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adscrito al Departamento de Fisiología de la Facultad de Medicina y 

Odontología de la Universitat de València. Duración: 3 años (desde 

30/12/2016 hasta 29/12/2019). 
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ROLE OF p16INK4a AND BMI-1 IN OXIDATIVE STRESS-INDUCED 

PREMATURE SENESCENCE IN HUMAN DENTAL PULP STEM CELLS 

 

Human mesenchymal stem cells (MSCs) have a therapeutic potential in 

tissue engineering and regenerative medicine. Human dental pulp stem cells 

(hDPSCs) have proven to be a good source for cell therapy as pulp tissue is easily 

available from teeth after extraction without ethical issues. Cell therapy requires a 

large number of cells, thus, an in vitro expansion step is required before 

implantation. Long-term in vitro culture entails the inconvenience of senescence 

following a certain number of passages, thereby losing hDPSCs stemness 

properties and regenerative potential. Currently, the in vitro culture of MSCs is 

carried out under ambient oxygen tension (21% pO2). However, the local oxygen 

tension varies between 3-6% pO2 within the organism depending on the 

vascularization of the tissue and its metabolic activity. Mimicking physiological 

conditions in cell culture experiments is a useful tool to gain knowledge. Thus, the 

aim of this study was to compare long-term in vitro culture of hDPSCs under 

ambient (21% pO2) and physiological (3% pO2) oxygen partial pressure, and to 

determine whether hyperoxia can alter the physiology and affect the senescence of 

normal adult stem cells.  

First, we investigated if ambient oxygen tension could induce oxidative 

stress in hDPSCs during long-term culture. Oxidative stress reflects an imbalance 

between the systemic manifestation of reactive oxygen species (ROS) and the 

biological ability of a system to readily detoxify the intermediates and to repair the 

resulting damage. Oxidative stress is known to produce damage to biomolecules 

such as DNA, carbohydrates, lipids and proteins. Therefore, we assessed ROS 

levels, mitochondrial membrane potential, protein and lipid oxidation, as well as 

antioxidant gene expression during long-term hDPSCs in vitro culture. Our data 

revealed increased ROS levels, protein carbonylation and lipid oxidation, and a 

disruption of the mitochondrial membrane potential in the cells that were cultured 

under ambient oxygen tension. Furthermore, these cells showed an upregulation of 
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the expression of manganese superoxide dismutase, catalase and glutathione 

peroxidase genes, suggesting an increased antioxidant defence to withstand 

increasing ROS production. Thus, ambient oxygen tension induces oxidative stress 

in hDPSCs in vitro culture. 

Senescence was described as an irreversible state of cell cycle arrest, which 

is accompanied by morphological alterations, reduced proliferation rate, apoptosis 

resistance and increased expression of senescence-associated β-galactosidase 

activity and p16INK4a. The CDKN2A gene, also known as the INK/ARF locus, 

encodes both p16INK4a and p14ARF, which are cell cycle regulators. The p16INK4a 

protein inhibits cyclin D-dependent CDK4 and CDK6 to prevent phosphorylation 

of the retinoblastoma protein (pRb). The hypophosphorylated form of pRb 

sequesters E2F transcription factors, preventing them from coordinately activating 

a suite of genes required for DNA replication. The p14ARF protein binds to the 

MDM2 E3 ubiquitin ligase to prevent p53 polyubiquitylation and to facilitate p53 

activation. In turn, the p53 transcription factor regulates an extensive group of 

genes that are commonly induced by cellular stress leading to apoptosis. We then 

determined some senescence characteristics in hDPSCs cultured under both 

oxygen tension conditions. Cells that were cultured under ambient oxygen tension 

rapidly began to show enlarged and flattened phenotypes and decreased their 

regenerative potential as they only reached 15 passages, while those cells that were 

cultured under physiological oxygen tension reached 25 passages and preserved a 

“younger” phenotype. Accordingly, 21% pO2 was accompanied by increased β-

galactosidase activity, increased expression of p16INK4a and reduced expression of 

p14ARF. Taken together, our results suggest that oxidative stress induces a 

premature senescence of hDPSCs cultured under ambient oxygen tension. 

Another characteristic that is not included in the definition of stem cell 

senescence, but should be taken into consideration, is the loss of stemness 

properties. hDPSCs are adult stem cells that express pluripotency-related genes. 

Those genes are the four transcription factors: OCT4, SOX2, KLF4 and c-MYC, 

abbreviated to, “OSKM”, and they are involved in the induction and maintenance 
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of pluripotency. hDPSCs cultured at 3% pO2 showed high levels of OCT4 and 

SOX2 at early stages, but their expression was downregulated as passages 

accumulated. However, at advanced passages, these cells upregulated the KLF4 

and c-MYC expression. On the other hand, hDPSCs cultured at 21% pO2 showed a 

downregulation of all four OSKM factors along passages. Taken together, our data 

suggest that ambient oxygen tension entails a loss of the stemness properties in 

long-term in vitro culture. 

Finally, we aimed to investigate a possible relation between p16INK4a and 

OSKM expression in hDPSCs. A well described upstream regulator of the 

INK/ARF locus is BMI-1. Through repression of target gene expression, the BMI-1 

protein regulates a myriad of cellular processes critical for cell growth, cell fate 

decision, development, senescence, apoptosis, and self-renewal of stem cells. Thus, 

we tested whether BMI-1 regulates hDPSCs fate while modulating p16INK4a and 

OSKM gene expression. To this end, we first analysed BMI-1 protein expression 

in hDPSCs in long-term culture under either oxygen pressure percentage. Our 

results show that hDPSCs cultured at 3% pO2 retained constant levels of BMI-1 

along passages. However, hDPSCs cultured at 21% pO2 showed higher BMI-1 

protein levels at early stages, which rapidly plummeted as passages accumulated. 

These data suggest that ambient oxygen tension accelerated BMI-1 protein 

degradation. We next proceeded to silence BMI-1 gene expression in hDPSCs 

cultured under ambient oxygen tension by siRNA transfection. Knocked-down 

hDPSCs exhibited the same amount of BMI-1 protein as hDPSCs cultured under 

physiological oxygen tension. Interestingly, following transfection, p16INK4a 

expression was not altered, but OCT4 and SOX2 expression levels were 

upregulated.  

Taken together, we can conclude that in vitro culture carried out under 

ambient oxygen tension causes an oxidative stress-induced premature senescence 

and a loss of the stemness properties of hDPSCs. Moreover, BMI-1 levels should 

be kept in a balance that allows normal stem cell proliferation, while preventing 

stem cell senescence thereby maintaining proper stem cell homeostasis. 
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PAPEL DE p16INK4a Y BMI-1 EN LA SENESCENCIA PREMATURA 

INDUCIDA POR ESTRÉS OXIDATIVO EN CÉLULAS MADRE DE 

PULPA DENTAL HUMANA 

 

INTRODUCCIÓN Y OBJETIVOS 

Las células madre son aquellas células que se dividen asimétricamente para 

producir una copia de sí mismas y una segunda célula que seguirá su camino hasta 

convertirse en una célula diferenciada y especializada. Así pues, las células madre 

que podemos encontrar en el organismo adulto comparten al menos dos 

características. En primer lugar, se pueden hacer copias idénticas de sí mismas 

durante largos períodos de tiempo; esta capacidad de proliferar se refiere como 

auto-renovación a largo plazo. Segundo, pueden dar lugar a tipos celulares 

maduros que tienen morfologías características y funciones especializadas. Las 

células madre mesenquimales humanas (CMM) tienen pues un potencial 

terapéutico en ingeniería de tejidos y en medicina regenerativa. En particular, las 

células madre de pulpa dental humana (CMPD) han demostrado ser una buena 

fuente de células para la terapia celular porque el tejido pulpar es fácilmente 

accesible y carece de problemas éticos.  

Sin embargo, las terapias celulares requieren de un elevado número de 

células, para lo cual es necesaria una etapa de expansión celular in vitro previa a la 

implantación. A su vez, el cultivo in vitro a largo plazo lleva implícito el 

inconveniente de la senescencia tras un cierto número de pases, momento en el 

cual las células pierden su capacidad de autoregeneración, característico de las 

células madre. Por esta razón, el estado de senescencia debe tenerse en cuenta para 

poder obtener células madre de buena calidad que puedan ser utilizadas en las 

terapias celulares. 

Actualmente, el cultivo in vitro de las CMM se lleva a cabo bajo tensión de 

oxígeno ambiental (21% pO2). Sin embargo, dentro del organismo, la tensión de 

oxígeno a nivel local oscila entre el 3-6% pO2, dependiendo de la vascularización 

del tejido y de su actividad metabólica. El cultivo celular debe tratar de imitar las 
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condiciones fisiológicas del organismo, por lo tanto, el objetivo de este estudio fue 

el de comparar el cultivo in vitro a largo plazo de las CMPD bajo ambas 

concentraciones de oxígeno: ambiental (21% pO2) y fisiológica (3% pO2). Así, 

existen trabajos que muestran que altas concentraciones de oxígeno pueden causar 

estrés oxidativo a través de la producción de especies reactivas de oxígeno (ROS) 

que pueden dañar lípidos, proteínas y ADN, cambiando el metabolismo de la 

célula. En este contexto, es interesante destacar que cultivar las CMM en 

condiciones de hipoxia, o mejor dicho, de “normoxia” fisiológica, antes del 

trasplante podría mejorar el potencial regenerador de tejido. Además, la reducción 

de los niveles de oxígeno se acompaña de una mayor tasa de crecimiento, 

sugiriendo que el estrés oxidativo es un factor contribuyente en la senescencia 

celular. 

La senescencia se describe como un estado irreversible de detención del 

ciclo celular, que se acompaña de alteraciones morfológicas, una menor tasa de 

proliferación, resistencia a la apoptosis y un aumento de la expresión de la 

actividad β-galactosidasa asociada a la senescencia y de p16INK4a. El crecimiento 

celular está controlado por dos vías principales: una que implica la proteína 

retinoblastoma (pRb), la cual regula la salida del ciclo celular en la fase G1 y otra 

que implica la participación de la proteína p53, que induce la detención del 

crecimiento o apoptosis en respuesta al estrés celular. El gen CDKN2A, también 

conocido como locus INK/ARF, codifica los genes p16INK4a y p14ARF, que son 

reguladores del ciclo celular. La proteína p16INK4a inhibe las ciclinas dependientes 

de quinasa CDK4 y CDK6, para prevenir la fosforilación de la proteína del 

retinoblastoma (pRb). La forma hipofosforilada de pRb secuestra los factores de 

transcripción de E2F impidiéndoles activar de forma coordinada una serie de genes 

que son necesarios para la replicación del ADN. La proteína p14ARF, por su parte, 

se une a la ubiquitin ligasa MDM2 E3 para facilitar la activación de p53. A su vez, 

el factor de transcripción p53 regula un grupo extenso de genes que son 

comúnmente inducidos por el estrés celular que conduce a la apoptosis.  
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Otra característica que no está incluida en la definición de senescencia de las 

células madre, pero que debería de tomarse en consideración, es la pérdida de la 

pluripotencia o capacidad de autoregeneración. La pluripotencia va ligada a la 

expresión de unos factores de transcripción, conocidos como: OCT4, SOX2, KLF4 

y c-MYC, y abreviados como "OSKM". Dichos genes están involucrados tanto en 

la inducción como en el mantenimiento de la pluripotencia en las células madre. Es 

decir, estos genes son capaces de borrar la huella epigenética de las células 

somáticas hasta convertirlas en las conocidas células madre pluripotentes inducidas 

(iPSC), cuyas características se equiparan a las de las células madre embrionarias. 

Finalmente, se pretendió investigar una posible relación entre la senescencia 

y la pérdida de pluripotencia de las CMPD, ambas asociadas al cultivo in vitro a 

largo plazo. Un posible nexo de unión es la proteína BMI-1. Dicha proteína 

modula la compactación de la cromatina a través de la metilación de las histonas 

en los nucleosomas; es por tanto un regulador epigenético. Más concretamente, 

BMI-1 es un represor génico, cuya diana mejor descrita es el locus INK/ARF. 

También se sabe que BMI-1 juega un papel clave no sólo en la prevención de 

daños al ADN, sino también en el mantenimiento de la función mitocondrial y la 

homeostasis redox. Así pues, la proteína BMI-1 regula una amplia gama de 

procesos celulares críticos para el crecimiento celular, la decisión del destino 

celular, el desarrollo, la senescencia, la apoptosis y la auto-renovación de las 

células madre. Por lo tanto, nos propusimos investigar si BMI-1 regula el destino 

de las CMPD al modular la expresión de los genes p16INK4a y OSKM.  

Nuestro objetivo principal fue pues el de analizar el papel de p16INK4a y de 

BMI-1 en la senescencia inducida por el estrés oxidativo en células madre de pulpa 

dental a largo plazo. 

 

METODOLOGÍA 

En primer lugar, analizamos si la tensión de oxígeno ambiental induce estrés 

oxidativo en las CMPD durante el cultivo a largo plazo. Para ello se midió la 

producción de especies reactivas del oxígeno (ROS) y el potencial de membrana 
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mitocondrial por citometría de flujo. También se analizaron los niveles de 

malondialdehído (MDA) como marcador de la peroxidación lipídica por 

cromatografía líquida de alta eficacia (HPLC) y los niveles de carbonilación 

proteica por western blot. Además de estos marcadores, también se determinaron 

los niveles de las enzimas antioxidantes: manganeso superóxido dismutasa 

(MnSOD), glutatión peroxidasa (GPx) y catalasa (CAT), mediante la técnica de la 

reacción en cadena de la polimerasa (PCR). 

A continuación, analizamos si la tensión de oxígeno ambiental provoca una 

senescencia prematura inducida por estrés oxidativo en las CMPD durante el 

cultivo a largo plazo. Para ello, analizamos la morfología celular por microscopía y 

determinamos la actividad de la enzima β-galactosidasa por citometría de flujo. 

Paralelamente, comparamos la expresión de los genes p14ARF y p16INK4a por PCR 

para determinar la vía de señalización implicada en la senescencia prematura de las 

CMPD cultivadas al 21% pO2. 

Seguidamente, analizamos si la tensión de oxígeno ambiental produce una 

pérdida de pluripotencia en las CMPD durante el cultivo a largo plazo, para lo cual 

medimos la expresión de los factores OCT4, SOX2, KLF4 y c-MYC por PCR. 

Por último, comparamos la evolución de la expresión de BMI-1 tanto a nivel 

génico como proteico, en las CMPD durante el cultivo a largo plazo bajo ambas 

presiones de oxígeno. Finalmente, mediante la introducción de pequeños ARN de 

interferencia (siRNA), se silenció la expresión de BMI-1 para ver si tenía algún 

efecto sobre la expresión de los factores de pluripotencia. 

 

RESULTADOS Y DISCUSIÓN 

Las CMPD normalmente residen a bajas concentraciones de oxígeno. En los 

mamíferos, incluidos los humanos, en el momento en que el oxígeno llega a los 

órganos y tejidos, la concentración de oxígeno cae a 2-9%, con una media de 3% 

en la pulpa dental. A pesar de este hecho, todavía es común cultivar células al 21% 

pO2. Sin embargo, la función celular normal requiere un entorno estable de 
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oxidación-reducción. El exceso en la tensión de oxígeno se ha descrito como un 

factor importante que podría desestabilizar la homeostasis redox celular. 

El estrés oxidativo refleja un desequilibrio entre la producción de especies 

reactivas del oxígeno (ROS) y la capacidad de detoxificación de los productos 

intermedios o de reparar el daño resultante. En el presente estudio, mostramos que 

la reducción del nivel de oxígeno ambiental condujo a una disminución del estrés 

oxidativo intracelular y del daño a biomoléculas durante el cultivo a largo plazo. 

Nuestros datos revelaron un aumento de los niveles de ROS, de la carbonilación de 

proteínas y de la oxidación de lípidos, así como una caída del potencial de 

membrana mitocondrial de las CMPD que se cultivaron a tensión de oxígeno 

ambiental. Además, estas células mostraron una sobreexpresión de las enzimas 

MnSOD, CAT y GPx, lo cual sugiere un aumento de la defensa antioxidante para 

hacer frente a la creciente producción de ROS. Por lo tanto, nuestros datos sugieren 

que el cultivo in vitro al 21% pO2 conlleva un estrés oxidativo. 

En este estudio, demostramos que las CMPD cultivadas a tensión de oxígeno 

ambiental cambiaron su morfología mostrando formas más aplanadas o alargadas, 

los cual se acompañó de un incremento de residuos en el medio de cultivo. 

Además, la tasa de proliferación de las CMPD se redujo significativamente a 

tensión de oxígeno ambiental, puesto que las células cultivadas al 3% pO2 

alcanzaron 25 pases mientras que las cultivadas al 21% pO2 sólo alcanzaron 15 

pases en el mismo periodo de tiempo. Estas observaciones se acompañaron de una 

mayor actividad de la enzima β-galactosidasa asociada a la senescencia a lo largo 

de los pases, lo que sugiere que estas células estaban entrando en un estado 

senescente. De hecho, aquí se demuestra que las CMPD se pueden mantener en 

cultivo durante al menos 25 pases manteniendo un fenotipo “más joven” y 

conservando la cinética de proliferación cuando éstas se cultivan a presión de 

oxígeno fisiológica. Es decir, durante el cultivo a largo plazo bajo tensión de 

oxígeno ambiental, las CMPD pierden gradualmente su potencial proliferativo y 

muestran signos cada vez mayores de senescencia tales como fenotipos más 

grandes y niveles incrementados de SA-β-Gal. 
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En conjunto, nuestros resultados sugieren que las CMPD cultivadas a 

tensión de oxígeno ambiental se someten a una senescencia prematura, que se 

evidencia por el agrandamiento del fenotipo, la reducción del potencial 

proliferativo y el aumento de la actividad SA-β-Gal. Este fenómeno parece ser 

causado por la acumulación de ROS, dando lugar a la senescencia prematura 

inducida por estrés. 

De hecho, durante mucho tiempo se ha sabido que una tensión reducida de 

oxígeno promueve el crecimiento y prolonga la vida replicativa de las células 

humanas mantenidas en cultivo. Los ROS tienen importantes funciones en la 

señalización celular, pero su papel en la regulación de la progresión del ciclo 

celular es poco conocido. Los niveles de ROS aumentan significativamente a 

medida que las células pasan de la fase G1 a la fase S del ciclo celular y son 

necesarios para la entrada en fase S. Sin embargo, los puntos de control del ciclo 

celular también se activan por aumento de ROS, lo que indica que la proliferación 

celular se basa en mantener los niveles de ROS dentro de un rango funcional. 

La senescencia es una característica normal de las células, por la cual 

pierden su capacidad replicativa tras un número finito de divisiones. Las vías 

inhibitorias del ciclo celular p16INK4a/pRb y p14ARF/p53 representan dos 

importantes vías que controlan la proliferación, y su inactivación puede extender el 

número límite de divisiones de células mitóticas en mantenidas cultivo. Dado el 

papel de p16INK4a en la regulación del ciclo celular y la reciente implicación del 

estrés oxidativo en la senescencia de las células madre, se investigó un posible 

vínculo entre la producción de ROS y la expresión de p16INK4a. Nuestros resultados 

muestran que las CMPD cultivadas a largo plazo al 21% pO2 presentaban signos de 

senescencia, que se acompañaban de un aumento en los niveles de expresión de 

p16INK4a y una reducción en los niveles de expresión de p14ARF. De acuerdo con 

esto, las células humanas generalmente expresan cantidades crecientes de p16INK4a 

cuando se aproximan a su límite de vida útil in vitro. De hecho, las señales de 

estrés como los ROS estimulan la activación de la transcripción de p16INK4a y 

desempeñan funciones importantes en la iniciación, así como el mantenimiento, de 
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la senescencia celular. Por esta razón, añadimos un agente antioxidante para ver si 

podíamos restablecer los niveles de expresión de p16INK4a. El tratamiento con 

Trolox 50 µM pudo rescatar los niveles de expresión de p16INK4a en el cultivo a 

largo plazo de CMPD al 21% pO2. En conjunto, podríamos decir que una baja 

tensión de oxígeno podría retrasar la senescencia de las CMPD mediante la 

regulación negativa de la expresión de p16INK4a. 

Las CMPD cultivadas al 3% pO2 mostraron elevados niveles de expresión de 

los genes OCT4 y SOX2 en los primeros pases, pero su expresión disminuyó 

conforme se acumulaban pases, lo cual sugiere que estos dos factores estarían 

implicados en la inducción de la pluripotencia. Sin embargo, en pases avanzados, 

estas células mostraron elevados niveles de expresión de los genes KLF4 y c-MYC, 

sugiriendo el papel de mantenimiento de la pluripotencia de estos dos factores. Por 

su parte, las CMPD cultivadas al 21% pO2, mostraron menores niveles de 

expresión de los cuatro factores OSKM a lo largo de los pases. En conjunto, 

nuestros datos sugieren que la tensión de oxígeno ambiental acelera la pérdida de 

la pluripotencia durante el cultivo a largo plazo. Este resultado fue consistente con 

otros hallazgos, lo cual sugiere que un microambiente con bajo contenido de 

oxígeno proporciona una condición óptima para el mantenimiento de las 

propiedades de las células madre. 

Nuestros resultados muestran que las CMPD cultivadas al 3% pO2 

conservaban unos niveles constantes de la proteína BMI-1 a lo largo de los pases. 

Sin embargo, los niveles de BMI-1 en las CMPD cultivadas al 21% pO2 no se 

mantuvieron constantes, sino que se desplomaron conforme se acumulaban los 

pases. Se sabe muy poco sobre la regulación post-transcripcional de BMI-1. 

Recientemente, se ha sugerido que BMI-1 es una proteína de corta duración. 

Algunos investigadores han publicado que BMI-1 podría ser un sustrato de AKT; 

la activación de la vía de señalización de AKT coincide con la fosforilación de 

BMI-1 lo cual le confiere mayor estabilidad. Por el contrario, la vía de señalización 

de p38 dependiente de estrés oxidativo hace que BMI-1 se degrade y pierda su 

capacidad modificadora de la cromatina. Además, también se ha sugerido que los 
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niveles de BMI-1 están regulados por degradación proteasomal. Colectivamente, 

estas observaciones apoyan la noción de que los niveles de BMI-1 están regulados 

por las vías de señalización dependientes de estrés oxidativo en las células madre. 

Curiosamente y a pesar de ello, las CMPD de pase 5, cultivadas al 21% pO2 

mostraron mayores niveles de BMI-1, tanto a nivel génico como proteico. Así 

pues, se procedió a silenciar la expresión del gen BMI-1 en dichas células, hasta 

equiparar los niveles de proteína en las CMPD cultivadas bajo ambas presiones de 

oxígeno. 

A continuación, analizamos los efectos de dicho silenciamiento sobre la 

senescencia y la pluripotencia de las CMPD. Los resultados obtenidos demuestran 

que los niveles de expresión de p16INK4a no se vieron afectados, sin embargo, los de 

OCT4 y SOX2 sí. Tras reducir los niveles de BMI-1 en las CMPD jóvenes 

cultivadas al 21% pO2, los factores OCT4 y SOX2 incrementaron su expresión 

hasta igualarse a la de las CMPD jóvenes cultivadas al 3% pO2. Es decir, este 

resultado sugiere, que el silenciamiento parcial de BMI-1 es capaz de rescatar la 

expresión de OCT4 y SOX2 en las CMPD cultivadas bajo tensión de oxígeno 

ambiental. 

 

CONCLUSIONES 

En conjunto, podemos concluir que el cultivo in vitro mantenido a tensión 

de oxígeno ambiental provoca una senescencia prematura inducida por estrés 

oxidativo y una pérdida de la expresión de los factores de pluripotencia en las 

CMPD. 

Además, los niveles de BMI-1 deben mantenerse en un equilibrio que 

permita la proliferación normal de las células madre, al tiempo que previene la 

senescencia de las células madre, y por tanto, el mantenimiento de la homeostasis 

de las células madre. 
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1.1 STEM CELLS 

1.1.1 Definition 

In its canonical view, a stem cell is presented as one that divides 

asymmetrically to produce a copy of itself and a second cell that is on its path to 

differentiate (Figure 1.1). This second cell may have one of many characteristics 

depending on the context of its development. In certain instances, this cell would 

be a precursor type that undergoes terminal differentiation. Alternatively, a cell 

generated from asymmetric division could itself be a progenitor that amplifies 

itself and then differentiates into one of many cell types. These cells have a finite 

proliferative potential, and eventually exhaust themselves once they give rise to 

differentiated progeny. Finally, an asymmetric cell division from a stem cell could 

generate a copy of itself and a second stem cell with a more limited potential for 

self-renewal.  

Stem cells are generated in the embryo. They persist in specific niches 

where they can remain mitotically quiescent for long periods of time. Stem cells 

expand their numbers as they self-renew by symmetric division. They can also 

maintain their numbers and produce rapidly dividing progenitors by asymmetric 

division (Martinez-Agosto et al., 2007). 

 

Figure 1.1 Stem cells dynamics.  

Taken from: Martinez-Agosto et al. (2007). 
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1.1.2 Classification 

The definition of a stem cell inevitably requires an assessment of its 

potential to give rise to a number of differentiated progeny. This potential can vary 

among different tissue types, and by the origin and requirement of a particular type 

of stem cell (Jaenisch and Young, 2008).  

 

1.1.2.1 Potency 

According to their potency, we can divide stem cells in four groups: 

- Totipotent stem cells are defined as those that can give rise to all tissues in 

an organism, including germ line, embryonic and extra-embryonic tissues. 

The zygote is the only totipotent stem cell. 

 

- Pluripotent stem cells originate from the inner cell mass of the embryo and 

give rise to all tissues in vivo, except trophoblasts. In this group we include 

embryonic stem cells (ESCs). 

 

- Multipotent stem cells are more limited in their potency. Adult stem cells 

(ASCs) such as hemaetopoietic stem cells constitute the classic example of 

a multipotent stem cell, which can give rise to a large repertoire of 

differentiated cell types belonging to the lymphoid and myeloid lineages.  

 

- Stem cells can also be unipotent if they are only capable of giving rise to a 

single cell type that is constantly produced throughout the life span of the 

organism. The best described example is the germ line stem cell (GSC), 

which can generate a single differentiated cell fate: either an egg (ovum) or 

a sperm.  
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1.1.2.2 Origin 

According to their origin, stem cells can be classified into ESCs and ASCs. 

Several strategies have been employed to induce the conversion of differentiated 

cells into an embryonic state in order to supply the ethical problems associated 

with ESCs. All these approaches led to the generation of a new cell type, 

commonly referred to as “induced pluripotent stem cells” or iPSCs. 

 

 Embryonic stem cells (ESCs)  1.1.2.2.1

As stated before, an embryonic stem cell (ESC) is defined by its origin. It is 

derived from the blastocyst stage of the embryo. The blastocyst is the stage of 

embryonic development prior to implantation in the uterine wall. At this stage, the 

preimplantation embryo is made up of 150 cells and consists of a sphere made up 

of an outer layer of cells (the trophectoderm), a fluid-filled cavity (the blastocoel), 

and a cluster of cells on the interior (the inner cell mass).  

The first documentation of the isolation of embryonic stem cells from 

human blastocysts was in 1994 (Bongso et al., 1994). In 1998, James Thomson and 

his colleagues reported methods for deriving and maintaining human ESCs from 

the inner cell mass of human blastocysts that were produced through in vitro 

fertilization (IVF) and donated for research purposes (Thomson et al., 1995; 

Thomson et al., 1998). Since then, techniques for deriving and culturing human 

ESCs have been refined. The ability to isolate human ESCs from blastocysts and 

grow them in culture seems to depend in large part on the integrity and condition 

of the blastocyst from which the cells are derived. In general, blastocysts with a 

large and distinct inner cell mass tend to yield ESCs cultures most efficiently. 

As we have previously said, ESCs are pluripotent cells that can give rise to 

cells from the three germ layers: endoderm, mesoderm and ectoderm (Amit et al., 

2000; Itskovitz-Eldor et al., 2000; Reubinoff et al., 2000; Schuldiner et al., 2000). 
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 Induced pluripotent stem cells (iPSCs) 1.1.2.2.2

Great advances were expected in the field of regenerative medicine; 

however, there were some problems with medical treatments involving human 

ESCs. First, there is a bioethical issue because a fertilized egg is used to generate 

ESCs. In addition, when ESCs are applied to an organ in regenerative medicine, 

the recipients must be given an immunosuppressant drug to prevent transplant 

rejection (Miyazaki et al., 2012). 

The use of induced pluripotent stem cells (iPSCs) solved the problems 

mentioned above. In 2006, iPSCs were generated from mouse embryonic 

fibroblasts (MEF) (Takahashi and Yamanaka, 2006). They were then generated 

from human dermal fibroblasts the following year (Takahashi et al., 2007). The 

iPSCs are reprogrammed from differentiated somatic cells by going back to an 

undifferentiated state similar to ESCs. Both ESCs and iPSCs are defined as 

pluripotent and are able to differentiate into three germ layers (endoderm, 

mesoderm and ectoderm) as well as self-renew. Thus, iPSCs may solve the 

problems related to clinical applications.  

Some of the reprogramming methods reported include: nuclear transfer, cell 

fusion, reprogramming using cell extracts and direct reprogramming (Figure 1.2).  

 

Figure 1.2 Strategies to induce reprograming of somatic cells.  

Taken from: Yoon and You (2011). 
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Strategies for reprogramming somatic cells 

 

• Nuclear transfer 

In 1952, Briggs and King succeeded in producing the tadpole, the first 

cloned animal, from the cell nucleus of a frog in the blastocyst stage (Briggs and 

King, 1952). For mammals, the first nuclear transfer-derived cloned sheep was 

generated in 1986 by transferring a blastomere nucleus from a four- to eight-cell 

sheep embryo to an enucleated unfertilized egg; in the following year, the cloned 

mouse was produced by transferring nuclei from eight-cell mouse embryos to 

enucleated two-cell embryos (Robl et al., 1986; Tsunoda et al., 1987).  

In addition, cloned animals were produced successfully using nuclear 

transfer techniques with many types of somatic cells, including cumulus cells, 

leukocytes, hepatocytes, neuronal cells, myocytes, lymphocytes and germ cells 

(Brem and Kuhholzer, 2002; Hochedlinger and Jaenisch, 2002; Jaenisch et al., 

2004). Nuclear transfer reprograms the cell nuclei of differentiated somatic cells by 

transplanting them into an enucleated oocyte. In order to create a cloned embryo 

without using sperm after nuclear transfer, the egg was activated by electrical or 

chemical stimulation.  

However, an unfertilized egg must be procured for clinical applications and 

immunological rejection may occur due to genetic factors from the nuclei isolated 

from somatic cells and the oocyte. In 2007, it was reported that only 2 cells out of a 

total of 304 oocytes were successfully created as ESCs by nuclear transfer (Byrne 

et al., 2007), suggesting a low induction efficiency. 

 

• Cell fusion 

Cell fusion is another reprogramming method. The somatic cell genome is 

highly reprogrammed in a syncytium where cell division occurs repeatedly with 

the nuclei of ESCs and somatic cells mixed (Tada et al., 2001; Tada et al., 2003). 

Therefore, it is supposed that ESCs are able to reprogram the somatic cells by 
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deleting their properties and overwriting the somatic cell genome with the 

properties of ESCs.  

ESC hybrids formed teratomas in immunodeficient mice and they generated 

chimera embryos after blastocyst injection, which demonstrates the pluripotency of 

ESC hybrids. It has been reported that the pluripotent cells can also be generated 

from mice and human beings through reprogramming using cell fusion (Surani, 

2005; Yu et al., 2006). 

It is currently unknown whether the somatic cell nuclei can be 

reprogrammed by cell fusion with only the cytoplasmic elements of ESCs or if the 

nuclear elements are also needed. It is desirable to selectively remove only the 

chromosomes of ESCs from the fused nuclei, but it is technically difficult (Pralong 

et al., 2005). It will be a long time before this advanced technique is used in 

clinical applications.  

