained by applying a wavelet transform to the transients in the data.

An example is shown in Fig. 6.3(b). It was suspected that these large transients
were caused by cleaning of the beam tube. A few other examples of common
transients found are shown in the other spectrograms displayed in Fig. 6.3. As
with the L1 data, H1 data also contains a number of hardware injections.

6.2 Transient classifying algorithms

Three different classifying algorithms were developed for the fast classification
of noise transients in the detectors. Most of the technical details have been
described in Powell et al. [2015]. Here we give a brief outline of the three methods
and describe any changes that have been made to improve their performance

and latency. Fig. 6.4 outlines the classification procedures for all three methods.

More details are given in the following subsections.
To find transients in the data we use event trigger generators (ETGs). ETGs
typically search for excess power in individual interferometers and output the

time, SNR, frequency, duration and other parameters of transients found in
the data. PC-LIB uses Omicron, the main ETG used by the LIGO Scientific
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Collaboration’s (LSC) detector characterisation group [Chatterji et al. 2004,
Robinet 2015]. WDF-ML and PCAT have their own internal ETGs.

6.2.1 PCAT

PCAT uses a technique called Principal Component Analysis (PCA) that allows
for dimensional reduction of large data sets [Friedman, Hastie, and Tibshirani
2001a, Powell et al. 2015]. In the first stage of the PCAT analysis, the data are
downsampled to 8192 Hz, whitened and high-pass filtered at 10 Hz. Then PCA
is applied to all of the noise transients found by the ETG in all the spherically-
symmetric segments of data. PCAT uses a 0.125s window around each GPS
time as glitches are typically of ms duration. This can lead to a loss of sensitivity
to longer duration glitches. However, this effect can be safely neglected as longer
duration glitches do not occur very often during observing runs, when the data
is generally more stable than the ER data.

A projection of the original waveforms on to the Principal Components (PCs)
allows for the calculation of scale factors for each PC called PC coefficients. Noise
transients of different types are separated in the PC coefficient parameter space.
This allows PCAT to classify the transients by applying a Gaussian Mixture
Model (GMM) machine learning classifier to the PC coefficients [Pedregosa et al.
2011].

6.2.2 PC-LIB

LALInference Burst (LIB) is a Bayesian parameter estimation and model selec-
tion tool, which uses a sine-Gaussian signal model to estimate parameters of
GW bursts [Essick et al. 2015]. It can also be combined with Omicron to be
run as a search [Lynch et al. 2015]. PC-LIB adapts LIB for the classification of
transients by replacing the LIB sine-Gaussian signal model with a new signal
model created from a linear combination of PCs calculated from the waveforms
of known transient types [Heng 2009, Logue et al. 2012]. These known transients
may have been previously classified by examining spectrograms of the transients
or by one of the other methods. Thus PC-LIB can only classify transients that
have occurred in the data many times before. When transients of a new type
start to appear in the data new signal models must be created.

In Powell et al. [2015] we created signal models using fifty transient waveforms.
In this study we only use ten waveforms. This change will allow us to start
classifying new transient types more quickly as they start to appear in O2 data,

without any loss in sensitivity, as glitch waveforms for specific types do not
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have much variance in shape. Bayesian model selection can then be used to
determine what population of noise transient each new glitch belongs to [Sivia
1996, Veitch et al. 2015, Lynch et al. 2015]. First, one second of data around the

trigger time is downsampled to 8192 Hz and a 10 Hz high pass filter is applied.

Nested sampling is then used to calculate Bayes factors to determine the correct

transient type [Sivia 1996].

6.2.3 WDF-ML

Wavelet detection filter (WDF) is an ETG that is part of the Noise Analysis
Package (NAP), developed by the Virgo collaboration [Acernese et al. 2005,
Acernese et al. 2007]. It is combined with a machine learning classifier for
transient classification (WDF-ML).

In order to reduce the number of wavelet coefficients produced by WDF-ML,
the data are downsampled before any data conditioning in the time domain to
prevent border effects introduced by the Fast Fourier Transform (FFT). The
downsampling is a new feature of WDF-ML that was not implemented in the
version of the algorithm used in Powell et al. [2015]. The data are then whitened
using parameters estimated at the beginning of each locked segment. After
whitening, a wavelet-transform is applied, using a bank of wavelets, as described
in Powell et al. [2015]. We use a window of 2048 samples, with an overlap of
1968 samples, which corresponds to a duration of 0.25 seconds, as transients are
typically of a short (ms) duration.

The wavelet coefficients identified by the WDF-ML ETG are further cleaned
using a wavelet de-noising procedure where only wavelet coefficients above the
noise level are retained [Powell et al. 2015]. WDF-ML produces a list of wavelet
coefficients, frequency, duration and SNR for each transient. The dimensions
of the wavelet coefficients are then reduced by applying PCA and Spectral
Embedding [Ng, Jordan, and Weiss 2001, Belkin and Niyogi 2003]. The transient
classification is then performed by applying a machine learning GMM classifier

to the reduced wavelet coefficients [Pedregosa et al. 2011].

6.3 Classification

In the following sections we show the classification results obtained by PCAT,
PC-LIB and WDF-ML on aLIGO H1 and L1 data. All algorithms are run with

the same configurations that we expect to use during O2 to better understand our
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performance during the future observing runs. To determine if the glitches are

classified correctly spectrograms of all glitches are made and visually inspected.

6.3.1 Livingston

To find the transients in the L1 data we look for triggers that are coincident
within half a second in the outputs of all ETGs. The WDF-ML ETG was run
with an SNR threshold of 10 at a sampling rate of 8192 Hz. Omicron was run
with a lower SNR threshold of 5. We then look for transients that are coincident
between both WDF-ML and Omicron, above SNR 20, and find a total of 426
coincident transients. As the PCAT cannot find the lower frequency (below
10Hz) triggers and some longer duration triggers we still classify transients
that are coincident between Omicron and WDF, but missed by PCAT, as those
triggers would still be classified when running in low latency.

PCAT applies a threshold on the SNR of the transients of 4.5 and the
maximum possible number of transient types was set to 10. The ideal number
of PCs can be estimated through the analysis of the variance curve of the whole
dataset. This gives a total number of 20 PCs.

PCAT classifies all the transients into 10 different classes. 90 triggers that
were coincident between the Omicron and WDF-ML ETGs were missed by the
PCAT ETG. Included in these missed triggers are all of the whistles, as their
duration is longer than the PCAT analysis window, and 17 transients that are
not visible in a spectrogram. 20 of the lower SNR hardware injections are also
missed.

The data contains three main types of transients with examples shown in
Fig. 6.2(a), (b) and (c). As PCAT does not detect any of the whistles shown in
Fig. 6.2(b) the remaining glitches are classified into two main types, further split
into sub-types. PCAT classes 1, 4 and 10 contain the transients which appear as
a spike in the time series, as shown in the 6.5(a) and in the spectrogram in 6.2(a).
Class 4 contains only 2 transients, class 1 contains 123 transients and class 10
contains 100 transients. Class 1 and 10 contain 11 and 20 hardware injections
respectively. The three sub classes are characterised by different duration of the
transients. Triggers in class 1 have the lowest (< 0.005s) duration, class 10 have
a larger (< 0.01s) duration, and class 4 contains two longer (> 0.01s) duration
spikes. Two of the transients in class 10 were incorrectly classified.

Classes 3, 5, 6, 7 and 8 contain the transients with a time series waveform
shown in Fig. 6.5(b) and a spectrogram shown in 6.2(d). Triggers in classes 5, 7
and 8 all have SNR values between 20 and 25 and durations of ~ 0.01 s. Class 3
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Figure 6.5 The typical high pass filtered and whitened time series waveforms for three of the
most common transient types found in the Livingston detector. (a) A spike which appears as a
tear drop in a spectrogram. (b) The time series waveform of the glitches shown in Fig. 6.2(d).
(c) The time series of a whistle glitch.

contains triggers of the same transient type but with larger durations (< 0.02 s)
and SNR values up to 50. Class 6 contains only one transient, also of the same
type, but with an SNR value of 57 and a duration value of 0.005 s.

PCAT classes 2 and 9 contain 11 and 7 glitches respectively. As these
transients are not visible in a spectrogram it is not possible to determine what
their type is and if they are classified correctly. Overall 95% of the transients
are correctly classified by PCAT.

PC-LIB classifies all transients into four different types. To create the signal
models the first 5 PCs for each glitch type are used as determined thought the
analysis of the variance curve of the whole dataset. Class 0 contains 33 transients
that are not detected by PC-LIB and are thus classified into a noise class. Most
of the noise class transients occur at frequencies lower than the 10 Hz cutoff used
by PC-LIB.

Class 1 contains 249 transients that correspond to PCAT class 4 and 5 and
appear as a spike in the time series. Two of the transients in this type are
mis-classified. All of the hardware injections in the data are classified in this
type. Class 2 contains 131 transients which correspond to PCAT sub-classes 3,
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Figure 6.6 Classification comparisons for the three different methods on the data from LIGO
Livingston. (a) Compares the classification results of PCAT and PC-LIB. PCAT class 2,4,6 and
9 are not shown as they contain less than 15 transients. (b) Compares the classification results
of PCAT and WDF-ML. (c) Compares the classification results of PC-LIB and WDF-ML. (d)
The SNR and frequency of all the transients classified in the data.

5, 6 and 7 and have a time series waveform shown in Fig. 6.5(b). There are no

incorrectly classified transients in this class.

Finally, class 3 contains 13 transients. Most of the transients in this class are
the whistle transients shown in 6.2(b) and in Fig. 6.5(c). Three of the transients
in this class are mis-classified and should be in class 2. Overall PC-LIB classifies

98% of the detected transients correctly.

WDF-ML classifies all transients into five different classes. The 5 classes
consist of two different types of transients as WDF-ML cannot accurately classify
the longer duration whistles due to the short analysis window. Sub-classes are
determined by the wavelet family of the transients rather than split by duration
or SNR as for PCAT.
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WDF-ML class 0 contains 195 transients and class 3 contains 86 transients
that appear as a spike in the time series. These correspond to PCAT types
1, 4 and 10 and PC-LIB’s class 1. The two sub-classes contain 29 hardware
injections. They also contain 8 of the whistle glitches, as WDF-ML cannot
accurately classify longer duration transients. Four of the class 0 and one of the

class 3 transients are incorrectly classified.

The second main transient type found by WDF-ML corresponds to PC-LIB’s
class 2 and contains transients characterised by the typical spectrogram shown
in 6.2(d). The transients were split into three sub-classes, namely class 1 that
contains 46 transients, class 2 that contains 70 transients and class 4 that
contains 29 transients. Class 1 contains three incorrectly classified transients
and class 3 contains two of the whistles glitches. Class 4 contains 4 hardware
injections that are mis-classified. Overall WDF-ML classifies 95% of the L1

transients correctly.

Comparison

Fig. 6.6 shows a comparison of the classifications made by all three methods.
All methods are able to classify transients with a high level of accuracy in real
non-stationary data. WDF-ML performs better at classifying very low frequency
transients as it does not need to use a lower frequency cutoff. The Omicron
SNR, duration and frequency of all 426 transients are shown in Fig. 6.6(d).
The discrete frequency values are due to the Omicron’s method for measuring
frequency [Robinet 2015].

Only PC-LIB is able to separate the whistle transients into a separate class
due to the longer 1s time window used by this method. The efficiency in
classifying these transients for the other algorithms could be improved by using
a longer time window. However, this could lead to multiple shorter duration
transients occurring in the same time window. As PC-LIB looks for specific
known transient types it could be used to add labels to the classifications of the
other methods so that it will make it easier to find out which class corresponds
to which transient type, defined in [Smith 2016], and which classes are new types
that have not occurred previously. As WDF-ML and PCAT can classify new
transient types as soon as they appear in the data they can be used to provide

waveforms for PC-LIB to use to create new signal models.
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Figure 6.7 The typical whitened and high pass filtered time series waveforms for three of the
most common transient types found in the Hanford detector. (a) A spike in the time series
that appears as a tear drop in a spectrogram. (b) The time series of second most common
glitch found in the data, as shown in 6.3(c). (c) The time series waveform of a hardware
injection.

6.3.2 Hanford

As for the L1 data transients coincident within 0.5s between all ETGs are
classified. A higher SNR threshold of 30 is used for H1 as the data contains
many more transients than the L1 data and is more non-stationary. A total of
1865 coincident transients are classified in HI1.

PCAT uses 20 PCs to classify the transients into 7 different types. 120 of
the transients coincident between WDF-ML and Omicron ETGs are not detected
by the PCAT ETG. They are transients below 10 Hz or triggers from the long
duration lines, shown in 6.3(d), which are not really glitches. The detected
transients are split into 7 different classes.

The data contains two main types of transients. The first type is characterised

by a typical spectrogram shown in 6.3(a) and a time series waveform shown in
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Fig. 6.7(a). PCAT splits this type into 6 different sub-classes with 267, 603,
648 44, 1, and 64 transients respectively. Class 1 has 9 mis-classified transients.
Classes 2, 3 and 5 all have one mis-classified transient. Class 2, 3 and 6 contain
lower duration (~ 0.005 s), but with different Q and frequency ranges, where Q
is defined as ) = duration x 27 x frequency. Class 1, 5 and 16 contain relatively
longer duration waveforms (~ 0.01 s) which also have different Q and frequency

ranges.

The second type of transient has a typical time-frequency morphology shown
in 6.3(c) and time series waveforms shown in Fig. 6.7(b). This type is found
in PCAT class 4 that contains 117 transients that are all classified correctly.
Overall PCAT classifies 99% of the detected H1 transients correctly.

PC-LIB As with the L1 data we use 5 PCs to create signal models for the
H1 transients. PC-LIB splits the transients into two different classes. A noise

class contains the 6 transients shown in 6.3(d) as they cannot be detected.

Class 1 contains 1651 transients that correspond to a spike in the time series
as in PCAT sub-classes 1, 2, 3, 5, 6 and 7. This class also contains 13 hardware

injections. 23 transients are mis-classified and should be in class 2.

Class 2 contains 207 transients, which have a typical spectrogram shown in
6.3(c), and correspond to PCAT class 4. This class also includes 4 hardware
injections that are more similar to a sine-Gaussian in shape than those classified
into class 1. This class includes 61 transients that are mis-classified and should be
in class 1. Overall PC-LIB classifies 95% of the detected H1 transients correctly.

WDF-ML splits the H1 data into three different classes. Class 1 contains
1358 transients, which appear as a spike in the time series, and correspond to
PC-LIB class 1 and the 6 PCAT sub-classes. This class contains all hardware
injections and all very low frequency transients that can not be detected by
PCAT and PC-LIB. 10 of the transients in this class are mis-classified. WDF-ML
class 2 contains 145 transients that are characterized by spikes in the time series,
but have longer durations and lower SNR values than the transients in WDF-ML
class 1.

WDF-ML class 0 contains 326 transients corresponding to PCAT class 4 and
PC-LIB class 2. This class also contains 122 mis-classified transients. As before,
this is because all of the transients in the class have a duration (~ 1 s) which
is much longer than the time window used in the WDF-ML analysis. Overall
WDF-ML classifies ~ 92% of the H1 transients correctly.



106

Glitch Classification

1600, 1400,

[ET0 PCAT Class1 [0 PCAT Classl
1400 [0 PCAT Class2 1200 [0 PCAT Class2
[0 PCAT Class3 [0 PCAT Class3
[0 PCAT Class4 [0 PCAT Class4
£ 1200 € 1000
2 o
1000 @
= S 800
= 800 =
. 4= 600
© 60| °
[=] (=]
Z 40 = 400
200 200
0 Class1 Class2 0 Class0 Class1 Class2
PC-LIB Class WDF-ML Class
(a) (b)
1800 a ]
[ WDF-ML Class0 8 L 0.090
1600 [ WDF-ML Classl e N . e®
| =1 WDF-ML Class2 ° afople
1400 o 1 A T 0075
= . l 1. 8 o
@ 1200 1 L <
o » o« 1 0060
c l o of ° o
@ 1000 e o, o
= i, . S 00455
« 800) 2" %1%, -~
S) e g P-"OI i3 £
5 600 [-4CY ¢ af H 0.030
] > seeqat L%
= i. S e ”ug . \- o
400 y .
adegfia Y | Poos
200)
o 10°
Classl Class2 Fre uenc HZ
PC-LIB Class quency (Hz)
(c) (d)

Figure 6.8 Classification comparisons for the three different methods for aLIGO Hanford
data. (a) PC-LIB splits the transients into two classes. PCAT can split different types into
sub-classes. (b) PCAT and WDF-ML comparison. WDF-ML has difficulty with transients
which have a larger duration than their analysis window. (c) Comparison of PC-LIB and
WDEF-ML classifications. (d) The Omicron SNR, duration and frequency of all the transients
classified in the data. The discreteness in frequency is due to Omicron.

Comparison

The results obtained by all three methods for the H1 data are compared in
Fig. 6.8. The Omicron SNR, duration and frequency of the transients is shown
in Fig. reffigicompareh(d). As WDF-ML uses a small time window of 0.25s
the efficiency of the classification is reduced when the data are highly non-
stationary and contain many long (~ 1s) duration transients. Even with 137
mis-classified transients the overall accuracy of the WDF-ML HI1 results is
~ 92%. WDF-ML estimates the PSD at the beginning of each locked segment.
This may introduce errors towards the end of the segment if the data is highly
non-stationary. Machine learning methods perform better when the data set



6.4 Discussion 107

analysed is large. Therefore, the larger number of glitches in H1 may have

improved the classification efficiency.

6.4 Discussion

Non-Gaussian noise in the aLIGO and Virgo detectors can potentially mimic a
GW signal, reduce the duty cycle of the instruments and decrease the sensitivity
of the detectors. Classification of different noise transient signals may help
identify their origins and lead to a reduction in their number. We have developed
three methods for noise classification and have previously demonstrated their
performance on simulated transients in simulated Gaussian aLIGO noise [Powell
et al. 2015]. However, as real noise from the advanced detectors is non-stationary
and non-Gaussian, a better understanding of how our methods will perform
during the upcoming observation runs of the advanced detectors is required.
Although the detectors are typically more stable during observing runs than
during ER7, we expect the types of glitches investigated in this work to be

representative of the glitch classes in the upcoming observing runs.
In the ER7 data from the L1 detector PCAT missed 90 transients and

classified 95% of the remaining transients correctly. PC-LIB missed 33 transients
and classified 98% of the remaining transients correctly. WDF-ML classified
all transients and 95% of them were correct. In the H1 data PCAT missed
120 transients and classified 99% of the remaining transients correctly. PC-LIB
missed 6 transients and classified 95% of the remaining transients correctly.
WDF-ML classified all transients and 92% of them were correct. We conclude
that our methods have a high efficiency in real non-stationary and non-Gaussian
detector noise.

The efficiency of the WDF-ML algorithm is reduced for the Hanford glitches
because the duration of the transients becomes much larger than the analysis
window, which reduces the efficiency of the overall classification. This could be
prevented by applying a high duration cutoff to the transients found by the ETG
before classification. Most high duration and SNR transients are removed by
data quality vetoes. Conversely, short duration transients will be more important
as they have a higher impact on the GW search backgrounds. Since they are
rarely removed by vetoes their accurate classification is crucial to improve GW
searches as an accurate categorisation will allow us to search for couplings within
the detector [Abbott et al. 2016e, Abbott et al. 2016a]. These classification

methods can help to discover new families of glitches.
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Because of the different strengths and weaknesses of the different methods
having multiple classifiers is a winning strategy. WDF-ML can classify lower
frequency transients than the other two methods. PC-LIB is better able to
classify longer duration transients due to its longer analysis window. PCAT can
classify new types of transients as soon as they appear in the data and thus

provide transient waveforms for PC-LIB’s signal models.
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Chapter 7

Introduction to Denoising
Methods

7.1 The noise problem

One of the most common problems in communications and signal processing is
noise removal, either in 1D signals or in 2D images. Denoising is the process
of removing noise from an image or signal preserving as many structures and
details from the original object as possible. The denoising problem is a clear
example of an inverse problem, where we start from a set of observations, the
noisy data, and we want to recover the original signal. In general, the starting
point for solving inverse problems is to consider a model that relates the original
with the measured signal and a prior probability density which corresponds to

the notion we have about the true signal or image.

