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Abstract: A fully analytical toolbox for supercontinuum generation relying on scenarios
without pulse splitting is presented. Furthermore, starting from the new insights provided by
this formalism about the physical nature of direct and cascaded dispersive wave emission, a
unified description of this radiation in both normal and anomalous dispersion regimes is derived.
Previously unidentified physics of broadband spectra reported in earlier works is successfully
explained on this basis. Finally, a foundry-compatible few-millimeters-long silicon waveguide
allowing octave-spanning supercontinuum generation pumped at telecom wavelengths in the
normal dispersion regime is designed, hence showcasing the potential of this new analytical
approach.

c© 2016 Optical Society of America

OCIS codes: (130.3120) Integrated optics devices, (190.4390) Nonlinear optics, integrated optics.

References and links
1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78,

1135–1184 (2006).
2. D. V. Skryabin and A. V. Gorbach, “Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod.

Phys. 82, 1287–1299 (2010).
3. M. Conforti and S. Trillo, “Dispersive wave emission from wave breaking,” Opt. Lett. 38, 3815–3818 (2013).
4. D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves

in optical fibers,” Phys. Rev. E 72, 016619 (2005).
5. A. V. Gorbach, D. V. Skryabin, J. M. Stone, J. C. Knight, “Four-wave mixing of solitons with radiation and

quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863
(2006).

6. A. V. Gorbach, D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in
photonic-crystal fibres,” Nature Photon. 1, 653–657 (2007).

7. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, 2003).
8. A. Ferrando, M. Zacarés, P. Fernández de Córdoba, D. Binosi, and Á. Montero, “Forward-backward equations for

nonlinear propagation in axially invariant optical systems,” Phys. Rev. E 71, 016601 (2005).
9. M. Kolesik, E. M. Wright, J. V. Moloney, “Simulation of femtosecond pulse propagation in sub-micron diameter

tapered fibers,” Appl. Phys. B 79, 293–300 (2004).
10. B. A. Daniel and G. P. Agrawal, “Vectorial nonlinear propagation in silicon nanowire waveguides: polarization

effects,” J. Opt. Soc. Am. B 27, 956–965 (2010).
11. Sh. Amiranashvili and A. Demircan, “Ultrashort optical pulse propagation in terms of analytic signal,” Adv. Opt.

Technol. 2011, 989515 (2011).
12. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the

zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11, 464–466 (1986).
13. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51,

2602–2607 (1995).
14. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal

fibers,” Phys. Rev. Lett. 27, 203901 (2001).
15. I. Cristiani, R. Tediosi, L. Tartara and V. Degiorgio, “Dispersive wave generation by solitons in microstructured

optical fibers,” Opt. Express 12, 124–135 (2004).
16. G. Chang, L. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband

visible wavelength generation,” Opt. Lett. 35, 2361–2363 (2010).
17. X. Liu, J. Læsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “All-fiber femtosecond Cherenkov

radiation source,” Opt. Lett. 37 2769–2771 (2012).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori d'Objectes Digitals per a l'Ensenyament la Recerca i la Cultura

https://core.ac.uk/display/84748405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


18. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum
Electron. 23, 510–524 (1987).

19. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum
generation,” Opt. Express 14, 11997–12007 (2006).

20. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion
wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20, 1685–1690
(2012).

21. A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise,
M. Lipson, U. Keller, and A. L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride
waveguide,” Opt. Lett. 40, 5117–5120 (2015).

22. K. E. Webb, Y. Q. Xu, M. Erkintalo, and S. G. Murdoch, “Generalized dispersive wave emission in nonlinear fibers,”
Opt. Lett. 38, 151–153 (2013).

23. D. Castelló-Lurbe and E. Silvestre, “Supercontinuum generation in silicon waveguides relying on wave-breaking,”
Opt. Express 23, 25462–25473 (2015).

24. X. Fang, N. Karasawa, R. Morita, R. S. Windeler, and M. Yamashita, “Nonlinear propagation of a-few-optical-cycle
pulses in a photonic crystal fiber — Experimental and theoretical studies beyond the slowly varying-envelope
approximation,” IEEE Photon. Technol. Lett. 15, 233–235 (2003).

25. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light
supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).

26. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into
continuum radiation in microstructured fibers,” Opt. Express 10, 1083–1098 (2002).

27. M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear
symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).

28. K. E. Webb, M. Erkintalo, Y. XU, N. G. R. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics
of fibre event horizons,” Nat. Commun. 5:4969 doi: 10.1038/ncomms5969 (2014).

29. Y. Q. Xu, M. Erkintalo, G. Genty, and S. G. Murdoch, “Cascaded Bragg scattering in fiber optics,” Opt. Lett. 38,
142–144 (2013).

30. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave-breaking in nonlinear optical fibers,” Opt. Lett. 10,
457-459 (1985).

31. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave breaking in nonlinear-optical fibers,” J. Opt.
Soc. Am. B 9, 1358–1361 (1992).

32. M. Conforti, F. Baronio, and S. Trillo, “Resonant radiation shed by dispersive shock waves,” Phys. Rev. A 89, 013807
(2014).

33. G. A. Nowak, J. Kim, and M. N. Islam, “Stable supercontinuum generation in short lengths of conventional
dispersion-shifted fiber,” Appl. Opt. 38, 7364–7369 (1999).

34. C. Chen and P. L. Kelley, “Nonlinear pulse compression in optical fibers: scaling laws and numerical analysis,” J.
Opt. Soc. Am. B 19, 1961–1967 (2002).

35. N. Vermeulen, J. Cheng, J. E. Sipe, and H. Thienpont, “Opportunities for wideband wavelength conversion in
foundry-compatible silicon waveguides covered with graphene,” IEEE J. Sel. Top. Quantum Electron. 22, 8100113
(2016).

36. D. Castelló-Lurbe, P. Andrés, and E. Silvestre, “Dispersion-to-spectrum mapping in nonlinear fibers based on optical
wave-breaking,” Opt. Express 21, 28550–28558 (2013).

37. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-
modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–70 (1972).

38. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 4th ed., 2007).
39. J. E. Rothenberg and D. Grischkowsky, “Observation of the formation of an optical intensity shock and wave breaking

in the nonlinear propagation of pulses in optical fibers,” Phys. Rev. Lett. 62, 531–534 (1989).
40. J. E. Rothenberg, “Femtosecond optical shocks and wave breaking in fiber propagation,” J. Opt. Soc. Am. B 6,

2392–2401 (1989).
41. G. Xu, A. Mussot, A. Kudlinski, S. Trillo, F. Copie, and M. Conforti, “Shock wave generation triggered by a weak

background in optical fibers,” Opt. Lett. 41, 2656–2659 (2016).
42. J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, R. Leonhardt, and P. D. Drummond, “Direct measurement of

pulse distortion near the zero-dispersion wavelength in an optical fiber by frequency-resolved optical gating,” Opt.
Lett. 22, 457–459 (1997).

