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Abstract 

A novel process consisted of an anaerobic bioscrubber was studied at the field scale for 

the removal of volatile organic compounds (VOCs) emitted from a printing press 

facility. The pilot unit worked under high fluctuating waste gas emissions containing 

ethanol, ethyl acetate, and 1-ethoxy-2-propanol as main pollutants, with airflows 

ranging between 184 and 1253 m3 h-1 and an average concentration of 1126 ± 470 mg-C 

Nm-3. Three scrubber configurations (cross-flow and vertical-flow packings and spray 

tower) were tested, and cross-flow packing was found to be the best one. For this 

packing, daily average values of VOC removal efficiency ranged between 83% and 

93% for liquid to air volume ratios between 3.5·10-3 and 9.1·10-3. Biomass growth was 

prevented by periodical chemical cleaning; the average pressure drop was 165 Pa m-1. 

Rapid initiation of anaerobic degradation was achieved by using granular sludge from a 

brewery wastewater treatment plant. Despite the intermittent and fluctuating organic 

load, the expanded granular sludge bed reactor showed an excellent level of 

performance, reaching removal efficiencies of 93±5% at 25.1±3.2ºC, with biogas 

methane content of 94±3% in volume. Volatile fatty acid concentration was as low as 

200 mg acetic acid L-1 by treating daily average organic loads up to 3.0 kg COD h-1, 

equivalent to 24 kg COD m–3 bed d–1. The denaturing gradient gel electrophoresis 

(DGGE) results revealed the initial shift of the domains Archaea and Bacteria associated 

with the limitation of the carbon source to a few organic solvents. The Archaea domain 

was more sensitive, resulting in a drop of the Shannon index from 1.07 to 0.41 in the 

first 123 days. Among Archaea, the predominance of Methanosaeta persisted 

throughout the experimental period. The increase in the proportion of Methanospirillum 

and Methanobacterium sp. was linked to the spontaneous variations of operating 
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temperature and load, respectively. Among Bacteria, high levels of ethanol degraders 

(Geobacter and Pelobacter sp.) were observed during the trial.  
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1. Introduction 

The flexographic sector represents 17% of the European printing sector, 

contributing around 1.7% of the total turnover in 2003 (Ernst & Young, 2007). The 

consumed solvents are mainly oxygenated compounds, such as ethanol, ethyl acetate, 1-

propanol, 2-propanol, 1-methoxy-2-propanol, n-propyl acetate, 1-methoxy-2-propyl 

acetate, acetone, and 1-butanol (Granström et al., 2002). Flexographic air emissions are 

characterized by high flow rates and low volatile organic compound (VOC) 

concentrations (Sempere et al., 2012), with temperatures ranging from 40 to 70°C and 

relative humidity varying from 5 to 15% (Rothenbuhler et al., 1995). According to the 

European Directive on Industrial Emissions (Council Directive 2010/75/EC), these air 

emissions must be controlled.  

Biotreatments represent well-developed air pollution control techniques for 

removing VOCs in these conditions (Deshusses, 1997). Among biotreatments, 

bioscrubbers can handle higher gas loads than biotrickling filters and biofilters, and 

their capacity is up to 3000–4000 m3 m-2 h-1 (Kennes et al., 2009). However, there are 

few available studies on aerobic bioscrubbers. Le Cloriec et al. (2001) reported removal 

efficiencies of 90.1–100% in a laboratory-scale bioscrubber, with liquid to air ratios 

ranging between 0.6·10-3 and 2·10-3, and with ethanol concentration in waste gas from 

18.8 to 291.7 mg-C m-3. Granström et al. (2002) investigated an onsite pilot-scale 

system for the treatment of waste gas from printing processes. In this study, the major 

VOC of the waste air was ethanol, with smaller amounts of ethyl acetate, 1-propanol, 2-

propanol, 1 methoxy-2-propanol, and 3-ethoxy-1-propanol. The flow of the waste gases 

varied from 1.68 to 3.73 m3 h-1, with 99.6% VOC removal efficiency, excluding 

evaporation losses. Nevertheless, aerobic bioscrubbers are still not widespread within 
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the biotreatment market due to the high energy consumption of aerobic bioreactors. In 

contrast, anaerobic bioscrubber could be an alternative for recycling waste gases into 

bioenergy, thereby resulting in a positive net energy balance. 

To the best of our knowledge, no previous literature exists on the use of anaerobic 

bioscrubbers for the treatment of VOC waste gases, although the anaerobic degradation 

of solvents, such as alcohols (Eichler and Schink, 1985; Widdel, 1986; Zellner and 

Winter, 1987) or esters (Oktem et al., 2008; Yanti et al., 2014) is well documented. 

Recently, Lafita et al. (2015) demonstrated that anaerobic degradation of glycol ethers is 

feasible by reporting the treatment of synthetic packaging wastewater, which contains a 

mixture of ethanol and 1-methoxy-2-propanol in a mass ratio of 4:1. These authors 

achieved removal efficiencies of up to 94% at 18ºC and 97% at 25ºC in an expanded 

granular sludge bed (EGSB) reactor, with organic loading rates of methoxy-2-propanol 

of 6.4 and 9.3 kg COD m-3 d-1, respectively. 