 

• Reprogramming using cell explants 

Another reprogramming method inserts cell extracts, which are obtained 

from pluripotent stem cells such as ESCs, into somatic cells. As described in the 

previous section on “Cell fusion”, ESCs have a specific characteristic that 

reprograms the somatic cells. The cell extract is chemically isolated from ESCs 

and consists of reprogramming factors that enter into the somatic cells and induces 

their reprogramming.  

It was reported in 2005 that culturing HEK293 and NIH3T3 cells with the 

factors isolated from human embryonic carcinoma NCCIT cells increased the 

expression levels of undifferentiation markers, including OCT4, and that the cells 

could be induced to differentiate into neurogenic, adipogenic, osteogenic and 

endothelial lineages (Taranger et al., 2005). However, they could not be 

differentiated into three germ layers in vivo. Thus, this reprogramming method 

may be incomplete. 
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• Direct reprogramming 

In 2006, it was reported that four transcription factors (OCT4, SOX2, KLF4 

and c-MYC), named OSKM, were introduced into MEFs to generate iPSCs 

(Takahashi and Yamanaka, 2006).  

Transcription factors are one of the groups of proteins that read and interpret 

the genetic print in the DNA. They bind to the DNA and help initiate a program of 

increased or decreased gene transcription. As such, they are vital for many 

important cellular processes. The octamer-binding transcription factor OCT4 

belongs to the POU transcription factor family and is crucial to sustain a 

pluripotent state of ESCs. It is known that the level of OCT4 decreases with the 

stage of cell differentiation and OCT4 does not occur in mature somatic cells (Loh 

et al., 2006). The Kruppel-like factor 4 (KLF4) functions as a transcriptional 

repressor in opposite to other members of the KLF family (they are transcriptional 

activators). KLF4 may regulate the expression of genes, which have a pivotal role 

in crucial cell processes, including cell proliferation/ differentiation and stem cells 

programming (Yet et al., 1998). SOX family consists of twenty genes encoding 

transcription factors characterized by conserved high mobility group domain which 

is involved in DNA-binding. SOX genes are essential in sex determination, embryo 

development, and maintenance of stem cell status  (Sarkar and Hochedlinger, 

2013). In normal conditions, c-MYC transcription factor plays an important role in 

cell proliferation regulation, differentiation, and apoptosis, as well as cell 

transformation (Sodir et al., 2011). 

In addition, a teratoma was formed by transferring iPSCs into the 

subcutaneous tissue of a nude mouse and cells were able to differentiate into the 

tissues of three germ layers (Takahashi and Yamanaka, 2006). Later, Abad and 

colleagues demonstrated that full reprogramming can also occur in vivo by 

transitory induction of the four factors OCT4, SOX2, KLF4 and c-MYC in mice 

which resulted in teratomas emerging from multiple organs (Abad et al., 2013). 

Furthermore, microinjection of these factors into a mouse blastocyst led to the 
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production of a chimera mouse, indicating these were germ line factors that were 

maintained in the next generation. These findings suggested that the pluripotency 

of these cells was equivalent to that of ESCs (Okita et al., 2007). Since then, direct 

reprogramming has been widely studied by introducing these transcription factors 

or various other factors. The pluripotent stem cells are induced by various somatic 

cells, including fibroblasts, blood cells and keratinocytes (Loh et al., 2006; 

Grinnell et al., 2007; Duinsbergen et al., 2008; Huangfu et al., 2008; Kim et al., 

2008b; Ebert et al., 2009; Kim et al., 2009). 

It is unclear how the introduction of these transcription factors generates 

iPSCs equipped with the same functions of ESCs. Recent reports suggest that 

OCT4, SOX2 and NANOG may downregulate the expression of genes involved in 

the induction of differentiation of cells to maintain their undifferentiated properties 

and all four factors (including c-MYC) cause the epigenetic changes, such as the 

chromatin modification and DNA methylation, that generate iPSCs. The promoter 

regions of NANOG and OCT4 genes were reported to be demethylated in iPSCs as 

well as in ESCs (Takahashi and Yamanaka, 2006). 

 

 Adult stem cells (ASCs) 1.1.2.2.3

Adult stem cells (ASCs), like all stem cells, share at least two 

characteristics. First, they can make identical copies of themselves for long periods 

of time; this ability to proliferate is referred to as long-term self-renewal. Second, 

they can give rise to mature cell types that have characteristic morphologies 

(shapes) and specialized functions. Typically, stem cells generate an intermediate 

cell type or types before they achieve their fully differentiated state. The 

intermediate cell is called a precursor or progenitor cell.  

ASCs can be organised into three groups regarding their original layer: 

ectoderm, mesoderm and endoderm. Ectodermal cells will give rise to skin and 

neurons; mesodermal cells will generate cardiac, muscle, blood and bone cells; and 
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endodermal cells will produce visceral cells, such as pancreatic, lung, kidney or 

thyroid cells. 

Friedenstein and colleagues were the first in successfully isolate 

mesenchymal stem cells (MSCs) which come from the mesoderm (Friedenstein et 

al., 1970). MSCs can be isolated from dental pulp, periodontal ligament (Gronthos 

et al., 2000), deciduous teeth (Miura et al., 2003), periosteal (Nakahara et al., 

1991), synovial membrane (De Bari et al., 2001), muscle (Bosch et al., 2000), 

adipose tissue (Zuk et al., 2002) and trabecular bone (Tuli et al., 2003). MSCs are 

able to produce cells from the mesodermal layer, such as chondrocytes, 

osteoblasts, adipocytes (Pittenger MF et al., 1999), myoblasts (Wakitani et al., 

1995), tendon cells (Altman et al., 2002), odontoblasts (Gronthos et al., 2000; 

Miura et al., 2003) and cementoblasts (Kemoun et al., 2007).  

Alternatively, ASCs may differentiate into a tissue that would arise from a 

different germ layer. In this case, the cells would be deemed to show plasticity or 

pluripotency (Song and Tuan, 2004). For example, MSCs may differentiate into 

ectoderm-derived neural cells (Azizi et al., 1998; Kopen et al., 1999). 

 

1.1.3 Human dental pulp stem cells (hDPSCs)  

In the present study, we used dental pulp stem cells from healthy human 

donors (hDPSCs). Teeth are originated between both ectoderm and mesoderm 

layers (Lumsden, 1988). The ectodermal portion will give rise to the enamel, while 

mesodermal portion will produce dentin, pulp and cement tissues (Ruch, 1985; 

Thesleff and Sharpe, 1997). The dental pulp, a soft tissue found within the core of 

the tooth, consists primarily of connective tissue, an extensive blood capillary 

system, nerves, fibroblasts, odontoblasts, and immune cells. The primary function 

of the pulp is to form dentin through the actions of odontoblasts, although 

nutritional (Vongsavan and Matthews, 1992), immune defence (Jontell et al., 

1998), and sensory roles (Holland, 1994) are also apparent.  
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hDPSCs express multiple stem cell markers including mesenchymal, and 

embryonic markers (Patel et al., 2009; Govindasamy et al., 2010; Guimaraes et al., 

2011; Osathanon et al., 2011). In vitro, hDPSCs can be readily induced to 

differentiate into mesenchymal lineage cell types of osteoblasts/odontoblasts, 

chondrocytes and adipocytes (Gronthos et al., 2002; Zuk et al., 2002; Zhang et al., 

2006; Grottkau et al., 2010). Additional studies have also indicated the potential 

for myogenic (Zhang et al., 2006; Kerkis et al., 2008; Nakatsuka et al., 2010), 

melanocytic (Stevens et al., 2008), neuronal (Woodbury et al., 2000; Gronthos et 

al., 2002; Zuk et al., 2002; Zhang et al., 2006), and hepatocytic (Ishkitiev et al., 

2012) differentiation.  

 

1.1.4 hDPSCs isolation  

hDPSCs isolation can be achieved by enzymatic digestion of the dental pulp 

tissue. Digestion enzymes are proteins that brake intercellular junctions of the 

connective tissue that support tissues, thus releasing cells. Pulp tissue consists of a 

heterogeneous population of cells: stromal cells, vascular cells, endothelial and 

perivascular cells, nerve cells, mastoid cells, T lymphocytes and macrophages, all 

within an extracellular matrix rich in collagen, fibronectin and laminin which are 

the main substrate of matrix metalloproteinases (MMPs), especially interstitial 

collagenases (Goldberg and Lasfargues, 1995; Nakata et al., 2000). MMPs 

participate in the degradation and replacement of the extracellular matrix of all 

body tissues including bone, enamel and dentin. 

Interstitial collagenases are one of the most used groups for pulp tissue 

digestion. Collagenase MMP-1, 8 and 13 initiate the degradation of collagen I, II 

and III, which continue their degradation by other MMPs and non-MMPs 

proteolytic enzymes. These enzymes depend on cofactors such as calcium and zinc 

to exert their action; collagen degradation. The resulting collagen fragments are 

easily denatured and transformed into gelatine. Once gelatine is formed, MMP-2 

and MMP-9 degrade it in thousands of tiny fragments. 
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Other types of metalloproteinases can be used, such as dispase II (Gronthos 

et al., 2000; Laino et al., 2005; Papaccio et al., 2006; Koyama et al., 2009; 

Waddington et al., 2009) and thermolysin (Perry et al., 2008; Woods et al., 2009). 

Dispase is a neutral metalloproteinase from Bacillus polymyxa which requires 

calcium for its activity. This enzyme cuts fibronectin and collagen IV, both 

components of the dense lamina and anchoring fibrils of the basement membrane. 

Thermolysin is an extracellular metalloproteinase, isolated from gram-

positive bacteria Bacillus thermoproteolyticus (Klopman and Bendale, 1989). It 

requires a zinc ion for its catalytic activity and four calcium ions for its thermal 

stability. In comparison with other proteins that are denatured against heat, 

thermolysin does not undergo any conformational change to at least 70°C 

(Matthews et al., 1974). This enzyme is specific for cleaving peptide bonds 

containing hydrophobic amino acid residues such as L-leucine, L-isoleucine, valine 

and L-phenylalanine, and furthermore it is especially useful for the partial 

hydrolysis of polypeptides which do not contain arginine or lysine. The mechanism 

of action for thermolysin was proposed by Matthews in 1988, which suggests, 

from a series of structural studies, that the zinc ion of the native thermolysin forms 

a coordination complex with three ligands provided by the protein and a fourth 

ligand provided by a water molecule in which the zinc ion has two functions: 

polarizing the carbonyl group of the substrate and facilitating the deprotonation of 

the nucleophilic water. 

Another complementary method consists of a chemical disaggregation of the 

pulp tissue with ethylene diamine tetra acetic acid (EDTA) at a concentration of 

0.02% (w/v). It is a divalent cation chelator in phosphate buffered saline or Krebs 

buffer without calcium and magnesium and is also used together with trypsin to 

increase disintegration.  
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1.1.5 In vitro stem cell culture 

Dental hDPSCs have become a vital tool in medicine thanks to their easy 

retrieval and the possibility of maintaining them in culture to expand them. In 

order to be able to carry out any therapy with stem cells, it is necessary to have a 

very high number of cells. Most mesenchymal stem cells have a limited life-span 

in vitro, which means that they can only expand to a certain limit of cell divisions 

before they enter a senescence state and cease to proliferate. 

Many scientists have reported that the long-term culture of stem cells is 

accompanied by a morphology known as "fried egg", and is characterized by a 

reduction in the ability to differentiate. For this reason, the senescent state must be 

taken into account in order to obtain good quality stem cells that can be used in cell 

therapies. 

 

1.1.5.1 Oxygen tension influence on stem cell culture 

Most conventional in vitro cell cultures are performed under ambient oxygen 

concentration (20-21% pO2/160 mm Hg), which is often referred to as “normoxia”. 

In contrast, in vivo mesenchymal stem cells (MSCs) are not exposed to such a high 

concentration of oxygen. MSCs are developed in environments with low oxygen 

tension, that ranges between 1 and 7% pO2 in the bone marrow (Chow et al., 2001; 

Harrison et al., 2002), 10-15% pO2 in the adipose tissue (Bizzarri et al., 2006) and 

13-18% pO2 in blood and lungs (Steurer et al., 1997).  

Mean values of 3-6% pO2 (20-40 mm Hg) are commonly accepted in most 

tissues, including dental pulp, although the actual concentration of oxygen in situ 

depends on tissue vascularization and its metabolic activity (Ward, 2008). This fact 

suggests that in vitro cell culture should be performed under low oxygen tension 

conditions to mimic their natural physiological environment. El Alami and 

colleagues determined the growth rate of hDPSCs under physiological oxygen 

tension, and investigated the cell signalling pathways underlying the decreased 

stem cell proliferation during routine culture under ambient oxygen tension (El 
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Alami et al., 2014). Moreover, culturing hDPSCs under ambient oxygen tension 

conditions entails an oxidative stress-induced premature senescence (Mas-Bargues 

et al., 2017). 

It is interesting to note that cultivating MSCs under conditions of hypoxia, 

or rather, physiological “normoxia”, prior to transplantation improves tissue 

regenerative potential (Rosova et al., 2008). 

 

1.2 OXIDATIVE STRESS 

1.2.1 Definition 

Oxidative stress is defined as an alteration of the balance between 

prooxidant species and antioxidants, in favour of the former (Sies, 1985).  

Despite the physiological role of some reactive oxygen species, they can 

also lead to undesired oxidation reactions, against which organisms have had to 

develop antioxidant defences (Halliwell, 1996). The formation of a certain number 

of free radicals is a normal and inevitable process since they are the product of an 

infinity of chemical reactions essential for the cellular life. These reactive species 

do not cause oxidative damage under normal conditions because the cell is 

provided with a large amount of antioxidant mechanisms (Slater, 1984). 

When there is an imbalance between prooxidant and antioxidant substances 

in favour of the former, the result is oxidative damage, which can affect various 

molecules, and which can be reflected in their physiological functions. Thus, 

oxidative stress can be caused by an excess of pro-oxidants, a deficiency of 

antioxidant agents, or by both factors at the same time. 

 

1.2.2 Free radicals  

Free radicals are chemical species that contain one or more unpaired 

electrons in its valence layer, which makes these species to have a high reactivity 

(Fridovich, 1978). They are characterized by their great oxidizing power and their 
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very short life (Simic and Taylor, 1988). 

These chemical species are abundant in living systems. Moreover, some 

authors in their study on the origin and evolution of life propose free radicals as 

one of the causes of the origin of life in our planet (Harman, 2001). Thus, on the 

one hand oxygen gives rise to life and on the other hand, because of its ability to 

form different free radicals, it is capable of damaging essential structures for its 

development, such as DNA, proteins, carbohydrates and lipids (Sies, 1983). In 

addition, free radicals participate in physiological processes such as aging (Pacifici 

and Davies, 1991) and exhausting physical exercise (Davies et al., 1982; Sastre et 

al., 1992).  

In nature, free radicals are mostly compounds derived from oxygen and are 

called reactive oxygen species (ROS). These species are either highly reactive or 

capable of giving rise to reactive species. Some of them are real free radicals 

derived from oxygen, such as the hydroxyl radical. Others, like H2O2, are not really 

radical in the strict sense of their definition. In addition, there are other non-

oxygen-derived radical species that are taking interest in recent years, such as those 

derived from nitrogen (RNS). 

ROS may have an exogenous or endogenous origin (Finkel and Holbrook, 

2000). Endogenous ROS are produced inside the cell. Many biological processes 

release ROS as waste products, via cellular signalling pathway or as a defence 

mechanism (Morgan and Liu, 2011). Among them, we can include the Fenton-

Haber-Weiss reaction, the nicotinamide adenine dinucleotide phosphate reduced 

family (NADPH oxidases), peroxisomes, cytochrome p450, cytokines, growth 

factors, lipooxygenase, cyclooxygenase and, above all, mitochondrial electron 

transport chain (Finkel and Holbrook, 2000; Balaban et al., 2005) It is composed of 

a series of proteins with redox capacity that reduce molecular oxygen until the 

formation of a molecule of water. This reaction is coupled to oxidative 

phosphorylation, in which energy is produced in the form of adenosine 

triphosphate (ATP).  



Introduction 

 17 

Exogenous ROS come from sources outside the body, such as diet, 

xenobiotics, tobacco smoke, pollution, ionizing radiation and ultraviolet light. 

Regarding in vitro stem cell culture, the main exogenous ROS are those generated 

due to “hyperoxia”. In fact, high oxygen tension can cause oxidative stress through 

the production of ROS that can damage lipids, proteins and DNA (Wiseman and 

Halliwell, 1996). Therefore, moderate hypoxia may lower the intracellular 

generation of ROS as well as its accumulation (Miller et al., 1987) (See section 

1.2.5). 

 

1.2.2.1 The “Free Radical Theory of Aging” 

The “Free Radical Theory of Aging” was formulated by Harman in 1956 

and it proposes that free radicals derived from oxygen are responsible for the 

oxidative damage that occurs with age at the cellular and tissue level (Harman, 

1956). Antioxidant systems are not able to cope with all the ROS that are generated 

continuously throughout the life of the cell, which ends up causing oxidative 

damage in it, and by extension, on the tissues.  

There are many experimental evidences in favour of this theory. Old animals 

have higher oxidation rates than young ones, and have oxidized proteins, oxidized 

forms of DNA and lipids accumulation (Stadtman, 1992; Sohal et al., 1993; 

Hamilton et al., 2001; Bokov et al., 2004). In principle, this could be attributed to a 

higher rate of free radicals generation by old organisms. 

Also, in favour of this theory, there are numerous studies carried out in 

various organisms, which suggest that the reduction of oxidative stress or the 

increase of resistance to it, is related to the prolongation of life (Miquel and 

Economos, 1979; Harman, 1982; Harrington and Harley, 1988; Phillips et al., 

1989; Orr and Sohal, 1994; Parkes et al., 1998; Finkel and Holbrook, 2000; Melov 

et al., 2000; Ruan et al., 2002; Ishii et al., 2004; Huang et al., 2006; Zou et al., 

2007; Kim et al., 2008a; Quick et al., 2008; Dai et al., 2009; Shibamura et al., 

2009).  
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Although the free radical theory of aging is among the most studied and 

accepted of all the hypotheses of the aging mechanism, several studies have 

generated ambiguity and controversy of the same (Muller et al., 2007; Perez et al., 

2009a; Perez et al., 2009b; Lapointe and Hekimi, 2010; Salmon et al., 2010). For 

example, the vast majority of studies in mice show no change in life-span after the 

increase or reduction of antioxidant enzyme activity (Huang et al., 2000). It has 

also not yet been shown to extend life in clinical trials in humans, who were given 

antioxidant substances (Howes, 2006; Bjelakovic et al., 2007). 

 

1.2.2.2 Defence mechanisms: physiological antioxidants 

Since humans have evolved in the presence of oxidizing substances, 

evolution has provided these organisms with systems capable of dealing with this 

type of reactive substances. An “antioxidant” is any substance that, when present 

in low concentrations compared to the oxidizable substrate, significantly decreases 

or inhibits the oxidation of this substrate (Sies, 1993; Halliwell and Gutteridge, 

1995). From the point of view of cellular physiology, we can divide them into 

primary, secondary and tertiary antioxidants: 

 

Primary antioxidants prevent the formation of new species of free radicals. 

These antioxidants act by converting existing free radicals into less harmful 

molecules, or by preventing their formation. This group includes superoxide 

dismutase (SOD), glutathione peroxidase (GPx), catalase and metal binding 

proteins that limit the availability of iron necessary for the formation of the OH- 

(Halliwell and Gutteridge, 1986). 

 

Secondary antioxidants are non-enzymatic scavengers that act when there is 

a free radical overproduction and enzyme systems are overflowing, thus preventing 

chain reactions. It includes glutathione, vitamin E, vitamin C, uric acid, bilirubin 

and albumin (Halliwell and Gutteridge, 1990).  
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Tertiary antioxidants repair biomolecules damaged by free radicals. Among 

them, intracellular proteolytic systems act to degrade oxidatively damaged 

proteins, thus avoiding their accumulation (Davies et al., 1987b; Pacifici and 

Davies, 1991). We can also highlight the DNA repair enzymes, methionine 

sulfoxide reductase and phospholipase-A2 that cuts the oxidized phospholipids of 

the membrane (Sevanian et al., 1985).  

 

1.2.3 Oxidative stress and biomolecules damage 

1.2.3.1 Oxidative damage to lipids 

Among the main types of biomolecules, lipids, and especially 

polyunsaturated fatty acids, are the most susceptible of being attacked by free 

radicals (Cheeseman and Slater, 1993), such as the hydroxyl (HO-), peroxide 

(ROO•), alkoxy (RO•) and alkyl (R•) radicals, which are the main generators of 

oxidative lipid damage.  

The process of oxidative damage to lipids, termed lipid peroxidation, begins 

when a free radical attacks a carbon in the aliphatic chain of a fatty acid, a 

hydrogen atom is released, and an alkyl radical is formed (Halliwell, 1994; 

Krinsky, 2012). This reaction is preferably produced in the carbons contiguous to 

double bonds of the polyunsaturated fatty acids, since the formed radicals can be 

stabilized by resonance with the double bond. Peroxide radicals can react with side 

chains of other polyunsaturated fatty acids, thereby spreading the radical chain 

reaction (Halliwell, 1994).  

Thus, a single attack by a free radical results in the formation of a large 

number of oxidation products, in particular aldehydes, mainly malondialdehyde 

(MDA), and isoprostanes, 4-hydroxynonenal, and short chain hydrocarbons such 

as ethane and pentane (Freeman and Crapo, 1982; Cheeseman and Slater, 1993). 

Many of the aldehydes formed react rapidly with the cellular components causing 

DNA mutations, and produce structural and functional damage by reacting with 

proteins (Krinsky, 2012).  
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Lipid peroxidation is considered a very important factor in the aging of 

aerobic cells (Lippman, 1985), because oxidative damage to lipids of the 

membrane is an important factor in the decrease of the fluidity of the membranes, 

and therefore will affect its functionality (Shigenaga et al., 1994). MDA is a very 

reliable marker of the lipid peroxidation profile. 

 

1.2.3.2 Oxidative damage to proteins 

All the amino acids present in the proteins have residues susceptible of being 

attacked by the free radicals, mainly by the hydroxyl radical (Stadtman, 1992). 

Within the physiological amino acids, tyrosine, phenylalanine, tryptophan, 

histidine, methionine and cysteine are the most oxidative processes that suffer 

(Davies et al., 1987a).  

In the process of oxidative damage to proteins, some amino acids such as 

lysine, proline and arginine are oxidized to carbonyl groups, so that the carbonyl 

content of proteins can be used as an indicator of oxidative damage to them. Other 

amino acids such as histidine, cysteine and methionine, also undergo oxidative 

damage, but do not form carbonyl derivatives (Stadtman, 1992).  

As a consequence, protein exposure to free radicals can lead to a 

conformational change of the protein, thus producing modifications in its primary, 

secondary and ultimately tertiary structure, which, in turn, can lead to a loss or 

modification of its biological function, which is usually irreversible and may cause 

the protein denaturation (Dean et al., 1993). In addition, if such dysfunctional 

proteins are not degraded, the hydrophobic residues may form protein aggregates 

which give rise to the protein complex known as lipofuscin (Hohn et al., 2013).  

 

1.2.3.3 Oxidative damage to DNA 

We can find more than twenty by-products after an oxidative attack to DNA. 

Among them, the oxidation of 2-deoxyguanosine to 8-hydroxy-2-deoxyguanosine 

(8-oxo-dG) is one of the most frequent lesions, and is of great importance because 
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of its high mutagenic effect, since during replication it will produce purine 

transformations (Kasai and Nishimura, 1984).  

Oxidative damage associated with proteins and DNA should not be 

considered independently. The accumulation of inactive forms of reparative 

enzymes may increase the accumulation of oxidative damage in the DNA, so that 

they can enhance each other. When replication of damaged DNA occurs prior to 

repair or when damaged DNA is repaired incorrectly, a mutation occurs (Breen and 

Murphy, 1995). Therefore, oxidative lesions to DNA appear to be involved not 

only in cell aging, but also in the pathogenesis of diseases associated with 

advanced age.  

Mitochondrial DNA (mtDNA) suffers much more oxidative damage than 

nuclear (Richter et al., 1988), since it presents certain traits that make it especially 

susceptible to be attacked by oxidizing agents: it lacks histones that can receive the 

attack instead of the DNA (Johns, 1995), the repair system is less effective (Suter 

and Richter, 1999) and, it is very close to the mitochondrial electron transport 

chain, one of the main production systems of reactive oxygen species (Giulivi and 

Davies, 1993). Another distinctive factor of mtDNA is that it has no introns, so that 

modification of any base usually affects a zone of coding DNA (Ames et al., 1993) 

and its impact is therefore more important.  

 

1.2.3.4 Oxidative damage to carbohydrates 

Carbohydrates, such as mannose and mannitol, react easily with the 

hydroxyl radical for its removal. Monosaccharides and disaccharides resist the 

action of ROS. Glucose constitutes a sensor of the superoxide radical, by holding it 

and preventing its action on other molecules. Therefore, it has been observed that 

various polysaccharides act as cellular protective agents (Albertini et al., 1996).  

Oxidative damage to carbohydrates is important when it comes to structural 

function polysaccharides, since polysaccharides are depolymerized by free radicals 

leading to degenerative processes. A special case is that of hyaluronic acid whose 
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structural function is to maintain the viscosity of the synovial fluid. It has been 

observed that superoxide dismutase is able to protect against the depolymerization 

of hyaluronic acid in the synovial fluid (McCord, 1974). Proteoglycans are subject 

to similar oxidative bursting (Greenwald and Moy, 1980).  

 

1.2.4 Oxidative stress markers 

Given the importance of the damage that oxidative stress can cause in cells 

and in the organism, in recent years we have tried to find indices that allow us to 

measure it. Among the proposed indicators, one of the most relevant is the 

oxidized / reduced glutathione ratio (GSSG/GSH) characteristic of oxidative stress, 

so that an imbalance causes an alteration of the cellular redox state (Sies, 1986).  

In addition to this ratio, there are specific markers that allow measuring 

oxidative damage to the aforementioned biomolecules. Malondialdehyde (MDA) 

and hydroxynonenal (HNE) are the most commonly used to measure lipid damage, 

although pentane and ethane levels can also be considered. 8-oxo-dG is an 

indicator of oxidative DNA damage, and carbonyl groups and 2-oxohistidine are 

used as markers of oxidative damage in proteins (Hageman et al., 1992).  

On the other hand, mitochondria play a key role in the genesis of free 

radicals. Mitochondrial membrane potential (ΔΨm) is critical to maintaining the 

physiological function of the respiratory chain to generate ATP. Mitochondrial 

dysfunction supposes a collapse of the respiratory chain and therefore an increase 

in ROS production. Several fluorescent probes can be used to determine 

mitochondrial membrane potential in a variety of cell types, as well as direct 

determination of free radicals.  

The four markers used to measure oxidative stress used in this study are 

described in the Methods section: Dihydrorodamine-123 (DHR123) for ROS 

production, the methyl ester tetramethylrodamine (TMRM) as an indicator of 

mitochondrial membrane potential, malondialdehyde (MDA) for lipid peroxidation 

and carbonyl groups for protein damage.  
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1.2.5 Oxidative stress and stem cells 

The common cell culture is performed at 21% pO2 (ambient oxygen tension) 

which is far from the physiological “normoxia” of adult stem cells, and as 

expected, is accompanied by an increase in ROS production and creates an 

oxidative stress environment. “Hyperoxia” has been described as an important 

destabilizing factor of cellular redox homeostasis (Fan et al., 2008).  

High oxygen tension can cause oxidative damage via production of free 

radicals, damaging lipids, proteins and DNA (Wiseman and Halliwell, 1996). 

Culturing under ambient oxygen tension has a negative impact on the physiological 

function of stem cells: cell proliferation and migration are affected (Rodrigues et 

al., 2010), as well as osteogenic differentiation potential (Hung et al., 2012). 

p38MAPK, p21 and Nrf-2 signalling pathway has been described as the link 

between the oxidative stress induced by culture at 21% pO2 and the lower 

proliferation rate of hDPSCs (El Alami et al., 2014). 

It has also been reported that the reduction of oxygen levels leads to a 

decrease in intracellular levels of oxidative stress as well as oxidative damage. This 

is accompanied by a higher proliferation rate, suggesting that oxidative stress is a 

contributing factor in cellular senescence (Ho et al., 2007). On the other hand, 

culture at 3% pO2 increases mRNA levels as well as protein levels of OCT4, SOX2 

and c-MYC transcription factors in stem cells of dental origin (Zhou et al., 2014). 

In other words, long-term culture under conditions of physiological 

“normoxia”, without oxidative stress, has been shown to maintain the 

mesenchymal cell phenotype and to prevent senescence (Bigot et al., 2015).  
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1.3 CELLULAR SENESCENCE 

1.3.1 Definition 

Cellular senescence was formally described when Hayflick and colleagues 

showed that normal cells had a limited ability to proliferate in culture (Hayflick 

and Moorhead, 1961; Hayflick, 1965). These experiments showed that human 

fibroblasts initially underwent robust cell division in culture. However, gradually 

(over many cell doublings) cell proliferation declined. The non-dividing cells 

remained viable for many weeks, but failed to grow despite the presence of ample 

space, nutrients and growth factors in the medium.  

Soon after this discovery, the finding that normal cells do not indefinitely 

proliferate spawned two important hypotheses. The first hypothesis stemmed from 

the fact that many cancer cells proliferate indefinitely in culture. Cellular 

senescence was proposed to be an anti-cancer or tumour-suppressive mechanism. 

In this context, the senescence response was considered beneficial because it 

protected organisms from cancer. The second hypothesis stemmed from the fact 

that tissue regeneration and repair deteriorate with age. Cellular senescence was 

proposed to recapitulate the ageing, or loss of regenerative capacity, of cells in vivo 

(Campisi and d'Adda di Fagagna, 2007). In fact, cancer and longevity require a 

durable cell proliferation potential and, therefore, those mechanisms that limit 

indefinite proliferation provide cancer protection but favour ageing (Serrano and 

Blasco, 2007).  

 

1.3.2 Cell cycle 

The cell cycle is an ordered set of events, culminating in cell growth and 

division into two daughter cells. The stages are G1-S-G2-M (Figure 1.3). The G1 

stage stands for "GAP 1". The S stage stands for "Synthesis", where DNA 

replication occurs giving rise to a pair of sister chromatids linked by proteins called 

cohesins (Nasmyth et al., 2000). The G2 stage stands for "GAP 2". The M stage 

stands for "mitosis", and it is when nuclear (chromosomes separate) and 
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cytoplasmic (cytokinesis) division occur. Mitosis is further divided into 4 phases, 

prophase, metaphase, anaphase, and telophase. 

 

1.3.2.1 Cell cycle checkpoints 

Cell cycle checkpoints are regulatory pathways that control the order and 

timing of cell cycle transitions and ensure that critical events such as DNA 

replication and chromosome segregation are completed with high fidelity (Gardner 

and Burke, 2000). In addition, checkpoints respond to damage by arresting the cell 

cycle to provide time for repair and by inducing transcription of genes that 

facilitate repair. Checkpoint loss results in genomic instability and has been 

implicated in the evolution of normal cells into cancer cells. Recent advances have 

revealed signal transduction pathways that transmit checkpoint signals in response 

to DNA damage (Elledge, 1996).  

Before initiating DNA replication, cells in the G1 phase of the cycle may 

enter a resting phase known as G0. G0 cells are not in the state of growth or 

proliferation (Vermeulen et al., 2003). When cells are in G0 phase, they are 

commonly named as quiescent. This cell cycle arrest is reversible and in the 

presence of the appropriate signals, these cells can re-enter the cycle and continue 

their proliferation (Blagosklonny, 2011).  

 

1.3.2.2 Cell cycle regulation 

Cyclin-dependent kinases (CDKs) are serine/threonine kinases and their 

catalytic activities are modulated by interactions with cyclins and CDK inhibitors 

(CDKIs). Close cooperation between this trio is necessary for ensuring orderly 

progression through the cell cycle. In addition to their well-established function in 

cell cycle control, it is becoming increasingly apparent that mammalian CDKs, 

cyclins and CDKIs play indispensable roles in processes such as transcription, 

epigenetic regulation, metabolism and stem cell self-renewal (Lim and Kaldis, 

2013). Each stage of the cell cycle is regulated by different cyclins, CDKs and 
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CDKIs (Figure 1.3).  