Henceforth, we will use the so-called linear degradation model,
f=Au+n, (7.1)

where f is the observed signal, u € RY is the initial “perfect” signal (i.e. noise-
free), and A is some linear operator which represents any linear transformation
(e.g. sampling or blurring). For the sake of understanding of the adopted
mathematical models we will assume that n is Gaussian white noise, (i.e. n
is a square integrable function with zero mean). Moreover, throughout this
section we will assume that the signals belong to a k-dimensional Euclidean

space equipped either with discrete L; or Ly norms.
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The current state-of-the-art methods for denoising can be classified in three

classes:
e Variational methods, i.e, those based in the Rudin-Osher-Fatemi model.
e Methods based in dictionaries.
o Patched-based methods.

In the present work, we have explored the feasibility of the first two methods to
remove noise in the context of GW astronomy, leaving the third one for future

analysis.

7.2 Bayesian approach

One of the most common methods to solve inverse problems is the Bayesian
approach, where the model is related with the observations through the Bayes

theorem,
prob(data|H,T) x prob(H|I)
b(H|data, ) = 7.2
prob(H|data, I) prob(datalI) ’ (7.2)

where H represents the hypothesis one does about the model and I is the other
information one assumes as true. The key point of the Bayes theorem is that
it relates the probability that the hypothesis is true given the data, with other
probabilities that are much simple to assign,e.g. the probability observing the
data if the hypothesis is true. The last term on the r.h.s. of Eq. (7.2) is the
prior probability and represents the knowledge one has about the truth of the
hypothesis done in the model before analyzing any data. This probability is mod-
ified according to the data through the likelihood function, prob(data|H,I) and
yields the posterior probability prob(H |data, I) which represents the knowledge
of the hypothesis once the data has been analyzed. Note that the denominator
in Eq (7.2) can be omitted as it works as a proportionality constant.
Following Chambolle et al. [2010] we can describe an example of the Bayesian
approach in the case of the linear degradation model, Eq. ( 7.1). In this case,
the hypothesis would be that w is the perfect original signal degraded by the
noise. In Bayesian inference one should select the prior function which better
represents the knowledge about the hypothesis. For convenience, we will suppose
that the prior probability can be written as an exponential of a certain generic
function p(u),
P(u) x e P du. (7.3)
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Applying the Bayes theorem, it is possible to compute the a posteriori probability,
P(ulf), which represents the probability that the signal w is present given the

observed signal f,

R

where P(f|u) is the probability of observing f (known as likelihood) given a real

(7.4)

signal u. From Eq. (7.1), the noise can be expressed as n = f — Au. Since in
our model the noise is defined as Gaussian, this probability reads as a Gaussian

distribution of variance o2,
S (A 2
P(flu) x e 207 £y 15 =(Awas I (7.5)

Note that this expression is a proportionality since we have omitted the normal-
ization term of the Gaussian distribution. With these ingredients, it is possible

to obtain an expression for the posterior probability P(ul|f),
1 __1 (AW, ]2
P(’U,‘f) = Ee_p(U)e 202 ZLJ [ fi,5—(Au)i | 7 (76)

where Z is a normalization factor,
Hﬁzz—/ MW“”Z Mty (7.7)

The “maximum a posteriori” (MAP) signal reconstruction tries to find the
signal which maximizes this probability or, in other words, which solves the

minimization problem,

u—mln p(u 2 2X:wa— (Au)i 11 3. (7.8)

The signal with the highest probability obtained by the resolution of Eq. (7.8)
might be strange, even if the model is built properly (see Chambolle et al.
[2010] for an example). As pointed out by Chambolle et al. [2010], a better

approximation would be computing the expectation of u,
[’LL|f] /ue p(u) e 202 Z N fig—(Aw)i gl du. (79)

This calculation is hard to compute [Louchet 2008] and requires stochastic
algorithms like Monte Carlo methods. However, the idea of minimizing an
energy such as in the MAP approximation leads to the mathematical form which
is used to formulate most of the inverse problems (see Chambolle et al. [2010]

and references therein).
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The Bayesian approach has two main applications in GW astronomy, pa-
rameter estimation [Balasubramanian, Sathyaprakash, and Dhurandhar 1996,
Veitch et al. 2015] and model selection [Powell et al. 2016].

7.3 Total-variation-based methods

7.3.1 Variational models for denoising

Leaving aside the Bayesian approach, the problem of signal denoising can be
expressed as the estimation of the true signal u as a function whose square of

2

the L2-distance to the observed noisy signal f is the variance of the noise o2, i.e.

lu = fIF, =02, (7.10)

where ¢ denotes the standard deviation of the noise. For simplicity reasons, here
we have considered the linear operator A as the identity operator.

Classical models and algorithms for solving the denoising problem are based
on least squares, Fourier series and other Lo-norm approximations. A least-
squares problem can be solved by computing the solution of the associated
normal equations, which is a linear system of equations where the unknowns are
the coefficients of a linear combination of polynomials or a wavelet basis [Irani
and Peleg 1993]. The main drawback of this technique is that the results are
contaminated by Gibbs’ phenomena (ringing) and/or smearing near the edges
(see Marquina and Osher [2008a] and references therein). Moreover, the linear
system to be solved is large (related to the size of the sample of the observed
signal f) and ill-conditioned, i.e. close to singular, further hindering the resolution
of the problem.

The usual approach to overcome these problems is to regularize the least-
squares problem using an auxiliary energy R(u), called regularisation term. This
energy corresponds to the a priori probability density p(u), and the solution can
be found by solving the following constrained variational problem !

rrgn R(u) subject to ||f —u||2 = o2 (7.11)
This general model can be applied to 1D signals, 2D images or multidimensional
volume data.

The above variational problem has a unique solution when the energy R(u)
is convex. We will assume from now on that R(u) is convex. The constrained

variational problem can be formulated as an unconstrained variational problem

I To simplify the notation, we write || - ||2 or simply || - || for the Lo norm and |- |1 or simply
| -] for the Ly norm.
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using the Tikhonov regularisation, which adds the constraint weighted by a
positive Lagrange multiplier A > 0 (also unknown) to the energy R(u)

u = argmin {R(u) + ;]—"} , (7.12)

u
where F is the so-called fidelity term ||f — u||3.

There exists a unique value of A > 0 such that the unique solution u matches
the constraint. The Lagrange multiplier A > 0 becomes a scale parameter in
the sense that larger values of A allow to recover finer scales in a scale space
determined by the regulariser functional R(w). This can be easily understood
as A controls the relative importance of the fidelity term.

The proper values of R should simultaneously ensure some spatial regularity,
but also preserve the steep gradients. If R(u) := [ |Vul|? where the integral is
extended to the domain of the signal, either discrete or continuous, then model
(7.12) becomes the so-called Wiener filter. In order to compute the solution in

this case we solve the associated Euler-Lagrange equation
Au+A(f—-—u)=0, (7.13)

under homogeneous Neumann boundary conditions. In the previous equation,
and in the definition of the energy R(u), A and V stand, respectively, for
the (discrete) Laplacian and gradient operators. Eq. 7.13 corresponds to a
nondegenerate second-order, linear, elliptic differential equation, which is easy to
solve due to differentiability and strict convexity of the energy term. We note that
this equation satisfies the conditions that guarantee uniqueness of the solution
(see [Taylor 1997, Evans 1997, Protter and Weinberger 2012, Cordero-Carrién
et al. 2009] and references therein). Indeed, the equation can be efficiently solved
by means of the Fast Fourier Transform (FFT). The choice of a quadratic energy
for the regulariser function makes the variational problem more tractable. It
encourages Fourier coefficients of the solution to decay towards zero, surviving
the ones representing the processed signal w. However this good behaviour is no
longer valid when noise is present in the signal. Noise amplifies high frequencies
and the recovered smooth solution w prescribed by the model contains spurious
oscillations near steep gradients or edges (see Marquina and Osher [2000], Vogel
and Oman [1998], and Osher et al. [2005]). The Wiener filter procedure reduces
noise by shrinking Fourier coefficients of the signal towards zero but adds spurious
oscillations due to the Gibbs’ phenomenon.

In order to avoid the aforementioned problems arising by using quadratic
variational models, Rudin, Osher, and Fatemi [1992] (ROF hereafter) proposed

using the TV norm as regularizing functional for the variational model for
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denoising Eq. (7.12)
TV (u) :/|Vu|1 (7.14)

where the integral is defined on the domain of the signal. The ROF model is
based on solving the following variational problem for denoising;:

A
u:arglrbnin{TV(u)—i—2||u—f|g} . (7.15)

The TV norm energy is essentially the Li-norm of the gradient of the signal.
Although many L;-based norms have been usually avoided because of its lack of
differentiability, the way the Lj-norm is used in the ROF model has provided a
great success in denoising problems. The ROF model allows to recover edges of
the original signal removing noise and avoiding ringing. The parameter A > 0
runs a different scale space than the Wiener model. Since the energy is convex
there is a unique optimal value of the Lagrange multiplier A (scale) for which
equation (7.10) is satisfied. When the standard deviation of the noise is unknown
a heuristic estimation of A is needed to find the optimal value. Indeed, if we
choose a large value of A the ROF model will remove very little noise, while finer
scales will be destroyed if small values of A are chosen instead.

The use of Li-norm related energies for least-squares regularisation has
been popularised following the pioneering contribution of Rudin, Osher and
Fatemi. For example, soft thresholding is a denoising algorithm related to
L;-norm minimisation introduced by Donoho and Johnstone [1994] and Donoho
[1995]. The Lj-norm regularisation selects a unique sparse solution, i.e., solutions
with few nonzero elements. This property is essential for compressive sensing
problems, (see Donoho [2006] and Candés, Romberg, and Tao [2006]). An
earlier application of penalising (regularizing) with the Li-norm is the LASSO
regression (from Least Absolute Shrinkage and Selection Operator) proposed in
the seminal paper of Tibshirani [1996].

Since the ROF model uses the TV-norm the solution is the only one with
the sparsest gradient. Thus, the ROF model reduces noise by sparsifying the
gradient of the signal and avoiding spurious oscillations (ringing).

Similar to the ROF model, the TV — L; norm [Chan and Esedoglu 2005]
employs the L; norm also for the fidelity term F,

u = argmin {TV(u) + Mu — f1} . (7.16)
u
In contrast with the ROF model (7.15), the TV — L; model is not strictly

convex. Therefore, there is no unique global minimiser. In general, however, this

last formulation has some interesting advantages. It is more effective removing
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impulse noise in images than ROF. It is also contrast invariant, i.e., if u is a
solution of Eq. (7.16) for a given input image f, the solution will be cu (¢ is a
constant) for an input image cf. If these advantages remain also for GW signals

is something that we plan to study in the near future.

7.3.2 Algorithms for TV-based denoising

In the literature there exists a large number of methods to solve the ROF and

TV — L; models. As examples, we can cite the following:
o Explicit time marching.
e Linearization of the Euler-Lagrange equation.
e Nonlinear primal-dual method.
e Duality based methods.
e Non-linear multigrid methods.
e First-order schemes from convex optimization.
e Second-order cone programming.
e Graph cut methods.

For details about these methods see Pock et al. [2008] and references therein.
In this work we focus our research in Variational Methods, i.e, methods based
on the linearisation of the Euler-Lagrange equation, due to their adaptability
to general problems and their computational efficiency, by the simplicity to
parallelise them.

7.3.2.1 The regularized ROF model

The standard method to solve nonlinear smooth optimisation problems is to
compute the solution of the associated Euler-Lagrange equation. The ROF model
consists of a nonsmooth optimisation problem and the associated Euler-Lagrange
equation can be expressed as
Vu

[Vl
where the differential operator becomes singular and has to be defined properly
when |[Vul|; = 0 (see Meyer [2001]).

v FANFf—u) =0, (7.17)
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The first algorithm we use in this work is called regularised ROF algorithm
(rROF hereafter) and was developed by Vogel and Oman [1996]. This algorithm
computes an approximate solution of the ROF model by smoothing the total
variation energy. Since the Euler-Lagrange derivative of the TV-norm is not well
defined at points where Vu = 0, the TV functional is slightly perturbed as

TV, (u) :z/q/quE—i—ﬂ, (7.18)

where (3 is a small positive parameter. We will use the expression

/|V’u|g (7.19)

with the notation
lvlg = V[v]*+ 8 (7.20)
for v € RP where p is the dimension of the signal.

Therefore, the rROF model in terms of the small positive parameter § > 0
reads as

A
u = argmin {TVﬁ(u) + §||u — f||i2} , (7.21)

and the associated Euler-Lagrange equation is

Vu
|Vulg

When the value of g is small, the problem turns nearly degenerated and the

\Y

+Af—u)=0. (7.22)

algorithm becomes slow in flat regions. In contrast, when g is large, the ROF
model cannot preserve sharp discontinuities.

Assuming homogeneous Neumann boundary conditions, Eq. (7.22) becomes a
nondegenerate second order nonlinear elliptic differential equation whose solution
is smooth. In order to solve the above equation we use conservative second-
order central differences for the differential operator and point values for the
source term. The approximate solution will be obtained by means of a nonlinear
Gauss-Seidel iterative procedure that uses as initial guess the observed signal f.

7.3.2.2 Primal-Dual Algorithm
The TV norm admits an alternative (dual) formulation,
|[Vu| = max{p - Vu : ||p|| <1} (7.23)
P

Based on this dual formulation, some authors [Chan, Golub, and Mulet 1999,
Carter 2001, Chambolle 2004] proposed the so-called primal-dual formulation of
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the ROF model,

1
min max {/p~Vu—|—2)\||j"—u||2}7 (7.24)

v ||pl|<1

which is convex and has the optimality condition with respect to u given by,
u=Ff+AV-p. (7.25)
Combining Egs. (7.24) and (7.25) we obtain the dual ROF model,

Hrzﬂin {/p~Vf+;(V~p)2}. (7.26)

|<1

The associated Euler-Lagrange equation is,
—V(f+AV-p)=0, ||p|]| <1 (7.27)

This last equation does not become singular at any point, so it is continuously
differentiable. However, the presence of the constrain ||p|| < 1 requires sophisti-
cated optimization techniques to find the solution. The most popular method
due to its simplicity is the projected gradient descend, proposed by Chambolle
[2005]. This algorithm has very interesting properties including robustness and
fast convergence.

7.3.2.3 The Split Bregman Method

The next algorithm we shall use is the so-called “Split Bregman Method” (SB
hereafter) proposed in Goldstein and Osher [2009]. SB is a flexible algorithm
for solving non-differentiable convex minimisation problems and it is especially
efficient for problems with L; or TV regularisation. The method is based on an
iterative alternating procedure that splits the approximation of the minimiser into
two steps: first, solving the least-squares minimisation and second, performing
direct minimisation of the TV energy using the “shrinkage function” and freezing
the fidelity term computed at the approximation obtained in the first step.
The splitting process is combined with the Bregman iterative refinement
[Bregman 1967]. The Bregman iterative procedure can be applied to a general
fidelity term. Let us assume that £(u) is a nonnegative convex energy and we

wish to solve the following constrained variational problem:
min &(u) subject to u = Ab (7.28)
u

where b is a vector and A is a linear operator as in Eq. (7.1) 2. We rewrite the

variational problem as an unconstrained optimisation by introducing a Lagrange

2Here we recover the operator A to account for the general formalism.
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multiplier A > 0 that weights the influence of the fidelity term as
A
u:argmin{é’(u)+ 2|Ab—u||§} . (7.29)

If we choose a small value of A then the solution of the variational problem
does not accurately enforce the constraint. The solution we need is to let A be
large. Alternatively, we shall use the following Bregman iterative refinement to
enforce the constraint Au = b accurately using, in contrast with the previous

formulation (7.29), a fixed small value for A:

A
uf*t = argmin {S(u) + §||bk - u|§} , (7.30)
bFtl = bF 4k, (7.31)

where r* = b* — uF*! is the residual error and k is the index of the iteration,

and again we set A = I for simplicity reasons. Roughly speaking, the Bregman
iteration involves adding the residual error (of the fidelity term) back to the

constraint to solve a new variational problem in each iteration.

Next we shall sketch the SB method for the particular case of the ROF
model applied to the one dimensional signals that we will use in our numerical
experiments. The SB method to solve the ROF model combines the Bregman
iterative procedure described by Egs. (7.30) and (7.31) with the decoupling of the
TV variational problem into L; and Ly portions of the energy to be minimized.
Each ROF problem appearing in every Bregman iteration is solved by splitting
the L; and Ly terms and minimizing them separately.

To start the procedure we solve each ROF problem in Eq. (7.30) by introduc-
ing a new variable d which represents the one-dimensional gradient V,u. The
idea of the SB method is to apply operator splitting and use Bregman iteration

to solve the constrained minimisation problem,
argmin{cﬂ + %Hf - u||2} subject to d = Vu (7.32)
We set the notation for the new constraint,
s(b,u,d) == ||b+ (V,u) —d|[3.

Then, we formulate the following Bregman iterative procedure applied on the
new constraint (see Goldstein and Osher [2009]):

A
(uF 1, dF 1) = argmin {|d’“| + 5\|f —uM|f, + gs(bk,uk, d’“)} (7.33)
k k

uF.d

bl = bF 4 (V, ulth) — df (7.34)
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where we set s(b*, u”*,d*) := b* + (V,u*) — d* and where we have included the
constrain weighted by another Lagrange multiplier p.
Thus, we can iteratively minimise with respect to v and d separately and

the SB iterative procedure will read as follows:

A
uftt = argmin {2||f — w2 + gs(bk,uk, dk)} (7.35)
uk
d*' =  argmin {|dk| + B e 1 (vt —dk||§} (7.36)
% 2
bl = b 4 (Vul ) —dF (7.37)

Since the two parts are decoupled, they can be solved independently. The
energy of the first step is smooth (differentiable) and it can be solved using
common techniques such as the Gauss-Seidel method. On the other hand, d can

be solved using shrinkage operators

d" ! = shrink(b* + (V,u 1), 1/)) , (7.38)
shrink(z,v) = % * max(|z| —,0) . (7.39)

We only use one iteration for the splitting steps and the final algorithm
only consists of just one loop (see Goldstein and Osher [2009] for a detailed
discussion).

The SB algorithm we will use in this work is written as follows:
o Initial guess: u® = f, d°=0and b° =0
o while |[uf — u*~1||y > tolerance
wFtl = Gk
dF*! = shrink(b* + (V,ub*1),1/p)
b = bF 4 (Vb t!) — di !
e end

where the Gauss-Seidel step can be expressed as the loop

o for j

A
A+ 2u

b H

k k k k k k
Gj = m(ujﬂ tuj = (df —dj )+ (05 = b5 ) +

J J

i

e end j
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Figure 7.1 Test signal used to assess the rROF and SB algorithms. The original signal is shown
in blue while the orange line depicts the noisy signal with o = 5. Note the different size of the
gradients with which this function has been designed.

and (Vyubtl); = ufﬂ - u?“ where j runs the component positions of the
discretisation. A tolerance of 1072 should be enough to obtain appropriate
results in most cases. As discussed in Getreuer [2012], the value of the La-
grangian multiplier ;2 should be selected carefully. The best choice is where both

subproblems (for u and d) converge quickly and are well-conditioned.

7.3.3 Numerical examples

In this section we show the results of some simple numerical tests to study
the properties of the rROF and SB methods before their actual application for
GW denoising in Chapters 8 and 9. For this thesis we have focused on these
two algorithms due to the simplicity of their computational implementation, as
compared to the more involved primal-dual algorithm. We leave for future work

the assessment of the latter in the context of GW denoising.

To perform the tests we select the signal shown in Fig. 7.1. This type of

signal has been used in the literature before [Marquina and Osher 2000]. We

add Gaussian noise to the signal with a given variance o2.



