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tionale de la Statistique et de l’Administration
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lembranças remetem sempre à bons professores e amigos. Externo

ao contexto escolar, minha famı́lia tem sido o ponto chave em todas

essas fases da minha vida.
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em todos os lugares posśıveis, da aula de Cálculo I ao TUSCA.
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donde nos tuvimos que distanciar, esta vez mi destino era Paŕıs.
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Statistique et de l’Administration Économique. Trois mois, ce fut
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“If you can’t explain it simply,

you don’t understand it well enough”

Albert Einstein
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Abstract
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Doctor of Philosophy in Statistics and Optimization

The statistical analysis of the information generated by medical follow-

up is a very important challenge in the field of personalised medicine.

As the evolutionary course of a patient’s disease progresses, its medical

follow-up generates more and more information that should be processed

immediately in order to review and update its prognosis and treatment.

Our objective in this thesis focuses on this update process through se-

quential inference methods for joint models of longitudinal and time-to-

event data from a Bayesian perspective. More specifically, we propose the

use of sequential Monte Carlo methods for static parameter joint models

in order to update the posterior distribution of the parameters, hyperpa-

rameters, and random effects with the intention of reducing computation

time in each update of the inferential process.

Our proposal is very general and can be easily applied to most popular

joint models approaches. We illustrate our research with two different

studies: (i) a joint model for longitudinal data with informative dropout

simulated through an own novel mechanism, and (ii) a joint model with

competing risk events for a real problem about patients receiving me-

chanical ventilation in intensive care units.

http://www.uv.es
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UNIVERSITAT DE VALÈNCIA

Resumen
Facultad de Ciencias Matemáticas
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Doctor en Estad́ıstica y Optimización

El análisis estad́ıstico de la información generada por el seguimiento

médico de una enfermedad es un reto muy importante en el ámbito de

la medicina personalizada. A medida que avanza el curso evolutivo de la

enfermedad en un paciente, su seguimiento genera cada vez más infor-

mación que debe ser procesada inmediatamente para revisar y actualizar

su pronóstico y tratamiento.

Nuestro objetivo en esta tesis se centra en dicho proceso de actualización

a través de métodos de inferencia secuencial en modelos conjuntos de

datos longitudinales y de supervivencia desde una perspectiva Bayesiana.

En concreto, proponemos la utilización de métodos secuenciales de Monte

Carlo adaptados a modelos conjuntos con parámetros estáticos (inde-

pendientes del tiempo) para actualizar la distribución a posteriori de

los parámetros, hiperparámetros y efectos aleatorios con la intención de

reducir el tiempo de computación en cada actualización del proceso in-

ferencial.

Nuestra propuesta es muy general y puede aplicarse de forma muy sencilla

a las modelizaciones longitudinales y de supervivencia conjuntas más

populares en la literatura cient́ıfica del tema. Utilizamos dos estudios

diferentes para ilustrar nuestra propuesta: (i) un modelo conjunto para

datos longitudinales con pérdida de seguimiento informativa simulados a

través de un mecanismo novedoso propio y (ii) un modelo conjunto para

eventos con riesgo competitivos para un problema real sobre pacientes

que reciben ventilación mecánica en unidades de cuidados intensivos.

http://www.uv.es
http://www.uv.es/matematiques
http://www.uv.es/eio


“Thesis” — 2017/6/28 — 20:35 — page xvi — #16i
i

i
i

i
i

i
i



“Thesis” — 2017/6/28 — 20:35 — page xvii — #17i
i

i
i

i
i

i
i

UNIVERSITAT DE VALÈNCIA

Resum
Facultat de Ciències Matemàtiques

Departament d’Estad́ıstica i Investigació Operativa

Doctor en Estad́ıstica i Optimizació

L’anàlisi estad́ıstica de la informació generada pel seguiment mèdic és un

repte molt important en l’àmbit de la medicina personalitzada. A mesura

que avança el curs evolutiu de la malaltia d’un pacient, el seu seguiment

mèdic genera més i més informació que caldria processar immediatament

per tal de revisar i actualitzar el seu pronòstic i tractament.

El nostre objectiu en aquesta tesi se centra en aquest procés

d’actualització mitjançant mètodes d’inferència seqüencial en models

conjunts de dades longitudinals i de supervivència des d’una perspectiva

Bayesiana. En concret, proposarem la utilització de mètodes seqüencials

de Monte Carlo adaptats a models conjunts amb paràmetres estàtics (in-

dependents del temps) per tal d’actualitzar la distribució a posteriori dels

paràmetres, hiperparàmetres i efectes aleatoris a fi de reduir el temps de

computació en cada actualització del procés inferencial.

La nostra proposta és molt general i pot aplicar-se de forma molt senzilla

a les modelitzacions longitudinals i de supervivència conjuntes més popu-

lars en la literatura cient́ıfica del tema. Utilitzarem dos estudis diferents

per il·lustrar la nostra reserca: (i) un model conjunt per a dades longitu-

dinals amb pèrdua de seguiment informativa simulades amb un mecan-

isme original propi i (ii) un model conjunt per a esdeveniments de risc

competitius per a un problema real sobre pacients que reben ventilació

mecànica en unitats de vigilància intensiva.

http://www.uv.es
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diag(a) Square diagonal matrix with a on the main diagonal.

Usual probability distributions

Bernoulli B(p).

Gamma G(α, β).

Normal N (µ, σ2).

Uniform U(a, b).

Weibull W(λ, ν).
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Abbreviations

AI Asynchronies index.

CIF Cumulative incidence function.

ESS Effective sample size.

ICU Intensive care units.

IBIS Iterated batch importance sampling.

JAGS Just Another Gibbs Sampler.

SOFA∗ Logarithm of (SOFA+1).

MAR Missing at random.

MC Monte Carlo.

MCAR Missing completely at random.

MCMC Markov chain Monte Carlo.

MNAR Missing not at random.

MV Mechanical ventilation.

QMC Quasi-Monte Carlo.

SD Standard deviation.

SOFA Sequential organ failure assessment.

SMC Sequential Monte Carlo.

WinBUGS Windows-based Bayesian inference using Gibbs sampling.
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Chapter 1

Background

The motivation of this thesis follows the current trend in medi-

cal practices towards personalised medicine1 (Sharratt, 2015). This

term is well defined according to the Personalized Medicine Coali-

tion2 as

[Personalised medicine is] an evolving field in which

physicians use diagnostic tests to determine which med-

ical treatments will work best for each patient. By com-

bining the data from those tests with an individual’s

medical history, circumstances and values, health care

providers can develop targeted treatment and preven-

tion plans.

More briefly, following the National Academy of Sciences3

1Also referred to as precision medicine, stratified medicine, individualised
medicine, or P4 medicine.

2PMC: http://www.personalizedmedicinecoalition.org
3NAS: http://www.nasonline.org

1

http://www.personalizedmedicinecoalition.org
http://www.nasonline.org
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[Personalised medicine is] the use of genomic, epige-

nomic, exposure and other data to define individual pat-

terns of disease, potentially leading to better individual

treatment.

Personalised medicine may be seen as the tailoring of medical treat-

ments to specific individuals as well as the needs and preferences

of a patient during all stages of care, including prevention, diagno-

sis, treatment, and follow-up (Food and Administration, 2014). In

contrast, we have the population medicine which can be understood

as the study of a group of individuals in order to extrapolate the

findings to the general population (Mega et al., 2014).

The practice of personalised medicine is considered as the new era of

medicine. However, this idea is not new and has been practiced by

clinicians ever since the dawn of western medicine over 2000 years

ago (Murugan, 2015). Indeed, the famous Greek physician Hip-

pocrates of Cos (460 B.C. - 370 B.C.) is considered the precursor of

personalised medicine as well as the “father of western medicine”.

At that time, he already glimpsed about the “individuality” of dis-

eases and the importance of the prescription of different medicines

to different patients (Schiefsky, 2005).

Statistical science is an essential part of medical research that has

been used in modern medicine, drug development, and epidemiol-

ogy (Chakra-Borty and Moodie, 2013; Lu et al., 2015). In recent

decades, the statistical methods have greatly contributed to the

comprehension of the epidemiology of various diseases as well as
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to the connection between them and biomarkers4 and/or symptoms

(Cho et al., 2012; Collette et al., 2012; Zhao and Zeng, 2013; Jain,

2015). Within the diversity of methodologies that can be applied in

this field, some of them may be highlighted given their importance

in approaching personalised medicine. These are the models for lon-

gitudinal data (Bandyopadhyay et al., 2011; Verbeke et al., 2014) or

time-to-event data (Bewick et al., 2004) or models for jointly study-

ing both type of data (De Gruttola and Tu, 1994; Tsiatis et al., 1995;

Faucett and Thomas, 1996; Wulfsohn and Tsiatis, 1997; Henderson

et al., 2000; Tsiatis and Davidian, 2004; Ye et al., 2008; Rizopoulos,

2012b).

The next two sections of this chapter are designed to describe, in a

separate form, the key ideas behind longitudinal and time-to-event

data. Then, in Section 1.3 we will discuss the importance of a

joint analysis of both types of data. Finally, in Section 1.4 we will

introduce the Bayesian perspective for this joint modelling as well

as the need for sequential update methodologies.

1.1 Longitudinal data

Longitudinal data5 are a particular type of correlated data where a

given set of variables are repeatedly measured over time in the same

4A biomarker is a characteristic that is objectively measured and evalu-
ated as an indicator of a normal biologic process, disease process, or biological
response to a therapeutic intervention. Biomarkers can be used to reduce un-
certainty and guide clinical care.

5Also called panel data, growth curve analysis, or multilevel analysis.
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sampling unit. Longitudinal data analysis confronts with cross-

sectional studies in which a single observation is measured for each

individual. Longitudinal approaches can work with different corre-

lation structures, such as serial correlation, shared random effects,

transition (Markov) models, latent classes, clustering, etc. (Verbeke

and Molenberghs, 2000).

One of the most important aspects of this type of data is the nat-

ural hierarchical structure of the variability with different levels of

interest. For instance, we can consider as a first level effect a group

mean response for all individuals over time, while a second level cap-

tures individual-specific features using, for instance, random effects

(Gelman and Hill, 2006). The incorporation of individual sources

of variability provides the ability to predict the trajectory of indi-

vidual responses and understand how do them change with respect

to the general mean in the population of interest (Laird and Ware,

1982; Verbeke et al., 2001). Furthermore, there is also the possibil-

ity for describing how the mean response changes in the population

of interest. All these characteristics make the longitudinal models

extremely convenient in many research fields, e.g. medicine, pub-

lic health, education, business, economics, psychology, and biology

(Weiss, 2005).

Missing data6 can greatly affect the longitudinal analysis depending

on the processes causing them. Missing data can be classified into

three types: missing completely at random (MCAR); missing at ran-

dom (MAR); or missing not at random (MNAR) (Little and Rubin,

6Data that are intended to be observed, but are unobserved for some reason.
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2002). The last case, MNAR, is the most important in the longi-

tudinal studies, since it can be hiding some latent process which, if

ignored, can produce biased estimates and predictions. This is why

they are also known as nonignorable missing data (for reviews, see

Molenberghs and Kenward, 2007). Time-to-event models, described

in the next section, can be useful for modelling the process that gen-

erates the MNAR data, and hence avoiding the bias in the results

(Ibrahim and Molenberghs, 2009).

1.2 Time-to-event data

We consider time-to-event data whenever we are interested in the

time until an event of interest occurs. As pointed out by Col-

lett (2003), this type of data arises in a great number of applied

fields, such as medicine, public health, epidemiology, biology, envi-

ronmental sciences, engineering, economics, actuarial sciences, man-

agement, demography, and social sciences

The nomenclature time-to-event analysis may change according to

the area of research, e.g. it is usually referred to as survival analysis

in medicine and biology (Box-Steffensmeier and Jones, 2004; Klein-

baum and Klein, 2012) and reliability analysis in engineering and

industrial studies (Jewell et al., 1996; Couallier et al., 2013).

In numerous medical studies, survival probabilities are of primary

interest, since their estimates for a specific patient can rule de-

cision making involving specific interventions (Rizopoulos, 2011).
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Commonly, the standard statistical procedures are not amenable

for time-to-event data due to its particular features: the response

variable is positively skewed and some observations are typically in-

complete in the sense that some factor (external to the study or

intentionally planned) prevents the event of interest from being ob-

served (Lee and Wang, 2013). Some situations that illustrate those

types of behaviour are: the study ends without the patient having

experienced the event, an intervening event that occurs prohibit-

ing further observation on the patient, the patient can be missing

at some time point, or even the patient withdraws from the study

(Merrill, 2015).

Depending on the reason why the event has not been observed we

will refer to censoring or truncation. To illustrate the differences

between them, we consider a toy example which focuses on children

in the kindergarten, from 2 to 5 years-old, where our event of interest

is the age at which these children learn to write their own name.

Let us suppose that children are annually evaluated to know if they

have learnt to write their name. Evaluation for children aged 2 and

5 are also included in the analysis. In this example, we will consider

only six children randomly chosen from a hypothetical population.

Let us assume that child 1 moves to a different school at age 2.5

without having experienced the event of interest. In the initial ex-

amination (at 2 years-old), it was verified that child 3 already knew

how to write his/her own name. Children 2, 4, and 5 experienced

the event of interest within the study interval. In addition, the last

evaluation (at 5 years-old) revealed that the child 6 had not yet
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learned to write his/her own name. Figure 1.1 shows the data from

this example.

Figure 1.1: Age, in years, at which each child in the study
learns to write their own name. Blue solid vertical lines indicate
the learning period in the kindergarten. Solid circles represents

observed times and open circles censored times.

We will refer to censoring data whenever the time of the event is

only partially known (Leung et al., 1997). This is, we know that it is

larger (right censoring), smaller (left censoring), or within an inter-

val (interval censoring) of observed times (Klein and Moeschberger,

2003). In our example, time for child 1 is right-censored because

he/she left the study without having experienced the event of inter-

est. Time for child 6 is also right-censored, but now because he/she

has not experienced the event when the study ends. Time for child 3

is left-censored, since he/she knew how to write his/her name at the

time of his/her entrance in the study. Times for children 2, 4 and 5

are interval-censored because we only know that these children had

learnt to write their own name in a time between two consecutive

annual evaluations.
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Truncation is a variant of censoring, where the incomplete nature of

the observations happens because of a systematic selection process

inherent to the study design (Andersen et al., 1993). In practice,

truncation imposes restrictions in the limits of the period of study

and only individuals with observed event time within them are con-

sidered in the analysis (Klein and Moeschberger, 2003). Hence, we

can basically limit the period of study in three ways: only an upper

limit (right truncation), only a lower limit (left truncation), or an

interval limit (interval truncation).

Going back to our toy example, let us imagine that two 3-years-

old children enter the study and it is verified through the learning

examination that one of them already knows how to write his/her

own name. In this case, the child who passed the exam has a right

truncation time, since he/she experienced the event of interest be-

fore entering the study. On the other hand, we already know that

the other new child is not able to write his/her own name until 3

years-old, so this child has a left truncation time (or delayed entry

time). Now let us suppose that child 1 at age 4 is transferred back

to our kindergarten. This child took the learning examination and

was approved. In this case, child 1 has a interval truncation time,

since we know he/she experienced the event of interest after 2 and

before 4 years-old. It is important to remark that truncated data

leads to conditional probabilities/estimations, since we know that

the event time is limited superiorly and/or inferiorly by truncations.

Time-to-event analysis also allows the inclusion of covariates to im-

prove the probabilistic modelling of the occurrence of the event of
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interest. A great challenge in this sense is the incorporation of

time-varying covariates, mainly those of endogenous (or internal)

nature in which traditional approaches are not applicable (Molen-

berghs et al., 2014). This is due to the fact that the occurrence of

the event of interest at a time point affects (or prevents from being

observed) the values of these covariates (Rizopoulos, 2012b).

Typically, biomarkers directly related to the risk of the event of in-

terest are endogenous time-varying covariates (Kalbfleisch and Pren-

tice, 2002). They usually have a longitudinal nature that can be

incorporated into the time-to-event analysis using joint models.

1.3 Joint models for longitudinal and
time-to-event data

Joint modelling has recently attracted great attention to the sta-

tistical community, especially in the area of biostatistical research

(Rizopoulos et al., 2010). Yu et al. (2004) discuss some of the main

objectives of this type of models. Among them we highlight

• The study of a longitudinal response variable and its associ-

ation with baseline covariates, treatments, and specific char-

acteristics of the individuals of the population sample avoid-

ing the possible bias due to MNAR data, which are modelled

through a time-to-event process (see Section 1.1);

• Characterising the risk of an event with regard to a longitu-

dinal variable (endogenous covariate) or to the time when a
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longitudinal variable was observed (surrogate endpoint) (see

Section 1.2).

