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Abstract

Elliptic partial differential equations appear in a wide variety of areas of mathe-
matics, physics and engineering. They are of particular interest in Astrophysics
and appear, e.g., when computing the gravitational potential, in the solution of
the Grad-Shafranov equation for force-free magnetospheres, to impose divergence
free constraints in the numerical integration of MHD equations or when solving
the constraint equations in General Relativity. Typically, elliptic equations must
be solved numerically, which sets an ever growing demand for efficient and highly

parallel algorithms to tackle their computational solution.

The Scheduled Relaxation Jacobi is a promising class of methods, atypical
for combining simplicity and efficiency, that has been recently introduced for
solving linear Poisson-like elliptic equations. It is an extension of the classical
Jacobi iterative method to solve linear systems of equations (Au = b). It also
inherits its robustness. Its methodology relies on computing the appropriate
parameters of a multilevel approach with the goal of minimizing the number of

iterations needed to cut down the residuals below specified tolerances.

The efficiency in the reduction of the residual increases with the number of
levels employed in the algorithm. Applying the original methodology to compute
the algorithm parameters with more than 5 levels notably hinders obtaining
optimal schemes, as the mixed (non-linear) algebraic-differential system of

equations from which they result become notably stiff.

On one hand, we present a new methodology for obtaining the parameters
of Scheduled Relaxation Jacobi schemes that overcomes the limitations of the
original algorithm and provides parameters for these schemes with up to 15
levels and resolutions of up to 2'° points per dimension, allowing for acceleration
factors larger than several hundreds with respect to the Jacobi method for typical
resolutions and, in some high resolution cases, close to 1000. Most of the success
in finding these optimal schemes with more than 10 levels is based on an analytic

reduction of the complexity of the previously mentioned system of equations.



Furthermore, we extend the original algorithm to apply it to certain systems of

non-linear elliptic equations.

On the other hand, in a typical Scheduled Relaxation Jacobi scheme, the
former set of factors is employed in cycles of M consecutive iterations until a
prescribed tolerance is reached. We present the analytic form for the optimal set
of relaxation factors for the case in which all of them are strictly different, and
find that the resulting algorithm is equivalent to a non-stationary generalized
Richardson’s method where the matrix of the system of equations is precondi-
tioned multiplying it by D = diag(A). Our method to estimate the weights has
the advantage that the explicit computation of the maximum and minimum
eigenvalues of the matrix A (or the corresponding iteration matrix of the under-
lying weighted Jacobi scheme) is replaced by the (much easier) calculation of the
maximum and minimum frequencies derived from a von Neumann analysis of the
continuous elliptic operator. This set of weights is also the optimal one for the
general problem, resulting in the fastest convergence of all possible Scheduled
Relaxation Jacobi schemes for a given grid structure. We refer to it as the
Chebyshev-Jacobi method. The amplification factor of the method can be found
analytically and allows for the exact estimation of the number of iterations
needed to achieve a desired tolerance. We also show that with the set of weights
computed for the optimal SRJ scheme for a fixed cycle size it is possible to
estimate numerically the optimal value of the parameter w in the successive
overrelaxation method in some cases.

We demonstrate with practical examples, with application in Astrophysics,
that our method also works very well for Poisson-like problems in which a
high-order discretization of the Laplacian operator is employed (e.g., a 9— or
17—points discretization). This is of interest since the former discretizations
do not yield consistently ordered A matrices and, hence, the theory of Young
cannot be used to predict the optimal value of the SOR parameter. Furthermore,
the optimal SRJ schemes deduced here are advantageous over existing SOR
implementations for high-order discretizations of the Laplacian operator in as
much as they do not need to resort to multi-coloring schemes for their parallel

implementation.

We present the implementation of the Chebyshev-Jacobi method using a
purely MPI implementation, an openMP / MPI hybrid implementation over
both shared memory machines and distributed memory machines. They show
ideal speed up. We also show how to reach a remarkable speed up when solving

elliptic partial differential equations with finite differences thanks to the joint use



of the Chebyshev-Jacobi method with high order discretizations and its parallel
implementation over GPUs.

Finally, we have tried to apply our methods beyond the realm of Astrophysics
with limited sucess though. Specially, we have addressed the problem of finding
normal modes of human eyeballs. This problem is ready for being solved with
an improved variant of the methodology here presented. The improvement
consists on extending the calculation of the optimal set of parameters to non
positive-definite matrices. Our ideas on how to proceed in this field are sketched
in the outlook of this thesis.
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Introduction






Chapter 1

Elliptic problems in

astrophysics

1.1 Introduction

Reality is change. Change over time, and change with respect to space. The
concept of derivative arises in this context, as the rate of change of one variable
with respect to another. That is why partial differential equations (PDEs) appear
everywhere in physics.

From a practical point of view, we may wonder why do we need to solve
PDEs. As illustrated in the excellent monograph of [Otway 2015], in general,
a solution of a PDE may reproduce three different types of behaviors: it can
propagate as a wave packet, it can diffuse as heat, or it can oscillate going
nowhere at all. Many physical phenomena can be cast combinations of these
three possibilities. Thus, solving PDEs may well serve the purpose of modeling
mathematically the local nature of physical phenomena. The different types of
equations, namely, hyperbolic, parabolic, or elliptic, are ultimately correlated
to which of the three aforementioned behaviors their solution represent, i.e., to
wether the physical phenomenon propagates, diffuses, or oscillates. A rigorous
exposition of this classification is given in [Courant and Hilbert 1962].

PDEs are the appropriate mathematical language for modeling many phe-
nomena. Among the many famous and interesting PDEs, just in the case of
linear single partial differential equations, there are plenty of examples (see e.g.
Evans 2010, Salsa 2016): Laplace’s equation, Helmholtz’s or eigenvalue equa-

tion, linear transport equation, Liouville’s equation, heat or diffusion equation,
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Schrodinger’s equation, Kolmogorov’s equation, Fokker-Planck equation, wave
equation, telegraph equation, general wave equation, Airy’s equation, Beam
equation, etc. And along with this, we also have nonlinear PDEs or systems of
both linear and nonlinear PDEs. We refer the reader to [Zwillinger 1997] for an
extensive listing and deeper study.

The research focuses on particular types of PDEs, since there is no general
theory about the solvability of any of them. This situation naturally arises from
the many different contexts where PDEs are found. Such variety induces that
the properties of each specific type of PDE and of their respective solutions
be extremely diverse. We focus this thesis on the efficient numerical solution
of a particular case of PDEs, elliptic PDEs (ePDEs), within a specific area of
knowledge, Astrophysics. In this chapter we review some basic mathematical
concepts related with ePDEs and provide some of specific examples in Astro-
physics we aim to address in this thesis or in future applications of the methods
here developed. In the following chapter we will focus on the different solution

strategies to solve numerically ePDEs.

1.2 Elliptic partial differential equations in as-
trophysics

We are thus interested in ePDEs. The name elliptic is inherited from the
analogy, in terms of equations and their classification, between conic sections

and quasilineal second-order PDEs [Hoffman 1992], which are respectively

Az? + Bry +Cy?> + Dz + Ey+ F =0, (1.1)
Aty + Bugy + Cuyy + Duy + Euy + Fu =G, (1.2)

where A, B,C, D, E, F and G are all functions of the coordinates. These equa-
tions are classified according to the sign of the discriminant, B> — 4AC. An
equation of this type is elliptic when the discriminant is strictly negative. This
classification can be extended to the n-dimensional case, where we can define

the operator

n o n 92 n 9
L:: Zza”ryla% +Zb187xl+c’ (13)
=1 j=1 i=1
where a;;, 4,5 = 1,...,n, are the elements (real functions of the coordinates) of

a matrix A = (a;;), and b; and c are also functions. The operator L is said to

be elliptic if the eigenvalues of A are all positive or all negative.
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Among the most relevant equations of elliptic type are Laplace’s equation
Au =0, (1.4)
and Poisson’s equation
Au = f, (1.5)

where v = u(z) with 2 € U C R™ and f : U — R. A is the Laplace operator,
which is a functional, i.e., a function which transforms functions in functions.

Its definition is the divergence of the gradient:

Au:=V - (Vu), (1.6)
which in orthonormal coordinates simply reads as:
n 62
Ay = ke (1.7)

i=1
Laplace’s equation describes, e.g., steady, irrotational flows, electrostatic poten-
tial in the absence of charge, equilibrium temperature distribution in a medium.
It is almost ubiquitous in mathematical physics (see, e.g., [Feynman, Leighton,
and Sands 1966], Chap. 12)

A function u satisfying Eq. (1.4) is called harmonic function, while a function
satisfying Eq. (1.5) is called superharmonic (subharmonic) if f < 0 (f > 0).
Solutions of the general second-order ePDE Lu = 0 are similar in many regards
to harmonic functions [Salsa 2016].

The differential equations presented so far feature an infinite number of
solutions. With the aim of obtaining a unique solution we must impose suitable
conditions on the boundary U of U. For instance, the inviscid flow past a
sphere is determined by the boundary conditions on the sphere (u-n = 0; n
being the unit vector normal to the sphere boundary), as well as at infinity (e.g.,
u =const.).

Provided its physical origin, ePDEs result from boundary value problems
(BVPs), in which at every point inside the domain of interest the solution
depends of the boundary of the domain [Bodenheimer et al. 2006]. We may find
three basic types of boundary conditions (or combinations thereof) depending
on what is prescribed on the boundary OU:

1. Dirichlet: u takes a prescribed value.
2. Neumann: the normal derivative du/On = n - Vu is prescribed.

3. Robin: a combination of u and its normal derivative (e.g., au + S0u/0On is
specified).
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The aforementioned classification of a PDE is intimately related to the char-
acteristics of the PDE [Hoffman 1992]. Characteristics are (n — 1)-dimensional
hypersurfaces in n-dimensional hyperspace (e.g. curves in the plane, in the n = 2
case). They are the preferred paths of information propagation. In the case of
complex characteristics, there are no paths, along which physical information
propagates. In this way, each point of the domain influences and is influenced
by the rest of the points of the domain. Therefore, ePDEs typically arise when
we face the solution of equilibrium problems, i.e., steady-state problems in closed
domains. These are problems in which the time evolution of the system is
either neglected, irrelevant or simply that certain differential relations must hold
among the variables of the problem (e.g., the constraint equations in General
Relativity). Neglecting the time evolution can be a very restrictive assumption
on the class of problems under consideration, since many interesting realistic
phenomena occurring in nature are typically dynamic and also involve wave
propagation problems. However, the numerical fulfillment of constraint equations
is a mathematical requisite to set a well posed problem. In other words, it is
not a limitation of the modeling but rather a physically motivated relationship.

In account of the mean-value theorem for the Laplace’s equation (see, e.g.,
Evans 2010, §2.2.2), the Laplacian measures the variation of the value of a
function in a point with respect to the average value in its neighborhood; the
greater the difference, the greater the value of the Laplacian [Styer 2015]. So,
as a generalization of the one-dimensional second derivatives, the Laplacian
measures the average convexity (harmonic functions, for example, are functions
of null mean convexity) [Vazquez 2014].

Although Laplace and Poisson equations possess analytic solutions in a
limited number of simple cases, we usually need a numerical solution when
elliptic problems are considered. The problems that we are going to consider
belong to the realm of Astrophysics. We are interested in problems such as
gamma-ray bursts (GRBs), core collapse supernovae, the merger of compact
objects (neutron stars or black holes), magnetars, magnetized accretion discs
around spinning black holes, galaxies clusters, galaxy formation and evolution,
etc.

In physics we need to design experiments that contrast the new theories
or models proposed. However, many of the physical conditions present in
astrophysical scenarios are not reproducible in any laboratory. Simulation allow
us to build models of a system and to do virtual experiments [Zingale 2017].

We present next a list of elliptic problems that people have encountered in

Astrophysics. The list is not intended to be exhaustive, but it is representative
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of the work developed in the group, within which the research for this thesis has
been developed. We start with the areas of astrophysics closer to our research
field and then we gradually move to other areas. We also review the numerical
methods that have been used traditionally in each case.

1.2.1 Gravitational field

Stars are one of the main objects of study of Astrophysics. The stars can be
modeled as self-gravitating fluid spheres. The equations of hydrodynamics de-
scribe how the fluid evolves in time. If we consider viscosity, radiation transfer or
magnetic fields, we need the appropriate variants of the former equations: Navier-
Stokes equations, radiation hydrodynamics equations or magnetohydrodynamics
(MHD) equations, respectively [Bodenheimer et al. 2006].

Hydrodynamics equations in a self-gravitating object are coupled, in New-
tonian gravity, to the Poisson equation for the gravitational field. During the
time evolution of the fluid the gravitational field has to be recalculated at each
time-step, which itself affects the dynamics of the fluid. Therefore, we have a
gravity-fluid tandem that we have to solve numerically. Computational time in
multidimensional simulations can very easily be dominated by the numerical
solution of the Poisson equation (specially in 3D). It is therefore critical to use
efficient algorithms for the elliptic part of the problem.

Ultimately gravity is described by the theory of general relativity. However,
if the object we are modelling is not very compact, it is sufficient to consider
the Newtonian limit, which results in the Poisson equation. As the compactness
of the studied object increases, the relativistic effects begin to be noticed. In
many scenarios, small post-Newtonian corrections are sufficient (see, e.g., Misner,
Thorne, and Wheeler 1973). However, for extremely compact objects (neutron
stars or black holes) we need to solve Einstein’s field equations. Still in this case
it is necessary to solve systems of ePDEs. The precise set of ePDEs to solve
depends on the chosen formulation of the Einstein’s equations. For instance,
in the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation [Baumgarte
and Shapiro 1999, Shibata and Nakamura 1995], it is necessary to enforce the
Hamiltonian and momentum constraints (at least initially to provide initial
date). In fully constrained formulations [Bonazzola et al. 2004], this is also the
case, though the system of ePDEs may be modified.

In general, stars are an example in which gravity can be regarded as Newto-
nian. An example of numerical simulations involving a star in hydrodynamical

equilibrium, and that will be described in more depth in Chap. 6, is the prop-
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agation of GRB-jets through the envelope of a massive star. In this case, it
is necessary to consider the gravitational potential in order to preserve the
hydrostatic equilibrium of the envelope as the jet propagates. In this scenario it
is sufficient to solve a Poisson equation whose source term is the distribution
of mass in the space. Evidently, in this case we seek a numerical solution of
the Poisson equation, since we do not know an analytical expression of this

distribution, which is the result of the hydrodynamic simulation.

In the case of core-collapse supernova explosions, we deal with more compact
objects than in the previous scenario, and relativistic corrections are needed.
Supernova codes typically solve the gravitational potential in the Newtonian limit
or using a pseudo-Newtonian potential that contains some relativistic effects.
In any case, the resulting ePDE is the Poisson equation. Some examples of
codes using this approach are PROMETHEUS (a tridimensional hydrodynamics
code; Fryxell, Miiller, and Arnett 1989, Keil 1997, Plewa and Miiller 1999),
VERTEX (which is based on PROMETHEUS hydrodynamics part and also
includes Boltzmann neutrino transport Rampp and Janka 2002), AMRA [Plewa
and Miller 2001] P-HOTB [Janka and Mueller 1996, Kifonidis et al. 2003] and
AENUS [Obergaulinger et al. 2006, Obergaulinger, Janka, and Aloy 2014]. All of
these codes use the method proposed in [Miiller and Steinmetz 1995] for solving
the Poisson equation. Employing the theory of Green functions, the solution of
the equation is written in integral form. After that, the integrand is expanded
into spherical harmonics. Finally, they truncate this series and only add a few
of the first terms.

Ultimately, the best approach is to consider General Relativity. To be able
to deal with curved four-dimensional space-times, it is most popular to use
the 3 4+ 1 formalism, which slices the space-time in a family of non-intersecting
3-dimensional space-like hypersurfaces, separated from each other by an elapsed
time. In this formalism, the Einstein equations are written as a system of
evolution and constraint equations. For the case of moderately high gravity, such
as in core collapse supernovae, it is possible to use the conformal flatness condition
(CFC) approximation [Wilson, Mathews, and Marronetti 1996]. Numerically,
the major advantage of this approximation is that the 3 4+ 1 metric equations are
reduced to five coupled nonlinear ePDEs [Dimmelmeier, Font, and Miiller 2001],
which, due to its relative simplicity, makes their implementation more stable than
in the standard formulations of the field equations commonly used in numerical
relativity [Cerd4-Durén et al. 2005]. This approach has been followed in the
CoCoNuT code, a general relativistic hydrodynamics code with dynamical space-

time evolution [Dimmelmeier, Font, and Miiller 2002a, Dimmelmeier, Font, and
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Miiller 2002b]. Several options have been followed historically to solve this elliptic
system, being the spectral methods, using the library LORENE [LORENE -
Langage Objet pour la RElativité NumériquE], the current implementation. The
elliptic system of the CFC approach has been improved by reformulating the
system of equations to solve [XCFC, Cordero-Carrion et al. 2009]. The improved
system contains ten decoupled Poisson equations, two of which are nonlinear,
which have to be resolved in a hierarchical way [Cordero-Carrién et al. 2009].
This hierarchy of elliptic equations improves the uniqueness properties of the
solution and allows the numerical simulation of the formation of black holes,

which was not possible with the previous system.

One of the most promising sources of gravitational waves is the coalescence
of inspiraling compact binaries. Here, as above, we also need to work on general
relativity. Although the most popular approach is to use hyperbolic formulations
of Einstein’s equations (e.g. BSSN) in which no elliptic equations shall be
solved throughout the evolution (but the elliptic constraints must be solved to
provide the initial data for the Cauchy problem), there have been attempts to
use formulations based in elliptic equations, such as the CFC approximation.
Example applications to binary neutron star mergers can be found in [Shibata,
Baumgarte, and Shapiro 1998, Bauswein, Oechslin, and Janka 2010]. In the
second case multigrid methods were used to solve the elliptic equations of the
CFC method.

The equations of hydrodynamics can also be used for cosmological simulations,
in which an elliptic equation for the gravitational potential is needed. The source
term depends on the scale factor of a flat background, the Hubble constant and
a density contrast between the mass density and the background mass density.
This is necessary for the two existing approaches for solving numerically them:
grid based or meshless codes. In [Quilis, Ibanez, and Saez 1996, Quilis 2004], for
example, the equations governing the evolution of cosmological inhomogeneities
form a hyperbolic system of conservation laws. Adaptative mesh refinement
(AMR) is used to follow the gas dynamics while dark matter is computed by
means of an n-body computation. In the coarsest mesh, which is cubic, [Quilis
2004] the gravitational field equations employing fast Fourier transforms. For
each of the patches that is generated by the refinement procedure, the finite-
difference discretization of the Poisson-like equations result in a linear system,
which is numerically solved by means of successive overrelaxation (SOR) method.
The reasons to employ different solution methods on the base level of the AMR,
hierarchy and on any other refined level is because in this case the SOR method

is more convenient since, not only the shape of the domains is no longer regular,
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but also because it is possible to use the previous values of the potential of the
unrefined mesh as initial guess for the iterative procedure. The latter is very
convenient to reduce the number of iterations until the desired tolerance, since

the change of the solution on consecutive timesteps is small.

1.2.2 Initial data

A number of the numerical simulations involving fluid dynamics can be formulated
as initial value problems (IVPs), whose governing equations are not elliptic but
hyperbolic. Nevertheless, IVP need to begin their time marching strategy from
initial data which are properly specified. Often the generation of initial data
requires the solution of elliptic problems. This is the case when, e.g., we need
to begin from equilibrium configurations of isolated stars, eventually including
rotation and magnetic fields, in Newtonian gravity or full general relativity. Also
the generation of the stationary spacetime in numerical relativity simulations
requires the solution of involved ePDEs. Two complementary reviews on the
topic are [Stergioulas 1998] and [Cook 2000b)].

To more specifically exemplify the previously mentioned problems, let us
first consider the case in which we aim to begin our models from a stellar
configuration in hydrostatic equilibrium. In the relativistic case, if matter is
also to be in equilibrium, then the four-velocity of the matter must be a linear
combination of the two Killing vectors of its stationary spacetime. Having
specified an equation of state, the structure of the star is computed by solving
four components of Einstein’s gravitational field equations. The first attempt
to obtain an equilibrium configuration of relativistic rigidly rotating fluid is
due to [Bonazzola and Schneider 1974]. Since then, several schemes have been
put into practice. The method proposed by [Komatsu, Eriguchi, and Hachisu
1989a, Komatsu, Eriguchi, and Hachisu 1989b] consists in three equations of
elliptic type that are solved using Green functions. In [Bonazzola et al. 1993,
Bonazzola, Gourgoulhon, and Marck 1998] the field equations are derived in the
3 + 1 formulation and all four equations describing the gravitational field are
of elliptic type. The equations are solved using spectral methods, expanding
all the variables in terms of trigonometric functions, in both the angular and
radial directions. Then a fast Fourier transform is used to obtain the spectral
coefficients and, hence, the solution.

Elliptic equations can also be used in the construction of homogeneous stellar
models in Newtonian hydrodynamics. For instance, [Schobel and Ansorg 2003]

make use of pseudo-spectral methods for finding the rotational structure of stars
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in hydrostatic equilibrium resulting from the balance between gravity, pressure
gradients and centrifugal force [Roxburgh 2004, Roxburgh 2006].

Other equilibrium figures, different from the spheroidal ones, can be found in
different astrophysical scenarios. In particular, Dyson [Dyson 1892, Dyson 1893]
is able to give a fourth-order expansion of uniformly rotating, homogeneous and
axisymmetric rings in Newtonian gravity. These Dyson rings are extended to
Einstenian gravity in [Ansorg, Kleinwéchter, and Meinel 2003], and are computed
numerically with spectral methods. They might be relevant in two different
astrophysical situations: as a result of stellar core-collapse in the case of high
angular momentum; or they could be present in central regions of galaxies.

In the case of coalescing binary compact objects, initial data is also needed,
which is the result of solving the constraint equations in General relativity, which
are of elliptic type. Recent developments in the field can be found at [Dietrich
et al. 2017, Ruchlin et al. 2017] and references therein. According to [Dietrich
et al. 2017], who focus on neutron star, there are a number of well-developed
codes for computing binary neutron star initial data, most notably the spectral
code LORENE [LORENE - Langage Objet pour la RElativité NumériquE], the
Princeton group’s multigrid solver [East, Ramazanoglu, and Pretorius 2012],
BAM'’s multigrid solver [Moldenhauer et al. 2014], the COCAL code [Tsokaros,
Uryu, and Rezzolla 2015], the SpEC code’s spectral solver [Foucart et al. 2008],
and spectral code SGRID [Buonanno et al. 2011]. In [Ruchlin et al. 2017], devoted
to black holes, and in which they compute initial data of binary black holes
with high spins and boosts, allows us to reach the origin of these calculations
in [Pfeiffer, Cook, and Teukolsky 2002, Pfeiffer et al. 2003] and [Gourgoulhon,
Grandclément, and Bonazzola 2002, Grandclément, Gourgoulhon, and Bonazzola
2002]. They are applying spectral methods.

In the case of black hole initial data, we need to consider Cauchy initial
data that represent one or more black holes in an asymptotically flat spacetime.
Stationary spacetimes possesses both temporal and angular Killing vectors!.
The majority of these will be either vacuum solutions or solutions of the Einstein-
Maxwell equations. With no matter to support the gravitational field, these
spacetimes usually have a non-trivial topology [Cook 2000b].

1.2.3 Magnetostatic configurations

So far only gravity has appeared as a fundamental force in astrophysical sim-

ulations. However, there are situations where electromagnetism also plays a

INote that binary black hole initial data spacetimes are usually quasi-stationary, with an
approximate helicoidal Killing vector field.
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determining role. In fact, we can have magnetic fields in any of the previous
areas like GRBs, supernovae, stellar core collapse, etc. As we have already
indicated above, to work with magnetized plasmas we use the MHD equations.
In MHD applications two basic problems can be cast in therms of ePDEs: the
enforcement of the divergence free condition for the magnetic field and the
generation of magnetostatic configurations in astrophysical systems. The former
problems will be addressed in Sec. 1.2.4. In this section we specifically consider
the special class of problems consisting in generating equilibrium magnetic field
configurations in the magnetosphere of compact objects.

When we study magnetospheres of both neutron stars and black holes, under
spherical symmetry conditions, the equation governing their structure is the
general relativistic Grad-Shafranov (GS) equation [Liist and Schliiter 1954,
Chandrasekhar 1956, Chandrasekhar and Prendergast 1956, Shafranov 1958a,
Grad and Rubin 1958], which needs to be solved numerically. The GS equation is
an elliptic equation. As an example, in the case of neutron stars, we have [Torres-
Forné et al. 2016], which studies pulsars and magnetars; and in the case of black
holes we have [Uzdensky 2004] or [Contopoulos, Kazanas, and Papadopoulos
2013], which studies the force-free magnetosphere of accretion disk and rotating
black hole. In the first case they use the cyclic reduction algorithm while in
the second case they use the SOR algorithm. More recently, Akgiin et al. 2016
have solved the GS equation to obtain the equilibria configurations of force-free
twisted magnetospheres around neutron stars. These authors employ a direct
method (the Thomas algorithm; Thomas 1949) to solve the block tridiagonal

system resulting from the finite-difference discretization of the GS equation.

1.2.4 Projection methods

The numerical solution of physical problems in computational physics often
involves solving elliptic-hyperbolic PDEs when (physical) constraints need to be
enforced during the evolution of the system. A popular example is the so-called
projection scheme used to enforce the zero divergence of the magnetic field
constraint in ideal MHD [Brackbill and Barnes 1980]. The accurate solution
of the equations of ideal MHD requires that magnetic fields be solenoidal, i.e.,
divergence free. Indeed, Maxwell equations guarantee that divergence free initial
magnetic field data remain divergence free throughout the evolution. However,
even if initially the magnetic field configuration is solenoidal, the numerical time
evolution of the solution will introduce magnetic monopoles in the computational

domain unless specific numerical techniques are employed [Brackbill and Barnes
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1980, Dai and Woodward 1998]. Various numerical techniques have been devised
to ensure the computed magnetic field is maintain divergence-free throughout the
temporal evolution [T6th 2000, Feng and Zhang 2016]. Projection schemes obtain
the same order of accuracy as the underlying base schemes [Téth 2000, Feng
and Zhang 2016], which means that high-order finite differences are desirable
when solving ePDEs associated with projection schemes in combination with
high-order methods in resolving the hyperbolic evolution equations. We are
interested here in those techniques, which convert the problem of preserving the
divergence of the magnetic field into an elliptic problem. The underlying idea is
to project the numerical solution provided by the base numerical scheme onto
the subspace of zero divergence solutions. For that one makes use of a linear
operator, and the projected solution is used in the next time step (instead of
the originally computed by the base scheme).

The Helmholtz’s theorem of vector calculus states that any sufficiently smooth,
rapidly decaying vector field X in three dimensions can be split as the sum of
a solenoidal (divergence-free) vector field X and an irrotational (curl-free)
vector field Xi... So, the vector field can be written as X = V x A+ V®
because a solenoidal vector field may be derived from a vector potential A and

an irrotational vector field from a scalar potential ®.

If we take the divergence in both sides, we have VX = V- (Vx A)+ V- (VD).

Taking into account that the divergence of the rotational is zero and that the
divergence of the gradient is the Laplacian, we have the Poisson equation
A® = VX. As the vector field X is known, the above equation can be solved
for the scalar function ® and the divergence-free part of X can be extracted
simply doing X4, = X — V.

We outline that projection methods have also been used in incompressible
fluid dynamics [Chorin 1969, Bell, Colella, and Glaz 1989, Almgren, Bell, and
Szymczak 1996], where the V - v = 0 constraint (v is the velocity field) must be
enforced. Examples of the application of projection methods to Astrophysics
can be found in problems where incompressible turbulence plays a paramount
role. For instance, many galaxy cluster properties are influenced by significant
gas motions characterizing their intra-cluster medium (ICM). These motions
may lead to strong ICM turbulent motions. The ICM turbulence, defined as
the rotational of the gas velocity field, can be decomposed as explained above.
Both components can contribute to the acceleration of relativistic particles in
the ICM. However, whereas the compressive component generates shock waves,

which play a crucial role in the ICM thermalization, the solenoidal component



14

Elliptic problems in astrophysics

mainly contributes to the amplification of ICM magnetic fields [Vazza et al.
2017).

A final example of the usage of projection methods arises in the numerical
integration of the Einstein equations, where the construction of initial data
involves solving the so-called constraint equations, a set of elliptic PDEs (see
e.g. [Cook 2000a] for a detailed review). A popular way of evolving the resulting
initial data is via the hyperbolic BSSN [Baumgarte and Shapiro 1999, Shibata
and Nakamura 1995] scheme.

1.2.5 Other examples

In the previous sections we have oulined a few astrophysical problems that we
are interested in applying the new methods of solution of ePDEs we develop
in this thesis. To complete the landscape of potential applications of our new
methods, we foresee that in those cases in which boundary conditions need to
be specify in complicated hypersurfaces, our methods can be useful (see, e.g.,

Sec. 5.2). We mention a few of such cases:

o The governing equations for ideal MHD flow in a nozzle [Chu 1962] altern
between elliptic and hyperbolic type three times: at the sonic point, where
the fluid velocity equals the sound speed cg, at the Alfven point, where the
fluid velocity equals the Alfven speed c¢,, and when the flow crosses the fast
magnetosonic point, being the fast magnetosonic speed ¢,/ \/m .
The application of this scenario in Astrophysics has its prototype in the
twin-exhaust model, originally due to Blandford and Rees 1974 and applied
to relativistic MHD jet in, e.g., Vlahakis and Koénigl 2004.

e The equations for small-amplitude electromagnetic wave propagation in
zero- temperature plasma are elliptic at certain wave frequencies [e.g.
Grossmann and Weitzner 1984, Otway 2008].

o Within the Hartle-Hawking model [Hartle and Hawking 1983], the Laplace-Beltrami

equation on a region devoided of matter of space-time would have been of

elliptic type in the early universe.

e In a flat space-time the wave equation, is elliptic for certain values of
the radial coordinate, in a reference frame rotating with constant angular
velocity [Stewart 2001].
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o In the context of binary black hole spacetimes with a helical Killing vector
field it is possible to formulate a helically reduced wave equation on a torus

which is elliptic for certain values of the radial coordinate [Klein 2004].






Chapter 2

Introduction to iterative
methods

2.1 Introduction

In this chapter, we make a basic overview of the strategies for the numerical
solution of elliptic systems of partial differential equations (PDEs). Our goal
is not to make an exhaustive review of the different solution methodologies,
but rather to place in its correct context the new methods we have developed.
These new methods belong to the class of finite-difference methods. Thus, in
this chapter, we will restrict ourselves to the aforementioned class. As we shall
see, there are two families of methods that can be employed: direct and iterative.
We will focus on the iterative methods, which is the realm in which the methods
we have developed fall (see [Ardndiga, Donat, and Mulet 2000, Burden and
Faires 2001, Briggs, Henson, and McCormick 2000] for more details).

2.2 Numerical resolution of elliptic PDEs

Let’s see how we convert the problem of finding a solution of an elliptic PDE in
finding the solution of a system of linear equations. Firstly, the PDE that we
are considering will have a domain of definition. What we are going to do is to
define a mesh of points in this domain, so that we try to find the solution not
at any point in the domain but only at these discrete set of points. Then we
replace the differentials of the equations by difference quotients using the points

of the grid, employing the so-called finite differences approximation.
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To fix ideas, we consider the Poisson equation in two spatial dimensions (2D)
as a handy reference case (highly relevant for the ulterior applications we aim
to). Using Cartesian coordinates the aforementioned equation reads:

0? 0?
—u(z,y) + =—su(z,y) = bz, y), 2.1
52 U(%:Y) 8y2( y) = b(z,y) (2.1)

over the domain Q = {(2,y)|Zmin < T < Zmax; Ymin < ¥ < Ymax}- L0 properly

Au(z,y) :=

specify the problem, we must provide suitable boundary conditions, e.g., u(x, y) =
w(z,y) for (z,y) € 9Q. Using a second-order central difference approximation
for the second derivatives, we can express the Poisson equation in the arbitrary
points of the mesh (z;,y;) as:
(@i, y5) — 2u(s, ;) +w(wio1,y;) | wl@i, yi41) — 2ulzs, y;) + ul@, yj—1)
+
h? k2
h* 8*u k* 0%u
:b(l’iayj)+E@(€iayj)+ﬁaiy4($i7nj)a (2.2)

where we have partitioned the interval [Zmin, Tmax] In p equal parts of size
h = (Zmin — Tmax)/p and the interval [Ymin, Ymax] in ¢ equal parts of size k =
(Ymin — Ymax)/q- Integer indices ¢ and j may take any values in {0,1,...,p}, and
{0,1,..., ¢}, respectively; z; = ih, and y; = jk. Finally, ¢; € (zi—1,%i41), 1; €
(yj—1,Yj+1)- We represent this discretized domain as Q"*.

Assembling altogether the points of the grid and employing the boundary

information when necessary!, we build up a linear system of the form
Au =0, (2.3)

where the components of the vector u are the values of u(x;,y;), for all ¢ =
l,..,p—1land j =1,..¢ — 1, thus, 4 € M;;(R) and u,b € R' where | =
(p — 1)(g — 1). Solving it, we obtain an approximation to the solution with an
error O(h? + k?).

Due to the compact stencil of the finite difference representation of the
derivatives we have used in Eq. (2.2) the resulting linear system is sparse. A
useful way of writing the sparse matrix A is employing the so-called “stencil”

representation. For the previous example, the stencil representation of A reads

1
k-2
_ 1 —2 —2 1
A=l F+E e (2.4)
1
=

1In this simple example, the type of boundaries are the so-called Dirichlet boundary
conditions, where the value of the solution is set at the boundary. There are other types very
often used as e.g., Neumann or Robin boundary conditions.
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These systems, besides being sparse, are symmetric and positive (semi)-
definite (depending on the boundary conditions), and, if properly ordered,
banded. All these three characteristics are fundamental to choose a particular
algorithm for the numerical solution of the linear system at hand.

2.3 Solving linear systems

If det (A) # 0, the square linear system of Eq.(2.3) has a unique solution.
However, when [ > 1, it is necessary to employ optimized algorithms to solve
the linear system efficiently from the computational cost point of view. These
numerical methods fall into two basic classes: direct methods and iterative
methods. An excellent guide to both types of methods can be found in [Gene
H. Golub 2012]. Here we give a shallow overview of both classes of methods.

A direct method solves “exactly” (ideally up to machine precision) the
linear sytem. Most direct methods are based on the Gaussian elimination
procedure in some of their steps. In other steps of a direct method, matrix A
is factorized into simpler matrices. Likely, the most popular factorization is
the so-called LU decomposition (along with its more general cases PLU, and
PLUQ decompositions), which have efficient implementations in some particular
cases as the Crout-Doolittle algorithm or the Choleski decomposition (the latter
reserved for positive definite A-matrices). There are other methods usually
based on the fast Fourier transform or the method of cyclic reduction which are
very efficient for particular types of matrices A (e.g., in the case A is a circulant
matrix).

Tterative methods, whose classical prototypes are the methods of Jacobi,
Gauss-Seidel, SOR, Conjugate Gradient and Chebyshev, start with an initial
guess of the solution. Then, they construct a succession of approximate solutions
that converge to the exact solution of the system at a reasonable rate. Each
new approximation is achieved by a “small” correction step to the previous one.
These classical methods are very easy to implement, can be applied to more
general linear systems, and are more appropriate for large sparse matrices, as
is our case. In practical terms, the succession of approximate solutions stops
after a prescribed error goal is reached. Two appreciated advantages of iterative
methods over direct methods are that they do not destroy the sparse structure
of the system and that at every iteration we have an approximation to the
solution. On the contrary, convergence to the solution might be slow, and it is

only guaranteed for certain types of matrices A. Since the new algorithm we
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have developed to solve elliptic systems of PDEs belongs to the class of iterative

methods, we go deeper into their properties in the following sections.

2.4 Iterative methods

In order to build an iterative scheme, we aim to convert our linear system

Eq. (2.3) in another equivalent system of the form
u="Tu+c. (2.5)

We perform an affine decomposition of the matrix of the system A = M —
N, expressing it as a difference between a “simpler” matrix M, the so-called
preconditioner, and the rest of A, so that the system Eq. (2.3) is rewritten as

follows:
Mu= Nu+b, (2.6)
which multiplied by M ~! in both sides becomes
u=M"'Nu+M'b. (2.7)

Now, Eq. (2.7) is of the form Eq. (2.5) identifying 7= M !N and ¢ = M ~1b.
The next step is to solve Eq. (2.3) iteratively. We denote with u the exact
solution of the system. We start with a finite initial guess u" and construct the

suiccession of approximated solutions {u*} that satisfy
u"tt = MY (Nu® 4 b) (2.8)

We would like that the succession of approximations {u"} converges to the
exact solution wu, i.e., that {u™} — « when n — oco. But this is not guaranteed
unless matrices M and N satisfy certain conditions, which we address below.

