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ABSTRACT 

 
 
How humans perceive, embody, and execute actions has been an area of intense study in 

cognitive neuroscience, and these investigations shed light on how we adaptively learn from and 

interact with an ever-changing world. All of the knowledge associated with action, including 

sensorimotor representations, the words we use to describe them, and the memories that store 

this information, are represented in distributed brain regions that comprise ‘knowledge schemas’. 

With repeated practice or training, one can acquire a highly specialized motor repertoire that 

fosters even more efficient and adaptable behaviour to achieve peak performance. Using 

behavioural, EEG and fMRI approaches, I will present a series of investigations that evaluate the 

impact of short-term exercise and long-term dance practice on the development of expert 

knowledge schemas. In Chapters 2 and 3, I will demonstrate that activating one domain in the 

schema (e.g., action processing) will prime other domains (e.g., verbal attention and working 

memory) to induce translational performance improvements. Subsequent chapters will reveal 

how familiarity with a specific genre of dance influences behavioural (Chapter 3) and 

neurophysiological signatures of action perception, how these motor representations are coded in 

sensorimotor association areas (Chapters 4), and how they change with repeated practice and 

performance (Chapter 5). How these findings contribute to our model of expert knowledge 

schemas will be discussed in Chapter 6. These findings bear efficacy for the therapeutic 

application of exercise and dance programs to alleviate motor, cognitive and neurophysiological 

impairments in several clinical populations, including people with Parkinson’s disease.  
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1 CHAPTER ONE – GENERAL INTRODUCTION 

Imagine a ballet dancer moving gracefully across a stage, perfectly synchronized with a 

movement of Tchaikovsky’s Swan Lake. Through years of dedicated practice, rehearsal and 

performance, she is able to learn new sequences of choreography and execute them with extreme 

precision after only a couple of attempts. How her brain has adapted to this physical expertise, 

and whether it influences other cognitive domains like attention, memory and language, are the 

main focus of this thesis.  

 The expert dancer described above, and non-experts engaging in any type of learned 

voluntary movement, rely on several neurological operations to acquire and execute action. 

These include, but are not limited to, observing action by an exemplar (e.g., choreographer or 

teacher); perceiving and understanding the component movements; transforming the observed 

action from a third-person perspective into an embodied first-person motor representation; 

computing the necessary motor commands to prepare and execute the action; using sensory 

feedback to gauge successful execution; and adjusting or reinforcing preparatory signals 

accordingly to reinforce motor learning of the action. Through a series of experiments I will 

demonstrate how several of these operations are utilized by experts and non-experts while 

engaging in novel, familiar, unfamiliar, and overlearned actions. Action requires a coordinated 

symphony of brain networks, both cortical and subcortical, which I will present as a model or 

‘knowledge schema’ that encompasses information in multiple cognitive domains, including 

attention, memory, learning, language and motor processing. With repeated exercise or training, 

a specialized repertoire is developed. Experts can learn novel and more difficult movements 

through adaptive ‘trial-and-error’ processes, and also combine component movements into new 

sequences with greater accuracy and in a shorter amount of time relative to novices. I propose 
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this repertoire, or expert knowledge schema, facilitates improved performance and access to 

information across domains by activating one (e.g., sensory, motor) and priming other domains 

(e.g., language, attention, memory) through various neurophysiological mechanisms.  

 The following sections provide a general background on the research that forms the basis 

of the experimental chapters that follow. I begin by outlining the three central facets of action 

processing and the brain networks underlying them. I will then describe the neurophysiological 

and behavioural mechanisms by which we understand and learn action, and how motor learning, 

specifically of dance, induces plasticity in these brain networks and connections. By reviewing 

the existing literature that connects attention, motor, language, and memory structures in the 

brain, I will introduce a novel putative model of information processing that consolidates skill-

related knowledge across these domains. Throughout the introduction I will address gaps in our 

current understanding of experience-dependent modulation of brain activity, cognitive 

performance, action processing, and motor learning that will form the bases of the specific 

objectives of this dissertation. 

 

1.1   HOW THE BRAIN PROCESSES ACTION  

1.1.1   The Action Observation Network  

 When we think of action, we typically associate it with the ability to execute a given 

movement. However, action also involves the capacity to think about movement(s) through 

visualization or planning (e.g., how should I reach for this cup?) before executing action that can 

be observed and appraised relative to expected outcomes. These three central components to 

action processing – action observation (AO), motor imagery (MI), and motor execution (ME) –

help us understand and learn specific behaviours that are neurally coded as motor representations 
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(Grèzes & Decety, 2001). Engaging these representations through AO, MI and ME activates 

common underlying circuitry known as the ‘mirror neuron network’. Discovered spuriously by 

Giacomo Rizzolatti and colleagues when recording directly from premotor neurons in macaque 

monkey area F5 (Gallese, Fadiga, Fogassi, & Rizzolatti, 1996; Rizzolatti, Fadiga, Gallese, & 

Fogassi, 1996), action potentials were elicited to both observed and executed reaching 

movements. Together with evidence for MI-induced activation, mirror neurons have since been 

investigated in humans (Fadiga, Fogassi, Pavesi, & Rizzolatti, 1995) to define the homologous 

‘action observation network’ (AON) (Cross, Kraemer, Hamilton, Kelley, & Grafton, 2009a). The 

regions comprising the AON include ventral (PMv) (Binkofski & Buccino, 2006) and dorsal 

premotor cortices (PMd), intraparietal sulcus (IPS), superior parietal lobe (Filimon, Nelson, 

Hagler, & Sereno, 2007), inferior parietal lobule (IPL), inferior frontal gyrus (IFG, or Broca’s 

area), cingulate gyrus, cerebellum, superior temporal sulcus (STS) (Iacoboni et al., 2001), 

primary motor cortex (M1), and the supplementary motor area (SMA). There has been some 

debate regarding the activation of these and other regions primarily involved in ME, especially 

M1 (Roth et al., 1996) and SMA, during AO and MI when motor output signals are inhibited (for 

meta-analysis, see Grèzes & Decety, 2001). Nonetheless, there has been reliable activation 

among these nodes of the AON during all three types of action processing as revealed by several 

neuroimaging modalities.  

The following review of AON and associated brain regions will be limited to those that 

are putatively part of knowledge schemas bridging sensory, motor, language, attention and 

memory functioning. I will begin by reviewing evidence for shared activation among these 

regions during action processing as revealed by functional magnetic resonance imaging (fMRI). 

Next, I describe the nature of oscillatory rhythms underlying action processing as measured by 
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direct electrophysiological recordings in human and non-human primates and 

electroencephalography (EEG).   

Non-invasive investigations on AON processing utilize fMRI to identify the distinct brain 

regions and distributed networks responsible for various motor functions described above. 

Several experimental paradigms are employed by experimenters to elicit task-related activation 

during AO (e.g., showing a video), MI (e.g., cued visualization or preparation of a movement), 

and ME under strict parameters (e.g., moving distal limbs like hands and feet to perform 

reaching or pointing behaviours). These include blocked designs or event-related paradigms. The 

former method averages brain activity over a period of seconds to infer activation by the 

cognitive or perceptual process during that time in contrast with another condition (e.g., AO 

versus rest, MI versus ME, etc.). In contrast, event-related experimental designs present a 

discrete stimulus (e.g., target letter) for a short duration that serves as a cue for an instructed 

action (e.g., button press). Averaging over many trials, researchers can identify brain areas 

involved in pre-cue anticipation, post-cue movement preparation, as well as pre- and post-

movement phases.  

The functional significance of brain activity recorded by fMRI is inferred by analyzing 

blood-oxygen-level-dependent (BOLD) signals that are generated by the hemodynamic response 

– flooding of active brain regions with oxygen-rich blood. These changes alter the magnetic 

susceptibility of task-relevant brain areas, resulting in clear indications of population 

postsynaptic activity that can be either inhibitory or excitatory (for review, see Arthurs & 

Boniface, 2002). By design, fMRI generates a ‘pulse’ approximately once every second and 

captures the resonating hemodynamic response (Huettel, Song, & McCarthy, 2008), resulting in 

low temporal resolution relative to direct neural recordings, EEG or magnetoencephalography 
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(MEG) that capture neuronal activation on the order of milliseconds. However, these 

methodological approaches are subject to their own limitations, including poor spatial resolution 

with low-density systems. What these neuroimaging modalities have in common is a sensitivity 

to movement while being scanned that can result in motion artifacts that translate to the head, 

even after preprocessing algorithms are applied, and can contaminate subsequent localization of 

brain activity. Capitalizing on its high spatial resolution, researchers use MRI to assess various 

structural brain measures including grey and white matter volume and fractional anisotropy 

between groups or within subjects following learning interventions. While structural analyses are 

not employed in this thesis, evidence from the existing literature will be discussed as they pertain 

to experience-dependent changes to functional brain activity.  

Based on these properties of fMRI signals, researchers have developed and applied 

sophisticated computational algorithms to identify the direction and extent of hierarchical brain 

activity during action processing. According to a review by Gallivan and Culham (2015), the 

flow of perceived sensory information begins in primary cortices (i.e., visual, auditory, 

somatosensory, etc.) before converging in the parietal cortex. Depending on the motor effector 

(e.g., hand, arm, head, eyes) different areas of the parietal cortex (anterior and ventral IPS, 

superior parieto-occipital sulcus, and parietal eye field, respectively) transform information from 

sensory receptive field reference frames to motor reference frames that are centered around one’s 

body position in space. These new coordinates are used to map and compute motor plans for 

goal-directed actions in the premotor cortex (PMC) and SMA, which are also informed by 

prefrontal regions that govern context and “rules”. Final motor output is generated by neuronal 

activation in M1 to corticospinal nerves that terminate at muscle groups to perform the desired 

action. Although we will not focus on these brain areas in the current thesis, the cerebellum and 
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basal ganglia are also closely tied to modulating action through sensory feedback of behavioural 

outcomes, especially for habitual and overlearned actions like walking and dancing in experts 

(Bar & DeSouza, 2016; Petrosini et al., 2003).  

Each type of action processing falls within the hierarchy described above: AO involves 

the early stages, such that observed behaviours principally activate visual motion (MT+) 

processing areas and resonate with embodied knowledge representations stored in parietal and 

premotor regions. There are also many types of action which do not involve visual processing, 

including memory-guided movement (e.g., reaching for your coffee cup while reading the 

newspaper) or action processing in the blind. MI also shares many of the same hierarchical steps 

as ME except for activating corticospinal nerves, which is inhibited during visualization. The 

simulation of action, especially MI from a first-person kinaesthetic perspective (KMI), is a 

necessary precursor to ME and facilitates motor learning through AO, further demonstrating the 

interconnectedness of these distinct action processes. However, Gerardin et al. (2000) have 

shown distinct patterns of activation between imagined and executed movements. While MI 

activates rostral PMC and superior and inferior parietal cortex, ME predominantly activates areas 

around the central sulcus including primary and secondary somatosensory cortices reflecting 

sensory feedback that would only be elicited during ME.  

In a review of AON activation during each of these processes, Jeannerod (2001) 

characterizes AO and MI as covert processes that are essentially tied to planning ME and 

evaluating its outcomes relative to pre-movement goals. While the overt process of ME does not 

necessarily co-occur with AO or MI, there is evidence for common activation during all 

processes, especially in IPL, SMA, ventral and dorsal PMC. There is also evidence for M1 

activation during AO as revealed by subthreshold electromyographic activity of corresponding 
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muscle groups (Borroni, Montagna, Cerri, & Baldissera, 2005) and using MEG (Hari et al., 

1998). As mentioned previously, some researchers have found activation in contralateral M1 

during MI but to a lesser extent than during ME and in only a subset of participants (Grafton, 

Arbib, Fadiga, & Rizzolatti, 1996; Lotze et al., 2000; Roth et al., 1996). However, these studies 

show activation of PMC and SMA bilaterally during MI, consistent with their involvement in the 

larger AON. How activation of these motor areas is modified by short-term learning and long-

term expertise during action processing will be elaborated in the next sections.  

1.1.2   Sensorimotor Oscillations 

The dominant sensorimotor oscillatory rhythm, and the first frequency to be identified by 

Hans Berger (Berger, 1929), is alpha (~8-12Hz). Berger pioneered EEG by recording electrical 

potentials through the scalp with electrodes overlying primary visual cortex (V1) on the occipital 

lobes (O1 and O2 sites of the International 10-20 System) (Compston, 2010). Despite these early 

origins, the neural generators and functional significance of the alpha rhythm remain an area of 

debate (for review, see Bazanova & Vernon, 2014; Klimesch, 2012). The prevailing “idling 

rhythm” hypothesis stipulates that alpha is dominant in first-order thalamic nuclei and their 

primary sensory and motor cortical counterparts during awake, resting, and unperturbed states. 

This model further suggests that alpha reflects the extent to which sensory and motor cortices are 

disengaged from inputs of the body and environment, and is “released” rather than triggered 

during these states (Buzsáki, 2006). This is evidenced by Berger’s early findings of increased 

occipital alpha amplitude when eyes are closed and no visual information is being processed 

relative to when eyes are open and amplitude is decreased. Upper alpha (~10-13Hz) is also 

referred to as the Rolandic mu rhythm when recorded around the central sulcus separating M1 

and primary somatosensory cortex at Cz, C3 and C4 central electrode sites. Increased amplitude 
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or ‘power’ of the idling mu or alpha waveform is referred to as event-related synchronization 

(ERS). Conversely, decreased alpha power or event-related desynchronization (ERD) is 

inversely related to cerebral blood flow and cortical activation by more dominant rhythms during 

task performance (Sadato et al., 1998).  

Competing theories for alpha function and origins include the “Pacemaker” model that 

suggest cortical and thalamic neurons fire and entrain each other at an endogenous alpha rhythm 

(Buzsáki, 2006). However, these models often do not account for alpha’s role as a feedback 

signal in reafferent sensorimotor pathways from deep (layer 5) and superficial (layers 1 and 2) 

layers of primary auditory, somatosensory, and visual (V1) cortices to higher-order areas 

(Haegens et al., 2015; van Kerkoerle et al., 2014). This “neural efficiency hypothesis” suggests 

that alpha emerges from the coupling of distributed populations of neurons to ‘gate’ the transfer 

of information across distal regions of the cortex by top-down attentional mechanisms. This 

function serves to inhibit competing or non-essential information by increasing the signal-to-

noise ratio in the cortex, in turn facilitating task performance by enabling efficient access to 

information across sensory, motor, and linguistic domains (Del Percio et al., 2011; Klimesch, 

Sauseng, & Hanslmayr, 2007; Luck, 2014).  

ERS/ERD patterns depend on the nature of the task and cognitive process being 

investigated. For instance, ERS is observed during  and immediately following working memory 

(WM) task performance (Klimesch, 1999), indicative of an alpha-encoding function, while ERD 

is observed during retrieval in that same region of posterior parietal cortex governing episodic 

and semantic memories through theta (4-7.5Hz) (Gevins, Smith, McEvoy, & Yu, 1997; 

Klimesch et al., 2006; Schack, Klimesch, & Sauseng, 2005). For motor tasks that rely on the mu 

band, ERD is elicited in corresponding areas of the homunculus while ERS suppresses activity in 
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surrounding and more distal brain regions (Pfurtscheller & Neuper, 1994). This is similar to the 

center-surround inhibition model in columns of V1 (Hubel & Wiesel, 1968; H. E. Jones, Grieve, 

Wang, & Sillito, 2001) and lateral geniculate nucleus neurons (Wiesel & Hubel, 1966) such that 

‘focal ERD/surround ERS’ reflects inhibition of non-essential neighbouring cortical areas 

(Neuper & Pfurtscheller, 2001; Suffczynski, Kalitzin, Pfurtscheller, & Lopes da Silva, 2001). 

The degree of ERS/ERD has additionally been shown to increase with task difficulty (i.e., 

greater increase in alpha power/ERS, or greater decrease in alpha power/ERD) such that greater 

neural resources are expended to alleviate cognitive load (Gevins et al., 1997; Klimesch, 1999; 

Roberts, Jones, Davis, Ly, & Anderson, 2014; Schack & Klimesch, 2002).  

Within the alpha range there is a clearly identifiable peak in the power spectrum that is 

known as the individual peak frequency (iAPF), which differs across individuals and slows (i.e., 

decreases in frequency value) with age (Clark et al., 2004) and disease states like Alzheimer’s 

(AD) (Klimesch, Schimke, Ladurner, & Pfurtscheller, 1990) and Parkinson’s Disease (PD) 

(Moazami-Goudarzi, Sarnthein, Michels, Moukhtieva, & Jeanmonod, 2008; Soikkeli, Partanen, 

Soininen, Pääkkönen, & Riekkinen, 1991). As with the power or amplitude of alpha, the peak 

frequency within the alpha range is also influenced by various perceptual and cognitive demands 

(Bazanova & Vernon, 2014); when engaged by a challenging task, iAPF is faster or higher in 

frequency relative to rest (Angelakis, Lubar, Stathopoulou, & Kounios, 2004). This modulation 

of iAPF facilitates the segregation or conscious discrimination of incoming information by 

increasing the temporal resolution with which the visual system is updated (Samaha & Postle, 

2015; Wutz & Melcher, 2013; Wutz, Weisz, Braun, & Melcher, 2014). Whether the speed of 

visual updating is influenced by short-term exercise or long-term expertise will be examined in 

Chapters 2 to 4.  
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The other dominant sensorimotor frequency is beta (13-30Hz), which shows ERD in 

somatotopic areas prior to and during movement like alpha (Pfurtscheller, Graimann, Huggins, 

Levine, & Schuh, 2003) but is followed by a brief ‘burst’ of ERS known as a ‘post-movement 

rebound’ (Crone et al., 1998; Kilavik, Zaepffel, Brovelli, MacKay, & Riehle, 2013; Pfurtscheller 

& Lopes da Silva, 1999). It is suggested that this rebound reflects a very short period of 

inhibition and possibly resetting of neural activation in M1 (Pfurtscheller, Neuper, Brunner, & da 

Silva, 2005; Solis-Escalante, Müller-Putz, Pfurtscheller, & Neuper, 2012). Beta is also related to 

cognitive aspects of sensorimotor processing such that ERS conveys task- and context-specific 

information during visual WM in long-range connections between the frontal eye field (FEF) and 

lateral intraparietal cortex (LIP) (Salazar, Dotson, Bressler, & Gray, 2012). While FEF 

transforms attentional visuomotor gaze signals using WM (Sajad et al., 2015; Sajad, Sadeh, Yan, 

Wang, & Crawford, 2016), LIP processes gaze direction of both the individual and the observed 

gaze of others (Shepherd, Klein, Deaner, & Platt, 2009). Although beta does not have a clear 

peak frequency like alpha, previous research shows modulation of preferred frequency and beta 

power for preferred reaching direction in M1. These frequencies were higher (~25-35Hz) during 

visuomotor integration and movement preparation relative to cue expectancy. When combining 

beta frequency and power information, the researchers predicted the preferred direction of 

movement with greater accuracy (Kilavik et al., 2012).  

Beta also shares many functional properties with alpha, including greater ERD during 

more complex or difficult tasks (e.g., hand only versus hand and contralateral foot MI) (Yi et al., 

2014) but shows more somatotopic focal ERD/surround ERS activation during ME versus MI 

(Pfurtscheller et al., 2005; Schnitzler, Salenius, Salmelin, Jousmäki, & Hari, 1997). Beta ERD is 

also more sustained when there are more items to hold in short-term memory resulting in greater 
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cognitive load (Pesonen, Hämäläinen, & Krause, 2007). Together with alpha, beta exerts top-

down feedback from higher order visual areas, including LIP and IPS in the posterior parietal 

cortex, to inform attentional selection of external stimuli through FEF and reinforces error 

responses to behavioural outcomes in V1 (Fries, 2015; Michalareas et al., 2016; Womelsdorf & 

Everling, 2015). Based on their different functions, the way alpha and beta exert top-down 

influences may differ; alpha as a dominant idling and/or inhibitory rhythm may suppress task-

irrelevant information (van Kerkoerle et al., 2014) to allocate computational resources to task-

relevant areas. Conversely, beta has been shown to counteract bottom-up information from 

attended stimuli through strong feedback signals from higher order visual areas (Bastos et al., 

2015) and disinhibits neuronal populations involved in computing movement parameters as 

revealed during MI (Brinkman, Stolk, Dijkerman, de Lange, & Toni, 2014). Thus, both 

sensorimotor frequencies are widely distributed throughout the brain and show different patterns 

of activation depending on the brain regions they originate from, either sensory or motor, during 

perception, cognition and action. The differential contributions of alpha and beta in sensorimotor 

association during AO and KMI of familiar and unfamiliar stimuli will be explored in Chapter 4. 

 

1.2   UNDERSTANDING AND LEARNING ACTION  

1.2.1   Linking Action, Perception, and Language By Event Segmentation 

Before one can learn to perform a new action, it must be modelled by an external actor or 

described by a set of verbal instructions. Both forms of learning require the transformational 

processing of the AON described above, as well as a capacity to understand continuous streams 

of action by “chunking” or “segmentation”. The former term has primarily been used in 

cognitive science literature to investigate linguistic processing, memory, and cognitive 
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architectures (Gobet, Lloyd-Kelly, & Lane, 2016). I will focus on the latter process of 

segmentation that is rooted in Event Segmentation Theory (EST) (Zacks & Sargent, 2010), 

which states that continuous streams of action are chunked into component ‘units’. These units 

or events are defined as discrete, reliable, and meaningful movements that describe relevant 

features of action over time (Zacks & Tversky, 2001; Zacks et al., 2001a). This unconscious 

perceptual process can also be overtly and deliberately enacted. When experimentally 

investigated, participants watch a video of an action sequence and provide a response whenever 

they perceive the end of one event (e.g., folding right arm of a shirt) and the beginning of another 

(e.g., folding left arm of shirt). These borders define and separate events which are hierarchically 

organized; low-level features or ‘fine-grained’ events like those exemplified are consolidated 

into higher-level concepts or ‘coarse-grained’ events (i.e, folding a shirt) that fall within a larger 

action sequence (e.g., doing the laundry).  

Researchers cleverly test both the covert and overt types of event segmentation by first 

recording brain activity during passive viewing followed by active segmentation trials and 

aligning brain activity to the participant’s own responses. Previous event segmentation 

experiments have typically investigated everyday non-specialized goal- or object-related actions, 

like the laundry example (Speer, Swallow, & Zacks, 2003; Zacks et al., 2001a; Zacks, Tversky, 

& Iyer, 2001b), with more recent interest in segmentation of social interactions (Boggia & Ristic, 

2015). Segmentation borders are typically triggered by physical (change in direction, speed, etc.) 

or conceptual (causes, intentions, goals) changes in action and tend to have high agreement 

across individuals (Speer, 2004; Speer, Zacks, & Reynolds, 2007; Zacks, Swallow, Speer, & 

Maley, 2006a). This reliability could be due to the neural processes underlying action perception 
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described previously, including evoked responses in MT+, STS, and FEF at event borders (Speer 

et al., 2003; Zacks et al., 2001a; Zacks, Kurby, Eisenberg, & Haroutunian, 2011).  

Segmentation occurs at all levels of perception and across visual, somatosensory and 

auditory modalities. Auditory language processing (Lerner, Honey, Silbert, & Hasson, 2011) and 

visual segregation/integration are both mediated by temporal “windows” that receive and 

interpret sensory inputs over time, and form the resolution of perceptual updating. These 

windows are conceptually similar to event boundaries, which may also be sensitive to the phase 

and frequency of the alpha band (Samaha & Postle, 2015; Wutz et al., 2014; Wutz & Melcher, 

2013). In subsequent chapters, we will investigate whether experience modifies segmentation of 

familiar and unfamiliar dance sequences (Chapter 3) and the brain activity underlying action 

processing and visual updating that supports segmentation (Chapters 4 and 5).  

The ability to segment action sequences through the online updating of WM systems also 

has implications for later memory and learning of these behaviours. Event borders serve as 

anchors for long-term memory, with impaired recall of events and film narratives when those 

surrounding event borders are deleted or replaced with commercials (Boltz, 1992; Schwan & 

Garsoffky, 2003). Several clinical populations, including patients with schizophrenia (Zalla, 

Verlut, Franck, Puzenat, & Sirigu, 2004) and frontal lobe lesions (Zalla, Pradat-Diehl, & Sirigu, 

2003), show deficits in segmentation ability such that the location of coarse-grained event 

borders vary from normative ones. Interestingly however, fine-grained segmentation of smaller 

component units is left intact. Individuals with mild dementia and AD show impaired fine- and 

coarse-grained segmentation, as well as poor recognition and order memory of segmented action 

(Zacks, Swallow, Vettel, & McAvoy, 2006b), demonstrating a clear link between attentional, 

WM, and long-term memory functioning and event segmentation.  
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1.2.2   Practice Makes Perfect – Short-Term Motor Learning and Long-Term 

Expertise 

As demonstrated by the opening paragraph of this thesis, the need to organize action into 

steps is necessary to maintain coherence in behaviour. These sequential dependencies are 

themselves learned through experience and specifically through experiencing errors in 

behavioural outcomes. In addition to biological motion and attention regions, event borders elicit 

activation in the anterior cingulate cortex and other error detecting regions in the midbrain 

dopaminergic system including substantia nigra and ventral tegmental area. It is suggested that 

these regions monitor the level of prediction error for ongoing action (Blakemore, Rees, & Frith, 

1998). When uncertainty reaches threshold, feedforward signals are sent to WM, attention, and 

orienting response areas like FEF, superior colliculus, right inferior temporal cortex, and 

orbitofrontal cortex to trigger an event border (Reynolds, Zacks, & Braver, 2007; Zacks et al., 

2011). Prediction error signals are also generated when behavioural outcomes perceived through 

reafferent sensory feedback (e.g., your swing misses a pitched ball) do not match expected 

outcomes neurally coded with expected efference copy signals (Pynn & DeSouza, 2013). These 

signals are generated during motor planning stages and prime the appropriate sensory areas to 

anticipate reafferent feedback. When an action achieves a desired goal or outcome (e.g., 

swinging and hitting a pitched ball), no prediction error responses are elicited and the neural 

code for this successful motor plan is reinforced (Maia, 2009). With continued practice and 

training, these sensorimotor systems are refined and facilitate improved performance through 

recalibration (Cressman & Henriques, 2009; Neva & Henriques, 2013; Salomonczyk, Cressman, 

& Henriques, 2011). 
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While action is typically regarded as a hierarchical, step-wise process that concludes with 

ME, researchers have also investigated parallel processing of multiple behavioural outcomes, or 

“affordances”, that compete for final selection (Cisek, 2006; 2007). Either serially or in parallel, 

the decision to move is met with multiple potential motor representations that can achieve the 

desired outcome. Based on updating of movement goals and action selection by the prefrontal 

cortex and basal ganglia, respectively, competition is biased towards a single motor command 

that is released into execution. Through the overt (sensory) and covert (efference copy) feedback 

processes described above and refinement of expert sensorimotor networks, the 

computation/preparation, evaluation, and selection of the most appropriate motor plan becomes 

faster and more accurate.  

Repeated physical training including exercise has been shown to yield many 

cardiovascular benefits through the repeated movement of muscle groups to condition and 

strengthen them. Few studies have compared training outcomes and electrophysiological 

measures across AO, MI, and ME conditions, but those that have provide considerable efficacy 

for the former two methods. A study that compared ME and MI groups over four weeks of 

strength training in the fingers found surprisingly similar force gains for both groups, but greater 

strength in the ME group (Yue & Cole, 1992). Similar force production was also found for finger 

movements trained with ME and to a lesser extent with AO (Porro, Facchin, Fusi, Dri, & Fadiga, 

2007). The same study included an experiment that assessed corticospinal excitability during 

AO, MI, and ME and found significantly greater motor evoked potentials (MEPs) for ME and 

MI conditions, but not AO. As demonstrated in the AON literature, MI (and especially KMI) 

elicits motor resonance in the absence of overt movement and is a useful tool for mental training 

of novel actions or sequences (Jackson, Lafleur, Malouin, Richards, & Doyon, 2001). 
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Nonetheless, it is clear that physical practice has the greatest efficacy for improved physical 

performance. 

Exercise can also encompass other learning forms, including eye exercises to strengthen 

putative oculomotor networks and treat a variety of visual abnormalities (Rawstron et al., 2005) 

as well as improve performance in sports (Helveston et al., 2005) and cognitive tasks (Di Noto, 

Uta, & DeSouza, 2013). Exercise through athletic practice not only provides cardiovascular 

benefits but also a specialized motor repertoire that is developed and refined over a longer 

training period (i.e., years) manifesting as expertise. Through evaluations of elite chess players, 

expertise was initially studied by de Groot (1965) and theoretically defined by Newell and Simon 

(1972) as the ability to accurately and efficiently retrieve an appropriate motor command to 

achieve a goal while balancing dynamic and restrictive external factors on WM. This definition 

was later expanded to include the capability of experts to expand their WM capacity to quickly 

and successfully engage in highly demanding cognitive processes like planning, evaluation, and 

reasoning to achieve peak performance (Ericsson, 1998; Ericsson & Lehmann, 1996). To narrow 

the focus on the multitude of expert types that exist, I have investigated expertise in dancers.  

1.2.3   Dance-Induced Neuroplasticity 

For this thesis, I have used dancers, and specifically ballet dancers, as a model of 

expertise for several reasons: by the very nature of its genre, ballet requires strict discipline and 

adherence to a rigorous practice and performance schedule relative to more recreational forms of 

dance. This affords experimental control over participant compliance and evaluation of 

behavioural outcomes by external evaluators (i.e., instructors and choreographers), which would 

otherwise be difficult to ensure by researchers. More so than other athletic practices, dance 

requires skilled movements to be precisely coordinated with external auditory stimuli like music 
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or verbal instruction. This results in expertise that is both multimodal in nature and maintains a 

high level of physical performance. These operational benefits to examining dancers, musicians, 

and other artists have formed the basis of a burgeoning field referred to as ‘neuroaesthetics’ 

(Chatterjee, 2011). Investigations on dance provide a more holistic understanding of action that 

is complex and ecologically relevant to movements performed in ‘real life’ as opposed to 

repetitive, finite, and manipulated movements that are specific to a laboratory task. Dance is also 

communicative, rhythmic, and aesthetically appraised (Bläsing et al., 2012; Brown, Martinez, & 

Parsons, 2006). The dance-related findings in this thesis (Di Nota, Levkov, Bar, & DeSouza, 

2016); Di Nota et al., 2016a, under review; Chapters 3 to 5) contribute further to this field.  

The cognitive flexibility afforded to experts is based on structural and functional 

plasticity of multiple brain regions, especially the AON. During initial motor learning new 

synaptic connections are forged, known as ‘neuroplasticity’, and this results in increased grey 

matter. As revealed with novice jugglers trained for five weeks, grey matter increases bilaterally 

in MT+, superior frontal gyrus, middle temporal gyrus and cingulate cortex after only one to two 

weeks of practice, and decreases two and four months post-training (Driemeyer, Boyke, Gaser, 

Büchel, & May, 2008). With long-term training over many years, ballet dancers had lower grey 

matter volume in superior frontal gyrus, left PMC, SMA, and putamen relative to non-experts, 

and lower white matter volumes in bilateral corticospinal tracts and corpus callosum (Hänggi, 

Koeneke, Bezzola, & Jäncke, 2010). These findings reflect efficiency of structural organization 

of the brain in regions involved in motor planning and learning. Fractional anisotropy, which 

measures the extent of fiber integrity (Assaf & Pasternak, 2007), is also lower in white matter 

tracts underlying PMC in dancers only, reflecting less diffusion across white matter tracts 

(Hänggi et al., 2010). The resonance of embodied motor representations has been demonstrated 
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with fMRI while ballet dancers and practitioners of Brazilian mixed dance/martial arts capoeira 

view both styles of movement; dancers exhibited greater activation of PMC and IPS bilaterally, 

left posterior STS, and right superior parietal lobe when viewing ballet but not capoeira (Calvo-

Merino, Glaser, Grèzes, Passingham, & Haggard, 2005). This functional plasticity is further 

tuned to the specific motor repertoire assigned to each gender, which have different movement 

phrases that are only performed by males or females. Despite having visual familiarity with both 

gendered movement, only gender-specific embodied action activates PMC and parietal cortices 

and the cerebellum (Calvo-Merino, Grèzes, Glaser, Passingham, & Haggard, 2006).  