In both cases, the final interest is usually to make estimation

and/or prediction of longitudinal individual or population trajec-

tories and/or relevant outcomes associated to the occurrence of the

event of interest. Moreover, we could consider a general approach

that takes both objectives into account.

Currently, many studies combine the power of the junction of both

types of data, since a separate analysis of the longitudinal and time-

to-event data may lead to inefficient or biased results (Yu et al.,

2008; Ibrahim et al., 2010; Wu et al., 2012).

Research literature for joint models uses the frequentist (or classi-

cal) and Bayesian approaches to estimate and predict information

of interest (for interesting reviews up to date, see Tsiatis and Da-

vidian, 2004; Neuhaus et al., 2009). In particular, this modelling is

relatively new for the Bayesian approach and so it is devoid of some

more in-depth research topics, such as sensitivity analysis to the elic-

itation of prior distributions, sequential update, model validation,

and model selection.

A key feature in real studies with this type of models is the dynamic

nature in which data become available. This is clear in biomedical

studies where data usually come from individual follow-ups over

time. Thus, when new information of a given patient is collected,

physicians are interested in updating the relevant estimated and/or

predicted outcomes.
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Dynamic inference is an inherent difficulty within the frequentist

joint modelling, since the number and timing of interim analyses

directly affect some frequentist properties (Lee and Chu, 2012).

Hence, the current literature has proposed two paths: (i) taking

asymptotic assumptions in order to only update the subject-specific

effects (Rizopoulos, 2011; Mauguen et al., 2013; Andrinopoulou

et al., 2015a; Barrett and Su, 2017) or (ii) moving towards a Bayes-

ian approach (Yu et al., 2008; Proust-Lima and Taylor, 2009; Ri-

zopoulos et al., 2014; Andrinopoulou et al., 2015b).

In the next section, we will introduce some advantages of the Bayes-

ian approach as well as its sequential learning for dynamic inference.

1.4 A Bayesian view of joint models

Bayesian statistics is founded upon the premise that all unknown

quantities (or sources of uncertainty) should be expressed and mea-

sured by probability distributions (Bernardo and Smith, 1994). In

other words, it associates probability measures to any random quan-

tity, parameter, event, hypothesis, model, etc. (for reviews, see

Loredo, 1990, 1992).

In the case of joint models for longitudinal and time-to-event data,

the Bayesian perspective makes it possible to incorporate prior in-

formation to the study, thus improving and enhancing estimation

and prediction of any outcome of interest (Guo and Carlin, 2004).

In particular, we can also estimate and predict characteristics of the
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12 1.4. A Bayesian view of joint models

longitudinal variable for individuals in the current sample or even

for new individuals, from the same study population, that could en-

ter to the study. However, the more relevant Bayesian issues deal

with the direct estimation of the survival function, the prediction of

survival times, or the computation of other posterior distributions

for relevant probabilities or rates. The frequentist approach for this

type of models is extremely complex because the probabilistic char-

acteristics of the relevant estimators are practically impossible to

compute (Ibrahim et al., 2001).

The Bayesian approach of joint models is gaining considerable atten-

tion from the scientific community, mainly in the medical sciences

(Brown and Ibrahim, 2003; Ibrahim et al., 2004; Hu et al., 2009;

Huang et al., 2010, 2011; Zhu et al., 2012; Baghfalaki et al., 2014;

Huang et al., 2014; Armero et al., 2016a,b; Martins et al., 2016, and

references therein). One of the main factors for the proliferation of

the Bayesian approach for joint models is its conceptual simplicity

(Gould et al., 2014). Moreover, the improvement of Bayesian com-

putational methods, the increase of the processing capacity, and the

development of Bayesian statistical software and packages has con-

tributed to the use of multilevel7 models, which can be considered

as a natural framework for joint models.

Another motivation in favour of the Bayesian methodology is our

interest in dynamic inference. The reason is simple and concep-

tual. The posterior distribution is the most relevant element of the

7Other related names: hierarchical linear models, nested models, random
parameter models, random coefficient, random-effects models, mixed models, or
split-plot designs.
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Bayesian approach, because besides being the probabilistic represen-

tation of the total knowledge about the parameters after the data

and any other relevant information have been considered (Glickman

and van Dyk, 2007), it is also the starting point of all relevant infer-

ences. The posterior distribution combines the likelihood function,

interpreted as the information about the parameters contained in

the data, and the prior distribution, which represents prior expert

knowledge about the parameters. Bayesian learning consists of the

sequential application of Bayes’ theorem for updating the posterior

distribution with information provided by new experimental data

(Barber, 2012).

Nowadays, most of the packages for joint models8 are implemented

from a frequentist perspective and do not incorporate mechanisms

of dynamic inference. The only package that uses a Bayesian per-

spective is JMbayes, which, despite it does not make fully Bayesian

dynamic inference, proposes a mechanism based on asymptotic the-

ory for dynamic prediction (for more details, see Rizopoulos, 2011).

Bayesian inference within joint modelling can also be done using

general Bayesian software/packages, such as the BUGS language

(Win/OpenBUGS (Lunn et al., 2000) and JAGS (Plummer, 2003)),

Stan (Hoffman and Gelman, 2014), and INLA (Rue et al., 2009),

but so far none of them incorporates dynamical procedures.

8In R: lcmm (Proust-Lima et al., 2010), JM (Rizopoulos, 2010), joineR

(Philipson et al., 2012), JMbayes (Rizopoulos, 2012a), JMdesign (Cornea et al.,
2014), JSM (Xu et al., 2016), joint.Cox (Emura, 2016), and frailtypack (Ron-
deau et al., 2017). In SAS: JMFit macro (Zhang et al., 2016). In STATA: stjm
module (Crowther et al., 2013).
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14 1.5. Outline

Our main objective in this thesis is to propose an entirely inferen-

tial and predictive Bayesian analysis for joint models by means of

a dynamic update methodology based on sequential Monte Carlo9

methods (Cappé et al., 2007). Therefore, our challenge is to combine

the flexibility of the Bayesian approach for joint models of longitu-

dinal and time-to-event data with a learning procedure constructed

through sequential methods.

As far as we know this thesis is the first proposal that fully integrates

the Bayesian joint models with sequential Monte Carlo methods.

1.5 Outline

After this introductory chapter aiming to briefly introduce Bayesian

joint modelling for longitudinal and time-to-event data and motivate

the need of sequential Monte Carlo methods to achieve dynamic es-

timation and prediction in such models, the rest of this thesis is

structured as follows. Chapter 2 reviews the Bayesian paradigm

and presents sequential Monte Carlo methods. Chapter 3 contains

the special features of sequential Monte Carlo methods tailored to

the framework of joint modelling for longitudinal and time-to-event

data. This chapter may be regarded as the core of the thesis. Chap-

ters 4 and 5 illustrate our proposals. In particular, Chapter 4 pro-

vides the development of a simulation mechanism for generate data

from a joint model with longitudinal objective and nonignorable

9Other related names: particle filtering, Monte Carlo filter, survival of the
fittest, sequential imputations, condensation, bootstrap filter, or sequential im-
portance resampling.
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dropout. From a generated data set with this mechanism, we ex-

emplify the benefits of a joint analysis for longitudinal data with

informative dropout. Still in this chapter, we explore in detail the

use of our proposal of sequential updating for a shared-parameter

joint model. Chapter 5 explores the dynamic posterior estimation

and prediction for a random-effects joint model constructed in terms

of a longitudinal linear mixed submodel and a survival competing

risks submodel. This is a joint model for a real study devoted to

the analysis of the association between a severity marker and the

events alive discharge and death for patients receiving mechanical

ventilation in intensive care units. Chapter 6 presents the main con-

clusions and contributions of the thesis as well as a brief discussion

about future research on the subject. We have also included three

appendices. Appendix A contains the JAGS codes of the simulated

model implemented in Chapters 4 and 5. Appendix B presents a list

of the common probability distributions and their basic properties.

Appendix C provides a posterior summary of the results obtained

in simulated scenarios based on different parameter configurations.

This thesis ends with a final section devoted to Bibliography.
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Chapter 2

Sequential learning

Learning theory is broadly a framework for machine learning1 that

comes from the fields of statistics and functional analysis (Mohri

et al., 2012). In essence, statistical learning refers to a set of ap-

proaches for inferring and predicting from available data (Hastie

et al., 2009; James et al., 2013). In addition, it also plays an im-

portant role for sequential settings, such as classification problems

(Syed et al., 2009).

In particular, sequential learning can be defined in statistical terms

as the mechanism to improve estimation and prediction after observ-

ing new data (Dietterich, 2002). The way of processing knowledge

in the sequential learning framework is similar to the human ability

to learn from previous experiences (Clegg et al., 1998).

1Machine learning is a set of rules and procedures, which allows computers to
act and make decisions based on data rather than being explicitly programmed
to perform a certain task.

17
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In the context of statistical inference, Figure 2.1-(a) shows a generic

scheme of a non-sequential inferential process from a general model.

(a) (b)

Figure 2.1: Non-sequential (a) and sequential (b) procedures.

In this illustration, Step 1 works with data and Step 2 with the

previous data plus new data. Note that in Step 2 we proceed as if all

the available data were new, despite part of them were already used

in Step 1. Figure 2.1-(b), instead, uses only new data to update the

inferential process, without the necessity of a “complete oblivion”

of the results previously obtained. The idea of sequential learning

is to avoid the rework illustrated in Figure 2.1-(a) maintaining the

accuracy of the results.

As pointed out in the introductory chapter, our objective is to de-

velop a full Bayesian learning process for making dynamic inference

and prediction in joint models for longitudinal and time-to-event

data. Hence, in the following sections we will introduce the basis of

the Bayesian approach as well as Bayesian sequential methods that

will be adapted to the context of the joint models encompassed in

this thesis.
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2.1 Bayesian approach

As briefly discussed in Section 1.4, Bayesian inference contains two

key ingredients. The first element is the likelihood function of the

parametric vector θ, f(D | θ), which summarises the information

available in the data D about θ. The second ingredient π(θ), called

prior distribution of θ, is a probability distribution that contains

all the available prior expert knowledge about θ. From these two

terms, the inferential process should naturally be summarised by the

probability distribution of θ after observing the value of D. This

distribution, π(θ | D), is known as the posterior distribution of θ

and it is obtained according to the Bayes’ rule:

π(θ | D) =
f(D | θ)π(θ)

m(D)
∝ f(D | θ)π(θ), (2.1)

where m(D) =
∫
f(D | θ)π(θ) dθ is the normalising constant, also

called model evidence of the data D (Robert, 2007). This constant

that makes the posterior distribution π(θ | D) integrate to one.

The basis of the Bayesian methodology is simple and intuitive. It

combines different sources of information that can be associated

to the way in which the human brain works, always learning from

past experiences. The Bayesian approach offers comprehensive and

powerful tools to complex model estimation and prediction as well as

all relevant quantities of interest derived from the inferential process

(Carlin et al., 2001; Gilks et al., 1993).

One of the main advantages of the Bayesian methodology is that,

independently of the complexity of the model, it always follows the
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20 2.1. Bayesian approach

same structure based on the posterior distribution of θ in (2.1). In

addition, the prior distribution of θ may incorporate prior knowl-

edge, often based on expert or information accumulated from pre-

vious studies, which in many cases makes posterior estimates more

accurate (Bayarri and Berger, 2004). Furthermore, Bayesian per-

spective does not need to assume asymptotic assumptions, as is

common in the frequentist paradigm (Ibrahim et al., 2001).

Even with all these advantages, the beginning of the Bayesian

methodology was frustrating because, despite being theoretically

appealing, it was almost always inapplicable in practice. The big

challenge was (and in some sense still is) to handle with non-

standard probability densities, especially in high-dimensional prob-

lems (Robert, 2014). In particular, the main difficulty was to calcu-

late the normalising constant m(D) and to obtain a sample of the

posterior distribution of θ, π(θ | D) (Robert and Casella, 2004).

After a long period of dormancy (McGrayne, 2011), the Bayesian

perspective resurfaced in the early 90s due, mainly, to the evolu-

tion of technology (computers with more processing capacity and

more affordable prices) and the development of stochastic integra-

tion methodology, especially Markov chain Monte Carlo (MCMC)

approaches, such as Gibbs sampling and Metropolis-Hastings algo-

rithms (Geman and Geman, 1984; Gelfand and Smith, 1990; Carlin

and Chib, 1995; Gelfand, 2000; Gamerman and Lopes, 2006). These

advances entailed a substantial increase of the number of publica-

tions involving Bayesian methods in many scientific areas (Robert

and Casella, 2011). More recently, other Bayesian procedures based
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on analytical approximations of the posterior distribution have also

appeared, such as variational Bayesian methods (Beal, 2003) and

integrated nested Laplace approximations (Rue et al., 2009). How-

ever, for the inference in many contexts, such as most part of join

models, we are still restricted to the use of MCMC methods.

Sequential inference is one of the more important scenarios where

Bayesian methodology has gained very much popularity (Creal,

2012). The reason is that the Bayesian inference provides a nat-

ural, elegant, and unified approach to sequential learning (Freitas

et al., 1999).

For an illustration of Bayesian reasoning in sequential learning, sup-

pose a given generic model with parametric vector θ for which we

want to make inference from only a set of available observations D1.

The posterior distribution of θ, π(θ | D1), is computed by applying

the Bayes’ rule from the likelihood function of θ, f(D1 | θ), and the

prior distribution of θ, π(θ), as shown in (2.1). Then, in a second

step, we observe a new set of observations D2 and we want to update

our knowledge about θ obtaining a “new” posterior distribution of

θ, π(θ | D1,D2). This sequential procedure can be summarised by

equations (2.2) and (2.3) as follows:

Step 1: π(θ | D1) ∝ f(D1 | θ)π(θ). (2.2)

Step 2: π(θ | D1,D2) ∝ f(D2 | D1,θ)π(θ | D1). (2.3)

However, it is quite common that the “first” posterior distribution

of θ, π(θ | D1), has not an analytical expression, i.e., we only have

an approximated sample of it thus making the sequential inferential
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22 2.2. Sequential Monte Carlo methods

process “not-so-easy” in practice. In such cases, equivalent infer-

ences can be obtained through a Bayesian inferential process based

on the set that integrates the old and new data:

π(θ | D1,D2) ∝ f(D1,D2 | θ)π(θ). (2.4)

Nevertheless, this procedure is not always a real alternative because

it may be computationally very costly in terms of both, time and

resources.

To circumvent the problem that π(θ | D1) is analytically intractable,

a great number of sophisticated techniques have been proposed in

recent years, in particular sequential Monte Carlo methods. These

are a general class of numerical methods, which provide samples

from a target distribution (let’s say the posterior distribution) based

on weights calculated from importance sampling and resampling

mechanisms (Kantas et al., 2009; Gao and Zhang, 2012).

In the next section, we will introduce sequential Monte Carlo meth-

ods and their main peculiarities.

2.2 Sequential Monte Carlo methods

Among the numerous sequential Bayesian learning approaches, the

most efficient methods for inference are the sequential Monte Carlo

(SMC) methods (Lopes and Tsay, 2011). SMC methods are a set

of simulation-based procedures which provide an appropriate and



“Thesis” — 2017/6/28 — 20:35 — page 23 — #53i
i

i
i

i
i

i
i

2. Sequential learning 23

clever approach to sequentially update complex posterior distribu-

tions. These methods are flexible, applicable to very general set-

tings, and their implementations are intuitive and allow parallel

processing (Doucet et al., 2001).

In general, SMC methods are employed in a plethora of applica-

tions involving artificial intelligence, bioinformatics, computational

physics, computational science, economics and mathematical fi-

nance, engineering and robotics, machine learning, molecular chem-

istry, pharmacokinetic, phylogenetics, signal and image process-

ing, simultaneous localization and mapping, target tracking, among

other fields (Jouin et al., 2016). In all these frameworks, the pa-

rameters and/or states2 of interest are commonly associated with

time or some similar dependent structure, more specifically known

as state-space (or hidden Markov) models (Crisan and Rozovskii,

2011).

SMC methods approximate the target distribution using a set of

simulated samples (particles) and their respective weights. They

adopt a sequential strategy for updating that distribution incorpo-

rating the information provided by new data (Bonawitz et al., 2014).

The performance of these methods depends on the number of parti-

cles, in which a very large number indicates a better representation

of the target distribution.

Figure 2.2 illustrates the step by step of the general SMC scheme

with 12 particles (circles). In order to facilitate the understanding

2Unobserved (or hidden) process that connects the dynamic nature of the
response variable with a conditional model for the observed process given the
state(s).
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24 2.2. Sequential Monte Carlo methods

Figure 2.2: Sequential Monte Carlo scheme.