7.3 Total-variation-based methods 123

2.796

2.794

(u

W 2,792

2.790

2.788

0 20 40 60 80 100
Iterations #

0 20 40 60 80 100
Iterations #

Figure 7.2 Evolution of the energy with the number of iterations for the rROF algorithm (top
panel) and for the SB method (bottom panel). The algorithms converge after a few tens of
iterations.

First of all we test the convergence at a given value of A. Since the energy
used in both methods is different, the values of A in each case are not comparable.
However, both methods should show the similar behaviour with variations in
A. Fig. 7.2 shows how the energy of the ROF model, £(u) = R(u) + AF(u),
decreases with the number of iterations. At a certain number of iterations
the energy converges. The convergence is slightly faster for the rROF method.
We turn next to analyse the dependence with the regularisation parameter .
Fig. 7.3 displays the denoising results for two different values of A\. As expected,
when A is small (A = 0.01 in this case) the denoised signal is very regular but
some features of the signal are lost. On the contrary, for large values (A = 100 in
the plot), the fidelity term dominates and practically there is no noise removal.
In the case of the SB method in particular, shown in the bottom panel of Fig. 7.3,
the excess of regularisation is much more noticeable and, in addition, the SB

algorithm also introduces the staircase effect [Chan, Marquina, and Mulet 2000].
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Figure 7.3 Denoising results for two values of A, namely 0.01 (orange lines) and 100 (blue lines)
The top panel corresponds to the rROF method and the bottom panel to the SB method.
Note the staircase effect in the case of the SB method.

7.3.4 Estimation of the regularisation parameter

The denoised signal resulting from solving the ROF problem depends on the
selected values for the Lagrange multiplier A. This parameter controls the
trade-off between the regularised solution and the fit that it provides to the
given data f. Therefore, it is worth to find a strategy to determine the optimal
value A that produces the best denoising results. Basically there exist two kind
of methods to achieve this goal, those that require some knowledge about the
noise and those that do not. The discrepancy principle is a straightforward
concept for parameter tuning, according to which A is selected to match the
noise variance 0. Unfortunately, the relation between A and o2 is not direct,

so it is not possible to derive a closed-form formula to calculate the optimal
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value of \ for a given variance of noise. Chambolle and Lions [1997] proposed

an iterative algorithm that converges to the unique \ such that ||f — u||3 = o2.

The main idea is to solve the constrained variational problem to obtain A,
argmin {TV(u) subject to |[lu — f||* = o*}. (7.40)

For example, using the dual-primal method, this algorithm reads as follows:

start with A = Ag
u = f+AV-.p (7.41)
llu— £l
A= —
No?

where A\ is some preselected positive value. This method is fairly accurate and
converges in a few iterations. However, it fails when the variance of noise is not
well determined or not determined. The algorithm works with the other methods
we have discussed previously. In the algorithm one simply has to change the
method employed to calculate the solution for u in Eq. (7.41). A more detailed
study about the performance of some algorithms based in this principle can be
found in Galatsanos and Katsaggelos [1992].

If the variance of the noise is not accessible, it is still possible to find the
optimal value of the regularisation parameter. One of the methods to do so
that has gained attention in recent years is the L-curve method. As described
in Hansen [1992], “The L-curve is a log-log plot between the squared norm of
the regularised solution and the squared norm of the regularised residual for a
range of values of regularisation parameter”. The plot forms an “L” and hence
the name. The optimal value of A is the one that is placed at the vertex of the
curve, i.e. the point where the curve achieves its maximum curvature. Therefore,
the L-curve criterium tries to determine the position of this point. A practical
way to determine the vertex was given by Hansen, Jensen, and Rodriguez [2007]
who proposed to first construct a series of L-curves, removing and increasing
the number of points. The optimal point is selected by taking from this list the
last point before the part of the L-curve where the curve becomes flat is reached.
Altought this criterium can be used in general because it does not rely on any
a priori information, the optimal point can be difficult to determine and the
computational cost of solving the ROF problem for a range of values of A can
be significant.

The last kind of methods are the “heuristic methods”. In this case, the optimal
value of the parameter is defined as the value that minimises (or maximises) a

given quality function, as the mean squared error (MSE). The drawback of these
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Figure 7.4 Graphical representation of the sparse problem, in which only a few columns of the
matrix D are selected by the vector o to produce the reconstructed signal u.

methods is that a “learning” step using known signals is required to determine
the range of optimal values, which could be computationally expensive. Once
the range is selected no further study is needed. However, the results will depend

of how accurate the “learning” step is done.

7.4 The dictionary-learning problem

7.4.1 Sparse Reconstruction over a fixed dictionary

Let us consider again the linear degradation model 7.1 and the energy minimisa-
tion given by the MAP formalism. In dictionary-based methods, the denoising
is performed assuming that the true signal u can be represented as a linear
combination of the columns of a matrix D called dictionary. The columns of D
are called basis vectors or atoms.

If signal u is a vector u € R™ one can say that the dictionary D =
[dy,--- ,dp] € R"*P is adapted to u if it can be represented with a few columns
of D ji.e., a fewatoms In other words, there exists a “sparse vector” a in RP such

that u ~ Da. Therefore, the sparse decomposition problem reads as follows,
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1
o = argmin {2||f - Da|§} subject to Y (a), (7.42)
[

where 1 is a prior that induces sparsity. The classical dictionary learning
techniques [Olshausen and Field 1997, Aharon, Elad, and Bruckstein 2006] try
to solve the variational problem associated with Eq. (7.42) given by,

1
«a = argmin {2||f - Da|§} subject to ||alo <L, (7.43)

where || - ||o is the Lo-norm, which is chosen to ensure that we have the solution
with the fewest number of nonzero coefficients. The Lg-norm is simply the
number of nonzero components of the vector, which should be lower than a
given value L. This constrained variational problem can be formulated as an
unconstrained variational problem adding the Lo—norm term as a penalty term

weighted by a Lagrangian multiplier A,

a = argmin {|[Da — f||3 + A||ee[o} - (7.44)

This problem is not convex and is NP-hard 3 so, in practice, it cannot be solved
in linear time [Marcellin et al. 2000]. Algorithms that produce and approximate
solutions to this problem have been proposed in the past. The simplest one
is matching pursuit (MP) [Mallat and Zhang 1993]. The algorithm selects the
atom with maximum correlation with the residual, then updates the residual
and the coefficients. It proceeds iteratively while the Lo—norm term is lower than
the parameter L. Similar to MP, in the orthogonal matching pursuit (OMP)
method [Pati, Rezaiifar, and Krishnaprasad 1993], an atom can only be selected
once. It is, however, more difficult to implement efficiently than MP (see Chen,

Donoho, and Saunders [2001] and references therein).

The variational problem defined by Eq. (7.44) can be reformulated into a
convex variational formulation by substituting the Ly-norm by the nondifferen-
tiable convex L;—norm in the total energy. The regularization in the L;—norm
promotes zeros in the components of the vector coefficient a. This problem can
be solved in linear time and the solution found is the sparsest one in most cases.

The variational problem thus stands as,
a = argmin {||[Da — f||3 + A|et]1 }, (7.45)
(a3

which is known as basis pursuit [Chen, Donoho, and Saunders 2001] or LASSO [Tib-
shirani 1996].

3A problem is in the NP class if it can be solved in non-deterministic polynomial-time.
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In general the solution of this problem has not a closed form, except when D
is orthonormal. The derivation of the optimality conditions for the solution is
as follows (note that the name of variables is slightly different than Eq. (7.45))

fl@) = |[ly—Dal3+ Aah (7.46)
= yy" —2a™DTy + a"D'Da + Ma|;. (7.47)

Taking the gradient we obtain,

Vf(a)=—-2DTy +2D"Da + V(A a|1). (7.48)
At this point it is easier to look for the j-th component.
of 0
—— = -2DTy +2(D'D); —(A . 7.49
5o, = 2Dy 2ADTD)ec+ 5 (e (7.49)
With 2L =0,
0

8aj
The subdifferential of the convex Li-norm is a product of intervals,

sign a ifa<0
Na|)=J1 x -« X Jp, Ji(a) = (7.51)
[-1,1] ifa=0
Therefore, a* is the solution of Eq. (7.45) if and only if for all j in {1,--- , p},
Dj(y — Da*) =sign (af) if o} < (752)
IDI(y — Da*)| < A if a% =0
Finally, it is worth pointing out the existence of an alternative formulation

known as elastic-net [Zou and Hastie 2005],
. A
o —arguin {IDa~ g+ Mali+ Pl (753)

Elastic-net adds a Lo—norm penalty for stability reasons, i.e., the calculated

approximate representation depends on the data as a Lipschitz function.

7.4.1.1 Algorithms to solve the LASSO

We turn now to describe briefly some of the different algorithms developed in
recent years to solve the LASSO. As indicated before, the sparse problem with
Ly norm is solved using the so-called greedy algorithms, such as, for example
Matching Pursuit and Orthogonal Matching Pursuit.
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Figure 7.5 Values of the coefficients of each solution of LASSO computed with different values
of A. Each color represents a coefficient and its evolution as A changes. This graph defines the
LASSO path.

The solution of the problem, i.e. the coefficients ¢, depends on the selected
value of A. The dependence of the coefficients with the regularization parameter
A is the LASSO path a(A). The LASSO solution is piecewise linear, i.e. it is a
function whose graph is composed of straight-line sections, with respect to A
(see Friedman, Hastie, and Tibshirani [2001b] and Tibshirani et al. [2011] for
further details). An example of LASSO path is shown in Fig. 7.5.

Homotopy methods compute the full LASSO path varying the regularization
parameter A from large values to small ones. In a few cases the path can be shown
to be piecewise linear as A changes. These methods follow the piecewise-linear
path by computing the direction of the current linear segment and the points

where the direction changes to find the next value of A.

The least-angle regression (LARS) [Efron et al. 2004] is also based in the
computation of the LASSO path. It solves the problem for all values A € [0, o)
and, therefore, it is useful when the solution is desired for various values of
A. The LARS method fully characterises the trade-off between goodness-of-fit
and sparsity in the LASSO solution (this is controlled by A), and hence yields
interesting statistical insights into the problem. However, when the problem is
large the solution path tends to be very large and consequently the computational

cost is large.
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In this work we propose a decomposition based on the SB algorithm [Goldstein
and Osher 2009], that we call SB-LASSO. As in the case of the ROF model, we
introduce a new independent unknown vector d to split the minimization with

respect to the Li-norm. Applying this splitting the problem reads as follows
(e, d) = argmin {||Der — f1[3 + Mld|ls + ullec — dll3} - (7.54)

By iteratively minimizing with respect to a and d separately, the SB iterative

procedure reads:

A
ol = argmin {2|f Dat|[3 + ZIb* + o - d’“ll%} (7.55)
ak
dk+1 — argmin {||dk| + gku + ak+1 _ dng} 7 (756)
dk
bFtl = bF 4kt — gkt (7.57)

starting with b” = 0. The role of the auxiliary vector b is to enforce the unknowns
d and a be equal when convergence is reached. The iteration process uses a
small positive fixed value of A and it runs over a scale-space that reconstructs
the signal as a linear combination of few elements of the dictionary. Again, since
the two parts are decoupled, they can be solved independently. The first part
with a classical Gauss-Seidel step and the second using the shinkrage function
Eq. (7.39).

To illustrate the behaviour of the LASSO algorithm we perform next a very
simple example. Using a 20th grade polynomial we interpolate a set of 20 points
inside the interval x € [0, 1]. The points are obtained from the addition of the
values of the polynomial p(z) = —22% + 525 + 23 at 2 and we use random noise
of variance 02 = 9. To do the interpolation we use the classical least-squares
method and SB-LASSO with A = 0.5. The results are presented in Fig. 7.6. The
least-squares solution is more oscillatory than the one obtained using SB-LASSO
and develops Gibbs phenomenon (see upper panel in Fig. 7.6). Moreover, as

LASSO induces sparsity, only three coefficients have non-zero value.

7.4.2 Dictionary-Learning Problem

Up to this point we have considered that the dictionary D is fixed and we only
have to solve the problem of representation. Traditionally, predefined dictionaries
based on various types of wavelets, curvelets, etc, have been used. However, the
signal reconstruction can be dramatically improved by learning the dictionary
instead of using a predefined one [Elad and Aharon 2006].
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Figure 7.6 Comparison of the interpolation solution of the polynomial p(z) = —2z8 + 525 4+ 23

using least squares and LASSO. The top panel shows the solutions using 1000 points, while
the bottom panel shows the solution for the 20 points used to make the interpolation.
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Classical dictionary-learning techniques [Olshausen and Field 1997, Aharon,
Elad, and Bruckstein 2006] start considering a set of training signals X € R™*"

and define a cost function which should be optimized,

fo =23 Ux:, D), (7.58)

n -
=1

n

where x; are the columns of the training set matrix X, D is the dictionary, and [
represent some function whose value is small when D is a “good” representation
of the training signal x. The training signals are commonly patches obtained
from splitting an image or signal. Therefore, matrix X is formed by m patches
of length n. In most common problems, the number of training patches m is
large compared with the length of each patch, n < m. In general, the number
of atoms in the dictionary is lower than the number of patches used for training,

p < m, because each signal only uses a few elements in D for the representation.

When the cost function is the LASSO, the learning problem reads,

1 m
— in{— Da; — w2 + \||oy ) 7.59
e arglgm{ng [[Dey; — i[5 + IIalll} (7.59)

@, i=1

D is constrained by
c= {D € R™ P subject to (d7d)) <1 Vi=1,...,p } (7.60)

The whole problem (7.59) is not jointly convex, but convex with respect to either
of the two variables, a, D, keeping the other one fixed. Classical optimisation,
denominated batch algorithms, alternates between D and « to solve the whole
problem, solving for one variable while the other remains fixed. These algorithms
produce good results, but they can be very slow. The computational cost is
dominated by the computation of a. Therefore, it is possible to use a second-

order optimisation to estimate D with good accuracy.

Bousquet and Bottou [2008] proposed an alternative formulation based in

the computation of the expected cost,

argmin {f(D) =E,[l(x;,D)]~ lim — Zl x;, D } . (7.61)

DeC n——+oon

To solve this, the authors use stochastic gradient algorithms. This kind of
methods are called on-line learning algorithms. It can be proven that, in certain
settings, they can handle potentially infinite or dynamic datasets and can be
dramatically faster than batch algorithms.

Classical methods for solving the dictionary-learning problem use classical

projected first-order stochastic gradient descent [Aharon, Elad, and Bruckstein
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2006] which is based on a sequence of updates of D,

D, =[] [DH - gsz(xt, DH} : (7.62)
C

where p is the gradient step or learning rate, [ is the orthogonal projector on
C, and x is the training set. If the gradient step is selected appropriately, this
algorithm can be competitive with batch methods for large training sets.
Mairal et al. [2009] proposed a similar approach, based on stochastic ap-
proximations, processing one sample at a time and taking advantage of the
problem structure to efficiently solve it. For each element in the training set, the
algorithm alternates a classical sparse coding step to solve @ using a dictionary
D; obtained in the previous iteration, with a dictionary update step, where the

new dictionary is calculated with recently calculated values of «,

1 m

oFtl = argmin{nZHDkai _ui||§+)\||ai||1} (7.63)
« i=1
1 m

D! = argmin {n S IDak — uf + A|az-|1} (7.60)
b i=1

The main advantage of this implementation is that it is parameter-free and does

not require any learning rate.






Chapter 8

Total-Variation methods for
gravitational-wave
denoising: The Gaussian

case

The results of this chapter have been originally published in:

Torres, A., Marquina, A., Font, J. A., & Ibafiez, J. M., “Total-variation-based
methods for gravitational wave denoising”, Physical Review D, 90, 084029
(2014).

In this chapter we apply two of the TV-denoising techniques discussed in the
previous chapter in the context of GW denoising. Arguably, the main advantage
of these techniques is that no a priori information about the astrophysical
source or the signal morphology is required to perform the denoising. As we
illustrate below, this main feature allows us to obtain satisfactory results for
two different catalogs of gravitational waveforms comprising signals with very
different structure. The first catalog corresponds the “burst” signals from the
collapse of rotating massive star [Dimmelmeier et al. 2008]. The second one
is formed by waveforms obtained by the simulation of BBH systems [Mroué
et al. 2013]. Both catalogs are described in detail in Appendix B. Our aim is
to find optimal values of the parameters of the ROF model that can assure a
proper noise removal. In order to do so we modify the ROF problem to take

into consideration the sensitivity curve from the Advanced LIGO detector. We
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restrict the formulation of the problem to 1D, since the available GW catalogs we
employ are one-dimensional, even though the algorithm can be easily extended
to higher dimensions. We emphasize that there are no restrictions about the
data, and in this way the denoising can be performed in both the time or the

frequency domain.

8.1 Regularization parameter estimation

Denoising results are strongly dependent on the value of the regularisation
parameter A\. As discussed in the previous chapter, the optimal value of A
that produces the best results cannot be set up a priori, and must be defined
empirically. In the following, we perform an heuristic search for the optimal
value of the regularisation parameter to denoise a signal from the core collapse
catalog of Dimmelmeier et al. [2008]. Since the procedure is the same regardless
of the catalog, for the case of the BBH catalog we only give at the end of this
section the results of the corresponding search. The goal is to find a small span
of values of A that provide a recovered (denoised) signal for all test signals under
different SNR conditions. We shall apply the rROF algorithm for the time
domain and the SB method for the frequency domain.

Standard algorithms assume stationary additive white Gaussian noise. How-
ever, as the noise of actual interferometric detectors is non-white, we have to
adapt the denoising algorithms to take this fact into account. The weight distri-
bution of the noise, w, is calculated as the inverse of the noise PSD according
to the sensitivity curve of Advanced LIGO [Sathyaprakash and Schutz 2009],
which is shown in Fig. 8.1.

On the one hand, in the time domain we do not make any assumption about
the noise, i.e., we use the rROF algorithm and we filter out the obtained result
below the lower cut-off frequency of the sensitivity curve, according to the weight
distribution. On the other hand, in the frequency domain we proceed as follows:
Given the observed signal g,

f=xz+n, (8.1)

where x is the signal from the catalog and n is the noise, we compute the Fourier
transform of the mirror extension of f, fexs. The idea of the mirror extension is
to expand the data at the boundaries, attenuating the border effect introduced

by the Fourier transform. Then, we solve the following TV-denoising model

) A
Vopt = argmln/ Vol + 5”1} — fext”%u , (8.2)



8.1 Regularization parameter estimation 137

100 3

—_
O\
.

|
0

—_
)
R

weight coefficients

10_3 | | |

1 2 3

10 10 10
Frecuency [Hz]

Figure 8.1 Frequency distribution of noise weight coefficients obtained from the Advanced
LIGO sensitivity curve.

where [|v]|2, := [w - |v|? is the weighted (by w) La-norm of v in the frequency
domain, by using the SB method for complex functions of real variable. Finally
we compute the inverse Fourier transform of vy, and after restricting its values
to the appropriate time domain, we obtain the denoised signal uqpe. We remark
that due to its appropriate border treatment and computational efficiency, we
use the matrix formulation of the SB method developed by Micchelli, Shen, and

Xu [2011] when we address intensive real-time calculation.

All signals of the core collapse catalog have been resampled to the LIGO /Virgo
sampling rate of 16,384 Hz and zero padded to be of equal length. For the
SB algorithm in the frequency domain, signals have been Hanning-windowed
and mirror-extended to avoid border effects in the Fourier Transform. We add
non-white Gaussian noise to the signals generated as explained in Appendix
A. To ensure the best conditions for the convergence of the algorithms and to
avoid round-off errors, we also scale the amplitude of the test signals g of both
catalogs to vary between -1 and 1. The values of A we discuss in this section are
hence determined by this normalisation. As we use the same noise frame in all
the experiments for comparison reasons, the amplitude of all signals is scaled
to the same values and differences are only given by the SNR, which for a wave
strain h is defined as [Jaranowski and Krolak 2005]

Nf ~
AP

SNR = , | 4At2A —_ 8.3

IO (8.3)
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Table 8.1 Values of the fidelity term and of the optimal value of X for several time windows for
the core collapse signals A, B, and C (see Appendix B for details). The values are obtained
after applying the SB algorithm in the frequency domain.