43. F. Leo, S. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission
and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication
wavelength,” Opt. Lett. 39, 3623–3626 (2014).

44. R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning
mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).

45. D. Castelló-Lurbe, V. Torres-Company, and E. Silvestre, “Inverse dispersion engineering in silicon waveguides,” J.
Opt. Soc. Am. B 31, 1829–1835 (2014).

46. See ePIXfab at http://www.epixfab.eu and Institute of Microelectronics (IME) at https://www.
a-star.edu.sg/.

http://www.epixfab.eu
https://www.a-star.edu.sg/
https://www.a-star.edu.sg/


47. B. Kuyken, X. Liu, R. M. Osgood Jr., R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band
supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181
(2011).

48. T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. H. Tan, “Multi-photon absorption and
third-order nonlinearity in silicon at mid-infrared wavelengths,” Opt. Express 21, 32192–32198 (2013).

49. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for
850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).

50. L. Yin, Q. Lin, G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32,
391–393 (2007).

51. S. Lefrancois, C. Husko, A. Blanco-Redondo, and B. J. Eggleton, “Nonlinear silicon photonics analyzed with the
moment method,” J. Opt. Soc. Am. B 32, 218–226 (2015).

1. Introduction

Supercontinuum (SC) generation is a complex nonlinear phenomenon that can rely on different
mechanisms leading to a rich phenomenology. It can be described by generalizations of the
standard nonlinear Schrödinger equation (NLSE). Particularly, high-order dispersion (HOD)
plays a key role for SC generation [1]. Moreover, the theoretical analysis of SC is often chal-
lenging because it must address nonlinear pulse evolution away from stationary states such as
solitons. As a result, most of the studies look for approximate solutions to the NLSE based on a
suitable ansatz and different perturbative methods [2, 3]. They give rise to effective theories that
are extremely valuable to deal with complex scenarios such as soliton fission and subsequent
processes [4–6]. Although such theories are often needed, it cannot be assumed that this fully
mathematical approach is always the most convenient.

In nonlinear photonics, the NLSE can be derived from Maxwell’s equations when backscattered
waves induced by nonlinearities are neglected (this corresponds to the slowly-varying envelope
approximation in the z coordinate [7] and converts the second-order wave equation into a first-
order equation) [8] and when diffraction is addressed by means of modal methods (this allows
separating transverse and longitudinal coordinates and reduces the model to a single equation if
monomode propagation can be assumed) [9]. These approximations do not affect the nonlinear
processes allowed in the medium [7, 10]. If only the third-order polarization that accounts for
ω1 + ω2 → ω3 + ω4, i.e., the four-wave mixing (FWM) process, is retained, then the standard
NLSE arises [11]. From this point of view, although new frequency generation can be analyzed
based on a mathematical solution of NLSE — a high-level concept —, it necessarily relies on
FWM processes — a low-level concept. The level of detail of a description will depend on the
nature of the problem itself, but also on the purposes of the description. In scenarios where many
FWM processes take place or intricate interplays between dispersion and nonlinearities over
the whole pulse are produced (giving rise to, e.g., solitons), low-level descriptions are often not
useful. However, if the pulse spectrum develops well-defined resonances through, e.g., dispersive
wave (DW) emission, one might ask if the dominant FWM processes could be identified in this
case and so, a low-level description could be derived.

DW emission refers to the formation of spectral resonances due to HOD [12]. This mechanism
plays a crucial role for SC generation [1, 2, 14, 15] and particularly, it was recently exploited
for efficient wavelength conversion into the visible range in photonic crystal fiber (PCF) [16,
17]. It was pointed out early that optical solitons perturbed by HOD [e.g., propagating in the
neighborhood of the zero-dispersion frequency (ZDF)] radiated at specific frequencies [12].
An effective radiative process involving the soliton [i.e., a nonlinear wave-packet] and a small-
amplitude signal [i.e., a linear, often narrow-band, wave-packet] was considered to analyze this
phenomenon [13]. With this approach one succeeded in finding the phase-matching condition
that leads to the resonant frequency.

Spectral resonances observed in SC in PCFs and integrated waveguides were usually inter-
preted as DWs radiated by the solitons emerged after soliton fission [1]. According to [18], a



higher-order soliton is a bound state of fundamental solitons. However, it becomes unstable
in the presence of small perturbations [e.g., HOD or stimulated Raman scattering (SRS)] and
tends to split into its constituent solitons after propagation. Consequently, the pulse splitting that
precedes radiative processes can be analyzed as soliton fission, and the subsequent generation of
spectral resonances (also called nonsolitonic radiation) as DWs radiated by the solitons emerged
after fission [14]. After these stages, intricate scattering processes involving the ejected solitons
and DWs can take place [2]. These processes are also of key importance to explain the SC
features [4–6].

Although SC generation was initially explained in these terms [1,2,14,15], Austin et al. pointed
out that DWs are radiated before the soliton fission [19]. This is also in accordance with recent
results in integrated waveguides [20, 21]. Interestingly, DW emission by pulses that propagate
in the normal dispersion regime (called generalized DWs) has also been demonstrated [22, 23].
Despite the importance of new frequency generation processes triggered by soliton fission, these
observations on DWs reveal that SC assisted by DW generation does not need pulse splitting,
even when pumped in the anomalous dispersion regime. In these cases, the soliton dynamics is
not essential and low-level strategies could be useful, in line with early interpretations of some
SC spectra based on intrapulse FWM processes [24–26]. Here our aim is to obtain a unified
analytical description of such DW emission, in both normal and anomalous dispersion regimes,
through a low-level approach. Since numerical solutions of the NLSE are not required, our
formalism provides, in addition, straightforward guidelines for designing SC sources.

An illustrative example of low-level descriptions has been the interpretation of DW emission
by nearly nondispersive pulses in terms of cascaded FWM processes by Erkintalo et al. [27].
It did not only provide a deeper understanding of the radiation emitted by solitons, but also
demonstrated that spectral resonances can be predicted without a complete solution for the NLSE.
This work also reported the appearance of spectral resonances from pulses pumped in the normal
dispersion regime close to the ZDF. Another very recent example has been the low-level analysis
of the effective reflection of a weak linear wave induced by a soliton based on certain FWM
processes [28, 29].

If frequency dispersion in time, i.e., the dispersion of the instantaneous pulse frequency
along the pulse duration, is significant, then new mechanisms can also arise [22]. In the normal
dispersion regime, the optical wave-breaking (OWB) process can take place [30] provided the
system is sufficiently nonlinear [31]. Conforti et al. studied this regime based on the shock-wave
solution [3]. Although several cases can be understood from this high-level concept and some
particular cases can be solved analytically [32], the group-velocity of the shock-wave must be
numerically determined in general [3], which limits its applicability in design tasks. Recently, we
proposed a combined approach where self-phase modulation (SPM) leading to OWB and DW
emission mechanisms are studied based on the envelope evolution — a high-level concept — and
discrete wave mixing — a low-level concept —, respectively [23]. One FWM process enabled by
frequency dispersion in time and favored by a suitable HOD was identified for the DW emission,
leading to an analytical expression that relates the position of the spectral resonance with the
dispersion and the nonlinear coefficient of the waveguide and input pulse features. In this paper
we extend our approach to new scenarios in both normal and anomalous dispersion regimes,
where DWs are produced according to several FWM processes induced by the dispersion of
frequencies in time.