(Source: Montzka et al., 2012)

of the graphic, let us imagine that these particles synthesise the

distribution of a parameter θ that needs to be updated. The size

of each circle in a given step is related to the weight of the spe-

cific particle. At t = 0 the particles are distributed over an interval

(vertical axis) that can be interpreted as the domain of the values

where the parameter θ is defined, with all its particles having equal

weights. At t = 1 we have the first observation(s) and the sequential

update procedure is initialised. The first step at t = 1 (weighting)

consists in obtaining the weights of the particles according to the

information provided by the new observations. In the second step at

t = 1 (resampling), the set of particles is resampled with probabili-

ties proportional to their weights which are then reset to be equally

likely. In the third step at t = 1 (perturbing3) the particles are

3Perturbing step does not exist in some sequential methods, e.g. sequential
importance resampling (Doucet and Johansen, 2011).
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moved to avoid their accumulation in a few values. The next time

point t = 2 represents access to new observed data and the restart-

ing of the update procedure from the weighting step. Although it

does not appear explicitly in Figure 2.2, before performing the re-

sampling and perturbing steps, the “good quality” (efficiency) of the

new particles should be checked (Arulampalam et al., 2002). This

is done according to some degeneracy criterion. The problem of de-

generacy occurs when only a few particles representing the target

distribution have significant weights. Further down we will display

the most standard way of measuring this degeneracy.

As previously mentioned, this class of sequential methods was (and

in some sense still is) primarily developed for state-space models,

where parameters/states are time dependent. This is not the situa-

tion in joint models4 where all parameters and/or hyperparameters

are static in the sense that they do not change in time. For this

reason we focus on SMC methods for models of static parameters

(also known as static models) and we are thus faced to the pro-

posal by Chopin (2002) and other works with the same background

(Ridgeway and Madigan, 2003; Balakrishnan and Madigan, 2006;

Del Moral et al., 2006; Cappé et al., 2008; Schäfer and Chopin,

2013; Fearnhead and Taylor, 2013; Chopin et al., 2013). The algo-

rithm proposed in Chopin (2002), called iterated batch importance

sampling (IBIS), aims to approximate a target distribution of static

parameters and hyperparameters, e.g. π(θ | D1,D2) in (2.3), using

4Technically, we could employ non-static joint models, but this thesis only
focuses on joint models with static parameters.
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26 2.2. Sequential Monte Carlo methods

a sample of a “prior distribution”, e.g. π(θ | D1) in (2.2), through

the scheme presented in Figure 2.2.

Our starting point is an approximate random sample of size K from

the posterior distribution of θ, π(θ | D1), obtained through a nu-

merical Bayesian procedure5. After this initial stage and with new

data, D2, available, the update process using the IBIS algorithm

has four steps: initialising, weighting, resampling, and moving (or

perturbing) (see Figure 2.2).

The first step (initialising) is used to generate a particle system(
θ(k), w(k)

)
, where θ(k) is drawn from the “first” posterior distribu-

tion of θ, π(θ | D1), and the weight w(k) of each sampled particle

θ(k) is equal to 1/K, for k = 1, . . . , K. This first step is performed

only once, while the next ones are iterative as more data becomes

available.

The weighting step is based on importance sampling and resampling

techniques (Rubin, 1987, 1988). Basically, they rely on an impor-

tance distribution to calculate the “changes” in the target distribu-

tion, e.g. π(θ | D1,D2), through (incremental importance) weights.

The choice of an appropriate importance distribution is the key for

an efficient update to be sequentially performed. In short, it must be

a good approximation of the target distribution. So provided that

new data D2 should not alter much the inference about the param-

eters obtained with D1, π(θ | D1) and π(θ | D1,D2) are likely to be

similar. Hence, we define the importance distribution as π(θ | D1)

and then update the unnormalised weights w̃(k), for k = 1, . . . , K,

5In this thesis, we always use the MCMC approach as the starting point.
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based on the likelihood function of the new data:

w̃(k) ∝
π
(
θ(k) | D1,D2

)
π (θ(k) | D1)

∝
f
(
D1,D2 | θ(k)

)
π
(
θ(k)
)

f (D1 | θ(k)) π (θ(k))

=
f
(
D2 | D1,θ

(k)
)
f
(
D1 | θ(k)

)
f (D1 | θ(k))

= f
(
D2 | D1,θ

(k)
)
. (2.5)

Then the weights w̃(k), k = 1, . . . , K, are normalised to sum to one.

Next, we have a resampling (or selection) step. The principle of

resampling is simple: the particles with low normalised importance

weights are discarded with a high probability, while those that re-

main are replicated. Figure 2.3 illustrates a generic resampling

scheme.

Figure 2.3: Graphical illustration of the resampling step.

(Source: modified from Cappé et al., 2005)

Initially (top of the Figure 2.3), we have the target posterior dis-

tribution π (θ | D1,D2) (solid line), the importance distribution

π (θ | D1) (dashed line), the particles (circles), and the weights (size

of the circle) as in weighting step. Then (bottom of the Figure 2.3),
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28 2.2. Sequential Monte Carlo methods

the particles are resampled taking into account their normalised im-

portance weights and M particles are selected with weights reset to

1/M (in the Figure 2.3, K = 7 and M = 6).

The resampling step maintains (the majority of) the particles in

regions of high probability mass then culminating with the reduction

of the number of particles to represent the target distribution, and

diminishing consequently the computational effort (Doucet et al.,

2000; Del Moral et al., 2012).

It is important to remark that the resampling step increases the

Monte Carlo variance (Chopin, 2004), but it does not change the

expected value of the target distribution, i.e., the estimators are kept

unbiased (Petris et al., 2009). In addition, resampling eliminates

the accumulation of errors over time and provides better stability

for predictive distributions (Douc et al., 2014). These concepts are

precisely characterised by existing convergence results (Doucet and

Johansen, 2011).

Many resampling procedures that keep under control the increasing

Monte Carlo variance while preserving the unbiasedness property

have been proposed (Douc and Cappé, 2005; Hol et al., 2006). The

most popular of them are multinomial resampling (Gordon et al.,

1993), residual (or remainder) resampling (Whitley, 1994; Liu and

Chen, 1998), stratified resampling (Kitagawa, 1996), and systematic

resampling (Whitley, 1994; Carpenter et al., 1999). Since this the-

sis does not focus on quality and/or computational complexity of

resampling methods, we will only use the multinomial resampling6,

which is the simplest approach.
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Intuitively, replicating particles with large importance weights im-

plies progressive sample impoverishment7 and high correlation be-

tween the resampled particles. To avoid this problem without losing

the accuracy of the results a particle rejuvenation scheme should be

added (Gilks and Berzuini, 2001).

The rejuvenation of particles is achieved by means of a perturbing

step (from now on we will refer to this step as moving in order

to maintain the same nomenclature used in Chopin (2002)). This

step strongly reduces the degeneration of the importance weights

over time. It is usually performed from an MCMC kernel with

posterior distribution of θ, π (θ | D1,D2), as its stationary distri-

bution (Chopin et al., 2013). The key idea is to slightly move the

particles in order to maintain the diversity of the samples in the

parameter space. We employ an independent Metropolis-Hastings

kernel in which the proposed particles are independently generated

from a normal proposal (also known as instrumental or jumping)

distribution of θ based on the mean and the variance of the parti-

cles according to their weights. Other options would be to use the

random-walk Metropolis-Hastings or Metropolis-within-Gibbs algo-

rithms (Tierney, 1994; Chib and Greenberg, 1995). This second

approach is advisable when some full conditional distributions are

known and easy to simulate.

6Sample M “new” particles with replacement from the set of particles(
θ(1), . . . ,θ(K)

)
, where the probabilities of selection are defined by P

(
θ̌(r) =

θ(k)
)

= w(k) for k = 1, . . . ,K and r = 1, . . . ,M . Usually K is larger than M .
7Also known as weight degeneracy. This phenomenon occurs when a few par-

ticles have large normalised weights while all remaining have negligible weights.
It causes a deterioration in the Monte Carlo approximation.
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Finally, the particle system
(
θ(k), w(k)

)
, for k = 1, . . . , K, is replaced

by the new particles and their respective weights
(
θ̌(r), w(r)

)
, for

r = 1, . . . ,M , and the update process is finished.

An important adaptation that Chopin (2002) incorporated into the

proposal by Gilks and Berzuini (2001) is that the resampling and

moving steps are unnecessary when the weights of the particles have

a small variance. This strategy significantly reduces the computa-

tional time of the sequential update procedure. In other words, the

“first” posterior distribution of θ, π(θ | D1), is maintained as a good

approximation for the second one, π (θ | D1,D2). However, most of

the times after initialising the update process, the sample impover-

ishment occurs. Hence, it is essential to establish some criterion to

decide whether to continue with the same particles or perform re-

sampling and moving steps. In practice, the (empirical) variability

of the weights is usually evaluated through the effective sample size

(also referenced as degeneracy criterion), which is defined as:

ESS =

[
K∑
k=1

(
w(k)

)2
]−1

=

(∑K
k=1 w̃

(k)
)2

∑K
k=1

(
w̃(k)

)2 , (2.6)

and varies between 1 (when a normalised weight is equal to one) and

K (when all the weights are equal). Thus, when ESS falls below

a threshold KT (typically KT = K/2), the resampling and moving

steps are triggered. Algorithm 1 shows a brief description of the

SMC procedure presented in this section.

Note that the normalised weights w(k), for k = 1, . . . , K, do not

appear in the calculation of incremental weight (2.5), but we have
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Algorithm 1: Iterated batch importance sampling

1 Initialising: draw θ(k) ∼ π(θ | D1) and set w(k) ← 1/K, k = 1, . . . ,K.

2 Weighting: from new data D2, calculate

w̃(k) ← f
(
D2 | D1,θ

(k)
)
w(k),

and normalise the weights w(k) ← w̃(k)∑K
l=1 w̃

(l)
, k = 1, . . . ,K.

if (ESS < KT ) then

3 Resampling: draw
(
θ̃(1), . . . , θ̃(M)

)
from

(
θ(1), . . . ,θ(K)

)
with

probabilities proportional to the normalised weights (M ≤ K).
Update w(r) ← 1/M , r = 1, . . . ,M .

4 Move: draw θ̌(r) from a Metropolis-Hastings kernel of invariant
distribution π (θ | D1,D2), r = 1, . . . ,M .
Update θ(r) ← θ̌(r), r = 1, . . . ,M and K ←M .

end

If new data available, return to Weighting step.

added them in the weighting step (see Algorithm 1). Recall that

from the second sequential update the initialising step is no longer

activated (see Figure 2.2) and so the incorporation of these weights

is important, since they allow to accumulate the information from

included observations in the previous update when the resampling

and moving steps were not required.

An important feature of the sequential Monte Carlo approach is

that it sequentially can provide an estimate of the marginalisation

constant (see (2.1)) with very little additional computation. This

result is essential in model selection based on Bayes factors (Kass

and Raftery, 1995). This is a very relevant and challenging issue in

Statistics which is beyond the objective of this thesis. In any case,
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we will briefly discuss in the next chapter the general procedure to

calculate the approximate update of marginalisation constants in

joint models.

Although the use of IBIS algorithm is computationally appealing by

preventing us from the calculation of the posterior distribution of θ

from scratch (considering D1 as initial data and D2 as new data),

it has a major limitation in our joint models framework. This is

related to the use of the so-called random effects. A statistical arti-

fact that, as mentioned in Section 1.1, allow to consider individual

divergences from the population behaviour. Next chapter is devoted

to the introduction of some key adaptations in the IBIS approach

for dealing with joint models for longitudinal and time-to-event data

containing subject-specific effects.
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Chapter 3

Sequential methods for

Bayesian joint models

As introduced in Chapter 1, our modelling of interest is Bayesian

joint models for longitudinal and time-to-event data. The major

goal of these models is the connection between the longitudinal and

the time-to-event processes.

There are different types of associations between both processes

(Daniels and Hogan, 2008; Fitzmaurice et al., 2008). Most of them

can be modelled by some structure of unobserved latent variables

and/or parameters (Sousa, 2011).

We start this chapter by introducing the main connection structures

between longitudinal and time-to-event processes from a Bayesian

perspective. Next, as the core of the thesis, we will extend the

sequential procedures discussed in Section 2.2 to those types of joint

models.

33
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34 3.1. Bayesian joint models

3.1 Bayesian joint models

Bayesian joint models for longitudinal and time-to-event data as-

sume a full joint probability distribution

f (y, s, b,θ | x) = f (y, s | b,θ,x) f (b | θ)π (θ) , (3.1)

where y and s represent the longitudinal and the time-to-event pro-

cess respectively. Random effects are denoted by b, θ represent

the parameters and hyperparameters, and x is a set of covariates.

Notice that each covariate in x can be related only with the lon-

gitudinal or the time-to-event process or with both of them. In

(3.1), f (y, s | b,θ,x) is the conditional joint distribution for the

processes y and s given the random effects, parameters and hyper-

parameters, and covariates, f (b | θ) is the conditional distribution

of the random effects given θ, and π (θ) the prior distribution of

the parameters and the hyperparameters of the model. The condi-

tional joint probability distribution f (y, s | b,θ,x) usually depend

on the assumptions about the association of both processes. The

different approaches that conditionally connect the longitudinal and

survival processes that we will consider in this thesis are conditional,

shared-parameter, and random-effects models.

In conditional models, the conditional joint probability distribution

f (y, s | b,θ,x) in (3.1) is decomposed into the product of condi-

tional and marginal distributions between longitudinal and time-to-

event processes (Little, 2008). More specifically, this decomposition

can be written in two opposing ways, called pattern-mixture and
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selection models. Pattern-mixture models factorises the conditional

joint distribution f (y, s | b,θ,x) into the product of the conditional

distribution of y given s, θ, and x, and the marginal distribution

of s given b, θ, and x.

f (y, s | b,θ,x) = f (y | s,θ,x) f (s | b,θ,x) . (3.2)

It is important to note that the random effects are only directly

connected to the time-to-event process. Figure 3.1 illustrates the

general idea for this approach.

Figure 3.1: Relationship between the longitudinal process y,
time-to-event process s, and random effects b using pattern-

mixture models.

In general, this approach is used when the objective of the study is

the longitudinal process y.

On the other hand, selection models assume the decomposition of

the conditional joint distribution f (y, s | b,θ,x) in terms of the

product of the conditional distribution of s given y, θ, and x, and

the marginal distribution of y given b, θ, and x.

f (y, s | b,θ,x) = f (s | y,θ,x) f (y | b,θ,x) . (3.3)
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36 3.1. Bayesian joint models

In these models, the random effects are directly connected to the

longitudinal process. Figure 3.2 depicts the relationship between

the components of the joint process from the selection approach.

Figure 3.2: Relationship between the longitudinal process y,
time-to-event process s, and random effects b using selection

models.

In contrast to the pattern-mixture approach, these models usually

have a time-to-event objective.

Shared-parameter models are the most popular approach that con-

nect the longitudinal and the time-to-event processes (Wu and Car-

rol, 1988; Wu and Bailey, 1988; Hogan and Laird, 1997a,b, 1998;

Vonesh et al., 2006). In this case, both processes are considered as

conditionally independent given the random effects b, the parame-

ters and hyperparameters θ, and the covariates x.

f (y, s | b,θ,x) = f (y | b,θ,x) f (s | b,θ,x) . (3.4)

Figure 3.3 represents this structure of association.

The interpretation for this approach is based on the belief that both

processes are governed by a common set of underlying latent indi-

vidual characteristics.
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Figure 3.3: Relationship between the longitudinal process y,
time-to-event process s, and random effects b using shared-

parameter models.

Random-effects models are characterised by postulating conditional

independence between longitudinal and time-to-event processes

given the random effects of each process b =
(
b(y), b(s)

)>
, the pa-

rameters and hyperparameters θ, and the covariates x, and assum-

ing some structure of correlation between b(y) and b(s) (Henderson

et al., 2000).

f (y, s | b,θ,x) = f
(
y | b(y),θ,x

)
f
(
s | b(s),θ,x

)
, (3.5)

where the structure of correlation between b(y) and b(s) will be de-

fined by means of the joint probability distribution f (b | θ). Fig-

ure 3.4 shows the relationship between processes and random effects.

Figure 3.4: Relationship between the longitudinal process y,

time-to-event process s, and random effects b =
(
b(y), b(s)

)>
using random-effects models.
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38 3.2. Updating the posterior information

In all these approaches, the parametric vector θ can also be partic-

ularised as θ(y) (longitudinal) and θ(s) (time-to-event).

The sequential methodology that will be presented in the next sec-

tion is applicable to any of these joint modelling of association be-

tween the longitudinal and the time-to-event processes. Still, there

are at least two classes of joint models that we will not be addressed

in this thesis, the so-called joint latent class models (Proust-Lima

et al., 2009) and joint models using Gaussian copula (Ganjali and

Baghfalaki, 2015). The reason is simply that these models have a dif-

ferentiated structure for relating the longitudinal and time-to-event

processes and so our sequential proposal would have to incorporate

some additional features.