We define the error €” at the nth iterative step as:
' =u"—u. (2.9)

Since both approximated solutions and the exact solution fulfill Eq. (2.7), the
iteration matriz? G = M 1N relates the error between two consecutive itera-
tions:

" = Ge" L. (2.10)

Applying inductively Eq. (2.10), between any given iteration and the initial error

€Y we obtain

" =G"e. (2.11)

2Also know as the amplification matriz
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With this, it is evident that

{u"} = u <= {||"||} = 0 <= {||G"°||} = 0,Ve® <= ||G™|| — 0,as n — o

(2.12)
where ||.|| denotes either a vector or a matrix norm depending on the argument
it encloses. The latter condition on matrix G, requires

G|l <1 (2.13)

in some matricial norm. Condition Eq. (2.13) is equivalent to require that
0o(G) < 1, (2.14)

where o is the spectral radius of a matrix, i.e., the maximum of the absolute
values of its eigenvalues. Thus, G must have a spectral radius smaller than the
unity in order for the iterative method to converge. The intuitive idea behind
all the above reasoning is simple. The error is multiplied by the iteration matrix
at each step. We want the error to become negligibly small as the number of
iterations grows. This is only possible if the spectral radius of the matrix is
smaller than 1.

We point out that conditions Eq. (2.13) or Eq. (2.14) may be very restrictive
when applied to generic ill-conditioned linear problems (e.g., as those arising
from optimization; Gould 2000). In such cases, preconditioning techniques are
typically employed. However, the class of problems to which we aim to apply
iterative methods, i.e., resulting from the discretization of ePDEs are typically
rather well behaved.

2.4.1 Jacobi and Gauss-Seidel

If we choose M = D, where D is formed with the diagonal elements of A and
zeros elsewhere, the resulting algorithm is the Jacobi method [Jacobi 1845]. This
choice of the matrix M is driven by the fact that the preconditioner, shall be as
simple as possible to easily compute its inverse. With this choice, and knowing
that every matrix A can be written as A = L + D + U, where L is the strictly
lower triangular part of A, D is the diagonal, as we have already said, and U is

the strictly upper triangular part of A, we have that the Jacobi iteration reads
utt =D b— (L4 U)u"] (2.15)
which, in components, is

i—1 1
T 1 n n
urtl = — [bk — Zai,kuk — Z ai,kuk] (2.16)
1,2 k=1

k=i+1
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for ¢ € [1,1]. Furthermore, if the matrix A is sparse, as we obtain by discretizing
elliptic PDEs, the sums in Eq. (2.16) have very few terms. For example, in the
case of Eq. (2.2), and after taking into account that all the unknowns are stacked

in a one-dimensional vector in the previous expression, we simply have:

n n n n
et 1 b Uimyg Uiy Ui T U4

Ly T =2 =2 (VA 2 2
e h k

with i € [I,p—1] and j € [1,q — 1]

(2.17)

The Gauss-Seidel method is a simple modification to the Jacobi method. As
it stands in Eq. (2.15), to compute the approximate solution at the iteration
n+1, v we only need the solution in the previous iteration, u™. However,
n+1 n+1

, namely, u;

., we have

by the time we compute the i-th component of u
already calculated all components from uS‘H to u?fll. We can take advantage of
the already computed components of the solution in n + 1 to rewrite, Eq. (2.17)

as

1—1 l
u;z-‘rl — l:bz _ Z ai,kuz+1 _ Z ai,ku?]z:|v (218)

1
Py
Bl k=1 k=i+1

which, in matrix form, is
"t = (L+ D) [b—Uu"]. (2.19)

Both, Jacobi and Gauss-Seidel methods are known to converge if matrix A is
diagonal-dominant, very often the case in linear systems stemming from the

discretization of elliptic systems of PDEs.

Summarizing, these classical methods are iterative algorithms to solve systems
of linear equations. Due to their simplicity and their convergence properties,
they are popular choices. However, their slow rate of convergence, compared to

other iterative methods make them poor choices to solve linear systems.

2.4.2 Weighted Jacobi

The weighted Jacobi method (also known as simultaneous overrelaxation method
[Young and (Auth.) 1971]) is a variant of the Jacobi method where the afine
decomposition of matrix A is A = M, — N,,, and M,, = D/w, where w € R is
chosen to minimize the spectral radius of the iteration matrix G, = M IN, =
(1—-w)l —wD Y L+U) (L, U and D matrices are the same as in the Jacobi
method; Sec. 2.4.1. Thus, in matrix form the weighted Jacobi method reads

u"t = wD T b — (L+U)u"] + (1 — w)u™ (2.20)
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In the case of the weighted Jacobi scheme applied to the Laplace equation, as
an example of a system with sparse matrix, condition Eq. (2.14) on the iteration
matrix can be approximated to a condition over the so-called amplification
factor:

G =1-uwk, (2.21)

which is obtained from the stability analysis of Von Neumann. The k is a
function of the wave numbers. It will be different depending on the equation we
use, its discretization, the type of border, etc. This type of expressions will also
play an important role in the Chap. 3.

2.4.3 Successive overrelaxation (SOR)

There is a simple yet important modification that can be made both to the
Jacobi and to the Gauss-Seidel methods. Suppose that we have calculated the
new iterate as shown above for each of the methods. Let us consider this value,

+1

which we now denote by @"™", as an intermediate value. Then, the new iterate

is given by a weighted average with the previous iterate u” as follows:
"t = Wit 4 (1 - w)u” (2.22)

where w € R is the weight that may be chosen. This generates a family of
iterative methods depending on the value of w. Applied to the case of Jacobi, we
obtain the weighted Jacobi obtained in the previous section. For Gauss-Seidel,
we obtain the SOR method. The preconditioner in this method is M = wL + D.

Note that if we take w = 1 we recover the classical Gauss-Seidel methods.

2.4.4 Scheduled Relaxation Jacobi and Chebyshev-Jacobi
method

The classical iterative schemes shown in the previous sections are robust, but
their low convergence rates makes them impractical for computationally intensive
applications. The only exception to this assertion comes from the SOR method.
SOR can have excellent convergence properties if one knows the optimal weight
for the matrix A at hand. However, its convergence rate is very sensitive to the
exact value of w used. Unfortunately, in many cases, the optimal value of w is
unknown.

The scheduled relaxation Jacobi method [Yang and Mittal 2014], SRJ here-
after, is an extension of the classical Jacobi method, which increases the rate

of convergence in the case of linear problems that arise in the finite difference
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discretization of elliptic equations. It consists on executing a series of weighted
Jacobi steps with carefully chosen values for the weights (possibly a different
weight for each successive iteration) in a sequence. The Chebyshev-Jacobi
method (CJM), is the optimum of all SRJ methods for a given problem. In the
CJM all the weighted Jacobi steps possess a different and unique weight. The
CJM has proben to perform better than any SRJ algorithm in Adsuara et al.
2016.

2.5 Organisation of the thesis

Part II of this thesis is devoted to the SRJ method. In Chap.3 we present the
SRJ method for linear systems and propose some improvements. As we shall see,
the number of weights plays an important role in the convergence properties of
the numerical scheme, being faster for a larger number of weights. In Chap. 4 we
obtain the optimal SRJ schemes of all possible ones and show that this method,
the Chebyshev-Jacobi method (CJM hereafter), is equivalent to a Generalized
Richardson iterative scheme. We present a procedure to obtain analytically
the weights for linear systems arising from the finite-difference discretization of
elliptic systems of PDEs.

In Part IIT we present numerical applications of the SRJ method, with
interest in in the field of astrophysics. Chap.5 presents a series of problems,
and compares the performance of the new method with other methods in the
literature. In Chap.6 we explore the performance of the method in parallel
architectures, namely using the OpenMP/MPI models for multi-core machines
and an implementation for Graphics Processing Units (GPUs). Chap.7 is
devoted to an application outside the the field of astrophysics, in which we model
normal vibrations of the human eye.

In Part IV we present our conclusions and briefly outlook future prospects

of the methods presented in this thesis.
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Chapter 3

Scheduled Relaxation
Jacobi method:
improvements and

applications

The results of this chapter have been originally published in:
Improvements in the Scheduled Relaxation Jacobi method,
JE Adsuara, I Cordero-Carrién, P Cerda-Duran, MA Aloy,
Proceedings of the XXIV Congress on Differential Equations and Application-
s/XIV Congress on Applied Mathematics, Cadiz, June 8-12, 2015, Servicio de
Publicaciones de la Universidad de Cadiz (2015)
Scheduled relaxation Jacobi method: improvements and applications,
JE Adsuara, I Cordero-Carrién, P Cerda-Duran, MA Aloy,
Journal of Computational Physics 321, 369-413 (2016)
The text in the following sections corresponds to an edited version of the

aforementioned publications.

3.1 Introduction

As we have motivated in the previous chapter, we aim at solving PDEs associated
with elliptic problems with interest in astrophysics. We focus here in iterative

methods. One of the simplest and most studied iterative schemes is the so
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called Jacobi method [Jacobi 1845, Richardson 1911], whose main drawback
is its poor convergence rate. In oder to improve the efficiency of the Jacobi
method, many alternatives have been considered. A popular possibility is the
use of preconditioners [Juncosa and Mulliken 1960, Gunawardena, Jain, and
Snyder 1991, Noutsos and Tzoumas 2006] applied to linear systems, that make
the associated Jacobi and Gauss-Seidel methods converge asymptotically faster
than the unpreconditioned ones. Indeed, the method we improve on here, can
be adapted as a preconditioner for other methods (e.g., the conjugate gradient
method). Very widespread is the use of multigrid methods [e.g., Trottenberg,
Oosterlee, and Schiiller 2001] that, in many cases, provide the solution with
O(N) operations, or that can even be employed as preconditioners. Relaxation
algorithms [originally introduced in Richardson 1911], improve the performance
of the Jacobi method by considering modifications of the Gauss-Seidel algorithm
that include a weight, for instance, successive overrelaxation (SOR) methods
[Young 1954al.

Along this line, [Yang and Mittal 2014, YM14 henceforth] have recently
presented a significant acceleration (of the order of 100) over the Jacobi algorithm,
employing the Scheduled Relaxation Jacobi method. The SRJ method is a
generalization of the weighted Jacobi method which adds an overrelaxation
factor to the classical Jacobi in a similar fashion to the SOR method. This
generalization includes a number P of different levels, in each of which, the
overrelaxation (or underrelaxation) parameter or weight is tuned to achieve
a significant reduction of the number of iterations, thus leading to a faster
convergence rate. The optimal set of weights depends on the actual discretization
of the problem at hand. Although the method greatly improves the convergence
rate with respect to the original Jacobi, the schemes presented by YM14, optimal
up to P =5 and resolutions of up to 512 points per spatial dimension, are still
not competitive with other methods used currently in the field (e.g., spectral
methods [Bjorstad and Widlund 1986], or multigrid methods as commented
above). The main advantage of the SRJ method over other alternatives to
solve numerically ePDEs is its simplicity and the straightforward parallelization,
since SRJ methods preserve the insensitivity of the Jacobi method to domain

decomposition (in contrast, e.g., to multigrid methods).

The structure of this chapter is as follows. We begin giving an overview of the
SRJ method (Sect. 3.2) and describing the original methodology for obtaining
optimal schemes. In Sect. 3.3 we present basic improvements on the original work
by YM14. Then, we present in Sect. 3.3.4, some analytical work which reduces
the number of unknowns to solve for to O(P) (instead of O(P?) as in YM14 and
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Sect. 3.3). In Sect. 3.4 we show a comparison of the new method to compute
optimal parameters for SRJ schemes with that of YM14.! Furthermore, we test
the SRJ methods in a case study, namely a Poisson equation with Dirichlet
boundary conditions (Sect. 3.5) that has analytic solution, and show that optimal
SRJ parameters computed for resolutions close to that of the problem at hand
can bring two orders of magnitude smaller number of iterations than the Jacobi

method to solve such the problem.

3.2 SRJ schemes

Now we recap the most salient results obtained by YM14 and set the notation
for the rest of the section.

First of all, if we define w;J as a single step in a weighted Jacobi iteration
using the weight w; (i = 1,...,P), then the SRJ method can be cast as a

successive application of elementary relaxation steps of the form

M

q1 qpr q1

—_—N—
le...lewzJ...wgJ...pr...prle...wlj...,
———

q2

where the largest weight, wy is applied ¢; times, and each of the remaining and

progressively smaller weights w; (i =1,..., P) is applied ¢; times, respectively.

A single cycle of the scheme ends after M elementary steps, where M := Zil -

In order to reach a prescribed tolerance goal, we need to repeat a number times
the basic M-cycle of the SRJ method. Both, a vector of weights and a vector
with the number of times we use each weight, define each optimal scheme. We
emphasize that, from the point of view of the implementation, the only difference
with the traditional weighted Jacobi is that, instead of having a fixed weight,
SRJ schemes of P-levels require the computation of P weights.

In order to simplify the notation, we define w := (wy,...,wp), with w; > w;1+1

and q := (q1,...,qp) which is in one-to-one correspondence with the previous w.

Also, we define B := (1, ..., 8p), where 8; = q;/M is the fraction of the iteration

counts that a given weight w; is repeated in an M-cycle, with Sp :=1— ZP_I
The basic idea of the SRJ schemes is finding the optimal values for w and 3

that minimize the total number of iterations to reach a prescribed tolerance for

a given number of points (i.e., numerical resolution) N.

LASCII files containing the optimal parameters for the SRJ algorithms shown here with P
values between 6 and 15 can be found at http://www.uv.es/camap/SRJ.html.

i=1 M-
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3.3 Finding the optimal parameters

Below we explain how to compute the optimal values of w and B for a fixed
value of P, following the prescription of YM14 and rewrite some parts of the
YM14 algorithm to make them amenable for extension to a larger number of

levels and resolutions.

3.3.1 Convergence analysis and optimization problem

We perform a convergence analysis of the method in order to obtain a number
of restrictions that the parameters of the SRJ scheme must fulfill. As a model
problem, we use the Laplace equation with homogeneous Neumann boundary
conditions in two spatial dimensions, in Cartesian coordinates and over a domain

with unitary size:

02 0?

@u(x,y) + Tygu(xay) = 07 (.’E, y) € (07 1) X (Oa 1)

0

% o U(iﬂ,y) Oa ) et u(l'vy) - 07 Yy e (07 1) (31)
0 0

— u(z,y) =0, — u(z,y) =0, z€(0,1).

3| o (2,9) B, (z,y) (0,1)

We note that the system resulting from discretization of Eq.(3.1) is not
invertible. There are inifinite possible solutions due to the choice of Newmann
boundary conditions. Actually, u =constant is a solution of Eq. (3.1). The reason
to employ this problem is because it was first considered by YM14, and we
aimed to compare our algorithm with theirs as closely as possible. Subsequent
test problems do not fix all boundary conditions to be of Newmann type and,
therefore, they will have a unique solution. In this particular problem, we employ

as initial data random values for w.

Let us consider a 2nd-order central-difference discretization of Eq. (3.1) on a
uniform grid consisting of N, x N, zones, and define N = max(N;, N,). Then,
we apply the Jacobi method with a relaxation parameter w, so that the following

iterative scheme results:

w
w
= uiy+ g (o b bl bl - dug), (3-3)

where n is the index of iteration.
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At this point, we perform a von Neumann stability analysis for obtaining
the amplification factor,
Gu(k) = (1 —wk), (3.4)

where k is a function of the wave-numbers in each dimension. For the problem

at hand (see App. C),

k k
k(kg, ky) = sin (2Nz> + sin (2Ny> . (3.5)

G, expresses how much the error can grow up from one iteration to the

next one using the relaxation Jacobi method. Thus, if a single relaxation step
is performed, we require |G| < 1 to ensure convergence. However, in an SRJ
scheme, we perform a series of M-cycles (Sect. 3.2). Hence, even if on an
elementary step of the algorithm one may violate the condition |G,,| < 1 (which
may happen, e.g., if such step is an overrelaxation of the Jacobi method), the
condition for convergence shall be obtained for the composition of M elementary
amplification factors. As we apply Eq. (3.3) M-times but with P different

weights w;, the following composition of amplifications factors is obtained:

M
q1 qpr P
—f ——~
Guy -+ Gy Gy Gy - Gy .. Gy = [[ G (3.6)
N———

q2 =1

Finally, it is not important how many times we use each of the weights ¢;

but their relative frequency of use during an M-cycle, which is defined by ;.

Therefore, following YM14, one can define the per-iteration amplification factor
function as a geometric mean of the modulus of the cycle amplification factor
(Eq. 3.6):

B, (3.7)

P
(k) = H 1 — w;k
i=1

The previous transformation is very convenient to find deterministic optimal
parameters for the SRJ schemes, since it avoids working with a Diophantine
equation (Eq.3.6), because ¢; € N, while §; € R.

From the definition of I'(x), it is evident that larger values of the per-iteration
amplification factor yield a larger number of iterations for the algorithm to
converge. Thus, the optimal values for the SRJ parameters are obtained by

looking for the extrema of I'(k) in [Kmin, Kmax], Which is the interval bounding
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the allowed values of k, namely
o gin2 L) =9 3.8
Fmin = sil (2 N fmax =2, (3.8)

and then, to minimize globally these extrema, so that the error per iteration

decreases as much as possible. This sets our (mén-maz) optimization problem.

We explicitly point out that the value of ki, depends on the type of
boundary conditions of the problem, on the discretization of the elliptic operator
and on the dimensionality of the problem. This is not the case for Ky ax, which
equals 2 independent on the boundary conditions and dimensionality of the
problem, though it depends on the discretization of the elliptic operator. For
later reference, we write the explicit form of ki as a function of the number of
dimensions, d, for a Cartesian discretization of the elliptic operator and Neumann

boundary conditions:

(3.9)

2 ., 7T
Fmin = - SI0 (W) .
Obviously, we recover Eq. (3.8) setting d = 2. For practical purposes, it is
possible to obtain the optimal SRJ parameters for any value of d once we know
the optimal parameters in 2D. This is done by computing the effective number of
points in 2D, Néff), corresponding to a given problem size N9 in d-dimensions
through the relation:

d
NP = 2” ~ Ny /2 (3.10)
. . ™
2 arcsin (\/;Sln <2]V(d))>

where the approximated result holds for large values of N(9.

Finally, as stated above, the values of knj, change depending on whether
Neumann or Dirichlet boundary conditions are considered, and so the optimal
parameters change. Fortunately, there is a simple way to obtain the opti-
mal parameters in case of Dirichlet boundary conditions from the 2D optimal
parameters computed for Neumann boundary conditions, namely
T

d
2 s
2 arcsin - E sin? ()
(d
d i=1 2Ni,]:2irichlet

(2 _
Neff -
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~ 2 , (3.11)

d

1
e T,

o ( i,Dirichlet)Q

where the approximated result holds when the number of points in each dimension

is sufficiently large.

3.3.2 The non-linear system

In the optimization problem stated previously we need to compute the location
of the extrema I'(k), k hereafter. From the optimization process one must also
obtain the rest of the parameters of the SRJ scheme, namely, w and 8. Thus,
we need to solve a system S(w, B, k) to determine all these unknowns.

For the evaluation of k, we must take into account that the location of the
maxima can be either at the edges of the domain, k¢ := Kmin and Kp ‘= Kmax
(set by Eq. 3.8), or in other P —1 internal values x; (i = 1,..., P—1) determined
(each of them) by the following condition:

% log (k) = > ﬁiw = 0. (3.12)

From the solutions of Eq. (3.12), we obtain the P — 1 different x; = k;(w, B),
which allows us to reduce the number of unknowns of the system S(w, 8, k)
from 3P — 2 (wy,...,wp,B1,...,8p-1,K1,-..,6p—1) to 2P — 1. Hence, we need
to also obtain 2P — 1 equations to find a unique solution of the system.

For obtaining the set of the first P equations for the system, and following

YM14, we equalize all the maxima?:

F(Iio) :F(Iii)7 1= 17...,P. (313)

Furthermore, if we assume that w = w(B), and therefore K = k(B), a second
set of P — 1 equations can be obtained from the minimization of I'(kg):

0

7 T(ky)=0,j=1,...P—1. 3.14
5T (3.14)

Thereby, our system is now S(w, 3, g—‘l‘:{), since the differentiation in Eq. (3.14)
introduces P(P — 1) new ancillary variables, namely g;;; i=1,...,P,j =

2Suppose that the global maximum of I' only is reached for ;. Then, O'(k;)/0w; < 0 and
it is possible to increase the value of w; a little. This leads to contradiction, since I'(x;) would
be maximum global and strictly greater than the other local maxima, but with I'(x;) smaller.
Thus, the local maximums that reach the global maximum must be at least two. Following
the same idea, we come to equalize all of them.
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1,..., P — 1. The final set of P(P — 1) additional equations to account for this
extra ancillary variables results from applying the same condition as in Eq. (3.14)

to the remaining values of «;, deduced from Egs. (3.13) and (3.14):

o
0=—T(ki),i=1,...P,j=1...P—1. 3.15
97 (ki) j (3.15)

We note that we have set up the problem taking 8 as the reference variables,
assuming that w were, in fact, functions of these reference variables, i.e., w =
w(B). However, this is not the only possibility. We have also considered,
alternatively, w as reference variables and 8 as functions B(w), in which case,
the P — 1 equations equivalent to those of Eq. (3.15) read:

0
0=—T(k;),i=1,...P,j=1...P—1. 3.16
o (Ki), @ j (3.16)
We have solved the new resulting system employing the same methodology
sketched above, and found that the solution is the same regardless of the set of

reference variables employed, as it should be.

3.3.3 Basic improvements on the original SRJ algorithm

In order to make the SRJ method competitive with other existing algorithms
to solve ePDEs, we must find the optimal parameters of SRJ schemes with a
sufficiently large number of levels. Furthermore, since the optimal parameters
depend on the resolution of the discretization used to solve a given problem, we
also need to compute optimal parameters for a range of numerical resolutions
larger than in YM14. Here we present some improvements on the SRJ algorithm,
which allow us to solve the system from P = 6 up to P = 10 and for resolutions
up to 2'° (see also [Adsuara et al. 2015], ACCA15 hereafter). Additional
improvements based on analytical results will be commented in Sect. 3.3.4
Firstly, the stiffness of S(w, 3, g—;) increases with the number of levels P,
which prevented YM14 to compute optimal SRJ schemes for P > 5. We have
been able to reduce the complexity of the numerical solution by manipulating
parts of them algebraically. On the one hand, we have hidden the part of the
non-linear system involving the x unknowns by solving for them symbolically
and using those symbolic placeholders later when solving numerically for w and
B. On the other hand, and after the previous manipulation, we have seen in
Sect. 3.3.2 that we need to solve numerically a non-linear system of P2 + P — 1
equations with the same number of unknowns. We aim to rewrite this system
S(w, B, g—‘é’) as S(w, B), which requires obtaining g—; as a function of w and

B. We also compute the solutions of this linear subsystem symbolically. These
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manipulations of the original system of equations permitted us to compute the
optimal SRJ parameters for a larger number of levels (up to P = 10) than in
YM14.

Secondly, in order to increase the number of points, for the numerical solution
of the system, since the accuracy of the results for large values of P critically
depends on having sufficiently large precision, we needed Mathematica’s ability
to perform arbitrary precision arithmetic. We ended up using up to twenty four

digits in the representation of the numbers in some cases.

12 T T T T

1.0

0.8 |-+
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o
>

0.4F -t
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0.0
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10* K,

Figure 3.1 I'(k) functions corresponding to different values of the numbers of levels P for
N = 128. The inverse of the minimal weight, wfl, and the inverse of the maximal one, w;1
moves towards Kmin and Kmax, respectively, when P increases. The rest of the weights are
distributed roughly logarithmically equally spaced inside (w1,wp).

Finally, the non-linear system we have to solve is very sensitive to the initial
values that we guess for the unknowns. We developed a systematic way of setting
the initial guesses from the values obtained from lower levels. The initial guesses
used now are an improved version of what we used in ACCA15. As we can
see in Fig. 3.1, when we increase the number of levels P, the values of w] L and

w}l move towards Kmin, and Kmax, respectively. We can also observe that the
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N=128

o o
)] o]

w;/5000, wp
o©
SN

o©
N

wy (P)/5000 — wp(P)
0.055 5 ; : ; 7
P

Figure 3.2 Discrete values of wy and of wp for the P = 6, N = 128 scheme, together with both
fits of their respective values as a function of P to conics as described in Sect. 3.3.3.

inverse of the rest of the weights of a scheme are roughly logarithmically equally
spaced between the values w; ! and w;l. Hence, defining R = w; Jwp, we use as
approximate location of the initial guesses for the inverse of any weight for an
SRJ scheme of P levels the following expressions:

-1 —1 7 1 15 3 15 P-4 15 P—1 15 P42
{wl Wy R2P-D Wy R2P-D s, Wy R2P-D Wy R2P-1) Wy R2P-T) ,
. _P+4 . 2P-3 ~
-1 psp—1m -1 psp—m -1 -1
wy R*P-D ... wi R w "R=wp (3.17)

when P is odd, and

1 —1 75 1 15 3 15 P—5 15 P—-2
{wy " w] "R2P-D [ w] "R2P-1 ... w; R*P=D w "RXP-D . |

-1 p3 -1 Py —1 Paiets _1p2B=3
wy R*P=D . .. w R2P-D w  RZP-D ...  w; R2PD wp } (3.18)
when P is even.

Looking at Egs. (3.17) and (3.18), the initial (guess) values of the weights for
a new SRJ scheme with an additional level (P’ = P 4 1) can be built providing
suitable estimates of the smallest and largest weights, which are obtained by
fitting to two conics the values of the smallest and largest weights computed
for SRJ schemes with P — 3 to P levels, and then extrapolating the result. For

instance, in Fig. 3.2 we show the values of w; and wp as a function of P with
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red and blue symbols, respectively. If we want to obtain the initial values of
wy and wp for P = 6, we fit the values of w; and, separately, those of wp for
w=aP?+bP+c
depending on the flatness of the points, an infer the value for our P (in Fig. 3.2,

P =2,...,5 to a hyperbola w = 7

the fit functions are plot with continuous lines, and the extrapolated values of

w1 and wp for P = 6 with squares).

As we shall see in Sect. 3.3.4 and improving on the procedure outlined in
this section, we do not need to provide initial values of 8, since they can be

obtained analytically from the values of w.

3.3.4 Advanced analytical improvements

So far, following basically the same procedure as in YM14, we have obtained
optimal SRJ algorithms with up to P = 10 levels and multiple numerical
resolutions. However, the limitations of the methodology of YM14 to compute
optimal parameters for multilevel SRJ schemes prevents to develop algorithms
with more than 10 levels. In this section, we will show a new methodology
to evaluate the parameters of optimal SRJ schemes with up to P = 15 levels
and resolutions of up to 2'° points per spatial dimension of the problem, which
in some cases may yield accelerations of order 10% with respect to the Jacobi
method. For a straightforward use of the newly developed SRJ schemes, we
provide the readers with a comprehensive set of tables for different SRJ schemes

and different resolutions in appendix B

Here we prove two important theorems, which tell us how to calculate
analytically the ancillary Varlableb and the parameters B of the SRJ schemes
in terms of the w and k variables. Let us start with some technical results we
need for the proof of these theorems. Notice that in all products appearing from
now on, each index of the product refers only to expressions containing that

particular index.

Lemma 1. Let A and B be two matrices defined as A := (a;5) = ( ribs ) and

17!{1' Wy

17%,; wj

A'=A=(ay) and B-' =B = (l;ij), are given by:

B = (b;) = (M>, i,7=1,...,P — 1, respectively. The inverse matrices,

—kjwi)(1 —Kpw)(1 — Kjw)
Qs , (3.19)
T kHlll—[l Bikj (k= k) (wr — wi)
k#7 1#1
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ﬁ(l—nkwi)(l—njwl). (3.20)

Proof. We just need to check that Zle AijGjm = 21‘11 Eijbjm = 0jm. For

convenience, we define Kp := Kmax.

We will start checking that

P 1 PP 1t kw) PP )

D B — Climw) | _ G

= (1t Ky wm) kl;[”l;[l (kj — k) e l;[ 1;[ —1+ K w;)
kA £ I#i

(3.21)
We consider first the case where i # m. In general, taking into account that all
the k; are strictly different, for a polynomial F'(x), with deg F'(x) < P — 1, we

can do a partial fraction decomposition of the following form:

_ F@) = Fy) [ 1
Hf:_f(x — Kj) a = (x — Kj) kI;[l (kj —rr) | (3.22)
k#j

Considering F(x) = H =1 (=14 2 w;) in the above expression, and evaluating
at x = Kkp, we get the desured expression.

We consider now the remaining case ¢ = m. For convenience, we define
Ko = 1/w;, that satisfies kg # k;,j =1,..., P — 1. For a polynomial F'(x), with

deg F'(x) < P, we can do a partial fraction decomposition of the following form:

Fr) N~ Ps) (70 5.93
L5 (@—r) = (@) gq(ﬂj—ﬁk) . (3.23)

Considering F(z) = [[/21(~1 + 2z w;) in the above expression, and evaluating at
1#i
r = Kkp, we get the desired result.

We use this equality to check the expression for the inverse matrix A=! (as

well as B~! below):

P P P P
~ Bm "ij wz -1 +K3sz 1+ij wl)
Qi Qi = ——
j; jaj Z; 1—n]wm 1;[1;[ Kj — ki) (w; — wy)
KA 1
ST 1) (e ) R ) et
Bi Palee (w; —wy) o (—1+Kjwm) Palee (Kj — ki)
l#1 k#7 l#1
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—1+ K w;) OB (wi—w) -
kl_Il l]:E — wi) 1];[ 1;[ —1 + Krw;) Sim = Oim-  (3.24)
1#1 %

Finally, we check the expression for the inverse matrix B~!:

P
bijbim
j=1
_ (W, —wp) Pflji:f( 1+ kg w;) EP: Fﬁ1P71 (_1_’_&]0‘”)
(wz - WP) k=1 I=1 (wz - (JJ[ ]:1 -1 + K?] (JJ,”) Pl 11 (/‘i] — K’k)
17 k) i#i
wW; —wWp
O]
Theorem 1.
P P P K/]Wz :‘ikwi) (1 — Iijwl) 1-— KjWq
Z H H log . (3.26)
j=1k=11=1 ﬁl’i] k_’%J) (wl_wi) 1—I€ij
k#j 1#1

Proof. We have that k; with j = 1,..., P — 1 are the roots where the local
extrema are located. We will also use the already defined xp. Taking into
account the Egs. (3.14) and (3.15), for a fixed value of [,1 <[ < P —1, we
construct the linear system A g—‘é’ = f, which in components reads:

ai,elwl log |1 — k1w /1 — K1wp|
)
75wz log |1 — Kow; /1 — Kowp|
[aij] . l: = . y (327)
a%LwP log |1 — kpwi/1 — Kpwp|

where a;; is defined in Lemma 1. We can solve for the ancillary variables

g‘g?, i=1,...,P, j=1,...,P—1, analytically, just inverting the matrix A:
J

a%lwl log |1 — k1w /1 — K1wp|
9
=2 (g log |1 — Kow; /1 — Kowp|
o = [ai] 7" - . (3.28)
B%pr log|1 — kpw;/1 — Kpwp]

Using Lemma 1 to get the expression of the inverse matrix and doing the
corresponding matrix product, we obtain Eq. (3.26). Notice that we obtain the
same results when we consider ki, instead of kp. O
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Theorem 2.

(3.29)

Proof. We consider now the P — 1 equations resulting from Eq. (3.12) when & is
replaced by k;,i=1,..., P —1. We write 8p = 8p(5;), and obtain:

(1 —wj/wp)

i=1i=1,...,P—-1 3.30
(1_lej) /8] 7Z bl I’ i ( )

j=1

These equations can be rewritten in matrix form, B@ = g, which in components

reads:
b1 1
1
[bi,] [3:2 =1 .| (3.31)
Bp-1 1

where b;; is defined in Lemma 1. Using Lemma 1 to get the expression of the
inverse matrix and doing the corresponding matrix product, we obtain:
P-1 P

= (A —rjw) (=14 mpwi)(=1+K;jw)
PZ (1 —rjwp) UH (kj — fg)(wi — wi)

P
(=1 + kg w;y) (—1+k;w)
=wp ~ " —_ 3.32
I1 (wi — wi) Z;UH (kj — Fr) (332)
7j=1 k=1 I=1
k#j 1#i
In particular, using the simplification proven at the beginning of Lemma 1 for

i = m, changing P by P — 1, and setting w; = 0 just formally, we also get that:

- P-1
TS| = T 339
J =1

j=1 \ k=1 I=1 =
k#j 1#i 1#i
Using this expression,
P-1 P
(=1 + kg w;) wy
Bi = - (3.34)
==
I#i
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3.3.5 Advantages of the rewritten system

In the most general case, as we have commented above, we need to solve a
system S(w, 3, K, g—‘g). With the theorems recently introduced in Sect. 3.3.4,
which basically express g—‘g as g—;’(w, k) and B also as B(w, k), and substituting
them into Eq. (3.13) and Eq. (3.14), the non-linear, algebraic-differential system
reduces to a purely algebraic system of the form S(w, k).

We have developed a code that implements everything commented in Sect. 3.3.3
and that automatically constructs the system and solves it for any value of P.
This program is written in Mathematica (a pseudocode of which can be found

in Alg. 1) and combines both symbolic with numerical calculations.

Data: I', N
Result: w, B

(Kmin s Kmax) ¢ computeKappas (V) // Egs. (3.8), (3.9)

for j=1,...,P—1 do
: ol
| BT - G5 T

end

for i=1,...,P do

| equMax[i] < TI'(ko) == I'(k;) // Eq. (3.13)
end

for 1=0,...,P do

for j=1,...,P—1 do

| equDer[i] < dI'8[j](k;) ==0 // Egs. (3.14), (3.15)
end

end

for i=1,...,P do

for ¢g=1,...,P—1 do

‘ dwdf[i] [¢] «+ symbolicAncillaryVariables() // Eq. (3.26)

end
end
for i=1,...,P—-1 do
‘ Bli] < symbolicBetas() // Eq. (3.29)
end

(wg,Kky) ¢ computeInitialGuesses() // Egs. (3.17), (3.18), (3.36)
(w,k) ¢ findScheme(equMax[],equDer[],dwdB[]1,H[],w,,Kky)
B < computeBetas(w,k,[[]) // Eq. (3.29)

return w, 8
Algorithm 1: Pseudocode for computing optimal schemes.

We obtain two major benefits from the new system of equations to be solved:
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1. For any given number of levels P, we reduce by orders of magnitude the

computing time in the generation of the symbolic system that we need
to solve. Furthermore, the analytic reduction of the system presented
above allows us to reduce its dimensionality, by reducing the number of
equations and unknowns from P? 4+ P — 1 to P. The consequence of such
reduction is that the number of operations needed to solve the system
as well as the number of initial guesses we must provide to begin its
iterative solution decreases drastically. Thereby, the numerical stiffness
of the original system decreases, since it is fundamentally brought by the
difficulty in finding good initial guesses for all the variables involved in its
solution. In Sect. 3.3.3, we built S(w, 8) and needed a lot of time for the
symbolic calculations involved in obtaining, on the one hand, g—‘g(w, B),
solving the corresponding linear subsystem (Eq.3.31) and, on the other
hand, k(w,B). With the new methodology, employing Egs. (3.26) and
(3.29), we exchange the role of 8 and k, since we have analytic formulae to
express the ancillary variables and B as functions of w and k, respectively.
With the consequent reduction in the calculation time, the computational

time to solve the remaining equations becomes negligible.

. The solution of the non-linear system to obtain the optimal SRJ parameters

needs a suitable methodology to compute their initial values (Sect. 3.3.3).
In Sect. 3.3.3, we had to provide initial values for w and 8. With the
newly derived theorems, we only need to provide initial guesses for w, since
employing Eq. (3.29) 8 = B(w, k), and k satisfies

Ki € (1, ! ) (3.35)

Wi Wit1

From the plots of T' (see, e.g., Fig.3.1), we can see that each maximum x;

is roughly placed at:
1 1
1 Wit | w
e e 3.36
K " + 3 ( )

which are the values that we will use as initial guesses.

With these two improvements, we have reduced by four orders of magnitude
the total computational time for finding the parameters of an optimal scheme.
For example, for P = 10, it was necessary to spend a calculation time in
Mathematica of the order of one week with the methodology employed by
Sect. 3.3.3. In contrast, with the improvements reported here, we can accomplish

the same task in tens of seconds. While, in practice, in Sect. 3.3.3 we were
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limited (due to the computing time) to SRJ schemes with P < 10, now we can

tackle larger number of levels.

3.4 Results

Now we first calibrate our new method comparing the parameters of our SRJ
schemes with those of YM14 for P < 5 (Sect.3.4.1). Later (Sect.3.4.2), we
present new optimal schemes computed employing the new methodology sketched
previously, up to P = 15.

3.4.1 Calibration of the method

To calibrate the new methodology, we have recomputed the optimal parameters
for SRJ schemes with P < 5 and found that our results are the same as those
obtained by YM14, when we use the same number of points per dimension N
on the same model problem (Eq.3.1).

Following the ideas of YM14, the performance of any SRJ scheme with respect
to the Jacobi method can be quantified estimating the convergence performance

index, p, B
p = szﬂi (3.37)
i=1

which we have calculated for each SRJ method we have computed, and checked
that it approaches its theoretical value when we solve numerically (Eq.3.1). We
point out that the value of p depends on the dimensionality of the problem since
the value of kmin does (see, Eq. 3.9).