The approach that we present in this paper will be applicable to both normal and anomalous
dispersion regimes. This is in contrast with high-level formalisms which are fundamentally
different for the normal and anomalous dispersion regimes because they rely on nonlinear
envelope states. Particularly, these nonlinear states correspond to solitons in the anomalous
dispersion case [1, 2, 14] and a shock-wave in the normal dispersion case [3, 32]. However, there
are scenarios where a simple picture of the pulse as a coherent superposition of monochromatic



waves, that can disperse in time, can be suitable. In such cases, a unified approach for both the
normal and anomalous dispersion regimes should be feasible [23, 27] and we here present such
an approach for SC produced in scenarios that do not involve pulse splitting (thus before soliton
fission occurs in the anomalous dispersion case [33, 34]).

In Section 2, we present a fully analytical approach to define key stages in the SC generation
in both normal and anomalous dispersion regimes. We construct a picture of the frequency
distribution in time based on these stages. In Section 3, several FWM processes are identified to
produce direct and cascaded DW emission. This allows the derivation of analytical expressions
that characterize the different scenarios and provide the resonance frequencies. Finally, Section
4 will be devoted to the application of this framework in actual (nonideal) waveguides. On the
one side, an octave-spanning SC generation in a 2 mm-long foundry-compatible (220-nm-thick)
silicon-on-insulator (SOI) strip waveguide [35] pumped at telecom wavelengths in the normal
dispersion regime will be presented. On the other side, a recently reported SC spectrum obtained
in a silicon nitride waveguide pumped in the anomalous dispersion regime [21] will be analyzed
according to our framework.

2. A propagation equation for generalized lengths

A suitable definition of the different stages of the pulse evolution is extremely useful to depict a
simplified, although consistent, model of the SC dynamics. The most extended scenario valid in
the anomalous dispersion regime is composed of an initial pulse compression stage driven by
SPM and anomalous group-velocity dispersion (GVD), followed by the soliton fission process
due to higher-order effects (HOD, SRS or even noise) and subsequent radiation by the emerging
solitons, and scattering processes involving such radiation and solitons [1,2]. Usually these stages
are defined in terms of the changes experienced by the pulse (in both the time and frequency
domains), thus requiring the numerical solution of the propagation equation. Nevertheless, such
complete solutions contain information about the pulse details that is not essential to define the
stages. This approach is not particularly efficient for determining the different SC stages, because
the goal of defining these stages is precisely to provide a simpler analysis of the pulse evolution.

Such a simpler analysis can be enabled by looking for some properties of the pulse and its
spectrum that allow the characterization of the propagation stages without solving numerically
the NLSE. An intuitive example is given by the classical dispersive length, LD = T2

0 /| β2 |, where
T0 represents the pulse duration and β2 is the GVD; and the nonlinear length, LNL = 1/(γ0 P0),
where γ0 is the nonlinear coefficient and P0 corresponds to the input pulse peak power. These
parameters allow comparing the strength of the processes at work, namely, GVD and SPM
(provided the pulse shape is not notably altered). Similarly, we recently proposed the generalized
dispersive and nonlinear length functions, LD(z) and LNL(z), respectively, to extend this kind of
analysis over the entire propagation distance [36]. For the convenience of the reader, we briefly
review their meaning here. For the sake of clarity, let us consider the standard NLSE (although
our remarks remain valid when HOD is included),

∂z Ã(z, ω − ω0) = i
β2

2
(ω − ω0)2 Ã(z, ω − ω0) + iγ0F

−1
ω0

[
|A(z, t) |2 A(z, t)

]
, (1)

where ω0 is the carrier frequency, f̃ (ω − ω0) = Fω0 [ f (t)] =
∫ ∞
−∞

dt ei (ω−ω0)t f (t) is the Fourier
transform centered at ω0, and Ã is the envelope of the analytic signal of the electric field [11].
Next we take averages of the right-hand side terms in Eq. (1) and introduce the following inverse
length functions,

L−1
D (z) =

β2

2

∫ ∞
−∞

dω (ω − ω0)2 | Ã(z, ω − ω0) |2∫ ∞
−∞

dω | Ã(z, ω − ω0) |2
, (2)



Fig. 1. (a)-(b): Evolution of the generalized lengths for N = 10 in (a) the normal dispersion
and (b) the anomalous dispersion regimes. (c)-(d): Comparison of the analytically calculated
(normalized) generalized wave-breaking distance (red squares) with the numerical results
(blue circles) in (c) the normal dispersion and (d) the anomalous dispersion regimes. The
parameters considered in theses cases are included in the insets of (c) and (d). See details of
the formula for ξGWB in Table 1.

L−1
NL(z) =

γ0

2

∫ ∞
−∞

dt |A(z, t) |4∫ ∞
−∞

dt |A(z, t) |2
. (3)

On the one hand,LD andLNL represent the length scales over which GVD and SPM, respectively,
act at any z distance. On the other hand, the Hamiltonian conservation law [37] requires that
L−1

NL(z) +L−1
D (z) = L−1

NL(0) +L−1
D (0) [36]. This property allows the nonlinear pulse propagation

to be interpreted as a competition between the generalized inverse lengths. Therefore, these
functions can provide useful insight to identify the dynamic stages in the SC generation. Since
Eq. (1) has actually one degree of freedom [37,38], parametrized by N2 = LD/LNL = T2

0 γ0P0/β2,
we from now on work with a normalized propagation distance, ξ = z/LD.

Figure 1(a) represents the typical evolution of L−1
NL and L−1

D in the normal dispersion regime
[i.e., sign(β2) = 1] when L−1

NL(0) � L−1
D (0). The crosspoint at ξGWB (the — normalized —

generalized wave-breaking distance) is a notable feature of this regime because it can define two
stages without a full knowledge of the pulse envelope: Since L−1

NL(ξ) > L−1
D (ξ) for ξ < ξGWB,

the spectral broadening (pointed out by the growth of L−1
D , which is proportional to the variance

of the spectral distribution) should be mainly driven by SPM in this stage. Moreover, L−1
NL

captures the pulse broadening induced by β2 > 0 through its decrease. For ξ > ξGWB, dispersive
effects should dominate the pulse propagation. Figure 1(b) corresponds to the anomalous disper-
sion regime [i.e., sign(β2) = −1] also when L−1

NL(0) � L−1
D (0). Although no crosspoint appears



in this case, again two different stages can also be identified in a natural way. The generalized
lengths initially experience a relatively slowly varying monotonic evolution along ξ and evolve
into an oscillatory behavior afterwards. Analogously to the previous case, the spectral broadening
should be mainly induced by SPM initially. We point out that the pulse compression due to
β2 < 0 explains the growth of L−1

NL. From this approach, no fundamental difference between
the normal and anomalous dispersion regimes is observed. Similarly, the self-compression and
self-decompression distances were also proposed without any particular distinction between the
anomalous and normal regimes [34]. Therefore, we define the (normalized) generalized wave-
breaking distance, ξGWB, for both sign(β2) = ±1, as L−1

D (ξGWB) = sign(β2)L−1
NL(0)/2. We will

return later to the motivation of this definition (see next page). We now present a propagation
equation for L−1

NL and, correspondingly, for L−1
D .