3.2 Updating the posterior information

The posterior distribution of θ in (2.1) applied to the case of joint

models can be given by the hierarchical modelling (Diggle et al.,

2002):

π(b,θ | D) ∝ f(D | b,θ)f(b | θ)π(θ), (3.6)

where D represents all longitudinal history of the individuals in

the sample, information about their survival times, and covariates.

Note that (3.6) follows the generic notation (without defining an

association structure) of the full joint distribution presented in (3.1).

Our proposal is to employ the inherent sequential nature of the

Bayesian methodology to learn from the initial data, summarised in
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the joint posterior distribution π(b,θ | D1), and use new information

D2 to update the joint posterior distribution of (b,θ) in order to

predict/estimate the relevant survival/longitudinal outcomes.

The use of the Algorithm 1, presented in Chapter 2, for updating the

joint posterior distribution of (b,θ) from π(b,θ | D1) to compute

π(b,θ | D1,D2) is not direct, since it does not consider random

effects. However, there are extensions of the IBIS algorithm that

incorporates random effects, such as generalised linear mixed models

(Fan et al., 2008) and longitudinal data with model uncertainty

(McGree et al., 2016), but none of them is developed within the

context of joint models. For these reasons, we propose in this thesis

an extension of the IBIS algorithm accommodated to the random

effects in joint models (3.1).

One of the challenges when applying SMC methods, particularly the

IBIS algorithm, for static models with random effects is the use of

the marginal (or integrated) likelihood function of θ, f(D | θ). As

we are interested in applying the standard IBIS algorithm, it will

be necessary to obtain the marginal likelihood function of θ inte-

grating out the random effects of the complete likelihood function

(more details below). An advantage of this approach is the reduc-

tion of computational effort, since integrating out the random effects

is faster than updating them at each iteration (probably with some

MCMC algorithm).

For instance, let yi,1:ni
be the vector of size ni of longitudinal mea-

surements for individual i and Ti their observed event time ob-

tained as the minimum between the true event time T ∗i and the
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right censoring time Ci, i.e., Ti = min(T ∗i , Ci). The event indicator

δi = I (T ∗i ≤ Ci) takes the value 1 if the observed time corresponds

to a true event time, and 0 otherwise. Here yi,1:ni
is associated to

the longitudinal process y and the observed (censored or not) event

time (ti,ni
, δi) to the time-to-event process s. The marginal likeli-

hood function of θ for the observations Dini
=
[
yi,1:ni

, (ti,ni
, δi)
]>

of

the individual i from the beginning of the study until time ti,ni
is

obtained by integrating out their random effects bi as follows:

f
(
Dini

| θ
)

=

∫
f
(
yi,1:ni

, (ti,ni
, δi) | bi,θ

)
f (bi | θ) dbi. (3.7)

Unfortunately, the integral in (3.7) is usually analytically intractable

and some numerical integration method is required to approximate

it, as pointed out in Gerber and Chopin (2015) and McGree et al.

(2016).

Among the various options of integration methods (Niederreiter,

2003), we will focus on the two most popular approaches: standard

Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods. In

general terms, all integration methods based on the Monte Carlo

approach approximate (3.7) by:

f̂
(
Dini

| θ
)

=
1

L

L∑
l=1

f
(
yi,1:ni

, (ti,ni
, δi) | b(l)

i ,θ
)
, (3.8)

where b
(l)
i is simulated from f (bi | θ) for l = 1, . . . , L (integration

nodes). Specifically, for the standard MC and QMC methods em-

ployed we simulate values from f (bi | θ) based on the well-known

inverse cumulative distribution function method (Devroye, 1986).
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Firstly, we consider the standard MC integration method for the

approximation (3.8). Let F (bi | θ) be the cumulative distribution

function of f (bi | θ) with inverse function denoted by F−1
bi

, then

the random variable bi = F−1
bi

(U | θ) has cumulative distribution

function F (bi | θ), where U is a random variable that follows a

standard uniform distribution. In this scheme, we simply have to

simulate L integration nodes (u(1), . . . ,u(L)) with the same dimen-

sion of bi from a standard uniform distribution and then get b
(l)
i

from the calculation F−1
bi

(u(l) | θ) for l = 1, . . . , L. Finally, we

calculate f̂(Dini
| θ) as in (3.8) from the L vectors of bi simulated.

As a second approach, we have the QMC methods, based on quasi-

random (also known as low discrepancy) sequences and not on the

simulation of integration nodes from a standard uniform distribu-

tion. Examples of such sequences include Halton (Halton, 1960),

Sobol’ (Sobol’, 1967), and Faure (Faure, 1982). The main advan-

tage of this strategy is the high uniformity in distribution, since

these quasi-random sequences are more uniform than random se-

quences because randomly chosen points tend to clump (Morokoff

and Caflisch, 1994). In the case of Monte Carlo integration, this

feature leads to faster convergence (in the sense of needing fewer

integration nodes) when compared to the standard MC method.

The reason for this is that many scenarios require more uniformity

than randomness. In this thesis, we only consider the Halton (1960)

proposal, which is based on finer and finer prime-based divisions

of sub-intervals of unit interval [0, 1]. It is important to bear in

mind that the selected integration procedure must ideally be as effi-

cient as possible with a low computational cost, since the marginal
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likelihood function of θ in (3.8) will be evaluated many times (in

the weighting and moving steps). After calculating (3.8) whenever

required, the standard IBIS algorithm can be used again.

Remembering that the main motivation of this thesis is personalised

medicine and we have assumed that the individualised/personalised

information of each patient is modelled through random effects b.

Therefore, we are interested in updating the joint posterior distri-

bution of (b,θ) in (3.6), which can be rewritten as:

π(b,θ | D1,D2) = π(b | D1,D2,θ) π(θ | D1,D2). (3.9)

Note that the IBIS algorithm, including the integration part, pro-

duces the second posterior distribution in (3.9), π(θ | D1,D2). The

component π(b | D1,D2,θ) is the conditional posterior distribution

of the random effects given θ, and its (proportional) expression is

obtained by:

π
(
b | D1,D2,θ

)
∝ f

(
D1,D2 | b,θ

)
f (b | θ) . (3.10)

The conditional posterior distribution of b in (3.10) can be updated

using a standard Metropolis-Hastings algorithm, as in Rizopoulos

et al. (2010), based on posterior samples of θ. This additional pro-

cedure is an extension of SMC methods for static parameters within

the framework of Bayesian joint models as defined in (3.1). We have

named this additional procedure in the IBIS approach as a person-

alise step. Algorithm 2 shows our sequential update procedure for

Bayesian joint models of longitudinal and time-to-event data.
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Algorithm 2: Sequential Monte Carlo algorithm for joint models

1 Initialising: draw θ(k) ∼ π(θ | D1) and set w(k) ← 1/K, k = 1, . . . ,K.

2 Weighting: from new data D2, calculate

w̃(k) ← f̂
(
D2 | D1,θ

(k)
)
w(k),

and normalise the weights w(k) ← w̃(k)∑K
l=1 w̃

(l)
, k = 1, . . . ,K.

if (ESS < KT ) then

3 Resampling: draw
(
θ̃(1), . . . , θ̃(M)

)
from

(
θ(1), . . . ,θ(K)

)
with

probabilities proportional to the normalised weights (M ≤ K).
Update w(r) ← 1/M , r = 1, . . . ,M .

4 Move: draw θ̌(r) from a Metropolis-Hastings kernel of invariant
distribution π (θ | D1,D2), r = 1, . . . ,M .
Update θ(r) ← θ̌(r), r = 1, . . . ,M and K ←M .

end

5 Personalise: simulate b(k) ∼ π
(
b | D1,D2,θ

(k)
)
, k = 1, . . . ,K.

If new data available, return to Weighting step.

The dynamic update mechanism presented in the Algorithm 2 can

also be extended to the framework of utility functions in the presence

of model uncertainty (Drovandi et al., 2013, 2014; McGree et al.,

2016; Ryan et al., 2016).

As introduced in Section 2.2, the main advantage of the sequential

Monte Carlo approach in model selection is the approximate up-

date of the normalising constant, leading to an estimate of posterior

model probabilities, with negligible additional computational effort.

In Section 2.1, we discussed that one of the main difficulties of the

Bayesian approach is the computation of the normalising constant

m(D). In the case of general sequential Monte Carlo algorithms,
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this constant can be approximated as the product of the sum of

the unnormalised weights of each iteration (Del Moral et al., 2006).

In our sequential strategy the normalising constant can also be up-

dated using this same idea. Our initial analysis using the data set

D1 is non-sequential (MCMC approach) and this is a key difference

with respect to the usual sequential methods. Hence, the constant

m(D1) must be previously calculated. From this assumption and

considering a new set of observations D2, the sequential updating

of the “new” normalising constant, which is the basis for updating

the Bayes factor, is obtained by:

m(D1,D2) = m(D1)
m(D1,D2)

m(D1)
= m(D1)m(D2 | D1). (3.11)

From the definition of the normalising constant in (2.1) and ap-

proaching the marginal likelihood of θ by (3.8), we can approximate

(3.11) as:

m(D1,D2) ≈ m(D1)

∫
f̂(D2 | D1,θ) π(θ | D1) dθ

≈ m(D1)
K∑
k=1

f̂
(
D2 | D1,θ

(k)
)
w(k)

= m(D1)
K∑
k=1

w̃(k), (3.12)

where w̃(k) are the unnormalised weights, for k = 1, . . . , K, as pre-

sented in Algorithm 2.

Analogously, if our interest in a general joint scenario is to calculate

the predictive distribution for a set of new observations, dnew, given
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the current data D, then we can approximate it by means of

f(dnew | D) =

∫
f̂(dnew | D,θ) π(θ | D) dθ

≈
K∑
k=1

f̂
(
dnew | D,θ(k)

)
w(k). (3.13)

In order to apply the sequential methodology described in this chap-

ter for joint models, in the next two chapters we will illustrate its

use in a simulated example (longitudinal objective) and in a real

application (time-to-event objective).
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Chapter 4

Applying the sequential me-

thodology in simulated data

As we discussed in Section 1.3, there are basically two possible ob-

jectives for using joint modelling: (i) the study of a longitudinal

measurement and (ii) the study of the time until an event of inter-

est occurs. Recall that for objective (i) time-to-event models are

needed in order to consider informative missing data (see Rubin,

1976), while in (ii) longitudinal models are advisable to introduce

endogenous time-varying covariates related with the risk of suffering

the event (see Section 1.2).

This chapter illustrates the behaviour of the sequential method-

ology proposed in Chapter 3 for analysing data from a simulated

joint model which interest relies on the longitudinal process, and

the time-to-event process is defined for modelling an informative

dropout1 (Asar et al., 2015; Elashoff et al., 2016). The chapter

also discusses a simulation strategy for generating longitudinal data

47
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48 4.1. Simulating longitudinal data with informative dropout

with informative dropout as well as briefly presents evidence of the

importance of joint modelling for analysing longitudinal data with

nonignorable missing data.

All computational time analyses of this chapter were performed on

a Windows laptop with an Intel(R) Core(TM) i5-3337U 1.80GHz

processor, 2 cores, 4 logical processors, 4GB of RAM and 3MB of

cache memory, and the time presented is based on the average of 50

runs. All implementations were made on the R environment (version

3.4.0) and, in particular for the MCMC approach, we used the JAGS

software (version 4.2.0) through the rjags package (version 4-6).

4.1 Simulating longitudinal data with

informative dropout

Informative (or nonrandom) dropout can be seen as a source of

missing data which is often related with a MNAR mechanism in the

longitudinal process (see Section 1.1). For instance, in a medical

context, the reason why a patient leaves the study prematurely can

be associated to the target biomarker in a nonignorable way.

In general, dropout can be assessed in two different ways: according

to the time in which it occurs or by means of the indicator of dropout

in each observed time (Chan, 2016). We will focus here on the sec-

ond approach, where for each instant of time t of the follow-up of

1Also called monotone missing data, it occurs when an individual leaves the
study at some point and never return, and this information cannot be ignored.
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individual i we have a dropout indicator event δi(t) (1 if dropout,

0 otherwise). Hence, whenever we refer to time-to-dropout, we un-

derstand it as the time until the dropout indicator changes from

0 to 1, i.e., the time at which the individual leaves the study. As

the dropout may occur or not at each time, a Bernoulli model seems

sensible to represent this process (Satty and Mwambi, 2013). In this

context, if an individual remains in the monitoring system until the

end of the study, then we say that their time-to-dropout is censored.

In our simulation strategy, we will assume a shared-parameter joint

model framework (see Section 3.1) to connect the longitudinal (yi(t))

and the dropout (δi(t)) processes. Thus, in brief, our reference joint

model for individual i, for i = 1, . . . , N , is given by:

(
yi(t) | µi(t), ·

)
∼ P

(
µi(t), ·

)
,(

δi(t) | pi(t)
)
∼ B

(
pi(t)

)
,

z
(
pi(t) | µi(t), ·

)
= η

(
µi(t), ·

)
.

(4.1)

Here yi(t) denotes the longitudinal variable for individual i at time

t which follows a generic probability distribution P(µi(t), ·) with

mean µi(t) and other possible parameters. Note that we are not

giving any structure for µi(t), but it might be related to some co-

variates and random effects. In the time-to-dropout process, the

random variable δi(t) follows a Bernoulli distribution with parame-

ter pi(t). The probability of dropout for an individual i at time t,

pi(t), is modelled by some link function z(·) that describes how the

mean of the variable δi(t) depends on a linear predictor η(µi(t), ·)
involving µi(t) and other possible covariates and parameters. Some
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50 4.1. Simulating longitudinal data with informative dropout

examples of link functions for the Bernoulli model are logit, probit,

and complementary log-log (McCullagh and Nelder, 1989).

The simulation scheme starts with the specification of the number

of individuals (N), the number of longitudinal observations (ni) for

each individual i of the sample and their respective measurement

times (ti,1:ni
), for i = 1, . . . , N . A structure for µi(t) and a for pi(t)

should also be selected, for j = 1, . . . , ni and i = 1, . . . , N , as well

as all parameters and hyperparameters of the joint model.

From this preliminary information for each individual i, we start

with the simulation of their ni longitudinal observations from the

probability distribution function P with mean µi,j = µi(ti,j), for

j = 1, . . . , ni.

In the next step, we generate dropout indicators for each individual.

We sequentially calculate the probability that an individual i leaves

the study at time ti,j by means of pi,j = pi(ti,j), for j = 1, . . . , ni.

In each iteration of this process, we compare the value of pi,j with

a drawn value u from a standard uniform distribution, which is the

strategy adopted by the inverse cumulative distribution function

method (see Section 3.2). Hence, if u < pi,j then the dropout is

not produced at time ti,j (i.e., δi,j = δi(ti,j) = 0) and we continue

with this comparison at next time ti,j+1. Otherwise, δi,j = 1 and

consequently the last longitudinal observation of the individual i

occurs at time ti,j.

The key idea behind this strategy is that the mean µi(t) for an

individual i at time t increases or decreases the probability that this
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individual continues in the study.

Algorithm 3 displays the simulation procedure described above.

Algorithm 3: Scheme for simulating longitudinal data with infor-
mative dropout

1 Specification:
N # number of individuals.
ni # number of observations for individual i, for i = 1, . . . , N .
ti,1:ni # ni measurement times for individual i, for i = 1, . . . , N .

Values for parameters and hyperparameters of the joint model.

2 Simulate all observations of all individuals:

yi(ti,j) ∼ P
(
µi,j , ·

)
, for j = 1, . . . , ni, i = 1, . . . , N ,

where P is a generic probability distribution with mean µi,j at time ti,j .

3 Generate the dropout time of each individual:
for (i : 1 to N) do

δi(ti,1:ni)← 0.

for (j : 1 to ni) do

Calculate pi,j and draw u ∼ U(0, 1).

if (u > pi,j) then

δi,j ← 1.

ni ← j.

Break.
end

end

end

4 Return: yi,j , ti,j , δi,j , j = 1, . . . , ni, i = 1, . . . , N .

Although the procedure presented in Algorithm 3 simulates dropout

data, its extension to simulate intermittently missing data2 is very

simple. We just have to remove the commands ni ← j and Break

in Step 3, thus allowing missing data at specific follow-up times.
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4.2 Simulated data

To illustrate the simulation procedure described in the previous

section, we will consider a joint model with a longitudinal linear

mixed-effects model (Verbeke and Molenberghs, 2000; Galecki and

Burzykowski, 2013) and a dropout indicator event modelled as in

(4.1) employing a logit link function for pi(t). So our joint modelling

for individual i, for i = 1, . . . , N , is given by:

(
yi(t) | µi(t), σ

)
∼ N

(
µi(t), σ

2
)
,(

µi(t) | bi,β
)

= β0 + b0i + (β1 + b1i) t,(
bi | σ0, σ1

)
∼ N

((
0, 0
)>
, diag (σ2

0, σ
2
1)
)
,(

δi(t) | pi(t)
)
∼ B(pi(t)),

logit
(
pi(t) | µi(t), γ

)
= γ + αµi(t),

(4.2)

where the longitudinal variable yi(t) at time t is normally distrib-

uted with mean µi(t) and variance σ2, β = (β0, β1)> are fixed effects

coefficients for the intercept and the slope of the mean longitudinal

trajectory, respectively, and bi = (b0i, b1i)
> are the subsequent in-

dividual random effects. We assume that these random effects, b0i

and b1i, are independent and normally distributed with mean 0 and

variances σ2
0 and σ2

1, respectively. In the logit link function for pi(t)

we have an intercept coefficient γ and the association between the

longitudinal outcome and the dropout event is expressed by the

product of α and µi(t) (i.e., the logit of the probability for dropout

and the longitudinal mean are linearly associated).