The anaerobic degradation of organic solvents in granular sludge reactors relies on 

the microbial population developed in the anaerobic granules, which should in turn 

maintain its physical integrity. Leclerc et al. (2004) studied the microbial populations of 

44 anaerobic digesters treating effluents from several sectors. These authors indicated 

that the occurrence and prevalence of the different species are influenced by the running 

and environmental conditions. Anaerobic granulated sludge coming from breweries is a 

common source of biomass for other industrial sectors. In this sense, the study of the 

evolution of the microbial population is an interesting tool to investigate the effect that a 

change in the substrate composition could have on the feasibility and robustness of the 

anaerobic degradation of solvents.  

The characterization of microbial populations can be carried out using molecular 

biology tools, such as denaturing gradient gel electrophoresis (DGGE). This is based on 
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the electrophoretic separation of polymerase chain reaction (PCR) products of the same 

length, but with different sequences, on a linear denaturing gradient polyacrylamide gel 

(Muyzer and Ramsing, 1995). DGGE has been applied to evaluate the microbial 

diversity of anaerobic reactors, such as an upflow anaerobic sludge blanket (UASB) 

reactor treating brewery wastewater; this study showed that the dominant archaeal 

bands were closely related to Methanosaeta and Methanobacterium (Chan et al., 2001). 

The DGGE technique has also shown that the microbial population of a UASB treating 

wastewater from an unbleached pulp plant persisted throughout the experimental period 

(Buzzini et al., 2006). DGGE studies can also demonstrate the importance of 

environmental conditions in the diversity of microbial populations; for example, LaPara 

et al. (2000) indicated that a thermophilic reactor showed less biodiversity than a 

mesophilic one by treating wastewater from a pharmaceutical facility.  

The present study provides the first successful example of an on-site pilot plant of 

anaerobic bioscrubbers controlling VOC emissions from a flexographic printing facility 

(Waalkens et al., 2015). The purposes of our work were as follows: (1) to evaluate the 

best scrubber configuration to achieve high VOC removal efficiencies, and at same 

time, control pressure drop; (2) to determine the maximum organic load that the EGSB 

can handle under intermittent and variable waste gas emissions; and (3) to study the 

dynamics of the microbial community of the EGSB reactor inoculated with granular 

sludge from a brewery anaerobic reactor using the DGGE technique.  
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2. Material and methods 

2.1 Anaerobic bioscrubber setup  

The pilot plant was provided by Pure Air Solutions (Heerenveen, The Netherlands) 

and was operated on-site in Altacel Transparant Verpakkingsind (Weesp, The 

Netherlands) by treating a fraction of its air emissions. The flexographic site operates on 

a two-shift (16 h) basis from Monday to Friday and on a one-shift (8 h) basis on 

Saturday. The pilot plant comprises a variable-speed fan with a maximum flow of 1500 

m3 h-1, as well as several centrifugal pumps. The two main units were the scrubber and 

the anaerobic reactor (see Graphical Abstract). The scrubber unit had a total height of 

3.06 m and a diameter of 0.5 m. The available height for the packing material was 2.0 

m. The scrubber unit was assembled onto a bottom tank of 2 m3 in volume. The 

anaerobic reactor had a total height of 5.08 m and diameter of 1.59 m, with an effective 

water volume of 8.7 m3. Two intermediate tanks completed the setup; resulting in 16 m3 

of total effective water volume. 

The scrubber was operated in the countercurrent mode during the working hours of 

the facility; VOC-polluted air coming from the factory was introduced to the bottom by 

the blower, and the water was sprayed from the top and collected in the bottom tank. 

From there, it flowed to an intermediate tank for supplementation with macronutrients 

(N, P, S, K) and sodium carbonate for pH control prior to pumping it to the anaerobic 

reactor for solvent degradation. Ca, Mg, trace metals (B, Co, Cu, Fe, Mn, Mo, Ni, Se, 

Zn), and yeast extract were discontinuously supplemented. The anaerobic reactor 

consisted of an EGSB operated at 3 h of hydraulic residence time. The EGSB was filled 

with granular sludge from an internal circulation (IC) reactor treating brewery 

wastewater (Heineken, The Netherlands) without further acclimation to simulate 
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operational protocols at the industrial scale. The expansion of the granular bed to 3 m3 

was achieved by mixing the influent water with 50% of the effluent of the reactor; the 

upflow velocity was kept constant at 3 m h-1. The pilot unit worked in water-closed 

recirculation, with <10% daily water renewal. The daily purge was done overnight 

when no biogas production occurred. The plant setup was equipped with a 

programmable logic controller (PLC) with Twinsoft software (Servelec Technologies, 

United Kingdom) to monitor and control the parameters, such as the air and liquid 

flowrates, water and air temperatures, pH, conductivity, and water level in the tanks.  

