
Article

Wind effects on the migration routes of

trans-Saharan soaring raptors: geographical,

seasonal, and interspecific variation

Javier VIDAL-MATEO
a*, Ugo MELLONE

a, Pascual L �OPEZ-L �OPEZ
a,

Javier De LA PUENTE
b, Clara GARCÍA-RIPOLLÉS
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Abstract

Wind is among the most important environmental factors shaping birds’ migration patterns.

Birds must deal with the displacement caused by crosswinds and their behavior can vary according

to different factors such as flight mode, migratory season, experience, and distance to goal areas.

Here we analyze the relationship between wind and migratory movements of three raptor species

which migrate by soaring–gliding flight: Egyptian vulture Neophron percnopterus, booted eagle Aquila

pennata, and short-toed snake eagle Circaetus gallicus. We analyzed daily migratory segments

(i.e., the path joining consecutive roosting locations) using data recorded by GPS satellite telemetry.

Daily movements of Egyptian vultures and booted eagles were significantly affected by tailwinds dur-

ing both autumn and spring migrations. In contrast, daily movements of short-toed eagles were

only significantly affected by tailwinds during autumn migration. The effect of crosswinds was signifi-

cant in all cases. Interestingly, Egyptian vultures and booted eagles showed latitudinal differences

in their behavior: both species compensated more frequently at the onset of autumn migration and, at

the end of the season when reaching their wintering areas, the proportion of drift segments was

higher. In contrast, there was a higher drift at the onset of spring migration and a higher compensation

at the end. Our results highlight the effect of wind patterns on the migratory routes of soaring raptors,

with different outcomes in relation to species, season, and latitude, ultimately shaping the loop migra-

tion patterns that current tracking techniques are showing to be widespread in many long distance

migrants.
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In the last decades, research on bird migration has focused on sev-

eral aspects, such as flight mode, fuel deposition, predation risk,

use of stopover sites, routes and detours, migration schedules, and

the effect of wind (Alerstam 2011). Recently, the effect of winds

upon migratory behavior has received great attention, because it is

apparently the most important environmental factor influencing

bird behavior in different stages of the routes (Klaassen et al. 2011;

Mellone et al. 2011a; Safi et al. 2013). The effect of wind reaches

such importance that it intervenes directly in the movement vector

of the bird: birds’ direction and flight speed is the sum of the wind

vector and the bird’s own flight vector relative to the surrounding

air (Alerstam 1990).

The influence of wind has been studied in different migration

parameters. In some cases, the importance of wind has been
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highlighted for the onset of bird migration, when individuals try to

select favorable wind conditions for departure (Åkesson and

Hedenström 2000 ), although this is not always the case (Thorup

et al. 2006). Winds also influence the speed that birds can achieve

(Shamoun-Baranes et al. 2003; Mellone et al. 2012), and the selec-

tion of flight altitude (Mateos-Rodrı́guez and Liechti 2012).

Therefore, it is important to consider wind conditions in relation to

migration to achieve a better understanding of migratory perform-

ance (Kemp et al. 2010; Vansteelant et al. 2015) and previous stud-

ies have suggested that wind is a strong predictor of migration

speed, accounting for 10–66% of variance, depending on species

(Safi et al. 2013). Within diurnal raptors, recently the effect of winds

has been investigated also in relation to foraging movements

(Hern�andez-Pliego et al. 2014).

In addition to headwinds and tailwinds, birds must also deal

with crosswinds during their migrations, causing them partial or

full drift from the main intended direction of their movement.

Hence, in order to maintain direction birds must adjust their

course according to wind direction and speed by exhibiting a com-

pensating or even overcompensating behavior (Alerstam 2011;

Klaassen et al. 2011). Furthermore, birds can vary their behavior

in response to wind depending on the stage of the journey. Several

studies have shown that drift is more frequent at the onset of mi-

gration when birds are further away from their goal, while com-

pensation increases when birds are approaching their goal areas

(Green et al. 2004; Klaassen et al. 2011; Limiñana et al. 2013;

Mellone et al. 2015). Moreover, bird behavior is also influenced

by the occurrence of natural barriers, for instance avoiding drift

over the sea (Panuccio et al. 2010; Klaassen et al. 2011). These

findings suggest that the response to crosswind depends not only

on distance to the goal, but also on wind direction and speed. Age

is also a determining factor, with juveniles being more susceptible

to drift than adults (Thorup et al. 2003).

