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Abstract

The contributions of non-standard four-neutrino contact interactions to elec-
troweak observables are considered at the one-loop level by using the effective
quantum field theory. The analysis is done in terms of three unknown pa-
rameters: the strength of the non-standard neutrino interactions, F̃ , an ad-
ditional derivative coupling needed to renormalize the divergent contributions
that appear when the four-neutrino interactions are used at the loop level and
a non-standard non-derivative Z-ν̄ν coupling. Then, the precise measurements
of the invisible width of the Z-boson at LEP and the data on the neutrino
deep-inelastic scattering yield the result F̃ = (−100 ± 140)GF . Assuming that
there are no unnatural cancellations between the contributions of the three ef-
fective couplings a much stronger bound is obtained:

∣

∣

∣F̃
∣

∣

∣ ∼< 2GF , which is a
factor 200 better than the one obtained in previous analyses based on tree level
calculations.
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1 Introduction

Until now the Standard Model [1] of electroweak interactions (SM) has passed very suc-
cessfully all precision experimental tests. Especially intensive have been the studies of the
different four-fermion processes between leptons and quarks. In the SM such reactions are
mediated by the electroweak vector bosons. The large body of experimental data collected
at different energy scales (from practically zero-energy up to the mass of the Z-boson)
confirms that, indeed, four-fermion interactions are mediated by gauge bosons.

Nevertheless, there is a widespread belief among theoreticians that the current theory of
electroweak interactions is only an effective low-energy limit of a more fundamental theory.
If there is some new dynamics beyond the SM, it might result in some deviations from
the SM predictions for four-fermion processes. For example, standard fermions could take
part in processes with the exchange of some non-standard intermediate state. If the mass
of the intermediate particle is larger than the Fermi scale, then, at the Fermi scale (and
below) the new interaction can be described by effective four-fermion operators suppressed
by 1/M2, where M is a scale of the order of the mass of the heavy intermediate particle.

Obviously one of the most elusive among the non-standard four-fermion interactions
is that which involves only neutrinos. This type of interactions can naturally appear in
models with extra neutral gauge bosons or new scalars. Here we will assume simply that
this interaction exists without asking about its particular origin.

It is clear that if some “secret” neutrino interaction (SNI) exists, it can only be tested
indirectly.

The first studies of possible non-standard ν–ν interactions were performed many years
ago [2, 3]. In ref. [3] different weak processes sensitive to such an interaction were investi-
gated for a SNI with pure vector form

Lν−ν = F (ν̄γαν)(ν̄γαν). (1)

In particular the SNI, which contributes to the decays π+ → e+νeν̄ν and K+ → l+νlν̄ν (l =
e, µ), could modify the lepton energy spectra in K+ and π+ decays. From an analysis of
these spectra the following bounds on the coupling F were obtained [3]

|F | ≤ 107GF , |F | ≤ 2 × 106GF , (2)

where GF denotes the weak Fermi constant.
Similar bounds were found [3] from the absence of leptons with “wrong” charge in the

process νµ + N → µ+ + νµ + νµ + X.
Later on these bounds were improved in a special experiment [4] searching for the decay

K+ → µ+νµν̄ν. From the negative result of this experiment the following limit was set:

F ≤ 1.7 × 105GF . (3)

The reason why bounds on the non-standard neutrino interaction coming from low-
energy experiments are so loose is evident. The SNI contributes only to the decays with
four particles in the final state, and such processes are strongly suppressed by phase space
compared with the standard leptonic π and K decays.

In ref. [5] the width of the decay Z → νν̄νν̄ was calculated in the presence of a non-
standard ν–ν interaction of the general vector and axial-vector form:

Lν−ν = F
∑

i,j=e,µ,τ

(ν̄iOiανi)(ν̄jO
α
j νj) , (4)
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where
Oα

i = aiγ
αPL + biγ

αPR , (5)

PL = 1
2
(1 − γ5) and PR = 1

2
(1 + γ5) are the left and right chirality projectors and F, ai, bi

are real parameters. The coupling F has dimension [M ]−2. From the invisible width of the
Z-boson, which has been precisely measured at LEP, and assuming three generations of
light neutrinos and lepton universality, the following bounds were obtained [5] (F̃ = Fa2

l ):

|F̃ | ≤ 390GF , (6)

in the case of the V − A structure of the non-standard interaction and

|F̃ | ≤ 710GF (7)

for the pure vector case. As the phase-space suppression is much smaller in the case of
the Z-boson decay, these last bounds are much better than those obtained from π- and
K-meson decays.