A flame ionization detector (FID) analyzer (model RS 53-T, Ratfisch 

Analysensysteme, Germany) continuously monitored the VOC concentration in the inlet 

and outlet of the gas phase. The composition of the inlet and outlet gases was measured 

by carbon sorbent tubes and post Gas Chromatography analysis. Biogas production was 

continuously measured by a gas meter (Bellows-BG 4 Gasmeters, Ritter, Germany), and 

its composition was determined by a dual-wavelength optical infrared analyzer 

(Combimass GA-m, Binder, Germany). The main parameters of the liquid phase were 

monitored twice a week with photometric commercial kits as follows: chemical oxygen 

demand (COD); volatile fatty acids (VFAs); nutrients (N-NH4
+ and P-PO4

3) with LCK 

014, LCK 365, LCK 303, and LCK 348 kits from HACH Lange GmbH (Germany); and 

alkalinity with a titrimetric kit (MColortestTM, Merck Millipore, Germany).  

The pilot unit was operated for 484 days. The experimentation was divided into five 

stages characterized by a change in the scrubber configuration with the aim to evaluate 

the best one in terms of VOC removal. Table 1 summarizes the main operational 

conditions. Two packing materials were used, as follows: a cross-flow packing material, 

Packing A, with a 150 m2 m-3 specific surface area (cross-fluted flow fills, KFP 

319/619, GEA, Germany); and a vertical-flow packing material, Packing B, with 125 
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m2 m-3 specific surface area (vertical-flow fills, KVP 323/623, GEA, Germany). The 

scrubber unit was also tested as a spray column, removing the packing material and 

installing three nozzles (MP156N 60º, BETE, USA) spaced 55 cm apart. Packing 

material A was used in stages 1 and 5; packing material B was used in stages 2 and 4; 

and the spray column was tested in stage 3. Several liquid to air volume ratios in the 

range of 1.9·10–3–10.1·10–3 were tested with the aim of minimizing the recirculated 

water flow to the anaerobic reactor. The organic load (OL) to the anaerobic reactor was 

set by the operation of the scrubber. Six biomass samples were taken from a port 

located 1.05 m from the bottom of the EGSB. Sampling events are shown in Table 1. 

<< Table 1 >> 

2.2 Microbial community analysis 

DNA from each sample was extracted with a Power Soil Isolation Kit (Mo Bio 

Laboratories, USA) using the supplier’s protocol. DNA concentration and purity were 

measured using NanoDrop® (Thermo Scientific, USA). Extracted DNA was stored at –

20°C for the analysis. To amplify 16S rDNA, two universal primer sets were used, as 

follows: F357-GC and R518 for bacterial 16S and F787-GC and R1059 for archaeal 

16S. The PCR amplification was conducted according to the following protocol: 20 

cycles of 94°C for 1 min, 65°C for 1 min, 72°C for 0.5 min, 10 cycles of 94°C for 1 

min, 55°C for 1 min, 72°C for 0.5 min, and a final extension at 72°C for 10 min. After 

amplification, the PCR products were electrophoresed in 0.5% (w/v) agarose gel to 

evaluate the extent of amplification. The PCR product generated from each sample was 

separated on an 8% acrylamide gel with a linear denaturant gradient increasing from 

20% to 35% using the KuroGel Verti 2020 DGGE System (VWR International Eurolab, 

Spain). DGGE was performed using 20 μl of PCR product in 1× Tris-acetate-EDTA 
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buffer at 60 °C with a sequence of 50 V for 5 min, 150 V for 120 min, and 200 V for 60 

min. The DGGE gels were visualized in the MiniBIS Pro System (DNR Bio-Imaging 

System Ltd., Spain). Predominant bands were excised and resuspended in 30 μl of 

sterilized Mili-Q water, and then bands were stored at 4°C, allowing DNA to migrate to 

the liquid. The eluted DNA was reamplified by PCR with the same conditions as the 

previous PCR to the DGGE. The PCR product was purified with a High Pure PCR 

Product Purification Kit (Roche, Spain). Successfully reamplified and purified PCR 

products were sequenced by using an automated DNA analyzer (3730 KL DNA 

Analyzer, Applied Biosystems, Spain). Sequences were analyzed with MEGA 5.0 and 

then compared with those available from the NCBI GenBank using BLAST software. 

2.3 Granule size distribution 

The particle size distribution of biomass samples was measured to monitor the 

evolution of the granule size and to check the granule integrity by a Malvern 

Mastersizer 2000 instrument (Worcestershire, UK) with a detection range of 0.02–2000 

µm. Samples from days 0, 238, and 430 (S-0, S-3, and S-6, Table 1) were analyzed. 

3. Results and discussion 

3.1 Characterization of air emissions 

The air emissions showed a high variability associated with the number of printing 

presses in operation (see Fig. 1a: Daily average for the whole trial and Fig. 5a: 

Instantaneous pattern). Airflow ranged between 184 and 1253 m3 h-1, and the average 

daily VOC concentration was 1129 mg-C Nm–3 with a standard deviation of 460 mg-C 

Nm–3. The detected compounds in major proportions by weight were ethanol (60–65%), 
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ethyl acetate (20–25%) and ethoxy propanol (10–15%); other minor compounds were 2-

propanol (0.5–1%), 2-propyl acetate (0–0.5%), 1-propyl acetate (0–3%), 4-hydroxy-4-

methyl-2-pentanone (0.2–5%) and 1-propanol (0–2%).   