2Also called non-monotone missing data, it occurs when an individual misses
particular visits during the course of the longitudinal study and return at later
scheduled visits (Tseng et al., 2016).
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The simulation setting is given by N = 100 individuals and lon-

gitudinal times 0, 1, . . . , 10. The parameters and hyperparameters

of the model are selected as follows: β0 = 0.3, β1 = 0.5, σ = 2,

σ0 = 0.3, σ1 = 0.3, γ = −3, and α = 0.7.

Figure 4.1-(a) presents the longitudinal measures without dropouts

with the setting described above. Figure 4.1-(b) shows the same

simulated data as in Figure 4.1-(a) with some observations removed

as a consequence of the incorporation of the dropout process pre-

sented in the previous section.

(a) Without dropout. (b) With informative dropout.

Figure 4.1: Longitudinal measurements generated from Algo-
rithm 3 for 100 individuals.

We observe in Figure 4.1-(b) that most individuals leave the study

before it ends, i.e., there are few censored data. In addition, there

is a (nonrandom) factor that induces individuals to leave the study

as their longitudinal measurements increase. In a medical context,

this situation could be interpreted when a physician observes high

values of a biomarker for a patient (supposing that high values are

a sign of disease worsening) and, as a consequence, this patient is



“Thesis” — 2017/6/28 — 20:35 — page 54 — #84i
i

i
i

i
i

i
i
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more likely to be taken to another hospital unit (which would be

the reason for leaving the study). A direct comparison between

the two graphics in Figure 4.1 also supports the intuitive idea that

dropout modelling must not be ignored, since at least the common

slope coefficient (β1) will be poorly estimated. Figure 4.2 shows the

frequency of dropout and censoring times from simulated data in

Figure 4.1-(b).

Figure 4.2: Frequency of dropout times (gray) and censored
times (burlywood) from simulated data in Figure 4.1-(b).

In the next section, we will use the data generated here to show

the benefits of a Bayesian joint modelling in contrast to a purely

longitudinal analysis when informational dropout happens.

4.3 The benefits of a joint modelling

The joint modelling used in this section is the same that the one

implemented in the simulation mechanism, a shared-parameter joint
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model (4.2). All sources of uncertainty, θ = (β0, β1, σ, σ0, σ1, γ, α)>,

are modelled through vague proper marginal prior distributions with

the aim of giving all inferential prominence to the data. In partic-

ular, the joint prior distribution of θ is given by:

π(θ) = π(β0) π(β1) π(σ) π(σ0) π(σ1) π(γ) π(α), (4.3)

in which we assume prior independence as a default specification.

More specifically, we elicit noninformative marginal prior distribu-

tions that provide a wide parametric space for starting the Bayesian

process. They are given by:

π(β0) = π(β1) = N (0, 100),

π(σ) = U(0, 10),

π(σ0) = π(σ1) = U(0, 10),

π(γ) = N (0, 100),

π(α) = N (0, 100).

(4.4)

As discussed in Section 2.2, our starting point for assessing the prob-

abilistic behaviour of all relevant quantities derived from θ is an ap-

proximate random sample of size K from its posterior distribution,

π(θ | D). It may have been computed by using MCMC methods,

such as those implemented in WinBUGS (Lunn et al., 2000), JAGS

(Plummer, 2003), or any other acceptable software/package. In this

study we previously compared the processing time between WinBUGS

and JAGS software, and opted to do all the analyses using JAGS3,

since its execution time was around 40% quicker than WinBUGS.

3The code in JAGS of the joint model (4.2) with the marginal prior distri-
butions of θ specified above is available in Appendix A.
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After some preliminary testing, the minimum MCMC configura-

tion to achieve convergence based on the potential scale reduction

factor (Gelman and Rubin, 1992; Brooks and Gelman, 1998) and

the effective number of independent simulation draws (Kass et al.,

1998) is given by three Markov chains with 200000 iterations af-

ter a burn-in period of 50000 iterations. The effective iterations

are thinned by storing every 400th iteration in order to decrease

autocorrelation in the sample. From this MCMC configuration,

K = 3 × 200000/400 = 1500. Table 4.1 summarises the marginal

posterior distribution of the parameters and hyperparameters of the

model.

θ True Mean SD 2.5% 50% 97.5%
β0 0.3 0.313 0.142 0.039 0.316 0.585
β1 0.5 0.454 0.058 0.348 0.453 0.578
σ 2.0 2.005 0.063 1.885 2.003 2.129
σ0 0.3 0.315 0.191 0.014 0.304 0.727
σ1 0.3 0.321 0.044 0.243 0.321 0.418
γ -3.0 -2.924 0.277 -3.498 -2.916 -2.416
α 0.7 0.646 0.120 0.433 0.640 0.894

Table 4.1: Posterior summaries of the parameters and hyper-
parameters of the joint model (4.2) using JAGS.

From Table 4.1 it is easy to see that the mean value and the 95%

credible interval of each parameter are in agreement with the true

value of the parameter. The biggest difference between the true

and the estimated values is in the common slope coefficient β1, but

within the range of the expected. Simulation in joint models is a very

unknown subject that undoubtedly could help to better understand

the probabilistic behaviour of them.
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In order to illustrate the relevance of the use of joint models in cases

of informative dropout, we also propose a purely longitudinal model

for this same set of data. To maintain consistency with the joint

analysis developed before, the longitudinal model does not contain

any element for modelling dropout. Consequently, it is defined as

follows:(
yi(t) | µi(t), σ

)
∼ N

(
µi(t), σ

2
)
,(

µi(t) | bi,β
)

= β0 + b0i + (β1 + b1i) t,(
bi | σ0, σ1

)
∼ N

((
0, 0
)>
, diag (σ2

0, σ
2
1)
)
.

(4.5)

We also assume prior independence and select the same marginal

prior distributions as in (4.4) for the common parameters and hy-

perparameters that the model (4.5) shares with (4.4). From the

MCMC configuration previously presented, Table 4.2 displays a de-

scriptive summary of the approximate posterior distribution for the

parameters and hyperparameters of this longitudinal model.

θ True Mean SD 2.5% 50% 97.5%
β0 0.3 0.424 0.142 0.154 0.426 0.706
β1 0.5 0.357 0.057 0.242 0.356 0.476
σ 2.0 2.008 0.063 1.892 2.006 2.143
σ0 0.3 0.303 0.194 0.011 0.287 0.709
σ1 0.3 0.303 0.042 0.224 0.301 0.391

Table 4.2: Posterior summaries of the parameters and hyper-
parameters of the longitudinal model (4.5) using JAGS.

Based on the true value of each parameter and hyperparameter, the

longitudinal analysis that ignores the missing data leads to differ-

ent results for the common intercept and slope coefficients, β0 and

β1, but maintain similar values for the three standard deviations, σ,
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58 4.4. Sequential inference

σ0, and σ1. In particular, the expected common elements of the line

derived from the longitudinal analysis are 0.424+0.357t and this re-

gression line clearly produces biased results, while in the case of the

joint modelling the resulting regression line is 0.313 + 0.454t, which

leads to a much more adequate approximation to the “complete”

longitudinal mean behaviour as shown in Figure 4.1-(a).

So far, we have done a non-sequential joint analysis of longitudinal

and time-to-event data with all the available observations up to this

now, where the running time using JAGS software was about 53

minutes.

We will illustrate in the next section a situation in which new obser-

vations become available and it is necessary to sequentially update

the inferential process.

4.4 Sequential inference

In this section, we will exemplify the performance of our sequential

Monte Carlo proposal for dealing with joint models using the gen-

erated data set (D) in Section 4.2 and the modelling presented in

the previous section.

Imagine that new data are available in two different stages. In first

place, we have a new individual (i = 101) who has finished the study

with eleven longitudinal measurements. Next, an individual (i = 38)

originally in the study (with only one observation) has four new

longitudinal measurements. Obviously, at each stage we also know
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that both individuals have not experienced the dropout event before

the last observed longitudinal measure. Figure 4.3 shows the update

of Figure 4.1-(b) with the new data highlighted. The main reason

for using sequential methods in these stages of inferential updating

is to avoid recalculation of MCMC methods that in this study would

probably take another 53 minutes through JAGS software.

Figure 4.3: Observations of the individuals from the initial
study (gray), eleven observations for a new individual (guava),
and four new observations for an individual originally in the

study (blue).

Firstly, we consider that only the new individual is added into the

study. In first step (initialise) of Algorithm 2, we draw a posterior

sample of size K = 1500 for each component of θ obtained from the

initial data, π(θ | D), and initialise all weights with value 1.

In second step (weighting), we compute the incremental impor-

tance weights (2.5) from the marginal likelihood function of θ,

f
(
yi,1:ni

, δi,1:ni
| θ
)
, obtained after integrating out the random ef-

fects (see Section 3.2). The integral, generally written as in (3.7),
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has usually no analytical solution and then some integration method

is required. Hence, for each particle k of each component of θ, for

k = 1, . . . , K, we approximate f
(
yi,1:ni

, δi,1:ni
| θ(k)

)
by means of

f̂
(
yi,1:ni

, δi,1:ni
| θ(k)

)
calculated by:

1

L

L∑
l=1

f
(
yi,1:ni

| µ(l,k)
i (t1:ni

), σ(k)
)
f
(
δi,1:ni

| p(l,k)
i (t1:ni

)
)
, (4.6)

with µ
(l,k)
i (t1:ni

) and p
(l,k)
i (t1:ni

) described by:

µ
(l,k)
i (t1:ni

) = β
(k)
0 + b

(l)
0i +

(
β

(k)
1 + b

(l)
1i

)
ti,1:ni

, (4.7)

p
(l,k)
i (t1:ni

) =
exp

[
γ + αµ

(l,k)
i (t1:ni

)
]

1 + exp
[
γ + αµ

(l,k)
i (t1:ni

)
] . (4.8)

Each component of b
(l)
i =

(
b

(l)
0i , b

(l)
1i

)>
is simulated from N

(
0, σ

2(k)
0

)
or N

(
0, σ

2(k)
1

)
, respectively, for l = 1, . . . , L. From joint model

(4.2), the longitudinal contribution of the new individual i in (4.6)

is the product of normal densities evaluated at observations y1:ni
,

expressed by:

f (y1:ni
| µi(t1:ni

), σ) =

ni∏
j=1

{(
1

2πσ2

) 1
2

exp

[
− 1

2σ2

(
yij − µi(ti,j)

)2
]}

=

(
1

2πσ2

)ni
2

exp

[
− 1

2σ2
‖yi,1:ni

− µi(ti,1:ni
)‖2

]
, (4.9)

where ‖v1:ni
‖2 =

∑ni

j=1 v
2
j represents the Euclidean distance.

On the other hand, the time-to-dropout contribution of this same

individual i in (4.6) is described by the product of Bernoulli densities
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evaluated at observations δi,1:ni
, given by:

f (δi,1:ni
| pi(ti,1:ni

)) =

ni∏
j=1

pi(ti,j)
δi,j
[
1− pi(ti,j)

]1−δi,j
= pi(ti,ni

)δi,ni

ni∏
j=1

[
1− pi(ti,j)

]1−δi,j . (4.10)

The simulation strategy of bi is based on the Monte Carlo approach,

and depending on the computational method employed the pro-

cessing time for a good approximation of (4.6) may differ consid-

erably. As commented in Section 3.2, we will compare the perfor-

mance of Monte Carlo (MC) and quasi-Monte Carlo (QMC) meth-

ods through a study based on different numbers of integration nodes

to approximate the marginal likelihood function of θ in (3.7). Since

f
(
yi,1:ni

, δi,1:ni
| θ
)

is directly related to the normalised weights (see

(2.5)), we use the distribution of these weights to evaluate the inte-

gration methods.

We will approximate the distribution of the normalised weights with

a large number of integration nodes (L = 50000) and this distribu-

tion will be our reference approximation. The approximations with

both methods are similar. Figure 4.4 shows the performance of

both integration methods for the calculation of the distribution of

the normalised weights as well as the reference distribution from the

11 observations of the individual 101.

Clearly, QMC is the method that needs less nodes (about 100) to

get a good approximation of the distribution of normalised weights.

MC method requires around 750 nodes to reach an approximation
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Distribution of the approximate normalised
weights obtained by Monte Carlo (purple dashed line) and quasi-
Monte Carlo (blue long-dashed line) integration methods, with
L = 50, 75, 100, 250, 500, 750 (plots (a) to (f) respectively) and a

reference distribution (orange solid line) using L = 50000.
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4. Applying the sequential methodology in simulated data 63

equivalent to the QMC with 100 nodes. Based on this results, in

this simulated study we will approximate the marginal likelihood

function of θ by quasi-Monte Carlo integration using 100 integration

nodes.

Still in the weighting step, from the (unnormalised) weights cal-

culated by the product of (4.6) and the initial weights, we should

normalise them and check the effective sample size (ESS), which is

calculated as in (2.6). Taking the typical thresholdKT = K/2 = 750

as reference, we have that ESS = 1279 is greater than KT , so we

do not trigger the resampling and moving steps. In practice, this

means that these eleven new observations does not significantly al-

ter the first marginal posterior distribution of the parameters and

hyperparameters.

Finally, we update the random effects through the personalise step.

The conditional posterior distribution of the random effects for all

individuals, π(b | D, yi,1:ni
, δi,1:ni

,θ), is written as in (3.10). How-

ever, recalculation of the random effects of individuals originally

belonging to the study is unnecessary, since θ did not need to

be updated after inclusion of the new individual i. Therefore,

this update reduces to the calculation of the conditional posterior

distribution of the random effects for the individual i, expressed

by π(bi | yi,1:ni
, δi,1:ni

,θ) and calculated by means of a standard

Metropolis-Hastings algorithm, as indicated in Section 3.2.

The computational time for this sequential procedure was 30 sec-

onds. However, it is important to highlight that we have not entered
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64 4.4. Sequential inference

in the resampling and moving steps, and so the processing is much

faster.

Imagine that now we want to incorporate the four new longitudinal

observations of the individual 38 to the inferential process. In this

new update, we proceed from the weighting step using the previ-

ous samples as the initial set of particles. We compute the incre-

mental importance weights in (2.5) by multiplying the normalised

weights w(k), for k = 1, . . . , 1500, stored in the previous update by

the marginal approximation

1

L

L∑
l=1

f
(
yi,1:ni+g | b

(l)
i ,θ

(k)
)
f
(
δi,1:ni+g | b

(l)
i ,θ

(k)
)

f
(
yi,1:ni

| b(l)
i ,θ

(k)
)
f
(
δi,1:ni

| b(l)
i ,θ

(k)
)

 , (4.11)

where g = 4 is the number of new longitudinal observations for indi-

vidual i. The longitudinal and time-to-dropout components are the

same as (4.9) and (4.10), respectively, and the random effects b
(l)
i are

simulated as in (4.6). Hence, we obtain the updated (unnormalised)

weights from the product of (4.11) and the normalised weights after

adding all the information of the individual 101 (first update), for

k = 1, . . . , 1500. We also update the normalised weights and cal-

culate the ESS, which results in 742. Note that now the effective

sample size is less than KT = 750, so the update procedure requires

the resampling and moving steps.

The resampling step is performed using the multinomial selection

scheme presented in Section 2.2, where the number M of “new”

particles for each parameter and hyperparameter is equal to 500

(one-third of the total number of initial particles)4.
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After the particles have been resampled, we trigger the moving step.

At this stage we move once each resampled particle according to

the acceptance probability of the Metropolis-Hastings algorithm.

The independent proposal distribution for each new set of particles

(composed of a particle of each component of θ) is a multivariate

normal distribution with mean vector and diagonal of the variance-

covariance matrix (off-diagonal is equal to zero, since the particles

are independent of each other) given by:

Ê =
K∑
k=1

w(k)θ(k) and V̂ =
K∑
k=1

w(k)
(
θ(k) − Ê

)2
, (4.12)

as suggested by Chopin (2002). Note that some parameters and

hyperparameters (the standard deviations σ, σ0, and σ1) only take

positive values, hence assuming normality for the proposal distri-

butions of these components is inappropriate. To circumvent this

problem, we apply the logarithmic transformation to these compo-

nents and so we use a normal setting as in (4.12), which is the default

approach for the independent proposal distribution.