YM14 showed that the optimal parameters computed for coarser grids can be
used for finer ones. Nevertheless, minimizing the gaps between different values of
N is important because the acceleration of the convergence with respect to the
Jacobi method may not be the largest possible unless we compute the optimal

SRJ parameters corresponding to a given problem size. Thus, we have completed

the tables presented by YM14 minimizing the possible gaps between resolutions.

Furthermore, we have computed the optimal SRJ parameters for a number of
intermediate values of N in Tab. B.2, where we also show the value of p. In
order to verify the correct behaviour of the schemes computed, we monitor in
Fig. 3.3 the evolution of the difference between two consecutive approximations
of the solution for the model problem specified in Eq. (3.1),

ro=n — un,flj (338)
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Figure 3.3 Comparison of the evolution of the difference between consecutive approximate
solutions (||7™||e0) of Eq. (3.3) of SRJ schemes from P =2 to P =5 for a grid with N = 256
and with N = 512 zones per dimension. We also include the evolution of the residual for the
Jacobi method as a reference.
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using element-wise norms and operations, that in the bidimensional case would
be, for example,

17" loe = mex i, (3.39)

as a function of the number of iterations n for SRJ schemes having all the values
of P given by YM14. In the same figure, we also include the residual evolution for
the Jacobi method (black line). As expected, the number of iterations to reach
the prescribed tolerance decreases® as P increases. For all the schemes shown in
Fig. 3.3, where the number of points is set to N = 256, we have obtained the

expected theoretical value of p.

3.4.2 New SRJ optimal schemes

After verifying that we recover the optimal parameters computed in YM14, we
have improved on their results computing the optimal values of SRJ schemes
with P > 5. In App. B we provide the Tables B.3 to B.19, corresponding to the
optimal parameters for SRJ schemes with P = 6,...,13 and various resolutions
for the Laplace problem (Eq.3.1). In Tables B.21, and B.23, we show the optimal
solution parameters for P = 14 and P = 15.

We encountered that finding optimal parameters at low resolution is increas-
ingly more difficult as the number of levels increases. Indeed, as we can see,
for P = 15 the minimum value of N we have been able to compute is 64. The
reason for the inability of the proposed method to find optimal parameters for
low N and large P is that larger values of P imply that the results are extremely
sensitive to tiny changes in the smaller wave numbers (i.e., to the values of
K; close t0 Kmin), and small numerical errors prevent a full evaluation of the
solution of the non-linear system S, unless the (guessed) initial values are very
close to the optimal ones.

We remark that thanks to the improvements done (Sect. 3.3.3) and specially
with the analytic solution of a part of the unknowns of the system (Sect. 3.3.4),
not only the optimal solution is achievable, but also it is reachable with a moder-
ate computational cost: employing Mathematica on a standard workstation, the
computational time of the optimal parameters ranges from tenths of a second
for the P = 6 scheme to tens of seconds for P = 15.

In Fig. 3.4 we show the evolution of the residual for some of the new optimal
SRJ schemes solving the model problem used throughout the section. These new
schemes show a progressively larger efficiency as P grows. A good proxy for the

31f not explicitly mentioned, in all the cases considered here the absolute tolerance is fixed
so that ||r"||co < 10710,
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performance of the method is the convergence performance index, which grows
with the number of levels. We achieve a reduction in the time of computation
to solve the problem because of the reduction in the number of iterations to
reach convergence. This reduction is roughly proportional to Plog;o(P + 1).
However, the rate of reduction of the error is non monotonic. For large values
of P (namely, P > 12), a direct inspection of Fig.3.4 shows a faster decline
of the residual once any given SRJ method reduces its residual below the one
corresponding to the Jacobi method (in this case, this happens after about 4.500

iterations).

[EIS

| | | |
5000 10000 15000 20000
Number of iterations

Figure 3.4 Comparison of the residual evolution for the optimal SRJ schemes with P = 6,9, 12
and 15 and N = 1024 points per dimension. For reference, we also include the evolution of the
residual for the Jacobi method (black line).

3.4.3 Obtention of the integer parameters q

There is a step in the practical implementation of SRJ methods that may impact
on the performance of the resulting algorithm, measured by the number of
iterations needed to reduce the residual below a prescribed tolerance. Once the
solution has been found and we know the real values of w and B, one must
obtain the integer values of q. The conversion to integer begins by defining

B = %, so that f; = ¢ = 1. For the conversion to integer of the rest of
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the f; (i =2,...,P), we have tested several possibilities, including the floor
q = | B, rounding B to the nearest integer, taking the ceiling function q = [B],
or combinations of the former alternatives, since it is possible to apply different
recipes for every (3;/31. Each of these alternatives may yield a different number
of iterations to reach convergence (see below). After computing the integer
values of g, a key point to account for is that the I'(x) function must remain
below 1, since otherwise our method diverges. In Fig. 3.5 (upper panel) we
observe that the amplification factor per M-cycle may change by more than
10%, for values of k close to Kmax, depending on the method adopted to convert
B to integer.

While the number of levels is small, the differences among the distinct
conversions from real to integer do not change much either the number of
iterations or the convergence rate of the resulting scheme. However, when P
increases, there can be non-negligible changes in the total number of iterations
to reduce the residual of our model equation below a prescribed tolerance. In the
lower panel of the Fig. 3.5 we show the evolution of the residual as a function of
the iteration number for two different choices of the integer conversion of 8 into
g in the case P = 6 (the optimal parameters of which can be found on Tab. B.4).
We note that there is a difference of more than 1200 iterations (~ 25%) between
the distinct integer conversions. Unfortunately, changing the number of levels,
the same recipes for converting reals to integers yield efficiencies of the methods
that do not display a clear trend. Fortunately, increasing the number of levels by
one unit results in a reduction of the number of iterations to reach convergence
which is larger than that resulting from any manipulation of the integer values
of g; in an SRJ scheme with a given P. Hence, in the following, the results we
will provide are obtained by taking simply ¢; = | 5;/51].

3.5 Numerical example: Poisson equation with

Dirichlet boundary conditions

So far we have considered only the application of SRJ schemes to the solution of
the Laplace equation with homogeneous Neumann boundary conditions (Eq. 3.1).
This was also the case in YM14. Here we consider a case study consisting on
solving a Poisson equation in two dimensions endowed with Dirichlet boundary
conditions. The exact problem setting reads

0 0 w2 2

2@ y) + @U(Ly) =—e"(@"+y7), (z,9)€(0,1) x(0,1),
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Figure 3.5 Comparison of the evolution of the residual of Eq. (3.3) of two SRJ schemes having
P =6 and N = 256 zones per dimension. Top: mean amplification factor per M-cycle. Bottom:
evolution of the residual as a function of the number of iterations. The different variants of
the P = 6 SRJ method are displayed with different color lines showing the dependence of the
performance of the method on the conversion of the real values of the optimal solution for 3;
to the integer values ¢; = |8;/81] (blue) and ¢; = [B;/B1] (violet).
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u(O,y) = _1, u(l,y) = _eyv y e [07 1]3 (340)
u(z,0) = —1, u(x,1) = —€”, x €10,1],
which has analytic solution:
u(z,y) = —e*. (3.41)

This kind of problem will help us to assess whether the change in the boundary
conditions affects the efficiency of an SRJ scheme. Imposing Dirichlet boundary
conditions is typically less challenging than dealing with Neumann ones, since

Dirichlet boundary conditions change the value of Kpyax so that (YM14)

o — 2 m ) ™
Km,Dirichlet = SII1 (2 Nw) + sin (2 Ny> ) (3.42)

to be compared with Eq. (3.8). Hence, the optimal SRJ values obtained for a

given N and Neumann boundary conditions do not exactly coincide with those
optimal in problems involving Dirichlet boundary conditions, hence we must
follow the recipe provided in Eq. (3.11). Furthermore, since in Eq. (3.41) we are
considering a Poisson equation, we can test whether the presence of source terms
modifies the performance of SRJ methods.

For the case studied we choose a discretization consisting on N, x N, =
585 x 280 uniform numerical zones. Although here we do not have Neumann
boundary conditions, we will use the optimal values of the SRJ scheme for
this case in order to show that even though this choice is not optimal, still it
substantially speeds up the solution of the problem with respect to Jacobi. In
this case, we have that N = 585. If we apply the SRJ scheme with P = 10, we
must look for the w and the 8 parameters in Tab.B.12. In this case, the table
does not provide an entry for N = 585, but as YM14 point out, we can chose as
(non-optimal) parameters for the SRJ scheme those corresponding to a smaller
resolution.* In our case, the closest resolution that matches this criterion in
Tab. B.12 is that corresponding to the row with N = 550.

We use the simplest way to obtain the ¢; from the [; ensuring convergence,

namely ¢; = {%J with 1 <+¢ < P, resulting in

q=1{1,1,3,9,21,49, 116, 268, 587, 1014}, M = 2069. (3.43)

This means that we will use wy; = 106105 and w, = 40577.2 once per M-
cycle, ws = 10230.6 three times per M-cycle, etc. In practice, it is necessary to
distribute the largest over-relaxation steps over the whole M-cycle to prevent

the occurrence of overflows. YM14 provide a Matlab script that generates a

41t is, however, possible to compute the optimal values for N = 585 employing our algorithm.
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Figure 3.6 Evolution of the residual as a function of the iteration number for different SRJ
schemes. With violet line we show the case in which the parameters of an SRJ scheme with
P =10, N = 550 and Neumann boundary conditions are chosen to compute the solution of
the problem stated in Eq. (3.41), on a grid of N, X Ny = 585 x 280 and Dirichlet boundary
conditions. With blue line we show the case in which the parameters of an SRJ scheme with
P =10, N = 252 and Neumann boundary conditions are used. The latter case corresponds

to the closest value of N to the effective resolution Né?f) = 252.56 that shall be used when
Dirichlet boundary conditions (instead of Neumann ones) are used. For comparison, we also
display the evolution of the residual for the Jacobi method.

schedule for the distribution of w; on the M-cycle that guarantees the absence
of overflows. We find that an even distribution of the over-relaxations over the
entire M-cycle is sufficient in order to avoid overflows.

In Fig. 3.6 we plot the evolution of the residual as a function of the number
of iterations for a SRJ scheme with P = 10, N = 550 (instead of N = 585),
as well as the residual evolution employing the Jacobi method for the solution
of Eq. (3.41). This example shows that even picking an SRJ scheme whose
parameters are non-optimal for the problem size at hand (N = 585 in this case),
for the presence of source terms and for the kind of boundary conditions specified
(Dirichlet for the problem at hand), we can largely speed up the convergence
with respect to the Jacobi method. Theoretically, for the optimal P = 10,
N = 550 SRJ method, an acceleration of the order of p = 125.85 with respect to
the Jacobi method is expected, something confirmed with our numerical results
(Fig. 3.6).
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Finally, we briefly illustrate how to find the optimal scheme for Dirichlet
boundary conditions (which are, indeed, the ones with which the problem at
hand is set). According to Eq. (3.11), Ne(fzf) = 252.56. Therefore, we compute

the optimal parameters for the SRJ scheme with N = 252, obtaining:

w = {22912.5,10310.7, 3128.79, 836.313, 216.061, 55.4614,
14.3482, 3.85729, 1.19337, 0.556912} (3.44)
q={1,1,3,6,13,29,62, 131, 256, 401}. (3.45)

In Fig. 3.6 we can see that the results are slightly better than for the (non-
optimal) set of parameters with P = 10, N = 550 and Neumann boundary
conditions, since in the case with N = 252, the accuracy goal is reached with
~ 5% less iterations. However, this small deviation (motivated by the choice of
non-optimal parameters) can be overcome in, at least two ways when selecting a
non-optimal scheme for the problem at hand. First, by noting that the difference
in the number of iterations can be reduced by employing different methods for
the conversion from real to integer of the values of q (see Sect.3.4.3). Second,
by increasing the number of levels of the SRJ scheme. This is another reason to
add to the relevance of the work presented here, since increasing P tends to yield
schemes that converge in less iterations (basically at no extra computational

cost).






Chapter 4

On the equivalence between
the Scheduled Relaxation
Jacobi method and
Richardson’s non-stationary
method

The results of this chapter have been originally published in:
On the equivalence between the Scheduled Relaxation Jacobi method and
Richardson’s non-stationary method,
JE Adsuara, I Cordero-Carrién, P Cerda-Duran, V Mewes, MA Aloy,
Journal of Computational Physics 332, 446-460 (2017)
The text in the following sections corresponds to an edited version of the

aforementioned publication.

4.1 Introduction

The SRJ method can be expressed for a linear system Au = b as
u" = u" 4+ w, Db — Au™), (4.1)

where D is the diagonal of the matrix A. If we consider a set of P different

relaxation factors, w,, n =1,..., P, such that w,, > w,y+1 and we apply each



54

On the equivalence between the Scheduled Relaxation Jacobi method and
Richardson’s non-stationary method

relaxation factor ¢, times, the total amplification factor after M := 25:1 qn

iterations is

P
G]u H 1—w, Ii q" (42)

which is an estimation of the reduction of the residual during one cycle (M
iterations). As we have shown in the previous chapter, in the former expression
K is a function of the wave-numbers obtained from a von Neumann analysis of
the system of linear equations resulting from the discretization of the original
elliptical problem by finite differences (for more details see [Yang and Mittal
2014]). Yang & Mittal [Yang and Mittal 2014] argued that, for a fixed number P
of different weights, there is an optimal choice of the weights w,, and repetition
numbers ¢, that minimizes the maximum per-iteration amplification factor,
Tar(k) = |Gar(k)|VM, in the interval & € [Kmin, Kmax] and therefore also the
number of iterations needed for convergence. The boundaries of the interval in
k correspond to the minimum and the maximum weight numbers allowed by the
discretization mesh and boundary conditions used to solve the elliptic problem
under consideration.

In the aforementioned paper, [Yang and Mittal 2014] computed numerically
the optimal weights for P < 5 and we have extended the calculations up to
P =15 (see previous chapter and ACCA15). The main properties of the SRJ,
obtained by [Yang and Mittal 2014] and confirmed by us, are the following:

1. Within the range of P studied, increasing the number of weights P improves
the rate of convergence.

2. The resulting SRJ schemes converge significantly faster than the classical
Jacobi method by factors exceeding 100 in the methods presented by [Yang
and Mittal 2014] and ~ 1000 in those presented in Sect. 3.3.4. Increasing

grid sizes, i.e. decreasing ki, results in larger acceleration factors.

3. The optimal schemes found use each of the weights multiple times, resulting
in a total number of iterations M per cycle significantly larger than P, e.g.
for P =2, [Yang and Mittal 2014] found an optimal scheme with M = 16
for the smallest grid size they considered (N = 16), while for larger grids
M notably increases (e.g., M = 1173 for N = 1024).

The optimization procedure outlined by [Yang and Mittal 2014] has a caveat
though. Even if the amplification factor were to reduce monotonically by
increasing P, for sufficiently high values of P, the number of iterations per

cycle M may be comparable to the total number of iterations needed to solve



4.1 Introduction

55

a particular problem for a prescribed tolerance. At this point, using a method
with higher P, and thus higher M, would increase the number of iterations to
converge, even if the I'(k) is nominally smaller. With this limitation in mind we
outline a procedure to obtain optimal SRJ schemes, minimizing the total number
of iterations needed to reduce the residual by an amount sufficient to reach
convergence or, equivalently, to minimize |Gs(k)|. Note that the total number
of iterations can be chosen to be equal to M without loss of generality, i.e. one
cycle of M iterations is needed to reach convergence. To follow this procedure
one should find the optimal scheme for fixed values of M, and then choose M
such that the maximum value of |Gy (x)| is similar to the residual reduction
needed to solve a particular problem. The first step, the minimization problem,
is in general difficult to solve, since fixing M gives an enormous freedom in the
choice of the number of weights P, which can range from 1 to M. However, the
numerical results of [Yang and Mittal 2014] and ours presented in Sect. 3.3.4,
seem to suggest that in general increasing the number of weights P will always
lead to better convergence rates. This leads us to conjecture that the optimal
SRJ scheme, for fixed M, is the one with P = M, i.e. all weights are different
and each weight is used once per cycle, ¢; = 1, (i = 1,...,M). In terms of
the total amplification factor Gps(k), it is quite reasonable to think that if one
maximizes the number of different roots by choosing P = M, the resulting
function is, on average, closer to zero than in methods with smaller number of
roots, P < M, and one might therefore expect smaller maxima for the optimal
set of coefficients. Omne of the aims of this work is to compute the optimal
coefficients for this particular case and demonstrate that P = M is indeed the

optimal case.

Another goal of this section is to show the performance of optimal SRJ
methods compared with optimal SOR algorithms applied to a number of different
discretizations of the Laplacian operator in two-dimensional (2D) applications
(Sect. 4.3). We will show that optimal SRJ methods applied to high-order
discretizations of the Laplacian, which yield iteration matrices that cannot be
consistently ordered, perform very similarly to optimal SOR schemes (when
an optimal SOR weight can be computed). We will further discuss that the
trivial parallelization of the SRJ methods outbalances the slightly better scalar
performance of SOR in some cases (Sect. 4.4). Also, we will show that the optimal
weight of the SOR method can be suitably approximated by functions related to
the geometric mean of the set of weights obtained for optimal SRJ schemes. This

is of particular relevance when the iteration matrix is non-consistently ordered
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and hence, the analytic calculation of the optimal SOR weight is extremely

intricate.

4.2 Optimal P = M SRJ scheme

Let us consider a SRJ method with P = M and hence ¢, =1, (n=1,..., M).
For this particular choice, the amplification factor Gj;(k) is a polynomial of
degree M in x with M different roots. In this case, the set of weights w,, that
minimizes the value of the maximum of |G,/ (k)|, given by Eq. (4.2), in the
interval £ € [Kmin, Kmax), 0 < Fmin < Fmax ©, can be determined by the definition
of the amplification factor

Gu(0) =1, (4.3)

and by the following M conditions?:
GM(HTL):—GM(K”+1), ’I’L:O,...,M—l, (44)

where kg = Kmin, KM = Kmax, and kn, n = 1,..., M — 1 are the relative
extrema of the function Gp(k). To simplify further we rescale x as follows:

KR — Rmin

=2 —1. (4.5)

Kmax — KFmin
As a function of & the amplification factor is G s (%) = Gas(r(%)). In the resulting
interval, & € [—1,1], there is a unique polynomial of degree M such that the
absolute value of Gy (&) at the extrema #; is the same (fulfilling Eqs. (4.4)) and
such that Gy;(%(0)) = 1. This polynomial is proportional to the Chebyshev
polynomial of first kind of degree M, Ths(x), which can be defined through the
identity Tps(cosf) = cos(M 6). This polynomial satisfies that

Tar(=1)] = [Tar(Rn)| = [T (+1) =1, n=1,....M—1,  (46)

with &; being the local extrema of T (%K) in [—1, 1]. The constant of proportion-
ality can be determined from Eq. (4.3), and the amplification factor reads in this

case

5 o Tu(R)
GM(H)—W ; R(0) =—

(1= Fon /Formae) < —1. (4.7)

1In this work, Kmin and Kmax are assumed to be strictly positive as the discretization of an
elliptic problem leads to a matrix A that is positive definite. In problems where it is not, a
simple option is to work with the matrix AT A and the equivalent system AT Au = ATb.

2These conditions result from the solution of a global min-max optimization problem over
G (k) or, equivalently, over 'y (k) (see Appendix B of [Yang and Mittal 2014]).
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This result is equivalent to Markoff’s theorem®. Note that the value of &(0)
does not depend on the actual values of Kyin and Kmax, but only on the ratio
Kmin/Fmax- The roots and local extrema of the polynomial T (%) are located,

respectively, at

2n—1
ot =— =1,...,M 4.8
o, COS(?T 2M>’n yeey M, (4.8)
/%nzcos(w%>, n=1,...,.M —1, (4.9)

which coincide with those of G (%). Therefore, the set of weights

—1
2n—1
n =2 max min — (Fmax — Amin ) :17---5Ma
w Kmax + K (k K )cos(w i )} n
(4.10)

corresponds to the optimal SRJ method for P = M.

We have found with the simple analysis done that the optimal SRJ scheme
when P = M is fixed turns out to be closely related to a Chebyshev iteration
or Chebyshev semi-iteration for the solution of systems of linear equations (see,
for instance, [Gutknecht and Rallin 2002] for a review). This is especially easy
to realize if we consider the original formulation of this kind of methods, which
appeared in the literature as special implementations of the non-stationary
or semi-iterative Richardson’s method (RM, hereafter; see, e.g., [Young 1953,
Frank 1960] for generic systems of linear equations, or [Shortley 1953] for the
application to boundary-value problems). [Yang and Mittal 2014] argued that,

for a uniform grid, Eq. D.2.4 is identical to that of the RM [Richardson 1911].

There is, nevertheless, a minor difference between Eq. D.2.4 of the SRJ method
and the RM as it has been traditionally written [Young 1954b], that using our
notation would be u"*! = u™ + &, (b — Au™), which gives the obvious relation

n = wnpd™!, in the case in which all elements in D are the same and equal to d.

We note that this difference disappears in more modern formulations of the RM
(e.g., [Opfer and Schober 1984]), in which the RM is also written as a fixed point
iteration of the form u"*t! = Twu" 4+ ¢, with T =T — B~'A, c = B~'b and B any
non-singular matrix. Differently from the RM in its definition by Young [Young
1954b), our method in the case M =1 would fall in the category of stationary
Generalized Richardson’s (GRF) methods according to the textbook of Young
[Young 1971, chap. 3]. GRF methods are defined by the updating formula

"t =" 4 P(Au™ —b) (4.11)

3For an accessible proof of the original theorem [Markoff 1916] , see Young’s textbook
[Young 1971], Theorem 9-3.1.
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where P is any non singular matrix (in our case, P = —w, D ™). In the original
work of Richardson [Richardson 1911], all the values of &, ! were set either
equal or evenly distributed in [a, b], where a and b are, respectively, lower and
upper bounds to the minimum and maximum eigenvalues, \;, of the matrix A
(optimally, @ = min ();), b = max (\;)). If a single weight is used throughout
the iteration procedure, a convenient choice is @ = 2/(b+ a).*

Yang & Mittal [Yang and Mittal 2014] state that the SRJ approach to
maximizing convergence is fundamentally different from that of the stationary
RM. They argue that the RM aims to reduce I'(k) uniformly over the range
[Fmin, ©max] Dy generating equally spaced nodes of T" in this interval, while SRJ
methods set a min-max problem whose goal is to minimize |I‘|max.5 As a result,
SRJ methods require computing a set of weights yielding two differences with
respect to the non-stationary RM in its original formulation [Yang and Mittal
2014):

1. the nodes in the SRJ method are not evenly distributed in the range

[Kfmin7 ’imax];

2. optimal SRJ schemes naturally have many repetitions of the same relax-
ation factor whereas RM generated distinct values of @, in each iteration

of a cycle.

From these two main differences, [Yang and Mittal 2014] conclude that while
optimal SRJ schemes actually gain in convergence rate over the Jacobi method
as grids get larger, the convergence rate gain for Richardson’s procedure (in
its original formulation) never produces acceleration factors larger than 5 with
respect to the Jacobi method. This result was supported by Young in his Ph.D.
thesis [Young 1950, p.4], but on the basis of employing orderings of the weights
which did pile-up roundoff errors, preventing a faster method convergence (see
point 2 below).

The difference outlined in point 1 above is non existent for GRF methods,
where the eigenvalues of A are not necessarily evenly distributed in the spectral
range of matrix A (i.e., in the interval [a,b]). We note that Young [Young 1953]
attempted to chose the @, parameters of the RM to be the reciprocals of the

4In the case of SRJ schemes with P = M, it is easy to demonstrate (see A.2) that the
harmonic mean of the weights wy, very approximately equals the value of the inverse weight of
the stationary RM (2d*1/(nmax + Kmin) >~ 2/(b+ a)).

5We note that this argument does not hold in the implementation of the non-stationary
RM method made by Young [Young 1953], since in this case one also attempts to minimize

|F‘max-
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roots of the corresponding Chebyshev polynomials in [a, b], which resulted in a

method that is almost the same as ours, but with two differences:

First, we do not need to compute the maximum and minimum eigenvalues
of the matrix A; instead, we compute Kyax and Kmin, which are related to the
maximum and minimum frequencies that can be developed on the grid of choice
employing an straightforward von Neumann analysis. Indeed, this procedure
to estimate the maximum and minimum frequencies for the elliptic operators
(e.g., the Laplacian) in the continuum limit allows applying it to matrices that
are not necessarily consistently ordered, like, e.g., the ones resulting from the
9-point discretization of the Laplacian [Adams, LeVeque, and Young 1988]. In
Sect. 4.4 we show how our method can be straightforwardly prescribed in this

case and other more involved (high-order) discretizations of the Laplacian.

Second, in Young’s method [Young 1953] the two-term recurrence relation
given to solve Au = b turned out to be unstable. Young found that the reason
for the instability was the build up of roundoff errors in the evaluation of the
amplification factor (Eq.4.2), which resulted as a consequence of the fact that
many of the values of w, can be much larger than one. Somewhat unsuccessfully,
Young [Young 1953] tried different orderings of the sequence of weights w,,, and
concluded that, though they ameliorated the problem for small values of M, did
not cure it when M was sufficiently large. Later, Young [Young 1954b, Young
1956] examines a number of orderings and concluded that some gave better
results than others. However, the key problem of existence of orderings for which
RM defines a stable numerical algorithm amenable to a practical implementation
was not shown until the work of Anderssen & Golub [Anderssen and Golub
1972]. These authors showed that employing the ordering developed by Lebedev
& Finogenov [Lebedev and Finogenov 1971] for the iteration parameters in the
Chebyshev cyclic iteration method, the RM devised by Young [Young 1953]
was stable against the pile-up of round-off errors. However, Anderssen & Golub
[Anderssen and Golub 1972] left open the question of whether other orderings
are possible. In our case, numerical stability is brought about by the ordering
of the weights in the iteration procedure. This ordering is directly inherited
from the SRJ schemes of [Yang and Mittal 2014], and notably differs from
the prescriptions given for two- or three-term iteration relations in Chebyshev
semi-iterations [Gutknecht and Rallin 2002] and from those suggested by [Young
1953]. Indeed, the ordering we use differs from that of [Lebedev and Finogenov
1971, Nikolaev and Samarskii 1972, Lebedev and Finogenov 2002] (see A.1).
Thus, though we do not have a theoretical proof for it, we empirically confirm

that other alternative orderings work.
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Taking advantage of the analysis made by [Young 1953], we point out that

the average rate of convergence of the method in a cycle of M iterations is

1 -
Ras = =108 [Ty (RO, (1.12)
and it is trivial to prove that for £ € [Kmin, Kmax]
1
Gu(r) < |———| <1, 413
w0 < | i) )

providing a simple way to compute an upper bound for the amplification factor
for the optimal scheme. This condition also guarantees the convergence of the
optimal SRJ method. Therefore, if we aim to reduce the initial residual of the

method by a factor o, we have to select a sufficiently large M such that

o > T (%(0))] 71 (4.14)

It only remains to demonstrate that the optimal SRJ scheme with P = M is
also the optimal SRJ scheme for any P < M. Markoff’s theorem states that for
any polynomial Q(x) of degree smaller or equal to M, such that 3zg € R, zo < —1,
with Q(z0) = 1, and Q(x) # Tar(x)/Ta(z0), then
Ty ()
T (o)
This theorem implies that any other polynomial of order P < M, different from

max |Q(x)| > max‘

Vo e [-1,1]. (4.15)

Eq. (4.7), is a poorer choice as amplification factor. The first implication is
that G (R(0)) < Gar—1(%(0)), i.e., increasing M decreases monotonically the
amplification factor Gjs(k). As a consequence, the per iteration amplification
factor I'ps (k) also decreases by increasing M. The second consequence is that
the case P < M results in an amplification factor with larger extrema than
the optimal P = M case, and hence proves that our numerical scheme leads to
the optimal set of weights for any SRJ method with M steps. This confirms
our intuition that adding additional roots to the polynomial would decrease the
value of its maxima, resulting in faster numerical methods. Though the SRJ
algorithm with P = M we have presented here turns out to be nearly equivalent
to the non-stationary RM of Young [Young 1953], in order to single it out as the
optimum among the SRJ schemes, we will refer to it as the Chebyshev-Jacobi
method (CJM) henceforth.

Finally, we plot in Fig. 4.1 the per-iteration amplification factor, I'js(k), for
different values of M. It is evident from the plot that all the maxima are of

equal height, and that the maxima decrease as M increases.
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Figure 4.1 Plot I'js(x) for the following different values of M (5, 10, 15, and 50) for a
bidimensional mesh of 128 x 128 points. One can see that all the extrema are equal. The plot
also shows that the higher the value of M, the lower the local maxima of I'p;.

4.3 Numerical examples: Laplace equation

In order to assess the performance of the new optimal set of schemes devised, we
resort to the same prototype numerical example considered in [Yang and Mittal
2014], namely, the solution of the Laplace equation with homogeneous Neumann
boundary conditions in two spatial dimensions, in Cartesian coordinates and

over a domain with unitary size:

2 82
@U(%y) + a_ygu(xay) =0, (w,y) € (0,1) x (0,1)
Ly = ZLuwy| =0, ye©
8$u [L',y w:()— axu f,y w:1_ ) y ) (4.16)
0 0
—u(x, = —u(x, =0, z€(0,1).
By (z,y) o Dy (z,y) _ (0,1)

We consider a spatial discretization of the Laplacian operator employing a
second-order, 5-point formula
1
Auij = ﬁ |:ui—1,j + ui—l—l,j + u,-yj_l + ui,j—l—l — 4uij 3 (417)
where we are assuming that the grid spacing, h, is the same along the = and y
directions. In all examples presented in this work, we will use initial random

data to initialize our computations. To compare the performance of different
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numerical schemes we monitor the evolution of the difference between two
consecutive approximations of the solution for the model problem specified in
Eq. (4.16),
177 oo = max fufly — ", (4.18)
ij
where u;; is the numerical approximation computed after n iterations at the
grid point (z;,y;).

In Fig.4.2 (top), we compare the evolution of the residual as a function
of the number of iterations for several SRJ schemes, as well as for the new
schemes developed here. The violet line corresponds to the best SRJ scheme
presented in [Yang and Mittal 2014] for the solution of the problem set above
and a spatial grid of N, x N, = 256 x 256 uniform zones, i.e. the SRJ scheme
with P =5 and M = 780. Comparing with the new CJM for P = M = 780
(orange line in Fig.4.2 top), it is evident that the new scheme reduces the
number of iterations to reach the prescribed tolerance (||r"||oo < 10719 in this
example) by about a factor of 5. We also include in Fig. 4.2 (top; green line) the
residual evolution corresponding to the best SRJ optimal algorithm developed
by [Adsuara et al. 2015] for the proposed resolution, namely, the scheme with
P = 15levels and M = 1160. It is obvious that even the CJM with P = M = 780
reduces the residual faster than the P = 15 SRJ scheme. However, since the
P = 15 SRJ scheme requires a larger value of M than in the case of P = 5,
for a fair comparison, we also include in Fig.4.2 (top; blue line) the CJM with
P = M = 1160. The latter is the best performing scheme, though the difference
between the two new CJM with different values of P is very small (in Fig. 4.2
the blue and orange lines practically overlap).

A positive property of the new algorithm presented in Sect. 4.2 is its pre-
dictability, i.e., the easiness to estimate the size of the M-cycle in order to reduce
the tolerance by a prescribed amount (Eq.4.14). Indeed, it is not necessary
to monitor the evolution of the residual in every iteration (as in many other
non-stationary methods akin to the Richardson’s method -e.g., in the gradient
method-), with the obvious reduction in computational load per iteration that
this implies. In Fig.4.2 (bottom) we show that our algorithm performs as
expected, reducing the initial residual by factors of larger than 106, 10® and 10*°
in a single cycle consisting of P = 1939, 2470 and 3000 iterations, respectively,
since for the problem at hand we have ki, = 5111(2;;56)2 = 3.76491 x 1075,
Kmax = 2, and thus, £(0) = —1.00004. We note that in Fig.4.2 (bottom) we

have normalized the residual (Eq. 4.18 to its value on the first iteration. This

allows for an easier comparison of different methods.
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Figure 4.2 Top: Evolution of the residual ||r"||, defined in Eq.4.18, as a function of the
number of iterations for the problem set in Eq.4.16 and a Cartesian grid of 256 x 256 uniform
zones. The different color lines correspond to different schemes (see legends). We can observe
that the reduction of the residual is faster in the new Chebyshev-Jacobi schemes than in the
corresponding SRJ schemes with the same value of M. Bottom: We show three examples
where we computed the optimal value of the M for reaching the desired residual in one cycle.
The cases P = 1939, 2470 and 3000 correspond to schemes that (theoretically) should reduce
the initial residual by factors ~ 106, 10® and 101°.
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In this simple example the upper bound for the residual obtained from
Eq. (4.14) is very rough and clearly overestimates the number of iterations to
reduce the residual below the prescribed values. In more complex problems this
will not necessarily be the case as we will show in the following, more demanding

example.

4.4 CJM for non-consistently ordered matrices:
high-order discretization of the Laplacian op-

erator in 2D with 9 and 17 points

Here we consider the case of non-consistently ordered (NCO) matrices. For this
class of matrices Young’s theory does not apply. This makes it difficult to apply
standard methods such as SOR, because the relation between optimal parameter
and the spectral radius of the Jacobi iteration matrix is unknown. Here, we will
investigate two of these cases, namely a 9-point and 17-point discretization of

the Laplacian in 2D.

Figure 4.3 Schematic representation of the 9- and 17-point stencils. The black and red lines
correspond to the standard stencil St and rotated stencil Sy, respectively. See main text for
details.

One way of obtaining this type of discretizations is doing a convex combination
between the discretization of the Laplacian operator using the standard stencil,
S, with its discretization in a rotated stencil, Sx, being o > 1/2 (see Fig. 4.3):

aSy + (1 —a)Sk. (4.19)
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Writing « as a rational number a/b, the resulting 9-points discretized Laplacian

is

Augj = 2au;_1 j + 2au;41,5 + 2au; ;1 + 2au; j11

L
2bh?
+(b — a)ui,17j71 + (b — a)ui+17j+1 + (b — a)ui,17j+1 + (b — a)uiﬂ’j,l

—4(0, + b)ui,j , (420)

where, for simplicity, we assume that the grid spacing, h, is the same in the x—
and y—directions. From this general form, we can recover the standard 5-points
discretization simply taking a = b = 1. In the same way, we can recover the
9-points discretization of the Laplacian studied in [Adams, LeVeque, and Young
1988] by imposing ¢ = 2 and b = 3:

1
Auij = 6? |:4’ui1,j + 4ui+1’j + 4ui,j,1 + 4ui7j+1

FU 1,51+ Ui 1 F U141 F Ui o1 — 20%‘,]} . (4.21)

From the von Neumann stability analysis of Eq. (4.16), we obtain the following
expression of the amplification factor for the Laplacian discretization of Eq. (4.20)

B 20 . 4 kyAx 2a . 45 kyAy
Gu=1 wLH_bsm 5 a—l—bsm 5
b—a
+a b [1— cos (k;Az) cos (kyAy)]} (4.22)

For a« = a = b =1, we recover the expression of the amplification factor shown
in [Yang and Mittal 2014, Adsuara et al. 2015]. It is easy to check that when
a =2 and b =3, Eq. (4.22) reduces to

9 ks Ax

ky A
Gy=1- % 4sin + 4 sin? yTy + 1 — cos (k,Ax) cos (kyAy)} .

(4.23)

The factor multiplying w in the previous expression is related to the weights
of any SRJ scheme and singularly with the CJM. As a function of the wave
number £, the minimum amplification factor results for k, = k, = m/L, while
the maximum amplification factor is attained for k, = m/Ax and k, = 7/Ay,

with respective wave numbers Ky, and Kmax, Whose expressions are

4 4 1
Fomin = = sin? 2;& + 3 sin? ﬁ + 5 1 — cos Nim cos le , (4.24)

8
Fmax = 7 - (4.25)
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It can be shown that the 9-point discretization of the Laplacian provides a
fourth-order accurate method for the Poisson equation when the source term is
smooth [LeVeque 2007].