On the other hand, different flight modes may also influence the

response to winds (Limiñana et al. 2013) and the flight performance

(Malmiga et al. 2014). Flapping flight is the most common flight

mode of small-sized birds, whereas large birds use a combination

of soaring–gliding flight as the energy expenditure required for

flapping increases with body mass. Hence, from the energy con-

sumption point of view, large-sized birds take more advantage than

smaller one from soaring flight, spending a low percentage of their

metabolic rate for flight (Pennycuick 1975). In addition, large and

medium-sized raptors use mostly a soaring–gliding flight strategy,

taking advantage of thermal updrafts to gain altitude and then des-

cending gliding in the intended direction until the next updraft

(Kerlinger 1989). Other species, such as harriers, although predomi-

nantly use a flapping–gliding flight mode, also make use of flapping

flight mode more often than other raptors (Spaar and Bruderer

1997).

This study focuses on three diurnal migrating raptors that use

mostly the soaring flight mode: Egyptian vulture Neoprhon perc-

nopterus, booted eagle Aquila pennata, and short-toed snake eagle

Circaetus gallicus. All three species are trans-Saharan migratory

birds: their breeding populations in Western Europe migrate to their

wintering grounds located in the Sahel region (Cramp and Simmons

1980). Recent studies have provided a complete description of their

migratory routes by means of GPS satellite telemetry (Garcı́a-

Ripollés et al. 2010; Pav�on et al. 2010; Mellone et al. 2013; L�opez-

L�opez et al. 2014). However, a detailed analysis of the effects of

wind on their migratory routes is still lacking. Therefore, the main

goals of this article are: 1) to assess the effect of forward and

crosswinds in the autumn and spring migration of these three raptor

soaring–gliding species; 2) to analyze the different responses to wind

conditions in relation to species, season, and latitude; and finally, 3)

to examine the different responses of birds with regard to the origin

of crosswinds (easterly or westerly winds).

Material and Methods

Study species and tagging
A total of 22 individual raptors were tagged with GPS satellite trans-

mitters, tracking both their autumn and their spring migrations, be-

tween the breeding areas in Europe and their wintering grounds in

the Sahel. As the three species are soaring–gliding migrants, they are

more dependent of wind conditions to migrate than the raptors that

use mostly flapping flight. In fact, since they need thermal updrafts

for flying they are more selective for favorable weather conditions

than species flying mainly by flapping–gliding (Limiñana et al.

2013).

Between 2007 and 2009, six adult Egyptian vultures were

trapped in Castell�on and Guadalajara provinces, Spain (see Garcı́a-

Ripollés et al. 2010; L�opez-L�opez et al. 2013 for further details).

Nine adult booted eagles were trapped in different provinces of

Spain (Madrid, Castell�on, Ávila, Murcia, Barcelona, and Badajoz)

between 2011 and 2013 (see Mellone et al. 2013, 2014 for more de-

tails). Concerning short-toed eagles, seven juveniles were tagged

with satellite transmitters between 2008 and 2010, all trapped at

their nests when were 55–60 days old: five of them in Spain and two

in the Basilicata region in Italy (see Pav�on et al. 2010; Mellone et al.

2011b, 2011c for more details).

All individuals were equipped with 45 g (Egyptian vultures and

short-toed eagles) and 22 g (booted eagles) solar-powered GPS trans-

mitters (Microwave Telemetry Inc.), apart from one-booted eagle

which was tagged with a GPS datalogger (Telemetry Solutions Inc.).