Now we must update the random effects b based on the “new” θ

(personalise step). Again, we use a Metropolis-Hastings approach to

approximate the conditional posterior distribution of b. However,

this time the random effects of all individuals must be updated,

since marginal posterior distributions of θ were also updated.

In this second update, all the steps of the Algorithm 2 were re-

quired and the average processing time was about 5 minutes. Note

4This number was set from some initial calibration tests.
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that in both situations, the reduction of computational time is quite

relevant, since JAGS software takes around 53 minutes.

Since all new observations have been incorporated into the study,

we have a new inference for the parameters and hyperparameters θ.

Table 4.3 displays the marginal posterior expectation and standard

deviation of θ after using the sequential approximation. In order

to validate and compare our results, we have also included in this

table the posterior summary of θ (re)using JAGS software and the

one obtained in Table 4.1.

θ True
Initial (Table 4.1) SMC JAGS
Mean SD Mean SD Mean SD

β0 0.3 0.313 0.142 0.295 0.136 0.296 0.140
β1 0.5 0.454 0.058 0.474 0.060 0.474 0.060
σ 2.0 2.005 0.063 2.006 0.062 2.006 0.063
σ0 0.3 0.315 0.191 0.300 0.180 0.301 0.180
σ1 0.3 0.321 0.044 0.346 0.044 0.347 0.044
γ -3.0 -2.924 0.277 -3.035 0.284 -3.033 0.285
α 0.7 0.646 0.120 0.678 0.122 0.675 0.122

Table 4.3: Marginal posterior expectation and standard devi-
ation of θ before (Initial) and after incorporating all new obser-
vations. SMC: sequential update from the Algorithm 2. JAGS:

non-sequential update from JAGS software.

Obviously, all these parameters and hyperparameters explain pop-

ulation aspects and so a few new observations (compared to the

amount of initial data) would not drastically alter their estimated

values. The estimates using our sequential method and the JAGS

software are equivalent, since the differences between the columns

SMC and JAGS are minimal (only in the third decimal place).
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We analysed other simulation scenarios based on different parame-

ter and hyperparameter settings. The comparative results between

MCMC and SMC approaches are presented in Appendix C. In all

cases, the sequential methodology presented a significant reduction

of the computational time and maintained the accurate estimation

of the marginal posterior distribution of each parameter and hyper-

parameter of the joint model.
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Chapter 5

Application in ICU

discharge data

We continue in this chapter with the illustration of the use of se-

quential methods for Bayesian joint models proposed in Chapter 3.

We will consider a real study (Rué et al., 2017) focused on patients

receiving mechanical ventilation (MV) in intensive care units (ICU).

The goal of Rué et al. (2017) was to study the probability of occur-

ring the events alive discharge or death for mechanically ventilated

patients in the ICU by means of two severity biomarkers, sequential

organ failure assessment (SOFA) score and an asynchronies index

(AI), both measured daily. The SOFA score measures the degree of

organ dysfunction through scores of 0 (normal) to 4 (most abnormal)

of each of the following six organ systems: respiratory, cardiovascu-

lar, renal, coagulation, hepatic, and neurological systems. Patient-

ventilator asynchrony appears when the cycle of the ventilator is

not simultaneous with the patient’s respiratory one. Hence, the AI

69
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is defined as the proportion of asynchronous events among the total

number of ventilator cycles. The authors proposed a Bayesian joint

model with bivariate longitudinal and competing risks submodels.

They observe a great level of uncertainty with regard to the rele-

vance of AI when SOFA information is known. For this reason and

in order to better illustrate our proposal, we have decided to con-

sider just the SOFA score as a biomarker related to the events of

interest.

Note that there are two competing events of interest in this study

(alive discharge and death), which characterise a special class of

survival data, the so-called competing risks data (Pintilie, 2006). In

our context, a patient can experience one of two possible events of

interest. In general, the focus of the study is on the distribution of

the time-to-event for one of these events in the presence of the other

ones.

The statistical analysis was performed using data1 from four Spanish

ICU (Parc Tauĺı University Hospital, Sabadell; Hospital Sant Joan

1We thank Dr. Llúıs Blanch and the investigators of the Asynchronies
in the ICU Group (ASYNICU) who contributed to generating the data and
gave permission to use it: Candelaria de Haro, Gemma Gomà, Josefina López-
Aguilar, Encarna Chacón, Marc Turon, Sol Fernández-Gonzalo, Anna Estruga,
Maria Cinta Millán (Parc Tauĺı Hospital Universitari. Institut d’Investigació i
Innovació Parc Tauĺı (I3PT). Universitat Autònoma de Barcelona. Sabadell ,
Spain); Carles Subirà, Rafael Fernández (Hospital Sant Joan de Deu-Fundació
Althaia. Universitat Internacional de Catalunya. Manresa, Spain); Umberto
Lucangelo (Cattinara Hospital, Trieste University. Trieste, Italy); Gastón
Murias (Cĺınica Bazterrica y Cĺınica Santa Isabel. Buenos Aires, Argentina);
Jaume Montanyà, Rudys Magrans (Ciberes); Robert M. Kacmarek (Mas-
sachusetts General Hospital and Department of Anesthesiology, Harvard Medical
School. Boston, MA, USA); Guillermo M. Albaiceta (Hospital Central de As-
turias); Enrique Fernández-Mondejar (Complejo Hospitalario Universitario de
Granada, Granada, Spain)
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de Deu-Fundació Althaia, Manresa; Hospital Central de Asturias,

Oviedo, and Complejo Hospitalario Universitario de Granada,

Granada) from July 2009 to May 2016.

Next, we will describe this data set with its particular character-

istics. Then we will specify an alternative joint model to the one

in Rué et al. (2017), based on the random-effects approach to joint

models and compute the marginal posterior distribution of all its

parameters and hyperparameters through JAGS software. Finally,

we will conclude the chapter with the application of our proposal

of sequential updating of the inferential process with new patient

information.

All computational time analyses of this chapter were performed on

a Windows laptop with an Intel(R) Core(TM) i5-3337U 1.80GHz

processor, 2 cores, 4 logical processors, 4GB of RAM and 3MB of

cache memory, and the time presented is based on the average of 20

runs. All implementations were made on the R environment (version

3.4.0) and, in particular for the MCMC approach, we used the JAGS

software (version 4.2.0) through the rjags package (version 4-6).

5.1 Data description

All patients were followed from the first day in MV until ICU dis-

charge (alive or dead) or day 30 after MV initiation. Of the 139

studied patients, 97 (69.8%) were discharged alive, 28 (20.1%) died,

and 14 (10.1%) were administratively censored.
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72 5.1. Data description

In a descriptive analysis, whenever competing risks data are avail-

able we need to use the cumulative incidence curves to describe the

probabilities of each event (see Figure 5.1). They are an alternative

to the Kaplan-Meier estimates that, in competing risk models, un-

derestimate the subsequent survival probabilities (Kim, 2007; Zhang

et al., 2008). Figure 5.1 shows that the first 10 days after MV ini-

tiation are critical due to the high rates of alive discharge or death.

In fact, cumulative incidences at day 10 of alive discharge and death

are 42.5% and 14.4%, respectively, while at day 20 are 62.6% and

18.7%.

Figure 5.1: Cumulative incidence function for alive discharge
(green dashed line) from the ICU or death (black solid line) in

the ICU.

With the purpose of later analysing the performance of the sequen-

tial methodology for new data, we have eliminated some observa-

tions from the database. Therefore, in the initial analysis using

JAGS2 software, we have removed the last three SOFA scores of the
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patient 123 and all information of the patient 1314 (who is not con-

sidered in the initial analysis). Hence, the event time for patient

12 will become right-censored in the initial analysis and it will con-

tinue to be right-censored as each “new” SOFA score is observed.

Similarly, the event time for patient 131 will also be right-censored

from the moment that this patient is incorporated into the study

until the inclusion of his/her last SOFA score.

For establishing a sensible longitudinal model for the SOFA

biomarker within the normality, we need to transform it as SOFA∗ =

log(SOFA + 1). Adding 1 before applying the logarithm function is

necessary due to the fact that the SOFA score can take values be-

tween 0 and 24 (in our sample the maximum value is 18). Figure 5.2

displays the SOFA (Figure 5.2-(a)) and SOFA∗ (Figure 5.2-(b)) tra-

jectories for the patients in the study.

Figure 5.2-(b) shows that SOFA∗ trajectories for patients discharged

alive are generally lower than those for patients who died. It is

important to remark that in many cases the last observed SOFA∗

score of a patient is recorded several days before he/she experienced

one of the events of interest or was administratively censored.

In the next section, we will propose a joint modelling based on a

longitudinal linear mixed submodel for the SOFA∗ biomarker and a

2The code in JAGS of the joint model (5.1) and (5.3) with the prior distri-
butions specified above is available in Appendix A.

3Patient 12: 71 years old, discharged alive from the ICU at day 6, and its
SOFA scores, from day 1 to 6, were 9, 9, 9, 4, 2, and 2.

4Patient 131: 63 years old, died in the ICU at day 5, and its SOFA scores,
from day 1 to 3, were 16, 15, and 15.
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74 5.2. Modelling and preliminary results

(a) (b)

Figure 5.2: SOFA (a) and SOFA∗ (b) longitudinal measure-
ments for patients who discharged alive (green), died (black),

and were administratively censored (orange).

survival competing risks submodel for the time to be alive discharge

and for the time to death.

5.2 Modelling and preliminary results

We will assume a fully parametric modelling with the age of the pa-

tient as the only baseline covariate in both the longitudinal and the

time-to-event submodels. The connection between the longitudinal

and competing risks submodels will be through the random-effects

approach to joint models described in (3.5). The longitudinal sub-

model for the ith patient, for i = 1, . . . , 139, is given by:

(
yi(t) | µi(t), σ

)
∼ N

(
µi(t), σ

2
)
,(

µi(t) | bi,β
)

= β0 + b0i + (β1 + b1i) t+ β2xi,(
bi | σ0, σ1

)
∼ N

((
0, 0
)>
, diag (σ2

0, σ
2
1)
)
,

(5.1)
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where yi(t) expresses the value of SOFA∗ for the ith patient at time

t, which is normally distributed with mean µi(t) and variance σ2.

The parameters β0 and β1 are regression coefficients for the inter-

cept and the slope of µi(t), respectively, and b0i and b1i are their

subsequent random effects. The random effects b0i and b1i are in-

dependent and normally distributed with mean 0 and variances σ2
0

and σ2
1, respectively. The covariate xi represents the age of the ith

patient and β2 is its regression coefficient. We denote by yi,1:ni
the

vector of follow-up measurements for the ith patient, where yi,j is

the observed SOFA∗ score at time ti,j

The time-to-event modelling is expressed through a cause-specific

hazard model (Putter et al., 2007). Let T ∗iv the time from the initia-

tion of MV to the occurrence of the event v for the ith patient, where

v = 1 (alive discharge from the ICU) or v = 2 (death in the ICU); Ci

corresponds to the administrative censoring time (day 30 after MV

initiation); δi is the event indicator, where δi = 0 represents cen-

soring for both events, δi = 1 indicates that the ith patient is alive

at ICU discharge, and δi = 2 that the ith patient is dead at ICU;

and Ti = min (T ∗i1, T
∗
i2, Ci) expresses the observed event time for the

ith patient. Hence, for each patient, the cause-specific hazard func-

tion measures the instantaneous rate of experiencing a specific event

type at time t given that this patient has not experienced any prior

event (Kleinbaum and Klein, 2012). So the cause-specific hazard

function for event v at time t for the ith patient, for i = 1, . . . , 139,

can be written as:

hiv(t) = lim
∆t→0

P
(
t ≤ Ti < t+ ∆t, δi = v | Ti ≥ t

)
∆t

, t ≥ 0, (5.2)
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where δi = v indicates that event v has been selected for the ith pa-

tient and ∆t is an incremental time. Assuming proportional hazards

(Cox, 1972), the cause-specific hazard function (5.2) is rewritten as:

hiv
(
t | bi,θ

)
= h0v(t) exp

[
γvxi + α0vb0i + α1vb1it

]
, t ≥ 0, (5.3)

where h0v(t) = λvνvt
νv−1 represents a Weibull cause-specific baseline

hazard function at time t for v = 1, 2, with λv and νv being the

scale and shape parameters, respectively. The parameters α0v and

α1v quantify the association between the individual characteristics

of the SOFA∗ biomarker and the risk for event v, for v = 1, 2. Again,

xi represents the age of the ith patient, where γv is its fixed effects

coefficient, for v = 1, 2.

The vectors of parameters of the joint model (5.1) and (5.3) are

defined as β = (β0, β1, β2)> and αv = (α0v, α1v)
>, and the random

effects b = (b1, . . . , b139)>, where bi = (b0i, b1i)
> for i = 1, . . . , 139.

θ = (β, σ, σ0, σ1, γ1, γ2,α1,α2, ν1, ν2, λ1, λ2)> is the vector of all pa-

rameters and hyperparameters.

We use the random-effects approach to joint models (3.5) and con-

sequently f
(
yi,1:ni

, (ti, δi) | bi,θ
)

= f
(
yi,1:ni

| bi,θ
)
f
(
(ti, δi) | bi,θ

)
.

The longitudinal contribution f
(
yi,1:ni

| bi,θ
)

follows the structure

based on normal densities as in (4.9). However, the functional rela-

tionship provided by the time-to-event in this conditional joint dis-

tribution is different to the one of the simulated study in Chapter 4

due to the time-to-event submodel and the type of random-effects

approach employed here. Hence, the competing risks contribution

to f
(
yi,1:ni

, (ti, δi) | bi,θ
)

is given by:
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f
(
ti, δi | bi,θ

)
=

2∏
v=1

hiv
(
ti | bi,θ

)I(δi=v)
Siv
(
ti | bi,θ

)
, (5.4)

where Siv(t | bi,θ) = exp
(
−
∫ t

0
hiv(s | bi,θ) ds

)
is the cause-specific

survival function for the ith patient at time t, for v = 1, 2. By

definition, this integral is always one-dimensional, and it can be

efficiently approximated using the Q-point Gauss-Legendre quadra-

ture rule, as is done in Armero et al. (2016b). We will use this rule

with 15 quadrature points in our analysis.

We assume independent and noninformative marginal prior distri-

butions. More specifically, we assign diffuse distributions given by:

π(β0) = π(β1) = π(β2) = N (0, 1000),

π(σ) = U(0, 100),

π(σ0) = π(σ1) = U(0, 50),

π(γ1) = π(γ2) = N (0, 1000),

π(α01) = π(α02) = N (0, 1000),

π(α11) = π(α12) = N (0, 1000),

π(ν1) = π(ν2) = G(0.01, 0.01),

π(log(λ1)) = π(log(λ2)) = N (0, 1000).

(5.5)

Similarly to the simulated study, here we also did some preliminary

tests to define the minimum MCMC configuration to achieve conver-

gence based on the potential scale reduction factor and the effective

number of independent simulation draws. In this case, we got three

Markov chains with 200000 iterations after a burn-in period of 40000

iterations. The effective iterations were thinned by storing every

400th iteration in order to decrease autocorrelation in the sample.
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From this MCMC configuration, K = 3× 200000/400 = 1500. Ta-

ble 5.1 displays a descriptive summary of the approximate posterior

distribution for the parameters and hyperparameters related to the

SOFA∗ score together with the competing risks process. The last

column of this table contains the probability that the corresponding

parameter is positive. A probability equal to 0.5 indicates that a

positive value of the parameter is equally likely than a negative one.

θ Mean SD 2.5% 50% 97.5% P (· > 0 | D)
Longitudinal process - SOFA∗

β0 1.844 0.155 1.537 1.844 2.141 1.000
β1 -0.086 0.009 -0.105 -0.086 -0.067 0.000
β2 0.005 0.002 0.000 0.005 0.009 0.973
σ 0.311 0.008 0.295 0.310 0.328 —
σ0 0.407 0.032 0.349 0.405 0.476 —
σ1 0.067 0.008 0.052 0.066 0.084 —

Competing risks process - Alive
γ1 0.001 0.007 -0.012 0.001 0.016 0.563
α01 -0.203 0.323 -0.846 -0.208 0.468 0.259
α11 -1.012 0.256 -1.582 -0.998 -0.549 0.000
ν1 1.525 0.151 1.247 1.516 1.834 —
λ1 0.015 0.009 0.004 0.013 0.040 —

Competing risks process - Death
γ2 0.022 0.017 -0.009 0.021 0.058 0.917
α02 3.367 0.948 1.756 3.307 5.456 1.000
α12 0.745 0.472 -0.173 0.750 1.605 0.943
ν2 1.172 0.250 0.740 1.157 1.733 —
λ2 0.002 0.004 0.000 0.001 0.012 —

Table 5.1: Posterior summaries of the parameters and hyper-
parameters of the joint model (5.1) and (5.3) using JAGS.