Cyclins activate CDKs by binding to them. There are multiple CDK-cyclin 

complexes that play specific roles at various phases in the cell cycle. These 

complexes include three interphase CDKs (CDK2, CDK4, and CDK6), one mitotic 

CDK1, and ten cyclins belonging to four different classes (A-, B-, D-, and E-type 

cyclins). 

CDK activity is regulated by two types of inhibitors: INK4 proteins (INK4a, 

INK4b, INK4c, INK4d) and Cip/Kip family proteins (p21, p27, and p57) (Sherr 

and Roberts, 1995). Together, these cell cycle inhibitors function as a brake system 

that inhibit proliferation in multiple tissue types.  

 

 
Figure 1.3 Cell cycle regulation checkpoints.  

Taken from: Hochegger et al. (2008). 
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1.3.3 Senescence versus quiescence 

Senescence is thought to differ from less-durable forms of cell cycle arrest 

(for example, quiescence) in several ways (Table 1.1). When mitogen-dependent 

dividing cells are deprived of extracellular growth factors or exposed to anti-

proliferative cytokines or contact inhibition, they exit the cell cycle into a non-

proliferating quiescent state (G0). Although G0 and G1 phase cells cannot be 

distinguished by DNA content, quiescent cells comparatively produce reduced 

numbers of ribosomal RNA (rRNA) and proteins, have decreased metabolic 

activity, do not express G1 CDK activities (Pardee, 1989; Sherr and Roberts, 

1995).  

 

Table 1.1 Senescence versus quiescence. 

 SENESCENCE QUIESCENCE 

Growth arrest Permanent Transient 

DNA content Diploid or Tetraploid Diploid 

Metabolism High Low 

Molecular effectors p16INK4a, pRb 
p14ARF, p53 and p21Cip1 p21Cip1, p27Cip2 

Markers 
SA-β-Gal, p16INK4a, DNA 

damage response, SASP and 
SAHF 

None 

 

Taken from: Sharpless and Sherr (2015). 

 

By contrast, adherent senescent cells emerging in culture in response to 

stress display an enlarged cell size and increased biomass, and they produce 

abundant stress granules (Kuilman et al., 2010; Rodier and Campisi, 2011; 

Campisi, 2013). Quiescent and senescent cells can be viably maintained in cell 

culture even after months of cell cycle arrest, but quiescent cells can re-enter the 
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cell cycle in response to mitogenic and developmental cues, whereas senescent 

cells cannot (Serrano et al., 1997; Beausejour et al., 2003; Blais et al., 2007; 

Burkhart and Sage, 2008; Indovina et al., 2013; Kareta et al., 2015).  

 

1.3.4 Senescence biomarkers 

Adherent senescent cells attached to plastic culture dishes undergo 

morphological alterations, such as flattening, vacuolization and accumulation of 

stress granules (Kuilman et al., 2010; Rodier and Campisi, 2011; Campisi, 2013). 

Increases in cell size relative to proliferating cells in culture may reflect a 

continuation of anabolic processes, such as protein and membrane synthesis, in 

senescent cells that have exited the cell cycle.  

Senescent cells routinely express senescence-associated β-galactosidase 

(SA-β-Gal) and p16INK4a, and most secrete inflammatory cytokines and other 

signalling molecules — including interleukin-1 (IL-1), IL-6, IL-8, vascular 

endothelial growth factor A (VEGFA) and matrix metalloproteinases (MMPs) — 

as part of a senescence-associated secretory phenotype (SASP) (Coppe et al., 2008; 

Rodier et al., 2009). Human cells undergoing senescence exhibit an unusual pattern 

of heterochromatin that is present in discrete nuclear subdomains, known as 

senescence-associated heterochromatic foci (SAHFs), which are associated with S-

phase-promoting gene loci, such as E2F target genes (Narita et al., 2003). HP1-γ 

has proven to be a positive marker of SAHF in adenomas but negative in 

adenocarcinomas, suggesting that senescent cells exist in premalignant tumours but 

not in malignant ones (Collado et al., 2005). 

Collado and colleagues also analysed some de novo markers identified by 

using DNA microarray analysis in order to detect oncogene-induced senescence. 

These de novo markers were p15INK4b, Dec1 and DcR2 (Collado et al., 2005). 

The next figure provides a brief description of the most commonly used 

markers of cellular senescence (Figure 1.4). 
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Figure 1.4 Biomarkers of senescence.  

Taken from: Sharpless and Sherr (2015). 

 

This schematic figure depicts different damaged organelles, including: the 

nucleus, containing damaged chromatin (SAHF); mitochondria with internal 

cristae producing ROS; and abundant lysosomes expressing β-galactosidase. 

Vesicles emanating from the Golgi apparatus contain secreted cytokines and 

chemokines which is known as the senescence-associated secretory phenotype 

(SASP), leading to paracrine signalling.  

The cyclin-dependent kinase (CDK) inhibitor p16INK4a in the cytoplasm 

prevents CDK4 and CDK6 from assembling into functional holoenzymes with 

their allosteric regulators, the D-type cyclins. Thus, preventing the import of active 

kinases into the nucleus and inhibiting the phosphorylation of nuclear 

retinoblastoma protein (pRb) (Sharpless and Sherr, 2015).  
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1.3.4.1 Hypertrophic phenotype 

Hayflick already stated that senescent cells show an enlarged cytoplasm that 

doubles the size of non-senescent cells (Hayflick, 1965). The typical senescence 

phenotype consist of enlarged cell with multiple or enlarged nuclei, prominent 

Golgi apparatus and sometimes a vacuolated cytoplasm  (De Cecco et al., 2011).  

 

1.3.4.2 Growth arrest 

The hallmark of cellular senescence is an inability to progress through the 

cell cycle. Senescent cells arrest growth, usually with a DNA content that is typical 

of G1 phase, yet they remain metabolically active. Once arrested, they fail to 

initiate DNA replication despite adequate growth conditions. This replication 

failure is primarily caused by the expression of dominant cell cycle inhibitors. In 

contrast to quiescence, the senescence growth arrest is essentially permanent 

because senescent cells cannot be stimulated to proliferate by known physiological 

stimuli (Campisi and d'Adda di Fagagna, 2007). 

 

1.3.4.3 Apoptosis resistance 

Apoptosis entails the controlled destruction of cellular constituents and their 

ultimate engulfment by other cells. Like senescence, apoptosis is an extreme 

response to cellular stress and is an important tumour-suppressive mechanism. But, 

whereas senescence prevents the growth of damaged or stressed cells, apoptosis 

quickly eliminates them (Roat et al., 2007).  

It is not clear what determines whether cells undergo senescence or 

apoptosis. One determinant is cell type; i.e., damaged fibroblasts and epithelial 

cells tend to senesce, whereas damaged lymphocytes tend to undergo apoptosis. 

The nature and intensity of the damage or stress may also be important (Roux and 

Blenis, 2004). Most cells are capable of both responses. The senescence and 

apoptosis regulatory systems therefore communicate — probably through their 
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common regulator, the p53 tumour suppressor protein (Thakur et al., 2007). 

 

1.3.4.4 β-Galactosidase activity 

The most commonly used senescence marker, primarily because of its ease 

of detection in tissues, is senescence-associated β-galactosidase (SA-β-Gal) 

activity measured at pH 6.0 (Dimri et al., 1995). Endogenous β-galactosidase in 

humans is a lysosomal enzyme optimally active at pH 4.0–4.5, so its detection at 

suboptimal pH 6.0 connotes its very high level of expression in senescent cells 

(Kurz et al., 2000; Lee et al., 2006a). 

This activity at pH 6.0 allowed the identification of senescent fibroblasts and 

keratinocytes in aged human skin biopsies, and subsequently became known as 

senescence-associated β-galactosidase (SA-β-Gal). Several laboratories have since 

then, used the SA-β-Gal assay on a variety of cells and tissues to demonstrate the 

onset of replicative senescence in culture (Reznikoff et al., 1996; Serrano et al., 

1997; Bodnar et al., 1998; Tsukamoto et al., 1998; van der Loo et al., 1998; 

Matsunaga et al., 1999) and in vivo (Mishima et al., 1999; Sigal et al., 1999).  

 

1.3.4.5 p16INK4a expression 

The second most commonly used marker is the expression of p16INK4a, a 

selective inhibitor of cyclin D-dependent CDK4 and CDK6 (Serrano et al., 1993). 

The CDKN2A gene encoding p16INK4a is closely chromosomally linked to 

CDKN2B, which encodes a second INK4 family member, p15INK4b (Figure 1.5). 

Moreover, RNAs specified by exons 2 and 3 of the CDKN2A gene are co-opted 

into distinct transcripts originating from another upstream promoter and exon, 

where their coding sequences are translated in an alternative reading frame (ARF)  

(Quelle et al., 1995); the resulting protein is p14ARF in human and p19ARF in mouse. 

The p16INK4a and p15INK4b proteins inhibit cyclin D-dependent CDK4 and CDK6 to 

prevent phosphorylation pRb. The hypophosphorylated form of pRb sequesters 

E2F transcription factors, preventing them from coordinately activating a suite of 
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genes that are required for DNA replication. The ARF protein binds to the MDM2 

E3 ubiquitin ligase to prevent p53 polyubiquitylation and to facilitate p53 

activation. In turn, the p53 transcription factor regulates an extensive group of 

genes that are commonly induced by cellular stress (Levine, 1997). These include 

the CDK2 inhibitor p21CIP, which inhibits CDK2-mediated pRb phosphorylation 

during progression through the G1 phase of the cell division cycle (Weinberg, 

1995).  

The tumour suppressor pathways, p14ARF/MDM2/p53 and p16INK4a/pRb, 

have been shown to play critical roles in the induction of cellular senescence (Sherr 

and DePinho, 2000; Agherbi et al., 2009). However, the relative contributions of 

p16INK4a and p14ARF to senescence continue to be puzzling. p19ARF expression is the 

more critical determinant of replicative senescence of cultured mouse embryonic 

fibroblasts (Kamijo et al., 1997), whereas p16INK4a is a key regulator of in vitro 

senescence in human cells (Chandler and Peters, 2013). Notably, deletion and 

silencing of the entire CDKN2A–CDKN2B locus and mutations inactivating 

p16INK4a are among the most frequent genetic events encountered in malignant 

human tumours, implying that, as with inactivation of RB1 and TP53, loss of 

CDKN2A–CDKN2B enables cells to bypass tumour-suppressive restraints that are 

imposed by senescence.  

However, both pathways are connected. pRb and p53 pathways are linked to 

each other by p21CIP1. p21CIP1 inhibits CDK2-mediated pRb phosphorylation during 

progression through the G1 phase of the cell division cycle (Sharpless and Sherr, 

2015). Unlike the roles of pRb and p16INK4a, the role of the CDK inhibitor p21CIP1 

in senescence and tumour suppression remains controversial (el-Deiry et al., 1993; 

Harper et al., 1993; Xiong et al., 1993). Expression of p21CIP1 in response to 

transient DNA damage produces a reversible cell cycle pause that provides time 

for DNA repair and facilitates cell survival (Deng et al., 1995; Wang et al., 1997; 

Martin-Caballero et al., 2001). Furthermore, inactivation of p21CIP1 does not 

abrogate senescence in commonly used in vitro model systems (Pantoja and 

Serrano, 1999).  
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By contrast, consistent with observations that p21CIP1 expression has been 

associated with prolonged proliferative arrest occurring in the setting of chronic 

DNA damage (Di Leonardo et al., 1994), more than 4 days of experimentally 

enforced p21CIP1 expression has been reported to initiate senescence (Sang et al., 

2008). Activation of high levels of p21CIP1 by stress-induced p53 during the G2 

phase also seems to facilitate senescence induction (Spencer et al., 2013; Krenning 

et al., 2014). Even if p21CIP1 is important for the initiation of senescence in some 

settings, its expression does not persist in senescent cells (Alcorta et al., 1996; 

Robles and Adami, 1998; Stein et al., 1999). Therefore, p21CIP1 cannot be used as a 

reliable marker of the senescence phenotype.  

 

 

Figure 1.5 The INK/ARF locus (CDKN2A-CDKN2B).  

Taken from: Sharpless and Sherr (2015). 
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1.3.4.6 Senescence associated secretory phenotype (SASP) 

Cells undergoing senescence exhibit profound changes in their 

transcriptomes. A major consequence of this is the secretion of many dozens of 

factors, including cytokines and chemokines (Campisi, 2005). The first indication 

of changes in the secretome of human cells accompanying senescence was reported 

for fibroblasts undergoing replicative senescence. Microarray analysis revealed a 

strong inflammatory response, as seen in wound healing (Shelton et al., 1999). 

Subsequent work from various laboratories has revealed that cells undergoing 

either replicative or premature senescence display profound changes in their 

secretome, termed the senescence-associated secretory phenotype (SASP) (Coppe 

et al., 2008; Rodier et al., 2009).  

It has been proposed that the normal function of the SASP is to restore tissue 

function in two ways: first, by stimulating less-damaged neighbouring cells to 

engage in tissue repair; and second, by attracting inflammatory cells to eliminate 

senescent cells and turn off SASP-mediated signals. However, this restorative 

process may fail when the extent, duration or frequency of the damage exceeds 

repair capacity. The end result is an aberrant accumulation of senescent cells that, 

contrary to their initial purpose, aggravate tissue dysfunction (Serrano, 2017a). 

 

1.3.4.7 Senescence associated heterochromatin foci (SAHF) 

Cellular senescence can be associated with an altered chromatin structure, at 

least in vitro. While DNA dyes display overall homogenous staining patterns in 

cycling or quiescent human cells, senescent cells often show strikingly different 

punctate staining patterns (Kuilman et al., 2010).  

The organization of DNA in heterochromatin contributes to nuclear 

organization, chromosome structure, and gene silencing (Dillon and Festenstein, 

2002; Lachner and Jenuwein, 2002). There are two types of heterochromatin: 

constitutive and facultative. The constitutive heterochromatin mainly comprises the 

pericentric regions of the chromosomes and is important for the segregation of 
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chromosomes and the silencing of repetitive elements. Facultative heterochromatin 

is controlled during development and contributes to gene regulation during 

differentiation. A different type of optional heterochromatin is then identified; the 

senescence associated heterochromatin foci (SAHF), which appears in the 

senescent cells (Parry and Narita, 2016). 

These SAHF are specifically enriched in methylated lysine 9 of histone H3 

(a modification catalyzed by the histone methyltransferase Suv39h1), while histone 

H3 lysine 9 acetylation and lysine 4 methylation (both euchromatin markers) are 

excluded from SAHF (Narita et al., 2003). Senescent cells display increased 

binding of heterochromatin-associated proteins in the promoters of several E2F 

target genes. SAHF formation is circumvented by interference with p16INK4a/pRb 

pathway signalling, correlating with bypass of senescence.  

Very little is known about the effector mechanism of cellular senescence, 

but the global chromatin reorganisation may not simply be a senescence marker, 

but rather play a key role in the senescence mechanism. In fact, there is a strong 

correlation between SAHF formation and the irreversibility of the senescence 

phenotype (Narita, 2007). 

 

1.3.4.8 Telomere shortening 

It is unquestionable that telomere shortening is a universal mechanism that 

limits the proliferative potential of normal cells lacking endogenous telomerase. 

Most human primary cells do not express high levels of telomerase and, therefore, 

are subject to a progressive erosion of their telomeres with each cell generation 

(Blasco et al., 1999). The inability of which to add telomeric repeats to 

chromosome ends eventually leads to telomere deprotection and a DNA damage 

response (DDR) that limits cellular proliferative lifespan (Harley et al., 1990; 

Blasco et al., 1997).  

In turn, enforced expression of telomerase can bypass replicative senescence 

and maintain chromosomal integrity. However, whether senescence relies 
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exclusively or not on telomere shortening is still an open question. In fact, telomere 

shortening and dysfunction can occur in non-senescent cells, and senescence can 

be triggered by many stresses that are independent of telomere shortening in 

human cells in vitro (Sharpless and Sherr, 2015). 

Thus, even though the role of telomere shortening as a barrier to 

immortalization is clearly established, the full effects of “telomerization” on 

senescence are still to be defined (Serrano and Blasco, 2001). 

 

1.3.5 Oxidative stress-induced senescence  

According to the theory of free radical aging (Harman, 1956), ROS appear 

as toxic species that cause oxidative damage to biomolecules, however, there are 

other points of view that consider ROS as essential for cell survival. In 

physiological conditions, ROS have a regulatory role in a wide range of functions, 

since they act as second messengers. These pathways include gene regulation, cell 

signalling, cell differentiation, cell senescence, and apoptosis among others. Under 

ROS overproduction conditions, signalling regulation can be altered and could lead 

to the activation of dangerous signalling pathways, as well as to premature cellular 

senescence and its drift in the aging (Afanas'ev, 2010; Hekimi et al., 2011). 

Nowadays, ROS generate a great interest because they are involved in the 

cellular senescence process: elevated ROS levels are associated with replicative 

senescence by shortening telomeres and stress-induced senescence, directly 

damaging DNA and inducing a DNA damage response (DDR) (Campisi and 

d'Adda di Fagagna, 2007; Sohal and Orr, 2012). This increase leads to damage to 

DNA and DDR, forming a positive feedback loop that initiates senescence (Passos 

and Von Zglinicki, 2006; Passos et al., 2010). Before senescence begins, cells 

increase the mitochondrial network, as well as the number of mtDNA molecules 

and the mitochondrial production of radicals. Thus, the DDR is the onset of 

cellular senescence irrespective of the cause of origin and is capable of causing 



Introduction 

 37 

mitochondrial dysfunction as a late consequence (Passos et al., 2007a; Passos et 

al., 2007b; d'Adda di Fagagna, 2008). 

Mitochondrial dysfunction leads to a high production of ROS, both being the 

cause and effect of a continuous DDR, causing a wide range of changes as a result 

of the signalling through several transcription factors, such as p53 and p16INK4a, 

necessary for cellular senescence (Passos et al., 2009). ROS contribute 

stochastically to the long-term maintenance of DNA damage by generating a stable 

and self-sustaining feedback loop sufficient to maintain cell arrest in response to 

DNA damage both in vivo and in vitro (Passos et al., 2010). 

 

1.4 BMI-1 AND STEM CELL BIOLOGY 

1.4.1 Definition 

Gene expression patterns are largely regulated by reprogrammable 

epigenetic regulatory mechanisms that control the local chromatin conformation 

(Jaenisch and Bird, 2003). The repeated specific pattern of gene expression 

established by epigenetic machinery during multiple rounds of cell division 

establishes cellular identity. Epigenetic regulation is significantly achieved by 

modulating nucleosome dynamics through histone tail modifications.  

The major molecular machines that dictate gene expression pattern through 

histone tail modification and chromatin modulations are global epigenetic 

modifiers, such as trithorax group (TrxG) and polycomb group (PcG) proteins, 

which trigger transcriptional activation and repression of target gene, respectively 

(Mills, 2010). PcG proteins form primarily two large multi-subunit polycomb-

repressive complexes (PRCs), namely, PRC1 and PRC2. In humans, PRC1 is 

composed by BMI-1, RING1A/B, PCGF, CBX and HPH, while PRC2 is 

composed by EZH, SUZ12 and EED. These complexes in association with other 

epigenetic markers establish target gene repression through histone tail 

posttranslational modifications (Muller and Verrijzer, 2009; Simon and Kingston, 

2009; Margueron and Reinberg, 2011).  
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Generally, PRC2 initiates histone tail modification by mono-, di-, and 

trimethylation of histone 3 at lysine 27 (H3K27me) residue with the help of its 

catalytic subunit enhancer of zeste homolog 2 (EZH2) methyl transferase enzyme, 

and this modification promotes the recruitment of PRC1 through its 

chromodomain-binding proteins, which then recognizes the H3K27me marker 

established by PRC2 (Spivakov and Fisher, 2007). PRC1 catalyses 

monoubiquitination of histone 2A at lysine 119 residue (H2AK119ub) to maintain 

target gene repression with the help of its catalytic subunit RING1A/B, which is an 

E3 ligase. RING1A/B protein activity is significantly enhanced by its association 

with another PRC1 component BMI-1 (B-cell specific moloney murine leukaemia 

virus integration region 1) (van Lohuizen et al., 1991). 

We are now going to summarize BMI-1 gene and BMI-1 protein structures, 

the regulatory mechanisms that control BMI-1 expression, and finally the cellular 

pathways that are regulated by BMI-1 repressing activity.  

 

1.4.2 BMI-1 gene and BMI-1 protein structure 

The human BMI-1 gene, composed of 10 exons and 9 introns, is localized on 

the short arm of chromosome 10 and encodes 37 kDa protein composed of 326 

amino acids (Alkema et al., 1993). BMI-1 protein structure is highly evolutionarily 

conserved and has several protein domains: 

- An N-terminal RING finger domain (RF) 

- A central helix-turn-helix (HTH) domain 

- A carboxyl terminal PEST-like domain 

- Two nuclear localization signals KRRR and KRMK  

Figure 1.6 shows BMI-1 gene and BMI-1 protein structure. The RF domain 

of BMI-1 is required for its association with RING1B E3 ligase, a catalytic 

component of PRC1, to activate PRC1 activity (Li et al., 2006). The RF and HTH 

domains are important for BMI-1 localization at DNA strand break and crucial for 

the recruitment of DNA damage repair machinery, prevention of cellular 
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senescence, and cancer cell survival (Itahana et al., 2003; Ginjala et al., 2011; 

Balasubramanian et al., 2015). The C-terminal PEST domain is rich in proline (P), 

glutamic acid (E), serine (S), and threonine (T) and is critical for BMI-1 protein 

turnover (Yadav et al., 2010). 

 

Figure 1.6 BMI-1 gene and BMI-1 protein structure. 

Taken from: Sahasrabuddhe (2016). 

 

1.4.3 BMI-1 gene and BMI-1 protein regulation 

BMI-1 is expressed ubiquitously in almost all types of tissues. However, its 

expression levels are high in brain, lungs, thymus, kidney, gonads, salivary glands, 

placenta, blood, bone marrow, and stem cells of several lineages. It is 

overexpressed in several cancer subtypes and serves as a biomarker for these 

cancer types. BMI-1 plays a critical role in cellular physiology and hence the 

transcript and protein levels of BMI-1 are tightly regulated in diverse cell types. 

For the past several years, many investigators are trying to understand the 

regulation of BMI-1 at transcriptional, posttranscriptional, and posttranslational 

levels. However, the comprehensive knowledge on BMI-1 regulation by different 

mechanisms is still scarce.  

BMI-1 gene expression is transcriptionally regulated by the number of 

transcription factors in a context- and lineage-dependent manner. BMI-1 gene 

expression is positively regulated by SP1, TWIST1, FOXM1, ZEB1, E2F1, 
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SALL4, n-MYC, c-MYC, and HDACs, whereas its expression is negatively 

regulated by MEL18, NANOG, and KLF4.  

Gene expression is regulated at different levels, including regulation of 

mRNA activity after synthesis. This regulation may operate at the level of RNA 

processing for maturation, its transport to correct subcellular localization, its 

stability and finally translation of its coded information into protein. These 

regulations occur through interaction of cellular factors with mRNA sequence 

elements located within 5′- and 3′-untranslated regions of unprocessed mRNA, 

including secondary structures, internal ribosome entry sites, and poly-A tail. Post-

transcriptional regulations can be achieved through the activity of target-specific 

microRNA expression. The miRNAs are short 21-23 nucleotide RNA sequences 

that control the level of expression of target gene through controlling transcription 

as well as mRNA stability. Several miRNAs, such as miR-452, miR-218, miR-494, 

miR-495, miR-215, miR-16, etc… are implicated in the regulation of BMI-1 gene 

expression (Sahasrabuddhe, 2016). 

Finally, post-translational regulations can be of two types: (1) reversible 

regulation and (2) irreversible regulations. The reversible protein modifications 

such as acetylation, phosphorylation, sumoylation, or ubiquitination can either alter 

the protein function or often direct protein to irreversible regulation through 

ubiquitin proteasome system (UPS)-mediated protein degradation. Post-

translational regulation of BMI-1 is not significantly characterized. BMI-1 protein 

is reported to be regulated by UPS-mediated protein degradation. Some studies 

have shown that BMI-1 C-terminal PEST domain is critical for BMI-1 protein 

stability and within this region a consensus motif DSGSDKANS is recognized by 

an E3 ligase β-TrCP, which regulates BMI-1 protein turnover and consequent 

oncogenic activity (Sahasrabuddhe et al., 2011).  
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1.4.4 BMI-1 role in cellular physiology  

Trough repression of target gene expression in a lineage- and context-

dependent manner, BMI-1 regulates a myriad of cellular processes critical for cell 

growth, cell fate decision, development, senescence, aging, DNA damage repair, 

apoptosis, and self-renewal of stem cells (Figure 1.7) (Bhattacharya et al., 2015).  

 

Figure 1.7 Upstream and downstream signalling pathways of BMI-1. 

Taken from: Sahasrabuddhe (2016). 

 

1.4.4.1 BMI-1, cell cycle and senescence 

Since epigenetic events such as histone modification have been implicated in 

senescence, it follows that genes involved in chromatin remodelling and gene 

expression, such as members of the Polycomb and Trithorax families, might be 

directly involved in decisions that affect stem cell fate, including self-renewal, 

senescence, and possibly aging. Polycomb and Trithorax proteins form large 

multimeric structures, which can lead to repression or activation of gene 

expression, respectively, via a concerted process of chromatin modifications 

(Simon and Tamkun, 2002; Orlando, 2003). 
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As stated before, the normal cell cycle progression and regulation is tightly 

controlled by a variety of molecular checkpoints that supervise the various 

biological functions of the cell that occur within the different phases of the cell 

cycle (Medema and Macurek, 2012). BMI-1, being a transcriptional repressor and 

a PcG protein, plays an important role in cell cycle regulation (van der Lugt et al., 

1994). BMI-1 controls self-renewal and cell cycle by regulating the tumour 

suppressor proteins p16INK4a y p14ARF (Dimri et al., 2002; Park et al., 2004). BMI-1 

promotes CDK4 and CDK6 activity by repressing the INK4A/ARF locus (Jacobs et 

al., 1999). BMI-1 can also directly regulate p53 stability, further stressing its role 

in cellular proliferation and tumour genesis by negatively acting through the 

pRb/p53 pathway (Calao et al., 2013; Su et al., 2013). Thus, BMI-1 promotes cell 

proliferation by suppressing p16INK4a/pRb and/or p14ARF/MDM2/p53 tumour 

suppressor pathways. For example, it has been published that BMI-1 is necessary 

for an efficient self-renewal of hematopoietic stem cells, as well as of neural stem 

cells, but is less necessary for the differentiated progeny (Molofsky et al., 2003; 

Park et al., 2003).  

 

1.4.4.2 BMI-1 and stem cell self-renewal 

ESCs derived from the inner cell mass of a blastocyst are stem cells with 

unique properties of pluripotency and self-renewal. The unique identity of ESCs is 

governed by a network of transcriptional factors along with epigenetic features 

(Liang and Zhang, 2013). Compared with differentiated cells, ESCs display 

distinctive chromatin features related to its unique properties. The chromatin in 

ESCs is in an “open” state, with more accessible chromatin domains and less 

heterochromatin foci. In contrast, highly condensed heterochromatin foci are 

prevalent in lineage-committed somatic cells (Aoto et al., 2006; Meshorer and 

Misteli, 2006; Meshorer et al., 2006; Efroni et al., 2008). The pluripotent state of 

ESCs is enforced by epigenetic factors closely linked to the pluripotency 

transcription factor network (Orkin and Hochedlinger, 2011; Young, 2011).  
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Polycomb group genes (PcGs) are usually considered as being 

transcriptional repressors that are required for maintaining the correct spatial and 

temporal expression of homeotic genes during development (Bracken et al., 2006). 

In addition to being essential regulators of embryonic development, the PcGs have 

also emerged as key players in the maintenance of the adult stem cell populations  

(Molofsky et al., 2004; Valk-Lingbeek et al., 2004). For example, BMI-1 is 

required for the self-renewal of hematopoietic and neural stem cells (Lessard and 

Sauvageau, 2003; Molofsky et al., 2003), while overexpression of EZH2 is capable 

of blocking the differentiation of muscle myoblasts (Caretti et al., 2004) and 

preventing hematopoietic stem cell exhaustion (Kamminga et al., 2006). 

Furthermore, Lee and colleagues found that PcG target genes are 

preferentially activated during ESCs differentiation and that the ESCs regulators 

OCT4, SOX2, and NANOG cooccupy a significant subset of these genes. These 

results indicate that PcG occupies a special set of developmental genes in ESCs 

that must be repressed to maintain pluripotency and that are poised for activation 

during ESCs differentiation (Lee et al., 2006b).  

 

1.4.4.3 BMI-1 and oxidative stress 

Genome integrity is constantly challenged by endogenous (metabolic) and 

exogenous (environmental) sources. To combat threats posed by DNA damage, 

cells have evolved mechanisms that are collectively termed as the DNA damage 

response (DDR). DDR involves a plethora of proteins whose sequential 

recruitment and function at DNA damage sites are modulated by numerous highly 

dynamic and reversible modifications, including phosphorylation, ubiquitination, 

acetylation, methylation and sumoylation.  

BMI-1 is known to play a key role not only in preventing DNA damage, but 

also in DDR. Mitochondrial ROS has been shown to be a prominent agent for 

oxidative DNA damage. Some researchers have demonstrated that independent of 

p16INK4a, BMI-1 has a role in maintaining mitochondrial function and redox 



Introduction 

 44 

homeostasis (Liu et al., 2009). Further, cells lacking BMI-1 have significant 

mitochondrial dysfunction accompanied by a sustained increase in ROS that is 

sufficient to engage the DDR pathway. Thus, BMI-1 prevents oxidative DNA 

damage (Wang et al., 2011). 

Apart from protecting against oxidative DNA damage, BMI-1 has been 

shown to be a key component in DDR, as it is required and sufficient to recruit the 

DDR machinery to DNA double-strand break sites in response to radiation 

(Facchino et al., 2010). Following DNA damage, BMI-1 tethers its RING finger to 

DNA, and associates more stably with damaged compared to undamaged 

chromatin (Ismail et al., 2010). Therefore, by inhibiting ROS-induced oxidative 

DNA damage along with facilitating DDR, BMI-1 contributes to maintaining 

genome integrity.  
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2.1 GENERAL AIM 

Our main purpose was to analyse the role of p16INK4a and BMI-1 in oxidative 

stress-induced senescence in long-term human dental pulp stem cells (hDPSCs) 

cultures. 

 

 

2.2 SPECIFIC AIMS 

The specific aims of this study were: 

• To analyse if ambient oxygen tension induces oxidative stress in hDPSCs 

during long-term culture.  

 

• To analyse if ambient oxygen tension mediates an oxidative stress-

induced premature senescence (SIPS) in hDPSCs during long-term 

culture. 

 

• To analyse whether this oxidative stress-induced premature senescence 

(SIPS) is mediated by p16INK4a pathway. 

 

• To analyse if ambient oxygen tension induces a stemness potential loss in 

hDPSCs during long-term culture. 

 

• To analyse if BMI-1 controls hDPSCs fate by p16INK4a, SOX2 and OCT4 

regulation during long-term culture under ambient oxygen tension. 
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2.3 JUSTIFICATION OF THE STUDY 

2.3.1 In vitro stem cell maintenance: 3% versus 21% oxygen tension 

Like embryonic stem cells, mesenchymal stem cells (MSCs) also reside in 

low oxygen concentrations. In mammals including humans, MSCs are located in 

perivascular niches close to the vascular structure in almost all tissues (Shi and 

Gronthos, 2003; Crisan et al., 2008; Zannettino et al., 2008; Mohyeldin et al., 

2010). Despite residing near the blood vessels, in different tissues where they are 

found, the oxygen concentrations are low (Harrison et al., 2002; Pasarica et al., 

2009). In adult human tissues, oxygen concentration varies widely depending on 

the vascularisation and the type of microenvironment within the respective organ, 

and they are considerably lower than the inhaled ambient oxygen concentration 

(21%). The partial pressure or oxygen concentration of inspired air gradually 

decreases after it enters the lungs and then in the blood flowing from the alveolar 

capillaries that carry oxygen, towards the organs and tissues for their oxygenation. 