Next, we consider the case of a 17-point discretization of the Laplacian. From

the general form of Eq. (4.19), again writing o = a/b one obtains

1
Alij = S0

—2aui—g j + 32au;—1 ; + 32au;41,; — 2au;42;

—2au; j—2 + 32au; j_1 + 32au; j41 — 20u; 542
—(b—a)uj—2j—2 +16(b — a)ui—1 j—1 + 16(b — a)uir1 j+1 — (b — a)uit2, 42
—(b—a)ui—2,j+2 +16(b — @)ui—1,j4+1 + 16(b — @)uit1j-1 — (b — a)uiy2,5-2

—60((1 + b)um} . (426)

The standard 9-point discretization of the Laplacian is recovered for a = b =1
in Eq. (4.26). Performing the von Neumann stability analysis for Eq. (4.16), we
obtain the following expression of the amplification factor for the Laplacian
discretization of Eq. (4.26)

Gu=1-w 2a(sin?(k, Az) 4 sin®(k,Ay) )+

|

32a < sin? (kI$x> + sin? (kyﬁy) > —

(b—a)([1 — cos(2k, Ax) cos(2k, Ay)] — 16[1 — cos(k, Ax) cos(kyAy)])] , (4.27)

and,therefore, taking into account the minimum and maximum wave numbers

as in the previous case, the extremal values of k are:

1 0
min = ———— | —2a( sin® —— +sin? ) + 32 2
K 15(a+b)[ a(sm Nz—&—sm Ny>+ a(51 5N, QN)
2 2
—(b—a) ([1 — cos FZ cos FZ] — 16[1 — cos N—y oS ;y])} ) (4.28)
64a
max = ——— - 4.29
" 15(a + b) (4.29)
Let us consider the particular case a« = 1 and b = 2. For the Laplacian

discretization (4.26), we have

Auij = — QUi_QJ + 32ui_17j + 32Ui+17j — 2ui+2,j

L
4802

—2u; 52 + 32u; 51 + 32U; j41 — 2U; j42
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—Ui—2 j—2 + 16u;—1 j—1 + 16U;11 j41 — Ui42,j4+2
—Ui—2,54+2 + 16Ui_17j+1 + 16Ui+1’j_1 — Ui42,5—-2 — 180um} (430)

and the expressions for Kmin and Kmax of Egs. (4.28) and (4.29) reduce to

1
/@minz%[—2<sin2ﬂ—|—Sin2ﬂ-)+32<sin2 il —|—sin27r>

N, N, N, 2N,
2 2
—[1 - cos FZ cos F:;] + 16[1 — cos le cos ]\2]} (4.31)
64
max — g 4.32
" 45 (4.82)

Next, we numerically test the performance of the CJM for the two high-order
discretizations of the Laplacian operator we have discussed above. To do so, we

numerically solve the following problem:
Au= —(z% +y*)e™, (4.33)

in the unit square with appropriate Dirichlet boundary conditions. The bound-
aries are specified easily in this case, since there exists an analytic solution for
the problem at hand that we can compute at the edges of the computational

domain. The analytic solution reads
u(z,y) = —e*. (4.34)

In Figs.4.4 and 4.5 we show the residual evolution obtained when solving
problem (4.33) with different high-order discretizations of the Laplacian. In the
top panel of Fig.4.4 we use the classical 5-points discrete approximation for
the Laplacian (Eq. (4.17)). It is evident that our method almost reaches the
performance of the optimal SOR, [LeVeque and Trefethen 1988]. In fact, as we
prove in appendix A.2; this optimal weight for the SOR method coincides, up to
first order with the geometrical mean of the weights obtained with our optimal
scheme. In the bottom panels of Figs. 4.4 and 4.5 we display the evolution of the
residual when solving the same problem but using the 9-point discretization of
the Laplacian proposed by [Adams, LeVeque, and Young 1988] (Eq. (4.21)). In
the bottom panel of Fig. 4.4, we use a mesh with 128 points in each dimension,
while in the bottom panel of Fig. 4.5 we use 256 points per dimension. In both
cases, the performance is comparable with the optimal SOR whose weight is
calculated in [Adams, LeVeque, and Young 1988]. Finally, the upper panel of
Fig. 4.5 shows the number of iterations when solving the same problem, but
using a 642 grid and our 17-points Laplacian (Eq. (4.26)), with the optimal
CJM obtained with the Kmin and Kmax of Egs. (4.28) and (4.29) (i.e., in the case
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a =1, b =2, which gives equal weight to all points in the neighborhood). In this
case, the optimal weight of the SOR is unknown, so we compute the numerical
solution for several values of the SOR weight. Remarkably, the CJM scheme
compares fairly well with SOR.

Last but not least, we are interested in the parallel implementation of these
schemes. It is known that in the case of the standard 5-points discretization of the
Laplacian, one needs to implement a red-black coloring strategy for the efficient
parallel implementation of SOR. In the case of the 9-points discretization of the
Laplacian, [Adams, LeVeque, and Young 1988] points out that one needs four
colors for a parallel implementation. Furthermore, the ordering strategy with
more than two colors is not unique. Adams [Adams, LeVeque, and Young 1988]
find 72 different four-color orderings, which lead to different convergence rates.
In contrast, our CJM scheme (as any SRJ scheme) is trivially parallelizable since
there is no need for a coloring strategy and, consequently, it possesses a unique
convergence rate. We find that the tiny performance difference between the
SOR method, when applied to problems where the optimal weight is unknown,
and the CJM is outbalanced by the simplicity in the parallelization of the latter.

An example for the use of a 13-point stencil for the Laplacian when using a
projection scheme in incompressible fluid flows can be found in [Almgren et al.
2013]. Similarly, constraint fulfilling initial data for the numerical integration in
time needs to be constructed with the same spatial accuracy as the one employed
in the finite difference scheme used to solve the hyperbolic evolution equations.
In numerical relativity simulations, it is customary to use a fourth-order Runge-
Kutta time integration, which requires at least fourth order finite differencing in
spatial derivatives (see [Centrella et al. 2010] for a review). In the latter case, it
is convenient to construct also the initial data employing a fourth-order method
to solve the ePDEs involved.

Furthermore, to discuss advantages arising from higher order discretizations,
let us consider Eq. (4.33) once more. As we know the analytic solution to our
problem (Eq. (4.34)), we can monitor the real error at each iteration in the
computation of our numerical solution.® In Fig. 4.6 we show that a significantly
higher number of grid points is needed when employing lower-order discretization
stencils in order to achieve approximately the same error (i.e. a solution of the
same quality). With a mesh of only 32 x 32 points we reach the sought accuracy
goal employing a dicretization of the Lagrangian with a 17-points stencil. To

achieve the same accuracy with our 9-point stencil discretization, about 128 x 128

6In actual computations, where we do not know the real error, we monitor the residual
that shall be proportional to the real error.
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grid zones are needed, resulting in approximately 4 to 10 times more iterations
than with the 17-points stencil when using the CJM or the Jacobi schemes,
respectively. In the case of the standard second-order 5-point stencil, the grid
should contain more than 256 x 256 points and the number of iterations increases
by about 60 times when applying the Jacobi method, and 10 times in CJM with
respect to the number required when using the maximum order stencil. Although
each step of the iterative algorithm performs more operations for higher order
discretizations, this penalty is negligible compared to the considerable reduction
in the number of iterations, which in turn translates into a huge decrease in the
actual calculation time (see the labels of Fig. 4.6). Therefore, we have shown
that not only the number of iterations increases when employing low-order
discretizations of the Laplacian, but also that the computational time needed to
arrive to a prescribed norm-1 error goal is also substantially larger.

As a final point we note that these NCO matrices lead to more compact
stencils which effectively reduce the communications in parallelizations with
distributed memory (message passing paradigm). We will turn back to this idea
in Chap.6
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Sequential applications in

astrophysics

The results of this chapter have been originally published in:

Scheduled relaxation Jacobi method: improvements and applications,
JE Adsuara, I Cordero-Carrién, P Cerda-Duran, MA Aloy,
Journal of Computational Physics 321, 369-413 (2016)

In this chapter, we present numerical results of the methods discussed in
the previous chapters applied to the resolution of some problems of interest
in astrophysics. We limit ourselves here to a sequential implementation of the
method. Results in of a parallel implementation are presented in the next

chapter.

5.1 Poisson equation in spherical coordinates

The Poisson equation appears, among others, in problems involving gravity, either
Newtonian or some approximations to General Relativity, and electrostatics. In
numerical simulations, e.g., in Astrophysics and Cosmology, the computation of
the gravitational potential is usually coupled to a hyperbolic set of equations
describing the dynamics of the fluid, e.g., the Euler equations. In those cases the
Poisson equation is solved on each time step (or every several time steps) of the
evolution of the hyperbolic part. Our aim is to test the efficiency of the SRJ and
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CJM compared with other methods currently used by the scientific community.
In simulations of stellar interiors, spherical coordinates are a popular choice
of coordinates, so we adopt them for our test. To mimic typical astrophysical
scenarios we have chosen a test in which the source has compact support and

boundary conditions are applied at radial infinity.

The Poisson equation in spherical coordinates (r, 8, ¢) reads
82u+25‘u+ 182u+cot96u+ 1 0*u
or?2  ror  r200? r2 00  r2sinf 0p2

being u and s functions of (r, 8, ¢). For our test we choose the source term to

s, (5.1)

be the series

Mmax Mmax

=3 > azn k3, Gan(kanr) Yart(0, ), forr <1
n=0 m=—Mmax

s(r, 0, ) = (5.2)

0, forr > 1,

being j; the spherical Bessel functions of the first kind and ¥;"“ the real part of
the spherical harmonics. Only even parity terms, [ = 2n are considered. k; is
the first root of the spherical Bessel function of order I, such that s(1,6,¢) = 0.
We chose a; = 1/2!, such that the series is convergent. We impose homogeneous
Neumann boundary conditions at r = 0, § = 0 and § = 7, and periodic boundary
conditions in the ¢ direction. If we impose homogeneous Dirichlet conditions at
radial infinity (r — 00), the solution of this elliptic problem is

Mmax Mmax

Z Z (azn jon (kanr) + 527,,7"2n) Yo (0, ), forr<1

=0 m=—"max
ur,0,0) =<,
C2 .
Z Z ,,Jn% Y;Z,C(e, 50)1 forr > 1,

n=0 Mm=—Mmax

(5.3)
where the coefficients ¢; and b; can be computed imposing continuity of u and
its first derivatives at r = 1, resulting in

ap

o111 [Latke) = ki g (k)] (5.4)

bp=c = (ki) |r=1 = —

a
241

Since our interest is to assess the performance of the SRJ and CJM methods
under the conditions which are found on real applications, we solve this equation
numerically in the domain r € [0,1], 6 € [0, 7] and ¢ € [0, 27], i.e. only in the
region where the sources are non zero, and apply Dirichlet boundary conditions
at r = 1, using the analytical solution given by Eq. (5.3).
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We emphasize that this problem set up includes boundary conditions of mixed
type (Neumann and Dirichlet) and, hence, none of the schemes whose optimal
parameters have been tabulated in this chapter is strictly optimal. However,
as we shall see, even in such conditions, the new schemes presented in this
chapter, in particular the CJM, will be competitive with other alternatives in

the literature.

We set up three versions of the test with different dimensionality. In the
3D test, we choose nymax = oo (in practice, we sum only a sufficiently large
number of terms to obtain an accurate enough value of the infinite sum; see
below) and muy,ax = 2n and solve the equation in the domain r € [0,1], 6 € [0, 7]
and ¢ € [0, 2r], discretized in an equidistant grid of size N x N x N points. In
the 2D case we consider axisymmetry, i.e., no ¢ dependence in u and s. We
choose npax = 00 and mpax = 0 and solve in the domain r € [0,1] and 8 € [0, 7],
discretized in a grid with NV x N points. In the 1D case we consider spherical
symmetry, i.e. no 6 or ¢ dependence in v and s. We choose nyax = 0, Mpmax =0
and solve in the domain r € [0, 1] with N points. Since the series in Egs. (5.2)
and (5.3) are convergent, we compute them numerically by adding terms until
the last significant digit does not change. We use a second-order finite difference
discretization for Eq. (5.1) and one ghost cell in each coordinate direction to
impose boundary conditions. For convenience, we multiply Eq. (5.1) by 72 in
the discretized version.

As an example, we present explicitly the discretization of the 1D problem.
The 2D and 3D discretizations are analogous to what is described here. We use
a staggered grid with ghost cells, r; = (i — 1/2)Ar with ¢ =0, ..., N 4+ 1, where
Ar =1/N. Points i =0 and ¢ = N 4 1 are ghost cells used only for the purpose
of imposing boundary conditions. Using second-order centered differences to
approximate the second partial derivatives and imposing spherical symmetry
(0p = 0, = 0) Eq. (5.1), multiplied by 72, can be discretized as

o =
where sub-index ¢ indicates a function evaluated at r;. The values of ug and

Sl Uil e ) (5.5)

upn+1 are set as boundary conditions. The resulting linear system of NV equations

with N unknowns, u;, i =1, ..., N, can be written in matrix form

N
ZAUUJ :Tizsi; (Z:]-va)a (56)
j=1
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being A;; the elements of the coeflicient matrix, which in the 1D case is a N x N

tridiagonal matrix

ri
Aii_1 = (7‘1' — QAT) ATQ
—2r?
Ai Ar?
r
ii = (r+2A -
A +1 (7‘ + 7“) N
Aij = 0, otherwise. (5.7)

Note that this matrix is diagonally dominant by rows and columns except for
the first two rows and the first column. If the r? factor were not present, the
matrix would not be diagonally dominant by columns and the convergence of
the iterative methods could not be guaranteed. Once the boundary conditions
are applied, the coefficient matrix is effectively modified. Wether the resulting
effective matrix is diagonally dominant or not depends crucially on how the

boundary conditions are applied.

We impose Dirichlet boundary conditions at the outer boundary by setting
UN41 = Uanalytic("N+1), being the analytic solution that is given by Eq. (5.3).

In this case the equation at ¢ = N results

2
AnNN-1un—1 + ANNUN = TSN — ANN+1Uanalytic (TN +1), (5.8)

being Anxn+1 an extension of the coefficient matrix used for practical pur-
poses. At the inner boundary we impose homogeneous Neumann conditions, i.e.
Orulr, = 0. Standard numerical techniques to deal with this kind of boundary
conditions (see e.g. [Smith 1985], p. 76-77), expand the Laplacian operator

around r = 0, resulting in

Opptt + 2/ Optt = 30p,u + O(Ar?). (5.9)
The second-order discretization of this equation at the first radial cell yields
U — 2U1 + ug
AU|T1 =~ 3T, (510)
and a second-order discretization of the boundary condition results in
U — Ug
et A1
=0, (5.11)
i.e. u1 = ug, which results in
Aul,, ~ 3221 (5.12)

Ar?
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Using this prescription for the discretization of the Laplacian operator at the
first radial cell, ensures that the matrix is diagonally dominant by rows and

columns.

An additional simplification can be made by noticing that, as long as the
source s is regular at 7 = 0, Eq. (5.12) implies that u; = ug +O(Ar?). Therefore,
for a second-order method, one can assume uy = u; = ug, as an alternative
prescription to solve the problem of the diagonal dominance. Since this prescrip-
tion not only fixes the value of the ghost cell, ug, but also the value wuq, this
condition reduces the dimensionality of the linear system by 1. The resulting
effective coefficient matrix A;; is a tridiagonal matrix of size (N — 1) x (N — 1),
with indices 7,j = 2,...N. The elements read

~ T2 21
A== (r2 F280) 5 = =7

A~ T2 21
A23 = (TQ + 2A7") p = +Z

AZ-- =A;;, otherwise. .
Aij =Aqj h 5.13

The new matrix is diagonally dominant by rows and columns, which guarantees
the convergence of Jacobi-based iterative methods. In practice, the effective
coeflicient matrix, /lij, is not used in the iterative methods directly. Instead
we use a coefficient matrix A4;; extended to the ghost cells and we set at each
iteration the values at the ghost cells (ug and ux41) and at u; according to
prescription given above. This procedure is equivalent to using the effective
coefficient matrix, but it eases the implementation of the algorithm.

We have tested both prescriptions to make the matrix diagonally dominant,
namely that of Eq. (5.12) and the additional simplification in Eq. (5.13). We
have found that, although both prescriptions result in convergent methods, the
number of iterations needed to converge is systematically ~ 30% smaller with the
second prescription, for all the iterative methods tested. Therefore, we provide
here only results for the second (faster) prescription.

We perform series of calculations for different values of the number of points
N. For each calculation we use the SRJ and CJM coefficients computed in
Part. (IT) matching the corresponding value of N. In the SRJ case, for each
series we perform calculations using coefficients computed with different values
of P and the optimal M. In the CJM case, we take the optimal value of M to
achieve a reduction of the residual equal to the required tolerance, in the same

way as it was described in the examples of Part. (IT). The convergence criterion
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is that the L..-norm of the residual, defined as

N
7|00 = [ hax ZAijuj —rZs|, (5.14)
Bl et

is smaller than the tolerance. Note that this criterion differs from previous
subsections, Eqgs. (3.38) and (3.39), in a factor w;. The tolerance goal is set to
10~%/N?, which depends on the number of points. Since we use a second-order
discretization, this scaling in the tolerance ensures that the difference between
the numerical and the analytical solution is dominated by finite differencing
errors and at the same time avoids unnecessary iterations in the low resolution
calculations. This prescription for the tolerance mimics the tolerance choice
that is used under realistic conditions and renders a fairer comparison in the
computational cost between different resolutions.

For comparison we also perform calculations using other iterative methods:
Jacobi, Gauss-Seidel and SOR, (weight equal to 1.9). For each case involving
iterative methods we perform two calculations: the ab initio calculation in which
the solution is initialized to zero, and the realistic calculation in which the
solution is initialized to wanaiytic(1 + ran(—0.5,0.5)/N), being ran(—0.5,0.5) a
random number in the interval [—0.5,0.5]. The realistic calculation tries to mimic
the conditions encountered in many numerical simulations in which an elliptic
equation (or a system of PDEs) is solved coupled with evolutionary (hyperbolic)
PDEs,! which are typically solved using explicit methods, whose time step is
limited by the Courant-Friedrichs-Lewy (CFL) condition. This means that the
change in the source of the Poisson equation between subsequent calculations
is O(Ax); therefore, if the solution of the previous time step is used for the
iteration in the elliptic solver, this should differ only O(Az) ~ 1/N, from the
solution.

In addition to iterative methods, we perform the calculations using a direct
inversion method and spectral, methods the later ones quite used in astrophysical
applications. In the direct inversion method, we compute the LU factorization
of the matrix associated with the coefficients of the discretized version of the
equation by performing Gaussian elimination using partial pivoting with row
interchanges. We use the implementation in the dgbtrf routine of the LAPACK
library [LAPACK - Linear Algebra PACKage], which allows for efficient storage
of the matrix coefficient in bands. Once the LU decomposition is known,
we solve the system of linear equations using the dgbtrs routine. Since this

method is non-iterative, its computational cost does not depend on the initial

1For instance, this is the case of the fluid equations.
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value. However, this approach has advantages when used repeatedly, coupled
to evolution equations (e.g., for a fluid). Most of the computational cost of
this method is due to the LU decomposition, but once it has been performed,
solving the linear system for different values of the sources is computationally less
intensive. Therefore, we consider the computational cost of the whole process,
LU decomposition and solution of the system, in the ab initio calculations, while
only the solution of the linear system, assuming the LU decomposition is given,

in the realistic calculations.

For the spectral solver we use the LORENE library [LORENE - Langage Objet
pour la RElativité NumériquE]. To provide results that are comparable to all
other numerical methods used in the present work we use the following procedure:
first we evaluate the source, s, at the finite differences grid used in all other
numerical methods; then, the source is interpolated to the collocation points
in the spectral grid, which do not coincide with the finite differences grid; next
the solution is computed by means of the LORENE library; finally the function is
evaluated at the cells of the finite differences grid. The details of the procedure
are described in Dimmelmeier et al. 2005. The accuracy of the numerical method
is dominated by the second-order finite differences discretization error associated
with the finite differences grid, provided sufficient number of collocation points
are used in the spectral grid. We have tested that it is sufficient to use N/2
collocation points per dimension to fulfill this requirement. When using the
spectral solver, there is no difference in the computational cost in ab initio or

realistic calculations.

We have performed the calculations using a 3.4 GHz Intel core i7 and 16
GB of memory. We have measured the computational time for each method
timing exclusively the part of the code involved in the computation and not the
allocation and initialization of variables. Figures 5.1-5.3 show the dependence
of the computational time for 1D, 2D and 3D tests in the ab initio calculations
and the realistic calculations setups. As expected, for any dimensionality, the
SRJ and CJM methods render a significant speed up with respect to other
iterative methods, due to the smaller number of iterations needed. Only SOR

method has comparable computational time for low resolutions (N < 100).

The computational time for SRJ and CJM methods scales approximately as
N4+l being d the dimensionality of the test, i.e. the number of iterations is
proportional to N. In comparison, the computational costs of other iterative
methods (Jacobi, Gauss-Seidel, SOR), scale approximately as N9*2 i.e. the
number of iterations needed scales as N2. This factor N improvement of SRJ

and CJM with respect other iterative methods ensures that the method will



Sequential applications in astrophysics

10 g g
ab initio calculation (1D) e +»+*+
¥
] +  Gauss-Seidel — + ) it
SOR L ‘
Jacobi L n g
SRJ, P=6  © - i 0009°

? 0.1 SRJ, P=15 L] ) &° -l'-

~ CIM = o x T 00" La®

§ direct inversion o o0 6 © .

B spectral e + o] n

= 0.01 | e o g E

S i . B

N . o e .-

£ o o a-W

§ 0001 \3. :' i

S ooo001t o, e 1
Ie-05-—‘leOVgN~‘" E
le-06 ‘

10 100 1000
N
10
realistic calculation (1D) -
1t PR
L

= 0.1 : o + OOVOO»O‘.O'Qﬁ

§ . + " o o-g (if‘-..-

= 0.01 + 9. C0wm® 1

S T * 0.

= B . - . - |

§ 0.001 N3 O (] .

S 0.000] ¥ y e e .
le-05 | Nlog N B E
1e-06 : —_— : —_—

10 100 1000
N

Figure 5.1 Computational cost of the solution of the Poisson equation in spherical coordinates,
depending on the size of the problem N, using different numerical methods, including SR.J
for the minimum (P = 6), maximum (P = 15) and CJM set of coefficients computed in
Part. (IT). The 1D test case is show for show ab initio (top) and realistic calculations (bottom),
respectively. Note that points for P = 15 and CJM lay on top of each other in many cases.
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Figure 5.2 Same as Fig. 5.1 but for the 2D test case.
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always be less costly for sufficient high resolution. In all cases, CJM shows a very
similar behaviour to the SRJ method with P = 15. Compared to non-iterative

methods the results depend on the dimensionality of the test.

For the 1D test (Fig.5.1), both spectral and the direct inversion method are
significantly faster than SRJ and CJM. The computational cost of both methods
are close to NV log N. Therefore, we conclude that SRJ and CJM methods are

not competitive for 1D problems, even when realistic conditions are considered.

In 2D (Fig.5.2), the computational cost of the direct inversion method for ab
initio calculations increases significantly, scaling as N4, because the associated
matrix is not tridiagonal anymore, as in the 1D case, but is a banded matrix of
band size 2N + 1. Hence, the direct inversion method is more costly than SRJ
and CJM for resolutions N > 100. However, in the realistic calculation, in which
the LU decomposition is not performed, the direct inversion method is still the
fastest, with a computational time scaling as N® (the same as SRJ and CJM)
but with lower computational cost. Due to limitations of the LORENE library, we
were not able to perform multidimensional computations using spectral methods
for N > 350. Compared to iterative methods, spectral methods are about a
factor 2 faster than SRJ (P = 15) and CJM in realistic calculations and become
comparable for N < 100. It seems fair to say that spectral methods perform
better for ab initio calculations, since in this case, SRJ and CJM methods (see
P =6 and P = 15 in Figure 5.1) scale as N3. Therefore, we conclude that
for 2D calculations SRJ and CJM is a competitive method, when compared
with spectral methods. Although the direct inversion method is the fastest in
the range of values of N selected for our tests, we expect that this advantage
will disappear when going to larger number of points; the memory needed for
the direct inversion method scales as N3 (due to the explicit use of the banded
structure of the matrix) in comparison with N? of all other methods (iterative
and spectral). This strongly limits the size of the problem to be solved without

using parallelization.

In 3D (Fig.5.3) all computations are significantly more costly, so we limit
our tests to what is achievable within ~ 1 hour of computation time. For the
SRJ and CJM methods tested this is N < 200 in ab initio calculations and
N < 400 or realistic calculations (note that for spectral methods, we have run
also cases with larger values of N). For N > 100 the computational cost of
spectral methods is a factor &~ 10 lower than a SRJ methods with P = 15 and
CJM, in the realistic calculation. Using the SRJ parameters for P = 15 or
the optimal CJM and an effective number of points per dimension as given by
Eq. (3.10), the SRJ/CJM method become ~ 20% faster, so that it is “only” ~ 8
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slower than the spectral method. The conclusion is that spectral methods still
seem to have advantages over SRJ and CJM methods, for the 3D test presented.
However, both spectral and SRJ/CJM methods scale approximately as N* in
3D. Due to the large amount of memory needed for the direct inversion method,
which scales as N®, we did not present any such calculation for the 3D case.
In practice, this limitation makes the direct inversion method unfeasible for
computations in a single CPU. The performance of iterative methods in parallel

architectures is explored in Chap. 6.
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Figure 5.4 Example of the evolution of the residual during the iterative procedure, for several
of the iterative methods used in this work. The dashed-black horizontal line corresponds to
the tolerance goal.

Figure 5.4 shows the evolution of the tolerance, computed using Eq. (5.14),
for a 2D simulation with N = 256, and the initial conditions of the realistic
calculation, using different iterative methods (CJM is not plotted, but it shows a
very similar behaviour to the SRJ method with P = 15). Note, that the residual
at the first iteration is significantly larger than in Jacobi, due to the use of a
weight with large value in this iteration (w; = 19127 and 25234 for P = 6 and
15, respectively). This is compensated by a faster average convergence in cycles
of M iterations as expected from SRJ methods, being M = 781 and 1154 for
P =6 and 15, respectively.
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Figure 5.5 Detailed analysis of the solution of the Poisson equation for 1D. The top panel shows
the dependence of the numerically estimated value of p on P, for several values of N ranging
from 32 to 1024. For C'JM the value of P exceeds by far those used in SRJ methods and is
simply marked as "CJM" in the scale. Solid lines of the same color represent the theoretical
estimate of p, for each case. The bottom panel shows the error in the solution as a function
of N, computed as the Loo-norm of the difference between the numerical and the analytical
solution. The solid black line represents 1/N?2, which is an estimation of the expected finite
difference error.
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Figure 5.6 Same as Fig. 5.5 for the Poisson equation in 2D.
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Finally, we have estimated numerically the value of p (Eq.3.37) for different
SRJ and CJM weights, to be compared with the theoretical predictions. For this
purpose we compute the ratio of number of iterations needed with Jacobi and
a given SRJ/CJM method, using the same tolerance and resolution, N. The
upper panels of Figs. 5.5-5.7 show the dependence of p on P for several values
of N, computed using the set of ab initio calculations. For CJM the value of
P exceeds by far those used in SRJ methods (typically several times N) and is
simply marked as "CJM" in the scale. Regardless of the dimensionality, in all
calculations the numerical values of p are close to the theoretical predictions
(solid lines). In the 1D test problems (Fig.5.5) there is a tendency of the
theoretical values to overestimate the numerically computed value. This trend
is exacerbated for large values of N (namely, N > 512). In 3D the situation is
reversed (Fig.5.7), and the theoretical value of p falls below the numerical one.
To explain these differences, we shall consider that the optimal weights depend on
the dimensionality of the problem, since k,, does also depend on dimensionality
(see Eq.3.9). As the optimization of the weights has been performed for the 2D
case, it is not surprising to find such discrepancies when using the same weights
and the same value of p in a problem with different dimensionality. Indeed,
we have repeated some of the 3D and 1D test problems employing the optimal
SRJ and CJM parameters corresponding to the effective number of points set
according to Eq. (3.10), and found that (i) the SRJ and CJM scheme runs is
~ 20% less iterations and, (ii) for this effective number of points, the theoretical
convergence performance index, computed with the dimensionality corrections
mentioned above Eq. (3.37), becomes an upper bound for the numerical values of
p. Adding to this arguments, we also note that the discretization of the Laplacian
operator in spherical coordinates may also change slightly the optimal weights.
Finally, another factor that explains the discrepancies is that the boundary
conditions of this problem are mixed (as commented above), and the optimal

weights are computed for purely Neumann boundary conditions.

We find that for 2D applications increasing P from 6 to 15 yields an increase
in p of ~ 2 — 3 for the largest resolutions considered here (Figs.5.5-5.7; upper
panels). CJM yields similar results to the SRJ method with P = 15 in all cases.
In 3D, the increment of p is expected to be similar (we do not show examples
with larger values of N due to the long duration of the tests and the fact that
such numerical grids are typically computed with parallel algorithms, which
we do not discuss here; but see Chap.6). Hence, it is worthwhile employing
SRJ schemes with a larger number of levels than those originally proposed in

YM14, specially considering that there is no extra complexity in the algorithm
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implementation for any P > 2, once the weights for large values of P are known.
The use of CJM is even more convenient because, although it did not showed a
significant improvement over the SRJ method with P = 15, the computation of
the coeflicients is significantly faster and can be easily adapted for any grid size.

The lower panels of Figs. 5.5-5.7; show the error in the solution as a function
of N, computed as the L.,-norm of the difference between the numerical and the
analytical solution. In all cases the error is dominated by the finite difference
error associated to the discretization of the elliptic operator, which, for a second-
order method, is expected to be ~ O((Ax)?) ~ O(1/N?). This is a symptom
that our prescription for the tolerance is yielding converged numerical solutions,
in iterative methods. It also shows that the number of spectral grid points used
is sufficient for such calculations.

We have also tried different discretizations of the equation and the boundary
conditions, although not as systematically as the presented case. In general,
using discretizations which lead to non-diagonally dominant coefficient matrices,
increases the number of iterations to converge or, in some cases, they do not
converge at all. The Jacobi method is the most sensitive to this, while all
other iterative methods (Gauss-Seidel, SOR, SRJ and CJM) seem less affected
by this issue. As an example, if just ug = w1 is used for the inner boundary
condition (consistent with Eq. (5.11)), the Jacobi method needs about 5 times
more iterations in 1D, while all other iterative methods remain almost unaltered
(only SOR shows differences for N < 64). This is an indication that the new
method is not only faster than well-known iterative methods but can also be

more robust than some of them.

5.2 Grad-Shafranov equation in spherical coor-

dinates

The Grad-Shafranov (GS) equation [Grad and Hogan 1970, Shafranov 1958b]
describes equilibrium solutions in ideal magnetohydrodynamics for a two dimen-
sional plasma. It is of interest in studying the plasma in magnetic confinement
fusion (e.g. Tokamaks), the solar corona and neutron star magnetospheres,
among others.

In spherical coordinates (1,6, ) the magnetic field of an axisymmetric

(0,(.) = 0) plasma configuration can be expressed as

1 F(r,6)

B(r,0) =V xA= VU(r,0) x &, +

e, (5.15)

rsin 6
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where A is the vector potential and é, is the unit vector in the ¢ direction.
The flux function, ¥ = rsinfA,, is constant along magnetic field lines and
is a measure of the poloidal magnetic field strength. The toroidal function,
F = B,rsin6, is a measure of the toroidal field strength. Using Ampere’s law,
J =V x B, being J the electric current, the flux function can be linked to the
toroidal current as

cot 6

r2

1
A" =0,V + T—Qé?gg\ll - 0g¥ = —J,rsind, (5.16)

where A* is the GS elliptic operator. For simplicity we consider here the case
in which the inertia of the fluid can be neglected (magnetically dominated). In
this case, if we impose force balance, J x B = 0, the toroidal function depends
on the flux function, F(¥). As a result Eq. (5.16) leads to the GS equation

A*U = —F(U)F' (D). (5.17)

Not neglecting the inertia of the fluid leads to additional pressure terms, which
are not considered here. A popular choice for the toroidal function is F(¥) = C'¥,

being C' a constant. In this case the GS equation results in
A*U + C?*U =0, (5.18)

which is a suitable elliptic problem to be solved with SRJ and CJM methods.
Equation (5.18) resembles the Helmholtz differential equation in that it contains a
Laplacian-like operator and a linear term in W. Therefore, this test will show the
ability of SRJ and CJM methods to handle more complicated elliptic operators.
In addition we use this test to demonstrate the ability of iterative methods to

handle boundary conditions imposed at arbitrarily shaped boundaries.

We compute the solution of Eq. (5.18) for two sets of boundary conditions,
in the numerical domain r € [1,10] and 6 € [0,7]. In all cases we impose
homogeneous Dirichlet conditions at # = 0 and § = 7. In test A we impose
Dirichlet boundary conditions at 7 = 1 and 7 = 10 with ¥ = sin?#/r. In the
case C' = 0, the solution for this test is a dipolar field. As the value of C is
increased the solution results in a twisted dipole.

In test B we solve the GS equation in part of the domain, the region defined
by
r < (4.5sin® 6 + 2.5sin?(26)) (1 — 0.4 cos(36) + 0.3 cos(50) + 0.05 sin(256))
&
(rsinf —4)? + (rcosf — 1.6)* < 1, (5.19)
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Table 5.1 Number of iterations and computational time used by the SRJ and CJM methods
with N = 300 and P = 14 to solve the GS equation, depending on the value of C.

test A SRJ, P=14 CJM
C iterations computational | iterations computational
time [s] time [s]
0 5350 5.72 3400 3.67
0.01 5350 5.73 3400 3.78
0.1 5350 5.72 3400 3.70
0.2 4660 4.89 3400 3.76
0.3 7750 8.14 4620 4.98
0.31 9830 10.87 5850 6.27
0.32 13540 14.51 8020 8.64
0.33 21390 22.92 12550 13.44
0.34 49080 51.91 28740 30.35
test B SRJ, P=14 CJM
C iterations computational | iterations computational
time [s] time [s]
0 3450 2.02 3400 2.12
0.01 3450 2.01 3400 2.08
0.1 3450 2.02 3400 2.08
0.5 3600 2.10 3400 2.07
1.0 3550 2.07 3400 2.07
1.3 3410 1.98 3400 2.07
1.4 3660 2.72 3400 2.06
1.45 4980 2.88 3400 2.09
1.47 11620 6.75 6710 4.00

inside the aforementioned numerical domain. The boundary of this region
intersects the sphere r = 1 at 6; = 0.3037 and 65 = 2.8903. At r = 1 we
impose Dirichlet boundary conditions with ¥ = sin((8 — 6;)/(02 — 61)7)2, and
homogeneous Dirichlet conditions at the remaining boundaries. Imposing bound-
ary conditions in arbitrarily shaped boundaries is straightforward when using
iterative methods such as SRJ and CJM; we set W = 0 everywhere outside the
region (D.9) and apply the SRJ and CJM iteration only inside this region using

a mask.

In both tests we use a second-order discretization of the GS equation and a
numerical resolution of 300 x 300 equispaced grid points covering the numerical
domain. We solve the equations using the SRJ method with weights correspond-
ing to N =300 and P = 14 and CJM. In both tests we initialize ¥ to zero in

the whole domain. Table 5.1 shows the number of iterations and computational
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Table 5.2 Number of iterations used by different methods to solve the GS equation (test A),
for several values of C. In parenthesis the ratio of the number of iterations using Jacobi to the
number of iterations, i.e. an estimation of the value of p.

C 0 0.2 0.32
CIM 3400 (72) 3400 (91) 8020 (144)
SRJ, P=14 | 5350 (46) 4660 (67) 13540 (85)
SRJ, P=6 | 9820 (25) 9180 (34) 22380 (52)

SOR 41050 (6.0) 57650 (5.4) 228100 (5.1)
Gauss-Seidel | 132940 (1.9) 187560 (1.7) 788290 (1.5)
Jacobi 246260 (1) 310490 (1) 1153610 (1)

time to obtain a numerical solution with residual bellow 10~!2, depending on
the value of C' used. We have employed the same convergence criterion as in
subsection 5.1. The results of the SRJ method in Table 5.1 are comparable to
those presented in [Adsuara et al. 2016] and the number of iterations are identical
to that work. The computational time differs because, although it was run in
the same machine, there have been some optimisations in the implementation
of the algorithm that makes it faster. We prefer to show here the results with
the optimized code that can be directly compared with the results for CJM. We
observe that the CJM is systematically faster than the SRJ (P = 14), specially
in the case of large values of C'. This is specially significative in the test B, in
which the number of iterations is basically independent of C until is very close
to its maximum value.

Table 5.2 compares SRJ method with P = 14 and CJM with the other
iterative methods presented in the previous section, for the test A. In all cases
the CJM is the fastest method, by a factor comparable to those obtained in
Sect. 5.1. Again, the fact that using P = 6 results in about twice as many
iterations for solving the problem as when employing P = 14 shows the advantage
of employing SRJ schemes with the largest available number of levels.

The upper panels of Fig. (5.8) show the results for test A, for three different
values of C, for the case of SRJ with P = 14 (results for CJM are similar).
For the case C' = 0, the analytical solution is ¥ = sin?6/r. In this case the
maximum difference between the analytical and the numerical result, in absolute
value, is 8.5 x 107°, which is consistent with the second-order discretization
(9/N? =10~%). For C = 0.1 a toroidal component appears, but the flux function,
U, remains essentially the same. For higher values of C there is a tendency
of the magnetic field lines to become more inflated, to support the increased

magnetic tension due to the high magnetic field. In this regime the number of
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Figure 5.8 Numerical solution of the GS equation for test A (upper panels) and test B (lower
panels) for different values of the constant C, using SRJ method with P = 14. From left to
right C =0, 0.1 and 0.34 (upper panels) and C' = 0, 1.0 and 1.47 (lower panels). Isocontours of
log ¥ (solid black lines), which coincide with magnetic field lines, are plotted in increments of 1.
Colors show log B,,. For convenience we plot the (z,y) plane, being = rsin6 and y = r cos 6.
Blue lines in lower panels show the boundary of the region in which the GS equation is solved.
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iterations needed in the SRJ and CJM methods increases. We were not able
to obtain solutions for values larger than C' = 0.34. This is not a problem of
the numerical method itself, since other methods (Jacobi, Gauss-Seidel, SOR)
show similar behavior. The value C = 0.35 corresponds to an eigenvalue of the
GS operator. For this case the matrix associated to the discretization of the
GS equation is singular and hence it cannot be inverted. This is causing the
convergence problems near this point.