In the longitudinal process, considering the average age (61.82) of

the sample patients, we obtain a mean expected value for the first

SOFA∗ of 2.067 (equivalent to 6.905 in the original SOFA scale).
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The posterior expectation of the population slope (trend) is slightly

decreasing, indicating a reduction of the SOFA∗ score and possibly

an improvement of the patients over time. Age has an associate

regression coefficient with a positive posterior expectation, meaning

that SOFA∗ increases with age. The variability (in logarithmic scale)

of the measurement error and the intercept random effects have

similar magnitudes, while it is smaller for the slope random effects

among patients.

In the competing risks process, we identify a clear distinction be-

tween the effects of covariates in the risk of alive discharge and death.

For the event alive discharge, the age of the patient does not provide

relevant information, since its respective parameter γ1 has a poste-

rior probability of being positive around 0.5. On the other hand, it

seems that age of the patient has an incremental positive effect on

the risk of death in the ICU. Marginal posterior distributions of the

association parameters, α01 and α11, between the longitudinal and

the competing risks process have a predominant negative support

indicating that the increase in the SOFA∗ score implies a reduction

of the risk of alive discharge. In contrast, the association parameters

for the risk of death in the ICU, α02 and α12, have marginal posterior

distributions with mostly positive support and consequently leading

to more risk of death as the SOFA∗ score increases. The posterior

expectation of the parameters of the Weibull cause-specific baseline

hazard function are distinct for each event, but their credibility in-

tervals overlap to a large extent, indicating few differences between

them.
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In short, the opposite signs of the association parameters between

alive discharge and death is a strong indicative that the SOFA

biomarker satisfactorily discriminates the risk of each of these

events. In other words, our joint modelling proposal shows that

the SOFA biomarker has a direct association with the patients’ vi-

tal status in the intensive care units considered here.

So far, we have done a non-sequential joint analysis of longitudinal

and time-to-event data with all the available observations up to this

now, where the running time using JAGS software was about 867

minutes.

The next section will be devoted to the application of our sequential

proposal presented in Chapter 3, since the observations of patients

12 and 131 (see Section 5.1) will be sequentially introduced in the

study and so dynamic estimation will be required.

5.3 Sequential inference

From the point of view of personalised medicine, we are interested in

the dynamic estimation of the cumulative incidence function (CIF)

either for a specific patient in the study that has provided g new

SOFA∗ scores or for a new patient of the population that could enter

the study with g SOFA∗ scores. It is important to point out that

all this longitudinal information also implies survival information

with regard to the non-occurrence of none of the events of interest

at the time of the last longitudinal observation. In both situations
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of data inclusion, we should use a conditional CIF, since the update

of this function is conditioned on all current and relevant patient

information. In probabilistic terms, the conditional CIF for the ith

patient is defined by:

P
(
Ti ≤ t, δi = v | yi,1:ni+g, Ti ≥ ti,ni+g, bi,θ

)
, t > ti,ni+g, (5.6)

where ti,ni+g is the time at which the last SOFA∗ score of the ith

patient, represented by yi,ni+g, has been recorded. In particular,

the assumption of independence between the longitudinal and the

competing risks process, given by the random-effects approach to

joint models (3.5), makes the longitudinal contribution irrelevant in

the determination of these probabilities. So we can rewrite (5.6) as:

P
(
Ti ≤ t, δi = v | Ti ≥ ti,ni+g, bi,θ

)
= Fiv

(
t | Ti ≥ ti,ni+g, bi,θ

)
, t > ti,ni+g. (5.7)

From a Bayesian perspective, posterior distribution of the con-

ditional CIF in (5.7) can be derived from the joint pos-

terior distribution of (bi,θ), π (bi,θ | Dgi ,D), where Dgi =[
yi,ni+1:ni+g, (ti,ni+g, δi)

]>
represents the g new information of the

ith patient and D all the data in the original sample such as lon-

gitudinal trajectories, time-to-event times, and covariates, of course

all except those that are in Dgi . In particular, we can obtain the

posterior expectation E
(
Fiv (t | Ti ≥ ti,ni+g, bi,θ) | D

)
by:∫

Fiv (t | Ti ≥ ti,ni+g, bi,θ)π (bi,θ | Dgi ,D) d(bi,θ). (5.8)
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We employ our sequential methodology proposal to update the pos-

terior distribution of (bi,θ), π (bi,θ | Dgi ,D), and then calculate the

posterior expectation in (5.8). Commonly, the integral in (5.8) has

no analytical solution and so we should approximate it through a

Monte Carlo simulation scheme given by:

1

L

L∑
l=1

Fiv

(
t | Ti ≥ ti,ni+g, b

(l)
i ,θ

(l)
)
, (5.9)

where b
(l)
i and θ(l) are drawn from π

(
bi,θ | Dgi ,D

)
, for l = 1, . . . , L

and v = 1, 2.

Recall that from our sequential proposal we do not directly get

the joint posterior distribution (bi,θ), π
(
bi,θ | Dgi ,D

)
(see Sec-

tions 3.2). We first have to update the parameters and hyperpa-

rameters θ based on an approximation of the marginal likelihood

function of θ integrating out the random effects bi, and then update

these random effects through the personalise step. This approxima-

tion will be made using the quasi-Monte Carlo method with Halton

sequences using 500 integration nodes.

We will consider three sequential situations for the inclusion of the

“new” longitudinal observations of the SOFA biomarker for patients

12 and 131. Firstly, we include the fourth SOFA score of the patient

12 and the first one of the patient 131. Secondly, the fifth and

second SOFA scores of the patients 12 and 131, respectively, are

incorporated into the study. Thirdly, the last SOFA scores of these

patients are included in the analysis. Furthermore, at each stage of
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data inclusion we also know that both patients did not experience

none of the events of interest in this study (alive discharge or death).

To obtain more accurate in sequential approximations, we will be

stricter with the threshold for the effective sample size (ESS) (see

(2.6)) in the Algorithm 2. Hence, we will adopt KT = 1400, where

1 ≤ KT ≤ K (more restrictive) with K = 1500 being the size of the

marginal posterior samples of θ (see Section 2.2).

The first sequential update is performed with the data from the

first stage. We obtain an ESS = 1469, that is greater than KT .

Hence, we do not trigger the resampling and moving steps. We

directly perform the update of the marginal posterior distribution

of the random effects (3.10) through the personalise step and then

calculate the approximation to the posterior conditional CIF by

(5.9). This first application of the sequential Monte Carlo method

took approximately 13 minutes.

Now we include the second round of the data. Again, we obtain

ESS = 1410 greater than KT , so we just update the marginal pos-

terior distribution of the random effects and then calculate the pos-

terior conditional CIF, as before. In this update, we are considering

that both patients are already in the study, making the calcula-

tion of the importance weight more computationally complicated

(see 2.5) than in the case where one of them is a new patient (first

update). The average update time was now about 16 minutes.

Finally, by including the third pair of new observations we obtain
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ESS = 1363 < 1400 that requires the activation of the resam-

pling and moving steps. Both steps are performed according to the

description in Section 2.2. Due to the use of the resampling and

moving steps, the computational time in this update is higher (193

minutes) than the previous two ones, but still much lower than the

computational time via MCMC methods from JAGS software.

Table 5.2 shows the marginal posterior expectation and standard

deviation resulting from this last update. In order to validate and

compare our results, we have also included in this table a poste-

rior summary of θ (re)using JAGS software and the one obtained in

Table 5.1.

In a general aspect, after the three data inclusions and their re-

spective sequential inferential updating, the interpretation of the

parameters and hyperparameters has not changed. The larger dif-

ference in the posterior inference with respect to the original data

(Initial) come from the third data inclusion (SMC), where the re-

sampling and moving steps were required. From Table 5.2, we can

also appreciate the equivalence of the results with the SMC and

JAGS approaches (tiny differences from the third decimal place).

However, the reduction of the computational cost when using the

sequential methodology is indisputably relevant.

As described at the beginning of this section, one of the main in-

terests of personalised medicine in this study is to dynamically es-

timate the posterior distribution of the conditional CIF given by

(5.9). Note that for each sequential update we need to perform the

personalise step to get the updated marginal posterior distribution
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θ
Initial (Table 5.1) SMC JAGS
Mean SD Mean SD Mean SD

Longitudinal process - SOFA∗

β0 1.844 0.155 1.851 0.149 1.851 0.154
β1 -0.086 0.009 -0.088 0.009 -0.088 0.009
β2 0.005 0.002 0.005 0.002 0.005 0.002
σ 0.311 0.008 0.311 0.007 0.311 0.008
σ0 0.407 0.032 0.410 0.031 0.410 0.031
σ1 0.067 0.008 0.069 0.009 0.068 0.009

Competing risks process - Alive
γ1 0.001 0.007 0.002 0.007 0.002 0.007
α01 -0.203 0.323 -0.221 0.313 -0.222 0.316
α11 -1.012 0.256 -0.998 0.253 -0.999 0.255
ν1 1.525 0.151 1.538 0.146 1.537 0.151
λ1 0.015 0.009 0.015 0.009 0.015 0.009

Competing risks process - Death
γ2 0.022 0.017 0.022 0.016 0.022 0.017
α02 3.367 0.948 3.272 0.858 3.278 0.861
α12 0.745 0.472 0.717 0.453 0.716 0.454
ν2 1.172 0.250 1.176 0.248 1.178 0.249
λ2 0.002 0.004 0.002 0.003 0.002 0.004

Table 5.2: Marginal posterior expectation and standard devi-
ation of θ before (Initial) and after incorporating all new obser-
vations. SMC: sequential update from the Algorithm 2. JAGS:

non-sequential update from JAGS software.

of the random effects and then calculate the posterior conditional

CIF. Hence, in order to illustrate the final result of each inferen-

tial update, Figure 5.3 presents the individual estimations of the

dynamic cumulative incidences for events of interest in each of the

sequential updates for patients 12 and 131 in the study.

As previously reported, patient 12 has three SOFA scores (until day

3) in the initial analysis (see Figure 5.3-(a)). These SOFA scores

are moderate (all equal to 9), but the next SOFA observations have
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86 5.3. Sequential inference

(a) Patient 12.

(b) Patient 131.

Figure 5.3: Individual estimation of the dynamic cumulative
incidences for alive discharge (green dashed line) from the ICU
an death (black solid line) in the ICU for patient (a) 12 and (b)
131 in the study. The vertical dotted lines represent the time at

which the last SOFA score is observed.

a decreasing trend (4, 2 and 2). The posterior expectation of the

conditional CIF of alive discharge (green dashed line) increases as

new SOFA scores decrease, and in the case of death (black solid line)

it is low and slowly decreases over time. Patient 12 was discharged

alive at day 6. In contrast, patient 131 enters the study with a

high SOFA score (16) and it remains high for the two following

SOFA observations, both are 15 (see Figure 5.3-(b)). The posterior

expectation of the conditional CIF for both events (alive discharge

and death) at day 1 is similar. However, the recurrence of high

SOFA scores leads to an increase in the posterior expectation of
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the conditional CIF of death (black solid line), while the subsequent

posterior CIF mean of alive discharge progressively decreases.
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Chapter 6

Final conclusions and

future work

In a medical framework, Berzuini et al. (1997) emphasise the im-

portance of speeding up the updating of estimates and predictions

of interest since the physician usually wants an immediate assess-

ment of the prognostic as new information of the patient becomes

available. Hence, our main motivation throughout this thesis has

been the optimisation of the inferential update process within the

context of new sequential knowledge in a scenario of longitudinal

and time-to-event data.

6.1 Conclusions

Inspired in this context, our starting point was to verify the main

advantages of a Bayesian joint analysis for longitudinal and time-

to-event data. Briefly, we found that the Bayesian joint approach

89
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90 6.1. Conclusions

provides complete inference (longitudinal, time-to-event, and asso-

ciation between both of them), reduces estimation biases, models

the informative censoring/dropout, increases statistical efficiency,

and conveniently makes predictions of the outcomes (Muthén et al.,

2009; Ibrahim et al., 2010; Wang et al., 2012).

In general, Bayesian joint modelling has a high computational cost

due to their complexity. This situation gets worse when the relevant

information is obtained in a sequential manner and an update of the

current knowledge becomes indispensable. In this way, the main

contribution of this thesis is to propose and implement dynamic

procedures based on sequential Monte Carlo (SMC) methods in joint

models. The primary objective is to generate quicker and accurate

updated inferences and predictions.

Joint models usually contain different types of random effects, and

SMC methods for models with random effects require important

adaptations involving analytically intractable integrals. We have

circumvented this problem by using integration methods on the

Monte Carlo approach. Specifically, we have used and compared

the performance of the Monte Carlo and quasi-Monte Carlo inte-

gration methods. In addition, we have incorporated to the dynamic

procedure the update of the random effects by combining the pre-

viously updated parameters and hyperparameters with a standard

Metropolis-Hastings algorithm.

We have illustrated the behaviour of our SMC proposal in two dif-

ferent studies. The first one deals with simulated data and has a
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longitudinal objective. The second one is based on a real study

focused on survival with patients at intensive care units (ICU).

For the first study, we have also proposed a simulation algorithm for

generating longitudinal data with informative dropout. This mech-

anism is essential for linking longitudinal and time-to-dropout pro-

cesses, since, in general, data generators of this type do not consider

a modelling with shared information between both processes. We

have generated a data set with this mechanism that has been stud-

ied in order to illustrate the performance of our SMC proposal. As

an extra bonus, we have also analysed these data from a purely lon-

gitudinal point of view, without taking into account the dropout, to

emphatise its weaknesses and reinforce the benefits of a joint models

approach. Using this generated data set, we have explored in detail

the use of our sequential update proposal applied in a joint model

with longitudinal objective. In addition, we have compared the pos-

terior distribution of the parameters and hyperparameters obtained

from our sequential approach with the one from (non-sequential)

MCMC methods via JAGS software. The results are essentially the

same but the computational time is significantly lower using the

SMC approach. Specifically, the reduction was approximately 90%

of computational time when it was necessary to update parameters,

hyperparameters, and random effects, and about 99% when the up-

date was required only for random effects.

The second study in which we have applied our strategy of sequen-

tial updating of the inferential process is a joint model with com-

peting risk events for a real data set. In this study, the main clinical
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interest was to connect the information of the sequential organ fail-

ure assessment (SOFA) biomarker to the events alive discharge and

death for patients hospitalised in the ICU as well as to dynamically

compute for a specific patient the posterior expectation of the condi-

tional cumulative incidence function of each of these events. In this

analysis, differences between the processing times of the SMC and

MCMC approaches were also very relevant: our proposal updated

the marginal posterior distribution of the parameters, hyperparam-

eters, and random effects in approximately 193 minutes (without

activating the resampling and moving steps this time was of 16

minutes), while MCMC methods via JAGS software spent about 867

minutes.

To conclude, we have learnt that the combination of the Bayesian

joint models for longitudinal and time-to-event data and the se-

quential methodology is an extremely useful and powerful tool. In

particular, our results have showed that combining them is a good

alternative to reduce computational time in joint models framework

with sequential data configurations. Finally, it is worth mention-

ing that our proposal is, to our knowledge, the first one that fully

integrates the Bayesian joint modelling and sequential methods.

6.2 Future work

Bayesian joint modelling of longitudinal and time-to-event data is

a very relevant subject, both applied and methodological. Conse-

quently, a great number of potentially interesting areas of research
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can be considered.

As for the Bayesian joint models, other modelling can take advan-

tage of the sequential approach. For instance, more complex joint

models in relation to the number of longitudinal biomarkers and/or

spatial components as well as purely time-to-event analysis (e.g.

using the well-known accelerated failure time or cure rate models),

in which the sequential Monte Carlo approach has not yet been

explored. However, the most interesting and innovative challenge

would be to develop sequential update procedures for non-static

joint models. Another interesting scenario is joint models with non-

linear effects.

In the sequential Monte Carlo framework, an imminent difficulty is

to define in advance the number of particles that a specific appli-

cation will require. Hence, it is also relevant to develop automatic

mechanisms for this choice. Perhaps, some computational improve-

ment can be made from other integration method proposals (e.g.

randomised quasi-Monte Carlo) to obtain the marginal likelihood

function of the parameters and hyperparameters of the joint model.

A modification that would surely reduce computational time is the

implementation in parallel, since the independence between the par-

ticles makes this feasible. Running times can also be improved by

adopting a different MCMC kernel in the moving step. It would also

be interesting to analyse the performance of the sequential approach

for joint modelling with a small (or big) data set, because in these

cases the accuracy and the computational time may play an even

more relevant role.
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Finally, our main purpose is to develop an R package which supports

different structures of joint models for longitudinal and time-to-

event data, and allows to use the sequential methodology proposed

in this thesis.