Tags were affixed to their backs using a Teflon harness, a resistant and

nonabrasive material, which was tied with a cotton thread to ensure

that the harness is released from the animal at the end of the transmit-

ter’s life. Transmitters’ weight was <5% of birds’ body mass, which is

within the recommended limits (Kenward 2001). The Egyptian vul-

tures’ and short-toed eagles’ tags were programmed to obtain GPS lo-

cations every 2 h 24 h per day during both autumn and spring

migration (Garcı́a-Ripollés et al. 2010; Pav�on et al. 2010; Mellone

et al. 2011b, 2011c; L�opez-L�opez et al. 2013). The booted eagles’ tags

were programmed to obtain GPS locations every hour from 06:00 h to

20:00 h (Mellone et al. 2013, 2014).

Tracking data
Overall, the dataset included 88 migratory journeys as follows: 47

journeys were recorded for Egyptian vultures (24 autumn and 23

spring journeys), 25 journeys for booted eagles (15 autumn and 10

spring journeys), and 18 journeys for short-toed snake eagles (11 in

autumn and 7 in spring). Migration tracks were divided into daily

segments (Limiñana et al. 2013), using one location per night

included in the interval between 18:00 h and 06:00 h of the next

day, trying to approach as much as possible to midnight (Klaassen

et al. 2011). Segments longer than 1 day were excluded from the

analysis. Segments in which birds displacement were shorter than

50 km/day, were also excluded in order to avoid including segments

in which birds were not migrating (Klaassen et al. 2011; Limiñana

et al. 2013; Mellone et al. 2014), as well as segments in a direction

opposite to the main one. In the case of the two short-toed eagles
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tagged in Italy (#56810 and #56813), the segments recorded before

reaching the Iberian Peninsula were not taken into account in order

to avoid any bias in the analyses, since it has been suggested

that these juvenile individuals travel together with adults during this

migration stretch (Mellone et al. 2011b).

For each segment, we established the coordinates (latitude and

longitude) of the starting point (the coordinates of the place where

the previous night the bird stopped to rest), of the ending point (cor-

responding to the day where the bird ended the segment), and the

midpoint (the location exactly between the starting and ending

coordinates).

Overall, we included in the analyses 572 daily segments for

Egyptian vultures (250 in autumn and 232 in spring); 382 segments for

booted eagles (204 in autumn and 178 in spring); and 230 segments

for short-toed eagle (119 corresponding with the first autumn migra-

tion, 45 with the subsequent autumn migrations, and 66 recorded dur-

ing spring migration).

Wind data
Wind data were obtained from the NCEP/DOE Reanalysis II data-

set, using the RNCEP package (Kemp et al. 2012) for the R-soft-

ware. This dataset includes wind’s east–west and north–south

components (expressed in m/s) which were extracted for our ana-

lyses. From the combination of these components two different vec-

tors were obtained: direction (in degrees) and wind velocity (in m/s).

East–west and north–south components have a spatial resolution of

2.5� �2.5� and a temporal resolution of 6 h, being available at

00:00, 06:00, 12:00, and 18:00 h UTC, so for each daily segment

the components were extracted for the starting coordinates of the

segment at 06:00 h, for the midpoint coordinates at 12:00 h, and for

the ending coordinates at 18:00 h. Coordinates were extracted for a

pressure level of 925 hPa, which corresponds to an altitude between

445 m and 1145 m (Schmaljohann et al. 2012). This pressure level

has already been used in previous studies in which the effect of wind

on other soaring raptors was analyzed (Klaassen et al. 2011;

Mellone et al. 2012).

Analysis
Calculation of the intended directions

For every bird and migration journey, we calculated the overall in-

tended direction of migration, which was estimated by dividing the

entire migratory journey into two different stages: for autumn mi-

grations, we calculated the angle between the nest (or the first loca-

tion in the Pyrenees in the case of short-toed eagles born in Italy)

and the Strait of Gibraltar, and the angle between the Strait of

Gibraltar and the first location at wintering grounds in the Sahel.