Lower panels of Fig. (5.8) show the results for test B, for three different values
of C, for the case of SRJ with P = 14 (results for CJM are similar). This case
behaves qualitatively similar to test A but with more complicated geometry. The
case C' = 0 shows no toroidal field, which appears as C' is increased. For C = 1.0
the flux function is still similar to that of the untwisted case, albeit slightly
deformed. For C' = 1.47, the maximum value that we were able to achieve, the
topology of the field has changed, showing a region of close magnetic field lines
in the upper right part of the domain. As in test A, the difficulty to achieve
convergence for larger values of C' is related to the presence of an eigenvalue of
the GS operator. Note that the solution is everywhere smooth, and magnetic
field lines (black lines) are tangent to the domain boundary (blue curve) as
expected (except for r = 1 where non-zero Dirichlet boundary conditions are
applied).

In general the SRJ and CJM methods shows reasonable rates of convergence
and computational time to solve the problem with high accuracy, despite of the
complicated boundary conditions. This renders a method which can be used in
real applications of the GS equation with a good trade of excellent performance

and ease of implementation.



Chapter 6

Parallel applications in

astrophysics

The results of this chapter have been originally published in (or are submitted to):

On the equivalence between the Scheduled Relazation Jacobi method and
Richardson’s non-stationary method,
JE Adsuara, I Cordero-Carrién, P Cerda-Duran, V Mewes, MA Aloy,
Journal of Computational Physics 332, 446-460 (2017)

Speeding up a few orders of magnitude the Jacobi method: high-order Chebyshev-
Jacobi over GPUs,
JE Adsuara, MA Aloy, , P Cerda-Duran, I Cordero-Carrién
Submitted to Journal of Computational Physics (2017)

Although we have already mentioned several times throughout the thesis the
enormous potential that seems to have our method to operate in parallel, we
have not touched in detail this aspect of the algorithm so far. In this chapter
we present the implementation of the CJM using a purely MPI implementation,
an openMP / MPI hybrid implementation and using Graphics Processing Units
(GPUs).
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6.1 Some ideas about parallelism

According to the Flynn taxonomy for computer architectures [Flynn 1972], the
von Neumann model [Neumann 1945], which is the main architecture used in
modern computers, falls, basically, into the SISD (Single Instruction, Single
Data stream) category. The processors in this category are able to perform
actions sequentially. The two categories of the taxonomy that extend the model
to parallel computing are SIMD (Single Instruction, Multiple Data stream)
and MIMD (Multiple Instruction, Multiple Data stream). Although the SIMD
architectures were the first to develop, they fell into disuse when the more general
MIMD reached their full development in both shared memory and distributed
memory machines.

Basically all supercomputers and clusters fall into the MIMD category. One
of the most widely used technologies for parallel programming on shared memory
machines is openMP. For distributed memory, where message passing is required,
the reference technology for parallel applications is MPI.

Nevertheless, GPUs have resurrected the SIMD architecture. The graphics
cards have been improving the processing of images. Their main advantage with
respect to CPUs is that they apply the same graphic operation to many pixels
at the same time, implementing vectorial operations. In this evolution, modern
GPUs have abstracted the concepts of image and graphic operation to mesh
and functions over its nodes, resulting in a very efficient vectorial processor for
scientific calculation.

6.2 Purely MPI implementation: long gamma-

ray bursts

6.2.1 Astrophysical scenario and equations

The gamma-ray bursts (GRBs) are one of the most energetic phenomena in the
universe. The actual phenomenology allows for two different types of GRBs
regarding its timescale: long (IGRB) and short (sGRB) [Kouveliotou et al. 1993].
Each of these two classes is linked to a different progenitor type: long-lasting
bursts are indicative of compact stellar progenitors with enough energy in form
of mass or angular momentum to drive GRB jets; short timescales suggest more
compact systems such as the merger of two neutron stars (NSs) or of a neutron
star and a black hole (BH).



6.2 Purely MPI implementation: long gamma-ray bursts

99

Nowadays, one paradigm that explains the origin of most 1GRBs is the
collapsar model [Woosley 1993, MacFadyen and Woosley 1999]. In this model, a
stellar mass BH results from the collapse of the massive core of the progenitor
star. The BH is surrounded by a thick accretion torus, the accretion of which
feeds both the BH and, depending on the dominant mechanism to tap the energy
of the central engine, an ultrarelativistic jet.

The MRGENESIS code [Aloy et al. 1999, Leismann et al. 2005, Mimica
et al. 2009] is a tool that allows the study of progenitors of GRBs. In order
to do that, the code solves the equations of relativistic hydrodynamics (RHD).
Assuming axisymmetric jets and flat space, MRGENESIS can use 2D spherical
coordinates (polar coordinates) in Minkowski space-time. In the case of IGRBs,
gravitational effects may become relevant so it is necessary to solve the fluid
evolution coupled to the gravitational potential generated by a self-gravitating
fluid. This gravitational potential is necessary, e.g., to balance pressure gradients,
especially at the stellar surface, in order to reach hydrostatic equilibrium. We
have included in MRGENESIS the computation of a Newtonian potential ¢ to
take into account self-gravity.

The hyperbolic system of conservation laws governing the motion of a rela-

tivistic fluid is (in natural units (¢ = G = 1) spherical coordinates)

9 10 , 10
FTAda mC i R ey

where U, F and G are vectors of conserved quantities and of fluxes in the radial

G=S8, (6.1)

and angular directions defined as follows:

U= (DasrvsevT)Ta (62)
F = (Dv", 80" +p,S%", (t + p)")T. (6.3)
G = (Dv?, 8™, 890 + p, (1 + p)v?)T. (6.4)

The aforementioned conserved quantities are the relativistic mass density D,
the momentum density S = (S”,5?), and the energy density 7, which are all
measured in the Eulerian frame. Also the velocity v = (v",7v?) is measured in
this frame. These conserved quantities are related to quantities in the co-moving
frame, the primitive variables, which are the rest-mass density p, the pressure p,
and the four-velocity u#* (u=0,...,3) , through

D = pW, (6.5)
S = phW?v, (6.6)
T =phW?—-p—D, (6.7)
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where W is the Lorentz factor, h is the enthalpy, and
1

W=u=—— 6.9
— (6.9)
h=1+4+¢ec+p/p (6.10)

being ¢ the specific enthalpy. Finally, in absence of physical sources (e.g. gravity),

the source term S only contains geometrical terms due to the 2D spherical

coordinates:
0
1
= (2p + S%?)
r
S = 1 (0059 , T) . (6.11)
- —p—-5S%
r \ sinf
0

In our implementation of the self-gravity of the fluid, as a first approximation
and although the code is relativistic, we have chosen a Newtonian potential with
some relativistic corrections (for example, we employ as source of the Poisson
equation peg :=phW? — p instead of p). As we keep the metric constant, the
contribution of this potential only appears as an additional term St in the
source of the Eq. (6.1), i.e., Spew = S + Spot, where S refers to Eq. (6.11) and

0
9]
—(phW? —p) -
’

1 ~ 0
——(phW? + §"0") = ®
~(phW= + 570") =

) o 0 )

_ 2 pr— -
phW (v 87"(1)+ . aacl)

Spot = (6.12)

The Poisson’s equation A® = 47p.s defines the behavior of the potential &
and its dependence on the mass distribution. We solve the Poisson’s equation in
spherical coordinates using the CJM.

I is not to

The aim of the RHD simulations which are instrumental here
study in detail the central engine of the GRB, which is explicitly excluded from
our computational domain, but to study the propagation of a jet from well
outside of the stellar core to its surface. Therefore, we excise the innermost

region r < Ry and model the jet engine as an energy and momentum input at

1In this thesis we are only concerned with the solution of the elliptic Poisson equation
necessary to keep the stellar structure in hydrodynamic equilibrium. More details can be
found in Chapter 4 of Cuesta 2017.
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r = Ry. Our computational domain extends radially from an inner boundary at
Ry (2 10% cm) to Ry, typically located well outside the star. To better impose
boundary conditions at the innermost excised region, we do not solve directly the
potential ®(r,6) but a modified potential ®(r,0) = ®(r,0) + My/r, where My
is the excised mass below Ry. Neumann boundary conditions for the potential
are imposed at Ry, BT(i)| Rr, = 0, and Dirichlet boundary conditions at the radial
outermost end of the mesh, (i)Rf = —Mr/Ry. The total mass My within the
grid excludes the excised mass M. Once ® is calculated, we subtract in the

radial direction the quantity My/r to recover the real potential ®.

In the same way as in Sec. 5.1, we do not only need to calculate the potential
once but it is necessary to recompute it during the time integration algorithm
for the hyperbolic part governing the fluid evolution equations. In principle, it
should be necessary to compute the gravitational potential at every time step
of the hyperbolic part. However, in practice it is possible to recompute it less
often to achieve a satisfactory accuracy in the overall calculation of a model. As
a guide, we recompute the gravitational potential every n, time steps, n, being
the number of cells in the radial direction. This guarantees that the update
occurs within the light crossing time of the numerical grid (~ n,At). Finally,
between two consecutive calculations a readjustment in the inner mass is needed

due to the mass flux across Ry.

In the test presented here, we do not consider the whole simulation but we
present results on the performance of the newly developed methods for one of
these recalculations of the gravitational potential, under conditions which are

comparable to those encountered in the full simulation.

6.2.2 Results

Our aim is to assess the performance of the CJM, similarly to previous tests
presented in this thesis, in a real astrophysical application. In particular, we are
interested in the performance of a parallel implementation of the method. The
results presented in this section use a MPI parallelization implementation of the

algorithm.

In this test, we use the classical 5-points stencil in polar coordinates shown
in figure Fig. 6.1. The problem, as we have presented above, includes boundary
conditions of mixed type. Therefore, the optimal scheme presented in Sec. 4 is
not necessarily optimal for this case. However, as we shall shown below, it is

sufficiently well behaved to be useful for these computations.
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Figure 6.1 Schematic representation of the classical 5-points discretizations of the spherical
Laplacian in two spatial dimensions. Each box denotes a neighboring point of a given one (3, j),
represented by the central box. The value enclosed by each box corresponds to the coefficient
of the discretizations. See Chap. 3 for details.

We have done the tests on two machines, one with distributed memory (CT),
the type of machine where MPI codes are usually executed, and one with shared
memory (SV). The CT machine is a cluster with 2016 cores. It consists of 504
nodes with 4 cores (2 sockets dual core) PowerPC 970MP working at 2.3GHz
and 8 GB per node of RAM. Communication between them is done through
a Myrinet network, which has a bandwidth of 2 Gb full duplex. The SV is
a supercomputer with 384 cores and 2 TB of RAM memory. It is an Altix
UltraViolet 1000 made by Silicon Graphics (SGI). It has 32 blades dual socket
Xeon X7542 hexacore Nehalem working at 2,67 GHz. It has 64 GB per blade
and 32 GB per socket, however all the memory is shared by all the processes and
the communication between blades works over the NUMAlink (5) protocol of
SGI. The communications are expected to be faster in SV than in CT. However,
in SV the computing time may be affected by the load of the system, while in
CT we have exclusive use of the processors, as long as we use multiples of 4, i.e.
occupying entire blades.

We have performed series of simulations for three different resolutions. In
the CT machine, we have a low-resolution model, with a mesh of size n, x ng =
1024 x 64, and a high resolution model, with 16384 x 256. In the SV machine
the size of the mesh is 15000 x 270.

In the MPI parallelization model, we make a partition of the full domain
into subdomains, which are then distributed among processors. Each processor
communicates the values at the boundaries of its corresponding mesh to its
neighbors. The efficiency of the parallelization scheme, does not only depend on
the number of subdomains created, but also on the shape of these domains.

To test the dependency of the parallelization efficiency on the number of

processors and the shape of the subdomains, we perform simulations using MPI
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partitions with all possible common divisors of the two dimensions without
exceeding the maximum of available number of cores in the machine or in the
execution queue. We define the number of processors as Ngpy, and the number
of subdivisions in the r— and #— direction as IV,. and Ny, respectively, such that
Ncpuy = N;-Ny. In the case of CT, both resolutions tested are powers of two.
Therefore, we perform simulations with partitions of N, x Ny € Dcr, X Der,,
being Doy, = {2¢:i=1,...,8} and Dct, = {2°:i=1,...,6} and Nopy <
256, which is the maximum number of cores available in the execution queue.
They are chosen in this way to ensure that half of the combinations are multiples
of four and therefore we will fill whole blades, which is the best choice from
the point of view of efficiency, in the CT machine. The other half of possible
partitions will help us evaluate the impact of sharing blades with other processes.
In the case of SV, the chosen partitions are N, x Ny € Dgy, x Dgy,, being
Dgv, = {1,2,3,5,6,10,15,30,60} and Dgy, = {1,2,3,5,6,10,15,30,45}. In
this case we use, at most, with 100 cores, i.e., Ncpy < 100. As an example, the
partition (16,4), which is among the valid ones in CT, involves Nopy =64 cores.
For the high-resolution mesh, we typically partition the radial direction in 16
domains and the angular direction in 4 domains, so each core is dealing with a
mesh of size 1024 x 64.

Our approach is to solve the problem in the whole grid with an iterative
method (CIJM), as if it were a single grid but distributing the load of each
subdomain among processors. This forces us to communicate the values at the
boundaries of the subdomains in each step of the iteration procedure. This
procedure involves an intense communication of MPI messages among processors,
which may potentially limit the performance and scalability of the scheme. One
of the objectives of this test is to check if this is the case. There could be
alternative approaches to avoid such intense communication, e.g. by performing
the iteration only in the subdomains and communicating the boundaries less
often using, e.g., a block Jacobi method. These alternatives, that should be

studied in the future, are not considered here for the sake of simplicity.

In the same way we did in the sequential case, for each case involving the
CJM we perform two calculations: ab initio calculations, that mimic what occurs
at the start of the simulation, and realistic calculation, more faithful to what
really happens when we recalculate the metric throughout the simulation (see
Sec. 5.1 for details).

In addition to the CJM and for comparison purposes, we also perform the
calculations using an alternative method that was already implemented in the

code. The alternative method (direct inversion method hereafter) solves the
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elliptic problem in each subdomain using a direct method (LU decomposition as
described on Sec. 5.1) and then performs a block iteration over the subdomains
until convergence at the domain boundaries is achieved. For the block iteration
we use P. L. Lions’ method [Lions 1990], which is a generalisation of the block
Jacobi method but using Robin boundary conditions at the boundaries between

domains.

We focus in two aspects of the simulations: the execution time and the
speed up. To compute the execution time, we only consider the part of the code
involved in the computation of the solution, without including memory allocation
or initialization, which is a measure of the absolute speed of the method. To
determine the speed up, we compute the ratio of the execution time with a
certain number of cores to the execution time with a single core (sequential
execution). The speed up gives us information about the relative speed of
the method with respect to the number of processors, which is interesting to
determine the scalability of the algorithm.

In the Fig. 6.2, we show the execution time for each of the two methods, to
solve the problem at hand. The time for all the possible partitions mentioned
above is displayed. The plot shows the results for the CT machine with the
high-resolution mesh and using the realistic calculation setup. Other resolu-
tions and computations in the SV machine behave in a qualitatively similar
way. Comparing the direct inversion method with the CJM, the first is much
more sensitive to the way the partition of the subdomain is done, while the
second is rather insensitive. In the direct inversion method, more elongated
subdomains give smaller execution times. This is because the LU decomposition
algorithm used, scales as ~ nt (n(gs))2 (for nt > nés)), where n{¥ = n, /N, and
n((,s) = ny /Ny are the radial and angular extent of the grid at each subdomain,
respectively. Hereafter and unless it is indicated otherwise, we plot only results
for the best possible partition.

In Figs. 6.3, 6.4 and 6.5, we present the results for the two methods in the
CT machine and the SV machine, respectively, for the different resolutions used,
and the different setups (ab initio and realistic calculation).

In the CT machine (Fig.6.3) and for the low-resolution simulations, it is not
efficient to use more than approximately 16 processors. Beyond that number of
processors the execution time increases in either method due to the “insufficient”
computational load per subdomain. For the high resolution simulation (Fig.6.4),
it is advantageous to use the method up to 128 processors. In this machine, the
direct inversion method is always faster than the CJM. However, we must take

into account two details that soften this apparent superiority. Firstly, the best
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Figure 6.2 Execution time using the direct inversion method (triangles) and the CJM (squares).
The color goes from red to blue, passing through purple. Red indicates partitions with more
cells in the angular direction than in the radial direction. Blue indicates partitions with more
cells in the radial direction than in the angular direction. Purple indicates partitions close to
the square shape. A resolution of 16385 x 256 cells (high-resolution model) is used in the CT
machine. The execution time of the direct inversion method is much more sensitive to the
shape of the subdomains than the CJM.

LU times are being achieved with partitions with very extreme aspect ratio, in
which N, = 1. This would be fine if the elliptic solver was not coupled to a
hydrodynamic code. However, the same partition used in the elliptic solver has
to be used in the hydrodynamics part, to avoid excessive transfer of data among
processors, and NV,. = 1 is not the optimal partition for the hydrodynamics part
of the code. The optimal partition, i.e. that minimizing the total execution
time of both the hydrodynamics and the elliptic par, is likely to be different to
the one presented here and will render execution times closer to CJM. Secondly,
we have extrapolated the execution times for larger number of processors, by
means of a least squares fit in both methods, and we obtain that, for the high
resolution simulation, from 3000 processors onwards, the execution time using
the CJM is expected to be lower than the direct inversion method. These results

are qualitatively similar in both ab initio and the realistic calculations.

The results for the SV machine (only high resolution simulation, see Fig.6.5)

are similar. We do not appreciate the saturation of the execution time with the
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Figure 6.3 Execution time on the CT machine depending on the size of the problem n, X ng,
using the two methods: direct inversion and CJM. Upper and lower panels show ab initio and
realistic calculation, respectively. Both panels correspond to the the low-resolution test.

number of processors for the CJM method, which shows a qualitatively similar

behavior in both ab initio and realistic calculations. Although the direct method
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Figure 6.4 Same as Fig. 6.3 but for the high-resolution test.

is faster in some cases, this is more an exception than the rule, since in general

it shows a large dispersion. This is an artefact of how the partitions are done.

As commented above, for the direct inversion method the optimal partition is
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that with N,. = 1, i.e N. X Ng = 1 X Ncpy. This implies that the optimal
case can only be used if the number of angular grid points, ng, is divisible by
Ncpuy, which is not always the case. The best results in the plot are those
in which this division is possible. In the rest of the cases the partition is not
optimal because N, > 1. For example, if we want to use 4 processors, we can
not use the partition (1, 4) because 4 does not divide 270. In the latter case, we
shall resort to the partition (2,2), which does not have the optimal aspect ratio
and, hence, exhibits a considerably longer execution time. We conclude that,
although the direct inversion method showed the best performance under the
optimal conditions, the CJM is more flexible and tolerates better the changes in

the shape of the subdomains.

Finally, we consider the speed up of our method in the CT machine for
the low- and high-resolution test (Figs.6.6 and 6.7), respectively. The ideal
case would be a speed up equal to N, (orange line). Similarly as with the
execution time, the speed up saturates at about 16 and 128 cores for the low-
and high-resolution calculation, respectively. In all cases, the speedup of the
CJM method is better (higher) than that of the direct inversion method. In the
CJM the execution time saturates for a larger number of processors and, when
saturated, the decline is less abrupt. This behaviour occurs both in low- and

high-resolution simulations.

6.3 OpenMP/MPI hybrid code: static field in
3D

Here we test the CJM and the predictability of the residual evolution in a
three-dimensional (3D) elliptic equation with a source term. For this test, we use
infrastructure provided by the Einstein Toolkit Einstein Toolkit, Loffler et al.
2012. The actual calculation consists on finding the static field of a uniformly
charged sphere of radius R in 3D Cartesian coordinates subject to Dirichlet

boundary conditions. For that we solve the Poisson equation:
Ap(x,y, z) = —47po, (6.13)

where p, = 3Q/(47R3) and Q is the charge of the sphere. We solve the elliptic

equation (D.22) with a standard second-order accurate 7-point stencil in a
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uniform mesh with grid spacings hy = hy = h, = h

Auijr = 72 |Wim1.ik + Ui1,jk + Uij—1k + i1k + Wigk—1 + Uij k1 — Oiji |-

(6.1)
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Figure 6.7 Same as Fig. 6.6 but for the high-resolution test.

We consider two different grid sizes with N; = N, = N, = N = 128
and N, = N, = N, = N = 256 points and the following iterative methods:
Jacobi, Gauss-Seidel (SOR with w = 1), SOR with the optimal relaxation factor
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wWopt = 2/(1 +sin (w/N)), and CJM with the optimal sequence of weights for a
given resolution. The results for the two grid resolutions are shown in Fig. 6.8.
Both SOR and CJM (slightly less than twice the number of iterations of SOR)
are more than an order of magnitude faster than the Jacobi and Gauss-Seidel
methods. While the CJM is not as fast as SOR when using the optimal relaxation
factor weps, we note here two arguments that should favor the use of the CJM
over SOR: Firstly, Young’s theory of relating wopt to the spectral radius of the
Jacobi iteration matrix p(J) via wopy = 2/(1 + /1 — p(J)2) only applies when
the original matrix of the linear system Au = b is consistently ordered. Secondly,
the CJM is trivially parallelized, while SOR requires multicolor schemes for a
successful parallelization, as we have shown in Sec.4.4 presenting results for

9-point and 17-point Laplacians in 2D.

Next, we solve equation (D.22) subject to reflection symmetry (homogeneous
Neumann boundary conditions) at the z = 0, y = 0, z = 0 planes (so-called
octant symmetry) with N, = N, = N, = N = 64 points, using the same iterative
methods as before. For the CJM, we choose the same sequence of weights as
those we used for the full 3D domain using N = 128 points. Because of the
boundary conditions used to impose octant symmetry, the resulting matrix A is
non-consistently ordered and hence there is no analytic expression to calculate
wopt for SOR; in this case we test a sequence of values of w to empirically
estimate its optimal value for the given problem. The residuals of the different
iterative methods are shown in Fig.6.13. The CJM now performs better than
SOR for any w we have tested. Furthermore, as seen in the plot, SOR is very
sensitive to the exact value of w that is chosen, as it is well known. The CJM is

free of this need to estimate and choose a sensitive parameter.

6.4 Speeding up a few orders of magnitude the
Jacobi method: high-order Chebyshev-Jacobi
over GPUs

In this section we show how to reach a remarkable speed up when solving elliptic
partial differential equations with finite differences thanks to the joint use of
the Chebyshev-Jacobi method with high-order discretizations and its parallel

implementation over GPUs.
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Figure 6.8 Evolution of the residual for the solution of the Poisson equation (D.22) in 3D,

with N = 128 (upper panel) and N = 256 (bottom panel) for different iterative methods.

The apparent faster convergence of Jacobi relative to Gauss-Seidel is due to the shown small
interval of iterations which was chosen to highlight the convergence behavior of CJM relative
to SOR. Gauss-Seidel actually reaches the desired tolerance faster than Jacobi in all examples,
as expected.
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Figure 6.9 Same as Fig. 6.8 but for the Poisson equation (D.22) in 3D using octant symmetry,
with N = 64 points per dimension.

6.4.1 The CJM with a high-order discretization of the
Laplacian

In Chap. 4 we presented two parametrized discretizations of the Laplacian
in 2D, which can achieve more than second-order accuracy. Here we use one
discretization of each of these two families. From the first family, we use a 9-point
discretization corresponding to a value of the parameter of o = % (Chap. 4),
9) (9)

whose Laplacian is discretized as in Eq. (4.21) and whose &,/ and kmax values?,
needed for obtaining the scheme and related with the size of the mesh, are
given by Eq. (4.25) The grid assumed in this discretization is uniform, so that
L,/N, =L,/N, :=h, L, and L, being the sizes along the z— and y— directions,

respectively.

2The superscript (9) refers to the number of points in which the Laplacian operator is
discretized. Later in the text we will use also subscript (17) to refer to the values of Kmin and
Kmax used in the 17-point discretization of the Lagrangian.
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From the second family of discretizations, we use a 17-point discretization
with a = % (Eq.(4.26)), whose discrete representation of the Laplacian reads

1

Auij = 7oz

—4ui—gj + 64dui—y,j + 6duipr; — duite

*4ui7j—2 + 64’[1,1'7]'_1 + 64ui,j+1 - 4U1'7j+2

—Ui—2 j—2 + 16U;—1 j—1 4+ 16U;11 j41 — Uit2,j+2

—Ui—9 j+2 + 16U;—1 j41 + 16U41 -1 — U2 j—2 — BOOuM] . (6.15)
and whose corresponding Ky, and Kpmax values are
/@I(ijn) = —% [sin2 Nlm + sin? ]\2} + % [sin2 2;:/,03 + sin? 2;\@]
—7—15 [sin2 <]\7;T + ]\7;) + sin? (]\1 — ]\2)] (6.16)
+% [sin2 (2;% + 2Ny> + sin? (2;& — 2]7:@)} (6.17)
128
an — = (6.18)

In Figure 6.10 we show an schematic view of the two stencils for the two
different discretizations along with the numerical coefficients corresponding to
each node. Note that the value of the discrete Laplacian operator evaluated at
the central node is a weighted sum over all the nodes schematically represented
in each of the figure panels. The purpose of these schemes is showing that given
a central point, the Laplacian discretization is fully specified by providing a list
of M numerical coefficients enclosed in all the surrounding nodes.

6.4.2 GPUs

Modern GPUs have become extremely powerful processing units, which can
accelerate enormously the computation of heavy mathematical operations. How-
ever, for that to happen, the algorithms must be properly vectorized and the
pipeline of arithmetic operations and data transfers from/to the main memory
must be optimized. The CJM is perfectly suited for its porting to GPUs. In
every iteration of the method the approximate solution is stored in each node
and we must apply the same set of elementary arithmetic operations to all of
them.
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Figure 6.10 Schematic representation of the 9-points and 17-point discretizations of the

Laplacian in two spatial dimensions, corresponding to a value o = 2. Each circle corresponds

to a neighboring point of a given one (4, j), represented by the central circle. The value enclosed
by each circumference corresponds to the coefficient of the discretizations shown in Eqgs. 4.21
and 6.15 multiplied by h?. See Chap. 4 for details.

6.4.3 CUDA devices

We present in this subsection the specific devices we used. We aim to test more
than a single GPU model in order to properly assess the scaling properties of our
implementation of the CJM, which is based on the CUDA CUDA technology of
NVDIA. CUDA devices can be characterized by two parameters (among others):
the Compute Capability (CC) and the number of Streaming Multiprocessors
(SMs). The CC of a device is represented by a version number. It comprises
a major revision number X and a minor revision number Y, and it is denoted
with the format “X.Y”. Devices with the same major revision number belong to

the same core architecture.
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CPU Device Architecture CC SMs
Opteron (Kp) Tesla K40c Kepler 35 15
Intel (Mx) GeForce GTX Titan X Maxwell 52 24

Table 6.1 Properties of the two GPU architectures in which the CJM has been tested. We
note that the memory on board (12 Gb) is the same for both GPUs.

We have used two CUDA devices: a Tesla K40c and a GeForce GTX Titan
X, with CC values of 3.5 and 5.2, respectively. We note that the major revision
numbers are different. They correspond to two distinct architectures, Kepler
and Maxwell, with major revision numbers 3 and 5, respectively. These GPU
devices are connected to two different computers, having CPUs Dual-Core AMD
Opteron 2222 working at a frequency of 3 GHz and Intel 7-4820K with a working
frequency of 3.70 GHz, respectively. We will refer to the CPUs of these systems
as Kp and Mw, respectively. In our first device we have 15 SMs, while in the
second one we have 24 SMs. We have decided to use both types of hardware
because, although the Maxwell microarchitecture is more recent and, a priori,
better in many technical aspects, it seems that double precision arithmetics
(required for practical applications of the CJM) works better on Kepler than on
Maxwell. Table6.1 summarizes the relevant properties of the two architectures

employed in this section.

6.4.4 Code

In order to execute the Jacobi method and the CJM over GPUs, we have
developed two CUDA kernels, i.e., sections of code that instead of running on
the CPU run on the GPU device. We need to transfer the data that the kernel
will use from the memory of the host to that of the device. Once the results are
computed, they are transferred back from the device to the host. The 12GB of
memory of our devices is large enough to allow us to transfer the whole data
structure of the problem to the GPU memory in one transfer at the beginning
of the calculation. Once the problem has been solved to the desired accuracy
(fully on the GPU device), we recover back the solution in the CPU also with
a single data transfer. We have executed the same code in the two considered
GPU architectures.

The code is of stencil type, i.e., each node in the grid requires of knowing
the values of the variable, whose solution we seek, at a certain number of
neighbors as Fig. 6.10 schematically shows for the cases in which the Laplacian

operator is discretized in 9 or 17 points. In the most general case we have
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Table 6.2 Notation for the functions of neighbors at a distance one and two.
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implemented, both the central node, identified with the integer indices (4, j),
where 1 < i < N, and 1 < j < N, and each of its (at most) 24 neighbors
spanned by the discretization of the Laplacian can have different numerical
factors weighting their contributions (see, e.g., the values of such coefficients
enclosed in the circles shown in Fig. 6.10, which correspond to the simplest case
of a two-dimensional problem in Cartesian coordinates). These numerical factors
may change as a function of the position of the central node of the discretization
in the grid. We refer to each of these numerical factors with the terminology
sketched in Tab. 6.2. The numerical factor corresponding to the central node

T1.i,%2 5,1 ,i,Axs .
fé LEE2g L 2”), as it may depend on

at a position (4,7) is annotated by
the general coordinates (z1;, 22 ;) and on the grid spacing between consecutive
nodes around the central node (Azy ;, Azs ;), since we allow for non-uniform
meshes. The rest of the numerical factors are named using the cardinal points
and numbers (see Tab. 6.2). To improve the efficiency and to deal more easily
with the boundary conditions, in the cases in which the Laplacian is discretized
in up to 9 points, we have created a different data structure for this case (upper
part of Tab. 6.2), which we differentiate from the most generic case represented
by the lower part of Tab.6.2.

As a result of this, the code is totally generic regarding discretization and
coordinates: the choice of coordinates determines the discretization of the
Laplacian operator, and this discretization determines the mask of the functions
(see Table 6.3). In addition, although the kernels are quite generic, the code
allows particular instantiations to the different stencils in a simple and optimal
way (without saving repeated values, without operating the zeros, etc.).

Our implementation also takes advantage of memory hierarchy on the GPU
device, since the kernel uses both the Shared Memory and the Registers on board
of the CUDA device. Employing the CUDA Occupancy Calculator (free tool
provided by Nvidia), we have tuned a number of parameters of the developed
kernel in order to maximize the occupancy of the GPU devices. After some
experimentation, we find that a 100% occupancy results employing 256 threads
per block and 2048 bytes of shared memory per block independent of the compute
capability of the device. The number of registers per thread has been chosen to
be 37 (32) for a device with CC= 3.5 (CC=5.2).

6.4.5 Test problem

We employ a very simple setting to calibrate the new implementation of our

algorithm for GPUs. For that we solve a simple Poisson problem with a source
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Cartesian coordinates
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Bipolar coordinates
coshv; — cos p;
0 ] 0
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coshv; —cosp; | 2(cosh p; —cosv;)  2(cosh pu; — cosvy) |coshv; — cos
a?Apu? a?Ap? a?Av? a?Ap?
cosh v; — cos u;
0 ] 0
a?Av?

Table 6.3 Values of the variables of first table in Table 6.2 for some specific cases. In all cases
we assume uniform meshes. The upper, middle and lower tables correspond to the standard
5-points discretization of the Laplacian operator in Cartesian, polar and bipolar coordinates,
respectively.
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term, whose solution is analytically known (see, Chap. 4; Eq.(4.34)), with
appropriate Dirichlet boundary conditions. The unit square domain (x,y) €
[0,1]% is discretized in N, x N, = 1024 x 1024 nodes, where the numerical
solution is computed. The boundaries are easily specified in this case, since there
exists an analytic solution for the problem at hand (Eq. (4.34)), which can be
used to compute the boundaries at the edges of the computational domain. In
next sections, we will take advantage of the knowledge of the analytic solution

to compute the reduction of the error with resolution.

6.4.6 Times and ratios

We have solved the test problem of Sec. 6.4.5, until reaching a prescribed tolerance,
using the classical 5-points discretization of the Laplacian, and also the two
discretizations of 9-points and 17-points introduced in Sec. 6.4.1. We employ a
resolution dependence tolerance, which decreases as N ~2. For reference, we have
solved the problem with the CJM as well as with the classical Jacobi method.
Finally, as we have mentioned before in Sec.6.4.3, we have used two different
microarchitectures for the implementations, which work over GPUs.

Figure 6.12 shows the computational time (in seconds) as a function of the
number of points per dimension N. For simplicity, we make our measurements
in uniform computational meshes satisfying N, = N, = N, so that the grid
resolution in any of the two spatial directions is h = 1/N. For low resolutions
most of the time in the GPU implementations is consumed by the transfer of
data between the host and the device. This time to transfer data is larger
than the time required by the method itself. In the different panels of Fig.6.12
this effect shows up as a plateau region in the curves corresponding to GPU
implementations of, specially, the CJM. The plateau extends up to a certain
turnover value Ny, (depending on the method and on the architecture of the
device), above which we observe that the slopes of the lines stabilize in a very
similar way to the one of the sequential execution, but almost two orders of
magnitude below it. For instance, in the upper left panel, of Fig.6.12 this flat
region extends up to Ny, < 300. The latency of the data transfers is more
obvious in the Kepler architecture (corresponding to a CC of 3.5) than in the
case of Maxwell. The turnover in the former device happens at Ny, ~ 300 for
the CJM run over GPUs, while it is located at N, ~ 256 for the latter device
(see Fig.6.12 upper left panel). For the Jacobi method implemented on GPUs,
the aforementioned plateau does not exist. The reason for it is twofold. First,
the amount of data transfers between the host and the CUDA device is slightly
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Figure 6.12 Both top and bottom left plots show the time necessary to reach a prescribed
tolerance for different methods and implementations. We use a 5-points, 9-points and 17-points
stencils in top left, top right and bottom left plots, respectively. Blue (red) lines refer to
the Jacobi (Chebyshev-Jacobi) method. Thin (thick) lines correspond to serial code (GPU
implementation). Solid (dashed) lines are associated to a Compute Capability equals to 5.2
(3.4). Bottom right plot shows the times of the Chebyshev-Jacobi method over GPUs.

smaller in the latter method. This extra data required by the CJM are the M
weights needed to perform the M iterations of a complete computational cycle.
Second, the Jacobi method is computationally more intensive than the CJM,
since the number of operations per grid node is comparable in both methods, but
the number of iterations to reach the tolerance goal is much larger in the Jacobi
method than in CJM. As a result, the Jacobi method is relatively more costly
with respect to the data transfer. We therefore conclude that a minimum mesh
size is needed so that the data transfer time between the CPU and the GPU,
and viceversa, is negligible in comparison to the computing time. Furthermore,
we note that below certain critical mesh size it is not even advantageous using
the CUDA devices, since the CPU implementation of the methods at hand runs
faster. This is the case, e.g., of the Jacobi method when using the 5-points
discretization of the Laplacian displayed in Fig. 6.12 (upper left panel): where
the thin solid (dashed) blue line, corresponding to the CPU executions, exhibit
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an smaller computational time than the corresponding GPU runs, indicated
with thick solid (dashed) lines. Both lines (thin and thick corresponding to the
same method) cross at a “critical” value N, < 64. This effect is exacerbated
in the test involving the CJM, where the CPU executions are faster than the
corresponding GPU ones for N, < 128. Noteworthy, comparing the upper left
panel of Fig.6.12 with the upper right and bottom left panels of the same figure,
the effectiveness of the GPU implementation of the CJM over the corresponding

CPU does not depend on the stencil of the discretization of the Laplacian.
From the bottom right plot, where only the Chebyshev-Jacobi method on

GPUs is plotted, we observe that the qualitative behavior is quite similar for
all the different stencils. Comparing results obtained in the two CUDA devices
with the same discretization of the Laplacian, it is evident that the architecture
of Maxwell (CC = 5.2) is faster than that of Kepler. However, the gap between
both architectures reduces as the resolution increases. Actually, the difference in
execution time between both devices displays a trend to reduce as the number of
points in the discretization of the Laplacian grows, particularly beyond the value
of Ni, for each test. This is remarkably visible for the 17-points discretization
of the Laplacian (pink lines of Fig. 6.12 bottom right panel), since at the highest
resolution of our tests (N = 1024), the computational time is the same in
both devices. This happens in spite of the fact that Maxwell architecture is
faster regarding both transfers and executions. However, Kepler architecture is
better suited for double precision computations, which we employ in practical

applications of the elliptic solver at hand.