Taking all previous bounds, however, the “secret” effective four-neutrino interaction
could still be much stronger than the one predicted by the minimal SM1, F̃ = GF/

√
2.

All previous bounds are extracted from processes in which the new interaction is the only
relevant one and, therefore, observables depend quadratically on F̃ . Obviously if the new
interaction enters in loop corrections to a SM process, modifications come through its
interference with the SM amplitude and, then, the deviations from the SM predictions will
depend linearly on the coupling F̃ .

For example, ν–ν interactions will contribute to the decay Z → ν̄ν at the one-loop level
(see Figs. 1a and b) and consequently to the invisible width of the Z-boson. It is very
simple to estimate the order of magnitude of the corresponding one-loop corrections:

∆Γν̄ν

Γν̄ν

≈ F̃M2
Z

(4π)2
. (8)

As the invisible width of the Z-boson is now measured with an accuracy better than 1%
[10], one finds the following bound on the non-standard coupling F̃ :

F̃ ≤ (1–10) · GF . (9)

Clearly, from this rough estimate and from our previous discussion one expects stronger
bounds on the “secret” ν–ν interaction coming from the one-loop analysis than those which
follow from its contribution to the invisible width of the Z-boson at tree-level, eq. (6) and
eq. (7).

The above estimate of the loop effects of the four-neutrino interactions is rather näıve,
because the one-loop calculation is actually divergent: four-neutrino interactions are not
renormalizable. This does not preclude us obtaining some information on them from loops,
as long as the appropriate framework is used to obtain finite non-ambiguous results. This
framework is the effective quantum field theory (EQFT) [11, 12]. In this language all
operators allowed by the symmetries of the problem are already present in the effective
Lagrangian from the beginning, therefore, there always exists a counterterm available to

1Some information about ν–ν interactions was obtained also from astrophysical data[6, 7, 8]. The
corresponding bounds are weaker than those of eq. (6) and eq. (7). Bounds coming from primordial
nucleosynthesis can be much stronger [9] when the four-neutrino interaction involves both left- and right-
handed neutrinos.
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absorb any divergence that could appear in loop calculations. The number of the effective
operators is generally infinite and experimental observables depend on an infinite number of
unknown couplings2. However, the effects of higher-dimension operators are suppressed in
low-energy processes and one can truncate the Lagrangian by keeping only a finite number
of operators. Using the EQFT language one has a well-defined prescription to calculate
loop effects of non-renormalizable operators. The price that has to be paid is that it is not
possible to analyse effects of one operator independently of other operators that mix with
it under renormalization. Under certain assumptions one can reduce the basis of operators
that mix.The more assumptions one makes the stronger will be the bounds one obtains on
the couplings of the effective operators. The less assumptions one makes the more reliable
will be the bounds obtained.

For example, if we want to analyse an operator that contributes to experimental ob-
servables at the one-loop level we can use a “minimal” set of operators (which, in general,
does not form a closed basis) that contains the operator in question plus all the operators
that mix “directly” with it at the one-loop level[13].

In this letter we discuss the procedure of bounding effective operators by considering
the case of the four-neutrino contact interaction and obtain constraints on this elusive
interaction from the processes in which it contributes at the one-loop level.