Ai(ms) [lg—ll2, Nopt
B C
1000 0.059 0.29 0.28 0.22
500 0.059 0.45 0.49 0.36
250 0.059 0.87 0.98 1.06
125 0.055 1.11 0.98 0.61
62.5 0.055 1.45 1.66 2.80

31.25 0.055 2.60 3.05 3.94

where h indicates the discrete Fourier transform (see Appendix A) of signal h
and S(fx) is the power spectral density.

The optimal value of the regularisation parameter, Aqpt, is defined to be
the one which gives the best results according to a suitable metric function
applied to the denoised signal and the original one, measuring the quality of the
recovered signal. In our case, we choose the peak signal-to-noise ratio, PSNR,
based on the fidelity term, Eq. (7.10),

N
2
MSE % , (8.5)

where z is the original signal from the catalog, u is the processed signal after
applying the algorithms, and N is the number of samples.

First of all, we have to find the appropriate time window to perform this
comparison. Since bursts have short duration (a few ms), if the time window is
long the signal to compare with is going to be composed of mainly zeros, while,
if it is short, some parts of the signal can be lost. To study this dependence, we
seek for the value of A in core collapse signals for which the fidelity term of the
denoised signal matches the fidelity term of the original signal, that is, we seek
for Aopy subject to |lg — (|7, ~ |lg — ul[7,.

Results of this study for the three representative signals from the core collapse
catalog are shown in Table 8.1. The SB method has been explicitly developed
for discrete signals and it is well known that there exists a correlation between
the number of samples and the value of Aopt. Therefore, different (time or
frequency) scales of the same signal cannot be recovered using the same value of
A. Indeed, we find that the values of Ao, we obtain show certain dependence

on the number of samples, which is roughly equal to -. Both, differences in

V2
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Figure 8.2 Histograms of the values of Aopt for 500 noise generations for the three representative
core collapse signals. The upper panels show the values of Aopt for the rROF method in the
time domain while the corresponding results for the SB method applied in the frequency
domain are shown in the bottom panel. A SNR=15 is assumed.
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Figure 8.3 Dependence of the PSNR for different signal-to-noise ratios for the three representa-
tive core collapse signals. The upper panels show the values of PSNR for the rROF method in
the time domain while the corresponding results for the SB method applied in the frequency
domain are shown in the bottom panel. The insets in the top panels magnify the areas where
the variations in the curves are largest.
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lg — z||7, and deviations from the previous ratio are due to the weight that
the significant features of the GW signals have relative to the number of zeros.
The rROF algorithm, on the other hand, reduces the staircase effect associated
to the shrinkage operator in SB. The results of Table 8.1 for the SB method
allow us to adjust the time window of the rROF method. From this comparison
we choose a time window of 62.5 ms for the core collapse signals as it yields a

complete representation of the waveforms without losing any significant feature.

Once we have selected the time window, we must find the appropriate value of
A based on the PSNR value. First we seek the optimal value of the regularisation
parameter for several realisations of noise. The corresponding histograms with
the optimal value of A\ for both algorithms, SB and rROF, are shown in Fig. 8.2
for the three representative burst signals, assuming a SNR value of 15. We note
that both distributions have the expected Gaussian shape. The variance of each
distribution gives us a window of variability around the mean value of A to
estimate the optimal one. The half-Gaussian in signal C for rROF is apparent
and the whole Gaussian can be seen by log-scaling the range of .

Having found the mean value of A for a given signal through noise variations,
we extend the analysis to consider different signal-to-noise ratios. We re-scale
the amplitude of the three signals to fix the value of the SNR. The results
are displayed in Fig. 8.3 for both algorithms. This figure shows that for all
SNR values considered, the PSNR values peak around the optimal value of the
regularisation parameter. The span of values of A to ensure a proper denoising
is 1.5 — 3 for the SB method and 0.001 — 0.015 for the rROF algorithm. For
very noisy signals (low SNR) the recovered ones are very oscillatory and cannot
be distinguished from noise. In this case, it might be possible to apply other
data analysis techniques to improve the results. From our analysis we observe
that in some cases there is an interval of optimal values of A giving very similar
regularised result, probably due to the lack of resolution in the data.

Finally, we analyze the optimal value for all signals of the core collapse
catalog assuming SNR=15. As shown in Fig. 8.4, the optimal value of A is quite
different across the entire catalog, particularly for the rROF algorithm (left
panel). The values of Agp span the interval 1.5 — 2 and show a Gaussian profile,
while for the case of the rROF algorithm they span the interval 0.001 — 0.05 and
do not show an obvious trend. We note that although the range of values of Agp¢
is large, it is still possible to perform the denoising procedure with acceptable
results, by choosing the mean value for all the catalog signals and then tuning it

up to find the value of A that provides the best results.
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Figure 8.4 Histograms of Aopt for all signals of the core collapse catalog with SNR = 15. The
left panel shows the span of values of Aopt for the rROF method while the right panel displays
the corresponding values for the SB method.

As mentioned at the beginning of this section we have also performed the
same analysis with the entire catalog of BBH signals [Mroué et al. 2013]. In
this case we choose a window that contains the last 12 — 14 cycles before the
merger (At ~ 62.5 ms) for illustrative reasons. The results obtained are similar
to those reported for the core collapse catalog, the optimal interval for the rROF
algorithm being 0.001 — 0.01 and 1 — 3 for the case of the SB algorithm.

We can conclude that the appropriate values of A for both algorithms are
restricted to a sufficiently small interval, which remains approximately constant
for all signals of the catalogs and for different SNR. We stress that the concrete
values of Aop reported here are mainly used as a rough guide to apply the
denoising procedures. If the properties of the signals change, such as the
sampling frequency, the number of samples, or the noise distribution, the values

of Aopt can also change, and it would become necessary to recompute them.

Nevertheless, as we will show next, it is indeed possible to obtain acceptable
results for all signals using a generic value of A within the intervals discussed

here which can then be fine-tuned to improve the final outcome.

8.2 Results

8.2.1 Signal Denoising

We start applying both TV denoising methods to signals from both catalogs in a
high SNR scenario, namely SNR=20. Our aim is to show how the two algorithms
perform the denoising irrespective of the nature of the gravitational waveform

considered. We assume that there is a signal in the dataset obtained from a list of
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Figure 8.5 Denoising of the core collapse waveform signal C with SNR = 20. Top panel:
original signal (red dashed line) and non-white Gaussian noise (black solid line). Middle panel:
Original and denoised (black solid line) signals for the SB method in the frequency domain
with A = 2.0. Bottom panel: Original and denoised signals for the rROF method in the time
domain with A = 0.09.

candidate triggers, and that all glitches have been removed. This simple situation
allows us to test our techniques as a denoising tool to extract the actual signal
waveform from a noisy background. We apply the proposed methods, rROF in
the time domain and SB in the frequency domain, independently. The results
from applying our denoising procedure to a signal from the core collapse catalog
is shown in the three panels of Fig. 8.5. For the sake of illustration we focus on
signal C, since the results are similar for the other two types of signals. The
most salient features of this signal are the two large positive and negative peaks
around t ~ 0.06 s associated with the hydrodynamical bounce that follows the
collapse of the iron core, and the subsequent series of small amplitude oscillations
associated with the pulsations of the nascent PNS. In the top panel we plot the

original signal (red dashed line) embedded in additive non-white Gaussian noise



8.2 Results 143

0.1
0.05

plitude
(=]

~0.05

Am
<

-0.15

plitude
(=)

| IIA
e 2
(=3 o
5} =

0.04
0.02

plitude

-0.02

Am

-0.04

0.04 0.05 0.06 0.07 0.08
Time [s]

Figure 8.6 Denoising of the core collapse waveform signal C for the rROF method with A = 0.09
for three values of the SNR, 20 (top), 10 (middle), and 5 (bottom).

(black solid line). The middle panel shows the result of the denoising procedure
after applying the SB method in the frequency domain with A = 2.0, and the
bottom panel shows the corresponding result after applying the rROF algorithm
in the time domain with A = 0.09. The two large peaks are properly captured
and denoised, most notably the main negative peak. This is expected due to
the large amplitude of these two peaks, as TV denoising methods work best
for signals with a large gradient. In turn, those parts of the signal with small
gradients cannot be recovered as nicely, as seen in the damped pulsations that
follow the burst and which have amplitudes much smaller than the noise. We
note that both algorithms attenuate positive and negatives peaks due to noise
effects. If desired, it would be possible to recover the actual amplitude of the
main two peaks of the signal accurately by using a larger value of \. However,
this would introduce a more oscillatory signal in the part of the waveform with

small gradients. Such oscillations are consistently more common for the SB
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Figure 8.7 Denoising of the core collapse waveform signal C with SNR = 20 after applying
both algorithms sequentially, rROF first with A = 0.05 followed by SB with A = 8.

method than for the rROF method, as can be seen from the middle and bottom
panels of Fig. 8.5.

The effect of varying the SNR on the denoising procedure is shown in Fig. 8.6
for the same core collapse waveform C. This figure magnifies the signal around
the late collapse and early post-bounce phase, i.e. 0.04s < ¢t < 0.08s. The three
panels show, from top to bottom, the comparison between the denoised and
the original signal for SNR=20, 10, and 5, respectively. Only the results for
the TROF algorithm with A = 0.09 are shown, as the results and the trend
found for the SB method are similar (only more oscillatory in the small gradient
part of the signal for the latter). This figure shows that, as the SNR decreases,
the denoised signal recovers the original signal worse, as expected. While the
amplitude of the oscillations of the denoised signal increases in the part with
small gradients, it is nevertheless noticeable the correctness of the method to
recover the amplitude of the largest negative peak of the signal even for SNR=5.
We stress that all three signals have been denoised applying the same value of
A and recall that the study of the dependence of A on the SNR (Section 8.1)
predicts a lower value of ;¢ as the SNR decreases to obtain the best results.
Therefore, the effect of using a value of A greater than the optimal one is also

noticeable in the middle and lower panels of Fig. 8.6.

The amount and amplitude of the oscillations of the denoised signals in small
gradient regions can be somehow made less severe when both algorithms are
applied sequentially. This is shown in Fig. 8.7 for the GW burst signal C with
SNR=20. The denoised signal in black in this figure is the result of applying
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Figure 8.8 Denoising of the BBH waveform signal “0001” with SNR, = 20. Top panel: original
signal (red dashed line) and non-white Gaussian noise (black solid line). Middle panel: Original
and denoised (black solid line) signals for the SB method in the frequency domain with A = 1.6.
Bottom panel: Original and denoised signals for the rROF method in the time domain with
A = 0.0026.

an initial denoising with the rROF algorithm in a 1 s window followed by a
second step with the SB method in the frequency domain using a 125 ms time
window. The values of the regularization parameters employed in this case are
A = 0.05 for the rROF algorithm and A\ = 8 for the case of the SB method. We
note that, in general, larger values of the regularisation parameters are required
when applying both methods sequentially because regularisation is accumulative.
Indeed, the output of the first step contains less noise and, therefore, the second

step needs larger values of A, i.e. less regularisation.

We turn next to apply the denoising procedure to the BBH catalog. For

illustrative purposes we focus on a single signal of such catalog, signal “0001”, as
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this suffices to reveal the general trends. This signal corresponds to a binary of
two black holes with similar mass (~ 10Mg). The results are shown in Fig. 8.8.
As above, the top panel shows the original signal (red dashed line) embedded in
additive non-white Gaussian noise (black solid line). The middle panel shows the
result of the denoising procedure after applying the SB method in the frequency
domain with A = 1.6, and the bottom panel shows the corresponding result after
applying the rROF algorithm in the time domain with A = 0.0026. A value of
SNR=20 is assumed. To better visualise the results we display only the last few
cycles up until the two BH holes merge.

As BBH waveforms have longer durations than bursts and the characteristics
of the signal change over time, scales between the beginning and the end of the
signal are significantly different. This becomes clear in Fig. 8.8 where as a result
of the scale variations in frequency and amplitude during the late inspiral and
merge, the signal cannot be properly denoised throughout using the same value
of X\. Typically we find that using a comparatively large value of A helps to
accurately recover larger amplitudes and high frequencies than lower frequencies
and amplitudes, and vice versa. The reason for this is again due to the fact that
the methods we employ are gradient dependent, preserving the large gradients
and removing the small ones. On the one hand, choosing a low value of A to
recover low frequency cycles makes the merger signal to be treated as high
frequency noise. On the other hand, choosing a high value of A to recover
the merger part produces high oscillations in the rest of the signal. We have
checked that it is nevertheless possible to obtain good results for the entire BBH

waveform train using different values of A\ for different intervals of the waveform.

8.2.2 Signal Detection

From the previous analysis, it becomes manifest that in a low SNR situation our
denoising algorithms alone cannot remove sufficient noise to produce detectable
signal, i.e. a signal clearly distinguishable from the noise background. In order
to improve our results in such a situation, we can combine our techniques with
the use of spectrograms. Such an approach is usually employed in GW data
analysis, in a more complex pipeline, to seek for transient power peaks in the
data that could correspond to actual GW wave signals, assuming that all known
transients have been removed from the data [Ajith et al. 2014, Di Credico and
LIGO Scientific Collaboration 2005, Anderson and Balasubramanian 1999].
First, we have to check if the information we can obtain from the spectrogram

would be modified by the application of our techniques. To do this we compare
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Figure 8.9 Spectrograms of the original noisy signal (top panel) and denoised signal (bottom
panel) for the core collapse signal C and SNR =10. The higher values of the spectral power
density are shown in red, while the lower power is represented in blue.

the spectrogram from an original noisy signal with SNR=10 with the spectrogram
of the corresponding denoised signal. The results are shown in Fig. 8.9 for the
core collapse signal C. The spectrogram of the original signal is shown in the top
panel and the denoised spectrogram is shown in the bottom panel. Red colour
represents high spectral power while lower power is represented in blue. In
order to produce Fig. 8.9 we first apply the rROF algorithm in the time domain
followed by the SB method in the frequency domain, both for a 1s time window,
and then we calculate the spectrogram. The power peak around 0.5s corresponds
to the GW signal which is clearly distinguishable in both spectrograms, and its

structure remains similar after the denoising procedure.
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Figure 8.10 Spectrogram of the core collapse signal C for SNR=5. The excess power around
0.5 s is supposed to be produced by the GW signal.

An example of the application of the spectrogram together with our algo-
rithms in a low SNR situation where the spectrogram alone would not reveal
any high power peak, is shown in Fig. 8.10. This figure displays the denoised
spectrogram of the same core collapse signal C originally embedded in non-white
Gaussian noise but now with SNR=5. In this case we have a dataset which
contains 1s of data from the detector. The exact arrival time of the signal is
unknown and is what we want to determine by computing the spectrogram.
In order to find the time of arrival of the signal we integrate the power of the
first 2000 Hz for each temporal channel and look for the channel that contains
the maximum power. After selecting this channel we perform the denoising
procedure only in this channel, using first the SB method as a filter and then
applying the rROF algorithm in order to obtain the signal waveform. Fig. 8.10
shows that the power peak of the signal (red colour) is distinguishable from the
noisy background (green-blue colours). These findings give us confidence to use
our algorithms as a denoising tool jointly with other data analysis techniques.
However, to prove if the denoising techniques could improve the detection po-
tential of the current LIGO-Virgo community algorithms, we need to perform

an end-to-end pipeline comparison.
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8.3 Discussion

The methods we use are based on L1 norm minimisation and have been originally
developed and fully tested in the context of image processing where they have
been shown to be the best approach to solve the so-called Rudin-Osher-Fatemi
denoising model. We have applied these algorithms to two different types of
numerically-simulated gravitational wave signals, namely bursts produced from
the core collapse of rotating stars and chirp waveforms from binary black hole
mergers. The algorithms have been applied in both the time and the frequency
domain. Both of our methods, SB and rROF, reduce the variation of the signal,
assuming that due to its randomness the larger variations are due to the noise.
We have performed an heuristic search to find the set of values best suited for
denoising gravitational wave signals and have applied the methods to detect
signals in a low signal-to-noise ratio scenario without any a priori information
on the waveform. In particular, the rROF algorithm in the time domain has led
to satisfactory results without any assumption about the noise distribution. On
the other hand, in order to apply the SB method in the frequency domain, we
have selected a particular weight distribution. This distribution can be chosen
freely so as to adjust it to the specific spectral characteristics of the noise or
of the detector sensitivity curve. Overall, we conclude that the techniques we
have presented in this paper may be used along with other common techniques
in gravitational wave data analysis to help increase the chances of detection.
Likewise, these methods should also be useful to improve the results of other
data analysis approaches such as Bayesian inference or matched filtering when
used as a noise removal initial step that might induce more accurate results for

the aforementioned traditional methods.






Chapter 9

Total-Variation methods for

gravitational-wave
denoising: LIGO data

In the current chapter we take a further step in the assessment of TV-methods
for GW astronomy, using actual noise from the detectors instead of the idealized
non-white Gaussian noise employed in previous chapters. More precisely, here
we will inject numerically generated signals into the data collected by the initial
LIGO detector during its 6th scientific run (S6) that extended from July 2009 to
October 2010. As in the last chapter, we use two catalogs to test the methods,
the first one from core-collapse simulations [Dimmelmeier et al. 2008] and the
second one from BBH mergers [Mroué et al. 2013] (see Appendix B for a complete

description).

9.1 Iterative rROF

In the results discussed in this chapter we will use an iterative procedure to
solve denoising problems based on the so-called regularized ROF algorithm.
The rROF method runs a new scale space from finer to coarser scales, with a
termination criterion given by a discrepancy principle. Usually, this criterion is
enforced by matching the square of the Lo-norm of the residual with the variance
of the noise, if the latter is known. Since this is not the case for GW data, our
iterative procedure is terminated as soon as the reconstructed signal starts to

loose amplitude around local extrema.
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Roughly speaking, we first choose the regularization parameter A\ equal to
a constant value \g, which is larger than the optimal value needed to obtain a
denoised signal by application of the rROF algorithm. The value of A is kept
fixed through all the iterations. Next, we compute u; by solving

u; = argmin {TV(u) + &Hu - f|%2} , (9.1)

» 2
! up + vy, (9.2)

where v; is the residual. Then, we apply again the rROF algorithm using the
same Ao and taking as input signal u; to obtain uy. We thus have

Uy = Uy +v2. (9.3)

Applying this procedure for an arbitrary number of times n we obtain a sequence

of signals u,, for n =1,--- such that
Up_1 = Up+Un, (9.4)
n
f = Un+ZU¢ . (9.5)
i=1

The iteration stops when some discrepancy principle is satisfied, i.e. when the
square of the Lo-norm of the residual matches the variance of the noise. In
practice, however, the variance of the noise is not available and we have to
resort to some other termination criterion. Therefore, the iterative procedure is
stopped at some ng which is selected to make it coincide with the appearance
of the denoised signal before its local extrema start loosing total variation. We
regard signal u,, as the denoised signal. Note that the scale space defined by
this iteration is different from the one observed when the parameter A\ runs from
small to larger values, as it is done in the Bregman refinement iterative algorithm
(see Bregman [1967] and Osher et al. [2005]). The advantage of using the iterative
procedure proposed here is that local extrema and edges are significantly better
preserved when the scale space is run in the opposite direction (towards smaller

values of A).

9.2 Algorithm pipeline and data conditioning

The goal of this work is to test the rROF algorithm with the real conditions
of a GW wave detector. We use data from the initial LIGO detector, collected
during the 6th scientific run (S6) that spanned from July 2009 to October 2010
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Figure 9.1 Algorithm workflow.

and which is publicly available at LIGO Open Science Center'. We test the
method after injecting numerical relativity catalog signals into ten different data
segments obtained randomly from 24h of data. The workflow is shown in Figure
9.1.

After reading the data at a given GPS time, we estimate the power spectral
density (PSD) using 1024 s before the GPS time of the signal injection. Once

the PSD has been estimated we use it to calculate the SNR, defined in Eq. (8.3).

The amplitude of the signals is modified to reach the desired SNR given at the
injection step.