Specificity and consolidation of motor representations is also reflected behaviourally 

during event segmentation of dance. Contemporary dancers identified fewer event borders while 

observing a familiar dance relative to non-dancers, chunking more constituent movements into a 

single event. This effect is further driven by embodied learning, with dancers identifying even 

fewer event borders after training the segmented dance sequence (Bläsing, 2015). These findings 

are consistent with previous evidence for increased activation in regions associated with event 

borders when observing dance movements that violated expectations following training with 

similar dance sequences (Schiffer & Schubotz, 2011). The ability to store dance movements and 

long sequences in long-term memory has been supported by research that shows recall cued by 

accompanying music up to 31 years later. Descriptions were provided verbally and demonstrated 

physically by some participants, and there was poorer recall of transitions, suggesting that event 

borders for dance may be defined differently (i.e., kinaesthetically) than non-dance object-

directed movements (i.e., semantically) (Stevens, Ginsborg, & Lester, 2010).  

 Motor learning initially begins with input to the perceptual systems, as when a dancer 

observes and attempts to recreate the movements of their instructor, and involves different neural 
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processes than the error-related learning described previously. Research by Emily Cross has 

revealed nodes of the AON that are specifically activated by the interaction of perceived ability 

and embodied experience among expert dancers learning a new piece of choreography. These 

include left IPS/IPL, left PMv, and left parahippocampal gyrus (Cross, Hamilton, & Grafton, 

2006). Her work demonstrates common (PMC) and distinct (precentral gyrus, middle frontal 

gyrus) regions subserving learning through AO and ME (Cross et al., 2009a) and dissociable 

areas for dance training (PMv) that is performed by a human versus a robot model (STS) (Cross, 

Hamilton, Kraemer, Kelley, & Grafton, 2009b). Together, these works demonstrate experience-

dependent plasticity of the AON that is induced by dance training. 

Dancers and other athletes commonly use MI for training, performance enhancement, 

affective and cognitive regulation, as well as for rehabilitation when overt movement is not 

possible or recommended (Bläsing et al., 2012; Jones & Stuth, 1997). While there is no evidence 

for the efficacy of dance learning via KMI, it has been shown to elicit greater right-hemispheric 

alpha ERS among dancers while creatively imagining novel sequences relative to non-dancers 

(Fink, Graif, & Neubauer, 2009). Comparing motor learning of complex limb-hand-foot 

movements via AO or MI revealed that the former condition resulted in fewer errors, greater 

alpha ERD during training, and greater beta ERS during ME of the learned task (Gonzalez-Rosa 

et al., 2015). With cognitive training on spatial and verbal tasks, improved performance is 

accompanied by alpha ERS in parietocentral areas, suggesting fewer cortical resources are 

needed after subjects become skilled (Gevins et al., 1997). Whether training to learn a specific 

piece of choreography results in similar modulation of oscillatory (Chapter 4) or BOLD 

activation in sensorimotor networks (Chapter 5), and/or whether cognitive improvements are 
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induced by sensorimotor training (Chapter 3) are unanswered questions that will be addressed in 

this thesis.  

The basis for the dance-related studies in this thesis come from an investigation by Bar 

and DeSouza (2016), which revealed functional changes to a motor representation in 

professional ballet dancers with learning, rehearsal and a performance programme spanning 34 

weeks (see Chapter 5 for detailed methodology). Modulation of SMA, primary auditory cortex, 

and nodes of the basal ganglia were revealed during MI of the newly learned dance cued by 

music. Based on the latter findings, our lab has undertaken an ongoing research project 

evaluating the therapeutic efficacy of a weekly Dancing with Parkinson’s program (DWP) on the 

neurophysiological, motor and non-motor symptoms of PD.  

 

1.3   PUTTING IT ALL TOGETHER – KNOWLEDGE SCHEMAS 

I propose that the resonance of information across domains – sensory, motor, language, 

memory, attention – related to actions or skills form knowledge schemas (Figure 1.1). The 

concept of knowledge frames or schemas have been described in cognitive psychology for 

several years. Cited over 2,000 times, Cheng, Holyoak, Nisbett and Oliver (1986) describe 

reasoning schemas as “clusters of rules that are highly generalized and abstracted but nonetheless 

defined with respect to classes of goals and … relationships” (p. 294). Cognitive schemata 

typically describe the content of information (from a variety of domains) that is stored in 

memory and learned through experience, such as the roles and contexts of social movements like 

waving goodbye (Schank & Abelson, 1977; Johnston, 1995). I propose that the knowledge 

schema related to dance, including dance-related words, contexts, and actions, is generalized in 

novices (Figure 1.1). With repeated training and expertise, I propose the knowledge schema 
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becomes more refined (i.e., more efficient brain activity) and interconnected across domains, 

such that activating one (i.e., motor processing) primes access to another (i.e., WM, attention, 

language). The neural architecture underlying knowledge schemas is similar to the concept of 

dynamic circuit motifs (Womelsdorf & Everling, 2015; Womelsdorf, Valiante, Sahin, Miller, & 

Tiesinga, 2014), which use rhythmic properties of local and distributed neurons to direct visual 

attention. For the present model, I suggest that information is relayed across domains by the 

same functional brain networks and oscillations underlying action, language, and memory 

processing, as well as nodes interacting with visual attention networks. Actions are perceived 

events that unfold over time and activate motor representations in the knowledge schema of the 

observer. Language is needed to describe constituent movements of these events, and thus 

actions are putatively represented semantically as well.   

The current thesis will demonstrate that: 1) priming knowledge schemas with AO, MI or 

ME resonates in other cognitive domains, including language, attention, and WM; and that 2) 

several years of long-term dance practice modifies expert knowledge schemas to be more 

efficient, facilitating improved performance across domains relative to non-experts with no 

regular or prolonged dance training.   

After introducing concepts and mechanisms from a range of fields including 

neuroscience, cognitive psychology, and neuroaesthetics, several questions remain unanswered. 

It is well known that responding to visual targets using attentional networks is enhanced when 

there is more time between stimuli to compute the appropriate motor plan (Baldauf, 2011; Wutz 

et al., 2014). Does priming knowledge schemas in one domain (e.g., sensory, motor) transfer to 

improved performance in another (e.g., attention, WM), and is this priming sensitive to 

resonance of embodied motor representations coded in expert knowledge schemas? Based on the 
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Figure 1.1. Knowledge schemas - general.  
Actions or events, such as a dance sequence, are coded in knowledge schemas that include 
information from several cognitive domains. For observed action, various brain areas 
communicate reciprocally to perceive, segment, understand, encode and transform this motor 
representation into executed movement, and encode it into memory. Dark grey nodes are also 
canonical AON regions. Cer – cerebellum; CS – central sulcus; DMPFC – dorsomedial 
prefrontal cortex; EBA – extrastriate body area; FEF – frontal eye field;  Hip – hippocampus 
(subcortical); IFG – inferior frontal gyrus (Broca’s area, BA44/45); IPS – intraparietal sulcus; 
LF – lateral fissure; LO – lateral occipital complex; MT+ - human visual motion complex; M1 – 
primary motor cortex; PMd – dorsal premotor cortex; PMv – ventral premotor cortex; pSTS – 
posterior superior temporal sulcus; SMA – supplementary motor area; WA – Wernicke’s Area 

 

patterns of alpha and beta ERS/ERD that facilitate the exchange of information during action 

processing, are these same mechanisms responsible for cross-domain communication in (expert) 

knowledge schemas? I have presented evidence from other researchers on experience-dependent 

plasticity of action-related nodes that are part of the proposed knowledge schema model. Do 

these training and expertise effects also modulate activation of sensorimotor or language 

association areas? Are there translational benefits to refining knowledge schemas through short- 

or long-term physical training to other cognitive functions, including WM and language? These 

questions, especially as they pertain to expert dancers, remain unanswered.   
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1.4   OBJECTIVES 

 The overarching goal of this dissertation is to address gaps in our current understanding 

of how knowledge schemas are modified by short- and long-term exercise, and if/how resulting 

expertise in a sensorimotor domain (e.g., dance) transfers to improved performance in another 

domain (e.g., language, attention, WM). Using a variety of methodological approaches 

(behavioural, fMRI, and EEG), this thesis will demonstrate behavioural and neurological 

plasticity following short-term exercise (i.e., over the span of minutes), motor learning over an 

intermediate interval of weeks and months, as well as long-term plasticity following years of 

expertise in dance. Novel evidence will be revealed for improved performance on tasks 

measuring perception, attention, and WM following various movement-based interventions, 

which have promising implications for therapeutic applications (e.g., Rhythmic Movement 

Therapy, DWP). Additionally, the neural mechanisms underlying these cognitive improvements 

will be clarified using neuroimaging (fMRI and EEG). Finally, these projects will contribute 

empirical neuroscientific evidence on expert knowledge schemas underlying action, semantic, 

WM, and attentional processing among dancers in the growing field of neuroaesthetics. All of 

these insights will be revealed by a series of investigations with the following specific objectives:  

 

Objective 1: To demonstrate short-term transference of improved attention and WM 

performance following motor activation of non-expert knowledge schemas. I hypothesize that 

activating oculomotor brain networks through a brief course of eye exercises will resonate in 

shared attention and language processing regions, resulting in improved response accuracy to 

rapidly presented visual targets when evaluated post-exercise.  
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Objective 2: To determine whether attention and WM are influenced by long-term physical 

practice manifested as expertise. I hypothesize more efficient event segmentation of familiar 

dance sequences, but not unfamiliar dance genres or non-dance movement sequences. Based on 

previous evidence for transference of WM performance (Objective 1), I predict that activation of 

knowledge schemas via AO of familiar dance sequences primes language areas and facilitates 

improved recall of experientially-relevant words. Evaluation of these experience-dependent 

improvements in cognitive performance will be tested in Chapter 3.  

   

Objective 3: To reveal the neurophysiological mechanisms by which experts observe and 

visualize novel but familiar dance sequences relative to unfamiliar experts and non-experts. I 

predict faster iAPF and greater alpha and beta desynchronization (ERD) in sensorimotor regions 

among familiar ballet dancers during AO relative to less familiar and expert groups, indicating 

greater task engagement and visuotemporal updating. Further, I predict that these effects will be 

demonstrated during KMI of non-specialized movements, providing putative neurological 

evidence for transfer effects observed in Objectives 1 and 2. Chapter 4 describes the experiment 

that assessed this objective.  

 

Objective 4: To propose a model for expert knowledge schemas shaped by long-term dance 

practice, and the neural mechanisms by which it operates. Behavioural evidence for this model 

will be introduced in Chapter 3, its neural underpinnings as revealed by EEG will be evaluated in 

Chapter 4, and modulations to sub-regions of this model will be measured with fMRI in Chapter 

5. The final model will be defined and discussed in Chapter 6. I hypothesize that activation and 



	 25	

plasticity of one domain in the expert knowledge schema (e.g., sensorimotor skills) will lead to 

transference of expertise effects in other domains (language, attention and WM), which together 

will reflect more efficient brain activity to achieve optimal performance across domains.	
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2 CHAPTER TWO – EYE EXERCISES ENHANCE ACCURACY AND LETTER 

RECOGNITION, BUT NOT REACTION TIME, IN A MODIFIED RAPID SERIAL 

VISUAL PRESENTATION TASK1 

 

2.1   PREFACE 

Eye exercises have been prescribed to resolve a multitude of eye-related problems. However, 

studies on the efficacy of eye exercises are lacking, mainly due to the absence of simple 

assessment tools in the clinic. Because similar regions of the brain are responsible for eye 

movements and visual attention, we used a modified rapid serial visual presentation (RSVP) to 

assess any measurable effect of short-term eye exercise in improvements within these domains. 

In the present study, twenty subjects were equally divided into control and experimental groups, 

each of which performed a pre-training RSVP assessment where target letters, to which subjects 

were asked to respond to by pressing a spacebar, were serially and rapidly presented. Response 

time to target letters, accuracy of correctly responding to target letters, and correct identification 

of target letters in each of 12 sessions was measured. The experimental group then performed 

active eye exercises, while the control group performed a task that minimized eye movements for 

18.5 minutes. A final post-training RSVP assessment was performed by both groups and 

response time, accuracy, and letter identification were compared between and within subject 

groups both pre- and post-training. Subjects who performed eye exercises were more accurate in 

responding to target letters separated by one distractor and in letter identification in the post-

training RSVP assessment, while latency of responses were unchanged between and within 

																																																								
1	Paula M. Di Noto, Sorin Uta & Joseph F.X. DeSouza. (2013). PLOS ONE, 8(3), E59244.	
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groups. This suggests that eye exercises may prove useful in enhancing cognitive performance 

on tasks related to attention and memory over a very brief course of training, and RSVP may be 

a useful measure of this efficacy. Further research is needed on eye exercises to determine 

whether they are an effective treatment for patients with cognitive and eye-related disorders.  

 

2.2   INTRODUCTION 

Eyesight is the most evolutionarily advantageous sense for human beings. It allows for 

simultaneous, rapid, and efficient processing of information from the environment. This 

information is subsequently used to facilitate numerous cognitive functions, such as perceiving 

possible hazards and observation-based learning. Based on the immense reliance we have upon 

our vision, it is no wonder that many clinical techniques have been developed to assess and treat 

a multitude of eye and eye-related problems. Eye exercises are often prescribed in vision therapy 

to resolve issues relating to vergence, ocular motility disorders, accommodative dysfunction, 

amblyopia, learning disabilities, dyslexia, asthenopia, myopia, motion sickness, sports 

performance, stereopsis, visual field defects, and visual acuity (Rawstron, Burley & Elder, 2005). 

Eye exercises are also practiced to enhance sports performance and used during yoga to promote 

general well-being (Helveston, 2005). However, few studies exist on evaluating the outcomes 

and efficacy of this type of therapy (Crisp, 1950; Harvard Women's Health Watch; Karatz, 1975; 

Lasky & Lasky, 1990; Leary, Murray & van Selm, 1986; Rawstron et al., 2005; Rodriguez, 

Hopman & Hoveten, 2012; Roy, 1980). One such study found a measurable effect of eye 

exercise in patients with convergence problems (Gallaway & Scheiman, 1997). Additional 

research suggests eye exercise facilitates improvement in stereoscopic skills and visual field 

remnants after brain damage (Ciufredda et al., 2008); and there has been evidence to link visual 
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attention and visual working memory (for review see Theeuwes, Belopolsky & Olivers, 2009). 

dAside from these areas, there exists no other research implicating eye exercise as an effective 

treatment for other types of visual or cognitive deficits. Despite this lack of empirical peer 

reviewed research, eye exercise remains a popular technique/therapy as demonstrated by a 

Google search of “eye exercise” conducted in April 2009 which yielded 13,400,000 results, and 

244,000,000 results when searched again on April 3rd, 2012.  

 Perhaps the most popular type of vision therapy is the ‘See Clearly’ technique established 

by ophthalmologist William Horatio Bates (Helveston, 2005).  His book, The Cure of Imperfect 

Sight by Treatment without Glasses (Bates, 1920), highlights a wide assortment of possible 

therapeutic eye exercises, one of which requires patients to shift their fixation between two 

targets repeatedly without staring. This is intended to relax the eye and correct errors in 

refraction leading to improved vision. Essentially, Bates’ eye exercise technique employs rapid 

saccadic eye movements in an attempt to improve visual acuity, but there is no discussion in his 

work on how saccades affect visual attention. Through a review of historical literature and our 

present investigation, we intend to illuminate the mystery of eye movement training and its 

relation to visual attention.  

Evidence in the field of vision research has suggested the frontal eye fields (FEF), an 

oculomotor region of the premotor cortex, is of paramount importance during voluntary saccade 

production in humans and non-human primates (Braun, Weber, Mergner & Schulte-Mönting, 

1992; Pierrot-Deseilligny, Ploner, Müri, Gaymard & Rivaud-Péchoux, 2002; Taylor, Nobre & 

Rushworth, 2006). Pro-saccades are small, jerky eye movements towards an object or cue. Anti-

saccades are, by definition, gaze shifts in the opposite direction of a presented stimulus cue 

(Connolly, Goodale, DeSouza, Menon & Vilis, 2000; DeSouza, Menon & Everling, 2003; 
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Hallett, 1978; Schlag-Rey, Amador, Sanchez & Schlag, 1997). Munoz and Everling (2004) 

reviewed single neuron activity in the FEF and found it to be responsible for voluntary control of 

anti-saccade eye movements, which are guided by instructions and attentional control. Further to 

this, inactivation of the FEF via chemical injection has resulted in an abolition of voluntary 

saccades to the contralateral visual field (Dias, Kiesau & Segraves, 1995). The FEF is also 

shown to be involved in visual attention tasks (Moore, 2003; Neggers et al., 2007; Taylor et al., 

2006). Thus, we can reasonably suspect that repeated saccade performance will have a 

measurable effect on the visual attention network depending on the amplitude and frequency of 

saccades. Since the synapses of neurons are dynamic and adaptive (Linden, Heynen, Haslinger & 

Bear, 2009; Dorris, Paré & Munoz, 2000), it is theoretically possible to improve performance on 

a visual attention task by strengthening the connections of neurons through saccadic eye exercise 

over a short period of time, such as a few hours or even a few minutes. 

   A study by Dyckman and McDowell (2005) involved training participants on one of three 

eye movement tasks (anti-saccade, pro-saccade or fixation). Participants trained on the pro-

saccade task made more errors on subsequent anti-saccade testing, while subjects trained on the 

fixation task showed no change in errors during the pro- and anti-saccade testing sessions. 

Subjects that underwent anti-saccade training had decreased errors while maintaining the same 

speed. These findings suggest that deliberate practice of eye movements can alter anti-saccade 

performance on later testing, and the enhancement of accuracy demonstrated in the anti-saccade 

training group was not a trade off for speed. Furthermore, an assertion was made that the 

direction of the practice effect depends on the type of training task one engages in such that the 

subjects’ performance would improve on the task they had been trained on. While the effects of 

saccade practice have been shown to alter one’s performance on anti-saccade tests, much 
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remains unclear regarding its effects on visual attention performance and the putative 

involvement of the FEF region in relation to saccade practice effects and visual attention. What 

these studies do underscore, however, is the highly plastic nature of the brain and visual system, 

which can adjust to different requirements with sufficient training (Keck et al., 2008; Linden et 

al., 2009; for review see Citri & Malenka, 2007).  

To the best of our knowledge, there exists no study that assesses changes in visual 

attention and memory following vision training with eye exercises. The majority of studies 

assessing the progression of vision-related problems utilize the subjective College of 

Optometrists in Vision Development (COVD) quality of life checklist. The 30-item 

questionnaire requires patients to input the frequency of personally experienced issues related to 

Physical-Occupational (mobility), Social Integration (personal relationships), Somatic Sensation 

(physical symptoms) and Psychological (overall life satisfaction) domains. Studies on patients 

that undergo this therapy while being evaluated with the COVD checklist show a decrease in 

subjective symptoms and an improved overall quality of life (Daugherty, Frantz, Allison & 

Gabriel, 2007). However, there is an absence of any evaluation of the quantitative behavioural or 

putative neural changes in the vision-related problems that subjects present with.  

Because of the lack of assessed improvements in vision, attention, and working memory 

following therapeutic intervention, the present study was designed in an attempt to investigate 

whether eye exercises as visual training influence performance on a visual attention task. 

Dyckman and McDowell (2005) indicated their observed practice effect can be quantified in as 

little as 3 days. However, the present study will attempt to demonstrate improvements in visual 

attention after only 18.5 minutes of eye exercises as measured by rapid serial visual presentation 

(RSVP).  Joseph, Chun and Nakayama (1997) demonstrated that RSVP is a sensitive tool 
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capable of measuring visual attention through letter identification. This tool is especially fitting 

for the present investigation, which provides a limited but sufficient amount of visual training in 

an experimental paradigm that can be easily replicated and performed in under 20 minutes. Our 

paradigm will divide subjects into two groups based on their training condition: an active eye 

exercise group and a control group that will perform minimal eye movements. Both groups will 

perform RSVP twice (prior to and following their respective training conditions), which ensures 

that practice effects related to RSVP exposure can be eliminated and any differences in RSVP 

performance can then be attributed to the effects of eye exercises on visual training. Following 

the assumptions of Dyckman and McDowell (2005), we hypothesize that participants who 

undergo eye exercise will respond to RSVP with greater accuracy in a second post-training 

evaluation while maintaining similar response times.  Similarly, we do not expect the control 

group to exhibit any changes in speed or accuracy during the subsequent RSVP task. If a 

measurable difference in visual attention is indeed detected in the post-training RSVP task, we 

can lend further evidence to the efficacy of eye exercises as a useful method of enhancing visual 

and cognitive control.  

 

2.3   METHODS 

2.3.1   Participants 

Twenty participants (10 female, mean age= 26.0, SD=11.2) volunteered for the present 

study. All participants were free of memory problems and uncorrected vision problems. 

Participants were randomly assigned to one of two age- and sex-matched groups: the 

experimental eye exercise group (5 female, mean age=27.3, SD=11.2) or a control group (5 

female, mean age=24.8, SD=11.7) that performed minimal saccadic eye movements.  
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The present study was approved by the York University Human Subjects Review Board and 

conducted in accordance with the Declaration of Helsinki. All participants provided signed 

consent prior to taking part in the study, and were free to withdraw at any time with no 

consequences.  

2.3.2   Rapid Serial Visual Presentation (RSVP) 

For both eye exercise and control groups, participants were assessed using RSVP before 

and after their respective training conditions (Figure 2.1). In RSVP, all 26 letters of the English 

alphabet are randomly presented in either black (RGB: 0, 0, 0) or white (RGB: 255, 255, 255) 

within a 30 x 30 pixel grey box (RGB: 128, 128, 128) at the center of the screen. Black letters 

are non-target letters while white letters represent the target to which subjects responded by 

button press on a computer keyboard. Each letter is presented for 33ms followed by a 50ms 

blank box.  A trial starts with the presentation of 5 to 10 non-target letters followed by a target 

letter. Following presentation of the first target letter, another 0 to 4 non-target letters are shown 

before the next target letter. Either 2 or 3 target letters are shown per session before concluding 

with 14 non-target letters. This sequence is repeated a total of 10 times to constitute one trial. 

Our subjects were exposed to 12 trials in total. Our RSVP task replicates the one used by Joseph 

and colleagues (1997), except our paradigm includes second and third additional target letters 

that are randomly presented in the trials within each session. This was meant to ensure that each 

session randomly presented 2 or 3 target letters and participants were unable to predict how 

many times they were required to respond. The total experiment consists of 12 trials, each 

consisting of 10 sessions (1 session = 5-10 non target, target, [0-4 non target, target] x 1 or 2 

randomized, 14 non target). Total time for the entire experiment of the modified RSVP task is 
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approximately 10 minutes. We were interested in measuring three aspects of subjects’ 

performance in the RSVP task: reaction time to responding to target letters, accuracy in  

 
Figure 2.1. Protocol for the modified RSVP task.  
All letters were presented at central fixation, with target letters appearing in white and non-
target letters appearing in black font. 

 

responding to target letters, and accuracy in identifying the final target letter in every tenth 

session. 

2.3.3   Letter Identification 

Expanding upon the RSVP task presented by Joseph et al. (1997) we incorporated an 

instruction to identify the target letters observed during every tenth session. Participants were 

prompted by an instructional screen to indicate the letters presented, and were given extra time 

(15sec) to indicate the letters using the computer keyboard. The purpose of this evaluation was to 

determine whether eye exercise facilitated improvements in visual working memory as measured 

by letter identification, and specifically, with the number of correct responses. Overall, letter 

identification was required 12 times, once after the final session of every trial (Figure 2.1). 

2.3.4   Eye Exercise Task 

The experimental condition had ten participants perform an active eye exercise task, 

which involved following a white square on a black background through a series of paths 

described as follows (Figure 2.2). The participants were expected to make saccadic eye 
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movements while following the square through a course of 5 horizontal figure eights, 5 large 

rectangles outlining the edge of the screen, 5 vertical figure eights and 5 small rectangular paths.  

 

 
Figure 2.2. Protocol for the eye exercise and control groups.  
Following a 10-minute RSVP task, subjects in the eye exercise group were instructed to follow 
a moving box on the screen, effectively performing 7740 saccadic eye movements. Subjects 
in the control group were asked to fixate on a movie clip presented in a very small (50 x 50 
pixel) box on the screen. Following each training condition was a second RSVP assessment.  

 

This cycle was repeated 4 times. The square would move to a new position every 150ms. The 

duration of the eye exercises was 18.5 minutes. Overall, following the square would have 

resulted in the performance of 7,740 saccadic eye movements, thus maximizing the amount of 

eye movements performed. The eyes of the subjects were observed by the experimenter during 

the entire task to ensure that subjects were actively participating in the task. All subjects 

complied with the instructions and were included in the analysis. 

2.3.5   Control Task 

The control group had a training condition that intended to minimize the amount of eye 

movements, or exercise, that the participants engaged in. As such, the control task involved 

participants’ passive observation of an 18.5-minute clip of a movie (Shrek 3) without sound. This 

clip was displayed within a 50 x 50 pixel sized box surrounded by a white screen (Figure 2.2). 
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The dimensions were purposefully small to minimize saccadic eye movements. Any changes 

found in the control group were expected to be due to effects of the RSVP task and thus can be 

used to factor out the practice effects from the experimental group. The eyes of the subjects were 

observed by the experimenter to ensure that the subjects were actively participating in the task.  

2.4   RESULTS 

2.4.1   Reaction Time 

We compared reaction time to responding to target letters in the pre-training versus post-

training RSVP task with a repeated measures ANOVA and found that neither group deviated 

from their pre-training reaction time (training and test condition interaction: F(1, 17) = 2.334, p = 

0.145) (Figure 2.3). One participant from the control group was excluded from analysis due to a 

malfunctioning button press and a loss of registered data. Paired sample t tests reveal that 

average reaction time for the eye exercise group did not differ from the control group in either 

the pre-training (t(8) = 0.429, p > 0.1) or post-training RSVP task (t(8) = 0.145, p > 0.1). 

 
Figure 2.3. Reaction time to RSVP target letters. 
No differences in reaction time to target letters were revealed between groups or between pre- 
or post-training assessments. Error bars show SEM. 

 

2.4.2   Response Accuracy 
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Response accuracy was analyzed with a 2x2x5 repeated measures ANOVA (Table 2.1). 

Only the main effect of distractor was highly significant (F(4, 72) = 113.72, p < 0.001, ηp
2 = 

0.863), with expected increases in response accuracy as the number of distractors between target 

letters increased from zero to four. The distractor*training interaction was approaching 

significance (F(4, 72) = 2.175, p = 0.080) but had a large effect size (ηp
2 = 0.108), suggesting an 

influence on response accuracy by practice effects or training effects, presumably from the eye 

exercise condition. This final presumption is strengthened by the significant distractor*condition 

interaction (F(4, 72) = 7.35, p < 0.000), with the eye exercise group outperforming the control 

group at two (pBonf = 0.022) and four (pBonf = 0.030) distractors (both p values adjusted with a 

Bonferroni correction). Although non-significant, the training*condition interaction had a 

medium effect size (F(1, 18) = 1.179, p = 0.292, ηp
2 = 0.061), and the three-way interaction 

between condition*training*group also demonstrated a small effect size (F(4, 72) = 0.363, p = 

0.834, ηp
2 = 0.020).  

 

Table 2.1. Response accuracy during RSVP task. 
 F (df) p Effect size (ηp

2) 
Distractor 113.724 (4,72) .000*** .863 
Training 0.663 (1,18) .426 .036† 
Distractor x Training 2.175 (4,72) .080 .108††† 
Distractor x Condition 7.350 (4,72) .000*** .290 
Training x Condition 1.179 (1,18) .292 .061†† 
Distractor x Training x Condition 0.363 (4,72) .834 .020† 

*** Significant at P<.001, † Small effect size, †† Medium effect size, ††† Large effect size 
 

Despite the lack of statistical significance of the interactions implicated in eye exercise 

training, graphical examination of the data (Figure 2.4) together with the overlap of significant 

effects and noteworthy effect sizes prompted us to examine the three-way interaction further, as 

it is the most informative with respect to answering our main research question: does eye 

exercise improve performance on cognitive tasks of visual attention and memory? Pairwise 
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comparisons adjusted with a Bonferroni correction show a significant improvement in response 

accuracy for the eye exercise group only when one distractor is presented between target letters  

 

 
Figure 2.4. Pre- versus post-training response accuracy to RSVP target letters.  
Subjects who were trained with eye exercise (grey and black bars) showed significant 
enhancement in responding to target letters separated by one distractor (‘One’ condition) 
following eye exercise training, and were approaching significance when responding to two 
sequentially presented target letters (‘Zero’ condition). This enhancement was not shown in 
the control group (cross-hatched and white bars), and there were no changes in either group’s 
accuracy of detecting targets separated by more than one distractor. Error bars show SEM.  
* p = 0.05, ‡ p = 0.079.  

 

(pBonf  = 0.050) and was approaching significance when target letters were presented sequentially 

(pBonf  = 0.079, black and grey bars in Figure 2.4).  

The control group failed to deviate from pre-training performance regardless of the 

number of distractors presented between target letters (p > .05). To clarify any inherent 

differences in response accuracy between groups pre-training, we conducted post hoc one-way 

ANOVAs for each level of distractor, which revealed subjects in the eye exercise group were 

better at responding to target letters separated by four distractors (F(1, 19) = 4.55, p < 0.05), but 

groups did not differ in pre-training accuracy in the remaining four distractor conditions (p > 
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0.1). A composite performance measure comparing correct responses to false alarms (FAs, i.e., 

pressing spacebar in response to non-target letters) reveal a minimal influence of FAs on 

response accuracy (d’ = 4.12 pre-training for both groups, d’ = 3.84 post-training for both 

groups). 

2.4.3   Letter Identification 

Subjects in both the eye exercise group and control group were assessed on their ability 

to correctly identify the final target letter presented in each of the twelve trials per RSVP session. 

One participant from the experimental group was excluded from analysis due to a 

malfunctioning button press and lack of registered data. A repeated measures ANOVA revealed 

a significant increase in letter identification accuracy across both groups (F(1, 17) = 5.138, p = 

0.037), but with an interaction effect of training and condition only approaching significance 

(F(1, 17) = 3.598, p = 0.075). When exploring the nature of this interaction further, pairwise 

comparisons reveal that only subjects trained with active eye exercises demonstrated significant 

improvements in letter identification (p = 0.011), while the control group failed to deviate from 

their pre-training performance (p = 0.791, Figure 2.5). All subjects performed well above the 

chance rate for guessing the correct letter throughout the experiment (i.e., 1/26 = 3.85%) and 

groups did not differ in pre-training letter identification accuracy (t(8) = -0.438, p > 0.1). 