2 Effective Zν̄ν vertex in the presence of the four-

neutrino interaction

We first calculate one-loop corrections to the Z-neutrino coupling due to a SNI of the general
V, A form given in eq. (4). Note that interactions mediated by scalars can also be written
in this form after a Fierz transformation. The flavour structure could be, however, more
general. For simplicity we will only consider the flavour structure of eq. (4). On the other
hand, it has been shown very recently [9] that four-neutrino interactions that involve both,
left-handed and right-handed neutrinos are strongly bounded by cosmological arguments:
if these kind of interactions are strong enough they would keep the three right-handed
neutrinos in thermal equilibrium at the time of nucleosynthesis, therefore, disturbing it.
But it is important to realise, that nucleosynthesis gives no bound at all if either ai or bi

are zero in eq. (5), because in both cases right-handed neutrinos are completely decoupled.
Interactions of only right-handed neutrinos are not interesting, therefore, in the analysis we
could restrict ourselves to interactions among only left-handed neutrinos, that is ai 6= 0 and
bi = 0. However, for the sake of generality we will keep for the moment the two interactions
as given by eq. (5).

Finally we would like to remark that interactions of the form (4) are not SU(2) gauge
invariant by themselves. To write them in an explicitly gauge invariant form we would need
to include an additional interaction among charged leptons (and neutrino–leptons as well)
with exactly the same coupling. But such interactions, at least those involving electrons,
are strongly bounded by different experiments. Therefore, if four-neutrino interactions are
part of an SU(2) gauge invariant interactions they can be bounded indirectly though the
bounds on the four-fermion interactions involving charged leptons. On the other hand,
the general effective Lagrangian, eq. (4), can be obtained from a gauge-invariant effective
Lagrangian after spontaneous symmetry breaking. From a phenomenological point of view,

2Note, however, that if the effective theory is a low-energy limit of some known renormalizable theory
(see e.g. [13]) all effective couplings can be expressed in terms of the few parameters of the underlying
theory.
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however, we could ask how strong four-neutrino interactions can be independently of any
additional assumption.

We will use the näıve dimensional regularization scheme (with anticommuting γ5). Then,
there are two one-loop diagrams, shown in Figs. 1a and b, contributing to the Zν̄ν vertex3.
The corresponding amplitudes are given by

Ta(Z → νiν̄i) = − g

2cW

µǫ F

(4π)2

4

3
q2
(

∆ǫ(q
2) +

5

3

)

∑

j=e,µ,τ

aj ū(k′)Oα
i u(k)ǫ(q)α , (10)

Tb(Z → νiν̄i) = − g

2cW

µǫ F

(4π)2

4

3
q2
(

∆ǫ(q
2) +

2

3

)

a2
i ū(k′)γαPLu(k)ǫ(q)α . (11)

Here q = k′ − k is the four-momentum of the Z-boson, cW = cos θW is the cosine of the
weak mixing angle, and the summation in Ta runs over the different neutrino-types in the
loop; u(k) denotes a Dirac spinor, ǫα is the wave function of the Z-boson. Finally, µ is
the dimensional regularization mass parameter and ǫ = 2 − D/2 with D the space-time
dimension. Both diagrams are divergent. In dimensional regularization this divergence
appears as a simple pole, 1/ǫ, in the function

∆ǫ =
1

ǫ
− γ + log(4π) − log

(

−q2 − iη

µ2

)

≡ 1

ǫ̂
− log

(

−q2 − iη

µ2

)

. (12)

In our analysis we will assume lepton universality for the three generations of neutrinos.
Then, we can rewrite the sum of Ta and Tb in the form

T = Ta + Tb = − g

2cW

µǫGF q2
∑

A=L,R

cA
1 (γA

12∆ǫ(q
2) + κA

12)ū(k′)γαPAu(k)ǫ(q)α , (13)

which has been expressed in terms of the renormalized (scale-dependent) dimensionless
couplings

cL
1 =

Fa2
i

GF

, cR
1 =

Faibi

GF

(14)

and the following constants

γL
12 =

1

3π2
, γR

12 =
1

4π2
, κL

12 = γL
12

17

12
, κR

12 = γR
12

5

3
. (15)

As we see, the SNI generates, at the one-loop level, a derivative coupling of the Z-
boson to neutrinos that is divergent. In order to obtain a finite amplitude for processes
involving the Zν̄ν vertex, the effective Lagrangian should contain a term able to absorb
this divergence in its coupling. This term can be written as

L2 = − g

2cW

µǫGF

∑

i=e,µ,τ

∑

A=L,R

(

cA
2 + ∆cA

2

)

(ν̄iγ
αPAνi)∂

βZβα , (16)

where Zβα = ∂βZα − ∂αZβ; cA
2 (µ) (A = L, R) are the MS renormalized couplings and the

corresponding counterterms are

∆cA
2 = −cA

1 γA
12

1

ǫ̂
.