3.2 The scrubber unit  

Scrubber performance was evaluated in terms of VOC removal efficiency (REVOC). 

Results of the online monitoring of the scrubber are shown in Fig. 1a, where the daily 

average REVOC is plotted along with the daily averages of the inlet and outlet VOC 

concentrations in the gas phase. High efficiencies were reached in stage 1 with packing 

A, which was usually over 83%. A maximum REVOC of 97% was achieved on day 75, at 

the maximum tested liquid to air volume ratio (9.1·10-3), when the inlet concentration 

was 2000 mg-C Nm–3. The change to packing B (stage 2) caused a decrease in REVOC; 

the maximum value was 88% (day 129), even though a higher liquid to air ratio 

(10.1·10-3) was applied than in stage 1. The outlet emissions with packing B (stages 2 

and 4) reached values up to 516 mg-C Nm–3 (day 227), while the maximum leak in 

stage 1 was 310 mg-C Nm–3 (day 52). Regarding the removal of the main pollutants, 

ethanol and 1-ethoxy-2-propanol were almost fully removed with packing A, while with 

packing B, the removals decreased to values between 80% and 94% (higher values for 

higher tested liquid to air ratios). In both packings, ethyl acetate was removed to a lesser 

extent due to its lower water solubility.  

By testing the spray tower configuration (stage 3), REVOC dropped to values of 49–

65% with outlet concentrations higher than 135 mg-C Nm–3, even for inlet emissions as 

low as 310 mg-C Nm-3 (day 157). In this case, no effective removal of ethyl acetate was 

observed (< 60%), with moderate transfer to water of ethanol and 1-ethoxy-2-propanol 

(70–88%).  
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The achieved REVOC at the maximum liquid to air ratio (3.7·10–3) in stage 3 was 

40% lower than that obtained with packing A and 33% lower than that obtained with 

packing B at similar liquid to air volume ratio. The experimental results indicated that 

unfeasible high water flow rates would be required for the spray tower configuration to 

fulfill the compliance levels compared with the use of a packing bed. In the case of 

packing A, a drop of about 9% in REVOC was achieved in stage 5 in comparison with 

stage 1 at similar liquid to air ratios. This result was attributed to the creation of 

preferential pathways, probably due to the self-assembly of the packing on day 266. In 

stage 5, a periodical chemical cleaning of the packing material was set up, allowing the 

pressure drop to maintain at 165 Pa m-1 (average value). The long-term testing period of 

stage 5 demonstrated that it is feasible to work with the cross-flow packing material by 

avoiding the attachment and biomass growth on the packing surface.   

<<Fig. 1>> 

The average REVOC versus the applied liquid to air to ratio for packing A (stage 1) 

and packing B (stages 2 and 4) is plotted in Fig. 2. In the case of packing A, stage 5 was 

discarded due to the reinstallation problem. A positive effect of increasing the liquid to 

air ratio can be observed for both packings. In case of packing A, REVOC increased from 

83 to 93% by increasing the ratio from 3.5·10-3 to 9.1·10-3. For packing B, REVOC 

increased from 75 to 85% as the ratio increased from 3.9·10-3 to 10.1·10-3. Comparing 

both packing materials, higher removals were achieved with packing A due to the 

higher specific surface and the more complex water path, which favored the contact 

between both phases. With packing B, a liquid to air ratio higher than 6·10-3 was 

required to achieve REVOC over 80%, while this value could be reached by applying 

nearly half this ratio (3.5·10-3) in packing A. The results indicate that packing A is the 
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best alternative for industrial applications if wall biomass growth is prevented by active 

control of pressure drop. 

<< Fig. 2>> 

3.3 The EGSB reactor  

The water with the solvents was pumped to the EGSB reactor for solvent 

degradation prior to recirculation to the scrubber. The daily average OL was derived 

from the difference between the inlet and outlet VOC concentrations in the gas phase 

during production time (continuously monitored) and expressed as kg COD h-1. The 

removal efficiency of the soluble organic matter (RECOD) was calculated on a weekly 

basis from the mass balance (expressed in COD units): 

𝑅𝐸𝐶𝑂𝐷 (%) =  
𝑂𝐿𝑊−𝐴𝐶𝑈𝑀−𝑃𝑈𝑅𝐺𝐸

𝑂𝐿𝑊
 × 100,  (1) 

where OLW is the cumulative organic load applied to the EGSB during a week, ACUM 

is the intra-week accumulated solvents in water, and PURGE is the total amount of 

purged solvents during a week. ACUM and PURGE were derived from COD water 

analysis. The OL (daily average) applied to the EGSB is shown in Fig. 1b along with 

the weekly RECOD. The daily average organic load to EGSB fluctuated quite a bit due to 

modifications in the facility’s production and the performance of the scrubber, with 

values ranging from 0.37 (day 262) to 6.96 kg h-1 (day 47). Despite the organic load 

fluctuations, the weekly COD removal efficiency was maintained at very high values 

for the whole experiment, with an average value of 93±5%, verifying the anaerobic 

biodegradation of a mixture of solvents containing mainly ethanol, 1-ethyl acetate, and 

1-ethoxy-2-propanol. Methane content in the biogas was stable at 94±3% (n=18). The 

methane yield was 0.32 Nm3
CH4 kg-1 COD removed, which was close to the stoichiometric 
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value (0.35 m3
CH4 kg-1 COD removed; Grady et al., 1998). The growth yield coefficient 

derived from the methane yield resulted in 0.06 mg-VSS mg-COD-1.   