In Chapter 8 we showed that the rROF algorithm leads to satisfactory results
when the signal is embedded in Gaussian noise, at least in the case of core

Thttps://losc.ligo.org/about/
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Figure 9.2 Result of applying the rROF algorithm as a low-frequency filter. Upper panel:
Original signal (blue) and resulting signal after applying rROF (red) with a very low value of
X. Lower panel: Residual of the first iteration (blue) and resulting signal (red) from rROF.

collapse signals. As it is well known, the noise of GW detectors is non-Gaussian
and non-stationary. For example, there exist well-known, modelled sources of
narrow-band noise, such as the electric power (at 60 Hz and higher harmonics
for the (American) LIGO detectors), mirror suspension resonances or calibration
lines (see e.g. Fig. 3 of Abbott et al. 2016b). For this reason the data must first
be pre-conditioned to remove these lines and produce a noise spectrum as flat
as possible. To do so we employ two different methods, trying to make as few

assumptions as possible.

The first method we use is the simple filtering of the data. We highpass the
time series above 30 Hz to remove seismic noise and, following the approach
described in Abbott et al. [2016b], we also filter out all spectral lines. While
there are sophisticated procedures to detect and remove instrumental lines (see
Abbott et al. [2008] and references therein), for our purpose it suffices to select
the frequency of those lines by direct inspection. After the filtering, some low
frequencies and lines still remain. To remove them we exploit one of the features
of the rROF method. Since with a very low value of A the resulting signal will
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be very regular and will only contain low frequency features, we can subtract
this signal to the original data and apply the rROF algorithm with the same
value of A iteratively. It can be proved that this procedure converges, so that
at each iteration we subtract less low-frequency signal. As a result, the final
signal has a much flatter spectrum than the original one. Fig. 9.2 illustrates
this process. The upper panel displays the noisy signal after filtering (in blue)
and the result of applying rROF with A = 0.001. Visually both signals seem
identical but they are not. The residual of the two signals is shown in the lower
panel of Fig. 9.2 (blue line); note the difference scale in amplitude. The result
of the next iteration, which contains only the lower frequencies, is also shown
(red line).

Our second method to precondition the data is the whitening procedure
developed by Elena Cuoco and coworkers [Cuoco, Cella, and Guidi 2004] which
is included in the Noise Analysis Package (NAP), developed by the Virgo
Collaboration [Acernese et al. 2005, Acernese et al. 2007]. This procedure uses
an autoregressive (AR) filter to transform the coloured non-stationary noise into
a white noise (see Cuoco, Cella, and Guidi [2004] for details). First we need to
obtain the 3000 coefficients of the AR filter required by the whitening procedure
using 500 s of data before the signal injection. The whitening is applied in the
time domain, to avoid the border problems associated with the transformations

in the frequency domain.

9.3 Estimation of the regularization parameter

As already discussed in the previous chapter the denoising results are strongly
dependent on the value of the regularization parameter A. If this value is
too large the fidelity term in Eq. (7.15) dominates and the denoised signal is
comparable to the original noisy signal y. On the contrary, if the value of A
is very small, it is the regularisation term in Eq. (7.15) the dominant one and
the amplitude of the resulting signal tends to zero. We also mention that the
existence of an optimal value of A\ can be proven theoretically. However, this
unique value is not equally appropriate for all possible cases one may consider
(involving differences in the noise and/or in the signals) and, in practice, must
therefore be set empirically.

In this section we carry out an heuristic search with the goal of determining
the interval of values of A where satisfactory results are expected. The optimal
value of the regularisation parameter, Aopt, is the one that gives the best results

according to some suitable metric function applied to the denoised signal and to
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the original one. This function is used to measure the quality of the recovered
signal. In the previous chapter we chose the peak signal-to-noise ratio, PSNR, as
our quality estimator. In the present chapter we assess the results of the iterative
rROF algorithm using two different methods, the Improvement factor in the
PeakSignal to Noise Ratio (IPSNR), and an additional estimator, the so-called
structural similarity (SSIM) index [Wang et al. 2004]. We have decided to change
from using the simple PSNR estimator to IPSNR because the latter brings a
measure of the improvement achieved when applying the rROF algorithm.
The SSIM index deviates from the traditional measures of error, which are
based on the calculation of the absolute error, because it considers the structural
information, taking into account the mean and the variance of both signals to
be compared. The SSIM index varies between 0 (minimum similarity) and 1

(maximum similarity) and is defined as,

(2uxpty + c1)(20%y + C2)
(13 + 13 + 1) (0 + 07 +c2)’

SSIM(x,y) = (9.6)

where ¢; and ¢y are constants, p, (u,) is the average of z (y), o2 (07) the

variance of « (y) and oy, the covariance of = and y.
Our second quality estimator is the IPSNR, defined as,

[y — sl
[ —sf|’

IPSNR(x,y,s) = 10log;,

(9.7)

where y is the original noisy signal, x is the resulting signal after applying
one of our denoising algorithms and s is the original waveform. This indicator
measures the improvement in the measure of the Mean Square Error (MSE) that
is achieved.

These two estimators allow us to determine the optimal value of the regulari-

sation parameter A in each case.

9.3.1 Template error minimization

We start by computing the IPSNR of the output signal from rROF using
3 different signals from the core collapse catalog under 4 independent SNR
conditions. This signals correspond to signals labeled as 60, 68 and 96 from
the core collapse catalog (see Appendix B). The tolerance of the iterative rROF
algorithm is set to 10~3 and the number of Bregman iterations is set to only
2. The results for the two different data-conditioning procedures are shown in
Fig. 9.3. All the plots in this figure show a similar behavior. When the value
of X is small, the resulting signal is very regular and the IPSRN tends to the

same value that would correspond to a zero signal. In contrast, for larger values
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Figure 9.3 Evolution of the IPSNR with the variation of the regularisation parameter X in 4
SNR scenarios (20,15,10,7). The left column of panels show the results for the filtering+rROF
data conditioning while the right column of panels exhibit the results after the whitening.
From top to bottom we show the results corresponding to signals 60, 68 and 96.

of X the signal is increasingly more similar to the original one (before applying
rROF) and the IPSNR tends to zero. We therefore consider as the optimal value
of X\ the value that produces the maximum value of the IPSNR. The behaviour
of the SSIM index with A is similar than for the case of IPSNR, reaching its

maximum at roughly the same values.

In general, as the SNR decreases the values of IPSRN increase. To explain
this we must recall that the IPSNR measures the improvement reached by the
method in terms of the absolute error. For this reason, the improvement is
better in low SNR conditions although the denoised signal will be more poorly

recovered due to the noise conditions. The first column of Fig. 9.3 shows the



158 TV methods for GW denoising: LIGO data

evolution of the IPSNR with A for the three test signals preprocessed with line
filtering. The value of Ay is similar for all the SNR conditions for a given
signal, except for few cases as for SNR=20 in signal 68 (left column, central
panel), where the maximum is reached in a slightly different point than for
the other SNRs. However, in this case, the difference is not very pronounced
and the denoising results do not change significantly. By comparing the three
signals, one can also see that the values of Ay are in a similar range for the

three signals.

The second column of Fig. 9.3 corresponds to results using the whitening
procedure before applying the rROF algorithm. In this case the IPSNR values
are lower, which is due to the fact that the whitening procedure performs the
data conditioning much better than the line filtering. As a result, the extent of
improvement that the rROF algorithm may reach is not as large. However, as
we show below, the cleaning of the signal is better when conditioning the data
with the whitening procedure. It is worth to point out that in the case of low
SNR the plot does not show a clear maximum. In this case, when A is small
the method produces a very smooth signal for both numerical and noisy signals.
Although the TPSNR is higher, the main features of the signal are lost. As for
the line filtering, the range of values of the optimal regularisation parameter
remains also similar for the same whitened signal under different SNR, conditions.
We note, however, that the values of A\p¢ are different from those obtained with
the line filtering method of data conditioning. The variation of A\ seems to be
restricted to an interval A € [1,20] in the case of filtering the lines and to an
interval A € [10, 18] for the case of whitening the data. Notwithstanding that
performing the denoising with a general value of A inside these intervals may
not produce the best results, it is still worth to obtain such initial denoising to

then vary the value of A to obtain the best results.

In order to have a more complete study of the values of Ayp¢, we have repeated
the calculation of the IPSNR for other signals at varying GPS times. The mean
value of Aqp¢ derived from this study is X = 6 for line filtering and A = 16 for the
whitening procedure. These two values are inside the corresponding intervals

indicated before.

We also perform the same analysis using three signals for the BBH catalog
selected randomly, specifically these signals are labeled as BBH1 (mass ratio
=1, no spin), BBH47 (mass ratio = 3, no spin), BBH94 (mass ratio = 1.5,
spin; = 0.5, spin, = 0). The corresponding intervals are A € [1,10] with A =5
for line filtering and A € [2,11] with X\ = 5 for the whitening approach.
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One last possibility we have explored is the possibility of solving the ROF
problem using multiple values of A chosen randomly inside the intervals shown
before. This allows to generalise the applicability of the method, covering the
span of values of the regularisation parameter that produce good results for all
signals (core collapse and BBH) under different conditions of noise. Once the
two denoising procedures have been applied, we compute their mean to produce
the final signal. We have explored several simple ways to join the results and

the simple mean seems to be the best strategy.

9.4 Results

To test the technique with the two catalogs we inject the signals in 2 s of noise.
We have used 10 different times over 24 h of LIGO S6 run. These times have
been selected because the corresponding date have passed all the quality vetoes
and there are no high SNR glitches near the injection times.

9.4.1 Core-collapse signals

First we test our method with the same three previous signals from the core-
collapse catalog with SNR=20 using the optimal value of A for each case. The
results for both data-conditioning techniques are shown in Fig. 9.4 and Fig. 9.5,
respectively. Comparing the results from both data-conditioning methods (first
row in both figures), we conclude that AR-whitening performs better than
line-filtering, in terms of removing noise. This was somewhat to be expected
because AR-whitening takes into account many more aspects of the noise than
simple filtering. In addition, since the AR-whitening is performed in the time
domain, it avoids all border effects that may appear with frequency-domain
transformations. However, this procedure also modifies the shape of the signal
notably, producing more oscillatory signals than the line-filtering approach.
Regarding the denoised signal, core-collapse signals 60 and 96 (left and right
panels in Fig. 9.4) are well recovered. Distinctive features of the signals, such as
the amplitude and the phase of the main positive and negative peaks, as well
as of the first secondary peak in both signals, are nicely captured. In contrast,
the damping oscillations with lower amplitude are lost. This is because these
peaks have lower amplitude compared with the main peak and, as a result, they
are more affected by the noise. In addition, the rROF model preserves the
larger gradients at the expense of the smallest ones. The denoised signal shown

in the middle panel of Fig. 9.4 is also in good agreement with the processed
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template. As this signal is more oscillatory than the other two, a higher value
of \ is required to properly recover the peaks. This results in the presence of
more noise than in the other two cases. This fact has to be taken into account
in a realistic situation where the actual signal is unknown, because the small
oscillations can be lost if the strategy is to favour regular signals and significant
noise removal. However, it is always possible to apply a larger value of A and
try to recover these parts of the signal.

The results of the optimal denoising for signals pre-processed with the AR-
whitening procedure are shown in Fig. 9.5. After the data conditioning, the
signal used as input for the rROF method is much more similar to the injected
one than in the case of line-filtering (see plots in the upper row). Nevertheless,
the rROF model is still able to remove part of the remaining noise and produce
a more accurate result (lower row). The final gain in the IPSNR is not as large
in this case than when applying the rROF algorithm to line-filtered data.
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Figure 9.5 Results of applying the rROF model
to three different core-collapse signals with
SNR = 20. The upper plot in each of the panels
shows the data processed with AR-whitening
for the three cases. The blue line is the original
noisy signal, while the red one is the numer-
ical template.. The lower plot in each panel
shows the denoised signal (green) and com-
pared with the numerical template (red). The
latter has been processed with rROF using the
same value of the regularisation parameter .

Strain

Strain

8.01 8.02

8.03 8.04 8.05
Time [s]

We complete the analysis by performing the denoising for the same previous
six cases in two new situations, (i) using the mean value of the regularisation
parameter and, (ii) using multiple values of A and computing their mean value.
The resulting values of the SSIM and IPSNR estimators for the line-filtering pre-
conditioning are shown in Table 9.1. The corresponding results for AR-whitening
are reported in Table 9.2. To analyse the results of both tables, we must bear in
mind that IPSNR measures the improvement in the MSE between the original
noisy signal and the denoised one, while SSIM is a direct comparison between the
denoised signal and the numerical template (processed with the same methods
than the noisy signal). Moreover, given that IPSNR is computed in logarithmic
scale, a difference of a few dBs does not imply noticeable differences in the
results.

Comparing the results for both tables one can see that, even though in

general the denoising is worse using the mean value, the results are not very
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Table 9.1 Comparative denoising results when using Aopt (optimal value), A (mean value), and
Amulti (mean of signals with multiple values of A). Results are for signals pre-conditioned with
line filtering.

Aopt A AInulti
SNR # SSIM  IPSNR  SSIM  IPSNR  SSIM IPSNR
60 0.53 17.5 0.39 15.4 0.23 12.3
20 68 0.35 11 0.23 10.2 0.32 10.7
96 0.42 18.2 0.31 15.9 0.22 13.2
60 0.36 20.2 0.14 16.2 0.11 12.7
10 68 0.25 16.2 0.14 14.5 0.15 12.3
96 0.37 21.8 0.18 16.98 0.1 13.6
20 BBH1 0.47 19.4 0.29 19.03 0.13 15.5
10 BBH1 0.28 23.5 0.11 20.8 0.1 15.6

different to the optimal one for both estimators. It seems therefore possible to
use the mean value for all signals and still achieve satisfactory results. On the
other hand, in the case of multiple values of A no general trend is found, and the
results do depend on the specific values of A chosen to perform the denoising.
Nevertheless, this approach seems to work better when pre-conditioning the
data with AR-whitening than with line filtering, due to the shorter interval of
values of A\ needed in the former.

The values of the IPSNR increase when the SNR decreases for both types of
pre-preprocessing methods, while the values of the SSIM index decreases. The
reason is because as the SNR decreases, the rROF method is able to remove more
noise (higher value of the IPSNR), but the resulting signal is more corrupted by
noise (lower value of the SSIM index).

Finally, it is worth to compare the results of both branches of the pipeline.
In the optimal case, both combinations of algorithms (pre-conditioning + rROF)
produces similar results, according to the values of the SSIM index (first column
in Tables 9.1 and 9.2). However, in a realistic case, the optimal value is not
available and in such a case, employing A or multiple denoising, pre-processing
with AR-whitening produces better results.
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Table 9.2 Comparative denoising results when using Aopt (optimal value), A (mean value), and
Amulti (mean of signals with multiple values of A). Results are for signals pre-conditioned with
AR-whitening.

)\opt A )\multi

SNR # SSIM  IPSNR  SSIM  IPSNR  SSIM  IPSNR

60 0.54 4.9 0.53 4.8 0.56 5.4
20 68 0.34 2.1 0.31 1.1 0.31 0.8
96 0.49 3.7 0.48 3.4 0.50 3.8
60 0.39 7.0 0.34 5.3 0.36 6.3
10 68 0.21 2.9 0.20 2.9 0.22 3.1
96 0.28 4.5 0.29 4.4 0.32 5.2
20 BBH1 0.77 10.3 0.42 5.1 0.46 5.9
10 BBH1 0.48 10.5 0.20 5.1 0.21 5.9

9.4.2 Binary black hole signals

We turn now to perform the same analysis to the signals from the BBH merger
catalog. As we have already pointed out, these signals are much longer than core-
collapse signals and show a distinctive chirp morphology, where the amplitude
and the frequency increases with time up to the merger. The results are shown
in Fig. 9.6 and reported in the last two rows of Table 9.1 and Table 9.2. As
in the case of core-collapse signals, the values of IPSNR are higher for lower
values of SNR since the algorithm is able to remove more noise. However,
contrary to core-collapse signals, for BBH signals using AR-whitening as a pre-
processing method works much better (in terms of SSIM index values) than just
filtering the lines. This effect is clearly visible in Fig. 9.6, where the left panel
corresponds to line-filtering and the right panel corresponds to AR-whitening.
The denoised signal for the latter is smoother than for the former, and both
phase and amplitude of the last cycles before merger are well recovered. We
note that although the shape of the signal has changed due to the whitening
(this is simply a numerical artefact), especially the merger and the ring-down
parts, it is always possible to apply the reverse filter and recover the original

signal, now with less noise.
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Figure 9.6 Results of applying the rROF model to signal 1 of the BBH catalog with SNR =
20. The upper row of panels shows the data pre-conditioned with line-filtering (left panel) and
AR-whitening (right panel), respectively. The lower row shows the denoised signal (green) and
the comparison with the numerical template (orange). The latter has been processed with
rROF using the same value of the regularization parameter .

9.4.3 Low SNR case

In this section we test the combination of whitening and rROF in a more
realistic scenario, using a lower SNR, value than that considered previously. We
set SNR=7 and consider that the arrival time of the signal is randomly placed
inside a data segment spanning 8 s. The procedure starts with the AR-whitening
of the data and then we apply rROF with the mean value of the regularisation
coefficient . Finally, we compute an spectrogram and the time window to
plot the results is defined at 0.1 s around the time of the maximum power of
the signal. Fig. 9.7 displays the results of this test for a core-collapse signal.
Even with SNR = 7, the whitening pre-processing of the data reduces the noise
significantly. Next, the subsequent use of the rROF method is able to reduce
even more noise, and the spectrogram (shown in the middle panel) reproduces a

very clear signal.

9.5 GW150914

In the last part of this chapter we test the rROF method using data from the
first GW detection, GW150914 [Abbott et al. 2016b]. As the analysis available
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Figure 9.7 Results of applying the combination of AR-whitening and rROF to a core-collapse
signal with SNR=7. The upper panel shows the signal (blue) and the original template (red)

after the whitening. The middle panel shows the spectrogram, computed to find the signal.

The lower panel shows the results after applying the rROF method to the signal of the upper
panel with A.

at LIGO Open Science Center uses filters and simple whitening, we decided to
carry out the analysis with the rROF method after conditioning the data with
line-filtering only. As we want to make as few assumptions about the noise as
possible, we only filter the signal below 30 Hz, and remove the spectral lines as
before.

The denoised waveforms for both the Hanford and Livingston advanced LIGO
detectors are shown in Fig. 9.8 (red and blue curves, respectively). For both
detectors the waveforms look remarkably similar, especially in the last few cycles
of the signal. Comparing these denoised waveforms with the filtered waveforms
reported in Abbott et al. [2016b] we notice that the latter show high-frequency
features visible in some of the final cycles before the merger that do not appear
in our results. By reducing the number of iterations in the rROF algorithm to

about 3-5 and decreasing the value of A\, our method does not entirely smooth



166

TV methods for GW denoising: LIGO data
1.0
0.5 I
=
g OIOVMM W
Jras]
0
-0.5 v U
— H1 observed u — L1 observed (inverted and shifted)
—1.0F — Numerical Relativity Waveform — Numerical Relativity Waveform
0.30 0.35 0.40 0.45 0.30 0.35 0.40 0.45
time (s) time (s)

Figure 9.8 Comparison of our denoised waveforms (red and blue colours) with the filtered BBH
template from numerical relativity [Abbott et al. 2016b] (black curve). The rROF algorithm
has been used with A\g = 0.2 and 10 iterations. The times shown in the z-axis are as in Abbott
et al. [2016b].

out higher frequencies locally which results in a somewhat closer similitude
between both sets of waveforms.