Sensitivity analyses reveal that only the experimental group significantly reduced the relative 

number of errors in their performance (d’ = -0.04 pre-training, d’ = 0.77 post-training, paired-

samples t(8) = -2.92, p < 0.01), while the control group sensitivity measure did not change 

significantly (d’ = 0.07 pre-training, d’ = -0.09 post-training, paired-samples t(9) = 0.738, p > 

0.1). Errors were classified as incorrect letters reported (despite a correct response to target 

letters), no response and no reported target letters, too many letters identified both with and 
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without responses to each target letter, no letters identified despite correct responses, no response 

and incorrect letters identified, and no response but correct letter identification. 

 

 
Figure 2.5. Pre- versus post-training letter identification of RSVP target letters.  
Subjects who were trained with eye exercises showed a significant improvement in letter 
identification during the post-training RSVP assessment compared to letter identification 
performed during the pre-training RSVP assessment. Error bars show SEM. * P<0.05. 

 
 

2.5   DISCUSSION 

The purpose of the present study was to determine whether eye exercises alter 

performance on a visual attention and memory task, which would be suggestive of vision therapy 

as a useful tool in treating similar and related cognitive and eye-related problems such as 

amblyopia, myopia, learning disabilities, motion sickness, stereopsis, visual field defects, and 

visual acuity. Previous studies have investigated whether vision therapy is an effective treatment 

for eye-related problems (Crisp, 1950; Gallaway & Scheiman, 1997; Harvard Women's Health 

Watch; Karatz, 1975; Lasky & Lasky, 1990; Leary, Murray & van Selm, 1986; Rawstron et al., 

2005; Rodriguez, Hopman & Hoveten, 2012; Roy, 1980); however, these studies did not 
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evaluate any enhancements of cognitive performance. To the best of our knowledge, no direct 

quantitative measure of improvement on accuracy of eye movements, or in the treatment of 

impaired cognition, exists following a session of eye exercise. To conduct such an evaluation, we 

chose to use a simple RSVP task modified from the one used by Joseph et al. (1997).  By using a 

task that demands very high attentional resources at central fixation, we can conclude that the 

observed improvements in response accuracy (Figure 2.4) and letter identification (Figure 2.5) 

can be attributed to enhancement as a result of eye exercise. These enhancements may be 

mediated by short-term changes in neural activity through eye exercise-induced priming and/or 

mechanistic short-term plasticity of frontal and parietal regions and superior colliculus, which 

are responsible for visual attention, preparatory motor signaling of the visuomotor system, and 

working memory (Chan & DeSouza, 2013; Corbetta et al., 1998; DeSouza et al., 2003; Dias et 

al., 1995; Dorris & Munoz, 1998; Munoz & Everling, 2004; Neggers et al., 2007; Pierrot-

Deseilligny et al., 2002; Taylor et al., 2006; Theeuwes et al., 2009).  

Neural plasticity is defined as a change in the activity and connections among 

populations of neurons as a result of experience-based modification in behavior. Importantly, 

short-term plasticity that occurs over a very brief time span, such as minutes or hours, involves 

the control and regulation of dynamic activity (Dorris et al., 2000). Although plasticity requires 

excitatory neural activation in order to occur, the former induces changes in patterns of neuronal 

activity in addition to improved behavioral performance, both of which are maintained long-term 

with continued practice (Dorris et al., 2000; Dyckman & McDowell, 2005). Although we did not 

measure changes in cortical activity in our purported neural network, previous work has 

correlated enhanced oculomotor performance with short-term neuronal plasticity (Dorris et al., 

2000). Based on the observed behavioral improvements in response accuracy and letter 
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identification, we can infer that eye exercises successfully primed this network by way of 

excitatory neural activity which with continued practice could potentially lead to short-term 

plasticity of the oculomotor circuit. Thus, a brief course of eye exercises may facilitate 

improvements in cognitive task performance through short-term changes in cortical activity, and 

could prove to be an effective short-term treatment for other cognitive and eye-related disorders.  

There were at least three ways in which a subject could show an improvement in visual 

attention on the RSVP assessment: (a) faster reaction time when responding to a target letter, (b) 

overall increased accuracy in responding to target letters, and (c) improved accuracy of target 

letter identification.  

In the present study, reaction times were not significantly different in the post-training 

session compared to the pre-training for either group (Figure 2.3). The lack of a difference 

between the two groups suggests that any significance found within the subjects would have 

been purely due to practice effects associated with RSVP experience. This conclusion is in line 

with the findings of Dyckman and McDowell (2005), as subjects in their experiment did not 

experience changes in reaction time. Recently, it has been suggested that reaction time improves 

on a procedural visuo-motor task with the allowance of sleep following training (Gais et al., 

2008). Thus, future studies may need to incorporate a more dispersed regime of eye exercise 

before any significant improvement on reaction time can be seen. Furthermore, studies have also 

shown that introducing physical activity to a visual response task can improve reaction time 

(Joyce, Graydon, McMorris & Davranche, 2009). An improvement was shown not only on tasks 

requiring a motor response (button press), but also on cognitive processes requiring inhibition of 

preplanned motor actions (suppressing response to an inhibitory cue). The effects of exercise 

were observed during, immediately after and at least 52 minutes after strenuous activity on an 
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exercise bike. Thus, future studies may need to incorporate an element of physical activity to 

further examine its interaction with visual attention.  

There were no changes to overall accuracy in response to target letters for the control 

group. However, following eye exercise, there was a significant increase in accuracy only when 

responding to two target letters separated by one non-target letter (p = 0.050), and was 

approaching significance when presented in sequence with no distractors between them (p = 

0.079, Figure 2.4). Additionally, all main and interaction effects analyses including the training 

factor demonstrated at the very least small but notable effect sizes (Table 2.1). Although we 

hypothesized that subjects trained with eye exercises would show greater accuracy in responding 

to target letters than controls, we did not anticipate that the improvements would occur at only 

the first two levels of our five distractor conditions. We believe that the enhancement of 

detecting visual cues following a relatively brief (18.5 minutes) period of eye exercise during the 

two quickest serial presentations of target letters (presented between 50-133ms apart) perhaps 

reflects the strongest evidence for enhancement of visual attention following eye exercises. That 

subjects trained with eye exercises were able to significantly improve their performance in one of 

the two most rapid levels of the RSVP task suggests a high level of reactivity and adaptability of 

the visuomotor and attentional systems, connected by a common neural network and putatively 

primed by eye exercises. That the experimental and control groups did not differ at higher levels 

of the distractor condition could reflect ceiling effects for reaction times to target letters 

presented with two or more distractors between them (i.e., at least 216ms between presentation 

of two target letters). This finding is congruent with Dyckman and McDowell's (2005) findings, 

which demonstrate that response accuracy improved with eye exercise. While our exercise task 

involved only pro-saccadic eye movements to train for responding to a visual cue in the form of 
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a button press, previous research has utilized fixation, anti- and pro-saccadic training to examine 

changes in accuracy to the desired response, which in their study was the execution of an anti-

saccade. Despite the differences in training and assessment parameters, together our findings 

suggest an overall interaction between eye movements and improved accuracy on visual tasks. 

However, Dyckman and McDowell (2005) found a measurable difference in anti-saccade 

formation after a minimum of three days, whereas our study found significant improvements 

after only a short training period (18.5 minutes). 

 A probable neural mechanism for facilitating the observed improvement in response 

accuracy following eye exercises can be inferred from studies examining trans-saccadic 

integration, the processing of visual information along the path of an eye movement, which have 

demonstrated the heightened ability to recognize features of presented objects on a post-saccadic 

recognition test (Demeyer, De Graef, Wagemans & Verfaillie, 2009). The cognitive processes 

involved with recognizing the shape, color, or other features of an object may also mediate the 

recognition of target and non-target letters, as was required in our RSVP task. We found very 

similar results in a previous fMRI investigation of divided attention. Using the same RSVP task 

employed in this study while subjects performed pro- and anti-saccades, blood-oxygen-level-

dependent (BOLD) activity was increased in oculomotor regions of the prefrontal cortex, 

including the FEF and dorsolateral prefrontal cortex. Additionally, longer saccade latency and 

more errors were produced in anti-saccade trials with short (200-250ms) instruction times (Chan 

& DeSouza, 2013). That the present investigation showed significant improvements in response 

accuracy during short and successive presentations of target letters (50 to 133ms apart) could 

reflect short-term plasticity and enhancement of neuronal signals in the oculomotor cortical 

circuit due to a brief training period of eye exercises. Further evidence in support of this putative 
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neural mechanism in mediating increased accuracy for object recognition, such as whole words, 

comes from a study by Lyle and colleagues (2008) that shows enhanced recall of a word 

following 30 seconds of horizontal eye movements preceded by the study of a word array.  

Because past research has found pursuit of a moving square through a circle path to 

stimulate creativity (specifically, originality and flexibility), it comes as no surprise that eye 

movements may similarly influence cognitive areas (Shobe, Ross & Fleck, 2009). Our study 

compared improvements in letter identification accuracy between groups. Following eye 

exercises, a significant improvement in letter identification was found (p < .05, d’ = -0.04 pre-

training, d’ = 0.77 post-training). This enhancement in accuracy was not observed in our control 

group, who performed at a similar level to their pre-training assessment (Figure 2.5). This is in 

line with past research, which found horizontal eye movements also improved the recall of 

laboratory and everyday events (Christman, Garvey, Propper & Phaneuf, 2003). However, this 

was found solely for horizontal saccade formation, and not for vertical or smooth pursuit 

saccades. A possible mechanism for this improvement has been further suggested by Murray, 

Beutter, Eckstein and Stone (2003). On a visual search task, they demonstrated that during 

saccade formation, one could assess visual objects based on shape. From these findings, we 

could infer that eye movements increase one’s ability to identify a change in letter shape. Indeed, 

it was found in our study that participants performed well above chance for observing a change 

in letter rather than color. If participants were unable to identify the change in letter, they would 

guess with an accuracy rate of 3.8% (1/26 letters in English alphabet). A study by Brunyé, 

Mahoney, Augustyn and Taylor (2009) supports this claim by finding that horizontal eye 

movements enhance the detection of changes in landmark information, specifically the shapes 

and locations of objects. However, their findings were only applicable to horizontal eye 
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movements, due to a negligible effect in vertical saccades and fixation, and examined much more 

complex visual cues. Together these investigations from their respective varying perspectives all 

lend evidence to increased inter-hemispheric brain activation with the performance of repeated 

bilateral horizontal eye movements. 

Another interesting interaction between object recognition and eye movements comes 

from research on the interference of neural processing as a result of eye blinks. As demonstrated 

by Thomas and Irwin (2006), voluntary eye blinks interfered with object identification during 

trans-saccadic partial reports. They named this phenomenon the cognitive blink suppression¸ and 

postulated that this process hinders neural processing of visual stimuli. In relation to our study, a 

similar suppressive process may exert an influence on letter identification accuracy. However, 

our study did not involve voluntary blinking, nor did we utilize an eye tracking mechanism to 

track eye blinks during the experiment. Future studies could incorporate these elements to 

provide potential clarification on this interaction. Additionally, our future studies will examine 

the enlarging of pupil dilation, which has now been found to be co-activated during stimulation 

of a brain structure involved in attention and eye movements in non-human primates (Wang, 

Boehnke, White & Munoz, 2012). However, we do not feel that this phenomenon is an 

influential factor in explaining our results because subjects were not required to perform eye 

movements during the RSVP task.   

More recently, vertical saccades have been shown to improve performance on item 

retrieval, pair association tests, and recall of contextual information, both intrinsic (color) and 

extrinsic (spatial location) (Parker, Relph & Dagnall, 2008). Further, smooth pursuit studies in 

preschool children have correlated the inability to follow an instructor’s cue with lower scores on 

cognitive tests in phonological awareness, path copy and letter recognition (Callu et al., 2005). 
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This is to show that these types of eye movements deserve further study to clarify their 

involvement in enhancing cognition.  

Together with our results, we use these lines of research to propose an underlying neural 

mechanism that facilitates the enhancement of visual attention and memory following eye 

exercises, even when performed for a very brief training period. Common functional regions of 

the cortex have been activated during tasks of shifting visual attention and eye movements. This 

wide-reaching network includes the superior temporal sulcus (STS), intraparietal sulcus (IPS), 

and portions of the precentral sulcus and medial frontal gyrus (Corbetta et al., 1998). It is 

important to note that these investigators did not examine changes in accuracy or response time 

over the course of task performance (i.e., with time, accounting for practice or ceiling effects). 

As they pertain to our investigation, however, the continued and synchronous activation of this 

network during the brief eye exercise task may have been sufficient to facilitate short-term 

plasticity (Dorris & Munoz, 1998). Similarly, eye exercise may induce neuronal potentiation, 

effectively “ramping up” preparatory oculomotor signals in dorsolateral prefrontal cortex and 

frontal eye fields (DeSouza et al., 2003), priming these pre-existing neuronal circuits to facilitate 

the enhancement in response accuracy seen in our results.  

We further posit that a similar mechanism can be attributed to the observed improvement 

in letter identification for the eye exercise group, with previous research showing links between 

regions related to working memory, attention and eye movements.  Although these investigations 

examine spatial memory, and not declarative memory as in the recall of a presented target letter, 

they implicate the lateral intraparietal area as an attentional mediator of eye movements, which 

are executed by the superior colliculus (Theeuwes et al., 2009). Training with eye exercise could 

similarly induce short-term plasticity and/or potentiation of connecting axonal signals in this 
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cortical network, enhancing the availability of neuronal resources in the letter identification 

portion of the post-training RSVP task. In turn, this priming could facilitate the enhancement in 

letter identification observed in our results. 

 

2.6   CONCLUSIONS 

The results of this experiment found a performance enhancement for the detection of 

visual targets when presented in very rapid succession (i.e., separated by one or no distractors) 

following repetitive eye movements. Although the RSVP task did not demonstrate any 

differences in reaction time following the eye exercises, there was a significant increase in letter 

identification accuracy in the experimental group only. Theoretically, these results suggest that a 

common cortical network that mediates cognition, attention, and oculomotor behavior (i.e., 

knowledge schema) is capable of undergoing very short-term plasticity, which in turn improves 

subsequent performance on related tasks. However, more research needs to be done before letter 

identification through RSVP can be deemed an appropriate tool for measuring the progression of 

vision therapy, and whether vision therapy is the most effective option for cognitive and eye-

related impairments. Further examinations could incorporate eye tracking, a more dispersed 

regime of visual training, or examine training of whole-body movements to clarify what effects 

visual and/or movement therapy may have on the performance of cognitive tasks.  
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3 CHAPTER THREE – FAMILIARITY AND EXPERTISE MODULATE EVENT 

SEGMENTATION OF DANCE AND RECALL OF EXPERIENTIALLY-RELEVANT 

WORDS2  

 

3.1   PREFACE 

Having demonstrated significant improvements in attention and working memory (WM) 

following short-term eye exercises (Di Noto et al., 2013, Chapter 2), the aim of the current study 

is to determine whether these cognitive processes are influenced by long-term physical practice 

manifested as expertise. Attention can be measured with event segmentation - a perceptual 

process by which observed actions are partitioned into discrete meaningful units that also 

facilitates their learning (Zacks et al., 2001). When segmenting dance, expertise in the observed 

repertoire has been shown to result in significantly fewer segments or event borders (Bläsing, 

2015). Whether such expertise effects are generalized to segmenting unfamiliar genres of dance 

or non-dance movements has yet to be shown. The present study sought to investigate 

differences in segmentation of a ballet dance, a traditional Tamil Bharatanatyam dance, and a 

non-dance acting sequence among experts from six groups (total N=112): ballet and 

Bharatanatyam dancers, dancers from other genres (e.g., contemporary, jazz, tap), athletes, 

musicians, as well as non-experts. Between blocks of event segmentation, subjects (N=106) 

performed a WM Retrieval-Induced Forgetting (RIF) task. First, subjects were shown 60 

category-exemplar word pairs (e.g., FRUIT – apple) from 10 categories. Dance, Instrument, and 

Sport categories were included to probe domain-specific WM performance and ‘knowledge 

schema’ activation among expert groups. Practice recall of a subset of exemplars was performed 

																																																								
2	Paula M. Di Nota, Michael P. Olshansky & Joseph F.X. DeSouza. Presented at Society for Neuroscience Annual 
Meeting and Cell Symposium: Big Questions in Neuroscience (November 2016), San Diego, CA	
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immediately following presentation of the word pairs. Subsequent recall of practiced words 

(Rp+), non-practiced words from practiced categories (Rp-), and non-practiced words from non-

practiced categories (Nrp) was assessed between blocks 2 and 3 of event segmentation. 

Segmentation results show significantly fewer event borders among Bharatanatyam dancers 

when segmenting a familiar dance sequence relative to dancers from other genres during early 

trials (trials 1 to 5 of 10 trials, p = 0.02), providing novel evidence for genre-specific familiarity 

effects during dance segmentation. Consistent with previous studies, all participants showed 

significant practice effects (Rp+ > Nrp) and RIF (Nrp > Rp-) (pBonf = 0.000). Most importantly, 

we provide novel evidence for significantly enhanced recall of words from experientially-primed 

categories such that ballet and Bharatanatyam dancers remembered more Dance words than all 

other groups following observation of a familiar dance sequence. Together these findings 

provide novel evidence for the translational benefits of long-term expertise on perceptual and 

cognitive processing. By priming knowledge schemas with actions specifically tuned to the 

observer’s motor repertoire, event segmentation becomes more efficient and WM for 

experientially-relevant items is improved.  

 

3.2   INTRODUCTION 

Imagine a dancer gracefully moving across a stage, performing a sequence of precisely-

timed choreography. When viewing continuous streams of action, human observers 

unconsciously break down these series of movements into discrete chunks or events (Zacks et al., 

2001a). Two prominent theories account for how and why we segment action in this way; 

according to the Theory of Event Coding, it allows an agent to perceive, understand, and perform 

a given set of actions that form an embodied repertoire that is both cognitive and motoric 



	 50	

(Hommel, 2015; Hommel, Müsseler, Aschersleben, & Prinz, 2001). The development of these 

knowledge schemas (see Section 1.3, Figure 1.1) also facilitate the prediction of outcomes in 

future interactions with similar contexts, in turn enabling adaptive learning of appropriate 

behaviors (Swallow & Zacks, 2008). Similarly, Event Segmentation Theory (Zacks et al., 

2001,a,b; 2010) proposes that “chunking” or segmentation unfolds in real-time to meaningful, 

reliable and ecologically relevant features of action, as well as to conceptual changes in the 

goals, interactions and causal relations of observed agents (Zacks, Speer, Swallow, & Maley, 

2010). This allows the observer to discern the individual component events (slicing bread, 

putting meat and condiments between them) of a longer meaningful sequence (making a 

sandwich). The ‘borders’ of these events define its structure, which is encoded and updated in 

both working and long-term memory (Swallow, Zacks, & Abrams, 2009). That segmentation 

also occurs when reading narratives about actions (Speer et al., 2007) demonstrates the strong 

link between language, action, and engrained knowledge schemas.  

Event borders are structured hierarchically, with longer ‘coarse’ events comprised of 

groups of ‘fine-grained’ segments. When tested experimentally participants are asked to segment 

the largest units of ‘natural and meaningful’ movements to satisfy the former condition, and to 

segment the smallest units of activity during fine segmentation conditions (Speer et al., 2003). 

While experimenters are careful to not influence the nature of participants’ segmentation 

behaviour, the ambiguity of these instructions may account for the sensitivity of event borders to 

individual differences (Zacks et al., 2001a) that are nonetheless reliable over time (Speer et al., 

2003). This stability can be attributed to several factors, including the top-down modulation of 

attention by engrained knowledge schemas of constituent motor representations (Hemeren & 

Thill, 2011), event/object features, and sequential dependencies (i.e., that underwear are put on 
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before pants in the sequence of ‘getting dressed’) acquired through experience (Schubotz, Korb, 

Schiffer, Stadler, & Cramon, 2012; Zacks et al., 2001b).  Research on individuals with dementia 

has shown that aberrant segmentation behaviour predicted poorer naturalistic action performance 

(packing a lunchbox or schoolbag), and that medial temporal lobe volume predicted deficits in 

episodic memory of such tasks. These findings suggest that the ability to segment, describe, and 

encode action is critical for successful motor performance, and that these processes likely recruit 

from common underlying knowledge schemas (Bailey, Kurby, Giovannetti, & Zacks, 2013a; 

Bailey, Zacks, Hambrick, Zacks, Head, et al., 2013b). 

The itemization of component movements that can be recombined to form a novel 

sequence is perhaps best exemplified by dance, which has garnered a growing body of literature 

in the field of cognitive neuroscience (for review see Chatterjee, 2011). While segmentation has 

been demonstrated during passive listening to music (Sridharan, Levitin, Chafe, Berger, & 

Menon, 2007), only two studies have explored the active segmentation of observed dance 

movements. Noble et al. (2014) had non-expert participants segment a traditional Tamil 

Bharatanatyam dance and identified active brain regions at the time points associated with the 

most frequent event borders in a separate group of non-experts. They found significant activation 

in inferior frontal and occipital gyri and right posterior superior temporal sulcus (pSTS). When 

comparing segmentation in experts with non-experts, Bläsing (2015) found that dancers familiar 

with the observed genre respond with fewer event borders relative to non-dancers, and with even 

fewer event borders after physically learning and performing the dance sequence. While these 

two investigations compared neurological and behavioural measures of event segmentation in 

non-experts and/or experts highly familiar with the genre of the experimental stimulus, it remains 
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to be observed whether these effects are generalizable to 1) expert dancers in other genres of 

dance, and/or 2) experts in other physical activities, including music and athletics.  

When considering dance as a (non-verbal) communicative set of temporally extended 

movements, it can be considered functionally similar to language. Indeed, several studies have 

found activation of language processing regions, including dorsomedial prefrontal cortex 

(DMPFC), inferior frontal gyrus (IFG), and pSTS, when processing coherence and syntax of 

musical (Kunert, Willems, Casasanto, Patel, & Hagoort, 2015) and dance stimuli (Bachrach, 

Jola, & Christophe, 2016). Verbal communication plays a central role in one’s ability to segment 

events in time, as well as in describing them later on from memory. Such ‘off-line’ conceptions 

of events facilitate planning and understanding (Zacks et al., 2001a,b) and therefore rely on 

linguistic narrative structures encoded in putative knowledge schemas (Figure 1.1).  

 The translational cognitive benefits of physical expertise in sports, music, and dance, 

have been extensively explored (for review, see Debarnot, Sperduti, Di Rienzo, & Guillot, 2014). 

The refinement of knowledge schemas through neuroplastic changes to motor, perceptual and 

cognitive processing areas (Bar & DeSouza, 2016; Di Nota et al., 2016; Gaser & Schlaug, 2003; 

Hänggi et al., 2010; Kattenstroth, Kalisch, Holt, Tegenthoff, & Dinse, 2013; Olshansky, Bar, 

Fogarty, & DeSouza, 2015) is suggested to facilitate several functions to achieve peak 

performance. This includes WM and executive control functions like inhibition of task-irrelevant 

information, both of which can be assessed with the Retrieval-Induced Forgetting (RIF) task 

(Howard, Johnson, & Pascual-Leone, 2014; Storm & Bui, 2015). This paradigm presents 

subjects with category-exemplar word pairs (e.g., FRUIT – lemon, PROFESSION – accountant) 

from several categories before receiving retrieval practice on a subset of exemplars and 

categories (e.g., FRUIT – le__ ). This results in three types of items: practiced words from 
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practiced categories (Rp+), non-practiced words from practiced categories (Rp-), and non-

practiced words from non-practiced categories (Nrp). Upon subsequent recall of all exemplars 

following a brief (approximately 10 to 20 minute) retention interval, it has been shown that 

participants reliably recall Rp+ items best, and that Nrp items are recalled better than Rp- items. 

It is suggested that the retrieval practice of Rp+ items creates competition for limited working 

memory resources and suppresses retention of Rp- items from the practiced category at final 

recall (Anderson, Bjork, & Bjork, 1994; 2000; Williams & Zacks, 2001). However, whether the 

activation or priming of these expert knowledge schemas by one cognitive process (e.g., 

observing a dance sequence) influences performance in another cognitive domain (e.g., response 

inhibition or memory recall) remains to be seen.  

The purpose of the present study was to explore whether priming knowledge schemas 

modifies verbal attention and WM performance as assessed by event segmentation and RIF 

tasks, respectively. Previously demonstrated expert effects of reduced event borders during 

dance segmentation (Bläsing, 2015) are limited to familiar genres of dance, and do not explore 

whether experts in other activities like sports or music also show modified segmentation 

behaviour. If so, these findings would provide novel evidence for experience-dependent 

familiarity effects when segmenting dance, and expertise effects more generally when 

segmenting non-dance movements, respectively. We will use a Ballet3 video to test segmentation 

behaviour of a familiar genre for ballet dancers, who will also segment an unfamiliar 

Bharatanatyam video. Additionally, we will recruit Bharatanatyam dancers to test familiar and 

unfamiliar segmentation in another group of dancers. We will also include a non-dance Acting 

condition to compare event segmentation of non-dance movements among various types of 

																																																								
3	Ballet will be capitalized to denote the experimental video condition, while lowercase ballet will be used to refer to 
the experimental group.	
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experts (i.e., dancers, athletes, musicians) as well as non-experts. We predict that dancers 

familiar with the observed genre (i.e., ballet dancers segmenting the Ballet video) will indicate 

fewer event borders than dancers from unfamiliar genres (Bharatanatyam and others). We also 

predict that all expert groups, including dancers, athletes, and musicians, will segment all video 

conditions less than non-experts, demonstrating generalized expertise effects during event 

segmentation of dance and non-dance movements.  

With respect to the RIF task, we expect well-established practice effects and RIF to be 

demonstrated among all participants. We also predict that experts will have improved recall of 

experientially-primed words via activation of embodied knowledge schemas such that all dancers 

(including ballet and Bharatanatyam), athletes and musicians will remember Dance, Sport and 

Instrument exemplars better than other categories and groups, respectively. We expect the results 

to be especially pronounced among dancers due to observation of dance stimuli for the event 

segmentation portion of the experimental paradigm.  

 

3.3   METHODS 

3.3.1   Validation Experiment 

We performed a Validation Experiment with a separate group of non-expert participants 

for two reasons: 1) to identify one video clip from each of the three conditions that contained 

equal numbers of event borders in order to attribute any observed between- or within-group 

differences to participants’ prior experience, and 2) to determine the parameters (i.e., trial, block, 

and experiment duration) that would optimize the number of segmentation trials per condition 

while including an interleaved memory task and minimizing overall experiment duration and 

possible fatigue. 
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3.3.1.1   Participants 

 A total of 30 participants (20 female, mean age = 23.3 years, SD = 4.5) were recruited 

from the York University community and Undergraduate Research Participant Pool (URPP), and 

were compensated with partial course credit. One participant’s data was excluded due to non-

compliance, and another two subjects were excluded following outlier analyses (i.e., for having 

normalized event borders exceeding 2.5 standard deviations from the mean of all participants, z > 

2.5). Thus, a total of 27 participants (18 female, mean age = 23.4 years, SD = 4.5) were included 

in final analyses, and reported an average of 2.46 (SD = 3.5) years of experience in either dance, 

sports, or music. To reduce any possible expertise effects, we exclusively recruited non-experts 

for the Validation Experiment. Participants were deemed experts if they had a minimum of 5 

years of experience, and had practiced their skill on a regular basis (minimum 3 times a week) 

within the last two years. No participants in the Validation Experiment met this criteria, and 

those with more than 5 years’ experience discontinued regular practice more than two years prior 

to the study. All participants had normal or corrected vision and were free of any neurological 

disorders. All procedures, including the validation and main experiments, were approved by the 

York University Human Participants Research Review Sub-Committee (Certificate # 2013-313). 

3.3.1.2   Video Stimuli and Apparatus 

Three one-minute video clips were selected and saved from each of the original Ballet 

(4mins 53sec), Bharatanatyam (5min 5sec), and Acting (4min 46sec) MP4 video files obtained 

from the Perception Action and Cognition Lab website 

(http://paco.psy.gla.ac.uk/index.php/component/content/article/39-res/res-proj/67-watching-

dance-kinesthetic-empathy). Detailed description of the movement features and musical 

accompaniment of the videos can be found in Jola, Abedian-Amiri, Kuppuswamy, Pollick, and 
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Grosbras (2012). The nine clips were generated using iMovie 2011 (Version 9.0.9 1795, Apple 

Inc.). It was ensured that all clips had similar sound profiles according to visual inspection of 

built-in waveforms provided by the movie editing software, and that no clip began or ended in 

the middle of a movement to reduce the potential of response errors or ‘misses’. Each of the 

resulting nine clips were exported as M4V files with a 25fps frame rate and size of 480 x 272 

pixels. To be compatible with the presentation software (MatLab, Version 7.10.0.499, The 

MathWorks, Inc., Natick, MA, and Psychtoolbox, Version 3, Brainard (1997)), video clips were 

converted to MPG format with Media Converter 2013 (Version 8, ArcSoft Inc., Fremont, 

California) and specified to remain at 25fps frame rate and 480 x 272 pixels. All stimuli and 

experimental protocols were presented using custom Matlab code on a 24-inch iMac desktop 

computer with adjusted 1024 x 640 resolution, resulting in 9.5 x 5.5 inch video playback 

(horizontal visual angle = 21.1°).  Participants were provided with noise cancelling headphones 

(Model MDR-NC7, Sony Corp., Tokyo) to hear accompanying musical stimuli, with volume 

manually adjusted to each participant’s comfort level before the onset of the experiment.    

3.3.1.3   Procedure 

 Prior to briefing, participants provided informed consent and filled out a demographic 

questionnaire where they self-reported the type and number of years of experience in dance or 

any other physical craft. These responses determined which group participants would be 

assigned to (all non-experts for Validation Experiment). Event segmentation was defined and 

explained to participants, who were instructed to watch a series of nine one-minute videos (3 x 

ballet, 3 x Bharatanatyam, 3 x acting) and press the spacebar anytime they perceived one natural 

and meaningful unit of expressive movement begin, and another end (Speer et al., 2003; Zacks et 

al., 2001a). It was also explicitly stated that participants did not need to press the spacebar once 
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to indicate the end of a movement and then once again immediately following to indicate the 

start of a subsequent movement, but that one button press was sufficient to mark the “border” 

between two movements. Participants were reassured that there was no right or wrong answer, 

and to simply do their best for each trial. They were also instructed not to worry about replicating 

responses on previous trials for the same video but to simply segment each video as it comes, 

and to focus on the movements and not the background music when identifying event borders. 

Although previous event segmentation studies specify fine versus coarse-grained segmentation 

(Zacks et al., 2001a,b), we attempted to remain as consistent with Bläsing’s (2015) paradigm as 

possible and did not instruct participants with these terms, but rather suggested that they segment 

each “expressive dance move” rather than each individual component movement they see, which 

is more in line with coarse-grained segmentation.  