For the spring migrations, we calculated the angle between the last

location at wintering grounds and the Strait of Gibraltar, and also

between the Strait of Gibraltar and the nest. In the case of the

Egyptian vultures, one of the birds (#89730) headed to a vulture

feeding station during both autumn and spring migration, so we

took it into account as the intended direction calculation. In the case

of autumn migrations of short-toed eagles, juveniles (1st calendar

year) were analyzed separately from older birds (2nd and 3rd calen-

dar year), since in the first case the individuals do not know the

place they are going, so we considered a general South direction

(180�) from the Strait of Gibraltar to the Sahel. Instead, older birds

head to previously known wintering areas, and therefore we took

the coordinates of such areas into account, in the same way as for

the other species. In addition, we considered a general North

direction (0�) for the calculation of the intended direction during

spring migration, since the analyzed short-toed eagles spent summer

in Northern Africa (Mellone et al. 2011c).

Forward and perpendicular components of the movement and wind

We calculated the forward and perpendicular components of the move-

ment for each daily segment of migration in kilometres per day in rela-

tion to the estimated intended directions (Klaassen et al. 2011).

Equally, the forward (tailwind) and perpendicular (crosswind) compo-

nents were calculated with regard to the intended direction. We calcu-

lated these components at the beginning of each daily segment

(06:00 h), at the midpoint (12:00 h), and at the end point (18:00 h).

Finally, to simulate the effect of wind experienced along a whole migra-

tion segment, we calculated an overall forward wind and an overall

perpendicular wind for every daily segment with these three values,

giving more importance to the wind at the midpoint of the segment

(see Klaassen et al. 2011 and Limiñana et al. 2013 for a similar

approach). Therefore, for the tailwind (TW) calculation we used

the formula: TWsegment¼ (TWonsetþ2*TWmidpointþTWend)/4,

proceeding in the same way for the crosswinds (CW):

CWsegment¼ (CWonsetþ2*CWmidpointþCWend)/4.

To assess the effect of winds on bird’s movement rates, we per-

formed a regression analysis relating the forward rate of movement

to tailwinds and the perpendicular rate of movement to crosswinds

for daily segments (Thorup et al. 2003; Klaassen et al. 2011;

Limiñana et al. 2013). These regressions were conducted for autumn

and spring migrations of each species. In the case of short-toed

eagles, we separated the segments corresponding to their first au-

tumn migration from the following migrations, in order to differen-

tiate between data coming from birds with different degrees of

experience. We also checked whether the slopes of forward and per-

pendicular regressions were significantly different according to 95%

confidence intervals. Using regression slopes, we calculated the drift

effect by dividing the forward slope coefficient by the perpendicular

slope coefficient.

Types of behavior
Daily segments were classified into three different behavioral catego-

ries depending on the relationship between perpendicular movement

component and crosswinds (Klaassen et al. 2011; Limiñana et al.

2013): 1) drift segments, when the perpendicular movement compo-

nent was higher than 50 km/day or lower than �50 km/day with

equal sign than for perpendicular winds; 2) compensation segments:

when the perpendicular movement component was between 50 km/

day and �50 km/day; and 3) overcompensation segments: when the

perpendicular movement component was higher than 50 km/day or

lower than �50 km/day (as for the drift segments) with opposite

sign between this component and the perpendicular wind. We con-

sidered the distance of 50 km/day as a notably variation from the in-

tended direction for the three species, according to their normal

daily travel rates (mean daily distance for travelling days recorded

in this study: 203.98þ101.72 km/day; 194.88 6 84.83 km/day and

191.12 6 97.45 km/day for Egyptian vulture, booted eagle and

short-toed eagle, respectively).

We evaluated the behavioral response to wind conditions among

species, seasons, and regions using chi-squared tests in contingency

tables (Limiñana et al. 2013). To this end, journeys were divided

into three different regions, thus building three sub-samples to make

comparisons among the first, middle, and final segments of the mi-

gration itself: latitudes higher to 36� N (those corresponding with
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Europe), latitudes between 36� N and 28� N, and latitudes below

28� N. We also evaluated whether there was an effect of age in the

frequency of the different segments for the short-toed snake

eagle, comparing the first autumn migration with the subsequent

ones. Finally, we analyzed birds’ behavior in relation to the origin

of winds (i.e., easterly or westerly winds), in order to test for differ-

ences in the proportion of these types of segments for both cross-

wind directions.