By the time oxygen reaches the organs and tissues, oxygen concentration drops to 

2-9%, with a mean of 3% (Simon and Keith, 2008). Although highly vascularized, 

it is speculated that the oxygen concentration in the dental pulp is low. A study 

with rats found approximately 3% pO2 in the pulp tissue (Yu et al., 2002).  

In the last few decades there has been a great improvement in the 

development of culture medium and different matrix substrates as well as soluble 

factors that optimize cell proliferation and their maintenance (Villa-Diaz et al., 

2013; Laitinen et al., 2016). However, not all the factors that compose the niche 

have received the same attention. Currently, the vast majority of cell cultures are 

performed under a hyperoxic ambient which is composed of approximately 21% 

oxygen tension.  

The advances in cell-based therapies and regenerative medicine have 

aroused interest in the factors that control stem cell characteristics (Muscari et al., 

2013). In vivo, the stem cell niche is regulated by growth factors, cytokines and 

low oxygen tension (Simon and Keith, 2008). Within these niches, stem cells are 
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present in an undifferentiated and self-renewable state (Schofield, 1983). To mimic 

this environment in vitro, simulating low oxygen tension is one of the hot topics of 

tissue engineering research (Bornes et al., 2015; Hutton and Grayson, 2016; Wakai 

et al., 2016), which aims at improving proliferation rates (Grayson et al., 2006; 

Grayson et al., 2007; Zhang et al., 2014; Fotia et al., 2015) and differentiation 

potential of stem cells (Adesida et al., 2012; Bornes et al., 2015) as well as 

enhancing their viability after transplantation (Yan et al., 2012; Bader et al., 2015).  

The oxygen concentration in vitro culture under ambient oxygen tension is 

4–10 times higher than in the physiological environment. Thus, there has been an 

increasing interest in the growth of cells under 3% oxygen tension over the last few 

years (Forristal et al., 2010; Basciano et al., 2011; Forristal et al., 2013). 
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3.1 MATERIAL 

3.1.1 Patient selection 

This thesis summarizes a prospective, in vitro, and uncontrolled study. Teeth 

were extracted by dentists from the Department of Surgery of the Dental Clinic of 

the Faculty of Medicine and Odontology of the University of Valencia. 

All patients were informed of the characteristics of the study, and freely 

agreed to collaborate, donating the extracted tooth, which was always extracted for 

reasons not related to this study. They were properly informed and signed an 

informed consent together with the patient information sheet (Annexes 1 and 2). 

Throughout the study, patient anonymity and data protection were maintained. 

To perform this study, we used dental pulps of permanent teeth from 5 

patients, men and women between 14 and 25 years old. 

- Inclusion criteria: We included pulps from teeth that did not present any 

clinical and/or radiological sign or symptom of inflammation and/or 

infection. 

- Exclusion criteria:  We excluded all pulps from teeth that presented any 

clinical and/or radiological sign or symptom of the following clinical 

manifestations: pulpitis, apical periodontitis, periodontal disease, fractures 

affecting the dental pulp and those teeth in which a fracture occurred 

during the extraction.  

 

3.1.2 Dissection material 

For dental pulp extraction procedure, it was necessary to use the sterile 

dissection material detailed below: 

- Extra torque 605 Kavo® 

- Diamond cylindrical milling cutter 

- Curettes and tweezers Hu-Friedy 

- Scalpel nº10 
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3.1.3  Equipment 

 

CELL CULTURE 

- Cell culture hood Cultair B100 

- Incubator Thermoscientific HERAcell 150i CO2 

- Incubator Binder CB150 5% pCO2, 3% pO2 

- Water bath P Selecta Preciseterm 

- Inverted Microscope Zeiss ID03 

- Cell counter: Neubauer chamber 

- Sterilizer Selecta Autester-G 

- Precision weighing balance Sartorius Acculab (± 0.0001 g) 

- Centrifuge Sorvall Heraeus Multifuge 3SR plus (for Corning tubes) 

- Vacuum pump Millivac (Millipore) 

 

FLOW CYTOMETRY 

- The BD FACSVerse system includes the BD FACSVerse cytometer, the 

optional BD FACS Universal Loader, and BD FACSuite software running 

on the system workstation. The system includes customyzed steup beads. 

 

HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) 

- The DIONEX Ultimate 3000 chromatograph (Thermo Scientific), includes 

a quaternary pump, an autoinyector, a UV-Vis detector, the Chromoleon 

software and the Hypersil GOLD column C18 5µm 175 A, 150 x 4.6 mm. 

 

PROTEIN QUANTIFICATION 

- Vortex Heidolph Reax top 

- Spectrophotometer Cecil, CE3021, 3000 series 

- Semi-micro cuvettes 
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WESTERN BLOT AND OXYBLOTTM 

- Weighing balance Gram Precision AHZ (± 0.01 g) 

- Stuart hot plate stirrer multiposition, SB162-3 

- Crison pHmeter, GLP21 

- Fume hood Burdinola, OR-ST 1200 

- Gel making kit:  

o Casting stand, casting frames, gaskets, releaser, glass plates and 

plastic combs (Bio-rad) 

- Electrophoresis kit:  

o Clamping frame with electrode assembly, tank and lid from Mini 

Protean® Tetra Cell (Bio-rad) 

- Transfer kit:  

o Gel holder cassette, filter paper, foam pads, core assembly module, 

tank and lid from Mini Trans-Blot® Cell (Bio-rad) 

- Power supply PowerPac Basic (Bio-rad) 

- Image Quant LAS 4000, GE_Healthcare Bio-Sciences 

 

RNA ISOLATION 

- Fume hood Crumair, 1100-G A 

- Centrifuge Hermle Z216MK (for Eppendorf tubes) 

- Centrifuge Hettich, 35 R (for Eppendorf tubes) 

- Stuart, Block heater, SBH 130 D 

- Spectrophotometer Thermoscientific NanoDrop 2000 

 

REVERSE TRANSCRIPTION 

- Centrifuge Sigma 1-14 (for Eppendorf tubes) 

- Thermal cycler GeneAmp® PCR system 9700 (Applied Biosystems) 
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POLYMERASE CHAIN REACTION 

- Plate centrifuge Eppendorf 5430 

- Thermal cycler 7900HT Fast Real-Time PCR System (Applied 

Biosystems) 

 

STORAGE 

- -80ºC freezer Revco ultima II 

- -80ºC freezer Platinum 500 

- -20ºC freezer Liebherr Comfort Nofrost 

- 2-4ºC refrigerator Lynx 

- Cryogenic freezer and CoolCell LX Freezing containers 

 

WATER PURIFICATION SYSTEM 

- Millipore, Milli-Q 

- Elga, purelab flex 

 

3.1.4 Additional supplies 

- Cell culture vessels (flasks, Petri dishes, multiwell plates) 

- Tubes (15 mL and 50 mL Cornings) 

- Eppendorfs (0.2 – 0.5 – 1.5 – 2 mL) 

- Cryotubes 

- Tips and pipettes 

- Glass pipettes and pipettors 

- Syringes and nylon membrane filters 0.2 µm 

- Waste containers 
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3.2 METHODS 

3.2.1 Cell culture 

3.2.1.1 Description 

Cell culture refers to the removal of cells from an animal and their 

subsequent growth in a favourable artificial environment. The cells may be 

removed from the tissue directly and disaggregated by enzymatic or mechanical 

means before cultivation.  

Primary culture refers to the stage of the culture after the cells are isolated 

from the tissue and proliferated under the appropriate conditions until they occupy 

all of the available surface (i.e., reach confluence). At this stage, the cells have to 

be subcultured (i.e., passaged) by transferring them to a new vessel with fresh 

growth medium to provide more room for continued growth.  

 

3.2.1.2 Reagents 

The necessary reagents for hDPSCs isolation, culture, passaging and 

cryopreservation are: 

• Krebs-Henseleit buffer + 2 mg/mL EDTA (Sigma) 

• Collagenase I and Dispase II (Sigma) 

• Thermolysin (Vitacyte) 

• Trypsin (Invitrogen) 

• Dulbecco’s modified Eagle® medium (DMEM) Low Glucose (1g/L) 

(GIBCO) 

• Inactivated Foetal Bovine Serum (FBS) (Invitrogen) 

• Penicillin/Streptomycin (P/S) 10,000 U/mL (GIBCO) 

• Dimetilsulfoxide (DMSO) (Sigma) 

• Dulbecco’s Phosphate Buffered Saline (PBS) (GIBCO) 
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3.2.1.3 Procedure: pulp extraction and hDPSCs isolation 

Dental pulp extraction was performed by cutting the extracted tooth at the 

level of the amelocementary line with a torque and a milling cutter. Once removed 

from the pulp chamber, the pulp was extracted with tweezers (Figure 3.1).  

 

 

Figure 3.1 Dental pulp extraction. 

 

Once extracted, the dental pulp was introduced into 15 mL Corning tubes 

with 1-2 mL of DMEM Low Glucose + 1% P/S. Between pulp extraction and its 

digestion, there was a time range of between 1h and 24h. During this time the pulp 

was stored at 4°C. hDPSCs were then isolated following this protocol: 

1. Mechanical disaggregation of the dental pulp tissue with the scalpel. 

2. Chemical disaggregation with Krebs-Henseleit buffer + 2 mg/mL EDTA 

for 10 min in a humid incubator at 37ºC, 5% pCO2 and 3% pO2. 

3. Centrifuge at 1000 g for 2 min. 

4. Enzymatic digestion during 40 min in a humid incubator at 37ºC, 5% pCO2 

and 3% pO2. Dilute enzymes on DMEM Low Glucose + 1% P/S: 

a. Collagenase I + Dispase II at a final concentration of 4 mg/mL. 

b. Thermolysin at a final concentration of 13 ng/mL. 

5. Centrifuge at 1000 g for 2 min. 
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6. Resuspend the pellet in new fresh complete media (DMEM Low Glucose + 

10% SBF + 1% P/S). 

7. Seed in T25 flask and incubate in humid incubator at 37ºC, 5% pCO2 and 

3% pO2. 

 

3.2.1.4 Cell culture conditions and cryopreservation 

Culture conditions vary widely for each cell type, but the artificial 

environment in which cells are cultured invariably consists of a suitable container 

containing a substrate or medium that supplies the essential nutrients (amino acids, 

carbohydrates, vitamins and minerals), growth factors, hormones and gases (pO2 

and pCO2), and regulates the physicochemical environment (pH, osmotic pressure 

and temperature).  

hDPSCs, like most cells, are anchorage dependent and must be cultured in a 

flask that provides them with a solid base to adhere to. When the culture reaches 

confluence, cells need to be passaged. The purpose of the passages is to provide 

them with more space so that they can continue to proliferate. In this case, cells are 

washed with PBS and then treated with trypsin (at an average of 1 mL per 5 cm2) 

to detach them. Finally, cells are transferred to a larger flask with complete 

medium.  

For serial passaging we used T75 flasks filled with 15 mL of complete 

medium, which can hold 2 to 3 million hDPSCs. Every 5 passages, we collected 

samples. In this case, we used T25 flasks filled with 5 mL of complete medium 

which can hold 1 to 1.5 million hDPSCs on confluence. The exact amount of cells 

will depend on the morphology of the cells; as passaging number increased, the 

larger, elongated, flattened and irregular the cells were. A total of 25 passages were 

accumulated by hDPSCs cultured at 3% pO2 while only 15 passages were reached 

by hDPSCs cultured at 21% pO2. Each 5 passages, by cell counting in the 

Neubauer chamber, an exact number of cells was seeded in T25 flasks to perform 

the relevant experiments. The T25 flasks with hDPSCs cultured at 3% pO2 were 
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initially seeded with 250,000 cells (50,000 cells/cm2), while hDPSCs cultured at 

3% pO2 were initially seeded with 325,000 cells (65,000 cells/cm2). This is 30% 

more cells, to compensate the loss of cells that do not adhere to the base of the 

flask after seeding.  

As soon as a small surplus of cells becomes available from subculturing, 

they should be frozen as a seed stock, protected, and not be made available for 

general laboratory use. The best method for cryopreserving cultured cells is storing 

them in liquid nitrogen in complete medium in the presence of a cryoprotective 

agent such as dimethylsulfoxide (DMSO). Cryoprotective agents reduce the 

freezing point of the medium and also allow a slower cooling rate, greatly reducing 

the risk of ice crystal formation, which can damage cells and cause cell death. 

hDPSCs surplus were cryopreserved at an average of 1.5 million cells in 1.8 mL of 

complete medium with 20% DMSO in each cryotube. 

 

3.2.2 Small-interfering RNA transfection (siRNA) 

3.2.2.1 Description 

Gene expression can be regulated at both transcriptional and post-

transcriptional levels (Hammond et al., 2001). 

Transcriptional Gene Silencing (TGS) is the result of DNA modification or 

histone alteration. These modifications create a heterochromatin environment 

around a certain gene, which prevents access of the transcriptional machinery 

(transcription factors, RNA polymerases, etc.) by repressing the expression of that 

gene. Post-Transcriptional Gene Silencing (PTGS), on the other hand, is a 

mechanism that involves the degradation of a specific messenger RNA (mRNA). 

The destruction of this mRNA prevents its normal translation and consequently the 

corresponding protein is not synthesized. 

We performed post transcriptional gene silencing. The molecular basis of 

this process can be divided into an initiation step and an effector and maintenance 

step. 
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Initiation step begins with the presence of a double-stranded RNA. It is 

recognized and digested by the Dicer enzyme, which possesses RNase type III 

domains (enzymes that degrade RNA molecules), to form small RNA molecules of 

21-24 nucleotides length. These RNAs were called small interference RNAs 

(siRNA); they are short double-stranded molecules that function as specific 

determinants in RNA-mediated gene silencing. 

During the effector step, the siRNA binds to a complex with nuclease 

activity (nucleic acid degrading enzymes) to form the RISC complex (RNA-

induced silencing complex). RISC is a ribonucleoprotein complex with sequence 

homology dependent endonuclease activity that is responsible for targeted RNA 

degradation. The RISC helicase activity separates the two strands from the siRNA, 

and only one of them remains attached to the complex. Once RISC is activated, it 

targets the degradation of mRNAs homologous to this siRNA. The RISC nucleus is 

composed of proteins belonging to the Argonaute family (AGO), being the best 

known AGO1. These proteins are fundamental partners in the mechanisms of 

interference RNA in various organisms (Figure 3.2).  
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Figure 3.2 Post-transcriptional siRNA mechanism. 

Taken from: Hammond et al. (2001). 

 

3.2.2.2 Reagents 

BMI-1 gene silencing was performed using the following reagents (Santa 

Cruz): 

• BMI-1 siRNA (h) 

• siRNA Control 

• siRNA Transfection Medium 

• siRNA Transfection Reagent 

 

3.2.2.3 Procedure 

The siRNA transfection protocol was completely performed in sterile 

ambient. 
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1. In a six well tissue culture plate, seed 2x105 cells per well in 2 mL DMEM 

Low Glucose + 10% FBS.  

2. Incubate the cells at 37°C in humid incubator at 37ºC, 5% pCO2 and 3% 

pO2 until the cells are 60-80% confluent. This will usually take 18-24 

hours.  

3. Prepare the following solutions:  

a. Solution A: For each transfection, dilute 3 µL of siRNA duplex 

into 100 µL siRNA Transfection Medium.  

b. Solution B: For each transfection, dilute 3 µL of siRNA 

Transfection Reagent into 100 µL siRNA Transfection Medium.  

4. Add the siRNA duplex solution (Solution A) directly to the dilute Trans- 

fection Reagent (Solution B) using a pipette. Mix gently by pipetting the 

solution up and down and incubate the mixture 15-45 minutes at room 

temperature.  

5. Wash the cells once with 2 mL of siRNA Transfection Medium. Aspirate 

the medium and proceed immediately to the next step.  

6. For each transfection, add 0.8 mL siRNA Transfection Medium to each 

tube containing the siRNA Transfection Reagent mixture (Solution A + 

Solution B). Mix gently and overlay the mixture onto the washed cells.  

7. Incubate the cells 5-7 hours in a humid incubator at 37ºC, 5% pCO2 and 3% 

pO2.  

8. Add 1 mL of normal growth medium containing 2 times the normal serum 

and antibiotics concentration (2X normal growth medium) without 

removing the transfection mixture. 

9. Incubate the cells for an additional 18-24 hours. 

10. Aspirate the medium and replace with fresh 1X normal growth medium. 

11. Assay the cells using the appropriate protocol 24-72 hours after the addition 

of fresh medium in the step above.  
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3.2.3 Flow cytometry 

3.2.3.1 Description 

Flow cytometers are powerful analytical instruments that measure certain 

optical properties of particles in flow. A flow cytometer can measure these optical 

properties from any kind of particle as long as it (1) meets certain size 

requirements, and (2) the particles can be prepared as single cell suspensions.  

Additionally, particles must flow through the instrument to be analysed, so they 

must be prepared as a single-particle suspension.  

Flow cytometers typically measure two distinct kinds of optical signals from 

a particle, light scattering and fluorescence. 

Light scattering: Scattering occurs when light interacts with a cell and 

changes its direction as a result of this interaction. Flow cytometers measure two 

kinds of light scattering: forward scatter and side scatter. Forward scatter is 

measured at 180° relative to the illuminating light and is correlative (but not a 

direct measurement of) cell size. Side scatter is collected at 90° relative to the 

illuminating light and is correlative (but also not a direct measurement of) to cell 

granularity or membrane roughness.  

Fluorescence: Fluorescence occurs when molecules are excited by specific 

colours of light and then emit specific colours of lower energy light. When we 

measure fluorescence with a flow cytometer, we essentially measure the intensity 

of specific colours of light emitted by a particle. Flow cytometers can measure 

many different fluorescent signals from a single particle at once. The ability to 

measure many fluorescent signals at once from single particles is what gives this 

technique its power.  

The aspects of a cell that are measured using flow cytometry are called 

parameters. Certain parameters are intrinsic to the cell and others are extrinsic. 

Intrinsic parameters, such as cell size (forward scatter) or cell granularity (side 

scatter) do not require any special reagent to measure. Extrinsic parameters, require 

fluorescent molecules, or probes, to measure (Wood and Hoffman, 1998).  
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A flow cytometer consists of three systems that merge in the instrument to 

accomplish these goals (Figure 3.3):  

- The fluidics system functions to facilitate the transport of particles to the 

analysis point. This system is based on pressure and accomplishes both the 

delivery of particles to the optical interrogation point as well as the 

focusing of particles for single cell analysis. 

- The optical system consists of two sub-systems: the illumination optics 

and the collection optics. The illumination optics are lasers and mirrors 

and lenses that focus these lasers into the particles. The collection optics 

consists of arrays of mirrors and optical filters that direct light to the 

detectors. 

- The electronic system transforms the optical signal into an electronic 

signal and then further process this electronic signal so that it can be output 

as data that is understandable and interpretable. 

 

Figure 3.3 Flow cytometer components. 

Taken from: Wood and Hoffman (1998). 

 

Flow cytometry data is displayed in graphical format as either one-parameter 

histograms (on the right) or two-parameter histograms. The axes corresponding to 

the parameter are labelled with each data bin. In the plot on the right, the x-axis 
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lists the channel values for the forward scatter parameter. The scaling of the x-axis 

is linear. In other words, the intervals increase in a linear fashion. The y-axis is 

marked by number of cells. Therefore, we can get a graphical representation of cell 

count per data channel. We can see that most of the cells (the tallest peak 

corresponding to the biggest cell count) is at about channel 75,000. We can also 

see there is a distribution of cells in a wide range of channel values.  

 

3.2.3.2 Reagents 

A fluorescent compound absorbs light energy over a range of wavelengths 

that is characteristic for that compound. This absorption of light causes an electron 

in the fluorescent compound to be raised to a higher energy level. The excited 

electron quickly decays to its ground state, emitting the excess energy as a photon 

of light. This transition of energy is called fluorescence.  

The range over which a fluorescent compound can be excited is termed its 

absorption spectrum. As more energy is consumed in absorption transitions than is 

emitted in fluorescent transitions, emitted wavelengths will be longer than those 

absorbed. The range of emitted wavelengths for a particular compound is termed 

its emission spectrum.  

When a fluorescent dye is conjugated to a monoclonal antibody, it can be used to 

identify a particular cell type based on the individual antigenic markers of the cell. 

They can also represent specific components of cells such as organelles, enzymes 

or surface markers. 

The following stainings used for hDPSCs analysis by flow cytometry are 

listed below. For ROS detection ROS, we used dihydrorhodamine-123 marker; for 

the analysis of the mitochondrial membrane potential (ΔΨm), the methyl ester 

tetramethylrodamine (TMRM) was used; and finally, for the determination of SA-

β-galactosidase activity, the combination of two dyes, the fluorescein di-β-

galactopyranoside and the propidium iodide (PI), were used. All were purchased 

from Molecular Probes (Thermo Fisher Scientific). 
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• Dihydrorodamine-123 (DHR123) 

Dihydrorhodamine-123 is a non-charged and non-fluorescent dye for reactive 

oxygen species (ROS) that can passively diffuse through membranes where 

rhodamine 123 is oxidized, acquiring a cationic character, located in the 

mitochondria and showing green fluorescence. 

• Tetramethylrodamine methyl ester (TMRM) 

Tetramethylrodamine methyl ester (TMRM) is a red-orange fluorescent cationic 

dye that penetrates the cell, and where active mitochondria easily sequester.  

• Fluorescein di-β-D-galactopyranoside (FDG) 

Non-fluorescent FDG is sequentially hydrolyzed by β-galactosidases, first to 

fluorescein monogalactoside and then to highly fluorescent fluorescein. The 

enzyme-mediated hydrolysis of FDG is proportional to the increase in 

fluorescence. 

• Propidium iodide (PI) 

Propidium iodide (PI) is a popular chromosomal or nuclear fluorescent folk 

counterpart. As propidium iodide is not permeable to living cells, it is often used to 

detect dead cells in a population. PI binds to DNA by intercalation between bases 

with little or no sequence preference. 

 

Figure 3.4 shows the excitation and emission spectra of these four 

molecules. Note that they are curves, which means that they absorb and emit 

photons in a range of wavelengths. This allows the selection of flow cytometer 

detectors; DHR-123 and FDG have very similar spectra and will be recognized by 

the fluorescein isothiocyanate (FITC) detector, which receives the light of 530/30 

nm. Similarly, the TMRM and the PI will be recognized by the phycoerythrin (PE) 

detector, which collects 575/26 nm light.  
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Figure 3.4 Fluorochromes excitation and emission spectra. 

 

Table 3.1 summarizes the fluorochromes used according to their 

corresponding detectors and fluorescent channel. 

 

Table 3.1 Fluorochromes and detectors correlation. 

FLUORO-

CHROME 

FLUORESCENCE 

CHANNEL 

DETECTOR EXCITATION 

maximum 

EMISSION 

maximum 

DHR123 
GREEN FITC 494 nm 519 nm 

FDG 

TMRM 
YELLOW PE 564 nm 

578 nm 

PI 636 nm 
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3.2.3.3 Procedure 

Staining protocol using FDG and PI: 

1. Treat cells with trypsin until they can be removed from the plate by gentle 

agitation. Inactivate trypsin by washing in staining medium (PBS, 4% (v/v) 

FBS, 10 mM HEPES, pH 7.2). 

2. Centrifuge at 1000 g for 2 min. 

3. Resuspend cells in staining medium to ~ 107 cells/mL and pipet 100 µL into 

an appropriate flow cytometer tube. Place cells on ice. 

4. Prepare a 2 mM working solution: thaw and dilute the FDG reagent 10-fold 

in water. Prewarm the FDG working solution to 37ºC for 10 minutes prior 

to use.  

5. Prepare staining medium with 1.5 µM (1 µg/mL) propidium iodide by 

diluting the PI reagent 100-fold in staining medium. Chill on ice.  

6. Prewarm the tube containing 100 µL of cells in a 37ºC water bath for 10 

minutes. 

7. Start FDG loading by adding 100 µL of prewarmed (37ºC) 2 mM FDG 

working solution. Mix rapidly. Return to the 37ºC water bath for exactly 

one minute.  

8. Stop the FDG loading at the end of one minute by adding 1.8 mL ice-cold 

staining medium containing 1.5 µM PI. Use ice-cold pipettes to aliquot the 

staining medium into the cells. Keep the cells on ice prior to flow 

cytometry analysis.  

 

Staining protocol using DHR123 and TMRM: 

1. Treat cells with trypsin until they can be removed from the plate by gentle 

agitation. Inactivate trypsin by washing in tissue culture growth medium. 

2. Centrifuge at 1000 g for 2 min. 

3. Resuspend the cells in complete medium (250,000 cells/mL). 

4. Pipet 500 µL into an appropriate flow cytometer tube. 
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5. Add DHR123 at a final concentration of 200 µg/mL or add TMRM at a 

final concentration of 100 µg/mL. 

6. Incubate for 30 min in a dark incubator at 37ºC prior to flow cytometry 

analysis. 

 

3.2.4 High performance liquid chromatography (HPLC) 

3.2.4.1 Description 

The components of a basic high performance liquid chromatography 

(HPLC) system are shown in the simple diagram in Figure 3.5. 

 

Figure 3.5 High performance liquid chromatography system. 

 

A reservoir holds the solvent (called the mobile phase). A high-pressure 

pump (solvent delivery system) is used to generate and meter a specified flow rate 

of mobile phase, typically millilitres per minute. An injector is able to introduce 

the sample into the continuously flowing mobile phase stream that carries the 

sample into the HPLC column. The column contains the chromatographic packing 

material needed to effect the separation. This packing material is called the 
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stationary phase because it is held in place by the column hardware. A detector is 

needed to see the separated compound bands as they elute from the HPLC column. 

The mobile phase exits the detector and can be sent to waste, or collected, as 

desired. When the mobile phase contains a separated compound band, HPLC 

provides the ability to collect this fraction of the elute containing that purified 

compound for further study. 

We followed Wong and colleagues method (Wong et al., 1987). This 

method is based on the detection of the hydrolysis of the lipoperoxides and 

subsequent formation of an adduct between 2-thiobarbituric acid and 

malondialdehyde (TBA-MDA2) by HPLC. This reaction produces a pink 

chromogen with a maximum absorption at 532-535 nm.  

 

3.2.4.2 Reagents 

1. 50 mM Potassium phosphate-EDTA (KPi-EDTA) buffer 

• Prepare 25 mL of 50 mM K2HPO4 pH 6.8. 

• Prepare 25 mL of 50 mM KH2PO4 pH 3.5. 

• Mix them at about 4:1 until pH 7.4. 

• Add EDTA at a final concentration of 0.1 mM. 

2. 2 M Sodium acetate buffer with 0.2% TBA 

• Prepare 1 L of 2 M sodium acetate pH 6.8. 

• Add 0.2% TBA and mix until complete dissolution. 

3. Standards and standard curves preparation 

• Calibration MDA standards shall be prepared ahead of time for each 

analyte of interest. The calibration standards prepared for each analyte 

shall include not less than a two low end concentrations, two different 

mid-range concentrations, and a high end concentration for a total of five; 

this range of concentration values should bracket the expected range of 

concentrations in the sample. We used 50 – 25 – 12.5 – 6.25 – 3.125 – 

1.562 – 0.781 nmol/mL concentrations. 
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4. Mobile phase preparation. We performed an isocratic method, thus we used 

two different mobile phases: 

• The elution phase (phase A) composition was 50 mM KH2PO4-

acetonitrile (83:17) pH 6.8. 

• The washing phase (phase B) composition was a mixture of acetonitrile 

and purified water both at 70%. 

• All solvents were filtered through a 0.22 µm Millipore filter before use 

and degassed in an ultrasonic bath. 

 

3.2.4.3 Procedure 

1. Derivatization procedure 

• Cell samples should be collected with 200 µL of KPi-EDTA buffer. 

• Mix 500 µL of Sodium acetate TBA buffer with 20 µL of sample or 

standard. 

• Incubate 1 hour at 95ºC. 

• Centrifuge at 13,000 rpm for 5 min at 4ºC. 

• Pipet 200 µL of supernatant and proceed to HPLC analysis. 

2. Chromatographic conditions 

• Flow rate: 1.0 mL/min 

• UV-visible detection at λ 532 nm 

• Reversed-phase C8 column 

3. Chromatographic method  

• Each chromatogram took 30 minutes; the established sequence of mobile 

phases is detailed below (Table 3.2):  

 

 



Material and methods 

 73 

Table 3.2 HPLC mobile phases sequence. 

PHASE A PHASE B PHASE A 

Sample elution Colum wash Column restoration 

12 minutes 10 minutes 8 minutes 

  

 

3.2.4.4 Data analysis 

HPLC method displays results as a graphical chromatogram in Chromoleon 

software. The area under the curve (AUC) corresponding to the TBA-MDA2 

adduct is measured and compared with the standard curve. Results are presented as 

moles of MDA / mg of total protein.  

 

3.2.5 Lowry method for protein quantification 

3.2.5.1 Description 

The most accurate method of determining protein concentration is probably 

acid hydrolysis followed by amino acid analysis. This procedure has no exception, 

but its sensitivity is moderately constant from protein to protein, and it has been so 

widely used that Lowry protein estimations are a completely acceptable alternative 

to a rigorous absolute determination in almost all circumstances in which protein 

mixtures or crude extracts are involved.  

The method is based on both the Biuret reaction, in which the peptide bonds 

of proteins react with copper under alkaline conditions to produce Cu+, which 

reacts with the Folin reagent, and the Folin Ciocalteu reaction, in which 

phosphomolybdotungstate is reduced to heteropolymolybdenum blue by the 

copper-catalysed oxidation of aromatic amino acids. The reactions result in a 

strong blue colour, which depends partly on the tyrosine and tryptophan content. 

The method is sensitive down to about 0.01 mg of protein/mL, and is best used on 

solutions with concentrations in the range 0.01–10 mg/mL of protein.  
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3.2.5.2 Reagents 

The Lowry method for protein quantification needs the following reagents:  

• Bovine Serum Albumine (BSA) 

• Deionized Milli-Q water 

• Lowry reagent (Sigma-Aldrich) 

• Folin and Ciocalteu’s phenol reagent (Sigma-Aldrich) 

 

3.2.5.3 Procedure 

Prepare the solutions: 

1. Lowry solution 

• Add 40 mL of deionized purified water to the powdered Lowry reagent, 

cover it from light, and mix for 30 minutes, according to manufacturer’s 

instructions. 

2. Folin solution 

• Add 90 mL of deionized purified water to 18 mL of the Folin and 

Ciocalteu’s phenol reagent 2 M, according to manufacturer’s instructions.  

3. BSA standard protein solution 

• Weigh 50 mg of BSA and add it to a flask containing purified water. 

• Stir well to dissolve and adjust the volume to 50 mL with purified water: 

final concentration of the stock is (10 mg/mL). 

• Make serial dilutions in Eppendorf tubes for the standard curve: 0 – 0.01 

– 0.1 – 0.5 – 1 – 2.5 – 10 mg/mL. 

 

Then proceed to the Lowry method for protein quantification: 

1. Vortex all samples and BSA dilutions. 

2. Add 490 µL of purified water and 10 µL of sample or BSA dilution. 

Vortex briefly. 
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3. Add 500 µL of Lowry solution, vortex briefly and incubate for 20 minutes 

in the dark at room temperature. 

4. Add 250 µL of Folin solution, vortex briefly and incubate for additional 30 

minutes in the dark at room temperature. 

5. Transfer the samples to the cuvettes and read absorbance at 660 nm 

starting with blank template. 