Another possible direction for future research are the determinis-

tic approaches, such as variational Bayesian methods (Beal, 2003)

and integrated nested Laplace approximations (Rue et al., 2009),

to approximate marginal posterior distributions. Both methodolo-

gies work very fast in many applications, including some sequential

scenarios.
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Appendix A

JAGS code

Joint model (4.2) - Simulated study

1 model{
2

3 f o r ( i in 1 :N){
4 f o r ( j in 1 : n [ i ] ) {
5 # LONGITUDINAL PROCESS

6 y [ i , j ] ∼ dnorm(mu[ i , j ] , tau )

7 mu[ i , j ] ← beta0+b0 [ i ]+( beta1+b1 [ i ] ) ∗ time [ i , j ]

8

9 # TIME−TO−DROPOUT PROCESS

10 de l t a [ i , j ] ∼ dbern (p [ i , j ] )

11 l o g i t (p [ i , j ] ) ← gamma + alpha∗mu[ i , j ]

12 }
13

14 # RANDOM EFFECTS

15 b0 [ i ] ∼ dnorm(0 , tau0 )

16 b1 [ i ] ∼ dnorm(0 , tau1 )

17 }
18

19 # MARGINAL PRIOR DISTRIBUTIONS

20 beta0 ∼ dnorm(0 ,0 .01 )

21 beta1 ∼ dnorm(0 ,0 .01 )

22 tau ← pow( sigma ,−2)

23 sigma ∼ duni f (0 ,10)

24 tau0 ← pow( sigma0 ,−2)

25 sigma0 ∼ duni f (0 ,10)

26 tau1 ← pow( sigma1 ,−2)

27 sigma1 ∼ duni f (0 ,10)

28 gamma ∼ dnorm(0 ,0 .01 )

29 alpha ∼ dnorm(0 ,0 .01 )

30 }
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Joint model (5.1) and (5.3) - Application

1 model{
2

3 f o r ( i in 1 :N){
4 # LONGITUDINAL PROCESS

5 f o r ( j in 1 : n [ i ] ) {
6 y [ i , j ] ∼ dnorm(mu[ i , j ] , tau )

7 mu[ i , j ] ← beta [1 ]+b [ i , 1 ]+( beta [2 ]+b [ i , 2 ] ) ∗day [ i , j ]+beta [ 3 ] ∗ age [ i ]

8 }
9

10 # COMPETING RISKS PROCESS

11 # Calcu la t i on f o r i n t e g r a t i o n ( cumulative hazard )

12 f o r ( j in 1 :K){
13 # Hazard func t i on f o r a l i v e

14 h1 [ i , j ] ← nu1∗pow(Time [ i ] /2∗ ( xk [ j ]+1) , nu1−1)∗exp ( lambda1+

15 gamma1∗age [ i ]+alpha01∗b [ i ,1 ]+ alpha11∗b [ i , 2 ] ∗ ( Time [ i ] /2∗ ( xk [ j ]+1) ) )

16 # Hazard func t i on f o r dead

17 h2 [ i , j ] ← nu2∗pow(Time [ i ] /2∗ ( xk [ j ]+1) , nu2−1)∗exp ( lambda2+

18 gamma2∗age [ i ]+alpha02∗b [ i ,1 ]+ alpha12∗b [ i , 2 ] ∗ ( Time [ i ] /2∗ ( xk [ j ]+1) ) )

19 }
20 # Cumulative hazard H[ t ] = i n t 0 ˆ t h [ u ] du − Gauss−Legendre quadrature

21 cumHaz1 [ i ] ← (Time [ i ] / 2 ) ∗ inprod (wk , h1 [ i , ] )

22 cumHaz2 [ i ] ← (Time [ i ] / 2 ) ∗ inprod (wk , h2 [ i , ] )

23 lS1 [ i ] ← − cumHaz1 [ i ]

24 lS2 [ i ] ← − cumHaz2 [ i ]

25

26 # RANDOM EFFECTS

27 b0 [ i ] ∼ dnorm(0 , tau0 )

28 b1 [ i ] ∼ dnorm(0 , tau1 )

29

30 # De f i n i t i o n o f the log−l i k e l i h o o d us ing ze ro s t r i c k

31 phi [ i ] ← C−(de l ta1 [ i ]∗ l og ( h1 [ i ,K] )+de l ta2 [ i ]∗ l og ( h2 [ i ,K] )+lS1 [ i ]+ lS2 [ i ] )

32 ze ro s [ i ] ∼ dpois ( phi [ i ] )

33 }
34

35 # MARGINAL PRIOR DISTRIBUTIONS

36 f o r ( i in 1 : 3 ) {beta [ i ] ∼ dnorm(0 ,0 .001 )}
37 tau ← pow( s ig ,−2)

38 sigma ∼ duni f (0 ,100)

39 tau0 ← pow( s ig0 ,−2)

40 sigma0 ∼ duni f (0 ,50)

41 tau1 ← pow( s ig1 ,−2)

42 sigma1 ∼ duni f (0 ,50)

43 gamma1 ∼ dnorm(0 ,0 .001 )

44 alpha01 ∼ dnorm(0 ,0 .001 )

45 alpha11 ∼ dnorm(0 ,0 .001 )

46 nu1 ∼ dgamma(0 .01 , 0 .01 )

47 lambda1 ∼ dnorm(0 ,0 .001 )

48 gamma2 ∼ dnorm(0 ,0 .001 )

49 alpha02 ∼ dnorm(0 ,0 .001 )

50 alpha12 ∼ dnorm(0 ,0 .001 )

51 nu2 ∼ dgamma(0 .01 , 0 .01 )

52 lambda2 ∼ dnorm(0 ,0 .001 )

53 }
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Appendix B

Usual probability

distributions

Bernoulli distribution

A random variable X has a Bernoulli distribution X ∼ B(p) with

parameter 0 < p < 1 if its probability mass function is described by

f(x | p) =


p if x = 1,

1− p if x = 0.

for x ∈ {0, 1} .

Its mean and variance are

E(X) = p and Var(X) = p(1− p).

Gamma distribution

A random variable X has a gamma distribution X ∼ G(α, β) with

parameters α > 0 and β > 0 if its probability density function is

described by

97



“Thesis” — 2017/6/28 — 20:35 — page 98 — #128i
i

i
i

i
i

i
i

98

f(x | α, β) =
βαxα−1 exp(−βx)

Γ(α)
, for x ≥ 0.

Its mean and variance are

E(X) =
α

β
and Var(X) =

α

β2
.

Normal distribution

A random variable X has a normal distribution X ∼ N (µ, σ2) with

mean µ ∈ < and variance σ2 > 0 if its probability density function

is described by

f(x | µ, σ) =
(
2πσ2

)−1/2
exp

[
− 1

2σ2
(x− µ)2

]
, for x ∈ <.

Its mean and variance are

E(X) = µ and Var(X) = σ2.

Uniform distribution

A random variable X has a (continuous) uniform distribution X ∼
U(a, b) with parameters −∞ < a < b <∞ if its probability density

function is described by

f(x | a, b) =
1

b− a
, for a ≤ x ≤ b.

Its mean and variance are

E(X) =
a+ b

2
and Var(X) =

(b− a)2

12
.
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Weibull distribution

A random variable X has a Weibull distribution X ∼ W(λ, ν) with

parameters λ > 0 and ν > 0 if its probability density function is

described by

f(x | λ, ν) = λνxν−1 exp(−λxν), for x ≥ 0.

Its mean and variance are

E(X) =
Γ(1 + 1/ν)

λ
and

Var(X) =
1

λ2

{
Γ

(
1 +

2

ν

)
−
[
Γ

(
1 +

1

ν

)]2
}
.
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Appendix C

Simulation studies

In the tables below, we display the posterior summary for various

simulated scenarios from Algorithm 3 presented in Chapter 4 us-

ing the joint model (4.2). Convergence in all these scenarios was

achieved using the following MCMC configuration: three Markov

chains with 200000 iterations after a burn-in period of 50000 iter-

ations, and storing every 400th iteration. The marginal prior dis-

tributions were set as in (4.4) and, in the sequential procedure, the

number of particles employed was 500 and the approximation of

the marginal likelihood integrating out the random effects was per-

formed by the quasi-Monte Carlo method with the Halton proposal

(for more details, see Section 4.4). In each table, we have included

the marginal posterior expectation and the standard deviation for

the inferential results corresponding to the initial stage with the

first data set and after incorporating the information of a new indi-

vidual in the analysis. SMC represents the sequential update from

the Algorithm 2 in Chapter 3 and JAGS the non-sequential up-

date from JAGS software. Computational time from each approach
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is also shown. In order to obtain a greater impact on the inferential

update, we have artificially created an “outlier individual” with re-

spect to the simulated scenario. In the description of each table we

have included the longitudinal information of this new individual.

• Longitudinal information of the new individual incorporated

in the analysis: 0, 5, 4, 6, 3, 6, 5, 7, 5, 4, 6.

θ True
Initial SMC JAGS

Mean SD Mean SD Mean SD
β0 -1.0 -0.958 0.095 -0.904 0.102 -0.904 0.104
β1 0.1 0.087 0.033 0.086 0.033 0.086 0.033
σ 1.5 1.483 0.041 1.491 0.043 1.490 0.043
σ0 0.2 0.203 0.128 0.434 0.150 0.434 0.152
σ1 0.2 0.221 0.023 0.231 0.023 0.231 0.025
γ -2.5 -2.520 0.158 -2.584 0.158 -2.585 0.158
α 0.3 0.144 0.146 0.065 0.127 0.065 0.129
Time (minutes) 79 5 79

• Longitudinal information of the new individual incorporated

in the analysis: 0,−4,−3,−5,−2,−4,−3,−1,−3,−4,−3.

θ True
Initial SMC JAGS

Mean SD Mean SD Mean SD
β0 0.0 -0.021 0.076 -0.047 0.082 -0.047 0.081
β1 0.3 0.318 0.033 0.315 0.036 0.315 0.036
σ 1.0 0.998 0.034 1.005 0.035 1.007 0.035
σ0 0.3 0.244 0.127 0.398 0.115 0.399 0.116
σ1 0.2 0.192 0.029 0.205 0.030 0.205 0.031
γ -2.0 -2.117 0.191 -2.158 0.181 -2.161 0.181
α 0.5 0.392 0.129 0.419 0.124 0.420 0.124
Time (minutes) 56 5 56
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• Longitudinal information of the new individual incorporated

in the analysis: 0, 8, 10, 6, 7, 5, 8, 4, 5, 7, 6.

θ True
Initial SMC JAGS

Mean SD Mean SD Mean SD
β0 1.0 1.111 0.137 1.162 0.143 1.163 0.142
β1 -0.5 -0.567 0.058 -0.568 0.060 -0.568 0.061
σ 2.0 1.958 0.059 1.985 0.061 1.987 0.062
σ0 0.1 0.218 0.157 0.386 0.213 0.386 0.213
σ1 0.3 0.366 0.041 0.398 0.045 0.398 0.046
γ -2.0 -2.191 0.149 -2.198 0.145 -2.196 0.147
α -0.4 -0.404 0.074 -0.407 0.071 -0.407 0.072
Time (minutes) 67 5 67

• Longitudinal information of the new individual incorporated

in the analysis: 10, 7, 9, 5, 8, 11, 9, 10, 8, 8, 7.

θ True
Initial SMC JAGS

Mean SD Mean SD Mean SD
β0 3.0 3.007 0.044 3.093 0.075 3.093 0.076
β1 1.0 1.003 0.056 0.972 0.058 0.972 0.058
σ 0.5 0.512 0.020 0.581 0.022 0.580 0.022
σ0 0.3 0.159 0.077 0.620 0.061 0.619 0.060
σ1 0.5 0.521 0.043 0.505 0.043 0.508 0.043
γ -5.0 -5.848 0.534 -5.383 0.524 -5.385 0.523
α 0.7 0.827 0.090 0.724 0.086 0.724 0.086
Time (minutes) 39 5 39
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• Longitudinal information of the new individual incorporated

in the analysis: 5, 8, 6, 10, 6, 7, 5, 7, 6, 7, 6.

θ True
Initial SMC JAGS

Mean SD Mean SD Mean SD
β0 0.0 0.030 0.070 0.146 0.103 0.148 0.103
β1 0.0 -0.005 0.044 -0.044 0.042 -0.045 0.044
σ 1.0 0.991 0.030 1.011 0.032 1.011 0.032
σ0 0.1 0.144 0.099 0.317 0.086 0.317 0.087
σ1 0.3 0.327 0.033 0.308 0.032 0.309 0.032
γ -2.0 -2.155 0.153 -2.154 0.134 -2.155 0.135
α 0.6 0.981 0.201 0.730 0.087 0.730 0.087
Time (minutes) 57 5 57

• Longitudinal information of the new individual incorporated

in the analysis: −5,−6,−3,−7,−9,−2, 0,−1, 0,−2, 2.

θ True
Initial SMC JAGS

Mean SD Mean SD Mean SD
β0 2.0 2.219 0.201 2.118 0.223 2.120 0.226
β1 2.0 1.906 0.069 1.905 0.075 1.905 0.075
σ 3.0 3.022 0.084 3.015 0.086 3.016 0.088
σ0 0.2 0.364 0.251 0.988 0.320 0.988 0.319
σ1 0.4 0.429 0.047 0.493 0.055 0.494 0.055
γ -4.0 -3.987 0.338 -4.006 0.336 -4.009 0.336
α 0.2 0.186 0.026 0.190 0.025 0.188 0.026
Time (minutes) 66 5 66
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• Longitudinal information of the new individual incorporated

in the analysis: −6,−5,−4,−6,−5,−3,−1, 0,−1,−2, 0.

θ True
Initial SMC JAGS

Mean SD Mean SD Mean SD
β0 -1.0 -1.025 0.178 -1.075 0.190 -1.075 0.191
β1 1.5 1.510 0.062 1.480 0.068 1.480 0.068
σ 2.5 2.594 0.083 2.587 0.082 2.587 0.082
σ0 0.5 0.348 0.229 0.575 0.292 0.575 0.291
σ1 0.3 0.313 0.048 0.380 0.052 0.381 0.052
γ -1.5 -1.449 0.161 -1.513 0.148 -1.514 0.151
α -0.1 -0.125 0.032 -0.118 0.033 -0.118 0.031
Time (minutes) 43 5 43

• Longitudinal information of the new individual incorporated

in the analysis: 3, 7, 5, 3, 4, 6, 8, 7, 7, 5, 8.

θ True
Initial SMC JAGS

Mean SD Mean SD Mean SD
β0 -2.0 -2.058 0.281 -1.925 0.277 -1.927 0.278
β1 -1.0 -0.980 0.103 -1.000 0.107 -1.002 0.107
σ 4.0 4.008 0.128 3.990 0.126 3.990 0.128
σ0 0.4 0.357 0.255 0.483 0.328 0.483 0.328
σ1 0.5 0.450 0.069 0.557 0.074 0.559 0.074
γ -3.0 -3.047 0.338 -3.006 0.322 -3.005 0.322
α -0.3 -0.257 0.055 -0.249 0.055 -0.249 0.053
Time (minutes) 53 5 53
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• Longitudinal information of the new individual incorporated

in the analysis: 5, 10, 8, 8, 8, 7, 5, 6, 6, 2, 4.

θ True
Initial SMC JAGS

Mean SD Mean SD Mean SD
β0 1.5 1.514 0.207 1.643 0.222 1.644 0.222
β1 -2.0 -2.015 0.085 -2.031 0.091 -2.035 0.092
σ 3.0 2.986 0.091 2.980 0.094 2.981 0.093
σ0 0.3 0.306 0.216 0.546 0.307 0.547 0.307
σ1 0.5 0.493 0.057 0.586 0.064 0.586 0.062
γ -5.0 -5.211 0.550 -5.132 0.552 -5.134 0.552
α -0.6 -0.589 0.074 -0.574 0.073 -0.575 0.073
Time (minutes) 60 5 60

• Longitudinal information of the new individual incorporated

in the analysis: 0, 5, 4, 6, 7, 8, 7, 6, 3, 0, 1.

θ True
Initial SMC JAGS

Mean SD Mean SD Mean SD
β0 0.2 0.176 0.104 0.240 0.114 0.239 0.114
β1 -2.0 -2.014 0.070 -2.001 0.075 -2.000 0.075
σ 1.5 1.517 0.042 1.564 0.050 1.564 0.047
σ0 0.1 0.185 0.129 0.461 0.186 0.462 0.187
σ1 0.6 0.623 0.050 0.668 0.056 0.670 0.056
γ -6.0 -5.512 0.452 -5.540 0.458 -5.536 0.459
α -0.5 -0.422 0.043 -0.425 0.043 -0.423 0.043
Time (minutes) 67 5 67
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