It is important to remark that since we are not assuming SU(2) invariance for the effec-
tive Lagrangian, a direct (non-derivative) non-standard coupling of the Z boson to neutrinos

3There is no wave-function renormalization of the external neutrinos in our case. Such massless tadpole-
like diagrams are zero in dimensional regularization.
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is in principle possible. Such a coupling could be generated from a gauge-invariant effective
Lagrangian after spontaneous symmetry breaking. Although in dimensional regularization
and for massless neutrinos it is not needed, there is no symmetry that forbids it. In fact
it will appear naturally if other regularization schemes are used. Therefore, in order to be
completely general we will include it in the analysis and will see how it affects our bounds.
This additional interaction has the form

Lδ = − g

2cW

µǫ
∑

i=e,µ,τ

∑

A=L,R

δAZα(ν̄iγ
αPAνi) . (17)

The contribution of the operators (16) and (17) is schematically shown in Fig. 1c. Then,
the full renormalized Zν̄ν vertex will be given by the sum of the three diagrams of Fig. 1:

T̂ = − g

2cW

∑

A=L,R

gA(q2)ū(k′)γαPAu(k)ǫ(q)α , (18)

where

gA(q2) = δA(µ) + GF q2
(

cA
2 (µ) + cA

1 (µ)
(

γA
12

(

log(µ2/|q2|) + iπθ(q2)
)

+ κA
12

))

, A = L, R .

(19)
Here, δA(µ) gives the contribution of the direct non-derivative Z-neutrino interactions. The
running couplings in our approximation (we neglect all contributions with gauge bosons
running in the loops) are given by

cA
1 (µ) ≈ cA

1 (µ0) (20)

cA
2 (µ) ≈ cA

2 (µ0) + cA
1 (µ0)γ

A
12 log

(

µ2
0

µ2

)

, (21)

where µ0 is some reference scale. Thus, the effective four-neutrino operator at the one-
loop level contributes to the running of the coupling of the operator (16) and we have to
consider mixing between at least these two operators4. The coupling δ(µ) does not mix
with the other couplings because it correspond to an operator of different dimension, then
δA(µ) ≈ δA(µ0).

On the other hand, because the standard Zν̄ν coupling only involves left-handed neu-
trinos, the lowest-order effect of the non-standard vertex eq. (18) comes via its interference
with the standard coupling and therefore only the real part of the left-handed vertex in
eq. (18) will be relevant for our analysis. Thus, “new physics” depends on three unknown
parameters, δL(µ), cL

1 (µ) and cL
2 (µ). In addition, as commented above, couplings to right-

handed neutrinos are strongly bounded from cosmological data.
Obviously, to put independent bounds on these three parameters in processes which

depend only on the induced effective Z-neutrino vertex one needs experimental information
obtained at least at three different energy scales. We would like to note that the behaviour
of the three terms is quite different, while the terms proportional to cL

1 and cL
2 are also

proportional to q2 the δL term is independent of q2 and can be bounded at very low energies.

4Obviously, there are many other four-fermion operators like (l̄l)(ν̄ν), etc., which also mix with the Z-
neutrino coupling (16). But as we are neglecting loops with gauge bosons, they do not mix directly at the
one-loop level with the four-neutrino operator and, as they can be strongly bounded from other processes,
we will disregard them.
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3 Neutrino neutral-current experiments and

bounds on the four-neutrino contact interaction

In this section we will consider the bounds on the four-neutrino coupling (and other effective
coupligns entering in the Zνν vertex (18)), which follow from neutrino neutral-current
experiments.

As we discussed above, in our approximation, the effect of the non-standard operators
is taken into account by three renormalized coupling constants δL(µ), cL

1 (µ) and cL
2 (µ).