We take only two effects into account to determine the evolution of the generalized lengths
for ξ < ξGWB. Firstly, we assume that SPM rules the spectral broadening in this stage. This
assumption is expected to be completely valid when L−1

NL(0) � L−1
D (0). Secondly, we neglect

any pulse reshaping and consider an effective broadening or compression in time (see Appendix).
Based on Eq. (1) and keeping in mind these assumptions, we derive in Appendix

d
dξ

L−1
NL(ξ)

L−1
NL(0)

 = −2 s2 N

L−1
NL(ξ)

L−1
NL(0)

2 s2 σ2

1 − L−1
NL(ξ)

L−1
NL(0)

1/2

, (4)

where σ2 is an input-pulse form factor (see its value in the caption of Table 1 and details in
Appendix), and s2 = sign(β2). To check the validity of Eq. (4), first we numerically solve
Eq. (1) to obtain ξGWB according to its definition. Then we analytically solve Eq. (4) and impose
L−1

NL(ξGWB) = (1 − s2/2)L−1
NL(0), so that we obtain

ξGWB =
s2

2 N σ1/2
2

1∫
1−s2/2

da

a2 [s2(1 − a)]1/2 . (5)

In Fig. 1(c) and Fig. 1(d) we compare the analytical results based on Eq. (5) with those evaluated
numerically. Despite the assumptions made in Eq. (4), good agreement is observed. This indicates
that our approximations (see Appendix) are in accordance with the conditions of the scenarios
illustrated in Fig. 1.

For ξ > ξGWB, the dynamics become notably different in Figs.1(a) and 1(b). In both regimes,
L−1

D strengthens as the pulse propagates. It also indicates that, besides the spectral broadening,
frequency dispersion starts to play a more important role. It is well-known that in the normal
dispersion regime, the dispersion can produce frequency overtaking in the pulse tails that leads
to strong oscillations in the pulse intensity. This phenomenon was interpreted early on as shock-
wave formation and OWB [30, 31, 39, 40]. Furthermore, the observation of these oscillations
has been greatly improved very recently by means of an optical sampling oscilloscope [41].
Interestingly, although shock-wave formation enables nonlinear mixing involving frequencies in
the pulse tails [3,23,31,32], these mixing processes could also appear due to a partial overlapping.
From this point of view, shock-wave and OWB would be extreme cases of frequency overlapping
in time. The latter suggests that the GVD-induced spreading in time of frequencies generated
initially by SPM can enable new nonlinear mixing between these frequencies in both normal and
anomalous dispersion regimes, the only difference between the two cases being the frequencies
involved: in the normal dispersion regime, it are those contained in the pulse tails, (ω−SPM , ω0) or
(ω0 , ω

+
SPM); and, in the anomalous dispersion regime, it are those contained in the central part

of the pulse, (ω−SPM , ω
+
SPM), where ω±SPM = ω0 ± δωSPM with δωSPM representing the maximum

SPM-induced chirp (see Fig. 2). This similar treatment for both dispersion regimes motivates
the definition of one generalized wave-breaking distance. When using this definition, one has to



Fig. 2. Illustration of the frequency overlapping and the resulting FWM processes in (a) the
normal dispersion regime, s2 = 1, and (b) the anomalous dispersion regime, s2 = −1. The
schematic plots include the absolute instantaneous frequency,ω(t) = ω0 +δω(t) (continuous
lines), and instantaneous power, P(t) (dashed lines). Thick lines highlight the frequencies
that can overlap. The time shifting induced by dispersion can induce the FWM processes
that are represented.

take into account that in the normal case the spectral broadening due to SPM is mainly produced
before ξGWB, whereas in the anomalous case, due to the pulse compression, L−1

NL, and therefore
SPM, experiences the most important growth just after ξGWB. Clearly, this feature cannot be
neglected in a reasonable model.

From Eq. (4), we can estimate the frequencies that could interact in the second stage (i.e.,
ξ > ξGWB), provided the distance at which frequency overlapping takes place, ξol, is known.
In the anomalous dispersion scenario [see Fig. 1(b)] the distance at which L−1

NL attains its first
maximum, L−1

NL(ξol) = max(L−1
NL), could be an appropriate choice because it is related to the

maximum compression distance in the time domain and hence maximum frequency overlapping.
In contrast, it is not straightforward to define such a distance in the normal dispersion case.
Based on the above qualitative description of ξol, the pulse broadening at ξol can be estimated
to be roughly twice that attained at ξGWB. Consequently, in the normal dispersion scenario, we
define L−1

NL(ξol) = L−1
NL(ξGWB)/2. Note that the aim of defining ξol is to facilitate evaluating the

frequency ranges that will be involved in the nonlinear mixing in the second stage.
Let us first analyze the anomalous dispersion case. Equation (4) takes into account SPM and

pulse compression induced by GVD. As a result, it predicts that L−1
NL diverges for ξ > ξGWB.

Obviously, it is an artificial divergence as we can observe in Fig. 1(b). In fact, for ξ > ξol, the
pulse experiences both spectral and temporal narrowing and broadening, hence avoiding any
divergence or pulse collapse. The physical reasons explaining that behavior are analogous to
those accounting for the maximum pulse compression of a positively chirped pulse in a linear
waveguide with anomalous dispersion [38]. Indeed, a clear similarity with the case we are dealing
with arises, the SPM-induced chirp playing the role of the initial positive chirp in the linear case.
Furthermore, this analogy suggests the following strategy to evaluate the spectral broadening at
ξol: if we define a chirped Gaussian pulse at ξGWB satisfying L−1

D (ξGWB) = sign(β2)L−1
NL(0)/2,

then we can estimate L−1
NL(ξol) as defined above from the analytical results of the linear case

(see Appendix). Once L−1
NL(ξol) is known, both ξol and the range of frequencies eventually

overlapping can be estimated through an extrapolation of Eq. (4).
A similar approximation can be applied in the normal dispersion regime, but then considering

that L−1
NL(ξol) = L−1

NL(0)/4. A synopsis of the most important analytical results presented here



Table 1. Characteristic lengths, ξGWB and ξol, and the maximum chirps generated by SPM
at such lengths. Here a can be considered an auxiliary variable, σ2, and Υ are input-pulse
form factors. In particular, they equal to 16/35 and 4/

√
27, respectively, for a sech pulse

and
√

8/27 and
√

2/e for a Gaussian pulse. σ̃2 is an auxiliary parameter equals to 1/
√

2 (see
details in Appendix). Remember that N2 = LD/LNL.