 Following these instructions, participants were given the opportunity to perform a 

practice trial during which the experimenter remained in the room to ensure participants 

understood the task and could perform it properly. Following a series of instruction screens that 

repeated the experimenter’s verbal instructions, a 30-second version of one of the nine video 

clips was randomly selected and played twice. For the first presentation, participants were 

instructed not to press the spacebar but to passively watch the video in order to familiarize 

themselves with the scene and setting, and to be able to anticipate how to respond in the 

subsequent presentation. Next, participants were instructed that the same clip will play again and 

that they should now practice segmenting by pressing the spacebar. The experimenter observed 

all participants perform this practice trial, and none of them demonstrated or indicated any 

difficulty in performing the task. Following the practice trial, the experimenter left the testing 

room and continued to monitor participants for compliance through a two-way window in an 
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adjacent room. The nine videos (3 x Ballet, 3 x Bharatanatyam, 3 x Acting) were played five 

times each for a total of 45 trials. Trial order was randomized to minimize practice effects and 

encourage stimulus-driven event segmentation of all clips. Trials were presented in four blocks 

of ten trials (2-second inter-trial interval) and a final shorter block of five trials (Figure 3.1a). 

Blocks were separated with an instruction screen that indicated how many blocks were left,  

 

 
Figure 3.1. Validation and event segmentation protocols.  
A. Three 1-minute clips were selected from each original video (Ballet, Bharatanatyam, Acting) 
for a total of nine video clips for the Validation Experiment. Subjects were presented with five 
trials of each clip in random order for a total of 45 trials presented in 5 blocks [(4 blocks x 10 
trials) + (1 block x 5 trials)]. B. Based on results of the Validation Experiment, one clip from 
each category was chosen for the final Event Segmentation Experiment, which included a 
Retrieval Induced Forgetting (RIF) memory task interleaved between blocks of segmenting the 
videos. Each video was played 10 times in random order across 3 blocks of 10 trials each. 
The RIF task is comprised of two parts: Part 1 includes presentation of 60 category-exemplar 
word pairs (10 categories x six words each) and practice recall of 18 presented words. 
Following one block of event segmentation, Part 2 had participants recall as many words as 
possible from the original 60 category-exemplar pairs. 
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repeated the event segmentation instructions, and offered an optional break. Participants 

continued to the next block by pressing the spacebar.  

3.3.1.4   Statistical Analyses 

The dependent variable for the Validation and Event Segmentation Experiments were the 

average number of event borders for each video clip across all trials. Although it has been noted 

that event borders are difficult to characterize by normative criteria (Zacks et al., 2001a), 

previous investigations typically use analyses of variance (ANOVAs) (Zacks et al., 2001b) to 

compare between-group and within-subject differences in event segmentation. These methods 

are problematic, as the distribution of event borders typically does not satisfy the ANOVA 

normality assumptions. As such, the present investigation used non-parametric analyses similar 

to those employed by Bläsing (2015) to compare event borders between groups and within 

subjects over repeated trials and conditions. Specifically, the average number of event borders 

per condition were analyzed for normality with Shapiro-Wilk tests and subsequently compared 

with non-parametric related-samples Wilcoxon signed rank tests for non-normal data using SPSS 

(Version 22, IBM Co., Armonk, NY). 

3.3.1.5   Validation Results  

 Statistical analyses revealed that all of the Acting video clips had significantly fewer 

event borders than any of the Ballet and Bharatanatyam videos (Figure 3.2). Acting Video 3 was 

selected for the final Event Segmentation Experiment due to having the highest number of 

average event borders, and will be analyzed separately from the dance videos for possible 

between-group effects. While Ballet Video 1 did not significantly differ from any of the 

Bharatanatyam video clips, it was not selected for the final experiment due to having the highest 
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variability in responses (SD = 23.3). Thus, Video 2 for the Ballet and Bharatanatyam conditions 

were selected for the final experiment due to having the lowest significance value between them 

(p = 0.039), but will also be analyzed separately for between-group effects.   

3.3.2   Event Segmentation Experiment 

3.3.2.1   Participants 

A total of 116 participants (89 female, mean age = 21.64 years, SD = 7.1) separate from 

those included in the Validation Experiment were recruited from the York University community  

 
Figure 3.2. Validation experiment results.  
Only ballet Video 1 did not differ from any of the other dance videos, but had the highest 
variation in event borders. All acting videos had significantly fewer event borders than the 
ballet and Bharatanatyam videos. 
 * P<0.05  ** P<0.01  *** P<0.001. Error bars show SEM. 
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six groups based on self-reported previous experience: ballet, Bharatanatyam, dance (i.e., in 

genres other than ballet and Bharatanatyam), musician, athlete, and non-expert. Participants were 

required to have at least five years of experience within the last two years to be deemed experts 
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ballet, music and sports), and were assigned to the group that they had the most experience in 

and/or self-reported as being their most practiced and mastered activity. Participants with dance 

experience in Bhangra and/or Bollywood were assigned to the dance group, as these genres are 

distinct from the South Asian/Tamil Bharatanatyam dance presented. Musician and athlete 

groups were included and differentiated from a general (non-dance) expert group to explore any 

putative and distinct contributions of musical and non-musical physical expertise, respectively. 

One subject from the ballet group was excluded due to medical reasons, and three participants 

(one dancer, one athlete and one non-expert) were excluded following group-level outlier 

analyses (z > 2.5) on the average number of event borders4. Thus, a total of 112 participants (88 

female, mean age = 21.63 years, SD = 7.1, mean years of experience = 9.85, SD = 5.8) were 

included in analyses (Table 3.1). 

 

Table 3.1. Demographic information for event segmentation and RIF tasks.  
* Denote groups that have different participant data for the event segmentation and RIF portions of the 
experiment.  

 

Group 
Event Segmentation Retrieval-Induced Forgetting 

n 
(Female) 

Age - M 
(SD) 

Years of 
Experience -
M (SD) 

n 
(Female) 

Age - M 
(SD) 

Years of 
Experience 
- M (SD) 

Ballet 19 (19) 21.8 (7.6) 12.8 (5.1) 19 (19) 21.8 (7.6) 12.8 (5.1) 
Bharatanatyam 16 (16) 20.4 (5.9) 11.7 (7.4) 15 (15) 20.5 (6.1) 12.2 (7.5) 
Dance* 17 (15) 24.1 (7.5) 11.4 (5.5) 17 (14) 23.8 (7.5) 11.6 (5.4) 
Musician 20 (13) 21.9 (10.1) 10.9 (4.5) 20 (13) 21.9 (10.1) 10.9 (4.5) 
Athlete* 20 (12) 20.1 (3.0) 9.9 (3.4) 19 (10) 20.1 (3.0) 9.6 (3.1) 
Non-Expert* 20 (13) 21.7 (7.0) 3.1 (2.2) 16 (11) 21.3 (7.6) 3.1 (2.4) 
Total 112 (88) 21.63 (7.1) 9.85 (5.8) 106 (82) 21.6 (7.3) 10.1 (5.7) 

 
 

3.3.2.2   Procedure and Statistical Analyses 

																																																								
4	Participants were considered outliers and removed from analyses if they exceeded 2.5 standard deviations above 
the normalized group mean for any video condition (Ballet, Bharatanatyam, or Acting).	
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Initial debrief, instructions and practice trial procedures were identical to the Validation 

Experiment. Participants were instructed to segment three one-minute videos – one Ballet, one 

Bharatanatyam, and one Acting (selected from the Validation Experiment). Each video was 

presented ten times for a total of 30 trials, which were presented in blocks of 10 (Figure 3.1b). 

Participants were told that they would perform a two-part memory task between blocks (see next 

section). The dependent variable for the event segmentation portion of the experiment is the 

average number of event borders per condition, which were divided into early (trials 1 to 5) and 

late (trials 6 to 10) trials. Within-group comparisons were performed using non-parametric 

Wilcoxon signed-rank tests for non-normal data.  

Because the Validation Experiment failed to show similar frequency of event borders 

between conditions, each condition was analyzed separately. Planned comparisons include 

comparing each group to the familiar group for each dance condition (ballet and Bharatanatyam, 

respectively) using non-parametric Mann-Whitney U tests as in Bläsing (2015). For the Acting 

condition, between-group effects were explored with a non-parametric Kruskall-Wallis test.   

3.3.3   Retrieval-Induced Forgetting (RIF) Task 

3.3.3.1   Participants 

Of the 113 event segmentation participants who performed the RIF task and were free of 

medical exclusions (87 female, mean age = 21.62 years, SD = 7.1), one (non-expert) was 

excluded for skipping the practice recall of Part 1, four subjects (three non-experts and one 

dancer) were excluded for completing Part 2 at the wrong time during the experiment, and two 

subjects (one athlete, one non-expert) did not complete Part 2. Four non-experts not included in 

the event segmentation portion of the experiment were tested to even out the group sizes (Table 
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3.1), and a total sample of 106 participants (82 female, mean age = 21.56, SD = 7.3) were 

analyzed for the RIF portion of the experiment.  

3.3.3.2   Procedure 

Following initial instructions on the event segmentation task, the experimenter told 

participants that their working memory (WM) would also be assessed between blocks of event 

segmentation. Participants were told that they will be presented with 60 category-word pairs (see 

Appendix A): the first word in each pair will be a category and shown in capital letters (e.g., 

CLOTHING), and the second word in each pair will be an exemplar from the category shown in 

lower case (e.g., pants)5. Participants were instructed to focus on the second word in each pair 

(i.e., the exemplar) as they would be required to remember them later in the experiment, similar 

to our Di Noto et al. (2013) study.   

Category-exemplar pairs, RIF instructions and procedures were modeled according to 

Howard et al. (2014), programmed in custom Matlab script, and integrated with the event 

segmentation paradigm. Word categories included Colours, Fruits, Relatives, Tools, Weather, 

Vegetables, and Vehicles, as well as Instrument and Sport words that would assess recall of 

experientially-primed words in musicians and athletes, respectively. To test experientially-

primed recall among dancers in ballet, Bharatanatyam, and dance groups, a category of Furniture 

words was replaced with Dance words generated by the experimenters. Exemplars were obtained 

by searching for synonyms of the word ‘dance’ on three vocabulary and thesaurus websites 

(https://myvocabulary.com, http://theseaurus.com, and www.onelook.com). The final six 

exemplars were chosen by cross-referencing the results of the web searches and excluding non-

																																																								
5	The experimenter took care not to provide examples that would be presented in the experiment to avoid any 
priming or reinforcement of experimental stimuli.	
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English words related to ballet (e.g., ballet, barre, plie, pointe). The final six dance exemplars 

were “choreography”, “jig”, “rhythm”, “tango”, “tap”, and “waltz”. 

After the first block of event segmentation (Figure 3.1b), participants performed Part 1 of 

the RIF task. Instructions were repeated on screen and participants were instructed to press the 

spacebar when they were ready to see the category-exemplar pairs. Each of the 60 pairs were 

presented in random order at the centre of the black screen in white font (vertical visual angle = 

5.6°) for 1.5 seconds each. After the final word pair, an instruction appeared on the screen 

informing participants to wait for the experimenter before proceeding. Keeping track of 

participants’ progress through a two-way mirror, the experimenter entered the testing room and 

performed a practice recall of 18 words that had just been presented (for list of Rp+ words, see 

Appendix A). Participants were shown a category and the first two letters of an exemplar that 

had just been shown (e.g., “FRUIT – ap_____”) and were instructed to say the word out loud if 

they remembered it (“apple”). If they could not remember the word, they were instructed to say 

“pass”, and the next word was presented by pressing the spacebar. The experimenter recorded 

correct responses as a score out of 18 to assess the first dependent variable of the RIF task – 

percent accuracy of practice (Rp+) recall. 

Following the practice recall, the experimenter explained to the participant that they 

would now perform another block of the event segmentation task before completing Part 2 of the 

memory task. Participants were provided with a sheet of paper listing each of the ten categories 

with a blank numbered list from one to six beneath each category (see Appendix B). Participants 

were instructed that Part 2 required them to write down as many words as they could recall when 

prompted by instructions on the screen. In accordance with RIF instructions (Anderson et al., 

1994; 2000) final recall was performed approximately ten minutes after presentation of the 
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category-exemplar pairs, which aligned perfectly with performing one block of event 

segmentation. As such, participants were explicitly instructed not to begin filling in the final 

recall sheet until instructed to do so, and not to continue with the final block of event 

segmentation until they had completed the recall sheet for Part 2.  

Correct responses on the final recall sheet were coded as follows: practiced words from 

practiced categories (Rp+, e.g., FRUIT - apple), non-practiced words from practiced categories 

(Rp-, e.g., FRUIT – peach), and non-practiced words from non-practiced categories (Nrp, e.g., 

RELATIVE – cousin). For each participant, we evaluated practice effects defined as improved 

recall of Rp+ over Nrp, and RIF - improved recall of Nrp over Rp-. We also compared the 

number of Dance, Sport6, and Instrument words recalled between groups with the expectation 

that experts will demonstrate improved recall for experientially-primed words during both 

practice and final recall relative to other groups and non-experts.  

 

3.4   RESULTS 

3.4.1   Event Segmentation  

3.4.1.1   Average Event Borders 

 As in Bläsing (2015), early (trials 1 to 5) versus late (trials 6 to 10) trials were analyzed 

for each condition with Wilcoxon Signed-Rank Tests (Table 3.2). Only ballet dancers had more 

segments in late trials for the Ballet (p = 0.021) and Acting (p = 0.001) conditions. No other 

groups differed in the average number of event borders for early and late trials in any condition.  

When comparing the familiar experts in each dance condition to all other groups, 

significant between-group effects were only observed during early trials. Specifically, 

																																																								
6	Sport words were not included in practice recall and are thus considered Nrp items. However, the number of Sport 
words recalled during final recall (Part 2) was compared between groups for possible expertise effects. 	
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Bharatanatyam dancers provided significantly fewer event borders when segmenting a familiar 

Bharatanatyam dance compared to Dancers (U = 189.5, p = 0.022). However, there were 

 
Table 3.2. Within-group comparisons of segmenting early versus late trials.  

Wilcoxon Signed-Rank Tests were used to compare the average number of event borders 
during early and late trials of event segmentation in the ballet, Bharatanatyam and acting 
conditions, respectively.  * P < 0.05  ** P < 0.01 

 

Group 
Ballet Condition Bharatanatyam Condition Acting Condition 

Mean Diff 
(SD) 

W Sig. (P) Mean Diff 
(SD) 

W Sig. (P) Mean Diff 
(SD) 

W Sig. (P) 

Ballet 2.1 (7.3) 37 .021* 1.49 (.88) 31 .059 1.9 (.49) 8.5 .001** 
Bharatanatyam .65 (.88) 54.5 .501 2.5 (1.5) 26.5 .060 0.3 (0.3) 47.5 .301 
Dance 1.6 (1.2) 50.5 .379 0.5 (1.1) 48 .802 -0.3 (1.5) 35.5 .814 
Musician 3.2 (1.5) 33.5 .079 4.0 (2.6) 49 .339 1.2 (.53) 20 .080 
Athlete 1.8 (.90) 66.5 .260 2.4 (1.4) 59 .153 1.1 (.56) 51.5 .144 
Non-Expert 3.1 (1.5) 62.5 .198 3.0 (1.3) 66.5 .260 1.4 (.77) 65 .235 

 
no between-group differences in event segmentation of the Ballet condition when comparing 

ballet dancers to all other groups in early or late trials (p > 0.05) (Figure 3.3). For the Acting 

condition, there was no difference in the average number of event borders observed between 

groups for early [χ2 (df=5) = 7.85, p > 0.10] or late trials [χ2 (df=5) = 5.04, p > 0.10] (Figure 3.3).  

3.4.1.2   Movement Features of Event Borders 

To identify the most common event borders, raw event segmentation data was divided into 60 1-

second bins. The frequency of button presses for each bin was determined for each group and 

condition. A summary of the movement features for the most commonly identified event borders 

for each condition can be found in Table 3.3. Across all conditions, the movement features 

associated with the highest incidence of event borders include changing direction of movement, 

raising arms, and leaping to the side for the dance conditions.  
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Figure 3.3. Event segmentation of dance and non-dance sequences.  
Only during early trials do we observe previously shown familiarity effects in Bharatanatyam 
dancers segmenting a familiar dance genre compared to dancers from other genres. No other 
between-group differences were significant. Error bars show SEM. * P < 0.05 

 

 

Table 3.3. Movement features of the most frequently identified event borders by 
condition.  
Each 60-second video was divided into 1-second bins, and the frequency of button presses 
was determined for each bin. The movement features of the top five bins for each condition 
are shown here (collapsed across groups). 

 
Condition Bin Movement 

Ballet 

30 Concluding a set of 4 spins 
8, 12 Raise arm, leg, turn head (to left and right, respectively) 

16 Change direction and pace of movement 
22, 23 Stop, change direction of movement and begin set of 4 spins 
5, 10 Large step or leap to the side 

Bharatanatyam 

21 Step backward, change direction, raise hand, cross leg 
54 Pause after stepping forward, raise arm, nod head and hand 
6-8 Leap to the side while moving arm above head  
25 Change direction, step, lift arms 

33, 11 Bow down with head, upper body and arm 

Acting 

40-43 Crouched, tap knee with hands 
45 Stops knee tapping sequence and raises arms 
5 Turn head, raise arms 

37, 55-58 Crouched, tap knee with hands 
59 Stops knee tapping sequence and raises arms 

 

*
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To explore putative differences in the movement features of event borders for familiar 

versus unfamiliar dance sequences, we compared the most frequently identified bins for the 

dance conditions (Ballet, Bharatanatyam) between the dance groups (ballet, Bharatanatyam, 

dance) (Figure 3.4). For the Ballet condition, the most commonly identified border among 

familiar ballet dancers was the end of a series of four spins (bin 30), which was also in the top 

five most salient event borders for all other groups. While Bharatanatyam dancers were as 

attentive to raising of limbs with concurrent turning of the head (bin 8) as ballet dancers, dancers 

from other genres responded more frequently to pauses and changes in the direction and pace of 

movement (bins 16, 23).  

 
Figure 3.4. Event borders for Ballet and Bharatanatyam videos among familiar and 
unfamiliar dancers.  
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The most commonly identified event borders are marked in red. Familiar Bharatanatyam 
dancers identified bins 29 and 33 more frequently than other groups, while other dancers 
segmented bin 6. All dancers segmented the Ballet video most frequently at bin 30, and 
unfamiliar dancers segmented bins 16 and 23.  

 

For the Bharatanatyam condition, all groups identified bin 21 most consistently, which 

showed the dancer stepping backward, changing the direction of her body, raising her arm and  

hand, and crossing one leg over the other. Interestingly, the second most common border among 

the familiar Bharatanatyam dancers was not in the top five most frequent bins for any other 

group, which involved a brief pause and arm and hand movement (bin 29). Bharatanatyam 

dancers also identified bowing down with the head, upper body and arm (bin 33) more 

consistently and frequently than the unfamiliar dance groups. The unfamiliar ballet and dance 

groups also frequently identified a leap and concurrent arm movement above the head (bin 6), 

which was not in the top five most frequent event borders for the Bharatanatyam dancers.  

3.4.2   RIF Task 

 To confirm practice effects (i.e., improved recall of Rp+ items over Nrp items) during 

final recall and/or any between-group effects, a 2 (Items) x 6 (Groups) repeated measures 

ANOVA was performed. A significant practice effect was observed for all participants [F(1, 

100) = 1147.043, p = 0.000], and a significant main effect for Group [F(5,100) = 3.049, p = 

0.013] revealed improved recall among ballet dancers relative to musicians (pBonf = 0.024) 

(Figure 3.5). A one-way between-groups ANOVA on overall practice recall accuracy (in 

percent) showed no difference between groups (F(5, 100) = 1.444, p = 0.215). To assess practice 

recall of experientially-primed words, a 2 (Category – Dance, Instrument) x 6 (Groups) repeated 

measures ANOVA showed that Instrument words were remembered better than Dance words 

among all participants (Category: F(1,100) = 57.137, p = 0.000). A main effect of Group 
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approached significance (F(5,100) = 2.268, p = 0.053) but no pairwise comparisons reached 

significance with Bonferroni corrections for multiple comparisons.  

RIF was assessed by comparing final recall of non-practiced items from non-practiced 

categories (Nrp) to non-practiced items from practiced categories (Rp-) between groups with a 2 

(Items) x 6 (Group) repeated measures ANOVA. All groups demonstrated RIF as revealed by a 

significant main effect of Item [F(1,100) = 230.910, p = 0.000] (Figure 3.5), with no other 

significant main or interaction effects (p > 0.05).  

 
 
 

 
 

 

 
Figure 3.5. Practice effects and RIF.  
All groups showed a practice effect for improved recall of practiced words (Rp+) relative to 
non-practiced words from non-practiced categories (Nrp). Ballet dancers also showed better 
recall than musicians for Rp+ and Nrp items. All groups showed retrieval-induced forgetting, 
or the suppression of non-practiced words from practiced categories (Rp-) relative to non-
practiced words from non-practiced categories (Nrp). Error bars show SEM. * P < 0.05   
*** P < 0.001 
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To assess transference of physical expertise to verbal WM, final recall of experientially-

primed words from Dance, Sport and Instrument categories was assessed between groups with a 

3 (Category) x 6 (Group) repeated measures ANOVA. A significant main effect of Category 

[F(2, 200) = 289.933, p = 0.000)] showed that Instrument words were recalled the most and 

Sport words were recalled the least across all groups (pBonf = 0.000) (Figure 3.6). A significant 

main effect of Group [F(5, 100) = 3.371, p = 0.007] also revealed improved recall among ballet 

dancers relative to athletes (pBonf=0.007) and non-experts (pBonf = 0.023), but a significant 

Category x Group interaction [F(10, 200) = 6.058, p = 0.000] revealed that ballet dancers 

recalled more Dance words than musicians, athletes (pBonf = 0.000), and non-experts (pBonf = 

0.001), and Bharatanatyam dancers recalled more Dance words than athletes (pBonf = 0.043). 

These findings demonstrate improved recall of experientially-primed words for ballet and 

Bharatanatyam dancers, but not among musicians, athletes, or dancers with experience in other 

genres in dance (Figure 3.6).  

 

 
 

Figure 3.6. Final recall of experientially-primed words.  
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All groups recalled Instrument words more than Dance and Sport words. Ballet and 
Bharatanatyam dancers showed preferential recall of experientially-primed Dance words 
relative to non-dance experts as well as non-experts. Error bars show SEM. * P < 0.05   *** P 
< 0.001 

 

3.5   DISCUSSION 

 The present investigation successfully replicated previous findings for a reduction in the 

number of event borders identified in a dance sequence by experts (Bläsing, 2015). It was also 

clarified that this pattern of event segmentation was limited to expert dancers familiar with the 

observed genre and did not extend to dancers with expertise in other genres of dance, or to 

experts in other physical activities including athletics and music. Additionally, these effects were 

only visible in the first five of ten trials, suggesting a decreased sensitivity of experimental 

measures of event segmentation over repeated trials. Unlike other movements that have been 

investigated in event segmentation paradigms, dance is not goal- or object-directed and is usually 

accompanied by music. Events or ‘movements’ in musical compositions can be differentiated 

from adjacent ones by changes in tone, tempo, rhythm, pitch, and boundary silences, and can be 

detected in both trained and untrained musicians (Knösche et al., 2005). Sridharan et al. (2007) 

investigated the brain networks underlying segmentation of movements in classical music 

compositions and found distinct patterns of activation during early and later parts of perceived 

event borders. The ‘early’ ventro-frontal-temporal network is suggested to subserve detection of 

salient events while the ‘late’ dorso-frontal-parietal network maintains attention and updates 

memory structures of the event. Increased event borders among unfamiliar experts may also be 

due to unpredictability and uncertainty of what steps should come next, which have resulted in 

prediction errors among unfamiliar groups in previous research (Reynolds et al., 2007; Zacks et 

al., 2011).  
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While the influence of familiarity has not previously been investigated during dance 

segmentation, its influence on neurophysiological responses in dance spectators has been 

explored. When observing the same dance videos as those used in the present study, two groups 

of spectators experienced in viewing ballet and Bharatanatyam dance showed modulation of 

MEPs in the arm when observing the familiar dance but not when observing the unfamiliar genre 

(Jola et al., 2012). Spectators attending the live performance of the recordings also showed 

greater arm MEPs relative to watching the recorded version of the performances, suggesting a 

difference in the degree of motor resonance for live and pre-recorded naturalistic dance stimuli 

(Jola & Grosbras, 2013). Based on previous functional imaging evidence for differences in motor 

resonance for familiar actions (Calvo-Merino et al., 2005; 2006), we suggest these networks are 

part of embodied expert knowledge schemas and directly influence segmentation behaviour as 

presently demonstrated.   

The definitional problem of classifying an event as “discrete and meaningful” has been 

problematic from the earliest days of event coding and segmentation (Hommel et al., 2001; 

Zacks et al., 2001a), and is especially problematic when segmenting fluid, expressive and 

internally-guided movements like dance. The influences of attention, interest, and experience 

have all been acknowledged as contributors to how an observer segments a given stream of 

behaviour, which itself reflects cognitive flexibility. Activation of a distributed sensorimotor 

network has been shown at event borders, including nodes of the mirror neuron/human action 

observation system (Hommel et al., 2001), FEF (Zacks et al., 2001a), human MT+ complex 

(Schubotz et al., 2012; Speer et al., 2003) and pSTS (Zacks et al., 2006b). Beyond perception of 

motion dynamics, activation in the parahippocampal cortex implicated in long-term memory has 

also been shown to facilitate prediction of succeeding steps (Schubotz et al., 2012). Previous 
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research shows that subsequent memory of events is impaired when there are more sub-events to 

recall (Faber & Gennari, 2015), which may be further impaired in unfamiliar observers that do 

not have embodied motor representations or knowledge schemas to rely on. Finally, observing 

dance and repeating (i.e., humming) musical sequences have been shown to activate nodes that 

are common to auditory, motor, speech and memory functioning including DMPFC (Bachrach et 

al., 2016) and superior parietal cortex (Hickok, Buchsbaum, Humphries, & Muftuler, 2003). 

These concurrent activations demonstrate the significant link between action, language and 

memory processing. When recruited together and consolidated into an expert knowledge schema 

(see Chapter 6 for discussion) over many years of experience and training, they contribute to 

improved perceptual and cognitive performance as demonstrated by the present results.  

In the same experimental paradigm, the present investigation also demonstrates practice 

effects and RIF previously shown in the literature (Anderson et al., 1994; 2000; Howard et al., 

2014; Storm & Bui, 2015). For the first time, we assessed differences in recall of words that are 

primed by one’s embodied experience in dance, music, or sports relative to non-expert control 

subjects. We demonstrate preferential recall of experientially-primed Dance category words 

among ballet and Bharatanatyam dancers relative to non-dance experts and non-experts (Figure 

3.6), but not among dancers from other genres despite having comparable years of experience 

(Table 3.1). Acquiring expertise in physical skills like dance requires combining information, 

both specific and abstract, related to the skill from multiple modalities through repeated and 

prolonged practice. What results is a specialized ‘dance schema’ that includes the genre-specific 

motor repertoire, vocabulary to define, describe, and identify these movements, and memory 

structures to plan and anticipate movement outcomes. We suggest that the priming of these 

expert knowledge schemas by observing a familiar dance resulted in the improved recall of 
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practice words in ballet dancers (Figure 3.5) and domain-specific words in the ballet and 

Bharatanatyam groups (Figure 3.6).  

While there is a growing body of evidence for structural and functional reorganization of 

sensorimotor areas with dance expertise (Bar & DeSouza, 2016; Calvo-Merino et al., 2005; 

2006; Di Nota et al., 2016,a,b; Hänggi et al., 2010; Olshansky et al., 2015), the majority of 

research on motor expertise-memory transference comes from other skilled domains including 

chess, computer programming, meditation, and medical procedures and diagnoses (Besson, 

Chobert, & Marie, 2011; Vicente & Wang, 1998; Ericsson, Patel, & Kintsch, 2000). Evidence 

from athletes suggests the exposure to a wide variety of activities from an early age fosters 

transference of recall skills and facilitates expertise across multiple domains (Abernethy, Baker, 

& Côté, 2005; Del Rey et al., 1987). The closest connection between dance training and verbal 

memory performance comes from a study on figure skaters that shows improved motor 

performance and access to domain-specific vocabulary in semantic memory relative to novices. 

The strategies employed by experts and non-experts also differ such that the former rely on 

motor processes (likely reinforced by embodied knowledge schemas) and procedural memory 

while the latter recruit more declarative memory (Deakin & Allard, 1991; Maxwell, Masters, & 

Eves, 2003; Moreau, 2013). Together with the regions implicated in knowledge schemas 

discussed above, these studies provide a neurophysiological basis for the improved recall of 

domain-specific words in ballet and Bharatanatyam dancers following observation of 

familiar/embodied dance stimuli. 

Improvements in verbal working and long-term memory have been demonstrated in 

individuals with music experience when tested as children (Ho, Cheung, & Chan, 2003; Moreno 

et al., 2011) and adults (Chan, Ho, & Cheung, 1998; Dittinger et al., 2016). Children in music, 
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but not visual arts, programs showed improved speech segmentation abilities over two years of 

training. Specifically, the musically trained children could discern meaningless words from 

strings of nonsense syllables after one and two years of training (François, Jaillet, Takerkart, & 

Schön, 2014). Verbal memory improvements have also been shown when learning sung versus 

spoken words in patients with AD (Palisson et al., 2015), a group that is also afflicted with 

impaired event segmentation. Bailey and colleagues (2013b) compared AD and cognitively 

healthy older adults’ segmentation of a various tasks and performance on a Naturalistic Action 

Task that involved packing a lunchbox and schoolbag. AD subjects showed increased deviance 

of event border locations relative to sample norms and impaired task performance, suggesting the 

ability to segment actions is directly related to memory and performance.  There is promising 

evidence for improved cognitive, motor, EEG and quality of life functioning in individuals with 

AD and Parkinson’s disease following music and dance therapy (Bearss, McDonald, Bar, & 

DeSouza, 2017; Dhami, Moreno, & DeSouza, 2015; Di Nota et al., 2016b). Together with the 

present results, these investigations lend further scientific validation to the therapeutic efficacy of 

these types of therapy that are multimodal, socially engaging, accessible, affordable, and fun for 

improving cognitive and perceptual impairments.  

The most commonly identified movement features among all participants included 

changes in the direction of movement, raising of the arms, sideways movements during the dance 

conditions, and short sequences of knee tapping during the acting condition (Table 3.3, Figure 

3.4). These findings are consistent with previous analyses of kinematic movement parameters 

that correspond to event boundaries, which include changes in pose or position, relative location, 

speed, and acceleration (Hemeren & Thill, 2011; Zacks, Kumar, Abrams, & Mehta, 2009a). 

Using narrative texts and cinematic video clips, identification of these types of movement 
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features predicted the location of event borders for extended naturalistic scenes (Zacks et al., 

2010; Zacks, Speer, & Reynolds, 2009b). The only movement to be uniquely identified by a 

familiar dance group was the brief pause and arm and hand movement during the Bharatanatyam 

dance (bin 29), which may have reflected the underlying narrative of the sung Tamil background 

track. To dissociate the contributions of movement and music in dance perception and 

segmentation, future studies should randomly and systematically present unimodal (i.e., auditory 

music and visual dance) and multimodal stimuli. Bläsing (2015) attempted such an investigation 

but presented all unimodal auditory trials after 10 audiovisual trials, confounding interpretation 

of any uni- and multimodal effects that may have been influenced by practice or learning effects.    