In order to make a fair comparison, we have applied the rROF method to
both, the observed data and to the same numerical relativity waveform employed
by Abbott et al. [2016b]. This comparison is also shown in Fig. 9.8 (black lines
in both plots). The shape of the denoised waveform agrees with the shape of the
processed numerical relativity waveform template of Abbott et al. [2016b] for
the last 4 cycles and the ringdown part of the signal 2. To have a quantitative
measure of the quality of our results, we calculate the Mean Square Error (MSE)
between our denoised waveform and the numerical relativity waveform in the
time interval shown in Fig. 9.8. We also perform the same calculation with the
data resulting from applying a simple whitening process to the original H1 and
L1 data and filtering them with a 35-350 Hz bandpass filter. For the Hanford
detector our results yield a MSE value of 0.0195 while for the whitened and
filtered data the MSE value is 0.0489. These low values of the MSE show that
both methods remove noise successfully. As in Abbott et al. [2016b] we have also
computed the spectrograms of the waveforms for our denoised signals. These are
shown in Fig. 9.9 for the signals of both detectors. The superimposed isocontours
appearing in both spectrograms correspond to the numerical relativity waveform.
These lie on top of the time-frequency diagrams of the denoised signals. The
distinctive increase in frequency during the final cycles of the chirp signal is

2Note that since we do not reconstruct the waveform but just denoise it, we cannot present
the same comparison reported in the middle panel of Fig. 1 in Abbott et al. [2016b] between
the waveform reconstructed through a Bayesian approach and the reconstructed numerical
relativity template.
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Figure 9.9 Spectrograms of our denoised waveforms after applying the rROF algorithm to
the data from Hanford (upper panel) and Livingston (bottom panel). The superimposed
isocontours correspond to the numerical relativity waveform template.

clearly recognisable in both spectrograms. Our results are qualitatively similar
to the results reported by Abbott et al. [2016b].

9.6 Discussion

We have applied the ROF algorithm to denoise signals embedded in real
noise from initial LIGO and to denoise the transient gravitational-wave sig-
nal GW150914 detected on September 14, 2015 by the two Advanced-LIGO
interferometers. Our goal has been to assess if the rROF algorithm applied in
the time domain to actual gravitational-wave data can successfully remove noise
without any a priori information about the signal. The results reported in this
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chapter show that the non-Gaussian, non-stationary noise from an actual obser-
vation such as the gravitational-wave event GW150914 can also be successfully
removed with TV-denoising methods. That is indeed the case and the quality of
the denoised waveform is qualitatively comparable to that obtained with the
Bayesian approach used in the discovery paper. However, this signal has a high
SNR, so the test is simple. Further analysis with other signals will be performed

in the future.



Chapter 10

Gravitational-wave
denoising via dictionary

learning

The results of this chapter have been originally published in:

Torres-Forné, A., Marquina, A., Font, J. A., and Ibanez, J. M. “Denoising of
gravitational wave signals via dictionary learning algorithms”. Physical Review
D, 94, 124040 (2016).

The sparse reconstruction of signals over trained dictionaries we discuss in
this chapter are obtained for the same kind of GW trained signals that we did
in the previous chapter, namely burst signals from a catalog of rotational stellar
core collapse [Dimmelmeier et al. 2008] and chirp-burst-ringdown signals from a
catalog of BBH mergers [Mroué et al. 2013] (see Appendix B for details). Once
the dictionaries are set, we demonstrate their utility for the denoising of GW
signals embedded in Gaussian noise only. The assessment of the approach when

using actual detector noise is deferred for a future investigation.
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10.1 Dictionary generation and parameter eval-

uation

10.1.1 Dictionary generation

We start describing the process to generate a learned dictionary from the
waveforms of the catalogs. The goal is to find the best set of dictionary parameters
that produce the best denoising results. As in the previous chapters we find
that the results depend critically on the value of the regularization parameter
A selected. The way we build the dictionaries for the burst and BBH catalogs
is similar. We divide randomly in three groups both the 128 burst waveform
signals of Dimmelmeier et al. [2008] and the first 100 BBH waveforms of Mroué
et al. [2013]. Since the BBH signals of Mroué et al. [2013] are quite large, we
do not use the entire BBH catalog in order to save computational resources.
Specifically, the BBH catalog covers binaries with total mass 20/ and mass
ratios up to 1:8, and so does our dictionary. We then use in either case 80%
of the waveforms for training the dictionary, 15% for validation of the method,
i.e. to search the best set of parameters, and the remaining 5% to test the

algorithm in different situations.

The numerically generated signals are embedded in non-white, Gaussian noise
corresponding to Advanced LIGO proposed broadband configuration, provided
by the LSC Algorithm Library Suite (LAL) [“LAL software documentation
(2007)”]. The frequency ranges from 10 Hz to 8192 Hz (one-sided spectrum).
First of all, we resample the waveforms of both catalogs to the Advanced
LIGO/Virgo sampling rate of 16384 Hz, zero-padded to have the same length.
The corresponding signals are also shifted to be aligned with either the minimum
peak in the case of bursts or with the maximum peak in the merger part for
BBH signals. We select 2048 samples around the corresponding alignment points
to train the dictionary. With this length, the waveforms of the burst catalog fit
completely in the window, while only the last cycles of the inspiral, merger and
ringdown of the BBH waveforms are taken into account to perform the denoising.
This late part of the BBH signal is arguably the most interesting part, hence
deserving to be denoised best. Below we comment on the reason for this choice
and on existing alternatives to also reconstruct the early inspiral part of the
signal. To ensure the best conditions for the convergence of the algorithms and
to avoid round-off errors, we also scale the amplitude of the validation signals of
both catalogs so that their maximum value is set to unity. The values of the

regularization parameter \ we discuss in this section are hence determined by
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Figure 10.1 Random examples of the atoms of both dictionaries, for burst waveforms (upper
panel) and for BBH signals (lower panel). The number of samples is shown in the horizontal
axis while the normalized amplitude is shown in the vertical axis.

this normalization. Moreover, we scale each signal to achieve a specified value of
the SNR, computed as in Eq. (8.3).

As discussed in preceding chapters, the optimal value of the regularization
parameter, Aopt, is defined to be the one which gives the best results according
to a suitable metric function applied to the denoised signal and the original
one, measuring the quality of the recovered signal. In our case we choose two
estimators, namely the Mean Squared Error,

MSE = >V -v)?, (10.1)
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where Y and Y are the reconstructed and original signals, respectively, and n
is the number of samples, and the structural similarity (SSIM) index [Wang
et al. 2004], which deviates from the traditional measures of error because it
takes into account the structural information. The SSIM index varies between 0
(minimum similarity) and 1 (maximum similarity) and is defined in Eq. (9.6)

As mentioned before we use 80% of the signals of each catalog to produce one
dictionary per type of signal. To do the learning, we select 3 x 10* random patches
(the starting sample is random) of a selected length, which is a parameter to be
estimated. The patches are selected uniformly from all the learning waveforms
of each catalog. Then, we select the p patches with the highest energy, defined
as the square of the L?-norm of each patch. After that, we solve problem (7.59)
using a block-coordinate descent method. This step is done modifying the code
developed by Peyré [2011]. Fig. 10.1 shows a small representation of the atoms
of both dictionaries.

In addition to the search of At we must decide the best values for the
size of the dictionary, i.e. the number of atoms and their length. To this aim
we calculate the MSE for the reconstructed signals obtained using dictionaries
of different sizes. In each case, the value Ay will be the corresponding value
that minimizes the MSE. For this task we use the validation set of signals of
the dictionaries and set the SNR to 20. As the length of the atoms is always
shorter than the length of the validation signals, we do the denoising with a
sliding window with an overlap of n — 2 samples, where n is the length of the
window, which agrees with the length of the atoms. With this overlap, there are
many samples that are repeated on different windows. These samples must be
averaged to obtain the final reconstructed signals. Our initial tests show that
the best reconstruction is achieved using TV-averaging (see Marquina and Osher
[2008b]),

2 (fTV)

) (10.2)
?:1 TV;

where f; corresponds to the current patch and TV; = >~ |V f;] is the TV norm
of that patch.

10.1.2 Parameter evaluation

We calculate the MSE for the validation set of burst signals with window lengths
I =64, 128, 256, and 512. The results are shown in Fig. 10.2. Each vertical bar
represents the value of the MSE for each atom length. The figure shows that the
largest value of the MSE is achieved for a length of 64. This is due to the fact
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Figure 10.2 Upper: Bar diagram of the MSE for all burst validation signals. Each color
represents a different window length as indicated in the legend. Lower: Bar diagram of the
optimal value of A\ for all burst validation signals and a window length n = 256. The mean
value of Aopt is 0.038 £ 0.018.

that if the atoms are too short the reconstructed signal is more oscillatory due to
the noise. This effect can be corrected using larger lengths. However, the larger
the length of the atoms the more difficult to recover the smallest oscillations
of the original signal. This is the reason why the MSE actually grows for the
larger window length analyzed (512 samples). While this is a generic trend, it is
nevertheless still possible that the longest window may work better for specific
signals (e.g. signals #6 or #11 in Fig. 10.2). However, in general the best results

correspond to a length of 256 samples.

The lower panel of Fig. 10.2 displays the values of Ao, i.e. the value of the
regularization parameter that minimizes the MSE value. It has been obtained

for a fixed window length [ = 256. This figure reveals that the values of A
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Figure 10.3 Upper: Bar diagram of the MSE for all the BBH validation signals. Each color
represents a different window length as shown in the legend. Lower: Bar diagram of the
optimal value of X for all the BBH validation signals and a window of length 1024. The mean
value of Aopt is 0.008 £ 0.002.

are bounded between 0.01 and 0.06. Therefore, not all values of A are possible
and selecting the mean value Aopy = 0.03 will produce, on average, a good
reconstruction for all burst signals. Nevertheless, fine-tuning this parameter can
improve the results in specific cases. We next carry out the same analysis for the
case of BBH signals. As BBH waveforms are totally different to burst signals,
the choices just discussed for bursts would not lead to satisfactory results if
applied blindly to the BBH catalog. Contrary to burst signals, BBH waveforms
are significantly longer, therefore we need to increase the length of the atoms.
The values obtained for the MSE for the BBH catalog are shown in Fig. 10.3
and correspond to atom lengths that comprise from 128 to 1024 samples. The

case of 64 samples is not shown in the figure because the corresponding value of
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the MSE is much larger. As for the case of burst signals, Fig. 10.3 shows that
the MSE decreases with the window length in most cases. Therefore, to denoise
BBH waveform signals we select the length of 1024 samples as it produces the
best results.

The corresponding results for the value of A\y,¢ for BBH are shown in the
bottom panel of Fig. 10.3. Again, the values are restricted to a small interval
between 0.002 and 0.012. As we show below, using the mean value, Aopt = 0.008,
yields to satisfactory denoising results in most cases.

A similar study is required to determine how the results depend on the
number of atoms of the dictionary p. In general, the larger the dictionary the
better the results, but at a higher computational cost, ~ 1 hour on a desktop
computer. Therefore, setting the size of the dictionary is often a trade-off
between results quality and efficiency. To evaluate an optimal value for the
number of atoms we carry out tests with the two catalogs using values from
p € {300,500,1000} in the case of bursts with n = 256 atom length and from
p € {1100,2000,2500} in the case of BBH with n = 1024 atom length. We
find that using 500 and 1100 atoms for bursts and BBH, respectively, is a valid
compromise as it produces good results at a reasonable computational cost.
However, if computational resources are not an issue, there is no reason not to
use larger dictionaries. For the two catalogs, the value of Aoyt for p = 500 and

p = 1100 atoms are bounded in a similar interval than shown before.

10.2 Tests and results

10.2.1 No signal

The first test consists in studying the performance of the method when there is
no signal inside the data set. The goal of this test is to check if in the absence of
signal the dictionary produces spurious signals due to noise. The result of this
test is shown in Fig. 10.4. A stream of 0.5 s of pure non-white Gaussian noise
(upper panel) is denoised using the generic value of Aoy corresponding to burst
signals, i.e. Aopt = 0.03. One can see that the resulting signal has zero amplitude
throughout the frame (lower panel) for this specific value of A. This is the ideal
behavior of the algorithm in order to avoid false detections due to noise.

We next repeat this test for 200 independent realizations of noise (following
the procedure outlined in Appendix A of Torres et al. [2014]) to check if this
behavior remains the same irrespective of the noise realization. For our specific

value of A we find 26 false reconstructions due to noise fluctuations. We note
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Figure 10.4 Denoising with no signal embedded into Gaussian noise with SNR=20. The
upper panel shows the original noisy signal while the lower panel shows the ideal result of the
denosing, i.e. a zero amplitude signal.

however that the smaller the A the more coefficients of the representation become
nonzero and more structures due to noise may appear. In contrast, a large
value of A will reduce the ratio of false reconstructions, even though a true GW
signal with low SNR could be missed. For instance, for A = 0.045 we only obtain
one false reconstruction.

The results reported in this section are illustrative of the typical response of
the LASSO algorithm on A\. A comprehensive statistical study of the dependence
of the number of false reconstructions and signal misses on the parameters of
the method, i.e. value of A, type of signal injection, SNR, and noise realization,
deserves further analysis. We also note that this is a fairly simple test because
the noise is purely Gaussian. In a more realistic scenario, the presence of
instrumental glitches in the detector data [Powell et al. 2015, Powell et al. 2017]
could produce false reconstructions.

10.2.2 Signals from the catalogs

Next we study how the method works when applied to the eight test waveform
signals of the burst catalog in a long data frame. In the figures for this and
the following tests, we use the same noise realisation to compare the results on
an equal footing. Correspondingly, in the tables reported in this section, we

present results obtained with 20 different noise realisations to find out how the
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Figure 10.5 Denoising of signal #1 (Upper) and #6 (Lower) from the group of test signals
of the burst catalog. The time of arrival is random and the SNR is 20. Upper panels: noisy
signals (blue) superimposed with the original numerical relativity waveforms (red). Lower
panels: comparison between the denoised signals (red) with the original ones (blue). The MSE
and SSIM values are 0.018 x 10~2 and 0.98 for the signal on the upper panel and 0.271 x 10~3
and 0.67 for the signal on the lower panel.

reconstruction is affected by noise fluctuations. The signals are embedded in
Gaussian noise with a SNR of 20. The time of arrival is fixed and it is the same
for all the signals. The value of the regularisation parameter is set to A = 0.03
and remains the same value for all the tests of this section. Although this value
is not the optimal one, i.e. the one which produces the best results for a given
signal, our goal is to determine if it is possible to recover the signal with a
generic value of X\. This approach may be closer to what occurs in a realistic

situation, where no information on the signal is available a priori.

The quality of the denoising is measured using the MSE and the SSIM metric
functions, and is reported in Table 10.1 for all test signals. This table shows the
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maximum and the minimum values for both MSE and SSIM for 20 independent
noise realisations. We recall that the results depend on the value of A\. Each
signal embedded in different noise realisations is a new scenario and the best
results will be obtained with the optimal value of A for each case. With SNR
20 and A = 0.03 the relative variations are not too large (the highest variation
in SSIM is 14% for signal #6). Therefore, at this SNR, the reconstruction is
not very affected by noise fluctuations. Fig. 10.5 shows the results for only two
signals of the catalog, namely those which yield the best (signal #1; top panel)
and the worst (signal #6; bottom panel) denoising results, respectively (for
the chosen value of A and noise realisation). The figure displays the comparison
of the two original noisy signals (upper subpanels) with the recovered ones
(lower subpanels). Concerning the signal on the top panel our method can
accurately recover the distinctive positive and negative peaks associated with the
hydrodynamical bounce that follows the collapse of the inner iron core of the star
once the equation of state stiffens and the central density exceeds nuclear matter
density. This is particularly clear for the peaks with the larger amplitudes,
which are recovered properly. However, when the amplitude decreases (i.e. in
the part of the temporal evolution associated with the quasi-radial oscillations
of the newly formed neutron star) the signal becomes weaker than the noise
and, as a result, the method returns a zero amplitude signal. It is also worth
mentioning that in the part of the time series where the data are purely noise
(no numerical relativity signal injected) the method returns a zero signal, as
it should. The same behaviour is seen for the signal displayed on the bottom
panel of Fig. 10.5, the dampened oscillations are weaker than the noise and
the method sets their amplitude to zero. We note that signal #6 is somewhat
different from the common features of the dictionary. As a result, while the
broad morphology is still captured to some extent, the overall result is poorer
than for the signal on the top panel. Even so, we note that the results can
be improved by changing slightly the value of A by adding more atoms to the
dictionary. (We have checked that for A = 0.026 the MSE is 0.1 x 102 and the
SSIM is 0.77.)

To find out the dependence of the procedure on the SNR, we reduce its value
from 20 to 10, keeping the same value of A\. The results are displayed in Fig. 10.6
for the same signals #1 and #6 of the burst catalog. The results for all test
signals and the corresponding maximum and minimum measures of the MSE
and SSIM are also reported in Table 10.1. Fig. 10.6 shows that for SNR 10
signal #1 is still very well recovered and its most significant features can be

reconstructed with relatively high accuracy. The MSE for this signal increases
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Table 10.1 Values (maximum - minimum) of the MSE and SSIM error estimators for the eight
burst signals we use as test signals and 20 noise realisations. Values are reported for both
SNR 20 and 10.

Signal SNR 20 SNR10
MSE (x1073) SSIM MSE (x1073) SSIM
#1 [0.033 - 0.015]  [0.97 - 0.93] [1.389 - 0.021] [0.96 - 0.74]
#2  [0.124-0.030] [0.95 - 0.85] [1.264 - 0.125]  [0.89 - 0.60]
#3  [0.066 - 0.040] [0.93 - 0.88] [0.691- 0.073]  [0.89 - 0.74]
#4  [0.068 - 0.007] [0.97 - 0.88] [0.684 - 0.014]  [0.95 - 0.74]
#5  [0.052 - 0.022] [0.94 - 0.89] [1.335 - 0.041]  [0.90 - 0.53]
#6  [0.210 - 0.084] [0.83 - 0.72] [0.861 - 0.205]  [0.72 - 0.51]
#7  [0.130 - 0.083] [0.90 - 0.84] [2.350 - 0.103]  [0.88 - 0.43]
#8  [0.042-0.016] [0.93 - 0.85] [0.594 - 0.026]  [0.91 - 0.74]

an order of magnitude and the SSIM decreases from 0.98 to 0.91, still reasonably
high. For the worst possible case of the test waveforms, signal #6, Fig. 10.6
shows that it can still be distinguished from the noise.

Comparing the results for all burst signals reported in Table 10.1 for SNR
20 and SNR 10, we see that, in general, the values of the MSE (SSIM) increase
(decrease) if the SNR decreases. As the SNR decreases, the reconstruction is
more affected by noise fluctuations and the difference between the maximum
and minimum values of the quality indicators increases. As we have mentioned
before, other values of A could improve the results in each case.

We turn next to test the results from the BBH catalog. As these signals are
much longer than burst signals, the total segment of data has a length of 2 s, in
order to allow to change the time of arrival. In this case, it is set as the time
where the merger is produced, randomly. The denoising results are reported in
Table 10.2 for all BBH signals and displayed in Fig. 10.7 for a representative
signal (#2). As the figure shows, the signal is properly denoised during its three
distinctive parts, the inspiral, the merger, and the ringdown. In particular, the
phase of the signal is well captured and the main, yet small, differences between
the original and the denoised signal appear in the amplitude. We note that the
actual signal is significantly longer than the zoom shown in this figure. The
initial part of the signal, the inspiral phase with low frequencies, is not recovered
because, as mentioned before, the dictionary is specifically designed to recover
the merger part. The most striking incorrect feature of Fig. 10.7 is the presence
of spurious oscillations visible after the ringdown. This is due again to the
selection of \. While using a larger value would remove these oscillations it is

also possible that the amplitudes of the merger and ringdown parts of the signal
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Figure 10.6 Same as Fig. 10.5 but with SNR 10. The MSE and SSIM values are 0.081 x 103
and 0.91 for the signal on the upper panel and 0.20 x 10~2 and 0.71 for the signal on the lower
panel.

could be cut down. The corresponding MSE and SSIM measures are reported
in Table 10.2 for both SNR 20 and 10. As for the case of burst waveforms, for
BBH signals the values of the MSE (SSIM) also increase (decrease) as the SNR,
decreases, as expected.