Results

Relationship between forward movement and forward

winds
Daily movements of Egyptian vultures and booted eagles were sig-

nificantly affected by tailwinds (Table 1). During autumn migra-

tions, Egyptian vultures increased their forward rate of movement

on average 16.38 km/day for every meter per second of tailwind,

with a forward daily rate of movement of 214.35 km/day in ab-

sence of wind. This advantage was higher than in spring (Figure

1), when for every meter per second of tailwind the forward rate

of movement increased by 9.79 km/day, showing rates of

181.81 km/day in absence of wind. Booted eagles took a similar

advantage of tailwinds in autumn and spring, increasing their rate

of movement on average by 8.98 and 10.35 km/day for every

meter per second of wind. In the case of the short-toed eagles, the

effect of tailwinds was significant both in their first and the fol-

lowing autumn migrations, being somewhat higher the advantage

obtained by experienced individuals (2nd and 3rd calendar year

birds: 14.90 km/day for every m/s of tailwind versus 10.82 km/day

for every m/s of wind in the case of the juveniles). The relationship

between the rate of forward movement and the tailwinds was not

significant (P¼0.061) for the short-toed eagle spring migrations

(Figure 1).

Relationship between perpendicular movement and

crosswinds
The effect of crosswinds in perpendicular movement rates was sig-

nificant in all cases (Table 1), and similar for autumn and spring mi-

grations of each species (Figure 2).

According to the ratio between slopes (perpendicular/forward),

the drift experienced by Egyptian vultures and short-toed eagles was

higher during spring migrations, while in the case of the booted

eagles there was only a slight difference between spring and autumn.

Nevertheless, these values were not significant for most cases at an

a¼0.05 level (Table 1).

Differences between frequencies of drift, compensation,

and overcompensation segments
There were no differences in the proportions of segment type (drift,

compensation, and overcompensation) among seasons (Egyptian

vulture: v2
2¼2.41, P¼0.300; booted eagle: v2

2¼2.12, P¼0.346;

short-toed eagle: v2
2¼1.21, P¼0.174). Similarly, there were no sig-

nificant differences among species neither in autumn (v4
2¼5.12,

P¼0.423), nor in spring (v4
2¼4.07, P¼0.142), nor combining

both seasons (v4
2¼8.18, P¼0.146). Juvenile short-toed eagles in

their first autumn migration did not show significant differences in

the proportions of segments in comparison to subsequent migrations

(v2
2¼5.16, P¼0.190). Proportions of these segments were signifi-

cantly different when considering the latitude for Egyptian vultures

and booted eagles (Figure 3). Both species compensated more fre-

quently at the onset of autumn migration rather than at the end, es-

pecially the Egyptian vulture (Egyptian vulture: v4
2¼20.75,

P<0.001; booted eagle: v4
2¼20.94, P<0.001). Egyptian vultures

and booted eagles also experienced a higher drift at the onset

of the spring migration (Table 2) while, at the end of migration, al-

ready in Europe, the proportion of compensation segments was

higher (Egyptian vulture: v4
2¼35.07, P<0.001; booted eagle:

v4
2¼31.87, P<0.001). These latitudinal differences were not

observed in short-toed eagles neither in autumn (v2
2¼4.13,

P¼0.127) nor in spring (v2
2¼3.838, P¼0.508).