Since physical results are independent from µ we can freely choose this scale. We will take
µ = MZ as the reference scale and define, for further use,

δ = δL(MZ) , c1 = cL
1 (MZ) , c2 = cL

2 (MZ) , γ = γL
12 =

1

3π2
, κ = κL

12 =
17

36π2
. (22)

Then all our observables will depend on the quantity

Re
{

gL(q2)
}

= δ + GF q2
(

c2 + c1κ + c1γ log(M2
Z/|q2|)

)

. (23)

We will first consider bounds from the precise measurement of the invisible Z-width at
LEP. From the effective vertex (18) we can easily obtain the partial decay width of the
Z-boson into two neutrinos. It can be written in the following form:

Γ(Z → ν̄ν) = ΓSM(Z → ν̄ν) + ∆Γν̄ν , (24)

where ΓSM(Z → ν̄ν) is the SM contribution (including radiative corrections) and ∆Γν̄ν

contains the effects of the non-standard operators. At lowest order it comes from the
interference of the non-standard amplitude with the SM amplitude and we have

∆Γν̄ν = ΓSM(Z → ν̄ν)2 Re
{

gL(M2
Z)
}

, (25)

where the function Re {gL(q2)} is given by eq. (23) and for q2 = M2
Z it is

Re
{

gL(M2
Z)
}

= δ + GFM2
Z(c2 + c1κ) . (26)

Assuming that there are three generations of neutrinos, the non-standard contribution
to the invisible width of the Z-boson is

∆Γinvis = 3∆Γν̄ν , (27)

where ∆Γν̄ν is given by eq. (25). On the other hand this quantity can also be expressed as

∆Γinvis = Γinvis − 3

(

Γν̄ν

Γl̄l

)SM

Γl̄l . (28)

The r.h.s. of eq. (28) is constructed only from observables measured at LEP [10]:

Γinvis = 497.6 ± 4.3 MeV, Γl̄l = 83.87 ± 0.27 MeV (29)

(we use the combined result from the four LEP experiments [10]) and the ratio of the
neutrino and charged leptons partial widths calculated within the SM

(

Γν̄ν

Γl̄l

)SM

= 1.992 ± 0.003 . (30)
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The central value of the above quantity corresponds to mtop = 150 GeV and the small error
is due to the variation of the mass of the top quark in the range 100 GeV < mtop < 200 GeV.
Using (29) and (30) we obtain

∆Γinvis ≃ −4 ± 5 MeV . (31)

From this experimental result and from our calculation of the extra contributions to the
invisible Z decay width we obtain

− 0.009 ≤ δ + GFM2
Z(c2 + c1κ) ≤ 0.001 . (32)

It is obvious that from this equation we cannot get bounds on all three couplings δ, c1 and
c2 unless additional assumptions are considered. In equation (32) one can consider two
situations:

1. There are no unnatural cancellations among the three terms δ, κGF M2
Zc1 and

GF M2
Zc2. Then each of them can be bounded independently of the others and we

obtain:

|c1| ≤
0.009

κGF M2
Z

= 2, |c2| ≤
0.009

GFM2
Z

= 0.09, |δ| ≤ 0.009 (33)

2. δ ≈ GF M2
Zc2 ≈ κGF M2

Zc1. In this case there could be cancellations among the three
terms. However, even if there are cancellations at this particular scale (MZ) there
will be no cancellations at other scales. In what follows we will show that, also in
the case of cancellations at LEP energies, it is still possible to get some interesting
bounds on the coupling c1 if additional data obtained at different scales are used.

Several types of experiments are sensitive to the neutral current neutrino interactions at
different q2 scales. As the non-standard operators (4) and (16) contribute to the derivative
Zν̄ν coupling and this contribution is proportional to q2 we can get some reasonable ad-
ditional information on the couplings c1 and c2 only from DIS experiments at high energy
(−q2 ≃ 100−1000 GeV2). However, the direct Z-neutrino non-derivative interaction, given
by δ, contributes with the same strength to any energy, therefore, it can be bounded also
in low-energy experiments, e.g. in the elastic ν̄, ν–electron scattering (−q2 ≃ 10−2 GeV2).
Since DIS experiments are more precise and are performed at different energy scales, we
will mainly use their results in our analysis.