10.2.3 Signals not included in the catalogs

In a realistic scenario, the GW signal will be unknown and it will be contaminated
by several sources of noise. To test the code in a more unidealised setting we
select in this section signals with similar broad morphology to those of the
dictionaries but generated in a different way (e.g. employing different numerical
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Figure 10.7 Denoising of the test signal #2 taken from the BBH catalog. The SNR is set to 20
in a 2 s frame. The value of A used is 0.01 with TV averaging. The values of MSE and SSIM
are 0.031 x 1073 and 0.86 respectively.

Table 10.2 Values (maximum - minimum) of the MSE and SSIM error estimators for the four

BBH signals we use as test signals and 20 noise realisations. Values are reported for both
SNR 20 and 10.

Signal SNR 20 SNR 10
MSE (x1073) SSIM MSE (x1073) SSIM
#1  ]0.025-0.019] [0.89 - 0.86] [0.084 - 0.027] [0.87 - 0.76]
#2  [0.060 - 0.027] [0.86 - 0.79] [0.104 - 0.039]  [0.83 - 0.66]
#3  [0.029 - 0.020] [0.88 - 0.87] [0.101 - 0.032]  [0.86 - 0.74]
#4  [0.034-0.019] [0.89 - 0.86] [0.101 - 0.025]  [0.87 - 0.74]
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Figure 10.8 Denoising of a burst signal from the core collapse catalog of Abdikamalov et al.
[2014b] using a dictionary generated from a different catalog [Dimmelmeier et al. 2008]. The
arrival time is random, the SNR is 20 and A = 0.03.

codes or input physics). While this analysis is still simple, since it involves
simulated Gaussian noise without glitches, it is nonetheless more realistic because,
contrary to the cases analysed before, the signals are now different from those of
the catalogs from which the dictionaries are generated.

We first consider a burst signal from a core collapse catalog generated
by Abdikamalov et al. [2014b]. We select signal #1 from this catalog, embed it
into Gaussian noise with a SNR 20, and proceed to denoise it employing our
burst dictionary. The results of the denoising are displayed in Fig. 10.8. This
figure shows that the positive and negative peaks associated with core bounce are
well recovered. The values of the MSE and SSIM error estimates are respectively
3.78 x 107° and 0.96. Notwithstanding some characteristics of the signal are
lost, the signal can nevertheless be clearly distinguished from the noise and the

main features are well recovered.

We can carry out a similar study for our BBH dictionary. As mentioned
before, we select the BBH signal ‘R1’ from Baker et al. [2007]. The result of
the denoising is displayed in Fig. 10.9 which shows that the reconstruction is
much less accurate than in the case of the BBH test signals discussed before.
We obtain MSE = 5.79 x 10~* and SSIM = 0.55, values which indicate a poor
reconstruction. The merger is not correctly recovered and the reconstruction

introduces a phase shift. We must recall once again that we are using a generic
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Figure 10.9 Denoising of the ‘R1’ BBH signal computed by the GSFC group [Baker et al. 2007]
using a dictionary trained with signals from a different catalog [Mroué et al. 2013]. The SNR
is set to 20 and the time of arrival is random in a 2 s frame. The value of A used is 0.09 with
TV averaging.

[

value of A and therefore the result could be significantly improved by choosing
a more suitable value. However, the goal of this test is not to obtain the best
result possible but to assess our procedure in a scenario where the incoming
signal is unknown and differs from those used to train the dictionary.

10.3 Complementary Tests

10.3.1 Iterative denoising

The next situation we consider involves a simple direct extension of the method,
namely using the denoising procedure in an iterative way. By removing noise
iteratively we find that the small amplitude oscillations of the signals are recov-
ered better than using one single iteration. In this approach we use a generic,
low value of A, which only removes a small amount of noise in every iteration.
We apply this iterative approach to burst signal #6 with SNR 20. The results
are shown in Fig. 10.10 (to be compared with the bottom panel of Fig. 10.5).
For this SNR we find that typically only 2 or 3 iterations suffice to recover the
small amplitude oscillations of the signal and improve the results. For this test
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Figure 10.10 Denoising of signal #6 of the burst catalog employing an iterative procedure
with only 2 iterations. We choose A = 0.01 and SNR 20.

we obtain MSE = 0.079 x 10~2 and SSIM = 0.81. These values are considerable
better than those reported in Table 10.1 for the case of a single iteration.

10.3.2 Combination of signals

For our next test we assess our procedure when the signal to denoise is a
combination of two different signals. The goal of this test if to check the
performance of our dictionaries when dealing with signals different from the type
they are designed for. To do that, we build a test signal which is a combination
of a burst and a BBH, both with SNR 20. We apply the algorithm using both
dictionaries independently. The results of this test are shown in Fig. 10.11.
The upper panel shows the original test signal (red line) embedded in Gaussian
noise. The burst is located around ¢ ~ 1.34 s while the merger of the BBH
signal is visible at t ~ 1.50 s. The middle panel shows the reconstruction (red
line) using only the burst dictionary with a value of A = 0.03. The inset of
this panel zooms around the time of the burst and subsequent oscillations of
the PNS. Correspondingly, the lower panel displays the results of the denoising
using only the BBH dictionary with a value of A = 0.01. Clearly each dictionary
discriminates well between the type of signal it has been designed to search
for, despite both signals overlap in time. When using the burst dictionary the
method returns no BBH signal, as can be seen in the middle panel. Likewise,

when using the BBH dictionary, no burst signal is visible in the lower panel,
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Figure 10.11 Denoising of a test signal composed by a combination of burst signal #5 and BBH
signal #2. The individual signals are independently recovered when using the appropriate
dictionary in a standalone way, as shown in the middle and bottom panels.

and the late inspiral and merger parts of the BBH signal are recovered properly.
The discrepancies in the early inspiral and the spurious oscillations after the
ringdown are to be expected, as we have explained before.

10.3.3 Low SNR scenario

The following test we consider is a low SNR scenario, namely SNR 6. Our
strategy to denoise the signal in such a challenging situation consists in using
the dictionary in combination with spectrograms. This test has two main goals.
On the one hand, it allows us to check if our denoising procedure can improve
the results of the spectrogram. On the other hand, we can test if the dictionary
can recover the signal with acceptable accuracy in a low SNR scenario, once the
time of arrival is known thanks to the spectrogram. We proceed as follows. First

we apply the dictionary denoising with a generic value of A, namely A = 0.02.
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Its value should be lower than that for SNR 20 to allow to recover the signal
and also part of the noise. Then we calculate the spectrogram and select a
window around the time of the maximum power (integrated over all frequencies).
This step is a simple version of the event trigger generator implemented on
the detectors [Abbott et al. 2016a]. Next, we apply the iterative denoising
procedure to this small window. In this case, we select the number of iterations
that minimizes (maximizes) the MSE (SSIM) values. We have observed that
the dependence of these values with the number of iterations does not follow a
convex distribution. Therefore, it is unfortunately difficult to find a general rule
which gives information on what is the best number of iterations.

The results are shown in Fig. 10.12 for signal #1 of the burst catalog. The
middle panel of this figure displays the spectrogram. The denoised signal shown
in the lower panel after applying our two-step procedure clearly indicates the
benefits of using the combined approach. The values of the MSE (0.2 x 1073)
and SSIM (0.88) indicate that the reconstruction is quite accurate even with this
low SNR. These values are similar to those for SNR 10 reported in Table 10.1.
Therefore, the results of this test fulfill our two objectives. A key issue in this
example is how to find the correct arrival time. We note that when using an
even lower value of the SNR the arrival time obtained by the power integration
does not always correspond to the arrival time of the signal. This issue could
be solved by applying the iterative denoising directly to the list of candidate
triggers.

10.3.4 LASSO selection

Up to now our experiments have focused on the goal of obtaining the best
signal reconstruction for a generic value of the regularization parameter A. In
this section we show how the LASSO algorithm can also be used to infer some
basic physical parameters of the sources from the denoised signals. We should
point out that this analysis is just a numerical experiment and not a proper
parameter-estimation procedure. We plan to further develop this approach
towards parameter estimation in the near future.

We use the entire catalog as dictionary, except the test signals, without the
learning procedure, and use the LASSO to select the signals closest to the one
we use as test. The dictionary is not normalized in order to maintain the relative
amplitude between the different waveforms that compose the catalog. Ideally, if
a signal captured by the detector is inside the catalog, LASSO will select that

signal. However, as the reconstruction is not perfect due to noise and the signal
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is not inside the catalog, LASSO will return the combination of signals that
are more similar to the denoised one. To investigate if the selection can indeed
be used to extract the physical parameters of the original signal, we devise the
following procedure: firstly, we perform the denoising of the signal with a random
time of arrival. We employ SNR 20 and A = 0.03. Secondly, once we have
a clean signal, we use LASSO with the catalog and obtain the corresponding
coefficients of each signal. It is possible to reconstruct the waveform using these
coefficients and the catalog. Therefore, the value of A in the selection is the one

that minimizes the error between the denoised signal and the reconstructed one.

As an example, the results of the parameter estimation of test signals #1
and #7 of the burst catalog are shown in Table 10.3. The actual numbers of
these two signals inside the catalog are #26 and #123 respectively. In this table
the signal listed above the horizontal line is the test signal, and the next three
lines indicate the corresponding three signals of the catalog with the highest
LASSO coefficients (employing the original numbering of signals of the catalog).
This table shows that the physical parameters of the collapse progenitors are
reasonably identified, especially for test signal #123 where the only discrepancy
is on the EOS. (This is however to be expected as the catalog only uses two
EOS, Shen and LS, and the signal for the LS EOS is the actual test signal and
is hence removed from the catalog.) The estimations for signal #26 are not as
good but at least the differential rotation A of the progenitor is well obtained.

We turn next to estimate the parameters of test signal #2 from the BBH
catalog using the same procedure as for burst waveforms. Table 10.4 reports
the correspondence between the test signal and the three signals from the BBH
catalog with the highest LASSO coefficients. Again, we find a good overall
agreement, being the physical parameters of the test signal and the selected ones
in a similar range. The main discrepancy is found in the BH masses, M; and
Ms.

The mismatch observed in the parameter estimation is produced for two main
reasons. On the one hand, the LASSO capabilities for parameter estimation
obviously depend on how dense is the catalog. In the case of the two catalogs
we employ in this work (and of most catalogs for that matter), the physical
parameters are not sampled with detail due to the large computational cost of
the simulations. It is likely that our results might improve when more complete
catalogs become available. The second reason is due to the fact that we are
using denoised waveforms as input, which includes the errors from the dictionary
reconstruction. The more accurate the deinoising results, the more precise the

parameter estimation. However, since in a real world application the original
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Figure 10.12 Denoising of signal #1 of the burst catalog employing iterative denosing and
spectrograms. The middle panel shows the spectrogram of the 0.5 s denoising with a general
value of A. The results shown at the lower panel were calculated using A = 0.0095 with 12
iterations, and SNR 6.

signal is unknown, the LASSO classification may still be regarded as a useful tool
to complement existing parameter estimation techniques (see e.g. Jaranowski
and Krolak [2005], Abbott et al. [2016d], Logue et al. [2012], and Cornish and
Littenberg [2015]).

104 GW150914

For our final test we assess our algorithms with the real GW data of the
discovery signal GW150914. We use as few assumptions about instrumental
noise as possible, due to the fact that the detector noise is non-Gaussian and
non-stationary. However, a minimum noise preprocessing is required due to
two main reasons. On the one hand, there are well-known modeled sources of
narrow-band noise (see Fig. 3 of Abbott et al. [2016b]). On the other hand,
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Table 10.3 Parameter estimation: comparison between the physical parameters of test signals
#1 and #7 of the burst catalog. From left to right the columns report: number of catalog
signal, model name, progenitor mass M, degree of differential rotation A, precollapse angular
velocity at the center 2. ;, precollapse rotation rate ;, and equation of state.

Signal Model name M A Qe Bi EOS
[Mo] [10% cm] [rad s7']  [%]

#123 (#7)  s40A3012 40 0.5 10.65 1.84 LS
#124 s40A3012 40 0.5 10.65 1.84 Shen
#114 s40A2013 40 1.0 6.45 2.60 Shen
#59 s15A3012 15 0.5 10.65 1.60 LS

#26 (#1) s11A3009 11 0.5 8.99 0.72 Shen
#24 s11A3007 11 0.5 5.95 0.40 Shen
#54 s15A3005 15 0.5 4.21 0.25 Shen
#25 s11A3009 11 0.5 8.99 0.72 LS

Table 10.4 Parameter estimation: comparison between the physical parameters of BBH
test signal #2. From left to right the columns report: number of catalog signal, initial
BH separation rg (in units of mass), initial orbital frequency Mwyg, initial expansion factor
ao = 10/70, Christodoulou masses of the two BHs at ¢t = 0, orbital eccentricity ¢, number of
orbits between ¢ = 0 and common horizon time, and mass of final BH (remnant) M.

Signal To MWQ do M1 M2 € Orbits M
#47 14 0.017 -0.00028 0.75 0.25 0.00047 22.7  0.96
#56 15 0.015 -0.00028 0.84 0.16 0.00049 28.8 0.98
#29 16 0.014 -0.00033 0.60 0.40 0.00044 21.6 0.95
#28 16 0.014 -0.00026 0.60 0.40 0.00016 23.8 0.94
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Figure 10.13 Denoising of signal GW150914 detected by Advanced LIGO Hanford interferometer.
We choose A = 0.004. The blue line indicates the NR template and the red curve corresponds
to the actual signal. The amplitude of both signals has been rescaled to lie in the interval
[_17 1]

ground-based detectors such as LIGO are not sensitive to low frequencies because
of seismic noise. Therefore, we highpass the time series above 30 Hz to remove
seismic noise and, following Abbott et al. [2016b], we also filter out all spectral
lines.

The results of applying the dictionary denoising procedure to the GW150914
Hanford signal are shown in Fig. 10.13. The red curve in this figure displays
the denoised signal obtained after applying the procedure to the real data.
The implementation of the same approach to the best fit numerical relativity
waveform [Abbott et al. 2016¢] is shown with the blue curve. Even though
the two signals are sampled at 4096 Hz, we use the high resolution dictionary
as it leads to better results. This is common practice in the case of image
denoising, where high resolution dictionaries are built to perform the denoising
of low resolution images [Elad and Aharon 2006]. Fig. 10.13 shows that the last
cycles of the inspiral signal, the merger part, and the ringdown agree well with
the NR waveform, which corresponds to the best match template as in Abbott
et al. [2016b]. Comparing the two signals of Fig. 10.13 at +0.15 s from the
minimum of the numerical relativity signal yields MSE = 0.0075 and SSIM =
0.4901. These quality measures show that while visually the comparison between

both signals seems satisfactory, the reconstruction is not very accurate. A full
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parameter study to find the optimal values of the dictionary algorithms for

signals embedded in real noise will be presented elsewhere.

10.5 Discussion

Our results demonstrate that it is possible to extract GW signals embedded in
Gaussian noise with good accuracy, using a generic dictionary with a common
value of A for each type of waveforms. Overall, our results show that the denoising
procedure works better for bursts than for BBH signals. This can be due to two
main reasons. First, the morphology and the duration of both signals are very
different. In particular, in the case of BBH signals, significantly longer than
bursts, we need more atoms to cover all the signal duration. The second reason
is related to the trained dictionary itself. The atoms on the burst dictionary are
quite different between them which allows to cover more signal morphologies
with a combination of only a few of them (sparse representation). In contrast,
the atoms on the BBH dictionary are much more homogeneous since the signals
used to train the dictionary are similar in the inspiral phase and only differ
more clearly at the merger and the ringdown parts. Therefore, most of the
atoms of the BBH dictionary cover the inspiral part, which can be reconstructed
more easily. The larger inaccuracies appear when recovering the merger and
the ringdown signals because there are less atoms to cover these parts and the
reconstruction is less adaptable. A possible solution to this issue could be to
use a couple of dictionaries, one to cover the inspiral part and a second one to
cover only the merger and the ringdown parts. This may be worth investigating
in the future. In addition, we have shown that using the LASSO algorithm
iteratively can improve the results. Once a collection of triggers (i.e. arrival
times) is available, it is possible to obtain the signal in a few iterations even for
low SNR values. However, in order to determine the number of iterations that
produces the optimal results, a more detailed study is necessary.

We have also reported results on the use of the LASSO algorithm as a
classification method (i.e. for parameter estimation). The classification depends
on how dense is the catalog and on how much noise can be removed from the
original signal. The results become more accurate the larger the collection
of waveforms available in the catalogs and the larger the physical parameters
those catalogs cover, which is a major computational task. In particular, in
the case of burst signals from core-collapse, the computational cost involved
in calculating the GW waveforms renders unfeasible to obtain a large enough

template bank. This classification method has therefore the same limitations
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than matched filtering. Even so, using the LASSO algorithm as a classification
method deserves attention, particularly if used jointly with matched filtering
techniques. Finally, we have also briefly shown the performance of dictionary-
learning techniques for actual GW signals under real noise conditions. The
results for the discovery signal GW150914 seem promising. The study reported
in this chapter has shown that if the data are in good enough agreement with
the morphology of the atoms used to produce the dictionary, dictionary-learning
algorithms may be used to extract signals from noise and to infer physical
parameters. These algorithms could thus be a complementary addition to the
GW wave data analysis toolkit.
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Chapter 11

Summary and outlook

During the development of the research carried out in this thesis, I have worked
in several important aspects of GW astronomy. The results of each specific
project have already been discussed in the respective chapters. This final chapter
summarises the main conclusions, providing an overview of the findings obtained

in this work. It also outlines a possible list of future extensions.

11.1 Accretion onto neutron stars and the hid-

den magnetic-field scenario

We have studied the process of submergence of the magnetic field in a new-born
neutron star during a hypercritical accretion stage in coincidence with a core-
collapse supernovae explosion. This is one of the possible scenarios proposed to
explain the apparently low external dipolar field of CCOs. Our approach has
been based on 1D solutions of the relativistic Riemann problem, which provide
the location of the spherical boundary (magnetopause) matching an external non-
magnetised accretion solution with an internal magnetic field potential solution.
For a given total accreted mass and magnetic-field strength, the magnetopause
keeps moving inwards if the total (matter plus ram) pressure of the accreting
fluid exceeds the magnetic pressure below the magnetopause. Exploring a wide
range of accreted masses and field strengths, we have found the conditions for
the magnetopause to reach the equilibrium point below the neutron star surface,
which implies the burial of the magnetic field. Our study has considered several
models with different specific entropy, composition, and neutron star masses,

finding that these parameters do not have an important impact over the results.
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Our main conclusion has been that, given the modest accreted mass required
to bury the typical magnetic fields found in NSs, the CCO scenario is not unusual.
On the contrary, the required accreted mass to bury the magnetar-like magnetic
field are so large, that the NSs is most likely to collapse to a BH. However, our
1D approach, although sufficient to obtain a good approximation to the problem,
does not take into account other effects, like convection, that can modify the
results.

The natural extension of our initial study of the hidden magnetic-field scenario
involves performing 2D numerical simulations. However, this is not an easy
task due a number of reasons: (a) the large difference between the values of
the magnetic pressure and the thermal pressure in some of the extreme regimes
of this scenario, may lead to numerical inaccuracies or even to the normal
termination of the code’s execution; (b) the coupling between the magnetosphere
and the hot fluid should be handled with care to avoid possible overheating
effects. Even so, 2D simulations are essential to improve our understanding of

the burial process of the magnetic field after a supernova explosion.

11.2 Linear-oscillation spectrum of proto-neutron

stars

Studying the physics involved in the collapse of of the core of massive stars and
the subsequent emission of GWs is not well-known. Moreover, the numerical
modelling of such kind of systems is computationally very expensive - 3D
simulations may take several months in present-day supercomputers. Therefore,
it is not possible to infer the physics from the possible GW signals detected, as
it is done in the case of BBH waveforms. The latter are significantly simpler
systems than core-collapse supernovae and multiple waveforms from general
relativity (using PPN and EOB approaches) and even numerical relativity for
the merger phase, can be employed to match-filter with actual GW waveforms.
In this section of the thesis our goal has been to devise a simple yet robust
model, based on the theory of normal modes of oscillation of a spherical system,
which allowed to infer physical parameters of the progenitor given a GW signal
from the collapse.