Normal dispersion regime, β2 > 0 Anomalous dispersion regime, β2 < 0

aGWB
1
2

3
2

ξGWB
1

2N σ1/2
2

∫ 1

aGWB

da
a2(1 − a)1/2 ≈

1.15

N σ1/2
2

1

2N σ1/2
2

∫ aGWB

1

da
a2(a − 1)1/2 ≈

0.54

N σ1/2
2

δωGWB
1
√

2

Υ

σ1/2
2

N
T0

1
√

2

Υ

σ1/2
2

N
T0

aol
1
4

3
2

(
1 +

2
9

N2

σ̃2

)1/2

ξol
1

2N σ1/2
2

∫ 1

aol

da
a2(1 − a)1/2

1

2N σ1/2
2

∫ aol

1

da
a2(a − 1)1/2

δωol δωGWB +
1

4
√

2T0

(
1 +

2N2

σ̃2

)
(ξol − ξGWB)

Υ

σ1/2
2

N
T0

(aol − 1)1/2

and derived in Appendix is shown in Table 1. We use these results in the next section, where
several scenarios that exploit DW emission to generate SC are identified.

3. Direct and cascaded dispersive wave emission

The analysis of the generalized lengths allows identifying the frequencies that can overlap, thus
can generate new frequencies through FWM in the second stage, after ξGWB (see Table 1). We
now study new frequency production through direct processes, i.e., one FWM interaction fed
by SPM (both pump and signal waves generated in the first stage by SPM), but also through
cascaded processes, i.e., FWM interactions fed by other FWM processes also produced in the
second stage. As will be shown soon, direct DW emission can take place in waveguides with, in
addition to GVD, third-order dispersion, while cascaded processes require third and fourth-order
dispersion. Equation (1) must then be extended, in which case it is called generalized NLSE
(GNLSE),

∂z Ã(z, ω − ω0) = i βp (ω) Ã(z, ω − ω0) + iγ0F
−1
ω0

[
|A(z, t) |2 A(z, t)

]
, (6)

where βp (ω) = β(ω)− β1(ω−ω0)− β0 =
∑

k=2 βk (ω−ω0)k/k!, with βk = dk β/dωk |ω0 [1,38].
The evolution of the generalized lengths is assumed to be ruled by SPM and GVD and the

most important effect of HOD is to favor specific FWM processes in the second stage. In this
section we pursue to determine the HOD, and therefore the waveguide dispersion curve, that
induces DW emission at targeted frequencies to further enhance the pulse spectral broadening in
the second propagation stage. Consequently, at this point, the FWM processes to be exploited
must be selected a priori to derive the HOD.



Fig. 3. Direct DW emission in (a) the normal regime and (b) the anomalous regime.
Cascaded DW emission in (c) the normal regime and (d) the anomalous regime. HOD has
been calculated according to the analytical results in Table 2 using δωSPM = δωol and
| β2 | = 1 ps2m−1, γ0 = 4 W−1m−1, T0 = 0.5 ps and ν0 corresponding to 1550 nm. The
position of the resonances are successfully predicted in our framework in all these cases.
The propagations have been stopped at the distances ξ, where the resonances achieve their
maximum power levels while additional processes not included in our model have not
impacted the dynamics yet. Yellow dashed arrows represent the spectral broadening relying
on SPM and green solid arrows indicate the FWM processes that have been considered. The
dispersion profiles, including arrows to indicate the pumping frequency, have been added as
insets.

First, we address direct DW emission in the normal dispersion regime. Among the two ranges
of frequencies that get closer in the time domain due to the GVD [e.g., the frequency range present
in the trailing pulse edge (ω0 , ω

+
SPM)], the FWM process 2ω+

SPM → ω0+ωDW withω+
SPM as pump

and ω0 as signal [see Fig.2(a)] is more favorable in terms of power [see Fig. 2(a), P(t1) � P(t2)]
than the reciprocal process where ω0 acts as pump wave and ω+

SPM as signal wave. Consequently,
new frequency generation is expected to be more pronounced through the former channel. [The
same considerations can be applied to the range (ω−SPM , ω0) and the process 2ω−SPM → ω0+ωDW.]
In addition, it can provide the highest (lowest) new frequency. If phase matching is imposed
in this process, then β(ωDW) + β(ω0) − 2β(ω+

SPM) = β2(ω+
SPM)[δωSPM]2 = 0 (the nonlinear

phase mismatch is assumed to be negligible) when dispersion up to the third-order (β3) is
considered [38]. As a result, the phase matching condition can be rewritten as β3 = −β2/δωSPM,
as we already reported in [23]. Note that the FWM pump frequency,ω+

SPM (orω−SPM), corresponds,
in this case, to the ZDF, in line with previous experimental works where spectral peaks were
observed when using input pump pulses at normal dispersion regime [26, 42]. Interestingly, this
condition also leads to a group-velocity matching between the signal and idler waves involved
in this FWM process, β1(ω0) = β1(ωDW). Therefore, in this case, both phase matching and
group-velocity matching can be attained simultaneously by means of just one additional degree of



freedom, namely, that related to β3. If group-velocity dispersion allows space-time overlapping as
described above and phase matching permits gain in the nonlinear FWM process, group-velocity
matching becomes important to sustain the intrapulse frequency conversion [24, 42]. In Fig. 3(a),
we show the numerical solutions of Eq. (6) for the system described in Fig. 1(a) with β3 given by
the corresponding expression collected in Table 2 and δωSPM = δωol (see Table 1). An excellent
agreement is observed between the idler wave frequency produced through the above mentioned
FWM process, νth

DW, and the frequency of the spectral resonance appearing in the numerical
simulation.

Second, we study direct DW emission in the anomalous dispersion regime, where GVD
induces frequency overlapping between the frequencies (ω−SPM , ω

+
SPM) because β2 < 0. In this

case, we focus on 2ω+
SPM → ω−SPM + ωDW [or 2ω−SPM → ω+

SPM + ωDW]. The phase matching
requirement corresponds to β(ωDW) + β(ω−SPM) − 2β(ω+

SPM) = β2(ω+
SPM)[2δωSPM]2 = 0, and

again it leads to β3 = −β2/δωSPM and to group-velocity matching between waves that take part
in this process, β1(ω−SPM) = β1(ωDW). Analogously to the direct DW emission in the normal
dispersion regime, the FWM pump frequency corresponds to the ZDF, similarly to [24].