The fact that we were only able to demonstrate familiarity effects in Bharatanatyam 

dancers and not ballet dancers for their familiar dance conditions or in athletes for recalling Sport 

category words could be attributed to several limitations of the experimental stimuli. Despite 

claiming to record three videos with a similar type, number and pace of movements (Jola et al., 

2012), the results of both the validation (Figure 3.2) and main event segmentation experiment 

(Figure 3.3) showed that the acting video had significantly fewer event borders and movement 

phrases than both dance conditions, and that there was great variability in the number of 

segments in several one-minute portions of the ballet and Bharatanatyam dance. In fact, (Jola & 

Grosbras, 2013) show evidence for more perceived gestures in the Bharatanatyam video 

compared to the ballet and acting videos among novice viewers, and differential use of (and 

corticospinal excitability of) arm and finger muscles for ballet and Bharatanatyam conditions, 

respectively (see Supplementary File 2 in Jola et al., 2012). This greater number of gestural 

movements may account for the greater number of event borders observed in unfamiliar dancers 

(Figure 3.4). The musical accompaniment in the Bharatanatyam video features a vocal track sung 
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in Tamil that may have also impacted participants’ ability to segment movement independent of 

auditory, musical or lyrical cues despite receiving explicit instructions to focus on the 

movements and not the music (Section 3.3.1.3). This may be especially true for the familiar 

Bharatanatyam group who might have understood the spoken language, despite demonstrating 

expert segmentation behaviour.  

The Sport category words used in the RIF task had the lowest recall of all experientially-

primed words that we investigated (Figure 3.6) and were originally established by Battig and 

Montague (1969). These included racing, sailing, climbing, fishing, skating, and riding. While 

poor recall of these items could be attributed to the fact that they were Nrp words and not 

included in practice recall, RIF effects should have induced better recall of these words relative 

to non-practiced Dance or Instrument words. Instead, we attribute this poor performance across 

all groups to the nature of the items as more recreational in nature relative to more popular, 

commercialized or team-based sports like football, hockey, soccer or baseball that participants 

reported having experience with. Additionally, all of the words in the other categories were 

nouns while Sport words were verbs, which may have also confounded recall for these Nrp 

items. Future investigators utilizing this RIF word bank should consider revising and updating 

these items to control for this possible confound in participants’ expectation of common sport 

exemplars.  

 

3.6   CONCLUSIONS 

The current study has extended previous findings of expertise effects during dance 

segmentation, revealing that reduced frequency of event borders is only evident for familiar 

dance sequences, and not unfamiliar ones or non-dance sequences. Based on previous evidence 
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linking motion perception and memory structures (Bailey et al., 2013a,b), we propose that this 

behaviour reflects consolidation of more component movements as a result of adaptive learning 

strategies developed through expertise. Refinement of underlying knowledge schemas also 

facilitate improved recall for experientially-primed words among ballet and Bharatanatyam 

dancers after viewing familiar dance sequences. As shown in Chapter 2, resonance in one 

domain (e.g., sensorimotor) of knowledge schemas primes access to information in other 

domains (e.g., verbal attention and WM), and is specifically tuned to the embodied motor 

repertoire of the trained or untrained observer. In the following two chapters of this thesis, we 

will use EEG and fMRI approaches to explore the neurophysiological mechanisms underlying 

this ‘cross talk’ between putative nodes of expert knowledge schemas in ballet dancers while 

engaging with familiar stimuli during all forms of action processing - AO, MI and ME.  

	

	

	

	

	

	

	

	

	

	

	



	 80	

4 CHAPTER FOUR – EXPERIENCE-DEPENDENT MODULATION OF ALPHA 

AND BETA DURING ACTION OBSERVATION AND MOTOR IMAGERY OF DANCE7 

 

4.1   PREFACE 

EEG studies investigating the neural networks that facilitate action observation (AO) and 

kinaesthetic motor imagery (KMI) have shown reduced, or desynchronized, power in the alpha 

(8-12Hz) and beta (13-30Hz) frequency bands relative to rest, reflecting efficient activation of 

task-relevant areas. Functional modulation of these networks through expertise in dance has been 

established using fMRI, with greater activation among experts during AO. While there is 

evidence for experience-dependent plasticity of alpha power during AO of dance, the influence 

of familiarity on beta power during AO, and alpha and beta activity during KMI, remain unclear. 

The purpose of the present study was to measure the impact of familiarity on confidence ratings 

and EEG activity during (1) AO of a brief ballet sequence, (2) KMI of this same sequence, and 

(3) KMI of non-dance movements among ballet dancers, dancers from other genres, and non-

dancers.  Ballet dancers highly familiar with the genre of the experimental stimulus demonstrated 

higher individual alpha peak frequency (iAPF), greater alpha desynchronization, and greater 

task-related beta power during AO, as well as faster iAPF during KMI of non-dance movements. 

While no between-group differences in alpha or beta power were observed during KMI of dance 

or non-dance movements, all participants showed significant desynchronization relative to 

baseline, and further desynchronization during dance KMI relative to non-dance KMI indicative 

of greater cognitive load.  These findings confirm and extend evidence for experience-dependent 

plasticity of alpha and beta activity during AO of dance and KMI. We also provide novel 

																																																								
7	Paula M. Di Nota, Julie M. Chartrand, Gabriella R. Levkov, Rodrigo Montefusco-Siegmund & Joseph F.X. 
DeSouza. (2017). BMC Neuroscience, 18(28), 1-14.	
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evidence for modulation of iAPF that is faster when tuned to the specific motor repertoire of the 

observer. By considering the multiple functional roles of these frequency bands during the same 

task (AO), we have disentangled the compounded contribution of familiarity and expertise to 

alpha desynchronization for mediating task engagement among familiar ballet dancers and 

reflecting task difficulty among unfamiliar non-dance subjects, respectively. That KMI of a 

complex dance sequence relative to everyday, non-dance movements recruits greater cognitive 

resources suggests it may be a more powerful tool in driving neural plasticity of action networks, 

especially among the elderly and those with movement disorders.  

 

4.2   INTRODUCTION 

 The three facets of movement processing – AO, MI and ME – have been shown to recruit 

a common ‘mirror neuron’ network of brain regions in both humans (Grèzes & Decety, 2001; 

Jeannerod, 1995) and non-human primates (Rizzolatti, Luppino, & Matelli, 1998). Each of these 

processes is vital in facilitating motor learning in general and especially for dance movements, 

which require transformation of multisensory inputs into highly specific and complex motor 

outputs that are reproduced with high fidelity (for review, see Bläsing et al., 2012; Laland, 

Wilkins, & Clayton, 2016). As a result of this experience, activation of the mirror network and 

associated brain regions is modulated by dance experience (Calvo-Merino et al., 2005; 2006) to 

facilitate subsequent motor learning (Cross et al., 2009a).  

These and other evaluations of motor representations for complex movements that cannot 

physically be performed during neuroimaging have utilized tasks involving AO and/or KMI from 

an internal first-person perspective. During four fMRI scans conducted over a 34-week period, 

recent investigations conducted by our lab have employed both AO and KMI tasks for a novel 
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piece of choreography that was rehearsed and performed by professional ballet dancers. 

Consistent with findings from Cross, Hamilton and Grafton (2006), we found plasticity in the 

motor representation for this specific dance sequence coded in sensorimotor brain regions over 

time (Bar & DeSouza, 2016), as well as decreased activation in the extrastriate body area during 

movement of the foot in dancers relative to novice controls (Di Nota et al., 2016).  

While most of the evidence for experience-dependent plasticity has come from fMRI 

studies, valuable insight into the temporal dynamics of sensorimotor processing has been 

revealed with EEG. With respect to action processing, the rolandic ‘mu’ alpha rhythm (9-13Hz) 

recorded directly from midline primary motor and somatosensory cortices has been shown to 

decrease in power relative to rest, or desynchronize, when planning, imagining and executing 

movements (Pfurtscheller, Brunner, Schlögl, & Lopes da Silva, 2006), with concurrent 

desynchronization of the beta (13-30Hz) frequency band observed in motor cortex (Pfurtscheller 

& Lopes da Silva, 1999). Alpha desynchronization is also observed in other brain areas under 

conditions of increased attentional and cognitive effort, putatively reflecting suppression of task-

irrelevant areas to enhance performance (for review, see Bazanova & Vernon, 2014 and 

Klimesch, 2012). Within the alpha band there is typically a maximal amplitude (iAPF) that is 

typically lower (i.e., slower) in the elderly (Clark et al., 2004) and higher (i.e., faster) during 

states of cognitive preparedness (Angelakis, Lubar, Stathopoulou, & Kounios, 2004) and under 

increased cognitive demand (Haegens, Cousijn, Wallis, Harrison, & Nobre, 2014).  

Investigations on the influence of dance expertise on EEG activity are sparse, as most 

expert studies assess either proficiency in task performance, various types of athletes (for review, 

see Debarnot, Sperduti, Di Rienzo, & Guillot, 2014) or the influence of aerobic exercise on EEG 

activity among non-experts (Gutmann et al., 2015). However, a study by Ermutlu and colleagues 
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(2014) compared resting EEG activity across delta (0.5-4Hz), theta (4-8Hz),  alpha, and beta 

frequency bands in fast ball sport athletes and dancers. They correctly predicted that athletes, 

who have to quickly anticipate observed movements and adapt their own motor responses, would 

show higher power in slower bands, and dancers experienced at practicing rhythmic, imaginative 

and repetitive movements would show higher power in the alpha and beta bands. With respect to 

task-related activity during movement processing, Orgs et al. (2008) recorded EEG from expert 

dancers and non-experts while they observed dance and non-dance movements. They found no 

group differences during the latter condition, and alpha desynchronization among dancers only 

when observing dance movements. It remains to be seen whether similar experience-dependent 

modulation of the alpha or beta bands occur during KMI of dance or non-dance movements, and 

is one of the primary goals of the present investigation.  

Expanding upon the existing literature, the current study sought to compare differences in 

alpha and beta power during AO and KMI of a ballet dance sequence among expert dancers that 

were both familiar and unfamiliar with the genre, as well as non-dancers, to disentangle the 

effects of familiarity and expertise more generally on action processing of dance movements. 

Similar to Orgs et al. (Orgs et al., 2008), we also had participants perform KMI for non-dance 

movements in order to examine possible transference of expertise effects.  

 

4.3   METHODS 

4.3.1   Participants 

 Subjects were recruited through the York University Undergraduate Research Participant 

Pool (URPP) and compensated with course credit. The research study was approved by the 

Office of Research Ethics’ Human Participants Review Committee (Certificate # 2013-211) and 
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in accordance with the Declaration of Helsinki. Eligibility requirements included self-reported 

right-handedness and no uncorrected visual or neurological problems.  

The advertised study called for participants with at least two to five years of experience 

in any genre of dance or related craft including gymnastics, figure skating, or sports. A total of 

92 participants were tested, but 31 were excluded for the following reasons: lack of event 

markers in EEG data (n = 9), demographic information not provided (n = 9), reported 

neurological problems (n = 1), reported left-handedness (n = 4), poor EEG data quality (n = 6), 

and no registered alpha peak values (n = 2). A total of 61 participants (48 female) between the 

ages of 18 and 37 (M = 20.7, SD = 4.22) were analyzed. Participants were divided into three 

groups based on their self-reported experience: ballet dancers (n = 25, 22 females, mean years of 

experience = 10.44, SD = 4.3), non-ballet dancers with experience in other genres of dance (n = 

21, 15 females, mean years of experience = 5.57, SD = 3.1), and non-dancers (n = 15, 11 

females, mean years of experience = 5.8, SD = 4.6)8. Participants in both dance groups were 

required to have at least two years of experience. Non-ballet dance genres included belly 

dancing, hip hop, ballroom, Salsa, tap, modern, lyrical, acro, cultural, folk, Bollywood, jazz, 

break dancing, and contemporary. Non-dance subjects were not required to be experts in any 

particular craft, but included subjects with at least 2 years of experience in skills such as figure 

skating (n = 5), gymnastics (n = 4), martial arts (n = 1) and music (n = 1), as well as non-experts 

(n = 4).  

4.3.2   Procedure  

																																																								
8	Although the ballet group has significantly more years of experience than non-ballet (pBonf=0.000) and non-dance 
groups (pBonf=0.002), no dependent variables were significantly correlated with years of experience except for the 
number of trials performed during the AO task (see Section 4.3.2.1).	
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After providing their informed consent to participate in the study, participants were 

measured and fitted with the EEG headset according to the International 10-20 System of 

electrode placement. Participants were instructed to remain as still as possible during the 

experimental tasks and were provided with ear bud headphones to hear auditory stimuli. The 

computer-based experiment began with a brief demographic survey and baseline recordings 

followed by three tasks: 1) AO and 2) KMI of a ballet dance sequence, and 3) the KMI portion of 

the Visual and Motor Imagery Questionnaire (VMIQ-2) (Roberts, Callow, Hardy, Markland, & 

Bringer, 2008). In order to minimize differences in dance imagery across participants, the AO 

task was performed first and allowed subjects to view the dance sequence as many times as 

needed in order to form a clear mental image for the subsequent KMI task. 

4.3.2.1   Baseline 

Four resting conditions (eyes open and eyes closed, each with and without background 

music) were performed in order to facilitate baseline correction of subsequent tasks. Participants 

were instructed to clear their minds and to follow instructions as they were given. Baseline 

conditions were 15-seconds each and presented in random order. A picture of a closed eye 

appeared on screen during the eyes closed conditions to remind subjects to keep their eyes closed 

in the event they opened them during the task (vertical visual angle = 13.6°), and a central 

fixation cross (visual angle = 0.98°) appeared during the eyes open conditions. Audio prompts 

cued subjects to open and close their eyes at the beginning and end of each baseline condition 

where appropriate. The music conditions played the first 15 seconds of Bach’s Goldberg 

Variations 988, Variation 1 to match the cadence and genre of the music in the AO and KMI 

tasks.  
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To evaluate possible between-group differences in baseline iAPF, log alpha peak power, 

and/or log beta power, three separate repeated measures analyses of variance (RM-ANOVA’s) 

were performed with the factors of Condition (4) x Electrode (14) x Group (3)9. No significant 

between-group differences were observed (p > 0.1). As expected, log alpha peak power was 

higher during both eyes closed conditions relative to eyes open in all electrodes (Condition x 

Electrode: F(20.3, 1175.9) = 32.651, p = 0.000, η2 = 0.36), as was log beta power in frontal (F3, 

F4), parietal (P7, P8) and occipital (O1, O2) electrodes (Condition x Electrode: F (18.6, 1079.8) 

= 23.510, p = 0.000, η2 = 0.29).  

4.3.2.2   AO Task 

Following the baseline recordings, participants repeatedly viewed an 8-second video clip 

of a choreographed ballet dance. The clip was taken from a 6.92-minute video that was filmed 

during a practice at the Walter Carsen Centre for The National Ballet of Canada from Bar and 

DeSouza’s (2016) study, and was played full screen on the computer monitor (vertical visual 

angle = 13.6°). The video clip featured one female dancer in the foreground and the music was 

from Bach’s Concerto in C Major. Participants were asked to closely observe the choreography 

performed by the female dancer in order to be able to imagine themselves performing it as 

accurately and precisely as possible during the next experimental task. Because participants were 

fit for EEG recording during the experimental session, motor performance was not behaviourally 

assessed in the laboratory. Instead, participants were asked to rate how confident they were that 

they could perform the dance with complete accuracy and precision if required to on the 

following scale modelled after the VMIQ-2 scale (Roberts et al., 2008): 1 = Perfectly accurate 

																																																								
9	As with analyses of the experimental tasks, RM-ANOVA’s evaluating baseline iAPF, alpha and beta power 
assessed and adjusted sphericity violations with Hyunh-Feldt corrected degrees of freedom and significance values 
as reported in the text.	
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and in time with the music, 2 = Clear and reasonably accurate and in time with the music, 3 = 

Moderately accurate and in time with the music, 4 = Vaguely accurate and in time with the 

music and dim, 5 = No accuracy at all and unable to keep time with the music. The clip was 

initially shown 10 times (Block 1) with a one-second interstimulus interval and fixation cross 

(visual angle = 0.98°) followed by a prompt for a confidence rating. A participant response of 1 

or 2 (i.e., indicating high confidence) would induce the end of the AO task, and participants were 

asked if they would like to view the clip a final five times (Block 2). A response of 3 to 5 would 

automatically present an additional block that played the dance clip five times (Block 2). 

Following this shorter block, participants were once again asked to rate their confidence that they 

could physically perform the dance if required to. If participants respond below threshold (i.e., 3 

to 5), they could watch the shorter block for a maximum of four times before automatically 

proceeding to the next experimental task. Participants could view the clip a maximum of 30 

times across 5 blocks. The AO portion of the experiment lasted approximately 5-15 minutes. 

4.3.2.3   KMI Task 

Following the AO task, participants were asked to visualize themselves performing the 

dance sequence they had just learned with their eyes open and closed.  Four blocks (2 x eyes 

open and 2 x eyes closed) of 25 trials each were randomly presented, resulting in a total of 100 

KMI trials. During each trial, participants heard the music that had accompanied the dance clip 

during the AO task. Participants were asked to imagine themselves performing the dance in time 

with the music from an internal, first-person perspective and to feel themselves executing the 

movements as opposed to visualizing from a third-person perspective (i.e., ‘seeing’ themselves 

perform the dance from an external perspective). The difference in visualization perspectives 

was explained during initial debriefing as well as in the written instructions presented on screen 
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to ensure the proper engagement in motor, and not visual, imagery (Sirigu & Duhamel, 2001). 

The dance clip was played once before each block to refresh the participant’s memory and 

ensure that they were accurately imagining the dance. Similar to the baseline procedure, a picture 

of a closed eye appeared on screen during the eyes closed condition and a central fixation cross 

was provided during the eyes open condition. Participants were provided with audio prompts 

cuing them to open and close their eyes when appropriate. As with the AO task, participants 

were asked to rate how clearly and vividly they felt themselves performing the dance sequence at 

the end of each block. Ratings were once again given on a 5-point scale as follows: 1 = Perfectly 

clear and as vivid (as normal vision or feel of movement), 2 = Clear and reasonably vivid, 3 = 

Moderately clear and vivid, 4 = Vague and dim, 5 = No image at all, you only “know” that you 

are thinking of the skill. Once an answer was recorded, participants were given the opportunity to 

take a break before beginning the next block. Each block lasted 3.5 to 4 minutes and the KMI 

task lasted approximately 15 to 20 minutes. 

For the present study, only eyes closed KMI conditions will be included in the analysis so 

as to compare them to the next task, which was only performed with eyes closed.  

4.3.2.4   VMIQ-2 Task 

In order to compare each participant’s EEG activity and subjective perceptual level of vividness 

and clarity to KMI for everyday, non-dance movements, the final experimental task required 

completing the third portion (KMI from a first-person perspective) of the VMIQ-2 (Roberts et 

al., 2008). Participants were instructed to perform KMI of 12 movements (Table 4.1) while eyes 

were closed in accordance with VMIQ-2 instructions. For each item, the requested action was 

written on the screen and the participant was instructed to first close their eyes and then press the 

spacebar when they were ready to begin visualizing. Participants were instructed to spend as 
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much time as they needed to form a clear and accurate image of feeling themselves complete 

each action, and to press the spacebar once they had finished visualizing. Upon this second 

button press, participants were asked to rate how clear and vivid their KMI was for that item 

using the same 5-point scale from previous tasks (1 = Perfectly clear and vivid, 5 = No image at 

all). As this portion of the experiment was self-paced, completion time varied from one to three 

minutes (average duration = 4.57mins, SD = 4.25mins). Valid iAPF values were obtained from 

59 subjects10 who were included in the final analyses. 

 

Table 4.1. Vividness of Movement Imagery Questionnaire Items. 
  
Item  
1. Walking 
2. Running 
3. Kicking a stone 
4. Bending to pick up a coin 
5. Running up stairs 
6. Jumping sideways 
7. Throwing a stone into water 
8. Kicking a ball in the air 
9. Running downhill 
10. Riding a bike 
11. Swinging on a rope 
12. Jumping off a high wall 

 
Note: The complete VMIQ-2 (Roberts et al., 2008) requires participants to imagine each of these items in 
turn under three conditions: internal visual imagery, external visual imagery, and kinesthetic (i.e., motor) 
imagery. The present study was only interested in evaluating kinesthetic motor imagery, so participants 
were asked to imagine themselves performing each of the items listed with their eyes closed and as 
though they could “feel [them]self doing the movement” as per the VMIQ-2 instructions (Roberts et al., 
2008). Once they had formed a clear motor image of each item, participants were asked to rate how 
clearly and vividly they could feel themselves performing the movement on the following scale: 1 = 
Perfectly clear and as vivid (as normal vision or feel of movement), 2 = Clear and reasonably vivid, 3 = 
Moderately clear and vivid, 4 = Vague and dim, 5 = No image at all, you only “know” that you are thinking 
of the skill. 

 

																																																								
10	Two subjects from the non-dance group did not have iAPF values for the VMIQ-2 task, but had iAPF 

values and were included in analyses for the AO and KMI tasks. 
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Following completion of the VMIQ-2, participants were asked if they felt that KMI was 

easier to complete with eyes closed or eyes open and their responses were recorded. Finally, the 

EEG headset was removed and participants were debriefed and thanked for their participation. 

The entire experiment from entrance to exit lasted approximately 40-55 minutes. 

4.3.3   Data Acquisition, Processing and Analyses 

EEG data were collected using a wireless 14-channel (AF3, AF4, F3, F4, F7, F8, FC5, 

FC6, T7, T8, P7, P8, O1, O2) Emotiv EPOC EEG Neuroheadset and recorded with 

accompanying TestBench software (Emotiv Systems, 2012, San Fransisco, CA). The headset has 

two reference locations (at M1 and M2), a sampling rate of 128Hz with 16-bit ADC resolution, 

and 0.02 to 45 Hz resolution with digital 5th-order sinc notch filters at 50-60 Hz. The Emotiv 

neuroheadset has been validated (Badcock et al., 2013) and provides several ecological 

advantages to traditional research-grade EEG systems. These include affordability and 

portability to record EEG in environments outside of the laboratory, including a dance studio 

where neural activity can be evaluated on-site (Di Nota et al., 2016b). All experimental tasks 

were presented on a 23” flat screen monitor (Dell P2312H) and configured and presented by 

MediaLab (v2012.4.119, Blair Jarvis for Empirisoft Co., New York, NY). Data markers were 

sent from MediaLab to TestBench via a Virtual Serial Port Driver (Version 7.1, Eltima Software, 

2013, Bellevue, WA). Preprocessing of the EEG data was conducted with the Fieldtrip toolbox 

(Version 20131117, Oostenveld, Fries, Maris, & Schoffelen, 2011) and Matlab (Version 

7.10.0.499, The MathWorks, Inc., Natick, MA), and statistical analyses were performed with 

SPSS (Version 22, IBM Co., Armonk, NY).   

 For each participant, raw EEG data was first segmented according to data markers coded 

for events of interest (i.e., experimental tasks), and these segments were further divided into 2-
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second epochs prior to being bandpass filtered (1-50Hz), demeaned, and detrended. Next, 

artifacts were rejected by visual inspection (M = 51 trials, SD = 18.5 out of an average 483.3 

trials, SD = 28.5) and independent component analyses were performed to eliminate 

contamination of the EEG signal from eye movements and blinks (M = 2.15, SD = 0.60 

components eliminated out of 14 total components). Data were fast Fourier transformed and 

iAPF (Hz), alpha peak power (µV2), and average beta power across the 13-30Hz range were 

computed for each participant, experimental task and electrode.  

To normalize the variances of power data among electrodes, alpha and beta power values 

were log transformed and baseline corrected with the appropriate baseline condition (i.e., eyes 

open or eyes closed) prior to statistical analyses. The following equations were used to compute 

log task-related alpha peak power (herein referred to as “alpha”) and log task-related beta power 

(herein referred to as “beta”) modeled from Gonzalez-Rosa et al. (2015): 

alpha power = log alpha peak power (task) – log alpha peak power (baseline) 

beta power = log beta power (task) – log beta power (baseline) 

Alpha power was not subdivided into the rolandic mu (9-13Hz) frequency, as it is typically 

recorded from central (Cz, Fz) electrode sites that are not included in the Emotiv neuroheadset 

used in the current study. Instead, we isolated the iAPF within the traditional 8-12Hz bandwidth 

and focused statistical analyses on electrode sites overlying available and relevant sensorimotor 

areas including bilateral frontocentral (FC5, FC6) motor association cortex (Kuramoto, Ito, Sato, 

& Fujisawa, 2014), superior temporal cortex (T7, T8) involved in perceptual learning (de Souza, 

Yehia, Sato, & Callan, 2013) and sensory-guided KMI (Berger & Ehrsson, 2014), inferior 

posterior temporal gyrus (P7, P8), and primary visual occipital cortex (O1, O2) (Koessler et al., 

2009).  
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All statistical analyses including the factor of Electrode [FC5, T7, P7, O1, O2, T8, P8, 

FC6] employed a RM-ANOVA design, and violations of sphericity were adjusted by reporting 

degrees of freedom and significance values (p) with Huynh-Feldt corrections (Field, 2005). For 

analyses of the AO task evaluating the factor of Time [Blocks 1 to 5], a mixed model structure 

was applied to the RM-ANOVA to account for the different number of blocks performed 

between subjects, which would not be adequately corrected for in a RM-ANOVA. Any strictly 

between-group analyses were performed with one-way ANOVAs. Bonferroni corrections applied 

to pairwise comparisons (pBonf) and effect sizes (partial eta squared, η2) are reported where 

appropriate. Planned correlations were performed on demographic and behavioural data, and 

only on significant dependent variables, and are reported in-text. The results of each task will be 

presented in turn in the following order: analyses of demographic data and confidence ratings, 

iAPF, alpha power and beta power. 

 

4.4   RESULTS 

4.4.1   AO Task 

 Empirical behavioural measures of perceived confidence in performing the dance 

sequence included the number of blocks performed by each subject before moving on to the KMI 

task, and the average of subjective ratings provided after each block of the AO task. The non-

dance group performed significantly more trials (M = 24.7, SD = 5.8) than both familiar ballet 

(M = 18.8, SD = 4.9, pBonf  = 0.008) and unfamiliar non-ballet dancer groups (M = 20.0, SD = 6.5, 

pBonf =0.056) [F(2, 58) = 5.170, p = 0.009], and were also less confident in their ability to 

actually perform the dance if required (i.e., higher confidence rating, M = 3.0, SD = 0.09) 
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compared to ballet (M = 2.4, SD = 0.05, p = 0.004) and non-ballet dance groups (M = 2.6, SD = 

0.06, p = 0.004) [F(2, 58) = 4.574, p = 0.014] (Figure 4.1).  

The number of trials performed was significantly correlated to years of dance experience 

(r = -0.252, p = 0.050) (Figure 4.2a), subjective ratings (r = 0.867, p = 0.000) (Figure 4.2b), and 

alpha power (r = -0.308, p = 0.016) (Figure 4.2c). Confidence ratings during the AO task were 

also significantly correlated to those obtained during the KMI task [r = 0.286, p = 0.025] (Figure 

4.2d).   

 

Figure 4.1. Subjective ratings of action observation and motor imagery.  
Participants were asked to provide a confidence rating for how accurately they could perform 
the dance if they were required to for the AO task, and to rate how clearly and vividly they 
imagined the instructed behaviour for the KMI and VMIQ-2 tasks on a scale from 1 (Perfectly 
accurate or clear) to 5 (Not at all, or no image at all). Non-dancers provided significantly higher 
ratings (i.e., poorer perceived ability) during the AO task relative to ballet dancers (p = 0.004) 
and non-ballet dancers (p = 0.044). All groups provided significantly lower ratings, indicative 
of clearer imagery, when imagining non-expressive movements during the VMIQ-2 task 
relative to KMI of the newly-learned dance (ballet: p = 0.005, non-ballet and non-dance: p = 
0.000). Error bars represent SEM.  
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Figure 4.2. Correlations between behavioral and neural measures of action 
observation and motor imagery.   
A. The number of trials performed during the AO task was negatively correlated to the years 
of experience participants had in their respective crafts (p = 0.050). B. The number of trials 
performed during the AO task was positively correlated to the ratings provided at the end of 
each AO block (p = 0.000).  C. During the AO task the number of trials performed was 
negatively correlated to alpha power (p = 0.016). D. The ratings provided at the end of each 
AO block were positively correlated to clarity ratings during the KMI task (p = 0.025). E. iAPF 
was positively correlated between the AO and KMI tasks (p = 0.000), and between the AO and 
VMIQ-2 tasks (p = 0.000). Statistical analyses were performed on the average correlations 
across groups, shown by the solid line and shaded with a 95% confidence interval. Individual 
data points are represented as squares for ballet dancers, triangles for non-ballet dancers, 
and diamonds for non-dancers. Regression lines for ballet dancers (dash), non-ballet dancers 
(dot-dash), and non-dancers (dot) are shown for visualization purposes only.  
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Ballet dancers exhibited faster iAPF (M = 10.8, SD = 0.7) than both non-ballet dancers 

(M = 10.5, SD = 0.7, pBonf = 0.023) and non-dancers (M = 10.7, SD = 0.8, pBonf = 0.048) [Group: 

F(2, 25.3) = 5.467, p = 0.011] (Figure 4.3), and was greater among ballet dancers than non-ballet 

dancers during Block 2 (pBonf = 0.004) [Group x Time: F(8, 18.1) = 3.098, p = 0.022]. A 

significant main effect of Time [F(4, 18.8) = 3.655, p = 0.023] also showed faster iAPF during 

Block 1 relative to Block 4 (pBonf = 0.006), and AO iAPF was significantly correlated to iAPF 

during KMI [r = 0.585, p = 0.000] and VMIQ-2 [r = 0.567, p = 0.000] (Figure 4.2e).   

Alpha power was greater among non-ballet dancers relative to non-dancers (pBonf = 0.000) 

[Group: F(2, 78.8) = 7.704, p = 0.001], but a significant Group x Time interaction [F(8, 37.2) = 

 

 

Figure 4.3. Individual alpha peak frequency (iAPF) during action observation and motor 
imagery.  
The highly familiar ballet dance group showed faster iAPF during the AO task relative to both 
non-ballet dance (p = 0.029) and non-dance (p = 0.018) groups, and also demonstrated faster 
iAPF than non-ballet (p = 0.049) and non-dance groups (p = 0.027) during the VMIQ-2 task. 
No significance between group effects were observed during the KMI task, and all participants 
had significantly faster iAPF during the VMIQ-2 task relative to the KMI task (p = 0.000). Error 
bars represent SEM.  
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2.659, p = 0.021] revealed greater alpha power among non-ballet dancers relative to both groups 

during Block 1 (ballet dancers: pBonf = 0.041, non-dancers: pBonf = 0.040) and relative to ballet 

dancers during Block 2 (pBonf = 0.010), but greater alpha power among ballet dancers than non-

dancers during Block 5 (pBonf = 0.039) (Figure 4.4a). Alpha and beta power were also 

significantly correlated during AO (r = 0.504, p = 0.000). Beta power was significantly greater 

among ballet dancers relative to both non-ballet dancers (pBonf = 0.003) and non-dancers (pBonf = 

0.000) [Group: F(2, 19.0) = 19.810, p = 0.000], demonstrating modulation of beta power by 

familiarity with the observed stimulus (Figure 4.4b). Further, a significant main effect of 

Electrode [F(7, 9.3) = 4.790, p = 0.016] showed higher beta power in bilateral occipital 

electrodes relative to left premotor cortex (O1: pBonf = 0.012, O2: pBonf = 0.024).  