 

3.2.5.4 Data analysis 

Light absorption by a substance is a characteristic property of each 

substance, which can be used for its identification and quantification. All 

substances absorb light in some region of the electromagnetic spectrum (VIS, UV, 

IR, etc.). There are different methods for proteins quantification. Many of these 

methods are based on: the property of proteins to absorb light in the UV, the 

formation of chemical derivatives, or the ability of proteins to bind certain dyes. 

Lambert and Beer demonstrated that the absorbance (A) of a substance is 

directly proportional to the concentration (c) of the absorbing substance, the length 

of the light path (l) (thickness of the solution) and a constant called extinction 

coefficient (ε), which is characteristic for each substance at a given wavelength (λ). 

A = ε  . l . c 

The standard curve is obtained by measuring the absorbance of a series of 

solutions of known BSA concentrations treated with the same method and 

measured at the same wavelength in the same instrument. The result is expressed 

on a plot of absorbance (A) as a function of concentration (c). As the Lowry 

method follows Lambert-Beer's law (Stauffer, 1975), a straight line passing near 

the origin is obtained. The linear part is selected and the linear regression line that 

best fits is calculated and the absorption data of our samples are interpolated.  
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3.2.6 Specific protein determination 

3.2.6.1 Description 

Electrophoresis is a transport under the action of an electric field. 

Electrophoresis in gels with a polyacrylamide matrix, commonly referred to as 

polyacrylamide gel electrophoresis, is mostly used for protein separation. 

Specifically, SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel 

electrophoresis) was used under denaturing conditions. For the realization of this 

technique it is imperative that the proteins are completely denatured. To do this, we 

use two denaturants, sodium dodecyl sulfate (SDS) as detergent and 2-

mercaptoethanol as a reducing agent, which causes disulfide bridges to rupture. In 

this way proteins are obtained in their primary structure. 

In the presence of an SDS concentration greater than 8 mM, the proteins 

bind 1.4 g SDS per gram of protein, which is equivalent to the binding of one SDS 

molecule per 2 amino acids. The charges of the proteins are thus masked or 

nullified. As each SDS molecule provides a negative charge, the protein / SDS 

complexes are negatively charged uniformly, so that the separation depends on the 

charge and molecular weight of the different proteins. 

Once separated, they are transferred to a membrane where detection of a 

particular protein is possible by incubation with specific antibodies. 

 

3.2.6.2 Reagents 

To perform western blot of specific protein, we used the reagents detailed 

below: 

• Lysis buffer (TRIS/SDS/Glicerol), supplemented with proteases 

inhibitor, bromophenol blue and 2-mercaptoethanol 

• Gel preparation: Acrilamide/bisacrilamide (40% w/v, 29:1), 0.5 M TRis 

at pH 6.8, 1.5 M Tris at pH 8.8, Milli-Q water, 10% SDS, 10% APS and 

TEMED 
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• Running buffer (25 mM Tris, 200 mM Glycin, 0.1% SDS, pH 8.3) 

• Transfer buffer (25 mM Tris, 192 mM Glycin, 20% (v/v) Methanol, pH 

8.3) 

• Blocking buffer (5% BSA in TBS-T) 

• Washing buffer TBS-T (0.1% Tween-20 in 1X TBS (20 mM Tris, 137 

mM NaCl, pH 7.6) 

• Nitrocellulose or PVDF Membranes 

• Primary antibodies: 

o BMI-1 antibody (Santa Cruz Biotechnology) 

o Tubulin antibody (Santa Cruz Biotechnology) 

• Secondary antibodies: 

o Goat Anti-Mouse IgG, Peroxidase Conjugate (Merk Millipore) 

o Anti-Rabbit IgG, HRP-linked (Cell Signaling) 

• Chemiluminescent reagent: Luminata Classico Western HRP Substrate 

(Millipore) 

 

3.2.6.3 Gel electrophoresis and protein transfer 

We prepared gels at a 12.5% polyacrylamide final concentration. Then, we 

loaded prepared samples into wells in volumes corresponding to 30 µg in each 

well.  

Electrophoresis was performed in running buffer at 120 V constant voltage 

until the forefront of the protein ladder almost reached the foot line of the glass 

plate.  

Finally, separated proteins were transferred to a PVDF membrane in transfer 

buffer. Blotting transfer was performed at 170 mA per membrane for 1 hour in 

cold conditions.   
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3.2.6.4 Blocking, antibody incubation and detection 

1. Incubate the membrane in blocking buffer for 1 hour with gentle shaking. 

2. Wash the membrane with 1X PBS-T once for 15 min, then twice for 5 min 

each. 

3. Dilute the primary antibody following manufacturer’s instructions in 

blocking buffer. Incubate the membrane overnight at 4ºC with gentle 

shaking. 

4. Wash the membrane as in step 2. 

5. Dilute the secondary antibody following manufacturer’s instructions in 

blocking buffer. Incubate the membrane for 1 hour at room temperature 

with gentle shaking. 

6. Wash the membrane as in step 2. 

7. Drain the excess buffer from the membrane, place it on a plastic sheet with 

the protein side up. Prepare the chemiluminescent reagents according to 

manufacturer's directions just before use. Make just enough to cover the 

membrane with chemiluminescent reagent. 

8. Incubate for 1 min in the dark prior to exposure and analysis. 

Figure 3.6 summarizes the whole western blot procedure. 

 

Figure 3.6 Western blot workflow. 
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3.2.6.5 Data analysis 

Images obtained were stored in ".tif" digital format in order to perform the 

densitometry using "Image J" software. The values of the proteins studied were 

expressed in relation to the values obtained from α-tubulin in the same samples. 

This protein is part of the microtubules of eukaryotic cells, without significant 

changes in the different organisms (Little and Seehaus, 1988; Doolittle, 1992). 

Since it is a protein that is not altered, it is a good reference to control that the same 

amount of protein of each of our samples has been loaded during the experiment.  

 

3.2.7  Carbonylated protein determination 

3.2.7.1 Description 

Oxidative modification of proteins by oxygen free radicals and other 

reactive species occurs in physiologic and pathologic processes. As a consequence 

of the modification, carbonyl groups are introduced into protein side chains by a 

site-specific mechanism. The carbonyl groups in the protein side chains are 

derivatized to 2,4-dinitrophenylhydrazone (DNP-hydrazone) by reaction with 2,4-

dinitrophenylhydrazine (DNPH). The DNP-derivatized protein samples are 

separated by polyacrylamide gel electrophoresis followed by western blot.  

 

3.2.7.2 Reagents 

To perform western blot of protein carbonylation, we used OxyblotTM 

Protein Oxidation Detection Kit (Merk Millipore), which includes these reagents: 

• 1X 2,4-Dinitrophenylhydrazine (DNPH) solution 

• Neutralisation solution 

• 1X Derivatization control solution 

• 12% SDS 

• Blocking buffer (1% BSA in PBS-T) 

• Washing buffer PBS-T (0.05% Tween-20 in 1X PBS (pH 7.2-7.5) 
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• Primary antibody: Rabbit Anti-DNP 

• Secondary antibody: Goat Anti-Rabbit IgG (HRP-conjugated) 

 

3.2.7.3 Procedure 

It is recommended that a reducing agent, such as either 1-2% 2-

mercaptoethanol or 50 mM DTT, be added to the lysis buffer to prevent the 

oxidation of proteins that may occur after cell lysis.  

1. Transfer 5 µL of a protein sample into Eppendorf tubes. 

2. Denature each 5 µL aliquot of protein by adding 5 µL of 12% SDS for a 

final concentration of 6% SDS. 

3. Derivatize the sample by adding 10 µL of 1X DNPH Solution.  

4. Incubate tubes at room temperature for 15 minutes. 

5. Add 7.5 µL of Neutralization Solution. 

6. Samples are ready to load into a polyacrylamide gel. 

7. Proceed as in 3.2.6.3. and 3.2.6.4 following manufacturer’s instructions. 

 

3.2.8 RNA isolation 

3.2.8.1 Description 

TRIzol® Reagent is a ready-to-use reagent, designed to isolate high quality 

total RNA (as well as DNA and proteins) from cell and tissue samples of human, 

animal, plant, yeast, or bacterial origin, within one hour. TRIzol® Reagent is a 

monophasic solution of phenol, guanidine isothiocyanate, and other proprietary 

components which facilitate the isolation of a variety of RNA species of large or 

small molecular size.  

TRIzol® Reagent maintains the integrity of the RNA due to highly effective 

inhibition of RNase activity while disrupting cells and dissolving cell components 

during sample homogenization (Chomczynski and Sacchi, 1987). After 
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homogenizing the sample with TRIzol® Reagent, chloroform is added, and the 

homogenate is allowed to separate into a clear upper aqueous layer (containing 

RNA), an interphase, and a red lower organic layer (containing the DNA and 

proteins). RNA is precipitated from the aqueous layer with isopropanol. DNA is 

precipitated from the interphase/organic layer with ethanol. Protein is precipitated 

from the phenol-ethanol supernatant by isopropanol precipitation. 

 

3.2.8.2 Reagents 

The following additional reagents are needed: 

• TRIzol® buffer 

• Chloroform  

• Isopropyl alcohol  

• 75% ethanol (in DEPC-treated water)  

• RNase free water or 0.5% SDS  

 

3.2.8.3 Procedure 

1. Homogenizing adherent cells (monolayer) 

• Remove growth media from culture dish.  

• Add 1 mL TRIzol® Reagent directly to the cells in the culture dish per 

10 cm2 of culture dish surface area.  

• Lyse the cells directly in the culture dish by pipetting the cells up and 

down several times.  

2. Phase separation 

• Incubate the homogenized sample for 5 minutes at room temperature to 

permit complete dissociation of the nucleoprotein complex.  

• Add 0.2 mL of chloroform per 1 mL of TRIzol® Reagent used for 

homogenization. Cap the tube securely.  

• Shake tube vigorously by hand for 15 seconds.  
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• Incubate for 2-3 minutes at room temperature. 

• Centrifuge the sample at 12,000 g for 15 minutes at 4°C. The mixture 

separates into a lower red phenol-chloroform phase, an interphase, and a 

colourless upper aqueous phase. RNA remains exclusively in the aqueous 

phase. The upper aqueous phase is ~50% of the total volume.  

• Remove the aqueous phase of the sample by angling the tube at 45° and 

pipetting the solution out.  

• Place the aqueous phase into a new tube. 

3. RNA precipitation 

• Add 0.5 mL of 100% isopropanol to the aqueous phase, per 1 mL of 

TRIzol® Reagent used for homogenization.  

• Incubate at room temperature for 10 minutes. 

• Centrifuge at 12,000 g for 10 minutes at 4°C. The RNA is often invisible 

prior to centrifugation, and forms a gel-like pellet on the side and bottom 

of the tube.  

4. RNA wash 

• Remove the supernatant from the tube, leaving only the RNA pellet.  

• Wash the pellet, with 1 mL of 75% ethanol per 1 mL of TRIzol® 

Reagent used in the initial homogenization.   

• Vortex the sample briefly, then centrifuge the tube at 7500 g for 5 

minutes at 4°C. Discard the wash.  

• Air dry the RNA pellet for 5-10 minutes.  

5. RNA resuspension 

• Resuspend the RNA pellet in RNase free water or 0.5% SDS solution 

(20-50 µL) by passing the solution up and down several times through a 

pipette tip.  

• Incubate in a water bath or heat block set at 55-60°C for 10-15 minutes.   
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3.2.8.4 RNA yield determination 

Absorbance measurements were made on a NanoDropTM 2000 

Spectrophotometer, which include the absorbance of all molecules in the sample 

that absorb at the wavelength of interest. Since nucleotides, RNA, ssDNA, and 

dsDNA all absorb at 260 nm, they will contribute to the total absorbance of the 

sample.  

• 260/280 ratio 

The ratio of absorbance at 260 nm and 280 nm is used to assess the purity of 

DNA and RNA. A ratio of ~1.8 is generally accepted as “pure” for DNA; a ratio of 

~2.0 is generally accepted as “pure” for RNA. If the ratio is appreciably lower in 

either case, it may indicate the presence of protein, phenol or other contaminants 

that absorb strongly at or near 280 nm.  

• 260/230 ratio 

This ratio is used as a secondary measure of nucleic acid purity. The 

260/230 values for “pure” nucleic acid are often higher than the respective 260/280 

values. Expected 260/230 values are commonly in the range of 2.0-2.2. If the ratio 

is appreciably lower than expected, it may indicate the presence of contaminants 

which absorb at 230 nm.   

 

3.2.9  cDNA reverse transcription 

3.2.9.1 Description 

Reverse transcription consists of obtaining a DNA copy (cDNA) from a 

messenger RNA (mRNA), the reverse process of transcription. For this, particular 

DNA polymerases, called reverse transcriptases are necessary. The enzymes used 

come from retroviruses, which are viruses that present RNA as a genome, rather 

than DNA. In order to express their proteins, they have to pass the information to 

DNA. To obtain the cDNA, a reverse transcription was performed using the 

Applied Biosystems kit “High-Capacity cDNA Reverse Transcription”. 
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3.2.9.2 Reagents 

The High Capacity cDNA reverse transcription kit includes the reagents: 

• 10X RT Buffer 

• 10X RT Random Primers 

• 25X dNTP Mix 

• MultiScribeTM Reverse Transcriptase 

• RNase inhibitor 

• RNase free water 

 

3.2.9.3 Procedure 

1. To prepare the 2X Reverse Transcription Master Mix: 

• Allow the kit components to thaw on ice.  

• Referring to the Table 3.3, calculate the volume of components needed to 

prepare the required number of reactions. Prepare it on ice. 

• Place the 2X RT master mix on ice and mix gently.  

Table 3.3 Reverse transcription components mixture. 

Component Volume / Reaction (µL) 

10X RT Buffer 2.0 

25X dNTP Mix (100 mM) 0.8 

10X RT Random Primers 2.0 

MultiScribe Reverse Transcriptase 1.0 

RNases Inhibitor 1.0 

Nuclease free water 3.2 

Total volume per reaction 10.0 
 

2. To prepare the cDNA RT reactions: 

• Pipet 10 µL of 2X RT master mix into each well of a 96-well plate. 
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• Pipet 10 µL of RNA sample into each well, pipetting up and down to 

mix.  

• Seal the plates. 

• Briefly centrifuge the plate or tubes to spin down the contents and to 

eliminate any air bubbles.  

• Place the plate or tubes on ice until ready to load the thermal cycler.  

3. To perform reverse transcription: 

• Program the thermal cycler conditions referring to the Table 3.4. 

• Set the reaction volume to 20 µL.  

• Load the reactions into the thermal cycler.  

• Start the reverse transcription run.  

Table 3.4 Temperature conditions in reverse transcription assay. 

 Step 1 Step 2 Step 3 Step 4 

Temperature 25ºC 37ºC 85ºC 4ºC 

Time 10 min 120 min 5 min ∞ 
 

 

3.2.10 Quantitative polymerase chain reaction (qPCR) 

3.2.10.1 Description 

The real-time polymerase chain reaction (RT-PCR) is a variant of the 

standard PCR, which is based on simultaneous detection and quantification of the 

fluorescence emitted by the PCR products that accumulate during the amplification 

process. 

The fluorescent substance used in our experiments is SYBR Green I, which 

binds to DNA and emits fluorescence only when two strands of DNA are 

complementarily attached. 

For quantitative PCR (qPCR), the measurement parameter of the expression 

of a given gene is not the fluorescence, but the cycle in which the amplification 
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begins to be exponential. This cycle is called the threshold cycle (Ct), since it is 

from which the amplification begins to be really appreciable (Figure 3.7). Thus, the 

threshold cycle values will decrease linearly as the amount of starting cDNA 

increases, since the more copies of starting mRNA of the gene being studied, the 

more cDNA will be obtained in the reverse transcription, and before the 

amplification will start to be exponential. 

 

Figure 3.7 The PCR threshold cycle value. 

 

3.2.10.2 Reagents 

Maxima SYBR Green/ROX qPCR Master Mix (2X) is a ready-to-use 

solution optimized for quantitative real-time PCR. The master mix includes 

Maxima Hot Start Taq DNA Polymerase and dNTPs in an optimized PCR buffer. 

It contains SYBR Green dye and is supplemented with ROS passive reference dye. 

Only template and primers need to be added. Maxima Hot Start Taq DNA 

Polymerase in combination with an optimized buffer ensure PCR specificity and 

sensitivity. The SYBR Green intercalating dye allows for DNA detection and 

analysis without using sequence-specific probes. 
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1. Gently vortex and briefly centrifuge all solutions after thawing. 

2. Prepare a reaction master mix by adding the following components as listed 

in Table 3.5 (except template DNA) for each reaction to a tube on ice. 

 Table 3.5 qPCR components mixture. 

Component Volume / Reaction (µL) 

MAXIMA SYBR Green/ROX  
qPCR Master Mix (2X) 5.0 

Primer sense 0.3 

Primer antisense 0.3 

DNA template 1.0 

RNase free water 3.4 

Total volume per reaction 10.0 
 

3. Mix the master mix thoroughly and dispense 9 µL into each well of the 

PCR plate. 

4. Add template DNA (≤ 500 ng/reaction) to each of the individual wells 

containing the master mix. 

5. Gently mix the reactions without creating bubbles (do not vortex). 

Centrifuge briefly if needed. 

6. Program the thermal cycler according to the recommendations below, place 

the samples in the machine and start the program (Table 3.6). 

Table 3.6 Thermal cycling conditions in qPCR assay. 

Step Temperature (ºC) Time Number of cycles 

Initial denaturation 95 10 min 1 

Denaturation 95 15 sec 

40 Annealing 60 30 sec 

Extension 72 30 sec 
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The "primers" used for the determination of gene expression levels were 

designed using the GCG program from the gene sequences obtained in the 

"Genebank" of PubMed. For each of the genes to be studied, the following 

sequences are listed in Table 3.7.  

Table 3.7 Gene primers: sense and antisense sequences. 

PRIMER Sense sequence Antisense sequence 

BMI-1 GCATCACAGTCATTGCTGCT CAGGGCTTTTCAAAAATGA 

SOX2 CTCGTCGATGAACGGCCGCT AAAACAGCCCGGACCGCGTC 

OCT4 GACTCCTGCTTCACCCTCAG GATCCTCGGACCTGGCTAAG 

c-MYC CGTCGTCCGGGTCGCAGATG CGCCCTCCTACGTTGCGGTC 

KLF4 CAGGTCCAGGAGATCGTTGAA CCCACATGAAGCGACTTCCC 

p14ARF CATCATGACCTGGTCTTCTAGGAA CCCTCGTGCTGATGCTACTG 

p16INK4a GGTTGTGGCGGGGGCAGTT GGGGGCACCAGAGGCAGT 

GAPDH TCCACCACCCTGTTGCTGTA TGAACGGGAAGCTCACTGG 

 

 

3.2.10.3 Procedure 

The thermo cycling reaction begins once the PCR reagents are put into a 

thermo cycler machine, which is programmed to precisely heat and cool the 

reaction. 

The PCR cycle begins with denaturation, which occurs for 20 to 30 seconds 

at 95°C, well above the melting temperature of DNA. The melting temperature is a 

state where half of the DNA is a double stranded helix and the other is a single 

stranded random coil. The denaturation temperature is well above the melting 

temperature, in order to ensure that all the hydrogen bonds between 

complementary base pairs are broken yielding only single stranded DNAs. Paired 

single strands are termed the sense and antisense strands. The sequence of the 

sense, or coding strand, is identical to the sequence of mRNA, which will 

ultimately code for protein. 
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In the second step, annealing, primers bind to the sense antisense strand. 

Depending on the length of primers used the annealing temperature for this step is 

usually 3 to 5°C below the lower melting temperature of your two primers. 

Annealing tends to occur between 50 and 65°C and lasts for 20 to 40 seconds. 

Once the primers bind to DNA they prime the reaction by creating a 3’ 

hydroxyl group end to which a polymerase, an enzyme that replicates DNA, will 

bind. 

The next step called elongation or extension occurs at 72°C, which is 

optimal for polymerase activity. Once bound the polymerase begins to add free 

nucleotide triphosphates, or dNTPs, to the ends of the primer one at a time in the 5’ 

to 3’ direction to make double stranded DNA. 

Once elongation completes the next cycle begins. The amount of amplicon 

will then increase exponentially in subsequent cycles. Figure 3.8 summarizes the 

qPCR procedure. 

 

 

Figure 3.8 The PCR cycle steps. 
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3.2.10.4 Data analysis 

When measuring gene expression, qPCR will tell how much of a specific 

mRNA there is in the samples. It amplifies a small region of this mRNA with 

oligos and a fluorescent probe. The qPCR machine measures the intensity of 

fluorescence emitted by the probe at each cycle. During the first cycles, there is not 

enough fluorescence to be detected, but the reaction rapidly produces more and 

more amplicons and the fluorescence builds up. As previously said, a qPCR curve 

has typically an exponential phase followed by a plateau phase. The cycle 

threshold (Ct) measure needs to be taken in the exponential phase, where the curve 

is linear.  

The Ct is defined as the number of cycles required for the fluorescent signal 

to cross the threshold (i.e., exceeds background level). Ct levels are inversely 

proportional to the amount of target nucleic acid in the sample (i.e., the lower the 

Ct level the greater the amount of target nucleic acid in the sample).  

- Cts < 29 are indicative of abundant target nucleic acid in the sample. 

- Cts of 30-37 are indicative of moderate amounts of target nucleic acid. 

- Cts of 38-40 are weak reactions indicative of minimal amounts of target 

nucleic acid which could represent an infection state or environmental 

contamination.  

The Relative Standard Curve experiment is used to determine relative target 

quantity in samples. In a Relative Standard Curve experiment: 

1. The software measures amplification of the target of interest and of an 

endogenous control target in a standard dilution series, in a reference 

(calibrator) sample, and in test samples. 

2. The endogenous control here used is GAPDH, which is a target that is 

expressed equally in all samples. 

3. The software generates standard curves for the target of interest and the 

endogenous control using data from the corresponding standard dilution 

series. 
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In order to have high efficiency, the slopes must be similar, since the 

efficiency of the amplification reaction is given by the following equation:  

Efficiency = [10 (-1 / slope)] – 1 

For a slope of -3.322 we obtain an efficiency of 100%, which means that the 

increase of one cycle of amplification during the exponential phase of the reaction 

supposes exactly the duplication of the amplified material. An amplification 

reaction should have an efficiency close to 100% to be optimized. 

4. Using the standard curves, the software interpolates the quantities of the 

target of interest and the endogenous control in each sample. The target 

quantity in each sample is then normalized to the sample’s endogenous 

control quantity. 

5. To determine the relative quantity of the target in test samples, the software 

divides the normalized target quantity in the sample by the normalized 

target quantity in the reference sample. 

 

3.2.11 Statistical analysis 

For statistical analysis, the IBM SPSS statistics program, version 19, has 

been used. A 95% confidence interval (p = 0.05) has been taken to accept that there 

is a statistically significant difference between the means of the groups. 

The T-Student test was used to compare 2 means, and the analysis of 

variance (ANOVA) if more than 2 means were compared with a variation factor. If 

the n of the groups to compare is not the same in all of them, the Scheffé 

comparison was been used. If the n of the groups to be compared is the same in all 

of them, it will depend on the homogeneity test of the variances (Levene test). If it 

is not significant, Tukey's post-hoc comparison, if meaningful, has been used by 

Games-Howell. 
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4.1 AMBIENT OXYGEN TENSION INDUCES OXIDATIVE STRESS IN 

hDPSCs LONG-TERM CULTURE 

It is well known that oxygen pressure (pO2) is a critical cell culture 

parameter which can cause oxidative stress. As previously mentioned, oxidative 

stress can damage DNA, carbohydrates, proteins and lipids. However, other 

molecular biological markers can also be measured to provide a more immediate, 

quantitative risk assessment of potentially deleterious environmental exposures. 

We first studied some parameters of oxidative stress in hDPSCs cultured 

under ambient oxygen tension compared to their physiological oxygen tension. 

Specifically, we assessed ROS production by dihydrorhodamine-123 (DHR123) 

staining, and mitochondrial membrane potential (ΔΨm) using 

tetramethylrhodamine methyl ester (TMRM) staining. We next analysed protein 

damage by measuring protein carbonylation and finally, lipid damage by setting 

malondialdehyde (MDA) levels.  

Antioxidant enzymes regulate the balance between production and/or 

accumulation of ROS and their neutralization. Under physiological conditions, this 

redox balance is maintained by various enzymes including superoxide dismutases 

(SOD), catalase, and glutathione peroxidases (GPx) (Halliwell and Gutteridge, 

1995). Thus, we also analysed the expression levels of those antioxidant enzymes.  

All those parameters were measured every 5 passages in hDPSCs cultured at 

3% or 21% pO2. 
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4.1.1 Reactive oxygen species (ROS) levels 

In the presence of high oxygen pressure, the formation of ROS is favoured 

(Ross et al., 2001) and in the presence of ROS, such as hydrogen peroxide, the 

non-fluorescent dye dihydrorhodamine-123 (DHR123) passively enters into the 

cells, and is oxidized to rhodamine-123 (R123), a cationic green fluorescent dye 

that can accumulate and localize into the mitochondria (O'Connell et al., 2002).  

We compared the extent of ROS production in hDPSCs grown at 3% or 21% 

pO2 along passages by flow cytometry. As shown in Figure 4.1, ROS levels were 

higher in hDPSCs cultured at 21% pO2 than in those cultured at 3% pO2. As 

passaging number raised, the intensity of DHR123 in hDPSCs increased under 

either both oxygen pressure percentage. However, less ROS were accumulated 

when cells were cultured under physiological oxygen tension. Thus, high oxygen 

tension may accelerate ROS accumulation in hDPSCs during long-term culture. 

 

Figure 4.1 Intracellular ROS levels in hDPSCs cultured at 3% or 21% oxygen tension along passages.  

ROS levels measured using dihydrorhodamine-123 (DHR123) staining by flow cytometry. The data 

are shown as means ± SD (n=5). The statistical significance is expressed as ***p<0.001 for 3% pO2 

versus 21% pO2, ###p<0.001 versus 3% pO2 at passage 5 and &&&p<0.001 versus 21% pO2 at passage 

5. 
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4.1.2 Mitochondrial membrane potential 

Mitochondrial membrane potential (ΔΨm) is critical for maintaining the 

physiological function of the respiratory chain to generate ATP (Joshi and 

Bakowska, 2011). Fluorescence probes used to assess ΔΨm are single-wavelength 

indicators, which increase or decrease their fluorescence intensity, proportional to 

a stimulus that increases or decreases the levels of ΔΨm. In our case, cells were 

loaded with tetramethylrhodamine methyl ester (TMRM) prior to flow cytometry 

analysis.  

As we can observe in Figure 4.2, at 3% pO2, hDPSCs mitochondrial 

membrane potential values were significantly higher in comparison to 21% pO2. 

As cells were serially passaged, the ΔΨm dropped gradually. Such findings show 

that mitochondria depolarize during long-term culture, and high oxygen tension 

can precipitate such functional deterioration.  

 

Figure 4.2 Mitochondrial membrane potential in hDPSCs cultured at 3% or 21% oxygen tension 

along passages. 

Mitochondrial membrane potential determined using tetramethylrhodamine methyl ester (TMRM) 

staining by flow cytometry. The data are shown as means ± SD (n=5). The statistical significance is 

expressed as ***p<0.001 for 3% pO2 versus 21% pO2, ###p<0.001 versus 3% pO2 at passage 5 and 
&p<0.05 versus 21% pO2 at passage 5. 
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4.1.3 Protein carbonylation 

All amino-acid residues in the proteins are subjected to ROS attack 

(Stadtman, 1992). As a consequence, site-specific amino acid modification, peptide 

chain fragmentation, altered electric charge and increased susceptibility of proteins 

to proteolysis occur. Tissues injured by oxidative stress contain increased 

concentrations of carbonylated proteins, which is a widely used marker of protein 

oxidation (Moller and Kristensen, 2004). Protein carbonyl groups detection by 

western blot after their derivatization with 2,4-Dinitrophenylhydrazine (DNPH) is 

one of the most widely used measurement for protein oxidation. 

As shown in Figure 4.3, protein carbonylation levels increased along 

passages during long-term culture. hDPSCs cultured at 21% pO2 showed higher 

levels of protein carbonyls than those cultured at 3% pO2. Thus, high oxygen 

tension may accelerate the damage accumulation to proteins. 

 

Figure 4.3 Protein carbonylation in hDPSCs cultured at 3% or 21% oxygen tension along passages. 

Protein carbonylation levels assessed by western blot. The data are shown as means ± SD (n=5). The 

statistical significance is expressed as *p<0.05 for 3% pO2 versus 21% pO2, #p<0.05 versus 3% pO2 

at passage 5 and &p<0.05 versus 21% pO2 at passage 5. 
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4.1.4 Lipid oxidation 

Lipid peroxidation plays an important role in cell aging and is most likely to 

be a key factor in lowering membrane fluidity (Shigenaga et al., 1994). 

Malondialdehyde (MDA) is one of the final products of peroxidation of 

unsaturated fatty acids in phospholipids (Halliwell and Gutteridge, 1989). Lipid 

peroxidation determined as TBA-MDA2 adduct formation is an established 

method of accurately measuring oxidative damage to lipids (Nielsen et al., 1997).  

As shown in Figure 4.4, hDPSCs cultured at 21% pO2 displayed higher 

levels of MDA, which increased successively as passaging number did. In contrast, 

MDA levels in hDPSCs cultured at 3% pO2 were lower and remained stable all 

along the 25 passages. Thus, high oxygen tension may be a cause for the increasing 

lipid damage in hDPSCs. 

 

Figure 4.4 Lipid oxidation in hDPSCs cultured at 3% or 21% oxygen tension along passages. 

Malondialdehyde (MDA) levels determined by high performance liquid chromatography (HPLC). 

The data are shown as means ± SD (n=5). The statistical significance is expressed as *p<0.05 for 3% 

pO2 versus 21% pO2 and &p<0.05 versus 21% pO2 at passage 5. 
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4.1.5 Antioxidant gene expression 

Since ROS could potentially damage lipids, proteins and DNA, cells 

developed several defence mechanisms, which include antioxidant enzymes and 

targeted degradation pathways (Fan et al., 2008). Associated with their isoforms, 

manganese superoxide dismutase (MnSOD), catalase (CAT) and glutathione 

peroxidase (GPx), are easily induced by oxidative stress (Hermes-Lima and 

Zenteno-Savı ́n, 2002). The MnSOD decomposes superoxide radicals and produce 

H2O2. H2O2 is subsequently removed to water by CAT in the peroxisomes, or by 

GPx oxidizing GSH in the cytosol (Droge, 2002; Lee and Choi, 2003).  

The mRNA levels of antioxidant enzymes in hDPSCs at passage 5 were 

detected by qPCR and compared. Figure 4.5 shows that mRNAs levels of MnSOD, 

CAT and GPx were affected by oxygen tension. Apparently, more mRNAs of all 

three enzymes were observed in young hDPSCs cultured at 21% compared to 3% 

pO2, suggesting that these cells might need to increase their antioxidant 

mechanisms to face ROS accumulation since early stages.  

 

Figure 4.5 Antioxidant enzymes gene expression levels in hDPSCs cultured at 3% or 21% oxygen 

tension. 

MnSOD, GPx and CAT mRNA levels analysed by qPCR against housekeeping gene. The data are 

shown as means ± SD (n=5). The statistical significance is expressed as ***p<0.001 for 3% pO2 

versus 21% pO2. 
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4.2 OXIDATIVE STRESS INDUCES PREMATURE SENESCENCE 

UNDER AMBIENT OXYGEN TENSION DURING LONG-TERM 

CULTURE OF hDPSCs 

Long-term in vitro culture undergoes the risk of senescence (Fu et al., 2015). 

Therefore, we measured some senescence biomarkers in hDPSCs cultured at both 

oxygen pressures. We first analysed hDPSCs morphology and proliferation 

kinetics, then cells were stained for senescence-associated expression of β-

galactosidase by flow cytometry. 