There are several high-precision DIS measurements [15, 16, 17], CDHS, CHARM and
CCFR. The first two experiments are performed with neutrino beam peek energies of about
50 GeV and the same energy spectrum, while CCFR operates with an average energy of
161 GeV. As we will see this gap in energies will be enough four our purposes.

The most interesting quantity measured in DIS experiments is the ratio of the neutral-
current to charged-current cross sections for neutrino beams

Rν =
σNC

ν

σCC
ν

. (34)

Again as in a case of Γ(Z → ν̄ν) the theoretical prediction for this quantity can be written
as a sum of the standard and the non-standard contributions:

Rν = RSM
ν + ∆Rν . (35)
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Using our effective Zν̄ν vertex, eq. (18), we obtain

∆Rν =
2
∫

dx
∫

dy dσNC
ν

dxdy
Re {gL(q2)}

∫

dx
∫

dy dσCC
ν

dxdy

, (36)

where dσNC
ν /dxdy and dσCC

ν /dxdy are differential neutral- and charged-current cross sec-
tions calculated within the SM, and x and y are usual DIS variables. The momentum
transfer squared is given by

q2 = −2EbeamMpxy (37)

with Ebeam the beam energy in the laboratory frame and Mp the proton mass. The function
Re {gL(q2)} is defined in eq. (23).

The final result of the analysis of the experimentally measured ratios Rν is usually
presented in terms of the value of weak mixing angle sin2 θW = 1 − M2

W /M2
Z . The quoted

values are5:

CDHS [15] : 0.2225 ± 0.0066

CHARM [16] : 0.2319 ± 0.0065

CCFR [17] : 0.2218 ± 0.0059 . (38)

On the other hand the same quantity can be obtained from LEP and collider (UA2, CDF)
data with very high precision. The average is [10]

LEP + MW : sin2 θLEP
W = 0.2255 ± 0.0005 . (39)

Using sin2 θW = 1−M2
W /M2

Z as an input, one can obtain the predictions for Rν , which
in the case of neutrinos scattered off an approximately isoscalar target are given by the tree
level expression [14]

RSM
ν =

1

2
− s2

W +
5

9
s4

W (1 + Rcc) , (40)

where Rcc = σCC
ν̄ /σCC

ν ≈ 0.4 is the ratio of the antineutrino–neutrino charged-current cross
sections.

In our analysis we neglect radiative corrections and parton-model corrections to the
non-standard contribution ∆Rν . Then, the deviations from the standard result are given
by the difference between the values of Rν obtained by using the sin2 θi

W measured in DIS
experiments and those obtained by using sin2 θLEP

W measured at LEP. For every experiment
we have:

∆Ri
ν = Rν(sin

2 θi
W ) − Rν(sin

2 θLEP
W ) , (41)

where ∆Ri
ν is given by eq. (36) and the index i =CDHS, CHARM, CCFR refers to the

different conditions of the different experiments (beam energy and the cut on the y-variable),
which influence the calculation (36). In eq. (41) the predictions Rν(sin

2 θW ) are calculated
according to the tree-level expression (40) and using values for sin2 θW given by (38) and
(39). Then, for ∆Ri

ν we have:

CDHS : + 0.0022 ± 0.0046 (42)

CHARM : − 0.0039 ± 0.0044 (43)

CCFR : + 0.0026 ± 0.0042 . (44)

5The actual values we use are taken from a recent publication of the CCFR collaboration [17]; there,
sin2 θW = 1 − M2

W
/M2

Z
is given for the same masses of the charm quark, mc = 1.31 ± 0.24 GeV, and the

top quark mt = 150 GeV for all experiments[15, 16, 17].
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Using these experimental values we can obtain the bounds on the coupling c1, even if
there are cancellations among the different couplings. Before doing the complete numerical
analysis we will do a simple estimate of the bounds, which, as we will see, works very well.
For this estimate we rewrite eq. (36) as

∆Rν = Rν2 Re
{

gL(q2
i )
}

, (45)

where q2
i is is some effective average of q2 for the experiment chosen in order to reproduce

the complete result. We use that CDHS and CHARM experiments are performed with the
same neutrino beam, then we average their results and obtain

CERN = CDHS +CHARM : ∆Rν = −0.00085± 0.0032 ,
∣

∣

∣q2
N

∣

∣

∣ ≈ 14 GeV2 . (46)