Table 2 summarizes the VFA concentration, temperature, and pH of the water 

effluent of the anaerobic reactor grouped between biomass sampling events. The 

average temperature for all intervals was in the mesophilic range, although it was below 

20ºC (psychrophilic conditions) some days during the first 330 days of operation. 

Variations were associated with air emission temperature. With the aim of preventing 

any day from being below 20ºC, a temperature control system was installed on day 334. 

VFA concentration was normally kept at values lower than 300 mg acetic acid L-1 for 

organic loads lower than 3.0 kg COD h-1, indicating a good balance between 

acidogenesis and methanogenesis, although some VFA accumulation occurred at high 

OL. The pH was chemically controlled by adding sodium carbonate, keeping the pH 

above the minimum value for optimal growth of methanogens (6.8; Leslie Grady et al., 

1998). The minimum pH values were reached on days when organic loads were high 

and VFA accumulated in water; for example, a daily average pH of 6.83 was measured 

on day 199 after 3 days running with OL higher than 3.9 kg COD h-1 and resulting in 

the maximum VFA concentration (1143 mg acetic acid·L-1).  

<<Table 2>> 

Fig. 3 shows the variation of VFA concentration with the organic load. An 

accumulation of VFA in water can be observed for an average daily OL higher than 3.0 

kg COD h-1. The accumulation of VFA indicates that the slowly growing methanogens 

cannot sufficiently and rapidly metabolize the intermediate products from VFA 

producers (acidogenic and acetogenic populations). If it continues over time, this 

imbalanced situation could result in the destabilization of the reactor. Considering the 
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biomass volume of the reactor, the design organic loading rate should be less than 24 kg 

COD m-3 bed d-1 to ensure stable removal over 94%.   

<<Fig. 3>> 

Fig. 4 shows the granule size distribution of the samples taken during the trial (S-1, 

S-3, and S-6) based on volume. A narrow range of size distribution was observed in all 

samples, showing large mean diameters (0.88 mm for S-1, 0.95 mm for S-3, and 1.03 

mm for S-6). The results demonstrated that the shift of the substrate from ethanol (S-1) 

to a mixture of ethanol, ethyl acetate, and 1-ethoxy-2-propanol, in which ethanol was 

the major component, did not show a marked difference in the granule size; a small 

increase in particle size was observed. This result contrasts with that previously reported 

by Lafita et al. (2015). These authors indicated a progressive deterioration in methane 

production and granule disintegration by working at 35 kg COD m–3d–1 with a mixture 

of ethanol and 1-methoxy-2-propanol (4:1 in mass) applied intermittently (16 hours per 

day, 5 days a week) to a 4-L reactor. Although the carbon source and the type of sludge 

were similar for both studies, the fluffy granule formation reported by these authors 

could be related to an excessive granular growth, with abundant extracellular polymeric 

substance (EPS) production that inhibited the release of gases. This type of granule 

cannot accommodate extremely high OLs or variations of organic strength (Fukuzaki et 

al., 1995). In our study, the hydraulic conditions maintained a stable biomass bed 

volume for the whole trial without excessive biomass accumulation, and the EPS 

required for granulation was produced in sufficient amounts to handle interruptions and 

variations of high OLs. 

<< Fig. 4 >> 

To demonstrate the performance of the EGSB under fluctuating and oscillating 

feeding of substrate, continuous monitoring of a typical working day (day 481) is 
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depicted in Fig. 5. The inlet and outlet VOC concentrations at the gas phase (scrubber 

unit) are plotted in Fig. 5a, and the moving hourly average OL and cumulative biogas 

production (EGSB reactor) are shown in Fig. 5b. The gas emission pattern varied 

depending upon the printing orders being processed, with an inlet VOC concentration 

ranging between 430 and 1900 mg-C·Nm–3 during production time (from 6:30 to 

22:30), with an average REVOC at the scrubber of 84%. The variations of the VOC air 

emissions changed the organic load fed to the reactor from 1.7 to 4.7 kg COD h-1, but 

the biogas production was kept at a nearly constant rate (0.67 m3-biogas h-1), indicating 

the capacity of the reactor to absorb these instantaneous shock loads. Biogas production 

started 1.5 h after the facility production began and stopped 1.5 h after facility 

production ended. Both shifts indicated that no solvent was accumulated in the water, 

corroborating the robustness of the process to recycle VOC emissions into bioenergy.  

<<Fig. 5>> 

3.4 Microbial community analysis 

The result of the DGGE for archaeal and bacterial population is presented in Fig. 