 

4.2.1 hDPSCS morphology 

After a long period of in vitro culture, hDPSCs showed abnormalities typical 

of the Hayflick model of cellular aging. The cells varied in size and shape, the 

cytoplasm began to be granular with many cell inclusions, and debris was observed 

in the medium. However, as we can observe in Figure 4.6, hDPSCs cultured under 

ambient oxygen tension showed larger shapes at passage 15 than to those cultured 

at 3% pO2 at passage 25.  

 
Figure 4.6 Morphological changes of hDPSCs cultured at 3% or 21% oxygen tension.  

Optical microscope images (20x). 
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4.2.2 hDPSCS proliferation 

In order to examine long-term growth kinetics of hDPSCs culture, we 

performed serial passaging until culture exhaustion. hDPSCs from the same donor 

were separated and cultured at 21% or 3% pO2; the beginning of the serial 

passaging was the same in both conditions. As passage number increased, the cells 

cultured at 21% pO2 began to proliferate more slowly and the time between sub-

culturing doubled. As a consequence, we can see in Figure 4.7 that hDPSCs 

cultured under ambient oxygen tension barely achieved 15 passages while hDPSCs 

cultured under physiological oxygen tension reached 25 passages. This is the 

reason why all figures show data up to 15 passages when hDPSCs were cultured at 

21% pO2, and up to 25 passages when cultured at 3% pO2. 

Taken together, these facts suggest that after 25 passages, hDPSCs cultured 

in physiological oxygen tension were less senescent according to their morphology 

and their proliferative potential than those cultured at 21% pO2. Thus, hDPSCs 

cultured at standard culture condition, are prone to premature senescence upon 

serial passage.  

 

Figure 4.7 Proliferation potential of hDPSCs cultured at 3% or 21% oxygen tension. 

Passaging number achieved by hDPSCs cultured under both oxygen conditions. 
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4.2.3 Senescence-associated β-galactosidase (SA-β-Gal) activity 

SA-β-Gal is a commonly used senescence biomarker (Dimri et al. 1995; 

Debacq-Chainiaux et al. 2009). Accordingly, the increase in SA-β-Gal activity in 

senescent cells is likely due to an expansion of the lysosomal compartment, giving 

rise to an increase in β-galactosidase activity that can be measured also at 

suboptimal pH 6 (Kurz et al. 2000; Yang and Hu 2005; Lee et al. 2006).  

To confirm our morphological observations of senescence, cells were 

stained for senescence-associated expression of β-galactosidase and analysed by 

flow cytometry. The proportion of cells staining positive for such expression 

increased as passage number did (Figure 4.8) either at 3% and 21% pO2. However, 

hDPSCs cultured at 21% pO2 showed significantly higher levels of SA-β-Gal at all 

stages. This result confirms our morphological studies, suggesting that senescence 

increases with long-term culture, and is accelerated by ambient oxygen pressure.  

 

 

Figure 4.8 SA-β-Gal activity in hDPSCs cultured at 3% or 21% oxygen tension along passages. 

Senescence-associated β-galactosidase activity measured using FDG staining by flow cytometry. The 

data are shown as means ± SD (n=5). The statistical significance is expressed as ***p<0.001 for 3% 

pO2 versus 21% pO2, ###p<0.001 versus 3% pO2 at passage 5 and &&p<0.01 versus 21% pO2 at 

passage 5. 
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4.3 OXIDATIVE STRESS-INDUCED PREMATURE SENESCENCE 

(SIPS) IS MEDIATED BY p16INK4A PATHWAY 

It is now clear that many stimuli, including oxidative stress, cause cells to 

arrest growth with a senescent phenotype (Serrano et al., 1997; Dimri et al., 2000; 

Sherr and DePinho, 2000). In vitro, premature senescence can result from 

inadequate culturing conditions. When cells are explanted from an organism and 

placed in culture, they have to adapt to an artificial environment, characterized by 

abnormal concentrations of nutrients and growth factors and the presence of 

ambient oxygen levels, as well as the absence of surrounding cell types and 

extracellular matrix components. One or more of these conditions can induce a 

culture shock, resulting in stress-induced senescence (Kuilman et al., 2010). 

Long-term exit from the cell cycle is the central and indispensable marker 

for the identification of all types of cellular senescence in vitro. Cell cycle is 

controlled by the CDKN2A-CDKN2B locus, also known as the INK/ARF locus. 

This locus encodes 3 tumour suppressor genes; the CDKN2B gene encodes 

p15INK4b, and the CDKN2A gene encodes both p16INK4a and p14ARF. On one hand, 

p15INK4b and p16INK4a proteins inhibit cyclin D-dependent CDK4 and CDK6 to 

prevent phosphorylation of pRb, thus inhibiting the transcription of genes involved 

in the transition to S phase (importantly the pRb/E2F pathway), so regulating cell 

cycle progression (Yaswen et al., 2015). On the other hand, p14ARF protein binds to 

MDM2 E3 ubiquitin ligase to prevent p53 polyubiquitination and to facilitate p53 

activation and stabilization of p53 (Matheu et al., 2008). Finally, this leads to 

induction of various p53 target genes involved in cell cycle arrest and apoptosis. 

Both cascades commonly mediate the activation of the senescence program 

(Sharpless and Sherr, 2015). 

We therefore sought to determine which pathway, either p14ARF/MDM2/p53 

or p16INK4a/pRb/E2F, was mediating the oxidative stress-induced premature 

senescence of hDPSCs when culturing at 21% pO2.  
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4.3.1 p14ARF gene expression pattern 

p14ARF mRNA levels were assessed in hDPSCs cultured under both oxygen 

pressures and compared. As shown in the figure below, hDPSCs expressed p14ARF, 

but its levels remained unchanged along passages when cells were cultured at 3% 

pO2 as no statistical difference was detected (Figure 4.9). This result may suggest 

that p14ARF/MDM2/p53 pathway is not mediating the oxidative stress-induced 

premature senescence of hDPSCs cultured at 21% pO2.  

Furthermore, as we can see in the same figure, hDPSCs cultured under 

ambient oxygen tension showed a downregulation of p14ARF expression levels as 

passages accumulated. At passage 15, p14ARF levels of hDPSCs cultured at 21% 

pO2 are significantly lower than those of hDPSCs cultured at 21% pO2. 

 

Figure 4.9 p14ARF gene expression levels in hDPSCs long-term culture at 3% or 21% oxygen tension. 

p14ARF mRNA levels determined by qPCR against housekeeping gene. The data are shown as means 

± SD (n=5). The statistical significance is expressed as *p<0.05 for 3% pO2 versus 21% pO2 and 
&&p<0.01 versus 21% pO2 at passage 5. 
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4.3.2 p16INK4a gene expression pattern  

We next compared p16INK4a mRNA levels in hDPSCs cultured under both 

oxygen pressures. Figure 4.10 shows that hDPSCs also expressed p16INK4a, but in 

this case, the levels of p16INK4a increased along passages in 21% pO2 cultured-

hDPSCs. Furthermore, 3% pO2-cultured hDPSCs retained a lower level of the 

p16INK4a expression, which was constant along passages.  

Taken together, these results may suggest that p16INK4a, but not p14ARF 

pathway, is mediating oxidative stress-induced premature senescence in hDPSCs 

cultured under ambient oxygen tension.  

 

Figure 4.10 p16INK4a gene expression levels in hDPSCs long-term culture at 3% or 21% oxygen 

tension. 

p16INK4a mRNA levels determined by qPCR against housekeeping gene. The data are shown as means 

± SD (n=5). The statistical significance is expressed as ***p<0.001 for 3% pO2 versus 21% pO2 and 
&&p<0.01 versus 21% pO2 at passage 5. 
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4.3.3 Trolox can reverse oxidative stress effect on p16INK4a expression 

In order to further investigate the p16INK4a implication on this ROS-mediated 

upregulation, we wanted to ensure if its expression was effectively submitted to 

ROS production at 21% pO2 culture. We therefore treated hDPSCs cultured under 

ambient oxygen tension with an antioxidant. We used Trolox, a water soluble 

derivate of vitamin E, at a final concentration of 50 µM. 

hDPSCs cultured under ambient oxygen tension and treated with Trolox 

showed comparable levels of p16INK4a mRNA expression as hDPSCs cultured at 

3% pO2, which means that Trolox can restore p16INK4a levels under oxidative stress 

conditions (Figure 4.11). Taken together, this result suggests that the p16INK4a-

associated premature senescence observed in hDPSCs cultured under ambient 

oxygen tension, is due to an increased ROS. 

 

Figure 4.11 p16INK4a gene expression levels in hDPSCs with 50 µM Trolox treatment. 

p16INK4a mRNA levels determined by qPCR against housekeeping gene. The data are shown as means 

± SD (n=5). The statistical significance is expressed as ***p<0.001 versus 3% pO2 and &&&p<0.001 

versus 21% O2 + 50 µM Trolox. 
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4.4 LOSS OF STEMNESS UNDER AMBIENT OXYGEN TENSION 

DURING LONG-TERM CULTURE OF hDPSCs 

Senescence-associated markers are usually not restricted to senescent 

passages but are continuously acquired since the beginning of the in vitro culture. 

Moreover, no marker or hallmark has been proved completely unique to the 

senescent state in cells, and not all senescent cells express all senescence markers. 

Thus, alternative markers would be useful in the assessment of cellular senescence 

(Wagner et al., 2008). 

Because they exhibit an opposite biological function compared to 

senescence, pluripotency-related transcription factors could be pointed as a 

potential candidate marker of the senescent state of cells, especially for stem cells. 

In fact, it has been suggested that the expression of these markers is essential in 

maintaining the stem cell properties (Takahashi and Yamanaka, 2006; Takahashi et 

al., 2007; Yu et al., 2007). 

Low oxygen tension in cell culture has proved to have positive effects on the 

in vitro survival and self-renewal of stem cells. However, the effects of low oxygen 

tension on the expression of these pluripotency markers and stemness maintenance 

in hDPSCs has not been investigated yet. In this study, we examined the gene 

expression pattern of the above mentioned pluripotency markers in hDPSCs under 

both ambient and physiological oxygen tension culture conditions along passages. 

To this end, we analysed the gene expression of four stemness markers, OCT4, 

SOX2, KLF4 and c-MYC, which make the core transcription network responsible 

for the regulation of stem cell self-renewal and pluripotency, by using quantitative 

real-time polymerase chain reaction technique. 
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4.4.1 OCT4 gene expression pattern 

As we can see in Figures 4.12 to 4.15, hDPSCs expressed all four 

transcription factors.  

Focusing just on Figure 4.12, we can observe that OCT4 expression levels 

were higher at passage 5, and then, as passages accumulate, they rapidly 

plummeted. Furthermore, cells cultured at 3% pO2 showed significantly higher 

levels of this transcription factor at passage 5 in comparison with hDPSCs cultured 

at 21% pO2.  

Thus, high oxygen tension seems to have a negative effect on OCT4 

expression at early passages. 

 

 
Figure 4.12 OCT4 gene expression levels in hDPSCs long-term culture at 3% or 21% oxygen tension. 

OCT4 mRNA levels determined by qPCR against housekeeping gene. The data are shown as means ± 

SD (n=5). The statistical significance is expressed as *p<0.05 for 3% pO2 versus 21% pO2 and 
#p<0.05, ##p<0.01 or ###p<0.001 versus 3% pO2 at passage 5. 
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4.4.2 SOX2 gene expression pattern 

Similarly, hDPSCs also expressed SOX2 transcription factor. As we can see 

in the figure below, both OCT4 and SOX2 appeared to have a comparable 

expression pattern (Figure 4.13).  

SOX2 gene expression levels were higher at early stages, and they were 

downregulated along passages. Moreover, ambient oxygen tension caused a 

reduction of SOX2 expression levels at passage 5. 

Taken together, our data suggest that ambient oxygen tension may reduce 

SOX2 and OCT4 expression levels in young hDPSCs. 

 

 
Figure 4.13 SOX2 gene expression levels in hDPSCs long-term culture at 3% or 21% oxygen tension. 

SOX2 mRNA levels determined by qPCR against housekeeping gene. The data are shown as means ± 

SD (n=5). The statistical significance is expressed as *p<0.05 for 3% pO2 versus 21% pO2 and 
#p<0.05 or ##p<0.01 versus 3% pO2 at passage 5. 
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4.4.3 KLF4 gene expression pattern 

Figure 4.14 reveals that hDPSCs also expressed KLF4 transcription factor. 

Contrarily to OCT4 and SOX2 expression pattern, KLF4 gene expression levels 

increased along passages at 3% pO2. Interestingly, KLF4 expression was not 

affected by oxygen tension at passages 5 and 10, as no statistical difference were 

found. However, KLF4 expression levels in hDPSCs cultured under ambient 

oxygen tension were significantly reduced at passage 15. 

 

 
Figure 4.14 KLF4 gene expression levels in hDPSCs long-term culture at 3% or 21% oxygen tension. 

KLF4 mRNA levels determined by qPCR against housekeeping gene. The data are shown as means ± 

SD (n=5). The statistical significance is expressed as **p<0.01 for 3% pO2 versus 21% pO2, #p<0.05, 
##p<0.01 or ###p<0.001 versus 3% pO2 at passage 5, and &p<0.05 versus 21% pO2 at passage 5. 
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4.4.4 c-MYC gene expression pattern 

Finally, hDPSCs also expressed c-MYC transcription factor. In the below 

figure, we can observe that c-MYC expression pattern was similar to the one of 

KLF4 (Figure 4.15). c-MYC expression levels increased along passages in hDPSCs 

cultured at 3% pO2. We did not found statistical differences at passages 5 and 10, 

but we did found at passage 15 when comparing both oxygen culture pressures. 

Taken together, we can establish that high oxygen tension has a negative 

effect on OSKM gene expression during long-term culture of hDPSCs. 

 

 
Figure 4.15 c-MYC gene expression levels in hDPSCs long-term culture at 3% or 21% oxygen 

tension. 

c-MYC mRNA levels determined by qPCR against housekeeping gene. The data are shown as means 

± SD (n=5). The statistical significance is expressed as ***p<0.001 for 3% pO2 versus 21% pO2, 
##p<0.01 or ###p<0.001 versus 3% pO2 at passage 5 and &&&p<0.001 versus 21% pO2 at passage 5. 
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4.5 BMI-1 CAN RESCUE SOX2 AND OCT4 GENE EXPRESSION 

UNDER AMBIENT OXYGEN TENSION 

Polycomb group (PcG) genes, such as BMI-1, are epigenetic gene silencers 

that preserve transcription patterns to maintain cell identity, a function clearly 

compatible with a role in self-renewal and stem cell maintenance (Lund and van 

Lohuizen, 2004; Seo et al., 2011). Understanding the molecular events downstream 

of BMI-1 should provide valuable insight into how stem cells regulate proliferation 

and self-renewal.  

Although p16INK4a and p14ARF have been shown to be BMI-1 downstream 

targets in the context of stem cell self-renewal, they do not account for all BMI-1 

actions (Sparmann and van Lohuizen, 2006; Fasano et al., 2007). Recently, a 

relationship between BMI-1, SOX2 and OCT4 has been described (Seo et al., 

2011; Kaufhold et al., 2016), as well as BMI-1 and c-MYC (Sahasrabuddhe et al., 

2011). Thus we wanted to investigate whether BMI-1 was responsible for the loss 

of the stemness properties observed in hDPSCs cultured under ambient oxygen 

tension.  

We first aimed to describe both BMI-1 gene and BMI-1 protein expression 

in order to see if oxygen tension could also have any effect on its regulation. We 

next investigated the role of BMI-1 by using small interference RNA silencing to 

reduce BMI-1 levels in hDPSCs cultured under ambient oxygen tension at early 

stages, and then assessing downstream OSKM gene expression changes. 
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4.5.1 BMI-1 gene expression pattern 

BMI-1 gene expression levels in hDPSCs cultured under both oxygen 

pressures were assessed by qPCR and compared. As we can observe in Figure 

4.16, BMI-1 gene expression levels in hDPSCs cultured at 3% pO2 increased as 

passaging number did. However, BMI-1 expression remained constant at 21% pO2.   

Interestingly, ambient oxygen tension upregulated BMI-1 expression at 

passage 5 in hDPSCs cultured at 21% pO2 in comparison to 3% pO2. Thus, oxygen 

tension may have an influence on BMI-1 gene expression. 

 
Figure 4.16 BMI-1 gene expression levels in hDPSCs long-term culture at 3% or 21% oxygen 

tension. 

BMI-1 mRNA levels determined by qPCR against housekeeping gene. The data are shown as means 

± SD (n=5). The statistical significance is expressed as *p<0.05 for 3% versus 21% pO2 and #p<0.05 

versus 3% pO2 at passage 5. 
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4.5.2 BMI-1 protein expression pattern 

Figure 4.17 shows BMI-1 protein levels assessed by western blot technique. 

We can observe that BMI-1 levels in hDPSCs cultured at 3% pO2 remained 

constant along 20 passages, and then they began to decrease. By contrast, ambient 

oxygen tension accelerated the decrease of BMI-1 levels in hDPSCs, significantly 

reducing its levels from passage 5 to passage 15 when comparing to 3% pO2. 

Furthermore, 21% pO2 cultured hDPSCs showed significantly higher levels 

of BMI-1 at passage 5 but significantly lover levels at passage 15 in comparison to 

those cultured at 3% pO2. 

Taken together, our data suggest that ambient oxygen tension may accelerate 

BMI-1 protein degradation machinery in hDPSCs. 

 
 

Figure 4.17 BMI-1 protein levels in hDPSCs long-term culture at 3% or 21% oxygen tension. 

(A) BMI-1 protein levels assessed by western blot and (B) representative western blot image. The 

data are shown as means ± SD (n=5). The statistical significance is expressed as *p<0.05 or 

***p<0.001 for 3% pO2 versus 21% pO2, ##p<0.01 versus 3% pO2 at passage 5 and, &p<0.05 or  
&&&p<0.001 versus 21% pO2 at passage 5. 
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4.5.3 BMI-1 gene and BMI-1 protein knockdown 

Given the fact that there is a possibility that SOX2 and OCT4 expression are 

regulated by BMI-1 under oxidative stress conditions, we aimed to test whether 

restoring BMI-1 protein levels in hDPSCs cultured at 21% pO2 could also recover 

SOX2 and OCT4 gene expression levels. To this end, we performed a mild 

knockdown of BMI-1 gene expression using siRNA transfection protocol.  

Figure 4.18, shows in (A) BMI-1 gene expression levels (determined by 

quantitative real-time polymerase chain reaction) and in (B) BMI-1 protein levels 

(determined by western blot). After transfection, hDPSCs cultured at 21% pO2 

expressed significantly reduced levels of BMI-1 at passage 5, both at gene and 

protein level. Furthermore, silenced BMI-1gene and BMI-1 protein levels in 

hDPSCs cultured at 21% pO2 were comparable to those in hDPSCs cultured under 

physiological oxygen pressure. 

 

 

Figure 4.18 BMI-1 gene and BMI-1 protein knockdown confirmation. 

(A) BMI-1 mRNA levels determined by qPCR against housekeeping gene and (B) BMI-1 protein 

levels measured by western blot. The data are shown as means ± SD (n=3). The statistical 

significance is expressed as ***p<0.001 versus 21% pO2. 
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4.5.4 SOX2 and OCT4 rescue following BMI-1 knockdown 

As previously stated, hDPSCs cultured at 21% pO2, showed at early stages, 

significantly increased BMI-1 protein levels, as well as a reduced expression of 

SOX2 and OCT4 transcription factors. Thus, we focused on BMI-1 silencing effect 

on the expression of these two transcription factors.  

To this end, we analysed SOX2 and OCT4 expression levels in transfected 

hDPSCs cultured at 21% pO2 using quantitative real-time polymerase chain 

reaction. The following figures show SOX2 (Figure 4.19) and OCT4 (Figure 4.20) 

gene expression levels in non-transfected hDPSCs cultured at 3% and 21% pO2, as 

well as in transfected hDPSCs cultured at 21% pO2.  

As we can observe in both figures, after transfection, SOX2 and OCT4 

expression levels were significantly increased. Moreover, SOX2 and OCT4 

expression levels achieved in transfected hDPSCs cultured at 21% pO2 were 

comparable to those expressed by hDPSCs cultured at 3% pO2.  

 

 

Figure 4.19 SOX2 gene expression following BMI-1 knockdown in young hDPSCs. 

SOX2 mRNA levels determined by qPCR against housekeeping gene. The data are shown as means ± 

SD (n=3). The statistical significance is expressed as ***p<0.001 versus 21% pO2. 
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Figure 4.20 OCT4 gene expression following BMI-1 knockdown in young hDPSCs. 

OCT4 mRNA levels determined by qPCR against housekeeping gene. The data are shown as means ± 

SD (n=3). The statistical significance is expressed as ***p<0.001 versus 21% pO2. 

 

In accordance to our hypothesis, BMI-1 knockdown restores SOX2 and 

OCT4 expression levels in young hDPSCs cultured under oxidative stress 

conditions.  
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5.1 AMBIENT OXYGEN TENSION INDUCES OXIDATIVE STRESS IN 

hDPSCs LONG-TERM CULTURE 

5.1.1 Low oxygen tension alleviates oxidative damage in hDPSCs long-term 

culture 

hDPSCs normally reside in low oxygen concentrations. In mammals, 

including humans, hDPSCs are located in perivascular niches close to the vascular 

structure in almost all tissues (Shi and Gronthos, 2003; Crisan et al., 2008; 

Zannettino et al., 2008). By the time oxygen reaches the organs and tissues, oxygen 
concentration drops to 2-9%, with a mean of 3% in the dental pulp tissue (Yu et al., 

2002; Simon and Keith, 2008). Despite this fact, it is still common to culture cells 

at high non-physiological 21% pO2. However, the normal cell function requires a 

stable oxidation-reduction environment. The excess in the oxygen tension has been 

described as an important factor which could destabilize the cellular redox 

homeostasis (Fan et al., 2008).  

In the present study, we show that reduction of the oxygen level led to 

decreased intracellular oxidative stress and damage during long-term culture. This 

was evidenced by reduced ROS production, less protein and lipid damage, as well 

as a better conservation of the mitochondrial membrane potential (ΔΨm). Such 

effects were prominent for hDPSCs cultured at 3% pO2. 

In accordance with our results, it has been demonstrated that high 

concentrations of oxygen can cause oxidative stress damage via production of 

reactive oxygen species (ROS) and free radicals that can damage lipids, proteins 

and DNA (Wiseman and Halliwell, 1996). Accumulation of damaged 

macromolecules, including oxidative damaged proteins, is a hallmark of cellular 

and organismal aging. This accumulation has been viewed as the combined result 

of increased production of ROS, and other toxic compounds coming from cellular 

metabolism and external factors as well as the failure of protein maintenance (i.e. 

degradation and repair) with age. Protein oxidation is particularly detrimental as 

the resulting damages can render oxidized proteins inactive and lead to cellular 
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functional abnormalities (Berlett and Stadtman, 1997). Various types of oxidative 

damage to proteins are induced either directly by ROS or indirectly by reactions 

with secondary products of oxidative stress such as reactive aldehydes as 4-

hydroxy-2-nonenal and MDA (Baraibar and Friguet, 2013). In accordance with 

this, we recently published a study that correlates high levels of MDA in hDPSCs 

with ambient oxygen pressure culture (El Alami et al., 2014). 

There is growing evidence that mitochondria are a critical player in the 

vicious cycle of ROS-mediated oxidative damage and cellular replicative 

senescence. In fact, it has been demonstrated that mitochondrial depolarization, 

together with increased ROS generation, was indicative of mitochondrial 

dysfunction during continual passage of G6PD-deficient cells (Ho et al., 2007). 

Furthermore, it has also been suggested that low oxygen tension protects 

mitochondria from oxidative damage, helps to maintain mitochondrial function, 

and prevents the increase in mitochondrial mass. This is in consistence with 

previous reports that mitochondrial membrane potential is reduced in cells from 

aged animals (Hagen et al., 1997; Rottenberg and Wu, 1997). 

In this work, we also linked oxygen tension to altered mRNA expression of 

MnSOD, CAT and GPx. The analysis of antioxidant enzyme expression showed 

that MnSOD, CAT or GPx were overexpressed in response ambient oxygen 

environment. This indicates that cellular anti-oxidative system was triggered to 

resist oxidative damage. Fan and colleagues already demonstrated that higher 

oxygen concentrations resulted in more H2O2 generation in CD34+ cells, which 

implied that the increase of H2O2 levels could interact with more efficiently 

transcription of MnSOD, CAT and GPx (Fan et al., 2008). 

Taken together, our data suggest that hDPSCs cultured under ambient 

oxygen tension are exposed to a hyperoxic environment which leads to oxidative 

stress conditions. 
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5.2 OXIDATIVE STRESS INDUCES PREMATURE SENESCENCE 

UNDER AMBIENT OXYGEN TENSION DURING LONG-TERM 

CULTURE OF hDPSCs 

5.2.1 Low oxygen tension delays hDPSCs senescence during long-term 

culture 

In this study, we demonstrate that hDPSCs cultured under ambient oxygen 

tension began to show flattened or lengthened shapes, and debris in the culture 

medium increased. Furthermore, hDPSCs proliferation rate was significantly 

reduced under ambient oxygen tension, as cells cultured at 3% pO2 reached 25 

passages while at 21% pO2 they only reached 15 passages by the same time. These 

observations were accompanied with an increased activity of the senescence-

associated β-galactosidase enzyme along passages, suggesting that these cells were 

entering a senescent state. 

Hayflick and Moorhead proposed in 1961 that serial sub-cultivations of WI-

38 HDFs under the usual laboratory conditions available more than 48 years ago 

(namely at 21% pO2), exhaust the proliferative potential of these cells. This in vitro 

phenomenon has been historically termed as replicative senescence (Reddel, 2000). 

We shall review how it was shown later that cultivating human diploid fibroblasts 

under more physiological oxygen partial pressure (2-5% pO2) prolongs their in 

vitro lifespan. This led to the question whether cells cultivated under usual 

laboratory conditions (21% pO2) show accelerated senescence and whether the 

molecular mechanisms of normal senescence are really the same, even if both are 

characterized by critical telomere shortening (Serrano and Blasco, 2001; Toussaint 

et al., 2011). 

The beneficial effect of low oxygen tension on mesenchymal stem cells 

from different sources has been demonstrated in many studies (Aranha et al., 2010; 

Adesida et al., 2012; Choi et al., 2014; Peng et al., 2016). The advantages of low 

oxygen tension in cell proliferation were reported for bone-marrow-derived 

mesenchymal stem cells (Grayson et al., 2006; Grayson et al., 2007; Bornes et al., 
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2015). When exposed to 2-3% pO2, the cells increased their regenerative potential 

(Volkmer et al., 2010) and achieved the cumulative population up to ten times 

compared to cells cultured in high oxygen tension (Fehrer et al., 2007). A higher 

regenerative potential was also observed in mesenchymal stem cells isolated from 

the umbilical cord at 5% pO2 (Drela et al., 2014) and in the placental mesenchymal 

stem cells (Mathew et al., 2013). Adipose-derived mesenchymal stem cells 

submitted to low oxygen tension (2-5% pO2) increased their regenerative potential 

(Kang et al., 2014).   

In fact, here we show that hDPSCs can be cultured over at least 25 passages 

without losing their stem cell-like morphology and proliferation kinetics when 

cultured under physiological oxygen pressure. However, under ambient oxygen 

tension, hDPSCs gradually lose their proliferative potential during long-term 

culture and show increasing signs of senescence such as larger phenotypes and 

increased SA-β-Gal levels.  

It has been described that depending on the senescence trigger, cells can 

become large, flat, and multinucleated, or rather refractile. A flat cell phenotype is 

commonly seen in cells undergoing H-RASV12-induced senescence (Serrano et al., 

1997; Denoyelle et al., 2006), stress-induced senescence (Parrinello et al., 2003) or 

DNA damage-induced senescence (Chen and Ames, 1994; Chen et al., 2001). Cells 

senescing due to BRAFE600 expression or the silencing of p400, however, acquire a 

more spindle-shaped morphology (Chan et al., 2005; Michaloglou et al., 2005). 

Melanocytes undergoing RASV12-induced senescence display extensive 

vacuolization as a result of endoplasmic reticulum stress caused by the unfolded 

protein response (Denoyelle et al., 2006). 

SA-β-Gal is the most commonly used senescence biomarker (Dimri et al., 

1995; Debacq-Chainiaux et al., 2009). This marker is detectable by histochemical 

staining in most senescent cells. However, it is also induced by stresses such as 

prolonged confluence in culture (Campisi and d'Adda di Fagagna, 2007). Still, 

even under normal physiological circumstances, β-galactosidase activity is 
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enriched in particular cell types, such as mature tissue macrophages and osteoclasts 

(Bursuker et al., 1982; Kopp et al., 2007), and it is detected in cells undergoing 

increased lysosomal activity during autophagy (Young and Narita, 2010; Ivanov et 

al., 2013). The SA-β-Gal probably derives from the lysosomal β-galactosidase and 

reflects the increased lysosomal biogenesis that commonly occurs in senescent 

cells (Lee et al., 2006a). Accordingly, the increase in SA-β-Gal activity in 

senescent cells is likely due to an expansion of the lysosomal compartment, giving 

rise to an increase in β-galactosidase activity that can be measured also at 

suboptimal pH 6 (hence, SA-β-Gal) (Kurz et al., 2000; Yang and Hu, 2005). 

Taken together, our results suggest that hDPSCs cultured under ambient 

oxygen tension are submitted to a premature senescence, which is evidenced by 

enlarged phenotype, reduced proliferative potential and increased SA-β-Gal 

activity. This phenomenon seems to be caused by ROS accumulation, leading to 

the so-called stress-induced premature senescence or SIPS (Sherr and DePinho, 

2000).  
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5.3 OXIDATIVE STRESS-INDUCED PREMATURE SENESCENCE 

(SIPS) IS MEDIATED BY p16INK4A PATHWAY 

5.3.1 ROS-induced p16INK4a upregulation mediates SIPS in hDPSCs 

Senescence is a normal feature of cells whereby they lose their replicative 

capacity after a finite number of divisions (Ivanchuk et al., 2001). The 

p16INK4a/pRb and p14ARF/p53 cell cycle inhibitory pathways represent two 

important pathways controlling proliferation, and their inactivation can extend the 

limited division number of mitotic cells in culture (Sherr and DePinho, 2000).  

Current culture conditions in vitro generally entails mitogenic hyper-

stimulation, which in most primary cells results in upregulation of the INK/ARF 

locus (Sharpless, 2004; Li et al., 2009). In fact, reduced oxygen tension has long 

been known to promote the growth and extend the replicative life span of cultured 

human cells (Packer and Fuehr, 1977; Saito et al., 1995). ROS have important 

functions in cell signalling but their role in regulating cell cycle progression is 

poorly understood. ROS levels increase significantly as cells pass from G1 into S 

phase of cell cycle (Havens et al., 2006) and they are required for S phase entry, as 

demonstrated by the cell cycle arrest induced by quenching ROS (Menon et al., 

2003; Conour et al., 2004). However, cell cycle checkpoints are also activated by 

increased ROS (Menon and Goswami, 2007), indicating that cellular proliferation 

relies on maintaining ROS levels within a functional range (Macleod, 2008).  

Given the role of p16INK4a in cell cycle regulation and the recent implication 

of oxidative stress in stem cell senescence, we investigated a potential link between 

ROS and p16INK4a regulation. Our results show that hDPSCs cultured at 21% pO2 

revealed signs of senescence, which were accompanied by an increasing p16INK4a 

expression levels as passaging number did, and a reduction in p14ARF expression 

levels in relation to passaging number. This might be suggesting that these cells 

could have become resistant to apoptosis while they entered senescence. 