Concerning differences between frequencies of segments accord-

ing to wind direction (easterly and westerly winds), there were no

significant differences for any species neither in autumn (Egyptian

vulture: v2
2¼0.79, P¼0.671; booted eagle: v2

2¼5.82, P¼0.054;

short-toed eagle: v2
2¼3.86, P¼0.144), nor in spring (Egyptian vul-

ture: v2
2¼0.68, P¼0.712; booted eagle: v2

2¼3.63, P¼0.163;

short-toed eagle: v2
2¼3.93, P¼0.140) nor considering both sea-

sons combined (Egyptian vulture: v2
2¼1.56, P¼0.457; booted

eagle: v2
2¼2.67, P¼0.263; short-toed eagle: v2

2¼3.56,

P¼0.169). The analyses were also performed combining compensa-

tion and overcompensation segments, therefore comparing drift

against (over)compensation segments, but differences between seg-

ments were not significant in any case.

Table 1. Linear regressions between the rate of forward movement (km/day) and the forward wind component (m/s), and between the rate

of perpendicular movement and the perpendicular wind component

Forward movement Perpendicular movement

n Slope 95%

Confidence

interval

Intercept

(km/day)

Sig. Slope 95%

Confidence

interval

Intercept

(km/day)

Sig. Test between

slopes

Ratio between

slopes

Egyptian vulture Autumn 250 16.37 11.97–20.77 214.3 0.000 10.78 7.78–13.78 �0.1 0.000 * 0.66

Spring 322 9.78 7.73–11.83 181.8 0.000 8.69 6.57–10.82 13.9 0.000 n.s. 0.89

Booted eagle Autumn 204 8.97 4.61– 13.34 173.3 0.000 6.77 4.07– 9.47 �10.1 0.000 n.s. 0.75

Spring 178 10.34 7.15–13.54 156.0 0.000 8.07 5.74– 10.41 2.9 0.000 n.s. 0.78

Short-toed eagle Autumn 45 14.90 6.73–23.07 163.9 0.001 10.53 5.54–15.52 8.3 0.000 n.s. 0.71

Spring 66 5.87 �0.28–12.04 176.9 0.061 10.96 6.14–15.79 22.9 0.000 n.s. 1.87

Juvenile 119 10.81 5.26–16.37 142.4 0.000 7.00 2.30– 11.71 �1.3 0.004 n.s. 0.65

The slope, 95% confidence interval, intercept, and significance levels are shown for each species and season. Significance level of the difference between the slopes

according to the 95% confidence interval are also shown (*P< 0.05, n.s.: not significant). The results of the juvenile short-toed eagle (1st calendar year) are sepa-

rated from 2nd and 3rd calendar year. All Egyptian vultures and booted eagle were adults.
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Discussion
Tailwinds affected Egyptian vultures, booted eagles, and short-toed

eagles in a similar way, enhancing their forward movements at a daily

scale. These results agree with previous studies carried out with other

raptors (Klaassen et al. 2010; Limiñama et al. 2013). For example,

Limiñana et al. (2013) reported a higher effect of tailwinds during au-

tumn migration in the Montagu’s harrier, a species that besides soaring

flight uses a flapping flight mode with higher frequency than other

Figure 1. Regression analysis between forward rate of movement and forward wind during spring (upper graphics) and autumn migration (lower graphics) for

Egyptian vulture (A, D), booted eagle (B, E), and short-toed snake eagle (C, F).

Figure 2. Regression analysis between perpendicular rate of movement and perpendicular wind during spring (upper graphics) and autumn migration (lower

graphics) for Egyptian vulture (A, D), booted eagle (B, E), and short-toed snake eagle (C, F).

Vidal-Mateo et al. �Wind effects on trans-Saharan soaring raptors 93



soaring birds. In fact, favorable winds blow predominantly during au-

tumn, in contrast to spring, when winds blow mainly against the main

migration direction (Spaar and Bruderer 1997; Mellone et al. 2012; see

Figure 2 and Table A1 for a summary of tailwind speeds). In our study,

which includes three soaring species, the same effect was observed in

Egyptian vultures and short-toed eagles, but not in booted eagles.

Short-toed eagles stopped in northern Africa in their first spring migra-

tions (that includes all spring migrations analyzed), and hence they

were not exposed to the different wind conditions that occur in the

Iberian Peninsula as Egyptian vultures and booted eagles do experience.

