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A NOTE ON THE UNIQUENESS AND
ATTRACTIVE BEHAVIOR OF SOLUTIONS
FOR NONLINEAR VOLTERRA EQUATIONS

M.R. ARIAS AND R. BENÍTEZ

ABSTRACT. In this paper we prove that positive solutions
of some nonlinear Volterra integral equations must be locally
bounded and global attractors of positive functions. These
results complete previous results about the existence and
uniqueness of solutions and their attractive behavior.

1. Introduction. This paper completes the study carried out in
[1] about the properties of nontrivial solutions for nonlinear integral
equation of Volterra type

(1) u(x) =
∫ x

0

k(x − s)g(u(s)) ds.

Following [1], [2] this equation shall be referred to as equation (k, g)
and the integral operator

Tf(x) =
∫ x

0

k(x − s)g(f(s)) dx

shall be referred to as the associated operator to the equation (k, g).
The basic general conditions imposed on the kernel k and the nonlin-
earity g are: k is a continuous positive function, defined on R+, such
that

K(x) =
∫ x

0

k(s) ds

is a strictly increasing function; and g is a continuous strictly increasing
function such that g(0) = 0 and g′(x) > 0 almost everywhere.

Note that the function 0 is a solution of (k, g), named the trivial
solution, and horizontally translated solutions are solutions. We are

Research partially supported by CICYT, project ANT98-0571 and CLI99-0845-
C03-03.

Received by the editors on June 8, 2001, and in revised form on September 23,
2001.

Copyright c©2001 Rocky Mountain Mathematics Consortium

305

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori d'Objectes Digitals per a l'Ensenyament la Recerca i la Cultura

https://core.ac.uk/display/84749927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


306 M.R. ARIAS AND R. BENÍTEZ

neither interested in the trivial solution nor in translated solutions.
So from now on, solutions means nontrivial solutions, i.e., positive
solutions u such that u �≡ 0 on (0, δ] for any positive δ.

In [1] the uniqueness of locally bounded solutions was proved (see
[1, Theorem 3.1]). It was also proved that those solutions are local
attractors of all positive locally bounded and measurable functions (see
[1, Corollary 3.2]), which means that for each positive locally bounded
and measurable function f there is a δ > 0 (∞ allowed) such that

(2) lim
n→∞ Tnf(x) = u(x), ∀x ∈ [0, δ).

Our aim here is to complete these results by showing that

1. All possible solutions of equation (k, g) must be locally bounded.
Hence, Theorem 3.1 in [1] is completed by Theorem 4.1.

2. Assuming (k, g) has a nontrivial solution, the solution is a global
attractor (i.e., the interval [0, δ) in (2) is the domain of the solution
independently of f). Hence, Corollary 3.2 in [1] is completed by
Theorem 4.2.

2. On the uniqueness. The kernel k is continuous, so we can
define the auxiliary continuous kernel

k̄(x) =
{

0 x < 0,
sup{k(s) : s ∈ [0, x]} x ≥ 0,

which is, moreover, increasing. Let T be the associated operator to the
equation (k̄, g). For any positive function f , we have that Tf ≤ Tf . If
f is a positive function, then Tf is an increasing function and thus a
locally bounded function. Let 0 < x < y; since k̄(x − s) = 0 for s > x
we have that

Tf(x) =
∫ x

0

k̄(x − s)g(f(s)) ds =
∫ y

0

k̄(x − s)g(f(x)) ds

≤
∫ x

0

k̄(y − s)g(f(s)) ds = Tf(y).

Now we can prove our first result:
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Proposition 2.1. All solutions of (k, g) are locally bounded func-
tions.

Proof. Consider u as a solution of (k, g). Then u = Tu ≤ Tu, so
u is bounded from above by an increasing function and therefore it is
locally bounded.

3. On the attractive behavior. In [1] it was proved that, if it
exists, the solution u of the equation (k, g) is a local attractor. We
shall prove that (2) holds on the domain of definition of u, for any
measurable positive function f .