4.4.2   KMI Task 

Analyses of the average motor imagery ratings provided at the end of each block of the 

KMI task revealed no differences in clarity or vividness between groups [F(2, 58) = 1.137, p 

=0.328] (Figure 4.1), and were significantly correlated to those obtained during the VMIQ-2 task  

(r = 0.370, p = 0.003). There were no significant group differences in task-related iAPF (Figure 

4.3) or alpha power (p > 0.05), but comparing log alpha power during KMI to baseline revealed 

significant desynchronization (baseline > KMI) during motor imagery [Task: F(1, 58) = 6.236, p 

= 0.015, η2 = 0.098], as well as higher alpha power in O1, O2, P7 and P8 electrodes relative to 

the temporal and frontal sites [Electrode: F(4.7, 272.7) = 207.713, p = 0.000, η2 = 0.782] (Figure 

4.5a). Task-related beta power was higher in left (pBonf = 0.001) and right (pBonf = 0.013) 

premotor cortex relative to left superior temporal cortex [Electrode: F(4.9, 282.1) = 4.686, p = 

.000, η2 = 0.075]. Similar to alpha power, when comparing log beta power during KMI and  
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Figure 4.4. Alpha and beta power during observation of a novel ballet dance sequence.  
A. Log task-related (i.e., baseline corrected) alpha power was significantly higher in the non-
ballet group relative to non-dancers (pBonf = 0.000) in all blocks, while a significant Group x 
Time interaction revealed higher alpha power in non-ballet dancers than the other groups at 
Block 1 (ballet: pBonf = 0.041, non-dance: pBonf = 0.040) and higher than ballet dancers at Block 
2 (pBonf = 0.010), and greater alpha power in ballet dancers than non-dancers at Block 5 (pBonf 

= 0.039). B. Log task-related beta power was significantly higher in the ballet dancer group 
relative to both non-ballet dancers (pBonf = 0.003) and non-dancers (pBonf = 0.000). Error bars 
represent SEM.  
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Figure 4.5. Alpha and beta power during baseline and KMI.  
A. Analyses of log alpha peak power during the KMI task and matched baseline condition (eyes 
closed with music) revealed significant task-related desynchronization (bottom row), and a 
significant main effect of Electrode revealed higher alpha power in bilateral occipital and parietal 
sites (black stars) relative to frontocentral and temporal sites (white stars). No significant group 
differences were observed. B. Analyses of log beta power during the KMI task and matched 
baseline condition (eyes closed with music) revealed significant task-related desynchronization 
(bottom row), and a significant main effect of Electrode revealed higher alpha power in all 
posterior sites (black stars) relative to frontocentral sites (white stars). No significant group 
differences were observed. 

 
 
baseline we found significant desynchronization during motor imagery [Task: F(1, 58) = 7.951, p 

= 0.007, η2 = 0.121] especially in T7 (pBonf = 0.000), P7 (pBonf = 0.008), O1 (pBonf = 0.026), P8 

 (pBonf = 0.006), and T8 (pBonf = 0.018) [Task x Electrode: F(4.9, 282.1) = 4.686, p = 0.000, η2 = 

0.075] (Figure 4.5b). Beta power was also found to be lower in bilateral premotor cortex relative 

to all other electrode sites [Electrode: F(5.1, 293.7) = 51.496, p = 0.000, η2 = 0.470]. 
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4.4.3   VMIQ-2 Task 

We confirmed that there were no inherent differences in motor imagery ability between 

groups with a one-way ANOVA on the average VMIQ-2 scores (i.e., across all 12 movements) 

[F(2, 58) = 2.245, p = 0.115] (Figure 4.1). Separate 8 (Electrode) x 3 (Group) RM-ANOVAs on 

iAPF, alpha and beta power, respectively, showed that iAPF was significantly faster among 

ballet dancers than non-ballet (p = 0.043) and non-dancers (p = 0.028) [F(2,56) = 3.362, p = 

0.042, η2 = 0.107] (Figure 4.3), and faster in occipital cortex relative to all other sites [F(6.3, 

350.3) = 5.843, p = 0.000, η2 = 0.094]. Alpha power did not differ between electrodes or groups 

(p > 0.1), and similar to the KMI task beta power was higher in bilateral premotor cortex relative 

to superior temporal (FC5 > T7: p = 0.002, T8: p = 0.004; FC6 > T7: p = 0.013, T8: p = 0.003), 

left occipital (FC5 > O1: p = 0.014; FC6 > O1: p = 0.047) and right parietal cortex (FC5 > P8: p 

= 0.005) but only at uncorrected significance levels [Electrode: F(5.1, 286.4) = 3.489, p = 0.004, 

η2 = 0.059]. 

To compare the perceptual quality of KMI for habitual movements to KMI of a complex 

ballet sequence, we also performed a 2 (Task) x 3 (Group) RM-ANOVA on confidence ratings. 

It was confirmed that all participants reported significantly clearer and more vivid imagery 

during the VMIQ-2 task relative to the KMI task5 [F(1, 58) = 61.821, p = 0.000, η2 = 0.516, Task 

x Group: F(2, 58) = 3.504, p = 0.037, η2 = 0.52, ballet dancers: pBonf = 0.0005, non-ballet dancers 

and non-dancers: pBonf = 0.000] (Figure 4.1). Neural features of KMI (iAPF, alpha power and 

beta power) were also compared between the KMI and VMIQ-2 tasks with separate 2 (Task) x 8 

(Electrode) x 3 (Group) RM-ANOVAs, respectively. Significantly faster iAPF [F(1, 56) = 

31.960, p = 0.000, η2 = 0.363] (Figure 4.3) and higher alpha power [F(1, 56) = 13.101, p = 0.001, 

η2 = 0.19] (Figure 5.6) were shown among all participants during the VMIQ-2 task relative to the 
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KMI task. A significant main effect of electrode [F(4.8, 266.9) = 2.984, p = 0.005, η2 = 0.051] 

revealed faster iAPF in occipital cortex relative to left premotor cortex (O1: pBonf = 0.004, O2: 

pBonf = 0.006), and beta power was higher in premotor cortices than temporal (FC5 > T7: pBonf = 

0.001, T8: pBonf = 0.025; FC6 > T7: pBonf = 0.028, T8: pBonf = 0.014) and right parietal cortex 

(FC5 > P8: pBonf = 0.006) [Electrode: F(4.5, 249.9 = 5.537, p = 0.000, η2 = 0.090]. 

 

 

Figure 4.6. Task-related alpha power during KMI of a novel ballet dance and non-dance 
movements.  
Log task-related (i.e., baseline-corrected) alpha power was significantly higher during the VMIQ-
2 task than during KMI (pBonf = 0.001). Participants performed motor imagery with their eyes 
closed in both tasks, but showed higher alpha power when imagining non-expressive quotidian 
movements relative to a newly-learned complex ballet dance sequence. Error bars represent 
SEM.  
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Based on behavioral and neural indices, we demonstrate modulation of oscillatory brain 
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ballet dance. However, ballet dancers demonstrated faster iAPF during KMI of non-dance 

movements. Among all participants, KMI was reportedly clearer and more vivid when imagining 

non-dance movements relative to a complex dance sequence, and elicited less desychnronization 

in both alpha and beta frequency bands. These results and how they expand upon our current 

understanding of experience-dependent oscillatory activity underlying movement processing will 

be discussed in turn. 

Several behavioral indices obtained during the AO task reveal greater task engagement 

by familiar ballet dancers relative to the unfamiliar non-ballet dancers, who also putatively 

possess specialized sensorimotor networks arising from dance-related experience but in different 

genres, and relative to non-dancers, who served as a control group for dance-related expertise 

and familiarity. Ballet dancers performed significantly fewer blocks of the self-paced task, 

provided lower subjective ratings reflecting greater confidence in their ability to perform the 

dance sequence if required (Figure 4.1), and a strong positive correlation between these two 

variables (Figure 4.2b). The number of trials performed was also negatively correlated to alpha 

power (Figure 4.2c), demonstrating that subjects who were less confident in their perceived 

ability to perform the observed task exhibited greater alpha desynchronization than participants 

who performed fewer trials. Although the clarity ratings provided during the KMI task did not 

differ between groups, they were positively correlated to AO confidence ratings (Figure 4.2d). 

Examination of the oscillatory activity underlying the experimental tasks will provide greater 

insight into the mechanisms underlying these behavioural differences in task engagement.  

4.5.1   State iAPF 

Higher iAPF is reflected during states of arousal, attention and readiness to perform 

cognitive tasks including working memory (Angelakis et al., 2004; for review see Bazanova & 
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Vernon, 2014; Klimesch, 1999). However, these evaluations often compare performance 

outcomes to pre-task iAPF levels obtained at rest. Samaha and Postle (2015)	compared 

performance on a two-flash fusion task to pre-task iAPF as well pre-stimulus iAPF, and found 

that both were correlated to lower thresholds and improved performance on this task, which 

serves as a measure of temporal resolution of visual perception. In order to form a clear motor 

image of the dance for the KMI task in the current study, ballet dancers’ visual and sensorimotor 

systems were able to process more information during AO on a finer temporal scale. Since their 

iAPF did not differ from other groups in pre-task baseline conditions, we can infer that this 

‘state’ change is driven by a combination of bottom-up perceptual features of the familiar dance 

genre and top-down influences from existing (embodied) knowledge of the motor repertoire 

(Diedrichsen & Kornysheva, 2015). Evidence for the latter is supported by the recent 

identification of alpha and beta as feedback signals from higher-order regions, including those 

where the motor representations of ballet movements and positions are coded, to primary sensory 

areas including the visual cortex (Michalareas et al., 2016).  

It has been noted in dance-related neuroaesthetic literature that dancers, and ballet 

dancers in particular, use KMI as a tool for mental rehearsal in the absence of overt movement 

(Bläsing et al., 2012; Milton, Small, & Solodkin, 2008). Although this was not directly assessed 

in our participants, and no differences in imagery ability were found when comparing VMIQ-2 

ratings (Figure 4.1), this long-term experience with dance KMI may also reinforce the neural 

pathways that optimally integrate real auditory (i.e., music) information with imagined motor 

signals (Berger & Ehrsson, 2014), which may account for the observed increase in iAPF among 

ballet dancers during VMIQ-2 relative to other groups (Figure 4.3). Taken together, results from 
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the AO and VMIQ-2 tasks support and extend previous findings by showing that iAPF can be 

modulated by experience. 

4.5.2   Engagement vs. Difficulty: iAPF and Alpha Power 

Haegens and colleagues (2014) provide evidence for modulation of iAPF during task 

performance, with increased cognitive demand resulting in faster occipital and parietal iAPF. 

Accordingly, one would expect higher iAPF while visualizing a more demanding action (dance) 

relative to non-dance movements (VMIQ-2). However, the opposite pattern was observed 

(Figure 4.3). Conflicting evidence for changes in alpha power that accompany higher iAPF have 

been shown depending on the nature of the cognitive task; desynchronization has been shown to 

reflect the active engagement in encoding and memory retention (Pesonen, Hämäläinen, & 

Krause, 2007) while alpha synchronization (increased alpha power) suggests a decrease in 

expended cortical resources following skill learning (Gevins et al., 1997) and is related to 

suppression of distracting information that can interfere with encoding from parieto-occipital 

sources (Jensen, Bonnefond, & VanRullen, 2012; Sauseng et al., 2009) that comprise most of the 

source signals in the current investigation. As such, the desynchronization elicited during dance 

KMI may reflect processing of the dance that had just been observed and encoded in working 

(visual) memory while the relatively greater alpha power elicited during the VMIQ-2 task could 

reflect the reduced cognitive load for imagining simple movements (Table 4.1) in the face of 

competing stimuli or attentional demands (Figure 4.6). This pattern is consistent with the neural 

efficiency hypothesis (Klimesch et al., 2007), which supposes that alpha synchronization reflects 

inhibition of task-irrelevant areas, including posterior visual areas when performing first-person 

KMI (Neuper, Scherer, Reiner, & Pfurtscheller, 2005; Sirigu & Duhamel, 2001), and alpha 
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desynchronization is highest during focused task-related activation such as what would be 

expected during KMI of a newly-learned task. 

4.5.3   Neural Efficiency: Alpha and Beta Power 

Further evidence for the neural efficiency hypothesis can be observed during the AO task, 

which replicates previous evidence for experience-dependent alpha desynchronization during 

AO (Orgs et al., 2008) but with evidence for desynchronization among non-dancers as well 

(Figure 4.4a). To confirm that this similar pattern of alpha power among groups on opposite ends 

of the familiarity continuum does not reflect the same underlying process, we can consider the 

observed beta power results during AO. Beta desynchronization has been shown to accompany 

alpha desynchronization during AO (lower beta (13-18Hz) only in Orgs et al., 2008) and KMI 

(McFarland, Miner, Vaughan, & Wolpaw, 2000), and is further decreased during KMI and 

execution of skilled movements (Nakagawa et al., 2011; G. Pfurtscheller, Woertz, Müller, 

Wriessnegger, & Pfurtscheller, 2002). In addition, both frequency and power of the beta band 

have been related to cognitive aspects of movement, including cue anticipation or expectation, 

visuomotor integration and preparation (Kilavik et al., 2012). Beta synchronization is typically 

observed during the ‘post-movement rebound’ in a wider distributed premotor and sensorimotor 

area (Crone et al., 1998; Ohara et al., 2000; Sochůrková, Rektor, Jurák, & Stančák, 2006) and 

occurs immediately following real or imagined movement as a ‘resetting’ of motor 

representations in these networks (Pfurtscheller & Solis-Escalante, 2009; Pfurtscheller et al., 

2005; Solis-Escalante et al., 2012). If beta oscillations originate in the primary motor cortex as 

previously suggested (Crone et al., 1998; Pfurtscheller et al., 2002), and responsivity of the 

sensorimotor cortex is greater for familiar embodied actions (Calvo-Merino et al., 2005; 2006; 

Cross et al., 2006; 2009a,b), then perhaps the degree of beta desynchronization can also be 
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nuanced by experience-dependent plasticity, although to a lesser degree than task-related 

demands. That ballet dancers exhibited less beta desynchronization than both unfamiliar groups 

during AO (Figure 4.4b) could possibly reflect less suppression of the distributed sensorimotor 

network that encodes existing genre-specific motor representations, which would only provide 

competition for limited neural resources among unfamiliar dancers and non-dancers. Thus, by 

considering activity in multiple frequency bands during the same task, the present results clarify 

the impact of familiarity on multiple concurrent functional roles for alpha and beta power during 

AO and KMI.  

4.5.4   Therapeutic Applications for Dance-Induced Modulation of Sensorimotor 

Oscillations 

A growing body of evidence is lending credit to the benefits of dance practice on general 

health, and especially for the elderly and those afflicted with movement disorders (for review, 

see Dhami et al., 2015). It is well established that iAPF is lower in the elderly (Clark et al., 2004) 

and especially among those with neurological disorders like Alzheimer’s (Klimesch et al., 1990) 

and Parkinson’s disease (PD) (Moazami-Goudarzi et al., 2008; Soikkeli et al., 1991). If 

familiarity with the observed stimulus, cultivated over years of sensorimotor practice, can elicit 

increased state iAPF during AO and KMI, then perhaps low-impact AO and/or KMI training 

programmes combined with (or in lieu of) dance practice can yield improvements in iAPF 

functioning. Previous work from our lab that has revealed neural efficiency of the extrastriate 

body area during movement among expert dancers (Di Nota et al., 2016). This has implications 

for PD, with recent evidence for recruitment of this brain region as an alternate motor pathway in 

this population (van Nuenen, Helmich, Buenen, et al., 2012a; van Nuenen, Helmich, Ferraye, et 

al., 2012b). Ongoing investigations on the efficacy of Dancing with Parkinson’s (DWP) 
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programs on the neural, motor and non-motor symptoms of PD led by our lab and other research 

teams seek to clarify the therapeutic potential of dance (Bearss et al., 2017; Di Nota et al., 2016b; 

Ventura et al., 2016; Westheimer et al., 2015). 

 

4.6   CONCLUSIONS 

Several important insights are revealed by the results of the current study: we provide a 

further understanding of experience-dependent plasticity of the neural mechanisms underlying 

AO and KMI of specialized and habitual movements. Specifically, we demonstrate modulation 

of iAPF and power in the alpha and beta frequency bands during observation of a familiar dance 

sequence relative to unfamiliar participants, with further expertise effects resulting in more 

efficient visuomotor processing during KMI of non-dance movements. While all participants 

demonstrated alpha and beta desynchronization during KMI, we clarify that familiarity with the 

imagined stimulus does not result in significant modulation of these signals, unlike AO. 

Together, these findings reveal the neurophysiological mechanisms underlying expert knowledge 

schemas that facilitate translational benefits of dance practice across sensorimotor and attentional 

domains. The results also lend further support for the efficacy of dance therapy for clinical 

populations experiencing deficiencies in these domains.  
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5 CHAPTER FIVE – LATERAL OCCIPITOTEMPORAL CORTEX (LOTC) 

ACTIVITY IS GREATEST WHILE VIEWING DANCE COMPARED TO 

VISUALIZATION AND MOVEMENT: LEARNING AND EXPERTISE EFFECTS11 

 

5.1   PREFACE 

The lateral occipitotemporal cortex (LOTC) is comprised of sub-regions selectively 

activated by images of human bodies (extrastriate body area, EBA), objects (lateral occipital 

complex, LO) and motion (MT+). However, their role in motor imagery and movement 

processing is unclear, as are the influences of learning and expertise on its recruitment. The 

purpose of our study is to examine putative changes in LOTC activation during action processing 

following motor learning of novel choreography in professional ballet dancers. Subjects were 

scanned with functional magnetic resonance imaging (fMRI) up to four times over 34 weeks and 

performed four tasks: viewing and visualizing a newly learned ballet dance, visualizing a dance 

that was not being learned, and movement of the foot. EBA, LO and MT+ were activated most 

while viewing dance compared to visualization and movement. Significant increases in 

activation were observed over time in left LO only during visualization of the unlearned dance, 

and all sub-regions were activated bilaterally during the viewing task after 34 weeks of 

performance, suggesting learning-induced plasticity. Finally, we provide novel evidence for 

modulation of EBA with dance experience during the motor task, with significant activation 

elicited in a comparison group of novice dancers only. These results provide a composite of 

LOTC activation during action processing of newly learned ballet choreography and movement 

																																																								
11	Paula M. Di Nota, Gabriella R. Levkov, Rachel J. Bar & Joseph F.X. DeSouza. (2016). Experimental Brain 
Research, 234(7), 2007-2023.	
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of the foot. The role of these areas is confirmed as primarily subserving observation of complex 

sequences of whole-body movement, with new evidence for modification by experience and over 

the course of real world ballet learning. 

 

 

 

5.2   INTRODUCTION 

The pattern of brain activity elicited by a given movement is known as a motor 

representation, which can also be accessed consciously without overt physical movement 

through motor imagery (Jeannerod 1995; Gerardin et al. 2000; Sirigu and Duhamel 2001; Grèzes 

and Decety 2001; Hanakawa et al. 2008). Using functional magnetic resonance imaging (fMRI), 

researchers have identified common and distinct nodes of activity during action processing – the 

execution, observation, and visualization of movement, with common activation reported in the 

premotor cortex (PMC), supplementary motor area (SMA), middle frontal gyrus, cingulate 

gyrus, supramarginal gyrus, and inferior parietal cortex (Gerardin et al. 2000; Grèzes and Decety 

2001; Hanakawa et al. 2008). These regions are suggested to be bound by the physical 

constraints and similar time courses for real and imagined movement (Gerardin et al. 2000) and 

additionally compare preparatory efference copy signals to reafferent sensory signals in order to 

determine if predicted and actual behavioral outcomes match during learning (Rizzolatti et al. 

1998; Blakemore et al. 1998; DeSouza et al. 2000; DeSouza et al. 2002; 2003; Rizzolatti and 

Craighero 2004; Oosterhof et al. 2013; Pynn and DeSouza 2013). When these signals are 

congruent and successful movement occurs, connections between motor planning, execution, and 

sensory regions within the larger action observation network (AON) are strengthened, in turn 



	 109	

facilitating future successful movement and motor learning through physical practice and during 

observation (Rizzolatti and Craighero 2004; Oosterhof et al. 2013).  

In order to map a third-person motor representation onto the observer’s AON and execute 

movement, observers must be able to embody the actions they perceive. The extrastriate body 

area (EBA) has been implicated in embodiment processing (Arzy et al. 2006; Di Dio et al. 2007; 

Urgesi et al. 2007; Giummarra et al. 2008) and is a functionally defined higher-order visual 

processing area in the lateral occipitotemporal cortex (LOTC). Preferentially activated by 

images, photographs and line drawings of human bodies and body parts, but not the human face, 

the EBA can be differentiated from other nearby category-specific areas like object-selective 

lateral occipital complex (LO) when contrasted with various control stimuli (Downing et al. 

2001; Grill-Spector et al. 2001; Astafiev et al. 2004; Peelen and Downing 2005; Peelen et al. 

2006; Orlov et al. 2010). Recent evidence demonstrates the responsiveness of EBA to goal-

directed movement with and without visual feedback (Astafiev et al. 2004; Peelen and Downing 

2005; Kable and Chatterjee 2006; Urgesi et al. 2006; David et al. 2007; Urgesi et al. 2007; Orlov 

et al. 2010), which is likely influenced by substantial overlap of this region with the human 

visual motion complex (MT+) also located within the LOTC (Downing et al. 2001; Kolster et al. 

2010; Weiner and Grill-Spector 2011; Ferri et al. 2013). These works demonstrate an important 

role for the EBA and sub-regions of the LOTC in mediating sensorimotor transformations of 

observed action within the AON. 

In addition to responding to observed movement, there is evidence for EBA activation 

during motor imagery of human bodies (Astafiev et al. 2004; Blanke et al. 2010). This is 

contrary to previous claims that motor imagery is subserved by a different network of brain 

regions than those involved in visual imagery (Jeannerod 1995; Sirigu and Duhamel 2001; 
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Tomasino and Rumiati 2004; Urgesi et al. 2007), with the latter recruiting predominantly from 

the left hemisphere and visual imagery mediated mostly by the right hemisphere (Gerardin et al. 

2000; Grèzes and Decety 2001; Tomasino and Rumiati 2004; David et al. 2007; Urgesi et al. 

2007; Hanakawa et al. 2008; Blanke et al. 2010). Also uncertain is the role of EBA during 

movement execution. While EBA activity is stronger in the contralateral hemisphere during 

visually-guided movement (Astafiev et al. 2004; Peelen and Downing 2005; David et al. 2007; 

Weiner and Grill-Spector 2011), limited activation has been demonstrated during movement in 

the absence of visual information (Astafiev et al. 2004; Peelen and Downing 2005; Orlov et al. 

2010). Based on these modest activations of EBA by different motor signals (i.e. execution or 

imagery), higher-order visual areas in LOTC have been suggested to serve more of an 

interpretive function as opposed to an action-specific one (Kable and Chatterjee 2006; 

Herrington et al. 2012). However, recent evidence combining both anatomically and functionally 

driven approaches suggests that the LOTC and its sub-regions are responsible for a multitude of 

action representations, including preparation of goal-directed movement (Kühn et al. 2010), 

attributing meaning to observed and executed movement (Romaiguère et al. 2014), as well as 

semantic processing of action-related verbs (Bedny et al. 2008; Kemmerer et al. 2008; for 

comprehensive review see Lingnau and Downing 2015). We seek to clarify the extent to which 

the LOTC and its sub-regions are activated during different action processes (observation, 

imagery and execution) within the same individuals in order to understand its role within the 

AON.   

Action processing is also an important focus of research in the emerging field of 

neuroaesthetics, with topics ranging from sensorimotor transformations of a dance onto the 

observer’s cognitive motor network, to evaluating the emotional valence of a performance, 
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which also implicates EBA (Calvo-Merino et al. 2005, 2006; Cross et al. 2006; Di Dio et al. 

2007; Cross et al. 2009a, 2009b; Calvo-Merino et al. 2010). Prolonged and intensive training has 

been shown to result in structural and functional changes throughout the brain (Lotze et al. 2003; 

Calvo-Merino et al. 2005, 2006; Limb and Braun 2008; Olsson et al. 2008). Cortical activations 

become more refined with practice (DeSouza & Bar, 2016), resulting in less activation compared 

to non-experts (Dhami, 2016), particularly in the SMA, and less activation during imagined 

compared to observed performance (Meister et al. 2004, 2005; Olsson et al. 2008). Although 

common networks are activated in both amateurs and experts while performing dance 

movements cued by music (Brown et al. 2006; Brown and Parsons 2008), they can become 

specified to the extent that they elicit different activation for stimuli that are tuned to the 

experience of the expert (Calvo-Merino et al. 2005, 2006; Olsson et al. 2008). Expertise also 

affects whether motor or visual imagery elicits a motor representation, with novices recruiting 

visual areas due to a lack of physical familiarity with the movement repertoire (Calvo-Merino et 

al. 2006; Olsson et al. 2008; Blanke et al. 2010) while experts demonstrate a broadened capacity 

for physical and observational learning (Cross et al. 2006, 2009a, 2009b; Foster 2013). Using 

functional tasks that involve observation, visualization and execution of movement that is tuned 

to the experience of our experts over a longer duration than previously investigated, we hope to 

clarify any putative differences in LOTC activation during these processes relative to novices.  

With our current understanding of LOTC involvement in action processing, we still do 

not know to what extent this region is comparatively activated during observed, imagined, and 

real movements, how activity changes over the course of motor learning, and whether activation 

is modulated by expertise. These are the goals of the present study, which will be achieved by 

analyzing longitudinal EBA, MT+ and LO fMRI blood oxygen level-dependent (BOLD) activity 
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during four tasks: viewing a novel dance sequence that is being physically learned, visualizing a 

novel dance sequence that is being physically learned (VisL), visualizing an improvised control 

dance sequence that is not physically being learned (VisNL), and a motor task that involves 

movement of the right foot. A portion of the VisL data has been examined for whole-brain 

changes in motor representations over the course of a 34-week learning and rehearsal program 

(Bar and DeSouza 2012; 2016; DeSouza and Bar 2012)12 but our current research questions will 

employ different methods, namely anatomical and functional localizers, to focus on LOTC. 

Based on the existing literature, we hypothesize that LOTC activation will be greatest during 

viewing compared to visualization and movement tasks, and we expect differences between the 

movement and visualization tasks with no specific hypothesis about directionality. We also 

expect learning-induced changes in LOTC activity over the course of a 34-week dance program, 

and that activation will differ between visualization of learned (VisL) and non-learned (VisNL) 

dance sequences. We also predict that LOTC activation will differ between expert dancers and 

novices during each of the tasks, as the former group has likely developed specialized neural 

networks following intensive professional training compared to novices.   

 

5.3   METHODS 

5.3.1   Participants 

Eighteen professional ballet dancers (6 female, mean age = 20.7 years, range = 18-50 

years, mean years of dance experience = 13.1) were recruited from three cohorts of the National 

Ballet of Canada’s Apprenticeship Program, all of which practiced and performed the dance that 

would comprise the experimental stimulus. Subject 14 discontinued participation due a dance 

																																																								
12	Due to time constraints in ongoing data collection, the EBA was functionally localized in only 12 subjects (see 
Appendix C). Justification for the validity of our anatomical ROIs is provided in Section 5.3.5.	
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injury that hindered learning of the choreography, Subject 15 missed Scans 2 and 3 due to an 

injury, and Subject 16 discontinued participation after Scan 2 (see Appendix C for summary). 

Due to these missing data points, we were unable to perform typical analysis of variance 

(ANOVA) significance tests, and have adjusted our statistical models accordingly (see Section 

2.4 for further details). To evaluate putative expertise effects in LOTC activity during the 

experimental tasks, eight novice subjects were also scanned (5 female, age = 25.8 years, range = 

18-43 years, mean years of dance experience = 4.75). Novice subjects were members of the York 

University community that had varied levels of dance experience (ballet, figure skating) that 

were significantly less than that of the expert group (F(1, 25) = 6.38, p = 0.019). Exclusion 

criteria for all participants included any history of neurological disorders, and for the novice 

group, any subjects that had standardized years of experience (years of experience – mean years 

of experience for novice group/SD) +/-1 were also excluded. Two novice participants were 

excluded under this criteria (Bar & DeSouza, 2016).  Thus, data from twenty-six subjects and 

150 imaging sessions were included. Subjects provided written consent and were compensated 

$25 per hour. All procedures were approved by and in accordance with the York University 

Human Participants Research Review Sub-Committee (Certificate number: 2013-211).  

5.3.2   Procedure  

Professional dancers were scanned up to four times according to a 34-week schedule that 

matched that of the National Ballet of Canada’s Apprenticeship Program, beginning in 

September and ending in late May: 

• Time 1: first week of rehearsal (baseline); three dancers in the first cohort had 

rehearsed the portion of the dance (final minute of the sequence) included in the 
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present scan four times, remaining dancers had not yet learned the tested portion of the 

dance 

• Time 2: one week after baseline scan; average of seven rehearsals of the tested portion 

of the dance 

• Time 3: five weeks (average) after Time 1; 16 performances of the entire dance for 

five dancers and an average of 21 rehearsals for remaining dancers 

• Time 4: 33 weeks (average) after Time 1; average of 13 performances for eleven 

dancers and average of 26 rehearsals for twelve dancers (the second cohort 

discontinued the original choreography soon after Time 3) 

Novice subjects did not learn the choreography of the expert dancers and were scanned at 

Time 1 only.   

In a single scanning session, subjects performed up to 4 tasks (Appendix C). Each of the 

following tasks employed a block design, with five one-minute ‘On’ conditions beginning with, 

separated by, and ending with 30-second fixation (‘Off’) periods lasting 8.10 minutes.  

Viewing task: Subjects were instructed to listen to and watch a 1-minute segment of their 

respective dances accompanied by music. Video stimuli were recorded by a member of the 

research team at the first rehearsal of the tested portion of the dance on location at the studio, 

which occurred between Time 1 and 2 scans. Thus, dancers only performed this task on and after 

Time 2, and novices (n = 6) scanned at the time of the second cohort watched the dance learned 

by cohort 1. Subjects were asked to fixate on a cross that was superimposed on the video at the 

center of the screen, which was back projected behind the scanner (visual angle = 36°) and 

viewed through a head coil-mounted mirror. Subjects wore MR-compatible headphones (MR 

Confon, Magdeburg, Germany).  
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Visualization task 1 (VisL): Through a pair of headphones, subjects heard the music to 

the choreography that they were currently learning (J.S. Bach’s Concerto in C Major for the first 

dance cohort, A. Glazunov’s Opus 57 for the second dance cohort, and D. Shostakovich’s 

Allegro Non Troppo for the third dance cohort) and were instructed to visualize the choreography 

that they had learned from a first-person internal perspective in time with the music. Novices 

were instructed to visualize themselves dancing to the music of the current cohort (see Appendix 

C) from a first-person internal perspective. A white fixation cross was presented at the center of 

a black screen throughout the task. Visualization training was offered to participants before each 

scanning session, as well as through workshops at the National Ballet of Canada offered to each 

cohort. To ensure the task was performed correctly according to their learning program and to 

the best of their ability, all dancers completed two items following each scan: a post-scanning 

questionnaire and a visualization test. The questionnaire asked how accurately subjects thought 

they visualized themselves dancing to the music, if they visualized from an internal (desired 

response) or external perspective, if they visualized the choreography continuously and timed 

exactly to the music, and whether their eyes were open or closed during visualization. One 

subject at one time point responded to visualizing from an external third-person perspective, and 

one subject at one time point reported visualizing another dance. Data from these sessions were 

excluded from further analyses. All but one subject reported closing their eyes during the task. 