Differences in morphometric characteristics could explain the

differences observed between Egyptian vultures and booted eagles

(Mellone et al. 2012), with Egyptian vultures showing higher wing

loading than booted eagles (Kirmse 1998; Mellone et al. 2012), thus

allowing higher glide speed (Spaar 1997). Assuming absence of wind

during autumn, the Egyptian vulture speed was notably higher than

that recorded in booted eagles, probably due to the different wing load-

ing and wind conditions given, in the booted eagle there were no sig-

nificant seasonal differences concerning the effect of tailwinds in the

forward rate of movement.

Crosswinds significantly affected the rate of perpendicular move-

ment in all three species both in autumn and in spring, in agreement

Figure 3. Response of three migratory raptors to crosswinds in spring (upper panel) and autumn (lower panel). Egyptian vulture’s routes are shown in (A) and

(D); booted eagle’s routes in (B) and (E); and short-toed snake eagle’s routes in (C) and (F). Colors indicate drift (green), compensation (blue), and overcompensa-

tion (orange) in daily segments.
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with previous studies (Thorup et al. 2003; Klaassen et al. 2011;

Limiñana et al. 2013). There were no differences in the frequencies of

drift, compensation, and overcompensation segments between seasons

for any of the three species. Previous studies showed a relationship be-

tween latitude and migration behavior (Shamoun-Baranes et al. 2003;

Klaassen et al. 2011), and how the proximity or distance to the goal

areas influences the response to wind (Green et al. 2004). Similar dif-

ferences in the behavioral response to wind conditions were also re-

corded for Egyptian vulture and booted eagles in our study.

During the first stage of autumn migration, when birds were still

in the Iberian Peninsula, the frequency of compensation segments

was higher, whereas drift segments increased at the end of migration

(Figure 3). During spring, the opposite was observed, with a high

percentage of drift segments at departure when birds were far away

from the goal. The proportion of drift segments decreased when

birds arrived to the Iberian Peninsula, in agreement with previous

studies with other raptor species (Klaassen et al. 2011). At the begin-

ning of autumn migrations, given that these raptors have low aspect

ratio and they must avoid crossing waters, they have to go to the

Strait of Gibraltar, a major migratory bottleneck, in order to cross

to the African continent (see also Agostini et al. 2015). This could

explain the compensation behavior observed in this part of the jour-

ney. Once in Africa, birds experience higher frequency of drift, espe-

cially in the case of the Egyptian vulture during the last stage of

migration, which is not surprising since this species occupies large

areas with no fixed territory during winter (Garcı́a-Ripollés et al.

2010; L�opez-L�opez et al. 2013). In spring, the proportion of drift

segments also decreases in the middle of the journey, because the

birds are known to home on the Strait of Gibraltar.

In the case of the short-toed eagles (both in their 1st year and 2nd

and 3rd year), differences in the proportions of segments types were

not observed neither in autumn nor spring, although their capability

to react to different wind conditions has been observed at a local

scale, avoiding for example being displaced over the sea (Panuccio

and Agostini 2013 ). This is possibly due to the inexperience of the

tagged individuals (Thorup et al. 2003) and due to the fact that in

their first spring migrations immature short-toed eagles spent the

summer season in vast areas of northern Africa and therefore they

do not need to navigate towards narrow goal areas such as the Strait

of Gibraltar (Mellone et al. 2011c).

Previous studies have shown different bird responses according to

the westerly versus easterly direction of crosswinds (Klaassen et al.

2011; Limiñana et al. 2013). Birds avoid being drifted when wind

comes from directions that do not benefit them, for example in the

Sahara desert easterly winds could bring them closer to the ocean.

However, birds can also take advantage of these winds in some steps

of their journey: as other species (Limiñana et al. 2012b), Egyptian vul-

tures, booted eagles, and short-toed eagles have their wintering areas

located in western Sahel, so they could took advantage of easterly

winds (see Table 1 for a summary of wind directions) to move to the

west with lower energetic expenditure, following more easterly routes

in autumn than in spring. These responses highlight the importance of

wind in shaping the migratory routes. Even so, our results are not con-

sistent with these earlier findings, suggesting no differences between

drift, compensation, and overcompensation in any of the three species

according to the direction of crosswinds.