Fig. 6 for all biomass samples collected during the trial. The predominant bands of the 

samples, which are labelled in Fig. 6, were excised and sequenced. In addition, 

Shannon’s index (H’) for each sample was indicated. Table 3 summarizes the DGGE 

band designation, the level of similarity to related GenBank sequences, and the 

phylogenetic group of each strain.  

<< Fig. 6 >> 

<< Table 3 >> 

Archaeal DGGE (Fig. 6a) showed a shift in population during the first 123 days, 

where the biodiversity decreased as the Shannon index decreased from 1.07 (S-1) to 
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0.41 (S-2). After this initial shift in the archaeal population, it remained stable, with no 

high variations for more than a year (S-2 to S-6). The developed archaeal population 

after the shift in the EGSB reactor presented low archaeal biodiversity; A2 was the 

predominant band. Bacterial DGGE (Fig. 6b) also showed a smooth shift in the bacterial 

diversity at the beginning of the trial, where the Shannon index revealed a drop from 

2.14 (S-1) to 1.86 (S-2) in the diversity of the bacterial population. This decrease in the 

biodiversity from the initial sludge seems to have been due to differences in the 

operational and environmental conditions of the reactor. As the granular sludge came 

from a reactor treating complex brewery wastewater, the microorganisms had to adapt 

to a defined wastewater containing only organic solvents as carbon source, with few 

major compounds (ethanol, ethyl acetate, and 1-ethoxy-2-propanol). The increase in the 

Shannon index from 1.86 (S-2) to 2.00 (S-5) from day 123 to day 413 indicates that the 

biodiversity increased because new microorganisms were slowly becoming abundant, 

such as in bands B4, B6, and B7. At the end of the experiment, the Shannon index 

slightly decreased to 1.85 (S-6) because bands that initially were predominant, B1 and 

B2, progressively decreased in intensity and finally, in this sample, disappeared. As a 

conclusion, the use of granular sludge from a brewery wastewater treatment plant 

seemed to be a good choice for treating oxygenated solvents coming from VOC 

emissions of the flexographic industry. The predominant bands (A2, B5, B6, and B7) 

initially came with the sludge, and the change of the carbon source to pure solvents 

resulted in a population with less biodiversity in which some microorganisms prevailed. 

The predominant band found in the archaeal DGGE in all samples along the 

operation period was band A2; this band was identified as Methanosaeta concilii. This 

is a well-known acetotrophic archaea, and it is the most abundant microorganism in 

anaerobic granular processes like EGSB and UASB (Díaz et al., 2006). 
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 Methanospirillum species, band A1, are hydrogenotrophic archaea. Tsushima et al. 

(2010) found that Methanospirillum species were able to proliferate under psychrophilic 

conditions, in line with that Methanospirillum were found in some  anaerobic reactors 

working at low temperatures (Xing et al., 2009). Initially, the intensity of this band was 

lower than in the rest of the samples; the development of Methanospirillum in the 

reactor can be attributed to the operational temperature of the reactor, especially from 

days 0 to 334. During the first year of the experiment, the temperature evolved 

spontaneously in association with the temperature of the air emissions in the facility, 

and the daily average temperature reached values as low as 18.5 ºC (Table 2), with 8 

days lower than 20ºC; this favored the development of Methanospirillum. At any rate, 

the smooth variation of temperature during the whole trial (average of 25.1±3.2ºC) did 

not seem to effect the removal efficiency of the process, showing that microbial 

functionality was not adversely influenced.  

Methanobacterium species, band A3, were hydrogenotrophic archaeas. Wang et al. 

(2015) found that Methanobacterium species became predominant in the reactor when a 

drastic increase in the organic load was applied. In our study, the intensity of this band 

was high in the brewery granular sludge, which was taken for a reactor working at high 

organic load; then, the intensity of Methanobacterium increased again in S-3 (day 238). 

This could be because working at average daily organic loads higher than 3.5 kg COD 

h-1 from day 195 to day 202 seemed to be an advantage to this species. 

No Methanosarcina was found in the reactor; this could be explained by the 

competition with Methanosaeta for acetate. Methanosaeta has a higher affinity to 

acetate than Methanosarcina (Jetten et al., 1990); hence, Methanosaeta can be 

predominant against Methanosarcina in stable reactors with low acetate concentrations 

(McMahon et al., 2001). In our study, the EGSB reactor showed quite stable 
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performance, and the acetate concentrations were mostly lower than 200 mg L-1. 

Furthermore, the archaeal diversity found in our study was extremely similar to that 

found by Xing et al. (2009), who ran an EGSB treating a synthetic brewery wastewater 

at 15°C. In their study, Methanosaeta, Methanobacterium, and Methanospirillum 

reached 95% of the archaeal population, and Methanosaeta was the most predominant 

archaea. Furthermore, Methanosaeta has been described as an important microorganism 

in anaerobic granulation processes, and it has a key role in granule integrity (Xing et al., 

2009). Therefore, its dominance facilitated the maintenance of the granule integrity 

throughout the trial, as shown in Fig. 4. In conclusion, methane in this anaerobic reactor 

was produced by hydrogenotrophic and acetotrophic pathways, as the presence of 

hydrogenoclastic and acetoclastic species in the reactor revealed.  