For the visualization test, the video version of the stimulus was played and hidden from the 

dancers’ view. The experimenters paused the video at five predetermined spots and asked the 

dancers to verbally describe or act out where in the dance the music had been paused. This 

procedure was repeated five times for each dancer following the final scan (Time 4) in the first 

cohort and following scans at Time 2, 3, and 4 in the remaining cohorts. Across all assessments, 
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all but one dancer was accurate within 2 seconds at describing the paused moment of the dance, 

and the dancer who was unsure was inaccurate in three of five test trials. 

Visualization task 2 (VisNL): In order to attribute changes in brain activity over time to 

learning a new dance sequence, a subset of subjects in cohorts 2 and 3 performed a control 

visualization task of a dance they were not learning (VisNL). Through a pair of headphones, 

participants heard the music to choreography that they were not currently learning (J.S. Bach’s 

Concerto in C Major from Bar and DeSouza (2016)), which was selected to match the cadence 

and genre of the VisL stimuli. As with the VisL task, subjects were instructed to visualize 

themselves dancing to the music from a first-person internal perspective in an unstructured, 

improvised manner. Dancers also conducted a post-scanning questionnaire to ensure that they 

performed the task correctly (i.e., continuously from an internal first-person perspective, whether 

eyes were open or closed) and to the best of their ability, but no visualization test was performed. 

Only one subject at one time point responded to visualizing from an external third-person 

perspective, and this data was excluded from further analyses. All but one subject reported 

closing their eyes during the task. 

Motor task: Subjects were instructed to maintain fixation on a cross at the center of the 

screen until it was replaced with the word “Wiggle”, at which point they were instructed to 

continue fixating while moving the toes of their right foot (extending and contracting them at a 

rate of 1Hz), ensuring the rest of their body was completely still. This task was explained and 

demonstrated prior to entering the scanner to ensure the action and rate of movement was 

understood. 

5.3.3   Image Acquisition  
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Functional and anatomical images of the brain were collected using a 3T Siemens 

TrioTim MRI scanner (Erlangen, Germany) with a 32-channel head coil, housed at the Sherman 

Health Science Research Centre at York University. T2*-weighted echo planar imaging using 

parallel imaging (GRAPPA) with an acceleration factor of 2X was used with the following 

parameters: 32 slices, 56x70 matrix, 210x168 mm FOV, 3x3x4 mm slice thickness, TE=30ms, 

flip angle of 90°, volume acquisition time of 2.0s. There were a total of 240 volumes per scan for 

each of the viewing, visualization, and motor tasks, and a total of 215 volumes for the EBA 

localizer task. Echo-planar images were co-registered with the high-resolution (1mm3) 

anatomical T1-weighted images of the subject’s brain taken during each scanning session (spin 

echo, TR = 1900ms, TE = 2.52ms, flip angle = 9°, 256 x 256 matrix). While in the scanner, 

subjects’ heads were padded with cushions to reduce head movements. A vitamin E pill was 

placed beside the right hemisphere of all subjects for localization. 

5.3.4   Image analysis 

Preprocessing of the raw data collected from the scanner was performed with Brain 

Voyager QX (Version 2.4, Brain Innovation, Maastricht, The Netherlands). Functional data were 

coregistered with structural images, which were aligned on the anterior commissure-posterior 

commissure line and transformed into Talairach space. Functional data were motion corrected 

with a trilinear/sync interpolation and referenced to the functional volume from the previous 

functional run that was closest to the structural anatomical scan. Functional scans with motion 

artifact greater than 3mm were excluded, resulting in exclusion of only one of the 166 (or 0.6%) 

functional scans.  

5.3.5   Signal processing – Region of Interest Analysis 
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Anatomically defined regions of interest (ROIs) were created for the EBA in both 

hemispheres for all subjects centered on averaged Talairach coordinates and anatomical 

landmarks obtained from the literature (Table 5.1). According to the literature, the right EBA is 

averaged at (x, y, z) 47 (SD = 3.2), -66 (SD = 3.6), 5 (SD = 5.9) and the left EBA at -46 (SD = 

2.5), -72 (SD = 3.1), 1 (SD = 4.1). Anatomical ROIs for the EBA were centered on average 

coordinate points drawn along each subject’s lateral occipital sulcus bordering on the inferior 

portion of the middle occipital gyrus (Astafiev et al. 2004; Peelen and Downing 2005; Orlov et 

al. 2010; Weiner and Grill-Spector 2011; Ferri et al. 2013) and not exceeding the SD values of  

 
Table 5.1. Talairach coordinates for EBA, MT+ and LO from the literature.  
Note that the coordinates cited for Sinke et al., (2012) are averaged across 14 participants, 
but all individual subjects were included in our calculation for the average coordinates in order 
to determine an average that encompassed as many previously reported ROI coordinates as 
possible. MNI coordinates were converted to Talairach using mni2tal converter 
(http://noodle.med.yale.edu/~papad/mni2tal/).        

 
 

Region of 
interest 

Coordinates (X, Y, Z) 
Contrast Citation Left 

Hemisphere 
Right 

Hemisphere 
 

EBA 
 
 
 

-48 
 

-76 
 

4 
 

50 
 

-69 
 

1 
 

Headless bodies > 
chairs 

Atkinson et 
al. 2012 

- - - 47 -66 7 Bodies > faces, 
houses, tools 

Sinke et al. 
2012 

-45 -73 2 47 -68 2 Headless bodies > 
chairs 

Taylor et 
al. 2010 

- - - 47 -63 -7 Headless bodies > 
chairs 

Kontaris et 
al. 2009 

-43 -73 -7 42 -63 10 Bodies > objects Hodzic et 
al. 2009 

-51 -68 3 51 -67 3 Headless bodies > 
chairs 

Downing et 
al. 2007 

-45 -69 4 45 -67 5 Bodies > 19 
categories 

Downing et 
al. 2006 

-45 -74 -1 48 -70 1 Bodies > faces, 
tools, scenes 

Peelen et 
al. 2006 

-45 -74 -3 48 -68 0 Headless bodies > 
faces, scenes, tools 

Peelen and 
Downing 

2005 

-46 -68 4 46 -62 3 Body parts > object 
parts 

Astafiev et 
al. 2004 

MT+ -48 -74 11 47 -76 10 Moving > static 
random texture 

Kolster et 
al. 2010  
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LO -44 -77 -5 48 -78 -6 Objects > 

scrambled 
Bona et al. 

2014 

-45 -75 4 43 -73 5 Objects > 
scrambled 

Mundy et 
al. 2012 

-42 -87 3 41 -89 2 
(Un)familiar objects 

> scrambled 
images 

Kolster et 
al. 2010 

- - - 40 -74 -2 Mammals, houses, 
objects > textures 

Grill-
Spector 

2003 

-41 -77 3 40 -72 2 Object > noise, 
blanks 

Grill-
Spector et 
al. 1999 

 

each coordinate plane (Figure 5.1). Control ROIs for bilateral MT+ and LO were created with 

5mm-radius spheres centered on average coordinates from the literature (Table 5.1), which did 

not overlap with EBA ROIs (Figure 5.2). Center coordinates for left LO were -43 (SD = 1.8), -79  
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Figure 5.1. EBA regions of interest (ROIs).  
To demonstrate accuracy of our anatomically-defined EBA ROIs (n=14, dark blue), we 
plotted their average centre coordinates with those from a functional EBA localizer on 12 
subjects (light blue) on an average brain comprised of 60 Talairach-transformed structural 
images (all 26 subjects across multiple scans). The dark blue sphere represents the center 
coordinates of the anatomically-defined EBA ROIs with a radius of the averaged SD value 
across all coordinate planes (left: -46 (SD = 2.5), -72 (SD = 3.1), 1 (SD = 4.1), right: 47 (SD 
= 3.2), -66 (SD = 3.6), 5 (SD = 5.9). The light blue sphere represents the center coordinates 
of the functionally-defined EBA ROIs (Table 2) with a radius of the averaged SD value 
across all coordinate planes (left: -50 (SD = 3.9), -71 (SD = 4.0), 0 (SD = 5.2), right: 47 (SD 
= 3.4), -67 (SD = 4.7), 3 (SD = 5.3) 
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Figure 5.2. Regions of interest (ROIs) in lateral occipitotemporal cortex (LOTC). 
EBA (blue, averaged across anatomically- and functionally-defined ROIs), MT+ (red) and 
LO (green) ROIs in each of the left and right hemispheres are shown together on a surface 
map of a representative subject. Coordinates (x, y, z): left EBA: -48, -71.5, 0.5; right EBA: 
47, -66.5, 4; left MT+: -48, -74, 11; right MT+: 47, -76, 10; left LO: -43, -79, 1; right LO: 42, 
-77, 0 
 

(SD = 5.4), 1 (SD = 4.2) and for right LO were 42 (SD = 3.4), -77 (SD = 7.0), 0 (SD = 4.3) (Grill-

Spector et al. 1999; Grill-Spector 2003; Kolster et al. 2010; Mundy et al. 2012; Bona et al. 2014), 

and center coordinates for MT+ have been reported previously (Kolster et al. 2010).  
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In order to validate our anatomical ROIs, we employed a functional EBA localizer 

approximately halfway through ongoing data collection in twelve of 26 subjects (10 dancers, 2 

novices) using a standard EBA localizer task prepared in Matlab (Version 7.10.0.99 R2010a, The 

Mathworks, Inc., Natick, MA) and Psychophysics Toolbox (Brainard 1997). Subjects were 

presented with 8 ‘On’ blocks, which were equally divided between the bodies (images of bodies 

and body parts, excluding faces) and objects (houses, flowers, guitars, and cars).  Within each 

block, 20 images were randomly presented for 500ms with 500-1000ms interstimulus intervals at 

a visual angle of 11° (horizontally). The ‘Off’ blocks were 16 seconds and presented a black 

fixation point (visual angle = 0.2°) at the center of the screen (background colour grey, R:128, 

G:128, B:128). Body and object stimuli were obtained from a previously used database (Weiner 

and Grill-Spector 2010, 2011), and the task was an average of 8.7 minutes.  

Functional ROIs were defined on a subject-by-subject basis and clusters were defined 

with body > object contrasts in left and right hemispheres (Table 5.2). The average coordinates 

for functionally-defined EBA ROIs were centered at (x, y, z) right: 47 (SD = 3.4), -67 (SD = 4.7), 

3 (SD = 5.3) and left: -50 (SD = 3.9), -71 (SD = 4.0), 0 (SD = 5.2), and did not significantly differ 

from anatomically-defined EBA coordinates (p>0.1 for right: x  = t(11) = -0.425, y = t(11) = 

0.366, z = t(11) = 0.000; left: x  = t(11) = 0.447, y = t(11) = -0.219, z = t(11) = -0.165) (Figure 

5.2), demonstrating that our anatomically-defined EBA ROIs are reliably located in EBA and 

consistent with those that were functionally defined (Figure 5.1).   

Raw timecourse data were extracted from each ROI for each subject, functional scan and 

time point. Those participants who performed a functional EBA localizer had data values 

extracted from functionally defined ROIs (n = 12) while all remaining subjects’ (n = 14) EBA 

data were from anatomically defined ROIs. Raw data were standardized according to the 
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Table 5.2. Statistical thresholds for functional EBA regions of interest.  
ROIs for the EBA were defined from body > object contrasts during the EBA functional localizer 
task in 12 subjects. A statistical threshold of p < 0.01 was set for all participants except for 
Subject 17, who only demonstrated significant EBA activity at a threshold of p = 0.1471.  
* denotes novice subjects.  

 
 Left hemisphere Right hemisphere 
Subject T df # voxels x, y, z T df # voxels x, y, z 

6* 2.4 213 163 -48 -77 0 2.4 213 166 41 -62 2 

8* 2.6 281 110 -46 -64 -2 2.6 281 27 49 -68 12 

15 2.6 213 84 -52 -66 0 2.6 213 214 46 -61 1 

17 1.5 211 147 -56 -72 8 1.5 211 29 50 -62 2 

18 2.6 211 107 -47 -71 -4 2.6 211 307 47 -67 10 

19 3.5 213 407 -47 -71 -2 3.5 213 648 51 -66 7 

20 1.9 188 479 -54 -73 -6 1.9 188 225 42 -64 -3 

21 4.1 223 38 -48 -71 -7 4.1 223 33 49 -67 4 

22 3.4 221 898 -53 -70 -2 3.4 221 854 50 -68 -5 

23 3.4 223 810 -53 -69 6 3.4 223 974 44 -63 4 

24 5.6 223 943 -46 -73 -3 5.6 223 878 47 -73 6 

25 2.6 221 765 -44 -78 9 2.6 221 855 43 -77 -4 

Average   412.6 -50 -71 0   434.2 47 -67 3 

SD   352.9 +/- 3.9 4.0 5.2   376.4 +/- 3.4 4.7 5.3 
 
 

protocols for On and Off periods obtained during each scan. First, an average was obtained for 

all Off (Baseline) volumes, and each volume (X) was standardized according to the following 

equation: (( X – Baseline )/Baseline)*100. Next, On and Off standardized BOLD signals were 

averaged across blocks and calculated for each subject, functional scan and time point. Each 

average accounted for the hemodynamic response function by excluding the first two volumes in 

each On and Off block.   
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5.3.6   Statistical analyses 

Separate analyses were performed for each hemisphere and ROI13 (EBA, MT+, LO) with 

the exception of a final composite analysis (Section 5.4.4). We performed paired-samples t tests 

on the On versus Off standardized BOLD signals for the viewing and visualization (VisL and 

VisNL) tasks to determine whether any significant LOTC activation was elicited during 

observation and/or motor imagery of a novel dance sequence over the course of motor learning. 

Due to missing data points across time for each of our viewing, VisL and VisNL tasks (see 

Appendix C), we cannot proceed with a typical GLM or ANOVA. We have instead applied a 

more appropriate fixed effects mixed model, which will evaluate differences in our dependent 

variable (standardized BOLD signal) over a repeated measure (time) while accounting for 

missing cases. To examine any changes in LOTC activation over the course of motor learning 

and any putative expertise effects during the viewing and visualization tasks, we performed 

repeated measures mixed model analyses on the standardized BOLD signal for each of these 

tasks over the factors of Time (four levels: Time 1 to Time 4) and Group (expert ballet and 

novice dancers). Only for the motor task did we evaluate the standardized BOLD signal at one 

time point with two separate 2 x 2 repeated measures ANOVAs (one for each hemisphere) using 

the factors of Group (expert ballet and novice dancers) and Condition (On or Off), since we had 

all 26 subjects perform this task and we did not expect an improvement in participants’ ability to 

perform this simple task with practice. All pairwise comparisons have been corrected with a 

Bonferroni adjustment (PBonf) to account for multiple comparisons unless otherwise specified. 

 

 

																																																								
13	Separate analyses were performed for each ROI and hemisphere to account for potential functional lateralization, 
and to increase the statistical power of our mixed model analyses.  
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5.4   RESULTS 

5.4.1   Viewing Task 

Paired-samples t tests comparing the On versus Off conditions revealed significant 

bilateral activation of all LOTC ROIs while viewing a complex dance sequence (Table 5.3). 

Pairwise tests were significant at the corrected value of pBonf = 0.00625 (pBonf = 0.05/[4 time 

points x 2 hemispheres] = 0.00625) at all time points in the EBA except for the right EBA at 

Time 2 (t(4) = -4.104, p = 0.0075) , and left EBA at Time 3 (t(14) = -2.616, p = 0.0100, denoted 

§ in Figure 5.3), whereas MT+ and LO were only significantly activated at Time 3 (except right 

MT+) and Time 4. There was no difference in LOTC activation over time (left EBA: F(2, 14) = 

1.174, p > 0.10; right EBA: F(2, 16) = 0.321, p > 0.10, left MT+: F(2, 16) = 1.167, p > 0.10; 

right MT+: F(2, 16) = 0.042, p > 0.10, left LO: F(2, 14) = 0.672, p > 0.10; right LO: F(2, 16) = 

0.180, p > 0.10, Figure 5.3) or between dancer and novice groups (left EBA: F(3, 21) = 0.805, p 

> 0.10, right EBA: F(3, 21) = 0.459, p > 0.10, left MT+: F(3, 20) = 0.643, p > 0.10; right MT+: 

F(3, 20) = 0.346, p > 0.10, left LO: F(3, 21) = 0.305, p > 0.10; right LO: F(3, 21) = 1.393, p > 

0.10).  

 

 

 

 

 

 

 

 

 



	 126	

Table 5.3. LOTC Activation During Viewing Task.  
Paired-samples t-tests were conducted between On-Off average BOLD signal change for each 
ROI at each time point during the Viewing task. Significance was adjusted to PBonf=0.00625 to 
correct for multiple comparisons. Note that MT+ analyses at Time 3 and 4 contain one less 
participant, who was removed due to data values >3SD. *denotes significance at the corrected 
level (PBonf=0.00625), §denotes significance at P<0.01 (uncorrected). 

 
Regions L/R df t-statistic P-value (1-tailed) 
EBA 
    Time 1 

 
L 

 
5 

 
-3.905 

 
.0055* 

 R 5 -4.000 .0050* 
    Time 2    L 4 -4.621 .0050* 
 R 4 -4.104 .0075§ 
    Time 3 L 14 -2.616 .0100§ 
 R 14 -5.696 .0000* 
    Time 4 L 14 -9.623 .0000* 
 R 14 -6.443 .0000* 
MT+ 
    Time 1 

 
L 

 
5 

 
-3.689 

 
.0070§ 

     R 5 -3.025 .0145 
    Time 2 L 4 -4.060 .0075§ 
 R 4 -2.544 .0320 
    Time 3 L 13 -4.089 .0005* 
 R 13 -2.022 .0320 
    Time 4 L 13 -5.846 .0000* 
 R 13 -2.810 .0075§ 
LO 
    Time 1 

 
L 

 
5 

 
-2.202 

 
.0395 

 R 5 -3.462 .0090§ 
    Time 2 L 4 -2.841 .0235 
 R 4 -3.713 .0105 
    Time 3 L 14 -6.882 .0000* 
 R 14 -5.283 .0000* 
    Time 4 L 14 -7.155 .0000* 
 R 14 -5.835 .0000* 
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Figure 5.3. Viewing a newly learned ballet dance sequence over the course of learning.  
All ROIs showed significant BOLD activation in left (top graph) and right (bottom graph) 
hemispheres while viewing a 1-minute segment of a newly learned ballet dance compared 
to Off conditions. EBA was active at all time points at the adjusted level of pBonf=0.00625 
(denoted *) except Time 2 (right) and Time 3 (left, denoted §), and MT+ and LO activation 
was only significant at Time 3 and Time 4 (except right MT+). Note that the lighter colored 
bars at Time 1 represent the novice group. * pBonf=0.00625, §P<0.01 (uncorrected), error 
bars show SEM 
     

5.4.2   Visualization Tasks 

5.4.2.1   VisL Task 

Correcting for multiple comparisons (pBonf = 0.00625), none of the paired-samples t tests 

yielded significant BOLD activation during visualization of a newly learned dance (Table 5.4). 

Only the left EBA at Time 2, right MT+ at Time 3 and left LO at Time 2 were significant at 

uncorrected threshold values (p < 0.05), demonstrating that visualizing a dance sequence elicits 

very little LOTC activity, even after 34 weeks of learning and rehearsal.  
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Table 5.4. LOTC Activation During VisL and VisNL Tasks.  
Paired-samples t-tests were conducted between On-Off average BOLD signal change for each 
ROI at each time point during the VisL and VisNL tasks. Significance was adjusted to pBonf = 
0.00625 to correct for multiple comparisons. Note that MT+ analyses at Time 3 and 4 contain 
one less participant, who was removed due to data values >3SD. § denotes significance at 
p<0.05 (uncorrected). 

 
  VisL Task VisNL Task 
ROI L/R df t-statistic P-value 

(1-tailed) 
df t-statistic P-value 

(1-tailed) 
EBA 
    Time 1 

 
L 

 
18 

 
-0.227 

 
.4115 

 
12 

 
0.308 

 
.3815 

 R 18 -0.360 .3615 12 -0.124 .4520 
    Time 2    L 6 1.959 .0490§ 1 -0.389 .3820 
 R 6 0.176 .4330 1 -0.072 .4775 
    Time 3 L 13 1.650 .0615 5 0.827 .2230 
 R 13 1.227 .1210 5 -0.034 .4870 
    Time 4 L 13 -1.483 .0810 8 -0.066 .4745 
 R 13 -0.401 .3475 8 1.305 .1140 
MT+ 
    Time 1 

 
L 

 
17 

 
-1.504 

 
.0755 

 
11 

 
-0.779 

 
.2260 

     R 17 1.343 .0985 11 1.143 .1385 
    Time 2 L 6 0.702 .2545 1 26.983 .0120§ 
 R 6 0.782 .2320 1 1.388 .1985 
    Time 3 L 12 0.988 .1715 4 -0.539 .3900 
 R 12 2.538 .0130§ 4 1.648 .0875 
    Time 4 L 12 -1.758 .0520 7 -0.311 .3825 
 R 12 1.341 .1025 7 2.428 .0230§ 
LO 
    Time 1 

 
L 

 
18 

 
-0.895 

 
.1915 

 
12 

 
-0.244 

 
.4055 

 R 18 0.329 .3730 12 0.962 .1775 
    Time 2 L 6 2.198 .0350§ 1 3.172 .0970 
 R 6 1.073 .1625 1 -0.310 .4040 
    Time 3 L 13 1.637 .0630 5 -0.715 .2535 
 R 13 0.819 .2135 5 -1.861 .0610 
    Time 4 L 13 -1.158 .1340 8 0.451 .3320 
 R 13 -0.269 .3960 8 1.794 .0550 

 

In spite of this finding, temporal changes in activation among expert dancers were revealed in 

EBA only. Repeated measures mixed model analyses for the left EBA found the main effect of 

Time to be approaching significance (F(3, 19) = 2.861, p = 0.065), with pairwise comparisons 

demonstrating significant increases in left EBA activity between Time 2 (1 week of rehearsal) 

and Time 4 (34 weeks) (p < 0.05, Figure 5.4). Time was a non-significant main effect for all 

other sub-regions, with no significant changes in LOTC activity while visualizing a newly 



	 129	

learned dance over 34 weeks (right EBA: (F(3, 23) = 0.532, p > 0.10, left MT+: F(4, 23) = 0.945, 

p  > 0.1, right MT+: F(4, 23) = 1.684, p > 0.1, left LO: F(3, 20) = 2.155, p > 0.10, right LO: F(3, 

19) = 0.452, p > 0.10; Figure 5.4). Finally, no significant difference in LOTC activation were 

found between expert dancers and novice subjects (left EBA: F(4, 24) = 0.636, p > 0.10, right 

EBA: F(4, 24) = 0.456, p > 0.10, left MT+: F(4, 23) = 0.945, p > 0.1, right: F(4, 23) = 1.684, p > 

0.1, left LO: F(4, 24) = 1.064, p > 0.1, right LO: F(4, 24) = 0.598, p > 0.1).   

5.4.2.2   VisNL Task 

Paired-samples t tests revealed that there was no significant activation of LOTC during 

this task relative to Off conditions, with only uncorrected significance in left MT+ at Time 2 and 

right MT+ at Time 4 (Table 5.4). However, significant increases in left LO activity (F(3, 8) = 

4.567, p < 0.05) were observed from Time 1 to Time 2 (p < 0.05), Time 3 (p < 0.01), and Time 4 

(p < 0.05), and changes in right LO activation approached significance (F(3, 8) = 3.577, p = 

0.070) increasing between Time 1 and Time 3 (p = 0.069) and decreasing between Time 3 and 

Time 4 (p = 0.049) (Figure 5.4). Marginally significant decreases in right MT+ activity were also 

observed from Time 2 to Time 4 (F(3, 10) = 3.582, p = 0.056, pairwise comparison: p = 0.058), 

with no other significant longitudinal observed (left EBA: F(3, 7) = 2.032,  p > 0.1, right EBA: 

F(3, 5) = 1.291, p > 0.1, left MT+: F(3, 9) = 0.780, p > 0.1). No group differences were observed 

in LOTC activity during the VisNL task (left EBA: F(3, 19) = 1.598, p > 0.1, right EBA: F(3, 19) 

= 1.132, p > 0.1, left MT+: F(3, 18) = 1.442, p > 0.1, right MT+: F(3, 18) = 2.319, p > 0.1, left 

LO: F(3, 19) = 2.049, p > 0.1, right LO: F(3, 19) = 1.347, p > 0.1). 

 



	 130	

 
 
Figure 5.4. Visualizing newly learned (VisL) and non-learned (VisNL) dance over the 
course of motor learning in professional dancers.  
Marginally significant increases in BOLD activation were observed between Time 2 and 
Time 4 (P<0.05) while visualizing a newly learned ballet dance in left EBA and while 
visualizing a non-learned dance in right MT+. Significant increases in left LO activation 
were observed at all time points relative to baseline (Time 1) when visualizing a dance that 
was not being learned.  §p < 0.05 (uncorrected), * p < 0.05, ** p < 0.01, error bars show 
SEM 
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     5.4.3   Motor Task 

Movement of the right toes resulted in significant activation of left EBA with a large 

effect size (Condition: F(1, 23) = 4.428, p < 0.05, η2=0.161). To further investigate the trend 

demonstrated in Figure 5.5 between groups, pairwise comparisons revealed significant left EBA 

activity for novice subjects only (p < 0.05, Figure 5.5). As expected, no significant EBA 

activation was demonstrated in the right hemisphere (Condition: F(1, 23) =1.348, p > 0.1). 

Movement of the right toes did not result in significant MT+ activity in either left (Condition: 

F(1, 23) = 0.007, p > 0.1) or right (F(1, 23) = 0.000, p > 0.1) hemisphere, or between groups (left 

and right: p > 0.1). However, significant LO activity was observed in both hemispheres (left: 

F(1, 23) = 6.690, p < 0.05; right: F(1, 23) = 4.532, p < 0.05). 

 

 
 
Figure 5.5. LOTC activity during motor task.  
Significant contralateral activation of EBA was observed during movement of the right foot 
in novice subjects only (left: p<0.05), and significant bilateral activation was observed in 
LO (P<0.05). No significant activations were demonstrated in right EBA or bilateral MT+. 
*p<0.05, error bars show SEM 
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5.4.4   Composite Activation of Bilateral LOTC 

To confirm whether BOLD activation differed among our ROIs and tasks, we performed 

two separate 4x3 mixed model analyses on the average BOLD signal during the On condition 

comparing the factors of Task (viewing, VisL, VisNL, motor) and ROI (EBA, MT+, LO) for 

each hemisphere, collapsing across the variables of group and time in this composite analysis to 

obtain a functional profile for all LOTC sub-regions during action processing (Figure 5.6). 

 

 
 
Figure 5.6. Activation in LOTC while viewing, visualizing and executing movement.  
Collapsing across time and groups, bilateral LOTC is activated most strongly by the viewing 
task compared to all other tasks in both hemispheres, and with greater activation during 
the motor task relative to VisL and VisNL in both hemispheres The main effect of ROI (not 
represented above) shows EBA > MT+, left EBA > left LO, right LO > right MT+. A 
significant Task x ROI interaction reveals EBA > LO and MT+ as well as LO > MT+ in the 
right hemisphere during the viewing task. Right EBA > MT+ during the VisL task, and right 
EBA and LO > MT+ during the VisNL task. *p<0.05, ** p<0.01, *** p<0.001, error bars show 
SEM 
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A significant main effect of task was observed in both hemispheres (left: F(3, 44) = 

108.81, p <0.001, right: F(3, 52) = 74.60, p < 0.001), revealing stronger BOLD activity during 

the viewing task compared to both visualization tasks (p < 0.001) and the motor task (p < 0.001), 

no difference between the two visualization tasks (p > 0.1), and greater activation during the 

motor task relative to VisL (left: p < 0.05, right: p < 0.01) and VisNL (left and right: p <0.01) 

(Figure 5.6). A significant main effect of ROI was observed in left (F(2, 115) = 4.39, p < 0.05) 

and right (F(2, 88) = 17.56, p < 0.001) hemispheres, with greater EBA activation compared to 

LO (p < 0.05) in the left hemisphere and greater than MT+ bilaterally (left: p  < 0.05, right: p < 

0.001), as well as greater LO activation relative to MT+ in the right hemisphere (p < 0.001). A 

significant interaction between task and ROI was found in both hemispheres (left: F(6, 54) = 

2.877, p < 0.05, right: F(6, 55) = 3.66, p < 0.01), with greater EBA activation bilaterally 

compared to LO (left: p < 0.01, right: p < 0.05) and MT+ (left: p < 0.05, right: p < 0.001) as well 

as greater LO activity relative to MT+  in the right  hemisphere (p < 0.05) during the viewing 

task. Finally, right MT+ activation was significantly less than EBA during the VisL task (p < 

0.05), and less than both EBA and LO during the VisNL task (p < 0.05). 

 

5.5   DISCUSSION 

5.5.1   LOTC activation is greatest during viewing compared to visualizing  

and executing movement 

 Based on a comparative analysis of LOTC sub-regions EBA, MT+ and LO during 

four different tasks, we found that viewing a complex dance sequence elicits significantly 

greater bilateral activation in all of our ROIs compared to visualization of a learned dance 

(p < 0.001), visualization of a non-learned dance (p < 0.001), and movement of the right 
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foot (p < 0.001, Figure 5.6). Additionally, BOLD activation was greater during the motor 

task relative to both visualization tasks. These results clearly indicate the prioritization of 

LOTC activation for visual processing of complex motor sequences relative to motor 

execution of the foot (Lotze et al. 2003; Astafiev et al. 2004; Peelen and Downing 2005) 

as well as motor imagery as demonstrated within the same subjects.  Most investigations 

of action observation use brief presentations of static postures (Downing et al. 2001; Calvo-

Merino et al. 2010; Weiner and Grill-Spector 2010) or short video clips that are less than 

five seconds (Calvo-Merino et al. 2005; Cross et al. 2006). We were interested in 

evaluating LOTC activation in response to a longer (1 minute) presentation of naturalistic, 

whole-body movement during a dance sequence that our sample of expert ballet dancers 

was learning.  

 Our observed results expand on previous studies demonstrating greater LOTC 

activity during action observation of a complex ballet sequence compared to motor imagery 

(Astafiev et al. 2004; David et al. 2007; Blanke et al. 2010; Orlov et al. 2010) and response 

of the EBA to moving body stimuli (Downing et al. 2001; Kret et al. 2011; Weiner and 

Grill-Spector 2011; Atkinson et al. 2012). The fact that LO showed significantly less 

activation relative to EBA during the viewing task (left: p < 0.01, right: p < 0.05) suggests 

less reliance on this region during action observation. Considering the stimulus had few 

objects in view, this result is in line with the established role of LO in mediating category-

specific object processing (Grill-Spector et al. 2001; Grill-Spector 2003).  