When comparing the idler frequency analytically determined, indicated by νth
DW, with the

spectral resonance obtained numerically in Fig. 3(b), we again observe a good agreement.
Next we study some cascaded scenarios keeping in mind the idea of maximizing the spectral

broadening. It is known that a cascade can be induced through nonresonant intermediate processes
[27]. In the normal dispersion regime, we aim to get 2ω+

SPM → ω0 + ωi (ωi is not necessarily
resonant), and subsequently 2ωi → ω0 + ωCDW. Therefore, if only phase matching and group-
velocity matching on the last process of our cascade, 2ωi → ω0+ωCDW, is considered, β(ωCDW)+
β(ω0)−2β(ωi) = β2(ωi)[2δωSPM]2 + (1/12) β4[2δωSPM]4 = 0 [38] and β1(ω0) = β1(ωi). Note
that, in this case, the group-velocity matching involves the pump and signal waves of the second
process of the cascade. These conditions lead to β3 = −5β2/3δωSPM and β4 = β2/δω

2
SPM. We

want to exploit this process with as few requirements as possible. As such, a GNLSE with one
additional degree of freedom, that linked to β4, is used. The numerical output spectrum plotted
in Fig. 3(c) shows a resonance in line with the theoretical position of the cascaded DW, νth

CDW.
The cascade studied in the anomalous dispersion regime includes the following processes:

2ω+
SPM → ω−SPM + ωi and 2ω−SPM → ωi + ωCDW. Similarly to the previous case, we im-

pose β(ωCDW) + β(ωi) − 2β(ω−SPM) = β2(ω−SPM)[4δωSPM]2 + (1/12) β4[4δωSPM]4 = 0 and
β1(ω−SPM) = β1(ωi). In this case, we derive β3 = −2β2/9δωSPM and β4 = −2β2/3δω2

SPM.
The numerically simulated resonance observed in Fig. 3(d) again corresponds well with the
theoretical νth

CDW. This agreement in several and notably different scenarios strongly supports our
approach as a valid tool to address SC generation relying on SPM and DW emission.

Note that the HOD used here served to stimulate a resonance at ωCDW and a spectral peak has
appeared there according to our theory. Nevertheless, other resonant processes can also occur; in
fact, an additional resonance is excited in this scenario, contributing to the spectral broadening.
From this point of view, the above results indicate that the expressions in Table 2 (including the
information provided by Table 1) represent sufficient conditions to efficiently induce DWs. Note
that, regarding design tasks, this is the most useful information. Furthermore, the analysis of
phase and group-velocity matching, i.e., the conditions leading to the results in Table 2, can also
improve the understanding of any DW emission. To illustrate this, the following section will be
devoted to the analysis of all the spectral resonances appearing in the numerically calculated
spectra in actual waveguides. That strategy is also valid to interpret the high- frequency resonance
in Fig. 3(d).

It is worth remarking that, in the anomalous dispersion regime, DW formation is often
interpreted based on the coupling between a soliton and linear waves [2, 14, 15, 19]. This high-
level theory assumes an ansatz to Eq. (6) that consists of two parts: a solution to Eq. (1) that
belongs to the family of fundamental solitons and a small-amplitude linear wave [2, 4, 13, 38].



After neglecting the nonlinear coupling terms in the resulting equation as indicated in [4, 13],
the following phase matching condition is derived, β(ωDW) = β0 + β1(ωDW − ω0) (in case one
neglects the nonlinear contribution to the soliton wavenumber). Interestingly, our framework can
explain this ansatz because the distance at which L−1

NL attains its first maximum is related to the
distance where the pulse chirp becomes zero. As a result, a generalized fundamental soliton can
be identified around this distance (the self-compression point) due to its straight-line dispersion
curve. Moreover, our approach also identifies FWM (low-level) processes capable of emitting
DWs and conditions allowing efficient radiation. (Note that we do not impose group-velocity
matching between the soliton and the DW, but it affects waves involved in the FWM process that
is selected.)

We would like to stress that the new physical insights obtained from our approach also pave
the way to an inverse nonlinear engineering. The procedure hereto can be outlined in three
steps. In the first one, the inverse nonlinear design step, the results above can be used to obtain
the optimal dispersive features of a waveguide exhibiting a given nonlinear response: From the
available input pulse (pulse shape, N and center wavelength), Table 1 and Table 2 determine the
dispersion curves and the characteristic distances associated to several possible scenarios. The
desired output spectral bandwidth, the features of the available pump source, and the degrees of
freedom for the waveguide design will determine the most convenient scenario to be selected. In
the second step, the inverse linear design step, a waveguide cross-section is obtained from the
target dispersion curve defined in the previous step [45]. Finally, once a suitable waveguide is
found, and β(ω) and γ(ω) have been calculated, the GNLSE, including higher-order effects, is
numerically solved in order to check the output spectrum of the realistic waveguide design [23].

Most of the times, the target dispersion could not be exactly realized with realistic waveguide
cross-sections. For example, the waveguide thickness is often constrained in photonic fabrication
foundries. Then dispersion control is restricted to the optimization of a few number of parameters
(e.g., the waveguide width [43]) and consequently, dispersion engineering is limited. Even in
these cases, Table 1 and Table 2 provide valuable information since it sets a target that should be
realized as closely as possible with the dispersion engineering possibilities at hand. What is more,
our framework can also be helpful to understand the origin of spectral resonances produced in a
waveguide that does not feature exactly the HOD presented in Table 2. To illustrate the latter,
we apply our framework to concrete SC examples based on waveguides that have been already
fabricated.

4. Supercontinuum relying on generalized wave-breaking: case studies

Designing a new octave-spanning SC source in a 220 nm-thick silicon waveguide
pumped at 1550 nm

As a first case study, we use our framework for designing a SC source based on a SOI strip
waveguide with a fixed thickness of 220 nm, in line with the fabrication rules of multi-project
wafer runs of photonic foundries [46]. From the dispersion profile in [47] for such a foundry-
compatible (i.e., 220 nm-thick) SOI waveguide with a width of 900 nm, we can derive that the
type of scenario corresponding to Fig. 3(c) could be feasible in that waveguide [see inset in Fig.
4(a)]. Guided by Table 1, we consider 50 fs-long sech pump pulses with 150 W of peak power
at 1550 nm. Figure 4(a) shows the octave-spanning output spectrum after propagation through
this waveguide along 2 mm. The solid blue curve is the simulated spectrum taking into account
linear losses of 2 dB cm−1 [43], two-photon absorption (TPA), the dispersion of the nonlinear
coefficient [23, 48, 49], free-carrier-related effects and SRS [43] and the spectrum without these
higher-order effects but with an effective nonlinear coefficient [23] is indicated by the green
dashed curve. Common features between Fig. 4(a) and Fig. 3(c) become apparent. Consequently,
we analyze the output spectrum in Fig. 4(a) keeping in mind the dynamics corresponding to
Fig. 3(c).