As a first step we have determined if the oscillation modes of the PNS can be
related with the GW spectrum of the progenitor. To do that, we have used a 1D
model to obtain the eigenfunction of the oscillation modes from the data of an

existing, state-of-the-art numerical simulation of this kind of scenario. Once the
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origin of the modes has been identified, we have separated the distinct types of
modes and have calculated their contribution in terms of GW power. Our results
show that there exists a clear correspondence between the mode spectrum and
the GW spectrum. Therefore, it seems possible to analyse a GW signal from
core collapse in terms of the modes of oscillation of the PNS.

Having fulfilled this necessary, proof-of-concept, first step, we plan to take
the next step in the near future. The idea is to perform several one-dimensional
numerical simulations changing the parameters of the progenitor in order to
study the dependence of the time-frequency distribution and power of the modes
with those physical parameters (and possibly relaxing the Cowling approximation
employed in the current work). The ultimate goal of this study is to develop a
model to relate the parameters of the collapse progenitor with the corresponding
PNS modes (and therefore with the GW spectrum) that allows us to infer the
parameters directly from the GW spectrum without the need to perform the

costly numerical simulations.

11.3 Glitch Classification

The presence of glitches inside the GW channels of the advanced LIGO/Virgo
detectors is an effect inevitably linked to the extreme sensitivity required to
detect GWs from cosmological distances. There are two possible strategies to
eliminate them, or at least limit their impact. One is to try to determine the
origin and take the necessary measures to solve the problem that causes the
glitch. If this is not possible, or the origin of the glitch cannot be determined, the
strategy consists in vetoing the data and not using it for science. The automatic
glitch-classification techniques we have presented in this thesis can contribute
to improve both strategies. On the one hand, they can relate the information
provided by the auxiliary detector channels with the data on the GW channel
and help to determine the cause of a given type of glitch. On the other hand,
determining the type of glitch automatically helps the veto pipelines.

Our results have shown that our three pipelines can classify the glitches in
advanced LIGO ERT data with a 95% accuracy. In addition, using all three
pipelines over the same data is a wining strategy since glitches missed by one
pipeline can be classified by the others, increasing the overall efficiency. In
addition, the WDF-ML pipeline includes an event-trigger generator different
to the one used in the LIGO/Virgo detectors, and can therefore be used to
cross-check the triggers generated by the latter. Our three pipelines are examples

of how machine-learning methods can be applied to GW astronomy. From their
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use in the detector subsystems and hardware design to their use in the realm
of data analysis, there exists a large variety of machine-learning approaches to
improve the possibilities of GW signal detection.

There are some interesting improvements that we plan to apply to the
glitch-classification pipelines. To begin with, the whitening procedure for data-
conditioning performed by the WDF-ML pipeline will be improved by using a
technique known as adaptive whitening [Cuoco, Cella, and Guidi 2004]. Further
improvements can also be made by using a training set of pre-classified waveforms
or exploring the use of dictionary-learning algorithms, as the one presented in this
thesis, for the specific problem of glitch classification. It is worth mentioning also
the NSF-funded Gravity Spy project, which aims at building waveform datasets
through a citizen-science (zooniverse) program [Zevin et al. 2016, Simpson,
Page, and De Roure 2014]. The potential of glitch classification is maximised if
the datasets can be employed on real time. In order to achieve this goal, the
computational efficiency of all our pipelines will have to improved. An effort
to build a more efficient code, adding parallelisation capabilities and even able
to run on GPUs, has started at the time of writing of this thesis and will be
continued in the near future in close collaborations with Drs. Elena Cuoco (EGO)

and Massimiliano Razzano (University of Pisa).

11.4 TV methods for gravitational-wave denois-

ing

Our study of TV-methods in the context of GW astronomy, introduced in this
thesis, has begun with their testing under simplistic, Gaussian noise conditions.
This initial step was necessary to understand their performance and to explore
the parameter space of the methods to determine the values that produce the
best results. This initial study has led to interesting results. The most important
one is that the two algorithms we have used to solve the ROF problem are
able to successfully remove noise and recover a recognisable GW signal. We
have found that the choice of the regularisation parameter X is crucial to obtain
proper results. Therefore, it is important to devise an approach to bound the
values of A within an appropriate interval. As the variance of the noise in a
GW detector is unknown, it is not possible to use the discrepancy principle to
determine the regularisation parameter. As a result, performing an heuristic
search based on some quality estimator (such as the PSNR or the SSIM) seems
to be the best solution.
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The Gaussian case has allowed us to understand the effect A has on the
different scales of the variational problem. It has become necessary to use
different values of A to recover different parts of the signal described by different
(frequency or temporal) scales. In the case of BBH signals, this effect has become
more apparent than for core-collapse signals, as they are significantly longer. In
particular, we have seen that the low-frequency part of the inspiral signal can
be recovered with more accuracy by using a value of A lower than that required

to recover the merger and the ringdown parts.

With the lessons learned with the Gaussian case, we have next considered
a realistic scenario, using real data from initial LIGO. We have only employed
the rROF method, because it is the method that gives the best results in the
time domain, avoiding the problems with the borders that usually appear in
the frequency domain. We have also modified the algorithm to use it iteratively.
This change yields a smoother dependence with A, increasing the interval of
appropriate values. However, the computational cost also increases as the
algorithm has to be executed more times. We have also observed that the
low-frequency component of the noise present in GW detectors is difficult to
remove using only TV-methods. This is related to the fact that the denoising
properties of TV-methods is scale-dependent. As the rROF algorithms reduce
the total-variation of the input signal, the higher frequencies will be removed
faster then the lower ones. Nevertheless, one can use rROF with a low value of
A to isolate the low-frequency components and then remove them. Moreover, we
have combined the rROF algorithm with both, a simple filter preprocessing and
a whitening method. Our study has shown that TV-methods can improve the
results of both pipelines and leads to identifiable denoised signals. Even with
actual detector noise, TV-methods are an interesting tool to be combined with
other common approaches of the GW data analysis toolbox.

The algorithms to remove noise from a GW signal presented in this thesis
constitute a very promising line of research to further pursue in the near future.
So far, we have only explored two algorithms based on the linearisation of the
Euler-Lagrange equation to solve the ROF problem. It would be interesting to
implement the dual-primal algorithm and compare the three methods under
the same conditions, trying to determine which is the best algorithm to use in
each case. It is also worth further exploring the relation of the regularisation
parameter A with the different scales, in order to devise an algorithm with an
adjustable A that produces the best results for each noise conditions. In this
context, the patch-based algorithm as non-local means [Buades, Coll, and Morel

2011] may be a useful tool. Moreover, to characterise the possible improvements
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of using a T'V-denoising step in the results of other GW pipelines, it is necessary
to perform a combined study. Finally, we also mention the graph cuts algorithms
for denosing, which have received great attention in recent years. Applying them
to GW data may be a very interesting project to tackle next.

11.5 Gravitational-wave denoising via dictionary

learning

We have also studied the capabilities of learned dictionaries to recover GW
signals from a noise-dominated background. Our LASSO algorithm has been
tested using signals from two main sources, bursts from rotational core collapse
and chirps from BBH coalescence. To obtain the respective dictionaries, we
have used 80% of the waveforms for the training, 15% for the validation, i.e. to
obtain the best set of parameters that produces the best results, and the last 5%
waveforms to assess the method. An interesting feature of LASSO is that, for
most Gaussian noise realisations considered, it returns zero if the input signal
cannot be reconstructed by the atoms on the dictionary. As a result, the
method may provide a fairly clear signal reconstruction. On the other hand,
an intrinsic limitation of the method is that the results strongly depend on the
selection of the regularisation parameter \, whose optimal value cannot be set a
priori, and must be obtained with validation studies.

There exist a large variety of learning techniques in the literature. In this
thesis we have only considered one specific method but in the near future we plan
to implement additional methods to perform the learning and to compute the
LASSO algorithm more efficiently. Obtaining the denoised solution for one patch
of 256 samples takes typically a few tens of ms on an Apple iMac computer with
Intel Core i7 processor and 16 Gb of Ram. The most expensive computational
cost is associated with the learning task. Reducing the time involved in this part
of the method is a key issue in order to eventually apply the method in real time
to the actual data generated by the detectors. In the next few months, advanced
LIGO and advanced Virgo will (re)start observing runs with improved sensitivity,
increasing the number of detections. The development of sophisticated data
analysis techniques to improve the opportunities of detection, especially for low
SNR events, is therefore a most crucial effort.

We defer for a future study with dictionary-learning methods the analysis of
the false-alarm rate using simulated (or real) glitches. We believe that such an

analysis, together with validation studies using real noise, are mandatory before
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using dictionaries in a detector’s pipeline. To avoid false positives caused by
glitches, it is possible to employ dictionaries built from a collection of known
glitches, which would allow to use LASSO as a glitch classifier. Moreover, as
all methods discussed in this work have been originally developed for image
reconstruction (2D data), we plan to apply them on GW spectrograms.






Part VI

Appendices






Appendix A

Noise (Generation

We generate non-white Gaussian noise whose shape corresponds to Advanced
LIGO in the proposed broadband configuration. For this purpose, we employ the
algorithm libraries (LAL) [“LAL software documentation (2007)”] provided by
the LIGO Scientific Collaboration (LSC) that include one-sided detector noise
power spectral density m . If necessary, random noise series can be obtained
weighting samples from Normal distribution by noise power spectral density,

Re(i(f) = YoUING o). (A1)
m(() = YoUNGo)., (a2
(A(f) €C : f=0,A0,2A, ... (N — DA}, (A.3)

where Ay = % being F the sampling rate and N the number of samples. Mean
(1) and variance (O'J%) are set to 0 and 1 respectively as corresponds to the
standard normal distribution.

As noise time-series are real-valued, in the frequency domain noise must
satisfy

i(—f) =n"(f), (A.4)
and

Im{7(0)} = Im{a(fny)} = Im{7(=fny)} =0, (A.5)

where fy, = % corresponds to the Nyquist frequency.

Properties of the Fourier transform assure that the Gaussian character of

the noise signal is preserved when changing domain. Therefore, we obtain noise
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time-series applying the discrete Fourier Transform (DFT)

N-1 o
a(fr) = Y n(te ™ M, (A.6)
=0
Jl N-1
n(t;) = i N(fx) TR (A.7)

k=

o



Appendix B

Gravitational-wave catalogs

B.1 Rotating core-collapse catalog

At the final phase of their evolution, massive stars in the 9-40 Mg range develop
iron-group element cores which are dynamically unstable against gravitational
collapse. According to the standard model of type 1I/Ib/Ic supernovae, the
collapse is initiated by electron captures and photo-disintegration of atomic
nuclei when the iron core exceeds the effective Chandrasekhar mass. As the
inner core reaches nuclear density and the EoS stiffens, the collapse stops and
is followed by the bounce of the inner core. A strong shock wave appears in
the boundary between the inner core and the supersonically infalling outer core.
Numerical simulations try to elucidate if this shock wave is powerful enough to
propagate from the outer core and across the external layers of the star. In the
most accepted scenario, energy deposition by neutrinos, convective motions, and
instabilities in the standing shock wave, together with general-relativistic effects,

are necessary elements leading to successful explosions.

In the core collapse scenario, conservation of angular momentum makes
rotating cores with a period of one second to produce millisecond period PNSs,
with a rotational energy of about 10°2 erg. The bulk of gravitational radiation
is emitted during bounce, when the quadrupole moment changes rapidly, which
produces a burst of GWs with a duration of about 10 ms and a maximum
(dimensionless) amplitude of about 1072 at a distance of 10 kpc. Broadly
speaking, GW signals from this mechanism exhibit a distinctive morphology
characterized by a steep rise in amplitude to positive values before bounce

followed by a negative peak at bounce and a series of damped oscillations
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Figure B.1 Gravitational waveforms of three representative signals from the core collapse
catalog of Dimmelmeier et al. [2008] with different values of the degree of differential rotation.
The EoS and the progenitor mass are fixed for all represented signals. Signal “s20alo05_shen”
(A) is show in the upper panel, signal “s20a2009_shen” (B) is shown in the middle panel, and
signal “s20a3015_shen” (C) in the bottom panel. ¢}, indicates the time of bounce.

associated with the vibrations of the newly formed PNS around its equilibrium

solution.

Catalogs of gravitational waveforms from core collapse supernovae have been
obtained through numerical simulations with increasing realism in the input
physics (see Fryer and New [2011] and references therein). In our study, and
for illustrative purposes, we employ only the catalog developed by Dimmelmeier
et al. [2008], who obtained 128 waveforms from general relativistic simulations
of rotating stellar core collapse to a NS. The simulations were performed with
the CoCoNuT code and include a microphysical treatment of the nuclear EoS,
electron capture on heavy nuclei and free protons, and an approximate delep-
tonization scheme based on spherically symmetric calculations with Boltzmann
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neutrino transport. The simulations considered two tabulated EoS, those of Shen
et al. [1998] and Lattimer and Swesty [1991] and a wide variety of rotation rates
and profiles and progenitor masses.

The morphology and temporal evolution of the waveform signals of the
catalog of Dimmelmeier et al. [2008] are determined by the various parameters
of the simulations. The initial models include solar metallicity, non-rotating
progenitors with masses at zero age main sequence of 11.2 Mg, 15.0 M), 20.0 M
and 40.0 Mg. Rotation has a strong effect on the resulting waveforms and it
is fixed by the precollapse central angular velocity which is set to values from
Qc; = 0.45 to 13.31 rad s~'. The angular velocity of the models is given by

A2

Q=Qci—5———5
A2 4 r25in2 0

(B.1)
r sin 0 being the distance to the rotation axis, and A being a length parameterizing
the degree of differential rotation. The specific values used in the simulations
are A = 50,000 km (almost uniform rotation), A = 1,000 km, and A = 500
km (strong differential rotation). The GW amplitude maximum, |hmaxl, is

proportional to the ratio of rotational energy to gravitational energy at bounce,
Ty
[W1s

Newtonian quadrupole formula where the maximum dimensionless GW strain is

. The gravitational waveforms of the catalog are computed employing the

related to the wave amplitude A5Z by

1 /15 AF2 AF2 10 kpe
h=—4y/—=20 — 88524 x 10721 20
sV 7 D x 10°cm D

where D is the distance to the source.

(B.2)

We focus on three representative signals from the catalog to assess our algo-
rithms. These three waveforms, shown in Fig. B.1, cover the signal morphology
of the catalog, as explained in Logue et al. [2012]. These signals are labelled
“s20a1005__shen”, “s20a2009_shen”, and “s20a3015_shen” in the original catalog
of Dimmelmeier et al. [2008]. We rename them, respectively, as signals “A”, “B”,
and “C”, in this work, to simplify the notation. The three values of the degree
of differential rotation produce, in particular, the most salient variations in the
waveform morphology.

In addition, for the results reported in Chapter 10, we also consider two
extra signals, one from a core collapse catalog developed by Abdikamalov et al.
[2014b] and a BBH signal from Baker et al. [2007]. These last two signals
allow us to investigate the ability of our approach to extract independent
waveforms using dictionaries built from atoms that do not contain explicit

information on the signals to be denoised. The core-collapse template bank
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Figure B.2 Gravitational waveform of a representative signal from the BBH catalog of Mroué
et al. [2013], signal “0001”, used for our test purposes.

computed by Abdikamalov et al. [2014Db] has also been built through axisymmetric
simulations with the CoCoNuT code. The progenitors investigated have different
initial angular momentum distributions in the core and the simulations include a
microphysical finite-temperature EoS, an approximate electron-capture treatment

during collapse, and a neutrino-leakage scheme for the postbounce evolution.

B.2 Binary-black-hole catalog

The second type of GW signals we use for our study is that from the inspiral
and merger of BBH. Along with the merger of binary NS stars, such events
are considered the most promising sources for the first direct detection of GWs.
This kind of systems evolve through three distinctive phases, inspiral, merger,
and ringdown, each one of them giving rise to a different signal morphology.
During the inspiral phase, the orbital separation between the two compact
objects decays due to GW emission. Analytic approximations of GR such as
post-Newtonian expansions or the Effective One Body method describe to high
accuracy the motion of the system and the radiated GW content during such
inspiral phase. These were, until recently, the only approaches available to model
the GW signal before the merger of the compact binary. After the merger, on
the other hand, the resulting single BH asymptotically reaches a stationary
state characterized by the ringdown of its quasi-normal modes of oscillation,
whose waveform signal can be computed using standard techniques from BH
perturbation theory. KEither of these techniques, however, cannot be used to

model the signal during the merger phase when the peak of the gravitational
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radiation is produced. At this phase, the signal waveform has to be computed
solving the full Einstein equations with the techniques of numerical relativity, a
long-lasting challenging problem that was only recently finally solved [Pretorius
2005, Campanelli et al. 2006, Baker et al. 2006]. Since those breakthroughs,
many numerical-relativity simulations of BBH mergers followed, which led to
the first BBH waveform catalogs of the entire signal (late inspiral, merger,
and quasi-normal mode ringdown) based solely on fully numerical-relativity
approaches.

Nowadays, numerical-relativity waveforms for BBH mergers have become
increasingly more accurate and span the entire seven-dimensional parameter
space, namely initial spin magnitudes, angles between the initial spin vectors and
the initial orbital angular momentum vector, angles between the line segment
connecting the centers of the BHs and the initial spin vectors projected onto the
initial orbital plane, mass ratio, number of orbits before merger (late inspiral),
initial eccentricity, and final spin. State-of-the-art waveforms are in particular
reported by Mroué et al. [2013], and these are the ones we use for our tests. This
catalog includes 174 numerical simulations of which 167 cover more than 12 orbits
and 91 represent precessing binaries. It also extends previous simulations to
large mass ratios (from 1 to 8) and includes simulations with the first systematic
sampling of eccentric BBH waveforms. In addition, the catalog incorporates new
simulations with the highest BH spin studied to date (0.98). As for the case of
the core collapse burst catalog, it is sufficient to focus on a representative signal
from the BBH catalog in order to illustrate the performance of our denoising
algorithms. To such purpose we select signal labelled “0001” from the Mroué
et al. [2013] catalog, which is shown in Fig. B.2.

B.3 Correspondence with signal catalogs

For the sake of completeness and to facilitate the identification of the NR wave-
forms used in this study, Table B.1 reports the correspondence of the waveforms
used in Chapter 10 with the original naming of the burst catalog [Dimmelmeier
et al. 2008] and of the BBH catalog [Mroué et al. 2013].
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Table B.1 Relation between the number of the GW signals employed in Chapter 10 for the
validation set (first two columns) and for the test set (last two columns) with the corresponding
signal in the core-collapse catalog [Dimmelmeier et al. 2008] and in the BBH catalog [Mroué
et al. 2013].

Validation
# Core Collapse BBH (SXS)

#1  S15A2013_shen SXS:BBH:0022
#2 S15A3007_Is SXS:BBH:0003
#3 S15A3015_ shen SXS:BBH:0028
#4 S15A2013 s SXS:BBH:0076
#5 S15A1001_Is SXS:BBH:0001
#6  S20A1009_shen SXS:BBH:0077
#7 S11A1001 shen SXS:BBH:0090

Test
Core Collapse
S11A3009 _shen
S15A1009_1s
S15A1009 shen
S15A3015_1s
S20A2007__shen
S40A1001__shen
S40A3005_1s

BBH (SXS)

SXS:BBH:0030
SXS:BBH:0047
SXS:BBH:0068
SXS:BBH:0087

#8 S40A2015_1s SXS:BBH:0053 S40A3012_1s
#9 S20A2005_1s SXS:BBH:0019
#10 S20A1009_1Is SXS:BBH:0041
#11 S15A2007_1s SXS:BBH:0091
#12 S20A3007_1s SXS:BBH:0050
#13 S11A2007_1s SXS:BBH:0080
#14 S11A1013 _Is SXS:BBH:0062
#15 S15A2005_1s SXS:BBH:0059
#16 S11A3013_shen

#17 S11A3009 1s

#18 S40A1001_1s

#19 S11A1005_shen

420

S20A3013 shen
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