In Figure 6.13 (top panel) we plot the ratios between the times of different
methods and implementations. These ratios provide an estimation of the ac-
celeration factor by which the GPU implementation of either the CJM or the
Jacobi method is faster (or slower) than any other of the methods. The figure
also displays the dependence of the speed up of the GPU versions on the three
types of stencil. We observe that the larger number of points the stencil has,
the smaller is the speed up. The improvement over the CPU implementation
is larger for the Jacobi method than for the CJM (note that the purple solid
line lies above any of the blue lines in top panel of Fig.6.13). However, this
larger relative speed up in the Jacobi method, with the smallest number of
discretization points of the Laplacian, reduces with either increasing values of N,
or when considering higher order discretizations of the Laplacian. In the latter
case, the speed up of the CJM over GPUs equals that of the corresponding Jacobi
method employing a 17-points discretization of the Laplacian when N = 1024.

In fact, extrapolating the results to even higher resolutions (not included in the
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Figure 6.13 Top: Ratio of computational time in a CPU execution to the computational time in
an analogous GPU execution as a function of the number of points per dimension. Solid lines
correspond to the 5-points stencil, dashed lines to the 9-points stencil and dotted lines to the
17-points stencil. Blue and purple lines represent the ratios between the times of the sequential
versus the parallel implementations of the Jacobi and Chebyshev-Jacobi methods. Orange lines
represent the ratio between the time of the slowest method, the sequential implementation of
the Jacobi method, and the fastest one, the CJM in parallel over GPUs. Bottom: Real error
versus number of iterations for a 17-points stencil with a mesh of N = 128 points (purple line)
and a classical 5-points stencil with a mesh of N = 2048 points (blue line), until reaching a
real error of 108 (orange horizontal line). The vertical dashed lines indicate the final number
of iterations. The computational times of each run are also labeled in the plot.
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5-points J j_GPU cj cj_GPU
] 1 - - -
j_GPU 71 1 — -
cj 371 5 1 —
cj_GPU 25235 357 68 1

9-points J j_GPU cj cj_GPU
] 1 - - -
j_GPU 63 1 — —
cj 441 7 1 —
cj_GPU 21360 337 48 1

17-points J j_GPU cj cj_GPU
j 1 - - -
j_GPU 35 1 — —
cj 361 10 1 -
cj_GPU 12420 352 34 1

Table 6.4 Speed up factors of each of the methods listed in the columns with respect to the
methods annotated in the rows in which the stencil of the Laplacian discretization is provided.
All the values correspond to the test problem of Sec.6.4.5 evaluated on a grid with N = 1024
points per dimension.

plot) we foresee that the speed up factor of the CIJM over its corresponding
sequential CPU implementation will be better than that of the Jacobi method.
From the ratio between the CJM on GPUs, and the slowest one, the classical
Jacobi method in sequential, it can be appreciated the difference of several orders
of magnitude in the speed up for high resolutions (see orange lines in top panel
of Fig.6.13).

In addition to Fig.6.13, we list the values of the ratios for the particular case
of a mesh with N = 1024 points per dimension in Table 6.4. In this table we
systematically include the speed up factors of each of the methods listed in the
columns with respect to the methods annotated in the rows in which the stencil
of the Laplacian discretization is provided.

Finally, as we have already shown in Chap. 4, it proves convenient to use a
higher order discretization of the operator although it involves larger stencils.
In the latter case the computational time due to the fact of having more points
to obtain a solution of the same quality is negligible compared to the reduction
in time due to the smaller number of iterations needed. To illustrate this point,
we use the CJM on GPUs (our method of choice). We understand that having
solutions of the same quality means reaching the same "real” error level. By real
error we denote the difference, in infinity norm, between the obtained numerical

solution and the analytical one. Since we have the analytical solution (Eq. (4.34))



126 Parallel applications in astrophysics

of the test problem (Eq.(4.33)), we can use the real error instead of a tolerance
as the stopping criterion. In Fig.6.13 we plot the real error versus number of
iterations using, on one hand, a 17-points stencil with a mesh of N = 128 points
and, on the other hand, a classical 5-points stencil with a mesh of N = 2048
points, until reaching a prescribed value of the real error (1078); in addition to
the smaller resolution needed for the higher order method (17-points stencil),
we have a reduction of one order of magnitude both in the number of iterations

and in the computational time.



Chapter 7

Beyond astrophysics:

modelling the human eye

The results of this chapter have been originally published in (or are submitted to):

Evaluation of the repeatability of a swept-source ocular biometer for measuring
ocular biometric parameters,
T Ferrer-Blasco, A Dominguez-Vicent, JJ Esteve-Taboada, MA Aloy, JE Adsuara,
R Montés-Micé,
Graefe’s Archive for Clinical and Experimental Ophthalmology, 1-7 (2016)

Estimation of the Mechanical Properties of the Eye through the Study of its
Vibrational Modes,
MA Aloy, JE Adsuara, P Cerda-Duran, M Obergaulinger, JJ Esteve-Taboada,
T Ferrer-Blasco, R Montés-Mico,
Submitted to PLOS ONE

Human eye normal vibrational modes for different axial lengths using linear
elasticity,
JE Adsuara, P Cerda-Duran, M Obergaulinger, P Mimica, JJ Esteve-Taboada,
T Ferrer-Blasco, R Montés-Mic6, MA Aloy,
Submitted to Graefe’s Archive for Clinical and Experimental Ophthalmology

The text in the following sections corresponds to an edited version of the

aforementioned publications.
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Beyond astrophysics: modelling the human eye

Spherically symmetric eyeball model

vitreous humor

(uniform)
anterior chamber, . /7
aqueous humor . optic nerve eyeball
\\ suspensory ligaments boundary b)

a)

Figure 7.1 Simplified mechanical model of the eyeball. Left: transversal cut of the human eye
with the different structural parts annotated in it (source: Holly Fischer, Wikipedia). Right:
spherically symmetric, homogeneous and isotropic eyeball model employed in this work.

During the elaboration of the present thesis it has arisen a parallel project
devoted to the application of elliptic equations in an area very different from
astrophysics. We have applied our numerical schemes to model oscillations in a
human eye, which has applications in optometry and biomechanics. We discuss
below its most relevant aspects: we construct a model to obtain oscillation
frequencies, we investigate the dependence on the parameters of the system and
we present our results of the collaboration with the Department of Optics at the
University of Valencia to perform measurements in human eyes, which will serve

to improve the model in the future.

7.1 Introduction

The eye is a complex organ consisting of several functional and mutually in-
teracting parts [Ethier, Johnson, and Ruberti 2004]. The most important ones
are the cornea, lens, vitreous, sclera and retina (Fig.7.1). Measuring the eye’s
mechanical properties in vivo and with minimally invasive techniques can be
the key for individualized solutions to a number of eye pathologies. Here we
show that these properties are related to the normal vibrational modes of the
eyeball, i.e., to the periodic variations of matter inside of the eyeball resulting
from perturbations with respect to its equilibrium state.

We model the eyeball as a spherical, homogeneous and isotropic elastic solid
ball with axial symmetry (Fig.7.1). While assuming that the eyeball is axially
symmetric is very well justified, the assumptions of homogeneity and isotropy

are certainly not the most accurate possible. However, these assumptions serve
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for the primary purpose of reducing the dependence of the constitutive equation
only to two elastic constants or moduli of the eye material: the Young’s modulus
E, and the Poisson ratio ¢ . In this simplified framework, we will compute,
first analytically and afterwards numerically, the eigenfrequencies of the model

attempting to grasp the essential mechanics of an average human eye.

7.2 Analytic normal modes

In linear elasticity, the equation of motion for an homogeneous isotropic elastic
solid is given by the Navier-Cauchy equation [Love 1944], which can be written

either in vector form
A+ 2u)[V(V-u)] — ulV x (V xu)] + F = pi, (7.1)
or, component-wise, as:
pV2u; + (A + p)d ; + F; = piis, (7.2)

where u; are the displacements with respect to an equilibrium position, ¥ = V- u
is the dilatation, double dotted quantities denote the second time derivatives
(02) of such quantities, V? is the Laplacian operator, F; denote the body forces,
and p and A are the Lamé constants. The Lamé constants are related with the

Young’s modulus, o, and the Poisson ratio, E, by the following expressions:

A (3N +2p)
-2 p=t22ren 7.3
T30 1) A+ p (7.3)

We start assuming oscillatory solutions of the form
u; = uj cos (pt + &), (7.4)

where p is the angular frequency of the perturbation, u} are functions independent
of the time t and the constant £ is independent of the coordinates x; and only
modifies the phase of the vibration. Plugging the test solutions Eq. (7.4) into
Eq. (7.2), one obtains in the absence of body forces (F; = 0):

pAu; + (N + )9 ; + pp*u; =0, (7.5)

which can be rewritten in the form of an eigenvalue problem

_ At

—%Aui 1971‘ = p2ui. (76)

IThe Young’s modulus is a measure of the stiffness of a solid material. It defines the
relationship between stress (force per unit area) and strain (proportional deformation) in a
material. The Poisson ratio is the amount of transversal expansion divided by the amount of
axial compression, for small values of these changes.
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where the allowed frequencies of vibration and their corresponding displacements
(i.e., distortions of the underlying homogeneous and isotropic structure) corre-
spond to the eigenvalues and eigenvectors of the Navier-Cauchy equation for
given boundary conditions (imposed at the eyeball surface; Fig. 7.1).

There are exact solutions of Eq. (7.6) for solid elastic bodies in which simple
boundary conditions are imposed. One example is a sphere with homogeneous
Neumann boundary conditions applied at its surface. Noteworthy, these solutions
have been adapted from its original forms to the study of the oscillations of
spherical detectors of Graviational Waves. Under the assumption of axisymmetry
and expressing their results in terms of spherical solid harmonics wy,, ¢,+1 and
Xn, Rue [Rue 1996] obtained, based on Love [Love 1944], analytic solutions for

the shapes of these vibrations,

1 0 1o} 0
U; = ; |: h2 a {wndm(hr)} + wn(lﬂ") <€2Jk93] B Xn + Bz, ¢n+1>
n+l 2,.2n+5 0 bni1
g Pnralkr)s B, 720 t3 (7.7)

as well as for the vibrational frequencies of spherical bodies. Here, €;;1 is the

() = (1 8>nsinx7 (78)

Levi-Civita symbol and

x 0x x

In axially symmetric systems, the eigenmodes can be classified in two groups:
toroidal and spheroidal. Toroidal modes only involve motion about the symmetry
axis sketched in Fig. 7.1. Toroidal modes are incompressible since they do not
change the volume of the eyeball. In this first class of vibrations w, and ¢,
vanish (w, = ¢, = 0), and the frequency, from which we compute the eigenvalues

of the system, is given by:
pn=0 with p, = (n— 1), (ka) + ka)], (ka) (7.9)

Spheroidal modes, implying displacements of the eyeball material in both radial
and/or angular directions, are compressible. In this second class of vibrations

Xn vanish (x, = 0). The frequency equation is given by:

bpCn — apdy =0 (7.10)
with:
" m%ww +2(n— 1)¢pn-1(ha)], (7.11)
L= 2An+2)

b= —ga i lpvnhe) + Ya(ha), (7.12)

ha
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en = K2a* Y, (ka) + 2(n — 1), _1(ka), (7.13)
I = 12— [ (ra) + Wﬂ);(/{a)} (7.14)

7.3 Numerical code

We have developed a code that solves the eigenvalue problem set by the Navier-
Cauchy equation discretizing the eyeball sphere on a two-dimensional grid of
nodes in spherical coordinates (0 <r < R, 0 <6 < ). As a first step, we have
assumed the elastic moduli to be uniform throughout the spatial grid. However,
there is no restriction to implement elastic moduli that depend on the location
in the eyeball. This is important because it may enable us to improve the degree
of realism of our model for the vibrational modes of the eye, in particular, by
using different elastic moduli for the sclera, the cornea, the lens, and the vitreous
humour.

First, we will rewrite Eq. (7.6) for the numerical part with the analytical
solutions available in the previous subsection. In spherical coordinates, and
under the assumption of axisymmetry, i.e., neglecting the ¢-dependence, the

displacements can be written as
Ui = (UT(T, 9)’ UG(ra 9)» u@(T, 9))7

and satisfy the following three equations:

A+

K 2
——Au, — ———uj jr = p U, (7.15)
P p
A+
—ﬁAua — Jumg = p?uy (7.16)
p p
I A+ p
iy = 2 = (7.17)

Under the assumption of axisymmetry, all the derivatives with respect to ¢
vanish and Eq. (7.17) decouples from the other two Equations (7.15) and (7.16).

We obtain the toroidal modes from the latter equation:

—%Auw = pPu,. (7.18)
with homogeneous Neumann boundary conditions, u, , = 0. The spheroidal
modes result from Equations (7.15) and (7.16):

At Atny [ cot §

LN
P

A 1 cot
—HAUQ + ATH (99 l: Uy + Optly + 891149 + Tu9:| = p2UQ (7.20)

Uy + Optty + 891@ + ] = p?u, (7.19)
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also with homogeneous Neumann boundary conditions, u,, = O;ug, = 0.
Equations (7.19) and (7.20) can be cast as an eigenvalue equation, Lu = Au,
with the vectorial operator

A
Lu= —HA’U@ — ﬂUj)ji (721)
p p

with ¢ = 7,8, i.e., the equations are coupled due to the axisymmetry hypothesis.

If we explicitly insert spherical coordinates, then:

A A
p p P P

and, for clarity, in matrix form we have:

Lu=| % %o || (7.23)
Qpr  Aho Up

where expansion of the operator yields:

A2 20+ 2 t 0 200 +2
Gy = A2y 2 “)(x—%(%g—’wo2 9 + X 2“) (7.24)
or pr or
A t 0 A+3 A t (A + 3
ap = ATy ATy Atpy BT g g
pr pr pr pr
2 2
agr = A+ M)ae— /\+M(9r0 (7.26)
2
pr or
2 A+2 A+ 2u) cot d A+ 2p) csc? 0
agg = —L0,, + - o, - 72'u309 | ,u2) 0p + ( N)Q
p pr pr pr pr

(7.27)

To begin with, we focus on toroidal modes. We compute in a first step the
eigenvalues (vibrational frequencies), and in a second step the eigenfunctions
(normal displacements). For the eigenvalues we simply compute the zeros of
the characteristic polynomial. In practice, working in logarithmic space is
advantageous because it reduces the magnitude of coefficients of the polynomial.
Knowing the family of eigenvalues, we compute the kernel for each one of them.
We substitute each eigenvalue into the corresponding equation, Eq. (7.18) or
Equations (7.19)-(7.20), obtaining an elliptic equation. With this, we subtract
the eigenvalue from the diagonal of the matrix produced by the discretization
of the elliptic operator, and proceed further solving the corresponding system
of equations by direct numerical inversion of the matrix of the system. As
the rank of this matrix cannot be complete, we will obtain the compatible but

indeterminate solution as a function of one of the variables for the toroidal case.

The computation of the characteristic polynomial and the solution of the

elliptic equation, have been performed numerically by means of the LU decom-
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position (LAPACK implementation). In the resolution of the elliptic problem
needed for the computation of the eigenvectors it is not possible to use the CJM.
The reason is that the matrix of the system is not positive definite. In chapter 9
we discuss a variant of the CJM method that could be used in such cases.

0.91728 Hz 0.91722 Hz 0.61509 Hz 0.61492 Hz

0.39807 Hz 0.39803 Hz 1.17832 Hz 1.17685 Hz

Figure 7.2 Comparison between the analytic (panels with black background) and numerical
(white background) solutions of vibrational patterns. Because of the symmetries, only one
quadrant of the full equatorial plane of an spherical body is shown. Modes of odd and even
parities are displayed in the upper and lower panels, respectively. In this case, we are using
100 points in the radial direction and 50 in the angular one. We can also observe a good
agreement in their corresponding frequencies (listed below each panel), that improves as we
increase the resolution.

We calibrate the code by comparing the frequencies computed with our
numerical code and the corresponding analytic values at a density of p = 1kgm™3,
elastic moduli of ¥ = 2.5Pa, ¢ = 0.25 and a radius of the sphere of R = 1 m.
Note that these values do not correspond to a typical human eye. They are

employed for numerical convenience.

As shown in Fig. 7.2, we get a good agreement in the toroidal (p—) case, both
in the vibrational patterns and in their corresponding frequencies, demonstrating
the ability of the numerical code to recover the analytic values. We point out
that agreement improves with a finer mesh encompassing the eyeball (in Fig. 7.2
we employ a relatively coarse grid of 100 x 50 points in the r x ¢ directions). A
similar analysis has been done for modes where the displacements of the material

happen only in the r— and §—directions (spheroidal modes). The conclusion of
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Table 7.1 Frequencies of selected normal modes of the eye. Table containing the frequencies
(measured in Hertz) of selected toroidal modes (T) computed with our numerical code for an
average human eyeball. The set of material parameters employed to obtain these values are
R =0.0125m, p = 1000kgm~—3, E = 0.2985 MPa, and ¢ = 0.49. Toroidal modes with n = 0
are forbidden since they require driving external forces (assumed non existing in this model).

T 1
1 2 3
1] 734.455 318.707 492.481
2 | 1158.97 909.362 1076.14
3 | 1570.32 1339.88 1514.10

both calibration experiments is that our numerical procedure to compute the

eigenfrequencies of the system and their displacements is accurate enough.

7.4 Application of the method to a typical hu-

man eye

The exact eigenfrequency values are sensitive to the imposed boundary conditions.
We assume that the surface of the eye (either the sclera or the cornea) is free
to oscillate when suitable perturbations are inflicted to the eyeball. Here,
we consider a set of “standard” eye parameters. We adopt R = 0.0125m,
p = 1000kgm—2 for the eyeball typical radius and average density, respectively.
Mean values for the corneal and scleral Poisson ratio, o, are in the range 0.42—0.47
[Uchio et al. 1999]. We take o = 0.49, slightly above the average to account for
the incompressible character of the vitreous humour. As the eigenfrequencies are
roughly proportional to o~1/2, their predicted values are basically insensitive to
this parameter in the typical ranges measured for constituents of the human eye.
There is a large scattering in the values of the Young’s modulus, E, of different
parts of the eye [Hirneiss et al. 2011]. We employ a typical value E = 0.2985 MPa.
The eigenfrequencies exhibit a weak dependence with the value of the Young’s
modulus, < E/2. Since the largest values reported for the Young’s modulus are
Enax =~ 20 MPa, at most a factor of a few increase in the computed frequencies
is possible.

In Fig. 7.3 we show six different patterns of toroidal vibrational modes at
the lowest frequencies in our simplified model of the eye that correspond to the
same transversal cut as shown in Fig. 7.1. The different patterns are identified
by a set of two integer numbers n and [ that denote the number of nodes the
solution has in the radial and in the #—angular direction, respectively. Each pair

of values (n,l) has a unique characteristic frequency. The upper left panel of
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Figure 7.3 Left: Six different patterns of toroidal vibration at the lowest frequencies in our
model of the eye that correspond to the same transversal cut as shown in Fig. 7.1. Light and
dark blue (red and yellow) shades indicated a motion towards (away from) the reader and
normal to the drawn plane. Left panels: eigenfunctions with even parity in I: (n =1, 1= 2)
vibrating at 319 Hz, (1,4) at 648 Hz and (2,2) at 909 Hz. Right panels: eigenfunctions with
odd parity: (1,3) at 492Hz, (2,1) at 1159 Hz and (1,5) at 798 Hz. Right: Three-dimensional
representation of the toroidal mode n =1 and [ = 2 (corresponding to the upper left panel.
The arrows indicate the direction of the motion about the symmetry axis of the system (showed
with a black arrow).

Fig. 7.3 corresponds to matter rotating (counter-rotating) about the symmetry
axis in the northern (southern) hemisphere (see Fig. 7.3 for a three-dimensional
representation of the mode (1,2)). There is a number of normal mode frequencies
falling in the range ~ 100 Hz to ~ 10 MHz (Tab. 7.1). Modes with frequencies
of a few hundreds of Hz have periods of oscillation much shorter than other
quasi-periodic variations of the eyeball volume triggered by phasic processes like

respiration and pulse.

7.5 Frequencies as a function of the Axial Length

The purpose of this section is to assess how the frequency of the normal vibration
modes of the human eye varies for different axial lengths (AL).

AL of the human eye is the axial distance between the anterior corneal surface
and the retinal pigment epithelium [Hitzenberger 1991]. The main morphological
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Figure 7.4 Frequency values for the first toroidal vibrational modes of the eye (T). The
corresponding value for [ is indicated in each panel. The obtained frequencies are shown in
colored dots, depending on the values for n = [1,4] and AL = [17,28] mm. Fitted analytical
functions are shown in solid lines following the same color coding. It is easy to infer an inverse
relationship between the AL and the f values.

difference between a myopic, an emmetropic, and a hyperopic eye is the axial
length [Llorente et al. 2004]. Besides, AL value is changing from birth to the
adult stage, following the human body growth. In newborns, the average value
is about 17mm in diameter [Hussain and Shahid 2014]. In the infant stage
(between 3 — 8 years old), the eye grows to a length of 19 — 21 mm. During
childhood and adolescence, and towards the adult stage, the human eye continues
growing gradually to a final size of about, depending on the final refractive state,
23 — 27mm [Vaughan and Asbury 2004, Llorente et al. 2004].

Fig. 7.4 shows the plots with the frequency values for the first toroidal (T)
vibrational modes of the eye. The corresponding vibrational mode is indicated in
each panel. Frequency values are shown for AL = [17, 28] mm. Dots of different
colors are used to distinguish modes with different values of n (from n =1 to 4).
The numerical values of the discrete points of Fig. 7.4 are shown in Tab. 7.2.

A simple inspection of Fig. 7.4 suggests that there exists a one-to-one map
relating and frequency with the AL. We note that frequency decreases mono-
tonically as AL is increased for each fixed value of n. Thus, we have fit the data
with the following multidimensional analytical function,

fi(1,n, AL) = cosh(0.07698031"-*51%%) cosh(8.3869n-073511) exp(—0.0373661AL)
—97.84681% + 821.7211% — 2131.711 + 1230.2. (7.28)



7.6 Model improvements 137

Table 7.2 Values of the frequencies that have been numerically obtained for the first vibrational
toroidal and spheroidal modes (all frequencies are measured in Hz). Values for [ =1 and [ = 2
in the upper left and right tables, respectively, and for [ = 3 and | = 4 in the lower left and
right ones.

AL n =1 n =2 n =3 n =4 AL n =1 n =2 n =3 n =4
17 1080.08 1704.37 2309.29 2907.44 17 468.687 1337.30 1970.42 2580.81
18 1020.08 1609.68 2180.99 2745.91 18 442.649 1263.00 1860.95 2437.43
19 966.389 1524.96 2066.20 2601.39 19 419.351 1196.53 1763.00 2309.15
20 918.069 1448.71 1962.89 2471.32 20 398.384 1136.70 1674.85 2193.69
21 874.352 1379.73 1869.42 2353.64 21 379.413 1082.57 1595.10 2089.23
22 834.608 1317.01 1784.45 2246.66 22 362.167 1033.37 1522.59 1994.26
23 798.321 1259.75 1706.86 2148.97 23 346.421 988.437 1456.39 1907.55
24 765.058 1207.26 1635.75 2059.43 24 331.986 947.252 1395.71 1828.07
25 734.455 1158.97 1570.32 1977.06 25 318.707 909.362 1339.88 1754.95
26 706.207 1114.40 1509.92 1901.02 26 306.449 874.386 1288.35 1687.45
27 680.051 1073.12 1454.00 1830.61 27 295.099 842.002 1240.63 1624.95
28 655.764 1034.80 1402.07 1765.23 28 284.560 811.930 1196.32 1566.92
AL n =1 n =2 n =3 n =4 AL n =1 n =2 n = 3 n =4
17 724.237 1582.56 2226.62 2843.85 17 954.721 1820.11 2475.69 3100.41
18 684.002 1494.64 2102.92 2685.86 18 901.681 1718.99 2338.15 2928.16
19 648.002 1415.98 1992.24 2544.50 19 854.224 1628.52 2215.09 2774.05
20 615.602 1345.18 1892.62 2417.27 20 811.513 1547.09 2104.34 2635.35
21 586.287 1281.12 1802.50 2302.16 21 772.870 1473.42 2004.13 2509.85
22 559.638 1222.89 1720.57 2197.52 22 737.739 1406.44 1913.03 2395.77
23 535.306 1169.72 1645.76 2101.97 23 705.664 1345.30 1829.86 2291.61
24 513.002 1120.98 1577.19 2014.39 24 676.261 1289.24 1753.62 2196.12
25 492.481 1076.14 1514.10 1933.82 25 649.211 1237.67 1683.47 2108.28
26 473.540 1034.75 1455.86 1859.44 26 624.241 1190.07 1618.72 2027.19
27 456.001 996.428 1401.94 1790.57 27 601.121 1145.99 1558.77 1952.11
28 439.716 960.842 1351.87 1726.62 28 579.652 1105.06 1503.10 1882.39

This function can be used to interpolate the eyeball vibrational frequencies
within the range of axial lengths in which a human eyeball is expected to fall,
without the need of solving a costly and computationally involved eigenvalue
problem.

The values obtained for this fitted analytical function are shown in Fig. 7.4
using solid lines of the same colour than that for the discrete frequency values
(obtained numerically with the methodology described in Sec.7.3). As can be
seen, the analytical function f; provides a good fit to the data, with typical

errors smaller than 1% and maximum errors < 15%.

7.6 Model improvements

We have developed a very simple model to obtain the vibrational modes of the
eyeball. The final goal of this project is to find whether the vibrational modes
of the eyeball structure are related not only to the size or structure of the eye,
but also to the health condition of potential patiens. A first step towards that
aim is to obtain physiological data from actual individuals that can be fed into
our models. In particular, the most basic data we need to build our model are
the dimensions of the eyeball and of its internal constituents. Working together
with optometry speciallists, we have obtained data from a sample of volunteer
people about the eyeball biometric parameters. For that, we have employed

a new swept-source optical biometer (the IOLMaster 700 swept-source optical
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Figure 7.5 Example of a SS-OCT biometry optical B-scan. CCT central corneal thickness,
AQD aqueous depth, LT lens thickness, AL axial length.

biometer; Carl Zeiss Meditec, Jena, Germany). A typical output of the biometer
can be seen in Fig. 7.5, where also the main sizes of the foremost structural

elements of the eye are marked.

Table 7.3 Mean values, ranges, and repeatability metrics of the parameters evaluated. The
acronyms employed mean: “SD” standard deviation, “Min” minimum value, “Max” maximum
value, “Sw” within subject standard deviation, “AL” axial length, ACD” anterior chamber
depth, “CCT” central corneal thickness, “LT” lens thickness, “WTW?” white-to-white distance,
“K1” and “K2” keratometry values.

Parameter Mean £+ SD [Min - Max] Sw Repeatability limit
AL [mm] 24.07 £1.27 [20.42 — 27.07]  0.01 0.03
ACD [mm] 3.60 + 0.29 [2.93 — 4.22] 0.03 0.07
CCT [pm)] 552 + 32 [489 — 610] 2 4
LT [mm] 3.71 4 0.31 [3.23 — 4.34] 0.04 0.11
WTW [mm]  12.13 +0.43 [11.18 — 12.94]  0.10 0.20
K1 [mm] 7.75 4+ 0.28 [7.15 — 8.25] 0.02 0.06
K2 [mm] 7.65 £+ 0.29 [6.82 — 8.15] 0.02 0.05

Beyond the possibility of obtaining directly measured biometric parameters,
we have participated in the evaluation of the repeatability of the IOLMaster 700
optical biometer. Thirty subjects with healthy and phakic eyes (eyes containing
a natural lens) have been included in this study, and only one eye per participant
has been analysed. Each eye has been measured five times with the optical

biometer and the results are summed up in Tab. 7.3. In the table we provide the



7.6 Model improvements 139

mean values for all the structural sizes that the biometer can measure as well as
its standard deviations and the range of the measured quantities. The last two
columns correspond to statistic estimators which are of optometric use, but not
necessary for our model.

In the previous sections, we have presented a modeling of the eye based upon
the assumption that the eyeball is spherically symmetric and can be modeled
employing an average value for the elastic moduli. Certainly, a more accurate
modelling of the eye structure can be done. Our model may easily be improved
by, e.g., assigning different elastic properties to different parts of the eye. Indeed,
it is possible to assign different elastic properties on a point-by-point basis, to
account for the heterogeneity of the various eye constituents. And to add this
structure, we need to know their measurements. Also, lifting up the assumption
of spherical symmetry is trivial, since the decomposition of the vibrational
modes into toroidal and spheroidal is still valid if we assume axial symmetry
(an excellent approximation for the eyeball physiology).

Summarizing, we have presented a novel way of performing the analysis of
the normal modes of an idealized human eye. For that, we have imported the
analytical results developed in a number of areas of Physics, more precisely
in the field of Gravitational Wave Physics. We have developed a simplified,
spherically symmetric eyeball model, for which there exist analytic solutions
for the eigenfrequencies for simple boundary conditions. We have used these
solutions to calibrate our new finite-difference numerical code. Also, we have
studied how the frequencies vary according to AL, and we have measured actual

biometric data from human volunteers to improve our eye model.
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Chapter 8

Conclusions

We provide next a detailed, individual discussion of our results presented in the
two chapters of Part II and the three chapters of Part III.

8.1 Scheduled Relaxation Jacobi method: im-

provements and applications

In Chap. 3, building upon the results of YM14, we have devised a new method
for obtaining the optimal parameters for SRJ schemes applied to the numerical
solution of ePDEs. Our new method reduces the complexity of the non-linear
system of equations from which optimal parameters are computed.

We have shown that the new multilevel SRJ schemes keep improving the
convergence performance index of the scheme, which means that increasing
the value of P we obtain ever larger acceleration factors with respect to the
Jacobi method. We report acceleration factors of a few hundreds and, in
some cases, more than 1000 with respect to the Jacobi method if a sufficiently
large number of points per dimension (namely, N > 16000) and number of
levels are considered. For multidimensional applications increasing P from 5
(original maximum number of levels in YM14) to 15 yields a decrease in the
computational cost by factors ~ 2 — 3 for the largest resolutions considered
here. Since even larger resolutions result in correspondingly larger gains, we
note that the benefit of employing SRJ algorithms with P = 15 will be really
advantageous in three-dimensional supercomputing applications. In such cases
it is worthwhile employing SRJ schemes with a larger number of levels than

those originally proposed in YM14, specially considering that there is no extra
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complexity in the algorithm implementation for any P > 2 once the weights
for large values of P are known. One advantage of SRJ algorithms is that the
optimal set of coefficients for a given number of points per dimension, N7, may
be reused for computational grids with larger a number of points per dimension,
Ny (YM14). The set of SRJ parameters thus employed is not optimal for the
grid with the larger number of points per dimension though. However, the
application of the SRJ parameter set to the grid with Ny points per dimension
will still speed up the iterative solution with respect to the base Jacobi scheme,
even considerably if Ny is not much larger than N;. Thus, in App. B, we have
provided a comprehensive set of tables with all the necessary optimal coefficients
for a dense set of different numbers of points per dimension.

Mainly due to the fact that we have derived analytic solutions for part of
the unknowns, our new method reduces the stiffness of the non-linear system of
equations from which optimal parameters are computed, allowing us to obtain
new SRJ methods for up to P = 15 and arbitrarily large number of points per
dimension N.

From this number of levels, new problems arise, which hinder the computation
of optimal coefficients at relatively low number of discretization points. These
problems are related to the fact that for large values of P the solution to
the problem are very sensitive to tiny changes in the smaller wave numbers,
and small numerical errors prevent the successful evaluation of the solution of
even the simplified system of non-linear equations resulting from the algebraic
simplifications we have shown here. These problems were solved with the

development of the Chebyshev-Jacobi method presented in Chap. 4

8.2 On the equivalence between the Scheduled
Relaxation Jacobi method and Richardson’s

non-stationary method

In Chap. 4 we have obtained the optimal coefficients for the SRJ method to solve
linear systems arising in the finite difference discretization of elliptic problems
in the case P = M, i.e., using each weight only once per cycle. We call the
resulting method Chebyshev-Jacobi (CJM). We have proven that these are the
optimal coefficients for the general case, where we fix P but allow for repetitions
of the coefficients (P < M). Furthermore, we have provided a simple estimate
to compute the optimal value of M to reduce the initial residual by a prescribed

factor.
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We have tested the performance of the CJM with one simple example in 2
dimensions, showing that the analytically derived amplification factors can be
obtained in practice. When comparing the optimal P = M set of coefficients
with those in YM14 and in Chap. 3, the CJM always gives better results, i.e., it
achieves a larger reduction of the residual for the same number of iterations M.
Additionally, the new coefficients can be computed analytically, as a function of
M, Kmax, and Kpin, which avoids the numerical resolution of the minimization
problem involved in Chap.3 on the SRJ. The result is a numerical method that
is easy to implement, and where all necessary coefficients can easily be calculated
given the grid size, boundary conditions and tolerance of the elliptic problem at
hand before the actual iteration procedure is even started.

Following the same philosophy that inspired the development of SRJ methods,
we have found that the case P = M results in an iterative method nearly
equivalent to the non-stationary Richardson method as implemented by Young
[Young 1953]. More specifically, in the implementation of Young, the coefficients
wy, are taken to be the reciprocals of the roots of the corresponding Chebyshev
polynomials in the interval bounding the spectrum of eigenvalues of the matrix
(A) of the linear system. Furthermore, inspired by the same ideas as in the
original SRJ methods, the actual minimum and maximum eigenvalues of A do
not need to be explicitly computed. Instead, we resort to a (much simpler) von
Neumann analysis of the linear system, which yields the values of the ki, and
Kmax that replace the values of the minimum and maximum eigenvalues of A.!
The key to our success in the practical implementation of the Chebyshev-Jacobi
methods stems from a suitable ordering (or scheduling) of the weights w,, in the
algorithm. Though other orderings have also been shown to work, our choice
clearly limits the growth of round-off errors when the number of iterations is
large. This ordering is inherited from the SR.J schemes.

We have also tested the performance of the CJM for more than second-order
discretizations of the elliptic Laplacian operator. These cases are especially
involved since the matrix of iteration cannot be consistently ordered. Thus,
Young’s theory cannot be employed to find the value of the optimal weight of
a SOR scheme applied to the resulting problems. For the particular case of
the 9-points discretization of the Laplacian, even though the iteration matrix
cannot be consistently ordered, Adams [Adams, LeVeque, and Young 1988]

found the optimal weight for the corresponding SOR scheme in a rather involved

1We note that many other iterative schemes rely on a dynamic choice of the relaxation
parameter or on dynamic preconditioning techniques and may be applied to matrices that
come from discretizations of physical problems over generic grids (see e.g. [Saad and Schultz
1985, Saad 2003, Saad 1985, Dehghan and Hajarian 2011, Antuono and Colicchio 2016]).
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derivation. Comparing the results for the numerical solution of a simple Poisson-
like problem of the SOR method derived by Adams and the CJM we obtain here,
for the same 9-points discretization of the Laplacian, it is evident that both
methods perform quite similarly (though the optimal SOR scheme is still slightly
better). However, the SOR method requires a multi-coloring parallelization
strategy with up to 72 four-color orderings (each with different performance),
when applied to the 9-points discretizations of the Laplacian operator. The
parallelization strategy is even more intricate when a 17-points discretization
of the Laplacian is used. In contrast, CJM methods are trivially parallelizable
and do not require any multi-coloring strategy. Thus, we conclude that the
slightly smaller performance difference between the CJM and the SOR method
in sequential applications is easily outbalanced in parallel implementations
of the former method. Furthermore, we have shown that employing higher-
order discretizations of the Laplacian operator is very advantageous to reduce
both the number of iterations and the computational time needed to reach a
preestablished real error goal (i.e., the true error one makes comparing the exact
solution of a problem with the numerical approximation of it). Given the stencil
increase needed to implement a 17-points discretization of the Laplacian, we
infer that a parallel implementation of this method may require a very modest
increment in the number of zones transferred as internal boundaries among
different computational subdomains. Hence, applying high-order discretizations
of the Laplacian is ideally suited for problems that combine the solution of
elliptic and hyperbolic systems of coupled equations (e.g., as in the case of

Euler-Poisson systems dealing with self-gravitating fluids).

8.3 Sequential applications in astrophysics

In Chap. 5 we have applied the SRJ method and the CJM to the resolution of some
problems of interest in astrophysics. We have limited ourselves to a sequential
implementation of the method. Currently, we have reached acceleration factors
that have made that the SRJ methods become competitive (depending on the
dimensionality of the problem and its size) with, e.g., spectral methods for the
solution of some ePDEs. The comparison has been done for the solution of the
Poisson equation in spherical coordinates in 1D, 2D and 3D.

We find that for 1D Poisson-like problems, the fastest method of solution,
of the ones tested, is the direct inversion method implemented in LAPACK. This
happens because, in realistic applications in which the Poisson equation has to

be solved multiple times, the LU decomposition of the matrix solver, where most
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of the computational work is done, needs to be performed once, and thus it can
be stored for the rest of the computations.

In 2D, the best performing method depends on whether our initial guess is
close to the actual solution or far off. In realistic applications, where ePDEs
are coupled to systems of hyperbolic PDEs, the solution from a previous time
iteration does not change significantly over the course of a single timestep. In
such conditions, the LAPACK libraries are the best performing. However, spectral
methods are advantageous if, in 2D, the initial values are far from the actual
solution of the problem. We further note that in realistic coupled systems,
and for a relatively large number of points per dimension (N > 500), the SRJ
methods are competitive with spectral ones.