Table 2. Four different scenarios for SC relying on direct and cascaded DW. The optimal
HOD parameters that induces group-velocity matching and phase matching for those FWM
and the spectral broadening produced through each mechanism (ωDW or ωCDW) are also
included. δωSPM can be estimated by δωol in Table 1.

sign(β2) Favored FWM processes β3 β4 ωDW|CDW − ω0 Example

1 2ω+
SPM → ω0 + ωDW −

β2

δωSPM
0 2 δωSPM Fig. 3(a)

1
{

2ω+
SPM → ω0 + ωi

2ωi → ω0 + ωCDW
−

5
3

β2

δωSPM

β2

δω2
SPM

4 δωSPM Fig. 3(c)

−1 2ω+
SPM → ω−SPM + ωDW −

β2

δωSPM
0 3 δωSPM Fig. 3(b)

−1
{

2ω+
SPM → ω−SPM + ωi

2ω−SPM → ωi + ωCDW
−

2
9

β2

δωSPM
−

2
3

β2

δω2
SPM

−5 δωSPM Fig. 3(d)

The inverse generalized lengths, L−1
NL and L−1

D , in Fig. 4(b) evolve similarly as in Fig. 1(a).
They also provides valuable information about propagation distances of interest. In the first
stage (z < zGWB), SPM broadens the spectrum. The analysis of the relative group velocity,
β1(ω) − β1(ω0), in Fig. 4(c) allows identifying which frequencies generated through SPM in
the first stage could overlap due to their GVD in the second stage (z > zGWB). In this case,
red-shifted frequencies, ω < ω0 with β1(ω) < β1(ω0) (indicated in the green background),
tend to approach ω0 in the leading pulse edge [see also Fig. 2(a)]. Among the FWM processes
favored by the frequency-dispersion-induced overlapping, those allowed by energy conservation
and phase matching [see Fig. 4(d)] can extend the spectral broadening initiated by SPM. Note
that the spectrum spans an octave through this mechanism also in the realistic simulation that
includes all effects in the silicon waveguide [see solid blue line in Fig. 4(a)].

Moreover, based on Section 3, spectral resonances arise if both phase matching and group-
velocity matching are fulfilled. Phase matching can be evaluated through the linear phase
mismatch, ∆β = β(ωi ) + β(ωs ) − 2β(ωp ), of the degenerate FWM processes that can take
place, 2ωp → ωs + ωi . Unlike the group-velocity matching, the phase-matching condition
depends on linear and nonlinear contributions. Although the linear phase mismatch can be readily
evaluated, the nonlinear term would require details of the pulse due to its dynamical nature. For
these reasons, we choose to restrict our study to ∆β, while keeping in mind an uncertainty related
to the nonlinear mismatch. This analysis is done in Fig. 4(d). In addition, the solid green line that
intersects with “S” in this figure relates the pump and signal waves involved in processes with
group-velocity matching between pump and signal waves. Accordingly, the spectral resonance
ωCDW can be interpreted as the idler of a FWM process involving the pump and signal waves
depicted as “P” and “S”, respectively. This is in agreement with our analysis in Fig. 3(c).

It is worth reminding that group-velocity and phase matching are conditions allowing efficient
FWM. Notwithstanding, new frequency generation can also take place if these requirements are
not fulfilled provided pump and signal waves can interact. These processes, besides broadening
the spectrum, can also feed other FWM interactions, the second step in cascaded processes [e.g.,
2ωi → ω0 + ωCDW in Fig. 3(c) and Table 2]. Indeed, these processes can contribute to the pump
wave “P” production according to Fig. 4(d). Of course, higher-order effects, e.g., nonlinear losses,
can affect these processes. The comparison between the green dashed and blue solid lines in
Fig. 4(a) indicates the position of ωCDW is not altered, but its efficiency is reduced (as expected



Fig. 4. (a) Output spectra simulated through Eq. (6) including higher order effects (blue
solid curve) and without them (green dashed line). (b) Evolution of the generalized lengths
[cf. Fig. 1(a)]. (c) Plot of the relative β1, i.e., the inverse of the group velocity. The green
window includes the frequencies that can overlap in the leading pulse edge. A and N indicate
anomalous and normal dispersion, respectively. (d) Linear phase mismatch (only negative
values are represented). The green solid curve points out processes with group-velocity
matching (see details in the text).

due to TPA) and new resonant processes become more efficient (see the spectral peak around
140 THz).

This example shows the (nearly unexplored) potential of pumping in the normal dispersion
regime to produce broadband light in silicon waveguides compared to previous approaches pump-
ing in the anomalous dispersion regime [20, 43, 50]. It can represent an important breakthrough
towards the experimental demonstration of an octave-spanning SC spectrum in silicon pumping
in the short-wavelength infrared since, according to our knowledge, it has only been achieved in
SOI waveguides pumping beyond 2.2 µm, i.e., above the TPA threshold of silicon [44].

Analyzing SC results in literature

As a second example of how to use our framework in practice, we analyze the dynamics of the
experimental SC reported recently in [21]. There a silicon nitride waveguide was used, pumped
in the anomalous dispersion regime with 92 fs-long Gaussian pulses with 260 W of peak power at
1030 nm. In Fig. 5(a), we show the spectra at different distances, including the output spectrum
corresponding to Fig. 2 of [21]. We numerically calculate the evolution of the generalized lengths
for this system and plot the result in Fig. 5(b). The behavior of the generalized lengths resembles
that in Fig. 1(b) and the total waveguide length (zWG = 8 mm) is slightly beyond the distance
where L−1

NL attains its first maximum. Whereas the generalized lengths in Fig. 5(b) and Fig. 1(b)
are similar, the features of the spectrum in Fig. 5(a) strongly suggest that it is related to the



Fig. 5. (a) Output spectra at several distances between zGWB and the total length of the
waveguide, zWG, according to [21]. (b) Evolution of the generalized lengths [cf. Fig. 1(b)].
(c) Plot of the relative β1, i.e., the inverse of the group velocity. The green window includes
the frequencies that can overlap. A and N indicate anomalous and normal dispersion,
respectively. (d) Linear phase mismatch. The green solid curve points out the processes with
group-velocity matching (see details in the text).

scenario represented in Fig. 3(d) with cascaded DW emission. In Fig. 5(c), we highlight the range
of frequencies that could overlap due to GVD by means of a green background. SPM generates
blue-shifted frequencies (ω > ω0) at positive times and red-shifted frequencies (ω < ω0) at
negative times around the pulse center. As a result, blue-shifted frequencies that move faster,
β1(ω) < β1(ω0), and red-shifted frequencies that move more slowly, β1(ω) > β1(ω0), will tend
to get closer to each other [see Fig. 2(b)]. Among the potential interactions, those with suitable
phase matching and group-velocity matching conditions will generate new frequencies more
efficiently. Analogously to the first case studied in this section, FWM processes that satisfy both
conditions [see Figs. 5(c) and 5(d)] yield spectral resonances observed in Fig. 5(a) for the green
solid curve corresponding to a propagation distance of 7.5 mm ( i.e., the distance where L−1

NL
attains its first maximum). This physical explanation for the observed spectral resonances has
not been presented before and provides new insights in the SC dynamics.