For CCFR we have

CCFR : ∆Rν = +0.0026 ± 0.0042 ,
∣

∣

∣q2
R

∣

∣

∣ ≈ 45 GeV2 . (47)

Then, the bounds from the different experiments can be expressed as

|δ + GFM2
Z(c2 + c1κ)| ≤ bL (48)

|δ + GF q2
R(c2 + c1κ + c1γ log(M2

Z/|q2
R|))| ≤ bR (49)

|δ + GF q2
N(c2 + c1κ + c1γ log(M2

Z/|q2
N |))| ≤ bN , (50)

From the estimates in eq. (32), eq. (46) and eq. (47), and taking into account that Rν ≈
0.314 we have

bL = 0.009 , bR = 0.0110 , bN = 0.0051 , (51)

Using error propagation, form eqs. (48)–(50) we can extract bounds for the different
couplings δ, c2 and c1. Taking into account that |q2

N | , |q2
R| ≪ M2

Z we obtain

|δ| ≤ (bN/(1 − z))
√

1 − z2bR/bN = 0.012 (52)

|c2| ≤ κ
√

b2
N + b2

R

/

(

γGF |q2
R| log(M2

Z/|q2
R|)(1 − z)

)

= 10 (53)

|c1| ≤
√

b2
N + b2

R

/

(

γGF |q2
R| log(M2

Z/|q2
R|)(1 − z)

)

= 222 . (54)

Here z = (|q2
N | log(M2

Z/|q2
N |))/ (|q2

R| log(M2
Z/|q2

R|)) ≈ 0.4. These are reliable bounds in the
case of cancellations among the contributions of the different operators.

In the complete analysis, we did a three-parameter fit, in δ, c2, c1, of the theoretical
expressions eq. (25) and eq. (36) to the data. We would like to note that in the numerical
calculation we used rather simple parametrizations of the parton distribution functions [18].
However, different choices of the structure functions do not change our results noticeably.
The reason for this is that our non-standard contributions are mainly sensitive to the parton
distributions at large values of the x and y variables.

As a result of the three-parameter fit to the full body of data we obtain the following
bounds at 68% C.L.

δ = 0.004 ± 0.009 =⇒ |δ| ∼< 0.013 (55)

c2 = 4.7 ± 7 =⇒ |c2| ∼< 12 (56)

c1 = −100 ± 140 =⇒ |c1| ∼< 240 . (57)
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These constraints are in a good agreement with our estimate in eqs. (52)–(54). The extreme
values of F̃ , of order ∼ 240GF , are possible only because of large cancellations between the
contributions of the three non-standard couplings. If one decides that such cancellations are
unnatural, then one obtains a much better bound for the contact four-neutrino interaction.
The complete analysis gives in this case

∣

∣

∣F̃
∣

∣

∣ ∼< 2GF . (58)

The above bounds can be improved in the future. In the case of cancellation between
the different couplings, the bounds are defined essentially by the errors of the experiments
at lower energies; therefore, only better DIS data can improve the bound in eq. (57),
especially if DIS experiments are performed at higher energies. If there are no cancellations
between the different couplings, the higher scale experiment is the relevant one, and future
improvements of the measurement of the invisible width of the Z at LEP will be very
important.

4 Conclusions

In this letter we have obtained new constraints on non-standard four-neutrino interac-
tions coming from their contribution at the one-loop level to the invisible width of the
Z-boson and to deep inelastic scattering. The bounds obtained from a conservative model-
independent analysis of the “secret” neutrino interactions at the one-loop level improve at
least by a factor 2 previous constraints, (6) and (7), that were obtained from the study of
the non-standard Z → 4ν decay. If there are no unnatural cancellation between the contri-
butions of the various non-standard couplings, a much stronger bound on the strenght of a
four-neutrino interaction has been obtained. This bound is 200 times better than previous
constraints.
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Figure captions

Figure 1a–c: Diagrams that give contributions Diagrams that give contributions to the
Zν̄ν vertex in the presence of the non-standard four-neutrino interaction. In diagram (a),
neutrinos of different flavours are running in the loop.
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