In terms of the bacterial community, B1 and B2 were identified as Candidatus 

Cloacamonas acidaminovorans. Previous studies suggested that these bacteria are 

probably syntrophic (Pelletier et al., 2008). Sulfurovum agreggans, band B3, was a 

strictly chemolithoautotrophic bacteria (Mino et al., 2014). This bacterium was 

previously found in an EGSB working with high sulfate concentration. In our reactor, 

the sulfate average was low (values < 10 mg L-1), so this bacterium probably came in 

the brewery sludge and was able to survive under low sulfate concentrations. Pelobacter 

propionicus, band B4, produce acetate and propionate from ethanol with sulfate 

presence (Schink et al., 1987), so it is involved in VFA production. It was found in 

anaerobic reactors treating winery wastewater (Cresson et al., 2009). Furthermore, it is 

remarkable that this bacterium can be associated with Methanospirillum species, to 

which it transfers H2, to degrade primary alcohols and diols (Eichler and Schink, 1985). 

Yanti et al. (2014) proposed that the mechanism of ethyl ester degradation is the same 

as the mechanism for methyl ester degradation, so ethyl acetate is probably transformed 
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into acetate and ethanol. In the case of 1-ethoxy-2-propanol, its degradation mechanism 

is not yet known, but Lafita et al. (2015) proposed that after enzymatic ether cleavage, 

1-methoxy-2-propanol decomposes to acetone and methanol. By analogy, 1-ethoxy-2-

propanol should also be transformed into acetone and ethanol. Considering that the 

main intermediate to be degraded was ethanol, a primary alcohol, these two 

microorganisms—Methanospirillum and Pelobacter—probably played an important 

role in the solvent degradation of this study, a claim that is corroborated by their 

progressive increase in abundance during the trial. 

B5, B6, and B7 were identified as species belonging to the Geobacter genus. These 

organisms have been identified in different anaerobic reactors treating brewery 

wastewater (Shrestha et al., 2014); they can use different substrates as ethanol or 

acetate. Lovley (2011) demonstrated that Geobacter species can use direct interspecies 

electron transfer (DIET). This electron exchange between Geobacter and syntrophic 

partners seems to be an important process in anaerobic wastewater treatment 

(Commault et al., 2015). It has been demonstrated in laboratory-scale digesters that 

Methanosaeta is one of these syntrophic partners, and one-third of the methane 

production in an UASB is produced due to DIET between these two species (Rotaru et 

al., 2014). In our study, Methanosaeta and Geobacter were the predominant 

microorganisms in archaeal and bacterial populations, respectively, indicating that these 

types of interactions occur in the reactor treating a mixture of alcohols and ethers. 

4. Conclusions 

The anaerobic bioscrubber was shown to be an effective solution for VOC control 

emission coming from the flexographic sector. The optimization of a pilot unit 

composed of a packed scrubber and an expanded granular sludge bed reactor ensured 
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high VOC elimination removal and efficient control of pressure drop in the scrubber. 

Despite the high fluctuations in the waste gas emissions, with interruptions during 

nights and weekends and temperature oscillations, stable conversion of alcohols, esters, 

and glycol ethers to enriched methane biogas was demonstrated. The use of granular 

sludge from a brewery wastewater treatment plant has been proven to be an adequate 

strategy to achieve consistently high efficiencies since startup. The limitation of carbon 

sources to a few organic solvents caused an initial decrease in biodiversity, especially in 

the domain Archaea, and then the predominant population persisted over time. The 

predominant Archaea and Bacteria species can be associated with the carbon source and 

operational parameters, such as temperature and organic load. 
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Table 1 

Experimental set-up of anaerobic bioscrubber pilot unit. 

Scrubber unit 

Stage 1 2 3 4 5 

Days of operation 0 - 95 96 - 130 131 - 180 181 - 265 266 - 484 

Configuration Packing A Packing B Spray  Packing B Packing A 

Specific surface area (m2 m-3) 150 125 --- 125 150 

Liquid/air volume ratio · 103 3.5 -  9.1 7.6 - 10.1 1.9 – 3.7 3.8- 8.0 4.3 – 7.9 

EGSB reactor 

Biomass sampling event (day) S-1 (0) S-2 (122)  S-3 (237) 

S-4 (333) 

S-5 (412) 

S-6 (429) 

 

Table 2 

 Daily average parameters of the water effluent of the EGSB reactor.  

    
VFA concentration,  

mg-acetic acid L-1 
Temperature, °C pH 

Biomass 

sampling 

events 

Days of 

operation 
Average Min Max Average Min Max Average Min Max 

S-1 0 - 122 176 ± 183 43 934 22.8 ± 2.0 18.5 26.4 7.50 ± 0.21 7.09 8.41 

S-2 123 - 237 365 ± 327 58 1154 24.9 ± 2.8 19.7 30.6 7.38 ± 0.20 6.83 7.96 

S-3 238 - 333 156 ± 175 44 615 23.0 ± 1.6 18.8 26.7 7.36 ± 0.35 6.85 8.75 

S-4 334 - 412 133 ± 102 49 393 27.2 ± 1.7 23.8 30.8 7.55 ± 0.44 6.88 8.63 

S-5 413 - 429 218 ± 199 78 359 29.9 ± 0.7 28.9 30.9 7.32 ± 0.27 7.10 7.74 

S-6 430 - 484 122 ± 53 80 200 27.5 ± 1.1 25.5 29.3 7.38 ± 0.31 6.85 8.45 

 

Table 3 

 DGGE band designation, accession numbers in GenBank and levels of similarity to 

related organisms according to Fig. 6. 