If the pulse propagates longer distances [see spectrum depicted by the blue dotted curve in
Fig. 5(a)], additional processes can also take place, including the blue-shift in the resonance
around 400 THz [19] and soliton fission. Since conservation of the initial pulse train structure is
important for several practical applications, we have focused in this paper on spectral broadening
mechanisms before pulse splitting [33]. Finally, we point out that, in addition to the cases studied
here, we have verified that our framework also allows analyzing a wide panoply of other results
reported in the literature [15, 19, 22, 23, 26, 42, 43].



5. Conclusions

Supercontinuum generation in integrated waveguides can be well-described by considering the
third-order polarization that takes into account four-wave mixing, i.e., ω1 + ω2 → ω3 + ω4, and
the frequency dispersion in the time domain. Therefore, any spectral change has to be related
to these fundamental processes. Although dealing with complex nonlinear dynamics requires
complete mathematical solutions of the nonlinear propagation equation — a high-level concept
—, dominant four-wave mixing processes — low-level concepts — leading to dispersive wave
emission, i.e., spectral resonances, are identified in this work. Based on an analytically-solvable
differential equation for the length scales where the nonlinearities and dispersion act at each
propagation distance, we deconstruct the nonlinear pulse evolution and derive accurate analytical
expressions for the high-order dispersion coefficients and the position of spectral resonances in
several scenarios. Since low-level approaches does not make substantial differences between
anomalous and normal dispersion regimes, our framework provides a unified description of
dispersive wave emission in both normal and anomalous dispersion cases. The tables in the text
compile the most important results.

Our tools are useful for nonlinear inverse engineering by setting a target dispersion curve
providing the desired nonlinear response. Indeed, in this work we have designed the first
octave-spanning supercontinuum source based on a foundry-compatible (220-nm-thick) silicon-
on-insulator strip waveguide pumped at 1550 nm in the normal dispersion regime. In addition, our
framework provides new physical insights about several reported experimental supercontinuum
spectra in silicon and silicon nitride waveguides as well as optical fibers [15,19,21–23,26,42,43].
We believe our work strongly contributes to an in-depth comprehension, with an apparent
practical purpose, of mechanisms to produce broadband light not relying on pulse splitting.
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Appendix

In this appendix we draw the most important steps in the derivation of Eq. (4), Eq. (5) and the
results included in Table 1. Let us consider the following properties for the generalized lengths
that follow directly from Eq. (1) [36],

L−1
NL(z) + L−1

D (z) = L−1
NL(0) + L−1

D (0), (7)

d
dz
L−1

NL(z) = −β2γ0

∫ ∞
−∞

dt ∂tϕ(z, t)∂t |A(z, t) |2 |A(z, t) |2∫ ∞
−∞

dt |A(z, t) |2
, (8)

where ϕ is the phase of the complex envelope A. Let us consider that SPM initially governs
the spectral broadening since L−1

NL(0) � L−1
D (0). As a result, the chirp induced by GVD can

be neglected at this stage and the most important effect of GVD is to broaden or compress
the pulse in time. Based on these reasons, we assume |A(z, t) |2 = a(z) |A(0, a(z)t) |2 and
ϕ = b(z)γ0 |A(0, a(z)t) |2. Consequently, we neglect any pulse reshaping, similarly to the moment
method [51], to evaluate the evolution of L−1

NL(z). However, unlike those methods, we are not
looking for a detailed description of the pulse, but of L−1

NL(z). As a result, the approximation
made is expected to be suitable even if the pulse is significantly distorted (e.g., wave-breaking



regime). If these ansatz are introduced in the equations above and after performing some algebra,
we derive the following equations:

σ2 a2 (γ0P0b)2 = s2 N2 (1 − a), (9)
da
dξ

= −2 s2 σ2 (γ0P0b) a3 , (10)

where σ2 =
∫ ∞
−∞

dτ (∂τU)2U/
∫ ∞
−∞

dτ U2, U being the peak normalized input pulse power
[|A(0, t) |2 = P0U (t/T0), where P0 is the peak power and T0 the duration of the input pulse],
τ = t/T0, and N , s2 and ξ have been defined in Section 2. If Eq. (9) is substituted in Eq. (10),
then the next equation is derived:

da
dξ

= −2 s2 N a2 (s2 σ2 [1 − a])1/2 , (11)

that corresponds to Eq. (4) since L−1
NL(z) = a(z)L−1

NL(0). This equation is trivially solved and
provides the generalized wave-breaking distance, ξGWB [see Eq. (5) and Table 1].

Now we derive the spectral broadening induced by SPM. The maximum instantaneous fre-
quency generated through SPM can be evaluated as δωmax = max(−∂tϕ) = −a(γ0P0b)ΥT−1

0 ,
where Υ= max[∂τU]. According to Eq. (9),

δωmax(ξ) = σ−1/2
2 N ( s2[1 − a(ξ)])1/2

ΥT−1
0 (12)

is obtained. Note that if δωmax is evaluated at ξGWB, then δωGWB included in Table 1 is recovered.
Beyond ξGWB, the contribution of the GVD to the phase cannot be neglected (see Section 2).

However, to calculate the values of β3 and β4 that induce DW emission, we need some esti-
mates for ξ > ξGWB. Following our reasoning in Section 2, we assume that the pulse at ξGWB

can be described by a chirped Gaussian pulse, AG(ξGWB , t) = exp
(
−(1 + iC)a2

GWBt2/2 T2
0

)
,

where aGWB = a(ξGWB). If we impose L−1
D (ξGWB) = s2L

−1
NL(0)/2 for such ansatz, then

C = N/aGWB
√

2σ̃2, regardless of s2, where σ̃2 =
∫ ∞
−∞

dτ τ2 |AG |
2/

∫ ∞
−∞

dτ |AG |
4. The linear

evolution of AG beyond ξGWB (using the results in [38]) can capture the most relevant dispersive
features of the pulse propagation in this second stage.

When s2 = −1 (anomalous dispersion), Ref. [38] provides directly aol = (1 + C2)1/2aGWB,
where aol = a(ξol) is related to the pulse duration at the maximum compression distance, ξol. In
addition, if we still use Eq. (12) for ξol > ξGWB, then we can obtain δωol appearing in Table 1.

On the opposite case, when s2 = 1 (normal dispersion), we can also estimate the dispersive
contribution to the chirp at the overlapping distance, δωD,ol, attending to [38], which provides
directly δωD,ol = aolξol(1+C2)(ξol− ξGWB)T−1

0 /
√

2. Unlike the anomalous dispersion regime, it
requires the knowledge of ξol, which can be estimated through Eq. (11). Finally, if the definition
aol = 1/4 considered in this paper is used, then ξol and δωol can be determined (see Table 1).
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