In 3D applications, we find that the total computational cost of SRJ meth-
ods scales as N, i.e, as in the case of spectral methods. Considering that (i)
applying direct inversion methods to 3D problems may be unfeasible because of
memory restrictions, and that (ii) SRJ methods can be parallelized straightfor-
wardly (much more easily than, e.g., spectral or multigrid methods), we foresee
that they are a competitive alternative for the solution of elliptic problems in
supercomputing applications and in 3D.

Finally, we outline that the easy implementation of complex boundary con-
ditions in SRJ and CJM is also an advantage with respect to other existing
alternatives. This fact has been demonstrated solving the Grad-Shafranov equa-
tion on a very involved domain and including mixed-type boundary conditions.
Indeed, the versatility of the CJM to deal with arbitrary boundaries mades it

suitable to tackle realistic problems in Astrophysics.

8.4 Parallel applications in astrophysics

In previous chapters, we have delineated the potencial degree of parallelism of
the CJM method as a major advantage over other competing algorithms to solve
linear systems of equations resulting from the discretization of elliptic systems of
partial differential equations. Building upon the basic Jacobi method, the parallel
implementation of the CJM is as simple as that of the former method. In Chap. 6
we have materialized our previous claims and have presented an implementation
of the CJM using a purely MPI implementation, a tridimensional implementation
using openMP / MPT hybrid implementation and using GPUs.

We have tested the MPI ported CJM algorithm in two different MIMD
architectures, one with distributed memory and one with shared memory. We

have compared both times and scalability of the CJM with respect direct inversion
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solving an astrophysical problem in spherical coordinates. The parallelisation
strategy has been to split the grid in domains and distribute the workload
among processors. The iterative problem is then solved in the whole grid and
domain boundaries are communicated at each iteration step. We have seen,
extrapolating, that for the high resolution simulation, from 3000 processors
onwards, the execution time using the CJM is expected to be lower than the
direct inversion method in both ab initio and the realistic calculations. The
speedup for CJM is ideal, which does not happen with direct inversion. Using
an LU-based direct version method was problematic at high resolutions when
the number of partitions were small in some dimension, because the matrix no

longer fit in memory.

The solution of the Poisson equation to find out the electric potential distri-
bution created by a sphere with uniform charge has been used as a test-bed in
3D. We have taken advantage of an existing platform for numerical relativity. We
have used a hybrid OpenMP/MPI implementation of the CJM. The simulations
have maintained an ideal speedup up to 64 cores with N = 256 in 3D. Both
SOR and CJM are more than an order of magnitude faster than the Jacobi and
Gauss-Seidel methods. Nonetheless, the formula for calculating wept for SOR
only applies when the original matrix of the linear system is consistently ordered;
and CJM is trivially parallelized, while SOR requires multicolor schemes for a
successful parallelization. The case of octant symmetry leads to an NCO matrix
and, hence, there is no analytic expression to calculate wop for SOR. We test a
sequence of values of w to empirically estimate its optimal value for the given
problem. In the latter case, the CJM performs better than SOR for the set of
tested values of w.

We have also tested the CUDA ported Jacobi and CJM algorithms in two
different GPU architectures. The differences in actual computing time reduce
significantly as either the grid size increases or the number of points employed
in the discretization of the Laplacian grows. We find that it is possible to speed
up by several orders of magnitude the classical Jacobi method thanks to the use
of the parallel implementation of the CJM on GPUs.

Moreover, we have illustrated the benefits from using the parallel implemen-
tation of the CJM over GPUs in combination with a high-order discretization
of the Laplacian operator in a test problem. We conclude that it is always
advantageous employing high-order discretizations of the elliptic operator since
they requiere less iterations and less computational time to reach the same real
error goal. This conclusion is independent of the parallel implementation of

any of the methods we have tested in this work. However, the combination of
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high-order discretization of the elliptic operators and the CJM implemented on

GPUs results in an extremely powerful method for practical applications.

8.5 Beyond astrophysics: modelling the human

eye

We have presented an analysis of the normal modes of an idealized human eye.
For this purpose we have imported the analytical results developed in a number
of areas of Physics, more precisely in the field of gravitational wave physics.

We have shown that beyond the mechanical characterization of the eyeball
components, the normal vibrational modes of the eye could be involved in
physiological processes like, e.g., the accommodation. We have developed a
simplified, spherically symmetric eyeball model, for which there exist analytic
solutions for the eigenfrequencies for simple boundary conditions. We have used
these solutions to calibrate our new finite-difference numerical code. Also, we
have studied the dependence of the frequencies with respect to the axial length.
These results have been contrasted with actually measured biometric data of a
selected sample of patients with a twofold goal. On the one hand, calibrating
the model with real data and, on the other hand, feeding back the data on the
eyeball model. The latter aim is still on-going.

The normal vibrational modes of the eye could be involved in some physi-
ological processes, e.g. the accommodation. Accommodation occurs through
changes in the shape and thickness of the crystalline lens. The thickness and
the curvature of the lens increase, causing an increase in the eye’s optical power.
Since it is a muscle-induced activity, accommodation is a highly fluctuant and
dynamic process. These fluctuations are related to the fluctuations in ocular
aberrations, and occur with corresponding frequencies [Campbell, Robson, and
Westheimer 1959, Charman and Heron 1988, Dubra 2004]. The microfluctuations
of accommodation play an important role in the variability of the optical quality
of the eye. There are two main components of the accommodation response:
a low frequency component (< 0.5Hz), which corresponds to the drift in the
accommodation response, and a peak at higher frequency, in the 1 — 2 Hz band
[Campbell, Robson, and Westheimer 1959, Charman and Heron 1988]. The
vibrational eyeball modes we have considered —having the lowest frequencies—
seem to happen on timescales of a few milliseconds. The exact way in which
the normal eyeball modes are correlated with the accommodation process is

beyond the scope of this thesis. However, we anticipate that to tackle such study
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one would need to improve our current model by, at least, differentiating in the
eyeball model the cornea-sclera, the vitreous humour and the lens. Towards this

direction we will conduct our future research.



Chapter 9

Outlook

During the development of the thesis there have been emerging different promising
ideas that, due to lack of time, have been set aside for the future. Here we

discuss some of these ideas.

Limits in the performance in parallel applications. We would like to
bring to the limit, both in the number of processors and in the mesh size, the
parallel implementations discussed in this thesis, to assess its performance in this
regime. For example, in our application to compute the gravitational potential
in progenitors of long GRB simulations, we would like to verify the scalability
up to thousands of processors. For this purpose we will need to use sufficiently
large mesh sizes to have enough work load per processor. This test will have
to be run in high performance computing facilities, since they are not possible
in our local machines. In the case of the GPUs, we plan to increase the mesh
size to fill the available memory in the GPU and see if the same trend that we
observed in in thesis continues in terms of processing times. On the other hand,
it is evident that for very large problem sizes, the elliptic problems we aim to
address in, e.g. Euler-Poisson systems, will need to be split across several GPU
devices running in parallel. We will test this additional parallelization degree
once adequate computational resources become available.

Solving XCFC equations using CJM with massive parallelism. In the
future we plan to use the methods developed in this thesis to solve the Einstein
field equations in the XCFC formulation. In this formulation we have a hierarchy

of ten decoupled elliptic equations. A parallel implementation could be of interest
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for several astrophysical scenarios, including core collapse supernovae and the
evolution of isolated neutron stars.

The goal would be to test the different implementations that we have pre-
sented in this thesis (MPI, openMP / MPI and GPUs) to study their performance
in real application of three-dimensional hydrodynamics simulations.

We would also like to study the behaviour of the scheme, applied to the
XCFC case, in other types of coordinates, different to the spherical coordinates
used in the past. For instance, we would like to test spherical coordinates with
a compactified radial coordinate extending to radial infinity, using different com-
pactification functions. Likewise, we also aim to test our new method employing
Cartesian and bispherical coordinates, either with or without compactification
in the XCFC formulation.

Optimal weight, w, for SOR method with NCO matrices. One of the
classical methods for solving linear systems of equations, especially those systems
obtained in the numerical solution of PDEs, is the SOR method. Although its
rate of convergence can be very good, compared to other methods presented in
this thesis, it depends critically on the value of the relaxation factor w used by
the algorithm. Moreover, it is generally difficult to obtain this value. We are
developing a methodology to find the optimal weight for the SOR iteration based
on the knowledge learnt from Chebyshev-Jacobi schemes. Preliminary results
show that it is possible to compute the optimal value of w straightforwardly, not
only for the series of CO matrices with known solution presented in this thesis,

but also for some cases of NCO matrices. In particular, we obtain an expression,
2
wopt (N) = 32/ (4 +3,/1 —cos ;{,) , for the case of the 9-points discretization of

the Laplacian operator, employing o = 2/3. This result agrees numerically with
one computed by LeVeque and Trefethen 1988, namely woy(N) = 2 — 2467
N being the numerical resolution). We are currently working on the results
for the 17-points discretization of the Laplacian and for more general cases.
These more general cases, corresponding to high-order discretizations of the
Laplacian operator, are relatively easy to obtain in the framework devised in
this thesis. Such framework has been formulated in terms of the parameter «,
which accounts for how to combine points at different distances from a given

node in the discrete mesh where the numerical solution is sought.

25-points discretizacion of the Laplacian. We are studying higher order
schemes with complete 25-points discretizations of the Laplacian. One way

of obtaining this type of discretizations is doing convex combinations between
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the discretization of the Laplacian operator using different rotated stencils (see
Fig.9.1). Accounting for the previous comments, we can write the stencil of the

Laplacian discretization as
aSi + B8« +vSz + (1 —a—B—7)Sz, (9.1)

being « > 1/2; which shall be regarded as a generalization of Eq. (4.19).

Figure 9.1 Schematic representation of the 25-point stencils. The colored lines correspond to
the standard stencil S; (black) and rotated stencils Sx (red) , S% (cyan) and S% (brown),
respectively. To be compared with Fig. 4.3.

Without loss of generaulity1 we can write o, ,6’ and - as we did in Sec. 4.4, i.e.,

as a rational numbers a := g, 8 := E and « := . Assuming, in order to obtain
handy expressions in the von Neumann study of stability, that ¢ = d’g’b, ie.,

that we are receiving the same contribution from Sz and from Sz, we obtain

the following expression for Kmin

1
fmin = 1500 + 750 + 12(d — a — b) {

—lOa{sm N + sin? N] + 160&[

z y
) 2
T Yy x Yy
+80b{sm2 (2N 5N, ) +sin® (217(7 - 217;)]
z y

+6(d—a—b){sm (F+W)+Sin2 (Nl_%)
z Yy

i 7r
2N, 2N

INote that the general case o := %, B = b—: and v := ;—l, always can be reduced to the

e
previous case simply computing the least common multiple of the denominators d := [d’, €/, f'].
a/ b’ 1

/d /d
,,8—6 and v := fd.

Then a =
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Outlook

i s T i
+ sin? (m + Fy) + sin? (2Nm — Ny)] }
and for Kmax
. ~ 320a+24(d —a —b)
1500 + 750 + 12(d — a — b)

The framework to combine stencils here provided seems to be useful for

high-order extensions of the Laplacian discretization. As the implementation
we have of the method on GPUs is of stencil type, our infrastructure is already
prepared to handle such large discretizations. However, in MIMD architectures,
we will have to developed further our computational routines to incorporate

larger discretization stencils.

CJM for non positive-definite matrices. As we mentioned when finding
the eigenvalues in the modes of vibration of the eye, the CJM cannot be applied
to that case because we have a non positive-definite matrix. The problem with
non positive-definite matrices is that their eigenvalues do not have a definite
sign and, therefore, may cross zero. In [Anderssen and Golub 1972] there is an
appendix with a translation of a work of Lebedev that explains how to apply
iterative methods to operators, whose eigenvalue spectrum spans several intervals,
possibly of different sign. We have found a possible way to combine the former
strategy with our CJM. It is necessary to remember that we do not work with
eigenvalues but with an approximation to them obtained from a von Neumann
analysis of stability. In our particular case, the problem consists in finding two
intervals that exclude zero and, at the same time, include the maximum negative
eigenvalue and the minimum positive one. With this, and after matching the
lengths of the two intervals, we have [a1,as] in the negative part and [as3, a4] in
the positive part, Lebedev explains how to compose a parabola? Qo (t) = t(t—2c),
with ¢ = (a2 + a3)/2, with the transformed Chebyshev polynomial that we use
for obtaining the weights of our CJM schemes éM(/%). Thereby, conceptually,
we have that the weights are the inverse of the zeros of the polynomial function
Pon(t) = Gur(Q2(t)), with M being the length of the cycle we want to use.
This scheme will have a behavior similar to the CJM but avoiding the problem
that the operator has a part of the spectrum with negative sign. We are testing
it currently. We point out that if our attempts of generalization are successful,
we may have paved the way to employ the CJM as a generic solver for any linear
system, regardless it comes from the discretization of ePDEs or not.

2In our case, since we have only two intervals, the construction of Lebedev shall result in a
second-order polynomial.
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Understanding the good behavior of the CJM for non-Cartesian op-
erators. We have used our scheme in numerous tests involving non-Cartesian
coordinates. Despite of the fact that the von Neumann analysis that we have
used is, strictly speaking, only valid in Cartesian coordinates, we have observed a
good performance in the solution of the elliptic problems at hand. A possible step
forward would be trying to apply the von Neumann stability analysis directly
to these operators and hoping to understand this behaviour. We are currently

working in the analysis of the Laplacian operator in spherical polar coordinates.

Relaxation scheme for multigrid algorithms Multigrid schemes find
themselves among the most popular and efficient iterative solvers for linear
systems. In this schemes one needs to apply some relaxation algorithm in order
to reach the solution. Usually the Jacobi method is used in this relaxation
step. We are currently working in a multigrid implementation that uses CJM as
relaxation algorithm, and we plan to compare its performance with respect to
the Jacobi method.

Beyond these previous items, in which we have already some ideas to develop,
there are a number of other questions, which we may also address in future work.

For instance:

e The methodology developed in this thesis has been applied to finite dif-
ference methods. It would be very interesting to consider its potential
extension to other methods of solving ePDEs, e.g., finite element methods

or discontinuous Galerkin schemes.

o Both SRJ and CJ methods have been applied to regular (cuadrangular)
meshes. As was already pointed by YM14, the method can be applied also
to non-uniform cuadrangular meshes. Thus, it would be viable to apply it in
AMR grids. Besides that, it will be certainly useful considering extensions
of the method to more general grids, namely general unstructured (simplex)

meshes (e.g., triangles and tetrahedra).

As we have seen in the last paragraphs, there is ample room for improvement
and application of SRJ schemes and, specially of the CJM. We point out that
the methods here described suffer from the same principle problem as the
SOR method. They require the calculation of the optimal parameters for each
problem size and discretization operator. However, in all applications we have
considered so far, the evaluation of the optimal parameters has been doable

and the computational optimization worth. We take this fact as hint pointing
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towards the relevance of the methodology developed in this thesis, as well as an
stimulus to continue our research in this promising line and in its applications
in Astrophysics. Many of these applications are ongoing and will be timely
published elsewhere.
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Appendix A

About the weights

A.1 Ordering of the weights

As we point out in Sect. 4.2, the ordering of the weights w,, is the key to avoid
the pile up of roundoff errors. In this appendix, we show that the ordering
provided by Yang and Mittal 2014 for SRJ schemes, and that we also use for
the optimal P = M schemes, differs from the one suggested by other authors.

Lebedev & Finogenov Lebedev and Finogenov 1971 provided orderings for
the cases in which the number of weights is a power of 2. Translated to our
notation, we shall have M = 2", r =0,1,.... In such a case, let the ordering of
the set (wy,wa,...,wnr) as obtained from Eq. (4.10), be mapped with the vector
of indices (1,2,...,M). Let us consider an integer permutation of the vector of
indices of order M, 25 := (j1,42,---,Jm), where (1 < ji, < M, j; # ji), which
are constructed according to the following recurrence relation:

[1]

0 =Z1:=(1) and Zyr-1:= (J1,J2,.-.,J2r-1) (A.1)

52“" = E1\4 = (j172r +1 _j1>j2727l +1- an o 7j2’"_1727. +1 _j2r_1) (A2)

In particular, we have,

E o= (L,2),

o= (1,4,2,3),

=, = (1,8,4,5,2,7,3,6),

e = (1,16,8,9,4,13,5,12,2,15,7,10,3,14,6,11).
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In contrast, we can obtain different SRJ schemes, and correspondingly, different
orderings, for the same number of weights, because of the later depend on the
number of points employed in the discretization (see Eq.4.10). Furthermore,
the ordering also depends on the tolerance goal, o (which sets the value of
M; Eq.4.14). Next we list some of the orderings we can obtain for different

discretizations (annotated in parenthesis in the form N, x N,) and values of o:

=Y = (1,2),

=Y = (1,4,3,2),

=R = (1,8,5,2,3,7,4,6) for (4 x 4,0 = 0.01),
(1,8,5,3,6,2,7,4) for (8 x 8,0 = 0.15),

=5 = (1,15,9,2,12,3,4,13,5,6,7,8,10,11, 14, 16) for (4 x 4,0 = 2 x 107°),
(1,16,9,6,12,3,14,7,10,4,13,5,15,8,2,11) for (8 x 8,0 = 6 x 1073).

which obviously differ from the orderings Z; for j > 4.
We note that Nikolaev and Samarskii 1972 provided also orderings for

arbitrary values of M, which coincide with those of Lebedev & Finogenov
Lebedev and Finogenov 1971 when M is a power of 2 (i.e., M = 2"). Finally,
more recently, Lebedev & Finogenov Lebedev and Finogenov 2002 have extended
their previous work to a larger number of cases (e.g., M = 273%) and applied
also to Chebyshev iterative methods. We remark that the SRJ ordering of the
weights can be applied to arbitrary values of M.

A.2 Properties of the weights
In this appendix we show some algebraic properties of the weights of the CJM.
The first one is that the harmonic mean of the weights equals the average of the

maximum and minimum weight numbers:

Theorem 3. Let w; be the weights given by Eq. (4.10). Then it holds that
M
1 -1 Kmax + Kmin

Proof:

M
% ZW;1 _ (’imax ;‘ Kmin) _ (’imdx Kmm ZCOS ( 71— 1/2)> ) (A4)
i=1
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Let j € [1, M/2]. Since

cos (W) :_COS(W((M—j;}l)—lﬂ))) (A5)

all the terms in the summation cancel out, except the central one in case

M is odd. In this last case, M = 2n + 1, and the only remaining term is

cos (%) = cos (g) = 0. In general, the summation reads

M
1 — Kmax 1 Kmin
7 > wt= e, (A.6)
i=1

Corollari: Since the relation between the weights of the stationary RM and
the CJM is & = wd~!, where D = diag(A), having all its elements equal to d,
and since @ = 2/(a + b), where ¢ = min (\;) and b = max ()\;), being \; the
eigenvalues of matrix A, it turns out that

2471 2
= =& . A.7
Kmax T Kmin a—+ b “ ( )

Theorem 4. Let w; be the weights given by Fq. (4.10). Then it holds that

- [H] " (/o g

n—-+o0o 2

Proof:

Let us define A = (Kmax + £min)/2 and B = (Kmax — fmin)/2. It is well
known that the Chebyshev polynomials of first kind of degree n, T, (x), satisfy
the following recurrence relation:

To(z)=1; Ti(z) =xz; Tn(x) =22T,(z) — Tp—1(x),n > 2. (A.9)

From this property, it is easy to check that the leading coefficient of T, (x) is
2n~1 Taking into account the leading coefficient and the roots of T}, (z) from
Eq.(4.8), we get that

Tp(z) =2""1 ﬁ {x — cos {(ka_l)ﬂ] } : (A.10)

n
k=1

Therefore,

B" A
= 7Tn ey
2n—1 <B>

f[w{l = {A—Bcos(;)} [A—Bcos (‘;’Z)] [A—Bcos (W

)
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B B2 B B2

where last equality uses the explicit expression of T),(z) for x = A/B > 1. From

Bn
2’ﬂ

)

this equality, we can bound the geometrical mean of the inverse of the weights

Wi

n 1/n
B (A A2 1 B A A2
2 (B " @) = (Hﬂi ) = 20-07m <B i \/;> (A1)

Taking limits for n — oo, we obtain that

n 1/n 2
lim [H w;ll - % (A /A B?) - (W V““) . (A13)
i=1

n——+oo 2

(A.11)
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Appendix C

Von Neumann stability

analysis

In oder to provide an example of the steps needed to compute the expressions for
Kmin and Kmax in either SRJ schemes or in the CJM, we show in this appendix
a prototype case, the discretization of the Laplace equation Au = 0. In the
following, we We consider a second order central discretization of the previous
equation on a mesh with N, x N, nodes uniformly spaced, so that Az = L, /N,
and Ay = L,/N,, L, and L, being the length of each of the dimensions. We
obtain

Ui—1,j — 2Uij + Uit1,j N 2uij + Ui g1

Ax? Ay?

Isolating the value of u; ; one obtains the following iterative scheme:

= 0. (C.1)

n+1 _ ]'

Yij = 2Ax2 + 2Ay?

AyPui g+ AyPulyy ; + Axtul ;o + Acul L |
(C.2)

Next we write the iteration step as a weighted Jacobi combination of the value
of u; j in the previous iteration (u;) and the expression provided in Eq. (C.2)

employing a weight, w, to be specified later:
up = (1 - wull+
w

IAZZ 1 OAg? Ayl + AyPulyy o+ Actul o+ APl |, (C3)
which, assuming Az = Ay (in order to simplify the algebra), yields

n+l _  n w n n n n n
Ujj = U+ Z(“i—l,j Uy Fuiio i — duil). (C.4)
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Since the exact solution u;'; must satisfy the discretized equation exactly,

the error €}, must also satisfy the finite difference equation (C.4):

n+l _ n w n n n n n
=€+ (61 T ela, e 1 te i —4€e). (C.5)

€ij i g

We aim to compute the amplification of the error from one iteration step to
the next one, i.e.:

6nJrl

G= ETJ (C.6)
2,3

For that we expand the total error in a finite Fourier series

N, N,
e(zy) =D Y Appenretny (C.7)

m=1n=1
and replace those expressions in the iterative scheme. Writing explicitly the
error terms appearing in Eq. (C.5) in terms of the elements of the finite Fourier

basis into which we are expressing the total error we have

ezn,j _ eikzxeik‘yy

6?711]- — eikm(z—Az)eik}yy _ eikmmeikyye—ikmAm

6?+1,j _ eikz(erAx)eikyy _ eikzmeikyyeisza:

ezn,j—l — eikmmeiky(yfAy) — eikmzeikyyefikmAy

€2j+1 — eikam iky (y—Ay) _ gikaw jikyy giks Ay
(C.8)

After replacing the previous expressions in Eq. (C.5), we obtain

G=1+ g(e_ik””AI + ethaBT oty Ay 4 piky Ay 4) (C.9)

4

To compute the values of ki and kynax we shall write the amplification
factor (Eq. (??)) in the form

G =1—wk(ks, ky). (C.10)

After some algebra we get:

1 efiszz 4 eisz:r 1 efikyAy 4 eikyAy
G=1—-wl|l-= - = . C.11
T2 2 2 2 (C-11)

Rewriting the expressions using trigonometric functions and identifying the
k(kg, ky) comparing Egs. (C.10) and (C.11), we have:
2 — cosky Az — cos ky Ay

’i(kahky) = 2 )

(C.12)
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or equivalently:
krAx ky,A
t(ky, k) = sin’ IT + sin? yTy (C.13)
This generic expression of k must be bounded accounting for the types of
boundary conditions we have in our grid. For instance, if we deal with Dirichlet
boundaries we cannot have one-dimensional Fourier modes and we shall obtain

the bounds of Eq. (C.13) looking for the sum of each of the individual maxima

obtained for purely one-dimensional problems in both the z and y dimensions.

For Neumann boundaries one dimensional Fourier modes are allowed, and
bounding Eq. (C.13) is much simpler. Restricting the analysis to this later
case, we express the wave numbers k, = mm/L, with m = 1,2,..., N, and
ky =mr/L, with r =1,2,..., N,. It is evident that the maximum of Eq. (C.13)
holds for sin? k“f’“ = sin? kysz =1, yielding Kmax = 2. On the other hand, the

smallest possible value Eq. (C.13) is kmin = sin® 5%, where N = max {N,, N, }.







Appendix D

Resum

D.1 Objectius

Les ePDEs (elliptic partial differential equations, en anglés) apareixen en una
amplia varietat d’arees de les matematiques, la fisica i I’enginyeria. Sén de
particular interés en Astrofisica on apareixen, per exemple, quan es calcula
el potencial gravitacional, en la solucié de ’equacié de Grad-Shafranov per
magnetosferes lliures de forces, o d’imposar lligadures de divergencia zero en la
integracié numerica de les equacions MHD (magnetohydrodynamics, en anglés).
En general, les ePDEs s’han de resoldre numericament, establint una demanda
cada vegada més gran d’algoritmes eficients i altament paral-lels per abordar la
seua resolucié computacional.

El SRJ (scheduled relaxation Jacobi, en anglés) pertany a una prometedora
classe de metodes, atipic per la combinacié de senzillesa i eficacia, que s’ha
introduit recentment per resoldre ePDEs lineals de tipus Poisson. Es una
extensié del metode iteratiu classic de Jacobi utilitzat per resoldre sistemes
d’equacions lineals del tipus Au = b. Hereta, d’entre altres, la seua robustesa.
La seua metodologia es basa en el calcul d’uns parametres apropiats per a una
aproximacié multinivell amb I'objectiu de minimitzar el nombre d’iteracions
necessaries per a reduir el residual per davall d’'una tolerancia especificada.

L’eficiencia en la reduccié del residual augmenta amb el nombre de nivells
emprats en 'algoritme. Tanmateix, ’aplicacié de la metodologia original per
calcular els parametres d’estos esquemes SRJ optims més enlla de 5 nivells és
enormement dificultosa. Aixo és degut majoritariament a la presencia d’un
sistema mixt algebraic-diferencial (no lineal) d’equacions el qual es torna cada

vegada més rigid a mesura que augmenta el nombre de nivells.
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Dit aix0, el que volem fer és:

e D’una banda, volem trobar una nova metodologia per a ’obtencié dels
parametres dels esquemes optims de 'algoritme SRJ que supere les lim-
itacions de la metodologia original i proporcionar els parametres per a
estos esquemes amb un nombre elevat de nivells, fora bo fins a 15, i per a
resolucions de fins a 2 punts per dimensié. Aixo donara lloc a factors
d’acceleraci6 de diversos centenars respecte del metode de Jacobi en el cas
de resolucions tipiques i de milers en alguns casos amb altes resolucions.
La major part de I’éxit en la recerca d’estos esquemes Optims amb més de
10 nivells es basara en una reduccié analitica de la complexitat del sistema
d’equacions abans esmentat. A més, fora bo estendre ’algoritme original

per aplicar-lo a certs sistemes d’equacions el-liptiques no lineals.

e D’altra banda, en un esquema tipic SRJ, s’empra 'anterior conjunt de
parametres en cicles de M iteracions consecutives fins que s’arriba a la
tolerancia prescrita. Volem presentar la forma analitica del conjunt optim
de factors de relaxacié per al cas en que tots ells sén estrictament diferents,
i veure que l'algoritme resultant és equivalent al meétode no estacionari de
Richardson generalitzat, en el que es precondiciona la matriu del sistema
d’equacions multiplicant per D = diag(A). El nostre métode per estimar
els pesos té 'avantatge que el calcul explicit dels valors propis minim i
maxim de la matriu A (o la matriu d’iteracié corresponent de ’esquema
de Jacobi amb pes subjacent) es substituix pel calcul (molt més facil) de
les freqiiéncies minima i maxima derivades de 'analisi d’estabilitat de von
Neumann de 'operador el-liptic continu. Este conjunt de pesos també és
I’optim per al problema general, la qual cosa ens déna la convergencia
més rapida de tots els possibles esquemes SRJ per una estructura de
malla donada. Ens referirem a ell com el meétode de Chebyshev-Jacobi.
El factor d’amplificacié del metode es pot trobar analiticament i permet
Iestimacié exacta del nombre d’iteracions necessaries per a assolir la
tolerancia desitjada. També es vol mostrar que a partir del conjunt de
pesos calculats per I'esquema SRJ optim per a una mida de cicle fix és
possible calcular numeéricament el valor optim del parametre w del meétode

SOR (successive overrelaxation, en anglés) en alguns casos.

e Volem demostrar amb exemples practics, d’aplicacié en Astrofisica, que el
nostre metode també funciona molt bé per als problemes de tipus Poisson
en els que es fa servir una discretitzacié d’alt ordre de 'operador Laplacia

(per exemple, discretitzacions de 9— o 17— punts). Aixo té molt d’interés,
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ja que estes discretitzacions no produixen matrius CO (consistently or-
dered, en anglés) i, per tant, la teoria de Young no es pot utilitzar per
calcular el valor optim del parametre de relaxacié optim de SOR. D’altra
banda, els esquemes SRJ optims deduits aci sén avantatjoses respecte a
les implementacions existents per SOR pel que fa a discretitzacions d’alt
ordre de 'operador Laplacia en la mesura que no cal recorrer als esquemes

multicolor per a la seua execucié en paral-lel.

e Presentar el metode de Chebyshev-Jacobi fent servir una implementacio
purament MPI i una implementacié hibrida OpenMP/MPI, ambdues sobre
magquines de memoria compartida i de memoria distribuida. Mostrar el
seu rendiment i com escalen. També mostrar com arribar a velocitats
de convergencia notables amb execucions en paral-lel sobre GPUs quan
la resoluci6é d’equacions en derivades parcials el-liptiques amb diferéncies
finites es fa utilitzant de manera conjunta el metode de Chebyshev-Jacobi

i les discretitzacions d’alt ordre.

o Finalment, tractar d’aplicar els nostres metodes més enlla de ’ambit de
I’Astrofisica. En particular, abordar el problema de trobar els modes
normals de vibracié de 1'ull huma. Este problema es pot resoldre amb
una variant millorada de la metodologia que aci es presenta. La millora
consistix a estendre el calcul del conjunt optim de parametres al cas de
matrius no definides positives. Les nostres idees sobre com procedir en

este camp s’esbossen en el treball futur d’esta tesi.

D.2 Metodologia

D.2.1 Problemes elliptics en astrofisica

La realitat és canvi. Canvis en el temps, i canvis a ’espai. El concepte de
derivada apareix en este context, com la taxa de variacié d’una variable respecte
d’una altra. Es per aixd que les PDEs (partial differential equations, en anglés)
apareixen per tot arreu en la fisica.

Des d’un punt de vista practic, ens preguntem per que necessitem resoldre
PDEs. Com s’il-lustra en l'excel-lent monografia de Otway [2015] una soluci6
d’una PDE pot reproduir, en general, tres tipus diferents de comportaments:
pot propagar-se com si fos un paquet d’ones, pot difondre’s com ho fa la
calor, o pot oscil-lar sense anar enlloc. I resulta que molts fenomens fisics sén

combinacions d’estos tres comportaments. Per tant, resoldre PDEs pot servir
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per a modelar matematicament la naturalesa local dels fenomens fisics. Les
solucions dels diferents tipus de PDEs, és a dir, les solucions de les equacions
de tipus hiperbolic, de tipus parabolic i de tipus el-liptic, estan relacionades
amb un dels tres comportaments anteriors, o siga, estan relacionades amb
fenomens de propagacio, de difusié, o d’oscil-lacié. Amb tot aixo, podem dir,
i amb rad, que les PDEs son el llenguatge matematic apropiat per a modelar
molts fenomens. Entre les moltes PDEs famoses i interessants, sols en el cas
d’equacions diferencials parcials lineals, tenim un munt d’exemples: (veure per
exemple Evans [2010] o Salsa [2016]: 'equacié de Laplace, 'equaci6é de Helmholtz
o dels valors propis, ’equacié de transport lineal, 'equacié de Louville, I’equacié
de la calor o de difusid, I'’equacié de Schrédinger, ’equacié de Kolmogorov,
I'equacié de Fokker-Planck, ’equacié d’ona, I'equacié del telegraf, I’equacio
d’ona generalitzada, 1’equacié d’Airy, 'equacié de Beam, etc. I no hem dit res
de les PDEs no lineals ni dels sistemes de PDEs lineals o no lineals. Remetem el
lector a Zwillinger [1997] per a una llista més extensa i un estudi més profund
del tema. La investigacié es centra en tipus concrets de PDEs, ja que no existix
una teoria general sobre la resolucié de qualsevol tipus d’estes. En la present tesi
ens centrem en la resolucié numeérica, de manera eficient, d’un tipus particular
de PDEs, les ePDEs. A més, o farem dins d’una area especifica del coneixement:

I’ Astrofisica.

En este capitol es revisen alguns conceptes matematics basics relacionats
amb les ePDEs i proporcionem alguns dels exemples especifics dins 1’area de
I’ Astrofisica que tractarem d’alguna manera en esta tesi o en futures aplicacions
dels metodes desenvolupats al llarg de la mateixa. En el segiient capitol ens
centrarem en les diferents estrategies de solucié per resoldre numericament les

ePDEs.

D.2.2 Introduccidé als métodes iteratius

En este capitol de la tesi es fa una descripcié basica de les estrategies per a
la resolucié numerica de sistemes d’equacions en derivades parcials. El nostre
objectiu no és fer una revisié exhaustiva de les diferents metodologies de resolucio,
sindé més aviat presentar el necessari per a posar en el context correcte els nous
metodes que hem desenvolupat. Com veurem més endavant, hi ha dues families
de metodes que es poden emprar: metodes directes i metodes iteratius. Ens
centrarem en els metodes iteratius, que és I’ambit on estan els metodes que s’han

desenvolupat.
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D.2.3 El metode SRJ: millores i aplicacions

Com ja hem dit amb anterioritat, el nostre objectiu és resoldre PDEs associades
amb problemes el-liptics amb interés en astrofisica. Ens centrem en els metodes
iteratius. Un dels esquemes iteratius més simples i més estudiats és el metode de
Jacobi [Jacobi 1845, Richardson 1911]. El principal inconvenient que presenta
és la seua baixa velocitat de convergencia. Per tal de millorar 'eficiencia del
metode de Jacobi, s’han considerat moltes alternatives. Una possibilitat molt
popular és I'is de precondicionadors aplicats als sistemes lineals, que fan que
els metodes associats de Jacobi i Gauss-Seidel convergisquen de manera més
rapida asimptoticament que quan no estan precondicionats. De fet, el metode
que millorem aci, podra ser emprat també com un precondicionador per altres
metodes, com per exemple, el metode del gradient conjugat; o també del metode
multigrid, molt estés en I'actualitat i que pot trobar la soluci6 en ordre O(n). Els
algoritmes de relaxacié milloren el rendiment del metode de Jacobi considerant
modificacions de I'algorisme de Gauss-Seidel incloent un pes, com per exemple
es fa en el meétode SOR [Young 1954a).

Seguint esta direccié, YM14 han presentat recentment el meétode SRJ, el
qual presenta una acceleracié considerable (de ’ordre de 100) sobre l’algoritme
de Jacobi. El métode SRJ és una generalitzacié del métode de Jacobi amb pes,
el qual incorpora un factor de sobrerelaxacié al Jacobi classic d’una manera
similar a com ho fa al metode SOR. Esta generalitzacié inclou un nombre P
de nivells diferents, en cada un dels quals, el parametre de sobrerelaxacié (o
subrelaxacid) esta calculat per tal d’aconseguir una reduccié significativa del
nombre d’iteracions, la qual cosa conduix a una taxa de convergencia molt més
rapida. El conjunt optim de pesos depén de la discretitzacié particular del
problema en qiiesti6. Tot i que el metode millora en gran mesura la taxa de
convergencia pel que fa al Jacobi, els esquemes presentats per YM14 arriben fins
P =51 a resolucions de fins a 512 punts per dimensi6 espacial, de manera que
encara no sén competitius amb altres metodes utilitzats actualment en problemes
reals d’astrofisica (per exemple, metodes espectrals, o meétodes multigrid com
s’ha comentat més amunt). L’avantatge principal del metode SRJ sobre altres
alternatives per resoldre ePDEs numeéricament és la seua simplicitat i la seua
paral-lelitzacié directa, ja que els meétodes SRJ preserven la insensibilitat del
metode de Jacobi a la descomposicié en dominis (en contrast, per exemple, als

metodes multigrid).
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D.2.4 Equivalencia entre el SRJ i el metode de Richardson

no estacionari

El metode SRJ pot expressar-se, per a un sistema lineal Au = b, com
un+1 ="+ wanl(b _ Au"),

on D és la diagonal de la matriu A. Si considerem un conjunt de P factors de
relaxacié diferents, w,, n =1,..., P, de tal manera que w, > wy,41 i on cada
factor de relaxaci6 s’aplica g, vegades, el factor d’amplificacio total després de
P . . ,
M =3, _ qn iteracions és
P

Gu(k) = H(l — wp k)™,

n=1
que és una estimaci6 de la reduccié del residual durant un cicle (M iteracions).
Com hem mostrat en el capitol anterior, I’expressié anterior de x és una funcié
dels niimeros d’ona obtinguda a partir d’una analisi d’estabilitat de von Neumann
del sistema d’equacions lineals que resulten de la discretitzacié del problema
el-liptic original utilitzant diferéncies finites (per a més detalls veure YM14).
YM14 van argumentar que, per a un nombre P fix de diferents pesos, hi ha una
eleccié optima dels pesos w,, i nimeros de repeticié g,, la quantitat de vegades
que s’utilitza cada factor w,, que minimitza el factor d’amplificacié maxim per

|V/M " en Vinterval & € [Kmin, Fmax] 1 Per tant també el

iteracid, T'pr(k) = |G (k)
nombre d’iteracions necessaries per a la convergencia. Els limits de l'interval en k
corresponen al minim i maxim nimero d’ona permesos per la discretitzacié de la
malla i per les condicions de contorn utilitzades per resoldre el problema el-liptic
que tenim entre mans. En YM14 es calculen numeéricament els pesos optims per

a P <5 1is’han estés fins P = 15 (vegeu el capitol anterior i ACCA15).