In summary, our analysis reveals undocumented features of three

raptor species migrating between Southern Europe and Central

Africa. First, we have shown the relevance of tailwinds and cross-

winds on migration of three raptor species that mainly use the

soaring–gliding flight, and secondly how they show a different

behavior in terms of drift, compensation or overcompensation ac-

cording to the geographic region and season across they are flying.

The influence of wind on migration routes has been argued as a pos-

sible explanation of the loop migration pattern exhibited by the

three species studied here as well as other similar loop migration

patterns exhibited by other raptor species (Klaassen et al., 2010;

Limiñana et al., 2012a, 2012b) or by other bird species in different

scenarios (Bradley et al., 2014). Finally, our results suggest that

changes in weather conditions due to global change may affect the

Table 2. Percentage of drift, compensation and overcompensation segments in relation to latitude of three long-distance migratory raptors

Comparison Segments (%) n v2 P

Drift Compensation Overcompensation

Egyptian vulture Autumn > 36� 20.8 62.5 16.7

36–28� 40.8 45.1 14.1 250 20.75 < 0.001

< 28� 52.3 30.8 16.8

Egyptian vulture Spring < 28� 50 36.3 13.7

36–28� 32.9 32.9 34.2 322 25.07 < 0.001

> 36� 20.6 58.8 20.6

Booted eagle Autumn > 36� 13 75.1 10.9

36–28� 40.4 49.1 10.5 206 20.94 < 0.001

< 28� 35.6 39.6 24.8

Booted eagle Spring < 28� 56.4 34 9.6

36–28� 23.1 53.8 23.1 178 31.86 < 0.001

> 36� 5.3 84.2 10.5

Short-toed eagle Autumn > 36� – – –

36–28� 33.3 61.9 4.8

< 28� 50.0 33.3 16.7 45 4.12 0.127

Short-toed eagle Spring < 28� 50.0 30.3 19.7

36–28� 50.0 22.2 27.8 66 1.35 0.508

> 36� – – –

n refers to the total number of segments per species and season, and the v2 and their significance are specified for the differences between the proportions of seg-

ment type for each species and season.
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geometry of bird migration and their behavior, especially during the

Sahara crossing, which could result in possible carry over effects

during the annual cycle (see Drake et al., 2014). With the informa-

tion provided by the analyses of wind influence on individual migra-

tion tracks hopefully it will be possible to predict such effects.
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Appendix

Table A1. Summary of tailwind speeds and crosswinds direction recorded for each species according to season and region

Species Season Region Tailwind speed (m/s) Wind direction (degrees)

Egyptian vulture Autumn >36� 1.16 6 2.12 259.67 6 28.55

36–28� 1.31 6 2.24 157.52 6 18.77

<28� 2.04 6 3.09 235.35 6 17.31

Spring <28� �3.06 6 3.60 234.384 6 15.87

36–28� 0.92 6 3.97 346.396 6 41.58

>36� 0.48 6 5.16 287.086 6 63.70

Booted eagle Autumn >36� 0.23 6 2.84 288.75 6 80.10

36–28� 0.53 6 2.08 233.61 6 78.32

<28� 1.61 6 2.75 245.69 6 16.05

Spring <28� �0.84 6 3.90 242.08 6 15.94

36–28� 0.73 6 3.29 72.06 6 20.43

>36� 0.38 6 4.34 95.34 6 24.56

Short-toed eagle Autumn >36� – –

36–28� �1,89 6 3.57 59.59 6 18.44

<28� 2.23 6 3.18 194.29 6 10.43

Spring <28� �1.81 6 2.63 223.94 6 20.27

36–28� �0.24 6 3.80 65.66 6 66.32

>36� – –

Autumn 1st year >36� �0.77 6 4.04 73.36 6 48.92

36–28� 2.03 6 2.08 173.03 6 12.79

<28� 1.73 6 2.88 236.81 6 12.08
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