In accordance with this, cultured primary human cells generally express 

increasing amounts of p16INK4a as they approach their lifespan limit in vitro 
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(Serrano et al., 1996). It was recently suggested that stressful culture conditions 

can induce p16INK4a, and subsequent premature senescence, in mammary epithelial 

cells, keratinocytes, and some fibroblasts (Ramirez et al., 2001; Rheinwald et al., 

2002). In fact, low levels of expression are detected initially in primary human 

fibroblasts but p16INK4a accumulates to high levels as these cells undergo 

senescence (Hara et al., 1996). Furthermore, p16INK4a expression has been 

correlated to population doubling number, that was confirmed statistically by SA-

β-Gal staining (Shibata et al., 2007). Several researchers have shown that the 

upregulation of p16INK4a gene expression is important to induce cellular senescence 

in human MSCs (Shibata et al., 2007; Jin et al., 2010). In fact, stress signals such 

as ROS stimulate the activation of p16INK4a transcription (Jenkins et al., 2011) and 

play important roles in initiation, as well as maintenance, of cellular senescence 

(Okamoto et al., 2002; Takahashi et al., 2006; Yang et al., 2008). Ito and 

colleagues described, both in vitro and in vivo, that activation of p16INK4a/pRb gene 

product pathway in response to elevated ROS led to the failure of hematopoietic 

stem cells (HSCs), and that treatment with antioxidant agents restored the 

constitutive capacity of HSCs, resulting in the prevention of bone marrow failure 

(Ito et al., 2004; Ito et al., 2006). These results support our data that treatment with 

50 µM Trolox can rescue p16INK4a levels in hDPSCs long-term culture at 21% pO2.  

If senescence and apoptosis are truly alternative cell fates, cellular changes 

that are pro-senescent are actively anti-apoptotic and that senescent cells are 

resistant to apoptosis (Childs et al., 2014). There is strong evidence for the 

existence of apoptosis resistance in replicative senescent fibroblasts, which they 

showed occurs through p14ARF/p53 signalling (Chen et al., 2000). The outcome of 

apoptosis resistance can also be cell survival. Senescence induced by mild H2O2 

promotes survival rather than apoptosis in response to apoptotic stimuli such as 

high-dose H2O2, which upregulates p53, leading to p53-dependent apoptosis 

(Sanders et al., 2013).  

Taken together, we could say that low oxygen tension might delay 

senescence of hDPSCs by downregulation of p16INK4a expression. 
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5.4 LOSS OF STEMNESS UNDER AMBIENT OXYGEN TENSION 

DURING LONG-TERM CULTURE OF hDPSCs 

5.4.1 OSKM expression pattern in hDPSCs cultured at 3% pO2 

Here we demonstrate that OCT4 and SOX2 expression levels were 

upregulated at early stages, suggesting that these two transcription factors might be 

involved in stemness induction. These data are in accordance with those of Wan 

Safwani and colleagues; they showed in adipose-derived stem cells during long-

term manipulation that the expression of the stemness biomarkers SOX2, NANOG 

and OCT4 was declined along passages (Wan Safwani et al., 2011). 

Our results also show that KLF4 and c-MYC expression levels were 

upregulated at advanced stages. The successive increase in the expression of those 

two transcription factors, could be explained as they have been shown to contribute 

to the long-term maintenance of the embryonic stem cell (ESC) phenotype, and the 

rapid proliferation of ESCs in culture (Takahashi and Yamanaka, 2006). 

This indicates a close interaction between these four genes, that control the 

stemness status of stem cells.  

 

5.4.2 OSKM expression pattern in hDPSCs cultured at 21% pO2 

The current results suggest that although hDPSCs were capable of being 

maintained under ambient conditions, pluripotency was reduced before the 

appearance of morphological differentiation. In fact, our data show that hDPSCs 

cultured at 21% pO2 only expressed reduced levels of SOX2 and OCT4 compared 

with cells cultured at 3% pO2 at passage 5, before these cells appeared to be 

morphologically differentiated.  

These data are in agreement with similar OCT4 results obtained by Ludwig 

(Ludwig et al., 2006). However, they are contrary to those of Forsyth and Westfall, 

who both observed no difference in the expression SOX2, OCT4 and NANOG 

between human ESCs cultured at 2% and 4% pO2 respectively compared with 

atmospheric oxygen tensions (Forsyth et al., 2008; Westfall et al., 2008). However, 
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the latter investigators did show that OCT4-regulated genes were down-regulated 

under atmospheric oxygen tensions, suggesting that although mRNA expression of 

pluripotency markers was not reduced under 20% oxygen, their downstream 

targets displayed decreased expression.  

 

5.4.3 Low oxygen tension retains hDPSCs stemness potential 

hDPSCs cultured under physiological oxygen tension expressed OCT4 and 

SOX2 at early stages, and KLF4 and c-MYC at advanced stages, which in turn 

might mean that pluripotency is conserved along passages. Ambient oxygen 

tension was accompanied by a reduction of all four transcription factors. 

According with our results, a recent study revealed that ROS accumulation in 

tendon stem cells was accompanied by reduced colony formation and proliferation, 

decreased expression of the stemness markers NANOG, OCT4 and SSEA4, and 

impaired differentiation capability (Chen et al., 2016a). There is no further mention 

to the expression pattern of c-MYC or KLF4 in relation to long-term culture or 

oxidative stress.  

It has been suggested that culturing human embryonic stem cells by constant 

low oxygen tension condition may maintain pluripotency by sustaining Notch 

activation (Prasad et al., 2009). In a recent study, an enhanced expression of the 

stemness markers OCT4, NANOG, REX1 and SOX2 under low oxygen tension was 

observed, indicating that adult stem cells (ASCs) had a greater ability to maintain 

their stemness properties under low oxygen tension as compared to high oxygen 

tension (Choi et al., 2014). This result was consistent with other findings, 

suggesting that a low oxygen microenvironment provides an optimal condition for 

the maintenance of ASCs properties (D'Ippolito et al., 2006).  

Recent research data also showed that using normoxic conditions (5% pO2) 

increases the efficiency of generation of iPSCs from mouse embryonic fibroblasts 

using OCT4, SOX2, and KLF4 retroviral transduction, as well as with non-viral 

vectors, such as plasmid expression vectors or piggyback transposition system 
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(Yoshida et al., 2009). Low oxygen tension also shows increased efficiency in the 

derivation of human iPSCs from dermal fibroblasts on transduction of OCT4, 

SOX2, KLF4 and c-MYC retroviral vectors (Yoshida et al., 2009). In accordance to 

this, endothelial cells reprogrammed by the transduction of transcription factors in 

low oxygen conditions increased the number of colonies by 2.5-fold compared to 

ambient oxygen (Panopoulos et al., 2012). Similar results were obtained for the 

reprogramming of mice embryonic fibroblasts and human dermal fibroblasts, 

showing that low oxygen tension promotes higher reprogramming efficiencies 

(Yoshida et al., 2009) and accelerate the generation of iPSC colonies (Shimada et 

al., 2012). Thus, low oxygen tension seems to have a role not only in sustaining but 

also inducing pluripotency in stem cells. 

Although it is true that we have not measured any parameters of stem cell 

differentiation potential, stem cell plasticity is also an important factor for 

prospective use of MSCs in regenerative medicine. Trilineage mesenchymal 

differentiation, known as the ability to differentiate into osteogenic, chondrogenic, 

and adipogenic lineages, is a unique biological property of MSCs (Dominici et al., 

2006). Several researchers reported the effect of different culture oxygen 
concentrations on the trilineage differentiation of MSCs. In an elegantly designed 

experiment, Raheja and colleagues seeded and induced MSCs for differentiation 

under an atmosphere of 5% carbon dioxide (CO2) along with 1 of 4 pO2 
concentrations (1%, 2%, 5%, and 21%). According to their results, MSCs 

differentiated into osteoblast most rapidly at 21% pO2, and oxygen below 5% 

showed reduced differentiation potential. However, no statistically significant 

difference in osteogenic marker was reported when oxygen tension was between 

5% and 21% (Raheja et al., 2010). In addition, Basciano and colleagues have 

reported improved osteoblastic and adipogenic differentiation potential of early 

passaged MSCs at 5% pO2 concentration (Basciano et al., 2011). Several other 

recent reports support that the multilineage differentiation potential of MSCs can 

be maintained under low oxygen tension environment (1-5% pO2 concentration) 

(Grayson et al., 2007; Holzwarth et al., 2010; Nekanti et al., 2010).  
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5.5 BMI-1 CAN RESCUE SOX2 AND OCT4 EXPRESSION UNDER 

AMBIENT OXYGEN TENSION 

5.5.1 Regulation of BMI-1 expression under oxidative stress conditions 

In this study we have seen that, according to passage number, BMI-1 gene 

expression levels increased while BMI-1 protein levels decreased in hDPSCs. This 

process was accelerated under oxidative stress conditions.  

Very little is known about the post-transcriptional regulation of BMI-1. 

Recently, it has been reported that BMI-1 is a short-lived protein, which undergoes 

rapid turnover (Yadav et al., 2010; Sahasrabuddhe et al., 2011). In fact, BMI-1 is 

reported to be modified by several factors in context- and lineage-dependent 

manner. BMI-1 is phosphorylated by several kinases for different physiological 

consequences (Sahasrabuddhe, 2016).  

Some researchers have published that BMI-1 may be a substrate of AKT and 

upregulation of AKT signalling coincides with upregulation of BMI-1 

phosphorylation, and that phosphorylated BMI-1 is more stable. In contrast, 

activated oxidative stress-dependent p38 signalling causes BMI-1 to degrade, and 

to lose its chromatin modifying ability. Furthermore, they also show that post-

transcriptional regulation of BMI-1 via proteasomal degradation causes defective 

proliferation in Atm-/- neural stem cells (NSCs) as a result of p21 upregulation 

(Kim and Wong, 2009). 

Other researchers demonstrated that BMI-1 expression is modulated through 

transcriptional and posttranscriptional regulation in hematopoietic stem cells 

(HSCs) (Bhattacharyya et al., 2009). They further investigated whether oxidative 

stress could affect BMI-1 degradation. After 1 hour of treatment with H2O2, the 

BMI-1 band was significantly reduced, and after 4 hours of incubation with H2O2, 

they observed a dramatic reduction in the levels of BMI-1 (Kim et al., 2011).  

Collectively, these observations strongly support the notion that down-

regulation of BMI-1 is associated with oxidative stress-dependent pathways in 

stem cells. 
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5.5.2 BMI-1 levels and stemness potential in hDPSCs  

OCT4 and SOX2 are components of a complex transcriptional network of 

positive and negative feedback loops that maintain ESC identity while repressing 

the expression of genes that promote differentiation (Boyer et al., 2005; 

Lapthanasupkul et al., 2012). Previous studies have established the importance of 

epigenetic modulation of gene expression in ESCs, including the chromatin-

modifying polycomb group (PcG) and trithorax group (TrxG) proteins, which 

predominantly mediate gene repression and activation, respectively (Bernstein et 

al., 2006; Boyer et al., 2006). PcGs exist as two multimeric protein complexes; 

polycomb repressive complex 1 (PRC1) and 2 (PRC2), both of which function as 

gene silencers. BMI-1 is a PRC1 component that acts sequentially to repress 

transcription by H3K27 trimethylation (Yang et al., 2016).  

In the present study, we have previously confirmed a loss in all Yamanaka 

transcription factors (OCT4, SOX2, KLF4 and c-MYC) expression during hDPSCs 

in vitro long-term culture at 21% pO2. Moreover, at passage 5, high oxygen tension 

caused a significant downregulation of SOX2 and OCT4 expression, which was 

accompanied by increased BMI-1 protein levels. Silencing of BMI-1 gene at 

passage 5 resulted in a restoration of SOX2 and OCT4 expression levels in hDPSCs 

cultured at 21% pO2. In fact, most of the transcriptionally silent developmental 

regulators targeted by OCT4, SOX2 and NANOG are also occupied by the 

Polycomb group (PcG) proteins (Boyer et al., 2006; Lee et al., 2006b). 

Furthermore, with respect to transcriptional regulation, it has been shown 

that BMI-1 gene expression is positively regulated by c-MYC, and the E2F family 

of transcription factors (Guney et al., 2006; Nowak et al., 2006; Guo et al., 2007; 

Liu et al., 2014). This is in accordance with our results where hDPSCs cultured at 

3% pO2 overexpressed both BMI-1 and c-MYC genes as passage number increased.  
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5.5.3 BMI-1 levels and hDPSCs senescence 

It has been suggested that BMI-1 controls stem cells via the INK4/ARF 

locus, because BMI-1 function in young adult hematopoietic stem cells is 

mediated, in large part, through its transcriptional repression of p16INK4a (Pollina 

and Brunet, 2011). In accordance to this, we can see in the figure below that BMI-

1 and p16INK4a expression patterns are related to each other in hDPSCs cultured 

under both oxygen tension conditions (Figure 5.1). At 3% pO2, BMI-1 and p16INK4a 

levels remain constant and parallel along passages, however, at 21% pO2, p16INK4a 

expression rises as BMI-1 levels plummet. 

 

  

Figure 5.1 Relation between ROS, p16INK4a and BMI-1 expression in hDPSCs long-term culture. 

p16INK4a mRNA levels determined by qPCR against housekeeping gene, and BMI-1 protein levels 

measured by western blot in hDPSCs long-term culture at (A) 3% pO2 and (B) 21% pO2. The data are 

shown as means ± SD (n=5). 

 

The role of PcG proteins is the maintenance of established gene expression 

states to achieve an epigenetic memory of cell identity. Dividing cells must 

preserve epigenetic memory in order to face disruptions such as DNA replication 

or mitosis, where regulatory factors may be disassembled from promoters. PcG is 

thus involved in the competence for switching, with every cell cycle transition 

providing an opportunity to either maintain the repressed state or to switch to a 
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derepressed state. Here we observe that decreased expression of BMI-1 along 

passages in hDPSCs cultured at 21% pO2, increases the probability of a cell 

switching from a p16-off to a p16-on state, reducing its regenerative potential.  

The decline in regenerative capacity and the subsequent loss of tissue 

homeostasis is one of the most striking hallmarks of aging. The results described 

by Ocampo and colleagues and commented by Serrano, suggested that in vivo 

OSKM induction may slow the aging process by preventing molecular changes 

associated with aging, including epigenetic alterations, activation of cellular 

senescence pathways (such as p16INK4a/pRb), and the exhaustion of adult stem cell 

populations (Ocampo et al., 2016; Serrano, 2017b). 

Taken together, BMI-1 maintains adult stem cell pools while controlling 

lifespan extension by suppression of the p16INK4a-dependent senescence pathway. 

Thus, Pollina and colleagues proposed that BMI-1 expression should be kept in a 

balance between stem cell self-renewal and differentiation during aging (Figure 

5.2). This mechanistic balance allows stem cell normal proliferation, while 

preventing stem cell senescence when downregulated. Thus, maintaining the 

proper stem cell homeostasis (Pollina and Brunet, 2011). 

 

 

Figure 5.2 BMI-1 balance and stem cells. 

Taken from: Pollina and Brunet (2011). 
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5.6 OUTLOOK: LOW OXYGEN TENSION AS A STRATEGY TO 

ENHANCE STEM CELL THERAPIES 

There is growing interest in transplantation of ex vivo amplified cell 

preparations for various therapeutic applications. This has been fuelled by novel 

insights from stem cell biology, new molecular tools and promising preclinical 

model systems. To date, mesenchymal stem cells (MSCs) are tested for a wide 

spectrum of diseases, hence, cellular therapeutics needs standardized isolation and 

reliable quality control of cell preparations. This, however, is greatly hampered by 

the multitude of different methods to prepare MSCs (Wagner and Ho, 2007).  

MSCs, which have the ability to divide and remain in an undifferentiated 

state, are present in perivascular niches in close association with blood vessels in 

virtually all tissues (Miura et al., 2003; Shi and Gronthos, 2003; Crisan et al., 2008; 

Zannettino et al., 2008). Even though MSCs are located close to vascular 

structures, the different tissues where these stem cells are found exhibit low 

oxygen tensions (Harrison et al., 2002; Pasarica et al., 2009). Therefore, it is 

possible that maintaining MSCs in an undifferentiated state may require a low 

oxygen environment, in addition to other factors. Furthermore, stem cell therapies 

require a large amount of cells which can only be achieved after long-term in vitro 

culture. There is a growing perception that even under highly standardized culture 

conditions, continuous effects during long-term culture entails senescence, which 

needs to be taken into account (Wagner et al., 2010). 

An unbiased and robust assessment of MSCs senescence – valid for all in 

vitro samples, regardless of donor age and inter-donor variation, would be ideal for 

estimating sufficient cell expansion potential and quality for therapy (Bertolo et al., 

2016). In this study we provide a simple strategy, which is to mimic the organism 

physiological oxygen tension when culturing in Petri dishes. This allows 

investigations on the proliferation, differentiation, senescence, metabolic balance, 

transcriptome, and other physiological aspects of MSCs, which have potentially 

important clinical applications. 
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5.6.1 Timing is everything 

Timing is critical in MSC therapy, from the initial MSC isolation from 

adult-donors, to the best time points for patient treatment (Schepers and Fibbe, 

2016).  

First of all, the time point of cell infusion in relation to the progress of the 

treated indication in patients may affect their therapeutic efficacy. Moreover, 

younger patients may respond better than older patients (Ball et al., 2013). Patient 

clinical responses to MSC batches may not be robust and they may be transient in 

nature, both complicating patient response readout and MSC potency assessment.  

Second, a number of time-dependent variables complicate MSCs production. 

Particularly intrinsic (cell donor age) and extrinsic cell ageing (ex vivo expansion 

process) may affect MSCs therapeutic properties, as reviewed elsewhere 

(Dimmeler and Leri, 2008; Geissler et al., 2013; Dimmeler et al., 2014; Efimenko 

et al., 2015; Kundrotas et al., 2016). It is now well established that bone marrow 

stem cell content decreases with donor age (Caplan, 1994), and that both, donor 

age and comorbidities, may affect cell efficacy (Stolzing et al., 2008). If allogeneic 

cells are applicable, MSCs from younger donors may thus optionally be preferred 

for clinical use.  

As stated before, another evident factor affecting MSCs potency appears to 

be the time in culture. Stemness potential is reduced after in vitro expansion and 

repeated passaging (Banfi et al., 2000; Horwitz et al., 2002; Javazon et al., 2004; 

Crisostomo et al., 2006; von Bahr et al., 2012; Binato et al., 2013; Wagner and 

Henschler, 2013; Bertolo et al., 2016), which results in a gradual loss of progenitor 

properties and tissue forming capacity, reduced long-term engraftment, lower 

clinical response and survival benefit, thus compromising engraftment and 

function (Wagner et al., 2010). 
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5.6.2 Low oxygen tension in vitro preconditioning to prevent senescence 

Aging or replicative senescence negatively affects proliferation of MSCs as 

the cells lose their stemness potential and undergo cell cycle arrest (Yu and Kang, 

2013; Boyette and Tuan, 2014). The delay in developing the senescent phenotype 

in MSCs cultured under low oxygen tension may be because they tend to maintain 

a higher rate of cell proliferation than MSCs cultured under ambient oxygen 

tension (Kim et al., 2016). This opens the prospect of obtaining large amounts of 

cells with the desired biological characteristics during long-term culture. Our 

findings should help to formulate guidelines for the collection of optimal MSCs for 

cell therapy.  

Several researchers are demonstrating in in vivo experiments how low 

oxygen preconditioning of MSCs (such as bone marrow mesenchymal, adipose-

derived and neural stem cells) improves their regenerative potential in common 

diseases such as bone regeneration, diabetes, spinal cord injuries, neurological 

disorders and liver regeneration (Chen et al., 2016b; Lee et al., 2016; Wakai et al., 

2016; Wang et al., 2016; Waseem et al., 2016; Wu et al., 2016). The consensus is 

that inhibition or reversal of senescence onset in adult stem cells would be of 

utmost benefit. 

With potential for bone regeneration, hDPSCs might be an effective 

biological therapy for bone destruction. Wu and collaborators results show that low 

oxygen preconditioning significantly enhanced hDPSCs survival rate, osteogenic 

differentiation and its migration response in vivo. In mouse apical periodontitis 

bone destruction model, after transplantation of low oxygen preconditioned 

hDPSCs via intravenous injection, there is an upregulation of hDPSCs recruitment 

and recovery of alveolar bone mass in infected periapical tissue, and osteogenesis 

and bone mineralization is enhanced (Wu et al., 2016). 
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5.7 LIMITATIONS OF THE STUDY 

There is always another experiment that could have been performed or some 

idea that could have been tested. Thus, this study has some limitations which I 

would like to briefly summarize. 

It would have been of interest to set a deeper characterization of hDPSCs 

senescence in order to establish how low oxygen improves their regenerative 

potential for stem cell therapies.  

Therefore, analysing the senescence associated secretory phenotype (SASP) 

and the immune-modulatory profile would have been very useful as novel 

mechanisms underlying the therapeutic effects of MSCs were shown to include the 

paracrine actions by cytokines, chemokines, growth factors, and their receptors 

(Caplan and Dennis, 2006; Hung et al., 2007; Zhang et al., 2007; Gnecchi et al., 

2008; Figueroa et al., 2012; Liu et al., 2012).  

Another approach could have been to set the senescence associated 

heterochromatin foci (SAHF) and senescence associated DNA-damage foci (SDF), 

along with a chromosome profile and telomere length study. SAHFs are detected 

by the preferential binding of DNA dyes, such as 4,6-diamidino-2-phenylindole 

(DAPI), and the presence of certain heterochromatin-associated histone 

modifications (for example, H3K9 methylation) (Campisi and d'Adda di Fagagna, 

2007). Therefore, it is possible to assume a relation between SAHF formation, 

BMI-1 and p16INK4a expression in hDPSCs. Furthermore, DNA-damage foci arise 

at dysfunctional telomeres that accompany replicative senescence and can be 

triggered by either intrinsic or environmental insults (d'Adda di Fagagna et al., 

2003; Takai et al., 2003; Herbig et al., 2004; Sharpless and Sherr, 2015). Thus, we 

could hypothesise a connection between ROS accumulation under ambient oxygen 

tension and telomere shortening. 

Another limitation of this study is that we could not determine the 

differentiation potential of hDPSCs along passages under both oxygen tension 

conditions. Finally, measuring the multilineage differentiation potential of hDPSCs 



Discussion 

 139 

with biomaterial conjugation could have offer another approach of how in vitro 

culturing may affect survival after in vivo transplantation. 

 

Although we are aware of the limitations of our study, it enabled us to draw 

interesting conclusions regarding new approaches for stem cell therapy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 



 

 

 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6   CONCLUSIONS 
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6.1 GENERAL CONCLUSION 

Long-term in vitro culture of hDPSCs at ambient oxygen tension, in 

comparison to those cultured at physiological oxygen tension, caused an oxidative 

stress-related premature senescence and a downregulation of OCT4 and SOX2 

expression. The proteins p16INK4a and BMI-1 are involved in this process. 

 

6.2 SPECIFIC CONCLUSIONS 

The following conclusions can be drawn from the results obtained in this 

study: 

 

1. Ambient oxygen tension induced oxidative stress in hDPSCs long-term 

culture as was evidenced by ROS accumulation, lipid and protein 

damage, mitochondrial membrane potential loss, and antioxidant gene 

upregulation. 

 

2. Oxidative stress induced a premature senescence (SIPS) under ambient 

oxygen tension during long-term culture of hDPSCs as evidenced by a 

senescent phenotype, increased p16INK4a expression levels and SA-β-Gal 

activity. 

 

3. Oxidative stress-induced premature senescence (SIPS) under ambient 

oxygen tension during long-term culture of hDPSCs appeared to be 

mediated by p16INK4a pathway. 

 

4. Oxidative stress-induced premature senescence (SIPS) under ambient 

oxygen tension during long-term culture of hDPSCs was accompanied by 

a stemness potential loss as evidenced by SOX2, OCT4, KLF4 and c-

MYC downregulation. 
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5. BMI-1 proved to control hDPSCs proliferative potential by regulating 

16INK4a expression during long-term culture under ambient oxygen 

tension. Furthermore, BMI-1 knockdown could rescue SOX2 and OCT4 

expression in hDPSCs culture under ambient oxygen tension. 
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8.1 ANNEX 1: INFORMED CONSENT 

 

 

Clínica Odontológica, Unidad de Cirugía 

Facultad de Medicina y Odontología 

Universidad de Valencia 

 

CONSENTIMIENTO INFORMADO 

 

Nombre y apellidos …………………………………………………... 

Edad…………………………………………………………………… 

Sexo……………………………………………………………………. 

 

He sido informado/a y acepto libremente entregar mi diente, extraído por 

motivos ajenos a este estudio, para el cultivo y análisis de las células de la pulpa 

dental. 

 

Fecha: 

 

Firma:  
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8.2 ANNEX 2: PATIENT INFORMATION SHEET 

 

Clínica Odontológica, Unidad de Cirugía 

Facultad de Medicina y Odontología 

Universidad de Valencia 

 

HOJA DE INFORMACIÓN AL PACIENTE 

 

Le invitamos a participar en el presente estudio sobre la obtención de células 

madre de pulpa dental que se está llevando a cabo en la Universidad de Valencia. 

Podrá hablar con el investigador para aclarar sus dudas y si decide no 

participar en el estudio, esto no afectará de ninguna manera a la calidad de su 

tratamiento odontológico.   

 

Objetivos del estudio: 

- Obtener células madre de pulpa dental. 

- Mejorar el método de obtención de estas células. 

 

Tratamiento del estudio: Durante el estudio, se registraran datos referentes a su 

historia médica (edad, sexo), así como a las características clínicas del diente a 

extraer.  

Posibles riesgos: No existen riesgos para el paciente asociados a este estudio. 

Participación voluntaria: Puede retirarse del estudio en cualquier momento sin 

tener que ofrecer explicación alguna sobre sus razones. El abandono del estudio no 

condicionará en absoluto los tratamientos odontológicos en el futuro. 

Confidencialidad: Todos los datos referentes a su participación en el estudio se 

almacenarán y analizarán en una base de datos electrónica, sin mención expresa de 

su nombre. 
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8.3 ANNEX 3: ETHICAL COMITEE 
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8.4 ANNEX 4: ABBREVIATIONS 

Abbreviation Name 
 

Abbreviation Name 

8-oxodG 8-hydroxy-2-
deoxyguanosine 

MnSOD Manganese superoxide 
dismutase 

a.u. Arbitrary units mRNA Messenger Ribonucleic 
acid 

AGO Argonaute family MSC Mesenchymal stem cell 
ANOVA Analysis of variance mtDNA Mitochondrial 

Deoxyribonucleic acid 
APS Ammonium persulfate dNTP Deoxyribose nucleotide 

triphosphates 
ARF Alternative reading 

frame 
n Sample number 

ASC Adult stem cell NaCl Sodium Chloride 
ATP Adenosin-5’-

triphosphate 
NADH Reduced nicotin adenine 

dinucleotide 
AUC Area under curve NADPH Reduced nicotin adenine 

dinucleotide phosphate 
BMI-1 B-cell specific 

moloney murine 
leukaemia virus 

integration region 1 

NFkB Nuclear factor kappa B 

BSA Bovine serum albumin nm Nanometre 
CDK Cyclin dependent 

kinase 
Ct Cycle threshold 

CDKI Cyclin dependent 
kinase inhibitor 

nmol Nanomoles 

CDKN2A Cyclin dependent 
kinase inhibitor 2A 

º Angle degree 

cDNA Complementary 
Deoxyribonucleic acid 

ºC Centigrade degree 

c-MYC avian 
myelocytomatosis 

viral oncogene 
homolog 

OCT4 Octamer-binding 
transcription factor 4 gene 

cm2 Square centimetre OH- Hydroxyl ion 
Cu+ Cupper ion OSKM OCT4, SOX2, KLF4 and 

c-MYC 
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DDR DNA damage response P/S Penicillin / Streptomycin 
DcR2 Decoy death receptor-

2 
PAGE Polyacrylamide gel 

electrophoresis 
Dec1 Differentiated embryo-

chondrocyte 
expressed-1 

PBS Phosphate buffered saline 

DEPC Diethyl pyro carbonate PBS-T Phosphate buffered saline - 
Tween 

DHR123 Dihydrorhodamine-
123 

PcG Polycomb group proteins 

DMEM Dulbecco’s Eagle 
Modified Medium 

pCO2 Carbon dioxyde pressure 

DMSO Dimethyl sulfoxide PE Phycoerythrin 
DNA Deoxyribonucleic acid  PEST Proline (P), glutamic acid 

(E), serine (S), and 
threonine (T) domain 

DNPH 2,4-
Dinitrophenylhydrazin

e 

pH Potential of hydrogen 

DTT Dithiothreitol PI Propidium iodide 
EDTA Ethylene-diamine-

tetra-acetic acid 
pO2 Oxygen pressure 

ESC Embryonic stem cell pRb Retinoblastoma protein 
EZH2 Enhancer zeste 

homolog 2 
PRC Polycomb-repressive 

complex 
FACS Fluorescence activated 

cell sorting 
PTGS Post-Transcriptional Gene 

Silencing 
FBS Foetal bovine serum PVDF Polyvinylidene fluoride 
FDG Fluorescein di-β-D-

galactopyranoside 
qPCR Quantitative polymerase 

chain reaction 
FITC Fluorescein 

isothiocyanate 
RF RING finger domain 

g Grams / Gravities RISC RNA-induced silencing 
complex 

GAPDH Glyceraldehyde 3-
phosphate 

dehydrogenase 

RNA Ribonucleic acid 

GPx Glutathione peroxidase RNS Reactive nitrogen species 
GSC Germ line stem cell ROS Reactive oxygen species 
GSH Reduced glutathione rpm Revolutions per minute 
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GSSG Oxidized glutathione rRNA Ribosomal Ribonucleic 
acid 

h Hours RT Reverse transcriptase 
H2O2 Hydrogen peroxide SA-β-Gal Senescence associated β-

galactosidase 
hDPSCs Human dental pulp 

stem cells 
SAHF Senescence associated 

heterochromatin foci 
HEPES 4-(2-hydroxyethyl)-1-

piperazineethane 
sulfonic 

SASP Senescence associated 
secretory phenotype 

Hg Mercury SD Standard deviation 
HNE 4-Hydroxi-2,3-nonenal SDS Sodium dodecyl sulfate 

HPLC High performance 
liquid chromatography 

SIPS Stress-induced premature 
senescence 

HRP Horse radish 
peroxidase  

siRNA Small interference 
Ribonucleic acid 

HTH Helix-turn-helix 
domain 

SOD Superoxide dismutase 

IgG Immunoglobulin G SOX2 Sex determining region Y-
box 2 gene 

IL Interleukin ssDNA Single strand 
Deoxyribonucleic acid 

INK4 Inhibitor of CDK4 dsDNA Double strand 
Deoxyribonucleic acid 

iPSC Induced pluripotent 
stem cell 

TBA Thio-barbituric acid 

IVF In vitro fertilization TBST-T Tris buffered saline – 
Tween 

K2HPO4 Potassium hydrogen 
phosphate 

TEMED Tetramethylethylenediami
ne 

KH2PO4 Potassium dihydrogen 
phosphate 

TGS Transcriptional Gene 
Silencing 

KLF4 Kruppel like factor 4 
gene 

TMRE Tetramethylrodamine ethyl 
ester 

KPi Potassium phosphate TMRM Tetramethylrodamine 
methyl ester 

L Litre TRIS 2-Amino-2-
(hydroxymethyl)-1,3-

propanediol 
M Molar TrxG Trithorax group proteins 
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mA Milliampere  UPS Ubiquitin proteasome 
system 

MAPK Mitogen-activated 
protein kinases 

UV Ultraviolet 

MDA Malondialdehyde V Volts 
MDM2 Murine double minute 

2 
v/v Volume/volume 

MEF Mouse embryonic 
fibroblast 

VEGFA Vascular endothelial 
growth factor A 

mg Milligram w/v Weight/volume 
min Minutes ΔΨm Mitochondrial membrane 

potential 
miRNA Micro Ribonucleic 

acid 
λ  Wavelength 

mL Millilitre µg Microgram 
mm Millimetre µL Microliter 
mM Millimolar µM Micromolar 

MMP Matrix 
metalloproteinase 

µm Micrometer 

 

 

 

 

 

 

 

 

 

 

 

 

 



Annexes 

 200 

8.5 ANNEX 5: ARTICLE RELATED TO THIS DOCTORAL THESIS 

 
 



Contents lists available at ScienceDirect

Redox Biology

journal homepage: www.elsevier.com/locate/redox

Research Paper

Role of p16INK4a and BMI-1 in oxidative stress-induced premature
senescence in human dental pulp stem cells

Cristina Mas-Barguesa,e,f, José Viña-Almuniab, Marta Inglésc,e,f, Jorge Sanz-Rosa,e,f,
Juan Gambinia,e,f, José Santiago Ibáñez-Cabellosa,d,e, José Luis García-Giméneza,d,e, José Viñaa,e,f,
Consuelo Borrása,e,f,⁎

a Department of Physiology. Faculty of Medicine and Dentistry. University of Valencia, Av/ Blasco Ibáñez, 15, 46010 Valencia, Spain
b Department of Stomatology. Faculty of Medicine and Dentistry. University of Valencia, Av/ Blasco Ibáñez, 15, 46010 Valencia, Spain
c Department of Physiotherapy. Faculty of Medicine and Dentistry. University of Valencia, Av/ Blasco Ibáñez, 15, 46010 Valencia, Spain
d Center for Biomedical Network Research on Rare Diseases (CIBERER), CIBER-ISCIII, Spain
e INCLIVA Health Research Institute, Av/ de Menéndez y Pelayo, 4, 46010 Valencia, Spain
f Center for Biomedical Network Research on Frailty and Healthy Aging (CIBERFES), CIBER-ISCIII, Spain

A R T I C L E I N F O

Keywords:
Oxygen tension
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A B S T R A C T

Human dental pulp stem cells (hDPSCs) are a source for cell therapy. Before implantation, an in vitro expansion
step is necessary, with the inconvenience that hDPSCs undergo senescence following a certain number of
passages, loosing their stemness properties. Long-term in vitro culture of hDPSCs at 21% (ambient oxygen
tension) compared with 3–6% oxygen tension (physiological oxygen tension) caused an oxidative stress-related
premature senescence, as evidenced by increased β-galactosidase activity and increased lysil oxidase expression,
which is mediated by p16INK4a pathway. Furthermore, hDPSCs cultured at 21% oxygen tension underwent a
downregulation of OCT4, SOX2, KLF4 and c-MYC factors, which was recued by BMI-1 silencing. Thus, p16INK4a

and BMI-1 might play a role in the oxidative stress-associated premature senescence. We show that it is
important for clinical applications to culture cells at physiological pO2 to retain their stemness characteristics
and to delay senescence.