Les principals propietats del SRJ, obtingudes per YM14 i confirmades per
nosaltres, son les segiients:

1. Dins del rang de valors de P estudiats, augmentant el nombre de pesos P

millora la velocitat de convergencia.

2. FEls esquemes SRJ resultants convergixen significativament més rapid que
el metode de Jacobi classic en un factor més gran que 100 en els metodes
presentats per YM14 i ~ 1000 en els nous esquemes presentats per nosaltres
en el capitol anterior. Augmentar el tamany de la malla, que equival a

disminuir el valor de knin, porta a factors d’acceleracié més grans.
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3. Els esquemes optims trobats utilitzen cada un dels pesos diverses vegades,
resultant en un nombre total d’iteracions M per cicle significativament més
gran que P, per exemple per P =2, YM14 troba un esquema optim amb
M = 16 per la mida de malla més xicotet considerat (N = 16), mentre
que per a les malles grans M augmenta considerablement (per exemple,
M = 1173 per N = 1024).

El procediment d’optimitzacié indicat per YM14 té un problema, pero.
Encara que el factor d’amplificacié es reduis de forma monotona mitjancant
l’augment de P, per a valors prou alts de P el nombre d’iteracions per cicle M
pot ser comparable amb el nombre total d’iteracions necessaries per a resoldre un
problema particular fins a una tolerancia prescrita. En este punt, utilitzant un
metode amb més P, i per tant major M, augmentaria el nombre d’iteracions per
convergir, fins i tot si el I'(x) és nominalment més petit. Amb esta limitaci6 en el
cap descrivim un procediment per obtenir esquemes SRJ optims, minimitzant el
nombre total d’iteracions necessari per a reduir el residual una quantitat suficient
per a arribar a convergir o, equivalentment, per reduir al minim |Gps(k)|. De
fet, el nombre total d’iteracions pot ser triat perque siga igual a M sense pérdua
de generalitat, és a dir, que calga un cicle de M iteracions complet per assolir la
convergencia. Per seguir este procediment s’ha de trobar ’esquema optim per
a valors fixos de M, i després triar M tal que el valor maxim de |Gas(x)| siga
similar a la reduccié del residual necessari per resoldre un problema particular.
El primer pas, el problema de minimitzacid, és dificil de resoldre en general,
ja que en fixar M tenim una enorme llibertat en ’eleccié del nombre de pesos
P, que pot oscil-lar entre 1 a M. No obstant aixo, els resultats numerics
obtinguts fins ara semblen suggerir que, en general, 'augment del nombre de
pesos P sempre conduira a una millor taxa de convergencia. Aixo ens porta a
conjecturar que ’esquema SRJ optim, per a una M fixa, és el que té P = M,
és a dir, tots els pesos sén diferents i cada pes s’utilitza sols una vegada per
cicle, ¢; =1, (i=1,...,M). En termes del factor d’amplificacié total Gps(x),
és bastant raonable pensar que si es maximitza el nombre de diferents arrels
triant P = M, la funci6 resultant és, de mitjana, més a prop de zero que en
els metodes amb menor nombre d’arrels, P < M. Per tant, es podria esperar
maxims més xicotet per al conjunt optim de coeficients. Un dels objectius d’este
treball és calcular els coeficients per a este cas particular i demostrar que P = M
és, de fet, el cas optim. Li direm al métode CJM (Chebyshev-Jacobi method, en
anglés).

Un altre objectiu d’esta secci6 és mostrar el funcionament del SRJ en compara-

cié amb 'algoritme SOR, optim aplicat a un nombre diferent de discretitzacions
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de l'operador Laplacia de dues dimensions (2D). Demostrarem que els metodes
optims SRJ aplicats a discretitzacions d’alt ordre del Laplacia, per matrius
d’iteraci6 CO, funcionen de manera molt similar als esquemes optims SOR (quan
el pes optim de SOR pot ser calculat). Discutim, a més, que la paral-lelitzacié
trivial dels metodes SRJ equilibra lleugerament el millor rendiment de SOR
en alguns casos. A més, demostrarem que el pes optim del metode SOR pot
ser calculat de manera apropiada com una funcié de la mitjana geometrica del
conjunt de pesos obtinguts per als esquemes de SRJ optims. Aixo és de particu-
lar rellevancia quan la matriu d’iteracié és NCO (non-consistently ordered, en
anglés), i per tant el calcul analitic del pes optim de SOR és extremadament

complex.

D.2.5 Aplicacions seqiiencials en astrofisica

En este capitol es presenten els resultats numerics dels métodes descrits en
els capitols anteriors aplicats a la resolucié d’alguns problemes d’interés en
astrofisica. Ens limitem aci a una aplicacié seqiiencial dels metodes. Els

resultats d’implementacions en paral-lel es presenten en el capitol segiient.

Per una banda, es resolen I'’equacié de Poisson en coordenades esferiques:
62u+28u+ 182u+cot08u+ 1 32u7
or2  ror  r2002 r2 00  r2sinf 0p?

essent u i s funcions de (1,6, p). Per als nostres tests, escollim que el terme font

s, (D.1)

siga
- Z Z a2n k%n J2n(kanT) anﬁ’c(ﬂ, @), perr <1
=0 m=—Mmax
s(r,0,p) = " (D.2)

0, perr > 1,

essent j; les funcions de Bessel esfériques de primer tipus i ;" la part real dels
harmonics esferics. Sols considerem els termes parells, [ = 2n. k; és la primera
arrel de la funcié de Bessel esférica d’ordre [, de manera que s(1,6,¢) = 0.
Escollim a; = 1/2!, de manera que la série siga convergent. Imposem condicions
de frontera homogenies de tipus Neumann en 7 =0, § = 01i 8 = 7, i condicions
de frontera periodiques en la direccid ¢. Si imposem condicions de frontera

homogenies de tipus Dirichlet en infinit radial (r — o0), la soluci6 a este
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problema el-liptic és

Mmax Mmax
(azn jon (kant) + bopr®™) Yo (0, ¢), perr <1

n=0 m=—mMmax

u(r, 0, ) =

Mmax Mmax

Can m,c
Z Z WY% (0, ¢), perr > 1,

n=0 m=—mMmax
(D.3)
on els coeficients ¢; i b; poden ser calculats imposant continuitat de u i de les
seues primeres derivades en r = 1, resultant
b= = g Okl = — 5 Walk) = kjia ()] (D)
Com que ens interessa la part de rendiment, resolem ’equaci6é de manera numerica

en el domini r € [0,1], 6 € [0, 7] and ¢ € [0, 27].

Per una altra banda, també resolem l’equacié de Grad-Safranov. Esta
equacié descriu solucions d’equilibri en magnetohidrodinamica ideal en plasmes
bidimensionals. Té interés en ’estudi de plasma de fusi6 confinat magneticament
(per exemple Tokamaks), de la corona solar i magnetoesferes d’estrelles de

neutrons, entre d’altres.

En coordenades esferiques (r, 6, ¢) el camp magnétic d’'una configuracié de

plasma axisimetrica (J, = 0) pot expressar-se com:

1 F
VU(r,0) x &, + (r.9)

B(r,0)=V x A= (D.5)

rsin @ rsinf %’
on A és el potencial vector i &, és el vector unitari en la direcci6 ¢. La funci6 flux,
¥ =rsinfA,, és constant al llarg de les linies de camp magnétic i és una mesura
de la forca del camp magnetic poloidal. La funci6 toroidal, F' = B,rsin 6, és una
mesura de la forca del camp toroidal. Utilitzant la llei d’Ampere, J =V x B,
essent J el corrent electric, la funcié flux pot ser lligada a el corrent toroidal
com

AU =0,V + %2399\11 — C:—ZH&;\I} = —J,rsind, (D.6)
on A* és I'operador el-liptic GS. Per simplicitat considerarem aci el cas en el
que la inércia del fluid pot ser menyspreada (dominat magnéticament). En este
cas, si imposem un balang de forces, J x B = 0, la funcié toroidal depén de la

funci6 flux, F'(¥). Com a resultat, Eq. (D.6) ens porta cap a l'equacié GS:
AT = —F(T)F' (D). (D.7)

El no menysprear la inercia del fluid porta a termes de pressié adicionals que

aci no considerem. Una eleccié popular per a la funcié toroidal es F(V) = C'U,
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essent C' una constant. En este cas 'equacié GS queda
A"+ C?* =0, (D.8)

que és un problema el-liptic adequat per a ser resolt mitjancant el metode SRJ i
el CJM. L’equaci6 (D.8) es pareix a l'equacié diferencial de Helmholtz doncs
conté un operador de tipus Laplacia i un terme lineal en W. Aixi doncs, este
test mostrara I’habilitat de SRJ i de CJM per treballar amb operadors el-liptics
més complicats. A més, I'utilitzarem per a demostrar I’habilitat dels metodes
iteratius per a treballar en condicions de frontera imposades en fronteres de
forma arbitraria.

Calculem la soluci6 de la Eq. (5.18) per a dos conjunts de condicions frontera,
en el domini numeric r € [1,10]1 60 € [0, 7]. En tots els casos imposem condicions
tipus Dirichlet homogenies en § = 01i 0 = w. En el test A imposem condicions de
frontera tipus Dirichlet en 7 = 1ir = 10 amb ¥ = sin?0/r. En el cas C =0, la
solucio per a este test és un camp dipolar. A mesura que el valor de C' augmenta,

la solucié resultant és un dipol retorgat.

En el test B resolem I'equacié GS en part del domini, en Uinterior de la regié
definida per

r < (4.5sin® 6 + 2.5sin?(26)) (1 — 0.4 cos(36) + 0.3 cos(50) + 0.05 sin(256))
&
(rsinf —4)? + (rcosf — 1.6)% < 1. (D.9)

D.2.6 Aplicacions paral-leles en astrofisica

Tot i que s’esmenta diverses vegades al llarg de la tesi I’enorme potencial que
sembla tenir el nostre metode per operar en paral-lel, no hem entrat en detall
en este aspecte de I'algoritme fins ara. En este capitol presentem ’aplicacio del
CJM fent servir una implementacié purament MPI, unaimplementacié hibrida
OpenMP/MPI i I'is de GPUs.

Es resol el problema del potencial per a progenitors de IRGBs (long gamma-
ray bursts, en anglés). En este cas, els efectes gravitatoris comencen a ser
rellevants i és per aix0 que cal resoldre el fluid acoblat a un potencial gravitatori
generat pel mateix fluid autogravitant. Este potencial gravitatori és necessari per
a contrarestar els gradients de pressi6, de manera especial en la superficie estel-
lar; i d’eixa forma arribar a ’equilibri hidrostatic. Hem inclos en MRGENESIS

el calcul d'un potencial newtonia per a tractar I’autogravetat.
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El sistema hiperbolic de lleis conservatives que governen el moviment rela-

tivista del fluid és (en unitats naturals i coordenades esfériques)

0 10 1 0
ot UJF*(‘?*( F)JrrsinH%

on U, F i G sén vectors de quantitats conservades i de fluxos en les direccions

=S, (D.10)

radial i angular definides de la segiient manera:

U=(D,S,5s%nT, (D.11)
F = (Dv",S"™v" +p,S%", (1 +p)po")T. (D.12)
G = (Dv?, 5", 8% +p, (1 + p)o?)T. (D.13)

Les quantitats conservades que acabem de nomenar sén la densitat de massa
relativista D, la densitat de moment S = (S™, S%), i la densitat d’energia 7, essent
totes mesurades en un marc de referéncia euleria. També la velocitat v = (v", 7v?)
es mesura en este sistema. Estes quantitats conservades estan relacionades amb

quantitats en el marc de referéencia comobil, les variables primitives, que son la

densitat de massa en repos, p, la pressio p, i la quadrivelocitat u* (u=0,...,3),
mitjancant
D = pW, (D.14)
S = phW?v, (D.15)
T =phW?—-p—D, (D.16)
1 u?
r .0 1
= — — D.17
(00" = ', ), (D.17)
on W és el factor de Lorentz, h és ’entalpia, i
1
W=u'=—— D.18
— (D.18)
h=14+¢ec+p/p (D.19)

essent € lentalpia especifica. Finalment, en abséncia de fonts fisiques (per
exemple la gravetat), el terme font S sols conté termes geometrics a causa de

les coordenades esferiques bidimensionals:
0
2p + 59 9)
T
1/ cos 9 . (D.20)
TG

sin 0

1
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En la nostra implementacio del fluid autogravitant, com a primera aproxi-
macié i encara que el codi siga relativista, hem escollit un potencial newtonia
amb certes correccions relativistes (per exemple, utilitzem com a terme font de la
Poisson I'equaci6 peg :=phW?2 — p en lloc de p). Com que mantenim la meétrica
constant, la contribucié d’este potencial sols apareix com un terme addicional
Spot en la font de la Eq. (D.10), o siga, Spew = S + Spot, on S fa referéncia a
I'Eq. (D.20) i

0
—(phW? — p) g
or
9 (D.21)

Spot = 7& 2 Qr~r
r(phW + 5" )e—aeé
0 v 0
_ 2 | pr——_ -~
phW <v 8T(I)+ ; 59¢>

L’equacié de Poisson A® = 47peg definix el comportament del potencial ® i
la seua dependéncia respecte de la distribucié de massa. Resolem 1’equacié de

Poisson en coordenades esferiques utilitzant el CJM.

L’objectiu de les simulacions RHD (relativistic hydrodynamics, en anglés),

1 no és estudiar en detall la maquinaria central

que sén instrumentals aci
dels GRB, que s’exclou de forma explicita del nostre domini computacional,
siné 'estudi de la propagacié dels dolls des de ben a fora del nucli estel-lar
fins a la seua superficie. Amb aix0, escindim la regié més interna r < Ry i
modelem el motor del doll com una entrada d’energia i de moment en r = Rj.
Els nostres dominis computacionals s’estenen radialment des d’una frontera
interna en Ry (2 10% cm) fins Ry, tipicament localitzada fora de 'estrella. Per
imposar millor les condicions de frontera en la part més interna de la zona
d’escissid, no resolem directament el potencial ®(r,#) sin6 un potencial modificat
®(r,0) = ®(r,0)+My/r, on My és la massa escindida per davall de Ry. Imposem
condicions de frontera de tipus Neumann per al potencial en Ry, 9,®| R, =0,1
condicions de frontera de tipus Dirichlet en la part radial mes a fora de la malla,
b,

Mpy. Una vegada calculem @, restem en la direccié radial la quantitat M /T per

= —Mr/Ry. La massa total Mr dins la malla no inclou la massa escindida

recuperar el potencial real ®.

De la mateixa manera que en I’apartat anterior, no sols necessitem calcular el
potencial una sola vegada sind que necessitem recalcular-lo al llarg de 1’algoritme
per a la integracié en temps de la part hiperbolica que governa les equacions

d’evolucié del fluid. En principi, seria necessari calcular el potencial gravitatori a

1Msés detalls en el capitol 4 de Cuesta 2017
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cada pas de temps de la part hiperbolica. Tanmateix, en la practica en possible
recalcular-lo amb menys freqiiéncia per a aconseguir una precisio satisfactoria
al llarg de tota la computacié del model. Com a guia, recalculem el potencial
gravitatori cada n, passos de temps, essent n,. el nombre de cel-les en la direccid
radial. Aco garantix que 'actualitzaci6 té lloc dins del temps que tarda la llum
a anar de part a part de la malla numeérica (~ n,At). Finalment, entre dos
calculs consecutius es fa un reajustament de la massa interna necessari a causa
del flux de massa a través de Ry.

En el test que presentem aci, no considerem la simulacié completa siné els
resultats de rendiment del nou metode desenvolupat per un dels recalculs del
potencial gravitatori, baix condicions que sén comparables a les que trobariem
en la simulacié completa.

També calculem per trobar el camp estacionari d’una esfera carregada uni-
forme de radi R en coordenades cartesianes en 3D utilitzant condicions de

frontera de tipus Dirichlet. Aix{i doncs, resolem ’equacié de Poisson:
A¢($7 Y, Z) = _47Tpe> (D22)

on p, = 3Q/(4rR3) i Q és la carrega de 'esfera.

D.2.7 Més enlla de ’astrofisica: modelant 1’ull huma

Durant ’elaboracié de la tesi ha sorgit un projecte paral-lel dedicat a ’aplicacié
de les equacions el-liptiques en una area molt diferent de ’astrofisica. Hem
utilitzat els nostres esquemes numerics en la modelitzacié de les oscil-lacions
de I'ull huma, amb aplicacions en optometria i biomecanica. Es construix un
model per obtenir les freqiiencies d’oscil-lacid, s’investiga la dependeéncia dels
parametres del sistema i es presenten els nostres resultats de la col-laboracié
amb el Departament d’optica de la Universitat de Valéncia de la realitzaci6é de
mesures en ulls humans que serviran per a millorar el nostre model en el futur.

L’ull és un organ complex que consta de diverses parts funcionals amb
interaccions mutues. Les més importants sén la cornia, el cristal-li, el vitri,
I’esclerotica i la retina. Mesurar les propietats mecaniques de 'ull in vivo i amb
tecniques minimament invasives pot ser la clau per a solucions individualitzades
a una serie de patologies oculars. Aci mostrem que estes propietats estan
relacionades amb els modes de vibracié normals del globus de 'ull, és a dir, a
les variacions periodiques de la materia a I'interior del globus ocular resultant
de pertorbacions pel que fa al seu estat d’equilibri.

Es modela el globus ocular com una bola solida elastica esférica, homogenia

i isotropa amb simetria axial. Si bé el cas que el globus ocular té simetria
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axial és justificat, els suposits d’homogeneitat i isotropia no sén la millor opcid.
No obstant aix0, estos suposits servixen amb l’objectiu principal de reduir
la dependeéncia de 'equacié constitutiva només a dues constants elastiques o
moduls del material de I'ull: el modul de Young F, i el coeficient de Poisson
o. En este marc simplificat, calcularem, en primer lloc analiticament i després
numericament, les freqiiéncies propies del model per intentar comprendre els

mecanismes essencials d’un ull huma mitja.

D.3 Conclusions

Oferim a continuacié una discussié individualitzada en detall dels resultats
presentats tant en els dos capitols de la Part II com en els tres capitols de la
Part III.

D.3.1 SRJ: millores i aplicacions

En este capitol, basant-nos en els resultats de YM14, hem ideat un nou metode
per a 'obtencié dels parametres optims per als esquemes SRJ aplicats a la
resolucié numerica d’ePDEs. El nou metode reduix la complexitat del sistema
no lineal d’equacions a partir de la qual es calculen els parametres optims.
Hem demostrat que els nous esquemes multinivell SRJ seguixen millorant la
velocitat de convergencia de I’esquema, el que significa que augmentant el valor
de P obtenim factors d’acceleracié cada vegada més grans respecte al metode de
Jacobi. Es presenten factors d’acceleracié d’uns pocs centenars i, en alguns casos,
de més de 1.000 respecte al metode de Jacobi quan es considere tant un nombre
prou gran de punts per dimensié (és a dir, N > 16.000) com de nivells. Per
aplicacions multidimensionals, augmentant el nombre P de 5 (el valor maxim
de nivells en YM14) fins a 15 produix una disminuci6 en el cost computacional
d’un factor ~ 2 — 3 per a les resolucions més altes considerades aci. Encara
que per altes resolucions obtenim resultats millors, observem que el benefici
d’emprar algoritmes SRJ amb P = 15 sera molt avantatjos en aplicacions en
tres dimensions funcionant en supercomputadors. En estos casos, cal utilitzar
esquemes SRJ amb un major nombre de nivells que els proposats originalment
en YM14, i més si tenim en compte que no hi ha complexitat addicional a la
implementacié de ’algoritme per a qualsevol P > 2 una vegada coneguts els
pesos per a valors grans de P. Un dels avantatges dels algoritmes SRJ és que
el conjunt optim de coeficients per a un nombre donat de punts per dimensié,

Ny, pot ser reutilitzat per a les malles computacionals amb un nombre més gran
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de punts per dimensié, No (YM14). El conjunt de parametres SRJ utilitzats
d’esta manera no és optim per a la malla amb el nombre més gran de punts per
dimensié. No obstant aixo, 'aplicacié del conjunt de parametres SRJ a la malla
amb N> punts per dimensio accelerara la solucié iterativa respecte de ’esquema
basic de Jacobi, fins i tot considerablement si Ns no és molt més gran que Nj.
Hem proporcionat un ampli conjunt de taules amb tots els coeficients optims
necessaris per a un conjunt dens de nombres diferents de punts per dimensio.

Degut principalment al fet que hem derivat solucions analitiques per a una
part de les incognites, el nostre nou metode reduix la rigidesa del sistema no lineal
d’equacions d’on calculem els parametres Optims, i aix0o ens permet d’obtenir
nous metodes SRJ per a un maxim de P = 15 i un nombre arbitrariament gran
de punts per dimensié N.

A partir d’este nombre de nivells sorgixen nous problemes que dificulten el
calcul de coeficients Optims per a un nombre baix de punts en la discretitzacié.
Estos problemes estan relacionats amb el fet que per a valors grans de P la solucié
del problema és molt sensibles a petits canvis en els niimeros d’ona més xicotets,
i els xicotets errors numerics eviten ’exit a ’hora d’avaluar la solucio fins i tot el
sistema d’equacions no lineals que resulta de la simplificacié algebraica que hem
mostrat aci. Estos problemes sén resolts amb el desenvolupament del metode

Chebyshev-Jacobi presentar a continuacié.

D.3.2 Cap a l’equivalencia entre el metode SRJ i el me-
tode no estacionari de Richardson

En este capitol s’han obtingut els coeficients optims per al métode SRJ per
resoldre sistemes lineals provinents de la discretitzacié en diferéncies finites
de problemes el-liptics en el cas P = M, és a dir, usant cada pes només una
vegada per cicle. Anomenem al métode resultant Chebyshev-Jacobi (CJM). Hem
demostrat que estos son els coeficients optims per al cas general, on fixem P
pero permetem repeticions dels coeficients (P < M). A més, hem proporcionat
una manera simple d’estimar el valor optim de M per reduir el residual inicial
un factor prescrit.

Hem provat el rendiment del CJM amb un exemple senzill en 2 dimensions, el
qual ens mostra que el factor d’amplificacié derivat analiticament es pot obtenir
a la practica. En comparar el rendiment del conjunt de coeficients optims per
a P = M amb els de YM14 i els del capitol anterior, el CJM sempre déna
millors resultats, és a dir, s’aconseguix una major reducci6 del residual per al

mateix nombre d’iteracions M. A més, els nous coeficients es poden calcular



206 Resum

analiticament, com una funcié de M, Kmin 1 Kmax, €l que evita la resolucié
numerica del problema de minimitzaci6 necessari en el cas del SRJ. El resultat és
un metode numeric que és facil d’implementar, i on tots els coeficients necessaris
son facilment calculables tenint en compte la mida de la malla, les condicions
de contorn i la tolerancia del problema el-liptic que volem resoldre abans que el

procediment d’iteracié haja comencat.

Seguint la mateixa filosofia que va inspirar el desenvolupament de metodes
SRJ, hem trobat que el cas P = M resultat en un metode iteratiu gairebé
equivalent al meétode de Richardson no estacionari tal com el va implementar
Young [1953]. Més especificament, en la implementacié de Young, els coeficients
wy, es prenen de manera que siguen els reciprocs de les arrels del corresponent
polinomi de Chebyshev en l'interval que limita 1’espectre de valors propis de
la matriu (A) del sistema lineal. A més, inspirat en les mateixes idees que les
originals del metode SRJ, els valors propis minims i maxims de A no necessiten
ser explicitament calculats. En lloc d’aix0, es recorre a una analisi (molt més
simple) d’estabilitat de von Neumann del sistema lineal, que déna els valors
de Kmin 1 Kmax que substituixen els valors propis minim i maxims de la matriu
A?. La clau del nostre éxit en la implementacié practica del CJM deriva
d’un ordre adequat en la utilitzacié dels pesos w,, en 'algoritme. Encara que
altres ordenacions també s’ha demostrat que funcionen, la nostra eleccié limita
clarament el creixement d’errors d’arrodoniment quan el nombre d’iteracions és

gran. Esta ordenacié s’hereta dels esquemes SRJ.

També hem provat el rendiment del CJM per a discretitzacions de més
de segon ordre de l'operador Laplacia el-liptic. Estos casos sén especialment
complicats, ja que la matriu d’iteracié no és CO. Per tant, la teoria de Young
no pot ser emprada per tal de trobar el valor del pes optim per a un esquema
SOR que es vulga aplicar al problema resultant. Per al cas particular de la
discretitzacié de 9 punts del Laplacia, tot i que la matriu d’iteracié no és
CO, es van trobar el pes optim per a I'esquema SOR corresponent utilitzant
una derivacié bastant complicada. En la comparacié dels resultats per a la
solucié numerica d’un problema simple de tipus Poisson, el métode SOR derivat
per Adams i el CJM obtingut per nosaltres, per a la mateixa discretitzacié
de 9 punts del Laplacia, tots dos metodes es comporten de manera similar.
(Encara que l'esquema SOR Optim és encara una poc millor). No obstant aixo,
el metode SOR requerix una estrategia de paral-lelitzacié multicolor d’entre

20bservem que molts altres esquemes iteratius es basen en una seleccié dinamica del
parametre de relaxacié o en técniques de precondicionament dinamiques i poden ser aplicades
a matrius que vénen de discretitzacions de problemes fisics sobre malles més geneérics.
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les 72 possibles amb quatre colors (cadascuna amb diferent rendiment), que
s’aplica a la discretitzacié de 9 punts de 'operador Laplacia. L’estrategia de
paral-lelitzacié encara és més complicada quan s’utilitza una discretitzacié del
Laplacia de 17 punts. En contrast, el CJM és trivialment paral-lelitzable i no
requerixen cap estrategia multicolor. Per tant, arribem a la conclusié que el
rendiment un poc millor del SOR respecte del CJM en aplicacions seqiiencials
desapareix practicament en les implementacions paral-leles del metode. A més,
també hem demostrat que la discretitzacié d’ordre superior de 'operador de
Laplace és molt avantatjosa tant en el nombre d’iteracions com en el temps
computacional necessari per a assolir un error real preestablert (és a dir, el
veritable error que trobem en comparar la solucié exacta d’un problema amb la
seua aproximacié numeérica). Donat 'augment del nombre de punts necessaris
per a implementar una discretitzacié de 17 punts de I'operador de Laplace,
inferim que una implementacié paral-lela d’este metode pot requerir un modest
increment en el nombre de zones transferides en les fronteres internes entre els
subdominis computacionals diferents. Amb tot, 'aplicacié de discretitzacions
d’alt ordre del Laplacia és ideal per als problemes que combinen la resolucié
dels sistemes acoblats el-liptics-hiperbolics (per exemple, en el cas dels sistemes

d’Euler-Poisson que modelen fluids autogravitants).

D.3.3 Aplicacions seqiiencials en ’astrofisica

En este capitol hem aplicat el metode SRJ i el CJM a la resolucié d’alguns prob-
lemes d’interés en astrofisica. Ens limitem aci a una implementacié seqiiencial
del meétode. Ja hem aconseguit arribar a factors d’acceleracié que fan que els
meétodes SRJ siguen competitius (en funcié de la dimensionalitat del problema, i
de la seua grandaria) amb, per exemple, meétodes espectrals per a la resolucié
d’algunes ePDEs. La comparacié s’ha fet per a la resolucié de 'equacié de
Poisson en coordenades esferiques en 1D, 2D i 3D.

Trobem que per problemes 1D de tipus Poisson, el métode més rapid de
resolucid, dels provats, és el metode d’inversié directa implementat a LAPACK.
Aix0 succeix perque, en aplicacions realistes en les quals 1’equacié de Poisson ha
de ser resolta multiples vegades, la descomposicié LU de la matriu, on es troba
la majoria del treball de comput, es fa una sola vegada i es pot emmagatzemar
per a la resta dels calculs.

En 2D, el meétode que funciona millor depén de si el nostre valor inicial esta
a prop de la solucio real o lluny d’ella. En aplicacions realistes, on les ePDEs

s’acoblen a sistemes de PDEs hiperboliques, la solucié en la iteracié de temps
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anterior no canvia significativament durant el curs d’un sol pas de temps. En
estes condicions, les llibreries LAPACK sén les que donen un rendiment més alt.
No obstant aix0, els meétodes espectrals sén avantatjosos si, en 2D, els valors
inicials estan lluny de la solucié real del problema. Assenyalem a més que en
sistemes acoblats realistes, i per un nombre relativament gran de punts per
dimensié (N > 500), els metodes SRJ sén competitius amb els espectrals.

En aplicacions en 3D, ens trobem que el cost computacional total de metodes
SRJ escalen com N4, és a dir, com en el cas dels métodes espectrals. Tenint en
compte que (i) laplicacié de metodes d’inversié directes a problemes en 3D pot
ser inviable a causa de les restriccions de memoria, i que (ii) els metodes SRJ
poden ser paral-lelitzats molt rapidament (molt més facilment que, per exemple,
espectrals o meétodes multigrid), preveiem que sén una alternativa competitiva
per a la solucié de problemes el-liptics en aplicacions de supercomputacié en 3D.

Finalment, descrivim que la facil implementacié de condicions de frontera molt
complicades en SRJ i CJM és també un avantatge respecte a altres alternatives
existents. Este fet s’ha demostrat a la resolucié de ’equacié de Grad-Shafranov
en un domini molt intricat i incloent condicions de frontera mixtes. De fet, la
versatilitat del CJM per fer front a fronteres arbitraries fa que siguen adequats

per fer front a problemes reals en Astrofisica.

D.3.4 Aplicacions paral-leles en astrofisica

En els capitols anteriors hem delineat el potencial grau de paral-lelisme de
CJM com un important avantatge sobre altres algoritmes que competixen en
la resolucié de sistemes d’equacions lineals resultants de la discretitzacié dels
sistemes el-liptiques d’equacions en derivades parcials. Basant-se en el metode
basic de Jacobi, la implementacié paral-lela del CJM és tan senzilla com la
del metode anterior. Ara materialitzem les nostres reivindicacions anteriors i
presentem una implementacié del CJM sobre MPI inicament, una implementacié
tridimensional hibrida sobre OpenMP /MPI i una implementaci6 utilitzant GPUs.

Hem provat I'algoritme de CJM sobre MPI portat a dues diferents arquitec-
tures MIMD, una amb memoria distribuida i 'altra amb memoria compartida.
Hem comparat tant ’escalabilitat com el temps d’execucié del CJM respecte
de la inversi6é directa per resoldre un problema d’astrofisica en coordenades
esferiques. L’estrategia de paral-lelitzacié ha estat dividir la malla en dominis i
distribuir la carrega de treball entre processadors. El problema es resol llavors
iterativament en tota la malla i les fronteres dels dominis sén comunicades en

cada pas d’iteracié. Hem vist, extrapolant, que per a les simulacions d’alta
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resolucid, a partir de 3000 processadors en amunt, el temps d’execucié utilitzat
pel CJM s’espera que siga menor que el metode d’inversi6 directa tant en calculs
ab initio com en calculs realistes. A més, trobem que el speedup del CJM és
ideal, cosa que no passa amb la inversi6 directa. La utilitzacié d’una inversié
directa basada en el metode LU és problematica a altes resolucions quan el
nombre de particions sén xicotets en alguna dimensié, perque la matriu ja no

cap a la memoria.

La solucié de ’equacié de Poisson per a esbrinar la distribucié del potencial
electric creat per una esfera amb carrega uniforme s’ha utilitzat com un banc
de proves en 3D. Hem aprofitat ’existéncia d’una plataforma per a relativitat
numerica. Hem utilitzat una implementacié hibrida OpenMP/MPI del CJM.
Les simulacions han mantingut un speedup ideal fins a 64 nuclis i amb N = 256
en 3D. Tant SOR com CJM s6n més d’un ordre de magnitud més rapids que
els metodes de Jacobi i Gauss-Seidel. No obstant aixo, la férmula per calcular
el wopy per SOR només s’aplica quan la matriu original del sistema lineal és
CO; a més, CJM es paral-lelitza trivialment, mentre SOR requerix esquemes
multicolors per a una paral-lelitzacié exitosa. El cas de simetria octant conduix
a una matriu NCO i, per tant, no hi ha una expressi6é analitica pel calcul de
wopt per a SOR. Hem provat, en este cas, una seqiiencia de valors de w de
manera empirica per estimar el seu valor optim per al problema donat. En
altima instancia, el CJM es comporta millor que SOR per al conjunt de valors

provats de w.

També hem provat les versions portades dels algoritmes Jacobi i CJM sobre
CUDA en dues arquitectures diferents GPU. Les diferéncies en temps de calcul
real es reduixen significativament, ja siga en augmentar la mida de la malla o
el nombre de punts utilitzats en la discretitzacié de ’operador de ’operador
Laplacia. Ens trobem amb queé és possible accelerar diversos ordres de magnitud
el metode classic de Jacobi gracies a 1'is de les implementacions paral-leles de
CJM sobre GPUs.

D’altra banda, hem il-lustrat els beneficis de 1'is de la implementacié paral-
lela del CJM sobre GPUs de manera combinada amb una discretitzacié d’alt
ordre de 'operador Laplacia utilitzant un problema de prova. Hem arribat a
la conclusié que és sempre avantatjosa la utilitzacié de discretitzacions d’alt
ordre de 'operador el-liptic, ja que requerix menys iteracions i menys temps
de calcul per a aconseguir el mateix objectiu d’error real. Esta conclusié és
independent de ’aplicacié paral-lela de qualsevol dels metodes que hem provat
en este treball. No obstant aix0, la combinacié de discretitzacions d’alt ordre
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dels operadors el-liptics i la implementacié del CJM sobre GPUs es traduix en

un metode extremadament poderds per a aplicacions practiques.

D.3.5 Més enlla de ’astrofisica: modelant ’ull huma

Hem presentat una analisi dels modes normals d’un ull huma idealitzat. Amb
esta finalitat, hem importat els resultats analitics desenvolupats en altres arees

de fisica, més precisament, en el camp de la fisica d’ones gravitacionals.

Hem demostrat que més enlla de la caracteritzacié mecanica de les components
del globus ocular, els modes de vibracié normals de ’ull podrien estar involucrats
en processos fisiologics com, per exemple, 'acomodacié. Hem desenvolupat
un model simplificat de globus ocular, amb simetria esferica, per al que hi ha
solucions analitiques per a les freqiiencies propies amb condicions de contorn
senzilles. Hem utilitzat estes solucions per calibrar el nostre nou codi numeric
de diferéncies finites. A més, s’ha estudiat la dependeéncia de les freqiiencies
pel que fa a la longitud axial. Estos resultats han estat contrastats amb dades
biometriques mesurades realment a una mostra de pacients seleccionats amb un
doble objectiu. D’una banda, calibrar el model amb dades reals i, d’altra banda,
retroalimentar les dades sobre el model de globus ocular. L’taltim objectiu esta

encara en curs.

Els modes de vibracié normal de 1'ull podrien estar implicats en alguns
processos fisiologics, per exemple, I’acomodaci6. L’acomodacié ocorre a través
de canvis en la forma i gruix de la lent cristal-lina. El gruix i la curvatura
de la lent augmenta, causant un augment de la poténcia optica de 1'ull. Atés
que és una activitat induida per muscul, ’acomodacié és un procés altament
fluctuant i dinamic. Estes fluctuacions estan relacionades amb les fluctuacions
de les aberracions oculars, i es produeixen a unes determinades freqiiencies. Les
microfluctuacions d’acomodacié poden tenir un paper important en la variabilitat
de la qualitat optica de 1'ull. Hi ha dos components principals de la resposta
acomodativa: una component de baixa freqiiéncia (< 0,5 Hz), que correspon a
la deriva en la resposta d’allotjament, i un pic a major freqiiéncia, en la banda
1 — 2 Hz. Els modes de vibracié del globus ocular que nosaltres hem considerat
ocorren a escales de temps d’uns pocs mil-lisegons. La manera exacta en que
els modes normals de vibracié del globus ocular es correlacionen amb el procés
d’acomodacié esta més enlla de I'abast d’aquesta tesi. No obstant aixo, preveiem
que per fer front a este estudi es necessari millorar el nostre model actual,

almenys, la diferenciacié en el model de globus ocular de la cornia-esclerotica,
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del humor vitri i de la lent. En aquesta direcci6 realitzarem la nostra futura

recerca.
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