DGGE 

band 
Closest organism in the GenBank (accession number) Similarity Phylogenetic group  

A1 Methanospirillum lacunae (NR_112981.1) 99% Methanospirillaceae a 

A2 Methanosaeta concilii (NR_102903.1) 100% Methanosaetaceae a 

A3 Methanobacterium formicicum (NR_115168.1) 99% Methanobacteriaceae a 

B1 Candidatus Cloacamonas acidaminovorans (NR_102986.1) 89% Cloacimonetes b 

B2 Candidatus Cloacamonas acidaminovorans (NR_102986.1) 87% Cloacimonetes b 

B3 Sulfurovum sp (NR_074503.1) 97% Epsilonproteobacteria c 

B4 Pelobacter propionicus (NR_074975.1) 100% Pelobacteraceae a 

B5 Geobacter argillaceus (043575.1) 92% Geobacteraceae a 

B6 Geobacter psychrophilus (043075.1) 97% Geobacteraceae a 

B7 Geobacter toluenoxydans (NR_116428.1) 83% Geobacteraceae a 

a Family, b Phylum, c Class  
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Figure Captions 

Fig. 1. Performance of the pilot unit. (a) Daily averages of (□) REVOC, (○) Inlet VOC 

concentration and (●) Outlet VOC concentration in the gas phase of the scrubber. 

Broken lines represent the days when the configuration of the scrubber was changed. (b) 

(●) Daily average OL and (□) weekly RECOD of the EGSB. Broken lines indicate 

biomass sampling event. 

Fig. 2. Influence of the liquid to air volume ratio on the VOC removal efficiency of the 

scrubber unit. (●) Packing A, stage 1, (○) Packing B, stages 2 and 4. 

Fig. 3. Effect of the organic load on the water effluent VFA concentration of the EGSB.   

Fig. 4. Variation of the granule size distribution of biomass over time.  

Fig. 5. Plant monitoring data, day 481. a) (▬) Inlet VOC concentration and (▪▪▪) Outlet 

VOC concentration in the gas phase in the scrubber, b) (▪▪▪) Cumulative biogas 

production and (▬) Moving hourly average OL in the EGSB. 

Fig. 6. DGGE profiles of biomass samples from the EGSB reactor including their 

Shannon index (H’). (a) Archaeal DGGE profiles, (b) Bacterial DGGE profiles. 



Fig 1. 1.5 column 

 

 

 

  

Stage 1 2 3 4 5

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

0

1000

2000

3000

S-1 S-2 S-3 S-4 S-5 S-6

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

0

2

4

6

8

b)

R
E

V
O

C
, 

%

a)

V
O

C
 c

o
n
c
e
n

tr
a
ti
o
n

, 
m

g
-C

 N
m

-3

Days of operation

W
e
e

k
ly

 R
E

C
O

D
, 

%

O
L

, 
k
g

 C
O

D
 h

-1

Days of operation



Fig 2. 1 column 

 

 

 

  

0 2 4 6 8 10 12
60

65

70

75

80

85

90

95

100
R

E
V

O
C
, 

%

Liquid to Air Volume Ratio·103



Fig 3. 1 column 

 

 

 

  

0 1 2 3 4 5 6 7
0

200

400

600

800

1000

1200

1400
V

F
A

, 
m

g
 a

c
e
ti
c
 a

c
id

 L
-1

Daily average OL, kg COD h-1



Fig 4. 1 column 

 

  

Day 0 Day 238 Day 430

S-1 S-3 S-6

0

20

40

60

80

100

S
iz

e
 d

is
tr

ib
u

ti
o

n
, 

%

 < 0.1 mm  0.1 - 0.6 mm  0.6 - 1 mm  1 - 1.5 mm  > 1.5 mm



Fig 5. 1 column 

 

  

00:00 04:00 08:00 12:00 16:00 20:00 24:00 04:00

0

300

600

900

1200

1500

1800

2100

00:00 04:00 08:00 12:00 16:00 20:00 24:00 04:00

0

1

2

3

4

5

6b)

V
O

C
 c

o
n
c
e
n
tr

a
ti
o
n

, 
m

g
-C

 N
m

-3

Daytime, h

O
L
, 
k
g
 C

O
D

 h
-1

Daytime, h

a)

0

2

4

6

8

10

12

14

16

C
u
m

u
la

ti
v
e
 b

io
g
a
s
 p

ro
d
u
c
ti
o
n

, 
m

3



Fig 6. 1.5 column 

 


	Bravo et al_2017_JEMA
	Figures