Let us recall that in [4] it has already been proved that if the kernel is
an increasing function, then if it exists, the unique solution of equation
(k, g) is a global attractor for all positive functions.

Let us consider the equation (k̄, g). Since u = Tu ≤ Tu, u is a
subsolution of equation (k̄, g). The existence of a subsolution implies
the existence of a solution of the equation (k̄, g) (for details see [3,
Proof of Theorem 3.1]); and since the kernel k̄ is increasing, applying
[4, Theorem 1] shows that the unique solution ū of the equation (k̄, g)
is a global attractor.

We have that u ≤ ū. Note that T is a monotonous operator, so
u ≤ Tnū holds for all n ∈ N; since T ū ≤ T ū = ū, the sequence
(Tnū)n∈N is a monotone decreasing sequence bounded from below by
u. Since u is the unique solution of (1), and the limit of the sequence
(Tnū)n∈N is a solution of (k, g) (see [3, Proof of Theorem 3.1]), one
has that

lim
n→∞Tnū = u.

In [1, Corollary 3.1] it was proved that for any positive measurable
function f , such that f ≤ u and f �= 0 almost everywhere, then
limn→∞ Tnf = u holds.

Lemma 3.1. Let f be a positive measurable function such that f ≥ u.
Then

lim
n→∞Tnf = u.



308 M.R. ARIAS AND R. BENÍTEZ

Proof. Let us consider a positive measurable function f such that
f ≥ u. There are three possible cases:

1. f ≤ ū. In this case, just by comparison, we have that

lim
n→∞Tnf = u.

2. f ≥ ū. In this case Tnf ≥ Tnū ≥ u. On the other hand, Tnf ≤
T

n
f . Since T

n
f(x) converges to ū(x), then the set of accumulation

points of the sequence (Tnf(x))n∈N, denoted by Ωf (x), is bounded
from above by ū(x) and from below by u(x). Then Ωf (x) = {u(x)},
because Ωf (x) is invariant by T and

u = lim
n→∞ Tnū.

3. General case. Let us consider the auxiliary functions:

f1(x) = max{f(x), ū(x)}

f2(x) = min{f(x), ū(x)}.
Obviously f2 ≤ ū ≤ f1 and f2 ≤ f ≤ f1 hold. On the other hand, by
the previous cases Tnfi, i = 1, 2, converges to u. And the conclusion
is obtained by a standard comparison argument.

Thus, for continuous kernels the unique solution of (1), if it exists, is
a global attractor.

Proposition 3.1. Let f be a positive function such that f �= 0 almost
everywhere. Then

lim
n→∞Tnf = u.

Proof. It is a consequence of [1, Corollary 3] and Lemma 3.1.

4. Final remarks. In this section we assume that the couple
(k, g) satisfies the general conditions considered in [1], that is, the
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kernel k is a positive continuous function defined on R+ such that
K(x) =

∫ x

0
k(s) ds is a finite strictly increasing function, while the

nonlinearity g is a positive, strictly increasing function defined on R+,
such that g(0) = 0. Moreover, we assume that g transforms null sets
into null sets and {x ≤ 0 : g′(x) = 0} is a null set. Null sets are referred
to Lebesgue measure and measurable means Lebesgue measurable.

In [1] it was proved (see Theorem 3.1) that the equation (k, g)
has at most one measurable and locally bounded positive solution.
Considering Proposition 2.1, we immediately extend Theorem 3.1 in
[1] to the following result

Theorem 4.1. Equation (k, g) has at most one nontrivial solution.

It was also proved [1, Corollary 3.2] that all positive, measurable and
locally bounded functions on R+ are locally attracted by the solution.
Considering Proposition 3.1, we extend Corollary 3.2 to the following
result

Theorem 4.2. All positive, measurable and locally bounded functions
are globally attracted by the solution of (k, g).
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