1. Introduction

Organismal aging is associated with a loss of the homeostasis. One
of the elements that contribute to this deterioration is increased cell
senescence [1]. Hayflick originally described senescence as a perma-
nent cell cycle arrest due to the limited replicative potential of cultured
human fibroblasts [2]. Senescence after a number of cell doublings
during in vitro culture is inevitable under current culture conditions,
resulting in cellular phenotypic changes and growth arrest [3–5]. This
observation of cellular senescence has been extrapolated to somatic
stem cells in vivo and might reflect the aging process of the whole
organism [4].

In vitro cellular senescence refers to both replicative and premature
senescence [6]. Premature or accelerated senescence can be induced by
stress signals, such as activation of oncogenes, strong mitogenic signals,
and/or reactive oxygen species (ROS) levels. As we previously reported,
oxidative stress is responsible for the low proliferation rate under

ambient oxygen tension (21% pO2) through p38, p21, and NRF-2
activation [7]. Cell culture-inherent oxidative stress can cause critical
telomere attrition, accumulation of DNA damage and de-repression of
the INK4/ARF locus, leading to stress-induced premature senescence
(SIPS) [8]. Lysyl oxidase enzymes (LOXL1 and LOXL2) have been also
shown to be oxidative stress-sensitive. Among other roles, such as cell
motility and cell adhesion, they have been related to cell growth control
and cellular senescence [9].

To maintain their replicative and self-renewing potential stem cells
have in place mechanisms to repress activation of cell death pathways.
The Polycomb-group transcriptional repressor BMI-1 has emerged as a
key regulator in several cellular processes including stem cell self-
renewal and cancer cell proliferation. BMI-1 was first identified in 1991
as a frequent target of Moloney virus insertion in virally accelerated B-
lymphoid tumours of E mu-myc transgenic mice [10]. Through repres-
sion of target gene expression in a lineage and context- dependent
manner, BMI-1 regulates a myriad of cellular processes critical for cell

http://dx.doi.org/10.1016/j.redox.2017.04.002
Received 9 March 2017; Received in revised form 30 March 2017; Accepted 1 April 2017

⁎ Corresponding author at: Department of Physiology, Faculty of Medicine, Avenida Blasco Ibañez 15, 46010 Valencia, Spain.
E-mail address: consuelo.borras@uv.es (C. Borrás).

Abbreviations:MSC, mesenchymal stem cells; hDPSCs, human dental pulp stem cells; SIPS, stress-induced premature senescence; MDA, malondialdehyde; OSKM, OCT4, SOX2, KLF4 and
c-MYC

Redox Biology 12 (2017) 690–698

Available online 07 April 2017
2213-2317/ © 2017 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

MARK



growth, cell fate decision, development, senescence, aging, DNA
damage repair, apoptosis, and self-renewal of stem cells [11]. The most
studied and validated BMI-1 target is the INK/ARF locus, which encodes
two structurally distinct proteins, p16INK4a and p14ARF, both of which
restrict cellular proliferation in response to aberrant mitogenic signal-
ling. Thus, collectively BMI-1 regulates p53/pRb axis through repres-
sion of the INK/ARF locus, which has been described as the principle
barrier to the initiation and maintenance of neoplastic transformation
[12]. BMI-1 is known to repress the INK/ARF locus expression, which
encodes two structurally distinct proteins, p16INK4a and p14ARF, both of
which restrict cellular proliferation in response to aberrant mitogenic
signalling [12]. BMI-1 has been implicated in the modulation of self-
renewal in several types of stem cells, including hematopoietic [13],
neural [14], and mammary [15].

Self-renewal of stem cells is critical for their persistence through
life, however the capacity to maintain this characteristic declines with
age [16,17]. Pluripotency genes, OCT4, SOX2, KLF4 and C-MYC
(OSKM) [18], are expressed in both pluripotent and adult stem cells,
such as mesenchymal stem cells (MSCs) and are down-regulated upon
long-term in vitro expansion and differentiation [19].

Our main purpose was to analyse the role of p16INK4a and BMI-1 in
oxidative stress-induced senescence in long term human dental pulp
stem cells (hDPSCs) cultures. In this study we demonstrate that non-
physiological in vitro cell culture conditions at 21% pO2 induces
premature senescence of hDPSCs, which is mediated by downregulation
of BMI-1 leading to an activation of p16INK4a pathway. By restoring
BMI-1 levels, we were able to rescue SOX2 and OCT4 expression under
oxidative stress conditions, reflecting that BMI-1 is not only involved in
stem cell self-renewal, but also in stemness maintenance. In summary,
we show that oxygen tension is critical when culturing hDPSCs.
Ambient oxygen tension (21% pO2) induces premature hDPSCs senes-
cence compared with physiological oxygen tension (3% pO2) due to
activation of p16INK4a pathway. Moreover, this is accompanied by a
BMI-1-dependent stemness potential loss. This is of importance in
regenerative medicine and also in stem cell banking for clinical use.

2. Material and methods

2.1. Dental pulp stem cells isolation and culture

Intact third molars were collected from men and women (aged from
15 to 35 years old). All patients were informed and agreed freely to
participate and signed the informed consent by contributing the
extracted tooth, which was always extracted for reasons independent
of this study. The study was approved by the institutional review board
of the University of Valencia. Cells cultured from dental pulps did not
exhibit any clinical and/or radiological sign or symptom of inflamma-
tion and/or infection. To isolate the cells, the pulps were firstly
fragmented by trituration, then chemically digested with 2 mg/mL
EDTA in Krebs-Henseleit buffer, and finally digested with a combina-
tion of type I collagenase and type II dispase at a final concentration of
4 mg/mL during 30 min in a humid incubator at 37 °C, 5% CO2, and 3%
pO2. Digested pulp fragments were centrifuged at 1000g for 2 min, and
the precipitate was resuspended and seeded in culture flasks with
complete DMEM (Dulbecco's Eagle Modified Medium with low glucose
supplement 1g/L, 10% heat-inactivated FBS and 1% antibiotic) under
the same conditions of temperature and oxygen pressure.

After the first passage, hDPSCs were divided in two groups: one
group was moved to a humid incubator with an oxygen pressure of
21%, while the other group was kept in the same incubator used for the
isolation at 3% oxygen tension. Cells were then cultured for 7 months.

All reagents were purchased from Gibco, Invitrogen.

2.2. siRNA transfection for BMI-1 knockdown

Young hDPSCs (5 passages) were seeded in a six well culture plate,

at 2×105 cells per well in 2 mL antibiotic-free normal growth medium
supplemented with 10% FBS and incubated until the cells were 60–80%
confluent. For each transfection, 0.8 mL of siRNA Transfection Medium
was added to each tube containing the siRNA Transfection Reagent
mixture (Solution A+Solution B) following manufacturer's instructions
(Santa Cruz Biotechnologies). The mixture was overlayed onto the
washed cells prior to a 6 h incubation at 37 °C in a CO2 incubator. 1 mL
of normal growth medium containing 2 times the normal serum and
antibiotics concentration was added post-incubation without removing
the transfection mixture. 24 h later, the medium was replaced with
fresh 1x normal growth medium and cells were assayed using the
appropriate protocol 24 h after the addition of fresh medium in the step
above.

2.3. Reactive oxygen species and mitochondrial membrane potential
determination by flow cytometry

Cells were washed twice with warm PBS and treated with trypsin
(Gibco, Invitrogen) and then resuspended in serum-free DMEM contain-
ing 1 g/L glucose. To detect intracellular peroxide levels, cells were
stained with DHR123 (dihydrorhodamine-123, Thermo Fisher
Scientific) at a final concentration of 1 μg/mL. Cells were then
incubated for 30 min at 37 °C in the dark. Mitochondrial membrane
potential was measured after cell staining with 1 μg/mL TMRM
(tetramethylrhodamine methyl ester), Thermo Fisher Scientific for
30 min at 37 °C in the dark. After incubation, values were read by
FACS-Verse flow cytometry until 20,000 events were recorded.

2.4. Lipid peroxidation measured using high-performance liquid
chromatography

hDPSCs lipid peroxidation was determined as malondialdehyde
(MDA) levels, which were detected using high-performance liquid
chromatography (HPLC) as an MDA-thiobarbituric acid (TBA) adduct
following a method described previously [20]. This method is based on
the hydrolysis of lipoperoxides and subsequent formation of an adduct
between TBA and MDA (TBA-MDA2). This adduct was detected using
HPLC in reverse phase and quantified at 532 nm. The chromatographic
technique was performed under isocratic conditions, the mobile phase
being a mixture of monopotassium phosphate 50 mM (pH 6.8) and
acetonitrile (70:30).

2.5. Protein carbonylation measured using high-performance liquid
chromatography

The carbonyl groups in the protein side chains were derivatized to
2,4-dinitrophenylhydrazone by reacting with 2,4-dinitrophenylhydra-
zine so that they could be detected using Western blotting using specific
antibodies. Oxidative modification of total proteins was assessed by
immunoblot detection of protein carbonyl groups using the OxyBlot
Protein Oxidation Detection kit in accordance with the manufacturer's
instructions (Merk Millipore). The procedure to quantify total protein
carbonyls using the OxyBlot kit was densitometry of the Oxyblot and
Ponceau staining followed by finding the ratio between the total density
in the Oxyblot and the Ponceau.

2.6. RNA extraction and RT-qPCR analysis

Total RNA was isolated from hDPSCs by using TRIzol reagent
(Invitrogen), according to the manufacturer's instruction. RNA was
quantified by measuring the absorbance at 260 nm. The purity of the
RNA preparations was assessed by the 260/280 ratio. cDNA was
synthesized from 0.5 μg total RNA using a MultiScribe reverse tran-
scriptase (RT) system kit of Applied Biosystems (High-Capacity cDNA
Reverse Transcription Kits). The reaction was incubated as recom-
mended by the manufacturer, for 10 min at 25 °C, followed by 120 min
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at 37 °C, and then for 5 min at 85 °C, and finally cooled to 4 °C to collect
the cDNA and then stored at −20 °C prior to the real-time PCR assay.

The quantitative PCR was performed using the detection system
7900HT Fast Real-Time PCR System (Applied Biosystems). Target and
control were run in separate wells following procedure: 10 min at 95 °C
and then 35 cycles of denaturation at 95 °C for 15 s and annealing and
extension at 62 °C for 1 min per cycle. All experiments were repeated at
least three times for each sample.

Gene-specific primer pairs and probes for BMI-1
(3’-CCAGGGCTTTTCAAAAATGA-5’ and 5’-GCATCACAGTCA
TTGCTGCT-3’), OCT4 (3’-GATCCTCGGACCTGGCTAAG-5’ and
5’-GACTCCTGCTTCACCCTCAG-3’), SOX2 (3’-AAAACAGCCCG-
GACCGCGTC-5’ and 5’-CTCGTCGATGAACGGCCGCT-3’), KLF4
(3’-CCCACATGAAGCGACTTCCC−5’ and 5’-CAGGTCCAGGAG-
ATCGTTGAA−3’), C-MYC (3’-CGCCCTCCTACGTTGCGGTC-5’ and 5’-
CGTCGTCCGGGTCGCAGATG-3’), p16INK4a (3’-GGGGGCAC-
CAGAGGCAGT-5’ and 5’-GGTTGTGGCGGGGGCAGTT-3’) and p14ARF

(3’-CCCTCGTGCTGATGCTACTG-5’ and 5’-CATCATGACCTGG-
TCTTCTAGGAA-3’) were assayed together with Maxima SYBR Green/
ROX qPCR Master Mix (2X) (Fermentas) and normalized against
GAPDH (3’-TGAACGGGAAGCTCACTGG-5’ and 5’-TCCACCA-
CCCTGTTGCTGTA-3’) housekeeping gene. Relative expression was
analysed using the standard curve method.

Gene-specific primer pairs and probes for LOXL1 (Hs00935937_m1),
LOXL2 (Hs00158757_m1), and TET1 (Hs04189344_g1), were used
together with 1x TaqMan® Universal PCR Master Mix (Applied
Biosystems) and normalized against GAPDH (Hs00375015_m1). In this
case, the expression was calculated according to the 2−ΔΔCt method.

2.7. Senescence-associated β-galactosidase staining by flow cytometry

SA-β-Gal staining was performed using FluoReporter® LacZ Kit

(Molecular Probes) following manufacturer's instructions. 100 uL of
resuspended cells (107 cells/mL) in staining medium were placed into
an appropriate flow cytometer tube and treated with 100 uL of
prewarmed fluorescein di-β-D-galactopyranoside (FDG) 2 mM working
solution for exactly one minute at 37 °C. FDG loading was stopped by
adding 1.8 mL ice-cold staining medium containing 1.5 μM propidium
iodide. FDG values were read by flow cytometry until 20,000 events
were recorded.

2.8. Protein analysis using western blotting

Total protein was harvested by lysing the cells in a lysis buffer
containing a protease inhibitor cocktail (Roche Products). Protein
content was determined by a modified Lowry method [21]. 30 μg of
protein from each sample was separated on SDS-12.5% polyacrylamide
gels and transferred onto a PVDF membrane (BioRad). Membranes were
blocked with 0.01 g/mL BSA in TBS-0.05% Tween 20 (TBS-T) and
incubated with the following antibodies: anti-BMI-1 (1:200), anti-
Tubulin (1:1000) and anti-Mouse (1:10,000). The protein bands were
detected by chemiluminiscence.

2.9. Statistical analysis

Quantitative variables are expressed as means and SD. Qualitative
data are expressed as total number and percentage. Statistical analysis
consisted of Student's t-test for 2 means and ANOVA to compare 2
means with one variation factor. If the n is not the same in all the
groups, the comparison of Scheffé was used. All values are means± SD
of measurements in at least three different cultures (three replicates
each). Significance was defined as *p< 0.05, **p<0.01, and
***p< 0.001.

Fig. 1. Oxidative stress related parameters in hDPSCs cultured at 21% or 3% oxygen tension along passages. (A) ROS levels measured by dihydrorhodamine-123 (DHR123), (B)
Mitochondrial membrane potential levels measured by tetramethylrhodamine methyl ester (TMRM), (C) Lipid oxidation levels measured by malondialdehyde (MDA) and (D) protein
oxidation levels. The data are shown as means± SD (n=5). The statistical significance is expressed as *p< 0.05; ***p< 0.001 versus 3% pO2.
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3. Results

3.1. Ambient oxygen tension induces oxidative stress in hDPSCs long term
culture

hDPSCs cultured under ambient oxygen tension showed signifi-
cantly higher levels of ROS, lipid oxidation and protein carbonylation

than those cultured under physiological oxygen tension, as well as a loss
of their mitochondrial membrane potential. These differences were
found from early passages and were maintained during long term
culture, showing that hDPSCs at passage 15 at 3% pO2 were less
damaged than their counterparts at 21% pO2 (Fig. 1A–D). According to
this, we found that hDPSCs cultured at 21% pO2 showed significantly
increased expression of the antioxidant enzymes manganese superoxide
dismutase (MnSOD), catalase and glutathione peroxidase (GPx) (Fig. 2).
This increase of antioxidant shield might be due to an attempt to
hormetically adapt the metabolism to the increased oxidative stress at
21% pO2.

3.2. Oxidative stress induces premature senescence (SIPS) under ambient
oxygen tension during long term culture of hDPSCs

hDPSCs were cultured under ambient (21% pO2) or physiological
oxygen tension (3% pO2) serially until the cells were exhausted.
hDPSCs cultured under ambient oxygen tension only reached 15
passages, while those cultured under physiological oxygen tension,
were able to achieve 25 passages (Fig. 3A). Moreover, we could observe
that hDPSCs cultured at 21% pO2 began to show enlarged and flattened
shapes around passage 15, while hDPSCs cultured at 3% pO2 at passage
25 were still morphologically thinner (Fig. S1).

β-Galactosidase staining is one of the most commonly used markers
of senescence. hDPSCs cultured at 21% pO2 had significantly higher

Fig. 2. Antioxidant genes expression in hDPSCs cultured at 21% or 3% oxygen
tension. Manganese superoxide dismutase (MnSOD) levels, glutathione peroxidase (GPx)
levels and catalase levels. The data are shown as means± SD (n=5). The statistical
significance is expressed as ***p< 0.001 versus 3% pO2.

Fig. 3. Oxidative stress induces premature senescence in hDPSCs during long term culture at 21% oxygen tension. (A) Number of passages reached (upper pannel) and survival
curve (lower pannel), (B) β-galactosidase activity measured by fluorescein di-β-D-galactopyranoside (FDG) load, (C) LOXL1 and (D) LOXL2 relative mRNA expression levels. The data are
shown as means± SD (n=5). The statistical significance is expressed as ***p<0.001 versus 3% pO2.

C. Mas-Bargues et al. Redox Biology 12 (2017) 690–698

693



levels of β-galactosidase activity at any passage analysed (5, 10, 15)
when compared with 3% pO2. This difference increased along passages.
Moreover, hDPSCs cultured at 3% pO2 were even less senescent at
passage 25 than hDPSCs cultured at 21% pO2 at passage 15 (Fig. 3B).

LOXL1 and LOXL2 are lysyl oxidase enzymes involved in cell cycle
regulation. We show in Fig. 3C and D, that hDPSCs cultured at 3% pO2

had lower mRNA levels of both enzymes in comparison to those
cultured at 21% pO2. Furthermore, as passaging number increased, so
did LOXL1 and LOXL2 mRNA levels when cultured at 21% pO2 but not
at 3% pO2.

Therefore, hDPSCs cultured at 21% pO2 undergo premature senes-
cence compared to those cells cultured at 3% pO2.

3.3. Oxidative stress-induced premature senescence (SIPS) is mediated by
p16INK4a pathway

We analysed the mRNA expression pattern of both p14 ARF and
p16INK4a in hDPSCs long term culture at 3% and 21% pO2. p14ARF

mRNA expression levels were not affected by long-term culture or by
oxygen concentration. However, p16INK4a mRNA levels revealed an
expression pattern very similar to β-galactosidase activity levels, i.e.,
there was an increase of its mRNA expression along the passages and it
was always higher at 21% pO2 (Fig. 4A and B).

In order to demonstrate that oxidative stress was mediating the
p16INK4a induced premature senescence at 21% pO2, we cultured
hDPSCs at this oxygen tension with 50 μM Trolox, a hydrosoluble
antioxidant analogue of Vitamin E. We found that Trolox reversed the
effect of ambient oxygen tension on p16INK4a mRNA expression
(Fig. 4C). Therefore, oxidative stress increases p16INK4a expression,
which in turn accelerates senescence in hDPSCs cultured under ambient
oxygen tension.

3.4. Loss of stemness under ambient oxygen tension during long term culture
of hDPSCs

Oxidative stress can affect stemness, therefore we measured the
mRNA expression levels of OSKM transcription factors. SOX2 and OCT4
are implicated in pluripotency induction, while KLF4 and C-MYC are
involved in pluripotency maintenance. Our results show that, compar-
ing hDPSCs cultured at 3% pO2 vs 21% pO2, SOX2 and OCT4 mRNA
expression was significantly higher at passage 5, and KLF4 and C-MYC
mRNA expression was significantly higher at passage 15 (Fig. 5A). TET1
is one member of a family of enzymes that alter the methylation status
of DNA. They are involved in stem cell self-renewal, proliferation and
differentiation. We observed that TET1 mRNA levels were downregu-
lated in hDPSCs cultured at 21% pO2, in comparison to 3% pO2

(Fig. 5B).
Therefore, we show that culturing hDPSCs at 3% pO2 increases

OSKM transcription factors compared to 21% pO2.

3.5. BMI-1 can rescue SOX2 and OCT4 expression under ambient oxygen
tension

BMI-1 protein levels were significantly higher in hDPSCs cultured at
21% pO2 at passage 5 when compared to 3% pO2. However, they
decreased very rapidly with passages and were significantly lower at
passage 15, in comparison to those cultured at 3% pO2 (Fig. 6A and B).

We used siRNA transfection in order to obtain a mild BMI-1
knockdown so that hDPSCs at passage 5 cultured at 3% or 21% pO2

had the same BMI-1 protein expression level (Fig. S2). BMI-1 knock-
down did not have any effect on p16INK4a expression (data not shown),
however it restored SOX2 and OCT4 mRNA levels in hDPSCs cultured at
21% pO2 (Fig. 7). This reflects a relationship between BMI-1 and
pluripotency transcription factors.

4. Discussion

hDPSCs normally reside in low oxygen concentrations. In mammals
including humans, hDPSCs are located in perivascular niches close to
the vascular structure in almost all tissues [22–24]. By the time oxygen
reaches the organs and tissues, oxygen concentration drops to 2–9%,
with a mean of 3% in the dental pulp tissue [25,26]. Despite this fact, it
is still common to culture cells at high non- physiological 21% pO2.
Here we demonstrate that long term culture of hDPSCs in a physiolo-
gical oxygen tension (3% pO2) has beneficial effects on both cellular
senescence and stemness potential maintenance in comparison to

Fig. 4. Oxidative stress-induced premature senescence. Correlation with p16INK4a

and p14ARF. (A) p14ARF mRNA levels, (B) p16INK4a mRNA levels and (C) p16INK4a mRNA
levels when treatment with 50 μM Trolox. The data are shown as means± SD (n=5). The
statistical significance is expressed as ***p<0.001 versus 3% pO2 and ###p<0.001
versus 21% pO2+Trolox.
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culturing cells under ambient oxygen tension.
In the present study, we show that reduction of the pO2 level led to

decreased intracellular oxidative stress and cellular components da-
mage during hDPSCs long term culture. This was accompanied by
reduced ROS levels, less protein and lipid damage, as well as a better
conservation of the mitochondrial membrane potential. In accordance
to this, it has been demonstrated that high concentrations of oxygen can
cause oxidative stress via production of reactive oxygen species (ROS)
and free radicals that damage lipids, proteins and DNA [27]. In this
work, we also linked oxygen tension to altered mRNA expression of
MnSOD, CAT and GPx. The increment of antioxidant enzyme activities
indicated that cellular anti-oxidative system was triggered to resist

oxidative damage. Fan and colleagues already demonstrated that higher
oxygen concentrations resulted in more H2O2 generation in human
cells, which implied that the increase of H2O2 levels could enhance
transcription of MnSOD, CAT and GPx [28].

As passage number increased, cells cultured under ambient oxygen
tension began to show flattened or lengthened shapes, and debris in the
culture medium increased. These morphological changes, have already
been described as a characteristic of senescence [29,30]. In addition to
this, hDPSCs cultured at 21% oxygen tension showed higher levels of
senescence related β-galactosidase activity as well as p16INK4a expres-
sion. This behaviour in long term in vitro culture leads to senescence
and is collectively referred to as oxidative stress induced premature

Fig. 5. Pluripotency markers in hDPSCs cultured at 21% vs 3% oxygen tension along passages. (A) OCT4, SOX2, KLF4 and C-MYC mRNA levels and (B) TET1 mRNA levels relative
expressions. The data are shown as means± SD (n=5). The statistical significance is expressed as *p< 0.05; **p<0.01; ***p< 0.001 versus 3% pO2.
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senescence (SIPS) [31]. Lysyl oxidase activity has been shown to
increase under oxidative stress conditions [32]. hDPSCs cultured at
21% pO2 have higher mRNA expression levels of both LOXL1 and
LOXL2. Moreover, it has been described that an increased level of these
enzymes may contribute to escape from cellular senescence [9]. This
could be a defensive mechanism of hDPSCs cultured at 21% pO2 to
escape from oxidative stress-induced senescence. In addition, lysyl
oxidases participate in the carbonylation of several proteins, and
further increase the H2O2 levels as subproduct of this reaction [33].
These results reinforce the observations of Fan and colleagues [28] and
also may contribute to the induction of the antioxidant shield in hDPSCs
incubated at 21% pO2, as we described in this investigation.

The p16INK4a/pRb and p14 ARF/p21/p53 cell cycle inhibitory path-
ways represent two important pathways controlling proliferation, and
their inactivation can extend the limited division number of mitotic
cells in culture [34]. Given the role of p16INK4a in cell cycle regulation
and the recent implication of oxidative stress in stem cell senescence,
we observed a potential link between ROS and p16INK4a regulation. Our
results show that hDPSCs cultured at 21% pO2 have higher levels of
ROS, as well as increasing p16INK4a expression, suggesting that they are
approaching senescence. In fact, stress signals such as ROS stimulate the
activation of p16INK4a transcription and play important roles in initia-
tion, as well as maintenance, of cellular senescence [35–37]. Ito and
colleagues described, both in vitro and in vivo, that activation of
p16INK4a/pRb gene product pathway in response to elevated ROS led

to the failure of hematopoietic stem cells (HSCs) function, and that
treatment with antioxidant agents restored the constitutive capacity of
HSCs, resulting in the prevention of bone marrow failure [38,39]. These
results support our data that treatment with 50 μM Trolox can rescue
p16INK4a levels in hDPSCs long term culture at 21% pO2.

Interestingly, p16INK4a and p14ARF are both encoded by a single
locus; however, ROS specifically affects p16INK4a but not p14ARF. It may
be that the p16INK4a pathway is of particular importance in the
senescence of stem cells [40,41] as it is considered to be a robust
biomarker for cellular senescence, and at the forefront of cell cycle
inhibition as it binds specifically to the CDKs, displacing cyclin-D and
thereby arresting cells in G1 phase [42].

Taken together, the fact that hDPSCs cultured at 21% pO2 show
increased p16INK4a expression, higher β-galactosidase activity, over-
expressed LOXL1 and LOXL2, and senescent like morphology, earlier
than those cultured at 3% pO2, means that 21% oxygen induced-
oxidative stress causes premature senescence.

It is well known that one of the BMI-1 downstream targets are
p16INK4a and p14ARF [43,44]. p16INK4a contributes to the regulation of
cell cycle progression by inhibiting the S phase [45]. BMI-1 is a
repressor, so, high levels of BMI-1 should then be followed by a
decrease in p16INK4a expression, and subsequently by a hyper prolifera-
tion rate like in cancer cells [44]. However, we found that BMI-1
overexpression in hDPSC cultured at 21% pO2 at early passages was not
followed by a p16INK4a downregulation. ROS and BMI-1 play an
opposite role on p16INK4a regulation. In fact, oxidative stress induced
by 21% oxygen tension would be strong enough to counteract BMI-1
downstream effects on the INK/ARF locus, as it has been shown that it
can up-regulate p16INK4a expression [46]. As passages succeed, BMI-1
levels plummet because hDPSCs cultured under ambient oxygen tension
suffer an accelerated ageing accompanied by a loss of their capacity to
face oxidative stress effects.

Although p16INK4a and p14ARF have been shown to be BMI-1 targets
in the context of stem cell self-renewal, they do not account for all BMI-
1 actions, and other downstream effectors are being sought [47,48].
Recently, a relationship between BMI-1 and SOX2 has been described
[49]. SOX2, as well as OCT4, are transcription factors that are key
players in the induction of pluripotency and stemness [18]. In the
present study, we confirmed a loss in all OSKM transcription factors
expression, as well as a deregulation in TET1 expression, during hDPSCs
in vitro long term culture at 21% pO2. TET proteins are dioxygenases
that regulate 5 hydroxyl-methylcytosine (5-hmC) levels in genes
implicated in self-renewal, proliferation and differentiation [50,51].
Our results show that TET1 expression levels are influenced by culture
oxygen pressure and passaging number. In fact, when hDPSCs undergo
long passages, TET1 levels are downregulated, so decreasing the

Fig. 6. BMI-1 expression level in hDPSCs cultured at 21% vs 3% oxygen tension
along passages. (A) BMI-1 protein levels, and (B) representative western-blot images of
BMI-1 protein levels. The data are shown as means± SD (n=5). The statistical
significance is expressed as *p< 0.05; ***p< 0.001 versus 3% pO2.

Fig. 7. BMI-1 knockdown effect on SOX2 and OCT4 expression in hDPSCs cultured at 21% vs 3% oxygen tension. (A) SOX2 mRNA expression levels and (B) OCT4 mRNA
expression levels. The data are shown as means± SD (n=3). *p<0.05; **p< 0,01; ***p< 0.001.
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maintenance of stemness in hDPSCs [51,52]. Koh and colleagues also
proposed that OCT4 and SOX2 regulate the expression of TET1 [51].
Interestingly, our results show that the effect of cell passage is greater
than oxygen pressure effect, suggesting that OCT4, SOX2 and NANOG
are more relevant in stem cell maintenance than TET1. In accordance
with this, it has been shown that cells maintained at 21% pO2 expressed
significantly less OCT4, SOX2 and NANOG than those cultured at 5%
pO2 [53]. Furthermore, it has also been described that physiological
oxygen tension inhibits senescence and maintains stem cell properties
[54,55].

Our results show that BMI-1 downregulation can rescue SOX2 and
OCT4 levels without affecting p16INK4a expression levels in hDPSCs
cultured at 21% pO2. Again, the opposite effect of BMI-1 and oxidative
stress plays a role in maintaining p16INK4a expression levels.

As it has also recently been described by Izpisúa and colleagues
[56], the in vitro induction of OSKM can ameliorate some cellular
markers of ageing, such as cellular senescence. hDPSCs cultured at 3%
pO2 are able to maintain the expression of this factors during a larger
number of passages, so the preservation of the OSKM factors could play
an important role in the delayed onset of cellular phenotypes associated
with ageing observed in this cells.

In conclusion, the present study suggests that p16INK4a and BMI-1
are involved in the cellular premature senescence of hDPSCs triggered
by oxidative stress. It is important considering this fact when culturing
primary culture cells to improve the extrinsic culture environment, in
order to retain their stemness properties and to delay the process of
senescence prior to clinical application.
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