5.5.2   LOTC modulation by experience 

While dancing is inherently multisensory and involves many interacting brain networks (Cross et 

al. 2006; Brown et al. 2006; Brown and Parsons 2008; Cross et al. 2009a, 2009b; Foster 2013; 
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Bar & DeSouza, 2016), our focus was on the influence of visual inputs to the LOTC of 

professional ballet dancers over the course of learning a novel piece of choreography. We found 

significant activation of EBA during all time points of the viewing task (Figure 5.3) and 

significant LO and MT+ activation in both hemispheres after only 5 (except in right MT+) and 

34-weeks of rehearsal and performance in expert dancers (Table 5.3). Since we did not observe 

significant changes in activation during the VisL task, we are cautious to conclude that the 

observed changes are a result of learning a novel complex dance sequence. However, they do 

provide indications of LOTC plasticity over a 8-month period. This is further supported by our 

findings of significant increases in bilateral LO and right MT+ activity at both corrected and 

uncorrected levels of significance during the VisNL task (Figure 5.4). Together with the 

significant activation of contralateral EBA in novices only (p < 0.05, Figure 5.5) during the 

motor task, the present results are suggestive of LOTC modulation by experience, with a 

decreased reliance on these higher-order visual areas in expert dancers relative to novice 

controls.  

 LOTC BOLD signals were generally low in experts while visualizing their newly-learned 

dance (VisL) as well as in both groups while visualizing an non-learned ballet dance to similar 

musical stimuli (VisNL, Table 5.4). However, modulation of BOLD signals in left LO over time 

among dancers was robust and showed a significant main effect (Figure 5.4). These results 

potentially reflect a greater reliance on LO during motor imagery of familiar and meaningful 

stimuli relative to visualizing a specific learned sequence. This more general process of 

visualizing an improvised dance (VisNL) may also recruit MT+ during imagery of the movement 

repertoire using kinesthetic information obtained during habit-forming of over-learned 

movements (Bar and DeSouza 2012; 2016; DeSouza and Bar 2012) as demonstrated by near-



	 136	

significant activation at later time points (Table 5.4, Figure 5.4). Previous research on sequential 

hand movements similarly show increases in brain activity as both execution and imagery shift 

from novel to skilled (Lacourse et al. 2005). Additionally, performance of spontaneous 

improvised musical performance relative to over-learned sequences has shown widespread 

deactivation of prefrontal cortex and limbic structures with concurrently increased activation of 

AON regions including ventral and dorsal PMC, SMA, anterior portions of middle temporal 

gyrus, and lateral occipital gyri (Limb & Braun 2008). Further inspection of the current dataset 

of these regions could reveal similar evidence of disengagement from goal-directed, sequenced 

behavior during the visualization of improvised and highly creative dance movements.  

 That significant longitudinal changes were lateralized to the left hemisphere is in line 

with previous evidence of LOTC activation during action observation and execution 

(Romaiguère et al., 2014). Additionally, it has been suggested that motor imagery, as opposed to 

non-kinesthetic visual imagery, is functionally lateralized to the left hemisphere (Sirigu and 

Duhamel 2001; Tomasino and Rumiati 2004; Blanke et al. 2010) despite evidence for bilateral 

activation (Urgesi et al. 2006; Calvo-Merino et al. 2010; Olshansky et al. 2014; Bar & DeSouza, 

2016). Based on our results (Figure 5.4) and the visualization training and post-scan evaluations 

undertaken by subjects following each scan, we can be confident that our dancers were properly 

engaged in first-person motor imagery. The observed increases in LO activity during 

visualization in the present study are congruent with the trend of activation demonstrated in 

preliminary findings on a portion of this sample showing increased activation in SMA and 

auditory cortex following motor learning using a different (GLM) methodological approach (Bar 

and DeSouza 2012; 2016; DeSouza and Bar 2012). We suggest that the minimal activation 

observed in LOTC during visualization might reflect the early consolidation of newly learned, 
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complex, whole body movements in an intricately timed dance sequence. Low statistical power 

resulting from different numbers of dancers performing the tasks at each time point is the likely 

cause of non- and near-significant main effects in the present analyses.  

 The expert dancers in the present study are professionals from the National Ballet of 

Canada and have a rigorous, full-time rehearsal and performance schedule. As such, we expected 

some attrition, which is not uncommon in longitudinal studies, as a result of scheduling conflicts, 

injury, and changes to the dance program. In anticipation of possible attrition, we tested as many 

dancers at as many time points as we could, resulting in an unbalanced expert sample relative to 

the control novice group (see Appendix C). We accounted for this inequality in our statistical 

analyses by employing mixed models wherever applicable (Section 5.3.6), and despite the 

smaller sample size, significant EBA activation with a large effect size was observed in novices 

only during the motor task (Section 5.4.3). We will continue to investigate these longitudinal 

changes in our dancers as we add to this dataset over the years, and will explore whole-brain 

changes in network activity induced by motor learning. Based on the intensive training and 

performance schedule of our expert ballet dancers, we are confident that any task-specific MRI-

induced practice effects would be overshadowed by behavioral and learning-related effects.   

5.5.3   LOTC and movement: expertise effects and involvement of LO 

Consistent with previous evidence presented by Astafiev et al. (2004) and Peelen and 

Downing (2005), the left EBA was significantly activated during movement of the right foot, 

suggesting a role for EBA in the execution of movement. Our finding that only left EBA showed 

activation is congruent with the functional lateralization of sensorimotor processing to 

contralateral hemispheres in the brain (Afifi and Bergman 2005). However, significant activation 

was only demonstrated in the novice group (p < 0.05), and not among expert dancers. These 
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patterns reflect less reliance on higher-order visual areas for action processing in expert ballet 

dancers who, despite being very mindful of the positioning of their feet both when moving and 

posing, rely on a more specialized motor network during movement. In contrast, the lack of 

experience with deliberate and timed motor control among novices may result in recruitment of 

LOTC as a compensatory mechanism for mediating unfamiliar movement relative to expert 

dancers (Olsson et al. 2008).  Although the stimuli during viewing and visualization tasks were 

context specific to expert ballet dancers, there was no significant modulatory effect of experience 

on LOTC activation, contrary to what has been shown in the AON literature for familiar stimuli 

(Calvo-Merino et al. 2005, 2006; Cross et al. 2006, 2009a, 2009b) and in EBA for aesthetically 

pleasing imagery (Calvo-Merino et al. 2010). The lack of between-group differences may be due 

to visual signals elicited from body images overriding any context-specific effects of stimulus 

type, or the dance experience of some of the novice subjects (see Appendix C). Nonetheless, 

patterns of LOTC activity have been suggested to encode motor representations and our ability to 

prepare for voluntary movements (Kühn et al. 2010) and relate observed action to meaning and 

stored knowledge (Lingnau & Downing 2015). The significant activation of bilateral LO at the 

third and fourth time points of the viewing task (Figure 5.3) may reflect anticipation of steps in 

the choreography, or an enhanced connection to its emotional and/or narrative meaning with 

repeated rehearsal and performance over time (Romaiguère et al. 2014). 

 Previous research has demonstrated greater and more diffuse activity in motor regions 

among novices compared to expert musicians, whose repeated exposure to transforming visual 

information into motor commands cued by auditory stimuli have consolidated activity within 

these circuits (Lotze et al. 2003; Meister et al. 2004, 2005; Grahn and Rowe 2009). The 

significant activation observed during the motor task in bilateral LO (p < 0.05, Figure 5.5) is 
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consistent with this notion. That activity is significant in both groups may also reflect visual 

processing of the semantic instruction to “wiggle” the toes of the right foot  (see Section 5.3.2), 

as LOTC activation has been demonstrated in response to action-related verbs (Bedny et al. 

2008; Kemmerer et al. 2008). However, we cannot dissociate semantic processing from putative 

involvement in movement execution as both were performed during this task.  

 Due to the different number of participants at each time point (see Appendix C), we took 

an ROI-based approach to analyzing our data offline with mixed models to preserve statistical 

power in the presence of missing data points. We extracted and standardized the average BOLD 

signal change in three anatomically localized regions of LOTC (EBA, MT+, LO) in our 

longitudinal study of ballet dancers in order to test changes in activity over the course of up to 

four fMRI scanning sessions that spanned a single season of dancing. To demonstrate that our 

anatomically-defined EBA ROIs were indeed capturing visual processing of body information, 

we performed a standard functional localizer in twelve subjects (Figure 5.2). Plotting our 

functional and anatomical EBA ROIs together with adjacent MT+ and LO ROIs defined by 

coordinates obtained from the literature (Table 5.1) demonstrate that our ROIs are robust and 

accurately represent each respective sub-region of the LOTC. Results from our viewing task 

(Table 5.3, Figure 5.3) also confirm that our anatomical ROIs were accurate in sufficiently 

capturing EBA activation, with significant EBA activation at all time points elicited by 

observation of dynamic images of human bodies and body parts. Additionally, our finding that 

contralateral (left) EBA was significantly activated during the motor task is congruent with the 

functional lateralization of sensorimotor processing to contralateral hemispheres in the brain 

(Afifi and Bergman 2005). Our continued longitudinal studies on subsequent cohorts of dancers 

from the National Ballet of Canada and other dance programs will employ functional localizers 
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for each individual subject to ensure individual variability in ROIs are accounted and controlled 

for. Future investigations on changes in the mental representation of a dance sequence over the 

course of learning could focus on the connectivity of LOTC sub-regions to the larger action 

observation network, as indications for the involvement of EBA as a compensatory motor 

processing region have been demonstrated in clinical populations (van Nuenen et al. 2012a, 

2012b).  

 

5.6   CONCLUSIONS 

The current findings reveal that experience-dependent plasticity induced by dance 

training is not only limited to nodes within the canonical AON, but also extend to higher-order 

visual areas in the LOTC. Additionally, we demonstrate learning-induced plasticity within these 

expert networks over the course of a 34-week rehearsal and performance schedule in 

professional ballet dancers. We also clarify that higher-order visual areas in the LOTC are not 

centrally involved in KMI of dance sequences that are novel or familiar, but may respond to 

semantic representations of action in expert and non-experts. The neural and cognitive efficiency 

with which dancers access embodied motor representations provide further insight into the 

modifications to knowledge schemas by expertise.  
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6 CHAPTER SIX – GENERAL DISCUSSION 

 

6.1   SUMMARY AND CONCLUSIONS 

6.1.1   Expert Knowledge Schemas 

The current body of work presents evidence for the refinement of expert knowledge 

schemas (Figure 6.1) coding skill-related sensory, motor, linguistic, attentional, and memory 

functions as a result of short-term exercise (Chapter 2) and long-term dance training (Chapters 3 

to 5). Such modulation of these knowledge schemas facilitates optimal performance across 

domains when one domain is primed (Chapter 2 and 3). With evidence from EEG (Chapter 4) 

and fMRI (Chapter 5), the neurophysiological mechanisms underlying these transference effects 

are clarified. Finally, these works extend current understanding of the perceptual and cognitive 

processes underlying dance perception among familiar experts and unfamiliar novices, 

answering important questions in the fields of cognitive psychology and neuroaesthetics.   

In Chapter 2 we discovered that eye exercises produce significant improvements in 

attention and visual WM following a much shorter course of training (18.5 minutes) than has 

been shown in the past (Dyckman & McDowell, 2005). I posit that these translational cognitive 

benefits were primed by activating the oculomotor system, namely the FEF, which is implicated 

in voluntary saccade generation (Munoz & Everling, 2004; Dias et al., 1995), visual attention 

(Neggers et al., 2007; Moore et al., 2003; Sajad et al., 2015; 2016; Taylor et al., 2006), and 

processing event borders (Zacks et al., 2001a). FEF feeds-forward to other frontal brain regions 

like DMPFC and IFG that are at the junction of speech (motor), language, and memory 

processing (Bachrach et al., 2015; Kunert et al., 2015). I suggest that priming these network 

areas with eye exercises, or attending to visual stimuli like a familiar dance, may account for the 
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improved cognitive performance observed among experts (Figure 3.7) and novices (Figure 2.4, 

Figure 2.5) alike.  

 
Figure 6.1. Expert knowledge schema for dance.  
With continued practice, the information related to a given skill (e.g., dance) becomes 
consolidated into an expert knowledge schema. The projects in this thesis demonstrate 
activation of these schemas by eye exercises or viewing familiar dance genres that induce 
resonance of embodied motor representations. Via faster iAPF and beta ERS relative to 
controls, experts are afforded faster access to information in other domains (e.g., language, 
memory) to facilitate improved performance on attention and WM tasks. Brain activity also 
becomes more efficient, with less reliance on higher-order visual areas like EBA during 
movement (Chapter 5). Brain regions are approximately localized. Dark grey nodes are also 
canonical AON regions. Cer – cerebellum; CS – central sulcus; DMPFC – dorsomedial 
prefrontal cortex; EBA – extrastriate body area; FEF – frontal eye field;  Hip – hippocampus 
(subcortical); IFG – inferior frontal gyrus (Broca’s area, BA44/45); IPS – intraparietal sulcus; 
LF – lateral fissure; LO – lateral occipital complex; MT+ - human visual motion complex; M1 – 
primary motor cortex; PMd – dorsal premotor cortex; PMv – ventral premotor cortex; pSTS – 
posterior superior temporal sulcus; SMA – supplementary motor area; WA – Wernicke’s Area 

 

As part of the proposed knowledge schema that is subject to experience-dependent 

plasticity, one may question whether FEF is also sensitive to these changes. Employing an 

experimental design that tracked eye movements and fixations, Afonso and colleagues (2012) 

had highly-skilled (starting players at national level) and skilled (practice at national level, fewer 
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years of experience) volleyball players simulate game play. Participants were also prompted to 

use their linguistic faculties to describe their perceptions and strategies after the game task. The 

highly-skilled group showed more exploratory visual search patterns, including a greater number 

of fixations for longer durations to functionally relevant areas (e.g., space between other 

players), while skilled participants fixated on the ball trajectory and specific players more 

frequently. Finally, the highly-skilled players also used a greater number verbal concepts that 

were more sophisticated and descriptive. These behavioural results complement the findings in 

Chapter 3, linking improved control of eye movement, language, and memory functions among 

highly-skilled experts, and provide further evidence for cross-domain enhancements when 

priming expert knowledge schemas with AO of familiar actions.   

6.1.2   Oscillatory Mechanism 

The mechanism by which distal nodes of expert knowledge schemas transfer information 

involves synchronization among neuronal populations, specifically in the alpha and beta 

sensorimotor frequency bands. This is the same mechanism purportedly underlying the online 

process of event segmentation (Hommel et al., 2001; Hommel, 2015) and which serves to 

integrate (or segregate) separate visual features into a single event or percept (Samaha & Postle, 

2015; Wutz et al., 2014). Experience-dependent modulation of activity in motor (Orgs et al., 

2008) and visual areas including occipital cortex (Di Nota et al., under review, Chapter 4; Di 

Nota, Levkov, Bar & DeSouza, 2016, Chapter 5) has been revealed during dance observation, 

with faster iAPF, alpha ERD, and beta ERS, reflecting greater task engagement among experts. 

Concurrent activation of frontocentral regions (including FEF) and V1 have shown similar 

modulation of alpha and beta when producing simple prosaccades (ERS) relative to more 

difficult antisaccades (ERD) (Cordones, Gómez, & Escudero, 2013), in line with previously 
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identified patterns of ERS/ERD associated with cognitive load in other paradigms (Gevins et al., 

1997; Klimesch et al., 1999; Roberts et al., 2014; Schack & Klimesch, 2002).  

I propose that resonance of motor representations coded in expert knowledge schemas 

during AO of embodied/familiar dance (Figure 6.1) primes language, memory, and attentional 

nodes via faster iAPF (Figure 4.3) and more efficient suppression of task-irrelevant areas to 

enhance task-relevant signal processing via alpha ERD and beta ERS, respectively (Figure 4.4). 

As demonstrated previously in the AON (Calvo-Merino et al., 2005; 2006), these oscillatory 

modulations in expert knowledge schemas are highly tuned to the specificity of embodied motor 

representations as evidenced by improved WM (Figure 3.7) and attentional performance (Figure 

3.4) among ballet and Bharatanatyam dancers, whose genre of dance were presented as 

experimental stimuli.  

 Faster and more efficient communication across domains in the expert knowledge 

schema serves to provide quicker access to information that will help achieve peak performance, 

which is typically the goal in athletic practice as well as in experimental cognitive tasks. This 

efficiency is conditioned over many hours of training and repeated exposure to comparing 

expected (i.e., efference copy) to actual (i.e., reafferent inputs) behavioural outcomes during 

imitative learning. This efficiency may also account for the generalization of faster iAPF during 

KMI of non-dance movements among expert ballet dancers (Figure 4.3). This is supported by a 

distinction in the movement literature regarding action that is already part of the actor’s motor 

repertoire and does not involve learning (such as the VMIQ-2 items), and imitating movement 

that requires effortful perception and planning of a novel movement or sequence. While 

constituent movements may form part of an existing repertoire, dancers engage imitative 

learning processes whenever they learn a novel piece of choreography and have to recombine 
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new sets of constituent movements. To accomplish this, the observer engages the AON to 

transform modelled behaviour and enact it via novel motor representations (Rizzolatti et al., 

1998). STS is recruited to segment the observed action (Speer et al., 2003; Zacks et al., 2001a) 

and also to compare reafferent and efference copy signals (Iacoboni et al., 2001; Zacks et al., 

2011).  

6.1.3   Linking Memory to Language  

To develop expert knowledge schemas, dancers are subject to adaptive learning strategies 

that consolidate ‘multi-domain’ events from WM to long-term memory. Each movement that a 

dancer learns has a semantic label (e.g., ‘plie’), a specific motor plan, preparatory activation 

within the proposed network, efference copy commands after execution, and needs to be recalled 

when trained with new choreography. Access between STM and LTM is facilitated by phase 

synchronization of theta and upper alpha (Schack et al., 2005), which may facilitate quick access 

to remembered movement sequences after long periods of time (Stevens et al., 2010). The 

increased iAPF exhibited during AO and KMI of non-dance movements (Figure 4.3) may also be 

driven by this alpha link between memory and action nodes in expert knowledge schemas, in 

turn priming recall of experientially-relevant words (Figure 3.7). Evidence for this priming effect 

and efficient consolidation of embodied action have been demonstrated in this thesis both 

behaviourally through segmentation behaviour (Figure 3.3, Bläsing, 2015) and neurologically via 

a decreased reliance on higher-order visual areas during movement (Figure 5.5).  

Just as single events activate multiple domains within the expert knowledge schema, we 

have seen that several brain regions are activated by multiple domains. Language areas including 

superior temporal cortex (STG and STS) and Broca’s area (IFG) respond reliably to both spoken 

and written narratives, demonstrating modality invariance in these regions (Regev, Honey, 
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Simony, & Hasson, 2013). Connectivity among these regions is evidenced by altered learning 

and action chunking when Broca’s area is disrupted (Alamia et al., 2016). There is also evidence 

for longer fixation on target items when they are linguistically and visually salient (Cavicchio, 

Melcher, & Poesio, 2014). If the video that a participant watched activated an embodied motor 

representation (e.g., Bharatanatyam dance and music), and one of the words presented during 

Part 1 of the RIF task was also salient through experience (e.g., choreography), then perhaps this 

exchange of information also translated to attentional (Figure 3.3, Figure 3.4, Table 3.3) and 

WM domains (Figure 3.7). The evidence provided in this thesis supports this dynamic exchange 

in expert knowledge schemas.  

 

 6.2   LIMITATIONS  

Several general methodological shortfalls in fMRI and EEG techniques have been 

described already (see Section 1.1.1), as well as in the EEG apparatus employed in Chapter 4 

(see Section 4.3.3). When conducting neuroimaging experiments that are typically very costly 

and time-sensitive during training-based paradigms, it is crucial that all parameters are 

programmed correctly to avoid loss of data. In Chapter 4, there was significant attrition in the 

number of tested participants (n = 92) relative to the number that was included in final analyses 

(n = 61) due to factors that can be attributed to learning a novel technical skill. I have since 

generated an analysis pipeline for my lab and instructional Wiki 

(https://bitbucket.org/joelab/eeg-tutorial/wiki) based on these hard-learned lessons. There are 

also challenges that accompany previously collected or ‘inherited’ data; Chapter 5 also had 

significant attrition in the number of professional ballet dancers scanned over four time points 

(see Appendix C) during a programme that varied between 34 to 38 weeks (see Section 5.3). 
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While experimental stimuli that have previously been used in peer-reviewed publications 

(Grill-Spector, 2003; et al., 1999; 2001) may seem like a safe choice when conducting one’s own 

experiment (e.g., EBA localizer stimuli in Chapter 5), we have demonstrated that they are not 

always as controlled in practice by the developers. The dance stimuli used in Chapter 3 were 

supposedly equal in the number and pace of movements across ballet, Bharatanatyam, and acting 

conditions (Jola et al., 2012). However, choosing three one-minute clips from each video and 

testing them in both Validation (Figure 3.2) and main event segmentation experiments (Figure 

3.3) revealed significantly fewer event borders in the acting video. Additionally, the 

Bharatanatyam condition featured sung lyrics in the background music, which inevitably 

triggered linguistic responses in the familiar participants. Controlling the auditory and visual 

components of dance are thus challenging, but provide the opportunity to evaluate responses to 

each modality either separately or together in order to dissociate musical and expressive 

movement processing.  

 

 6.3   FUTURE DIRECTIONS 

In an ideal world with unlimited time and funding, and compliant participants that show 

up (on time) for multiple scans, I would use all methodological approaches in this thesis for each 

Chapter. This holistic approach would provide definitive evidence for the proposed expert 

knowledge schema and its underlying neural mechanisms. To optimize and direct future 

investigations, employing eye tracking and event-related MEG/EEG during the event 

segmentation paradigm (Chapter 3) would provide much neurophysiological evidence for the 

proposed priming effect. Similarly, these brain data could reveal structural and functional 

connectivity among language and motor areas that encode and facilitate retrieval of domain-
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specific words. Our lab intends to collect MRI data on time- (i.e., four scans over 34 weeks), 

age-, and sex-matched controls for the professional ballet dancers used in Chapter 5 to 

investigate these hypotheses, as well as to clarify learning-induced plasticity across the whole 

brain. Tracking the fixation locations and gaze shifts among familiar versus unfamiliar dancers 

during AO (Chapters 3, 4, and 5) would also allow us to investigate the specific movement 

features attributed to event borders or changes in underlying activation of knowledge schemas. 

Cognitive and performance enhancement through various types of training are gaining 

steam in ‘popular science’. ‘Mental’ training using wearable technology has commercial appeal 

and is based in meditation practices that have been studied for decades (if not centuries among 

non-Western practitioners) with respect to cognitive or attentional control and emotional 

regulation (Debarnot et al., 2014; Hasenkamp, Wilson-Mendenhall, Duncan, & Barsalou, 2012; 

Slagter et al., 2007; Teper & Inzlicht, 2013). Changes in sensorimotor alpha and beta power are 

also utilized (and visualized) in neurofeedback experiments, which is itself a skill that can be 

trained and enhance motor performance (Mottaz et al., 2015). Additonally, these signals can be 

used to control brain-computer interfaces (BCIs), and possibly with greater control among 

individuals with experience-related plasticity to the oscillatory networks mentioned above.  

The insights provided by the results in this thesis have several promising therapeutic 

applications:  

• demonstrating the efficacy of a very short course of eye exercises on improved 

attention and WM (Chapter 2); 

• providing evidence for transference of physical expertise to attention, language, 

and memory functioning (Chapter 3) that can help people with deficits in any of 

these domains, including people with PD; and 
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• clarifying the modulation of sensorimotor oscillatory bands by experience 

(Chapter 4) to help develop more effective BCIs that can assist those with 

mobility or communication restrictions. 

As I have learned through my experience with my lab’s ongoing DWP project, finding 

therapeutic solutions for people with PD, AD, and other movement-related disorders is one of the 

most urgent public health concerns affecting Canadians (Ng et al., 2015). Participation in this 

project has allowed me to witness firsthand the transformative power of dance that provides 

social, emotional, motoric, and neurophysiological benefits and improved quality of life to 

individuals with PD as well as healthy able-bodied individuals. The insights generated by my 

work underscore the efficacy of dance as a form of exercise or therapy that is accessible, 

engaging, cost-effective, and fun. 

 

 6.4   FINAL THOUGHT 

 

“Rhythm is a dancer, it’s a soul’s companion, you can feel it everywhere; 

 lift your hands and voices; free your mind and join us; you can feel it in the air.” 

     Benites, Garett III & Austin, 1992 

      A.K.A. SNAP! 
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APPENDIX A 

Category-exemplar word pairs presented during RIF task. A ‘1’ indicates the designation of each 
pair as a practiced word from a practiced category (Rp+), non-practiced word from a practiced 
category (Rp-), or a non-practiced word from a non-practiced category (Nrp). 
	
	

Word 
Practiced word, 
practiced 
category: Rp+ 

Non-practiced 
word, practiced 
category: Rp-  

Non-Practiced 
word, non-practiced 
category: Nrp 

COLOUR - black  1  
COLOUR - blue  1  
COLOUR - brown 1   
COLOUR - green  1  
COLOUR - purple 1   
COLOUR - yellow 1   
FRUIT - apple 1   
FRUIT - banana  1  
FRUIT - cherry 1   
FRUIT - grape 1   
FRUIT - peach  1  
FRUIT - pear  1  
DANCE - choreography 1   
DANCE - jig 1   
DANCE - rhythm 1 1  
DANCE - tango  1  
DANCE - tap    
DANCE - waltz  1  
INSTRUMENT - drum 1   
INSTRUMENT - flute  1  
INSTRUMENT - guitar  1  
INSTRUMENT - piano 1   
INSTRUMENT - trumpet  1  
INSTRUMENT - violin 1   
RELATIVE - cousin   1 
RELATIVE - daughter   1 
RELATIVE - father   1 
RELATIVE - husband   1 
RELATIVE - sister   1 
RELATIVE - uncle   1 
SPORTS - climbing   1 
SPORTS - fishing   1 
SPORTS - racing   1 
SPORTS - riding   1 
SPORTS - sailing   1 
SPORTS - skating   1 
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TOOL - drill  1  
TOOL - hammer  1  
TOOL - ladder 1   
TOOL - nail 1   
TOOL - ruler  1  
TOOL - screw 1   
VEGETABLE - beans   1 
VEGETABLE - carrot   1 
VEGETABLE - corn   1 
VEGETABLE - lettuce   1 
VEGETABLE - peas   1 
VEGETABLE - potato   1 
VEHICLE - bicycle 1   
VEHICLE - boat  1  
VEHICLE - bus 1   
VEHICLE - plane 1   
VEHICLE - train  1  
VEHICLE - truck  1  
WEATHER - clouds   1 
WEATHER - rain   1 
WEATHER - snow   1 
WEATHER - storm   1 
WEATHER - thunder   1 
WEATHER - wind   1 
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APPENDIX B 

 
URPP #: _____________     Date: _____________     Group: B / I / D / M / A / N     Condition: Exp / Pass 

 
 

COLOUR 
1)   
2)   
3)   
4)   
5)   
6)   

 
FRUIT 

1)   
2)   
3)   
4)   
5)   
6)   

 
DANCE 

1)   
2)   
3)   
4)   
5)   
6)   

 

INSTRUMENT 
1)   
2)   
3)   
4)   
5)   
6)   

 
RELATIVE 

1)   
2)   
3)   
4)   
5)   
6)   

 
 
 
 
 
 
 
 
 

SPORTS 
1)   
2)   
3)   
4)   
5)   
6)    

 
TOOL 

1)   
2)   
3)   
4)   
5)   
6)    

 
VEGETABLE 

1)   
2)   
3)   
4)   
5)   
6)    

 

 
 
VEHICLE 

1)   
2)   
3)   
4)   
5)   
6)   

 
WEATHER 

1)   
2)   
3)   
4)   
5)   
6)   
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APPENDIX C 

 

	 	 	 	 	 	 	 Scan	1	 Scan	2	 Scan	3	 Scan	4	 	

Subject	

Group	(1=	
control,	
2=dancer)	 Sex	 Age	

Years	of	
Dance	
Experience	

EBA	
Localizer	

Motor	
Localizer	 View	 Vis	

Own		
Vis	
Ctrl		 View	 Vis	

Own		
Vis	
Ctrl		 View	 Vis	

Own		
Vis	
Ctrl		 View	 Vis	

Own		
Vis	
Ctrl		

1	 1	 F	 21	 17	 		 x	 		 x	 		 	 	 		 	 	 		 	 	 		

2	 1	 F	 27	 20	 		 x	 	 x	 		 	 	 		 	 	 		 	 	 	
3	 1	 F	 37	 15	 		 x	 	 x	 		 	 	 		 	 	 		 	 	 	
4	 1	 M	 19	 0	 		 x	 	 x	 		 	 	 		 	 	 		 	 	 	
5	 1	 M	 18	 0	 		 x	 x	 x	 		 	 	 		 	 	 		 	 	 	
6	 1	 F	 18	 10	 		 x	 x	 x	 		 	 	 		 	 	 		 	 	 	
7	 1	 F	 21	 12	 		 x	 x	 x	 		 	 	 		 	 	 		 	 	 	
8	 1	 F	 24	 0	 x	 x	 x	 x	 		 	 	 		 	 	 		 	 	 	
9	 1	 F	 26	 0	 		 x	 x	 x	 		 	 	 		 	 	 		 	 	 	
10	 1	 M	 43	 1	 x	 x	 x	 x	 		 	 	 		 	 	 		 	 	 		

11	 2	 M	 22	 12	 		 x	 		 x	 		 x	 x	 		 x	 x	 		 x	 x	 		

12	 2	 M	 50	 44	 		 x	 	 x	 		 x	 x	 		 x	 x	 		 x	 x	 	
13	 2	 M	 19	 7.5	 		 x	 	 x	 		 x	 x	 		 x	 x	 		 x	 x	 	
14	 2	 M	 21	 7	 		 x	 	 	 		 x	 x	 		 x	 x	 		 x	 x	 	
15	 2	 M	 19	 15	 		 x	 	 	 		 x	 x	 		 x	 x	 		 x	 x	 	
16	 2	 F	 18	 15	 		 x	 	 	 		 	 	 		 	 	 		 	 	 	
17	 2	 M	 18	 14	 x	 x	 	 x	 		 	 	 		 	 	 		 x	 x	 x	

18	 2	 F	 18	 14	 		 x	 	 	 		 	 x	 x	 	 	 		 	 	 	
19	 2	 M	 20	 10	 x	 x	 	 x	 		 	 x	 x	 x	 x	 		 x	 	 x	

20	 2	 M	 20	 7	 x	 x	 	 x	 		 	 	 		 x	 x	 		 x	 x	 x	

21	 2	 M	 18	 8	 x	 x	 	 	 		 	 	 x	 x	 x	 		 x	 x	 x	

22	 2	 M	 18	 12	 x	 x	 	 x	 x	 	 	 		 x	 x	 x	 x	 x	 x	

23	 2	 F	 19	 12	 x	 x	 	 x	 x	 	 	 		 x	 x	 x	 x	 x	 x	

24	 2	 M	 19	 13	 x	 x	 	 x	 x	 	 	 		 x	 x	 x	 x	 x	 x	

25	 2	 F	 19	 14	 x	 x	 	 x	 x	 	 	 		 x	 x	 x	 x	 x	 x	

26	 2	 F	 18	 10	 x	 x	 	 x	 x	 	 	 		 x	 x	 x	 x	 x	 x	

27	 2	 M	 18	 6	 x	 x	 	 	 		 	 	 		 x	 x	 x	 x	 x	 x	

28	 2	 F	 19	 16	 		 	 	 	 		 	 	 		 x	 x	 x	 	 	 	

		
CONTROL	
AVG	

7F,	
3M	 25.4	 7.5	 2	 10	 6	 10	 0		 0	 0	 0	 0	 0	 0	 0	 0	 0	

	

CONTROL	
SD	 		 8.42	 8.14	 	

	 	 	

		

	 	
		

	 	
		

	 	
	

		
DANCER	
AVG	

6F,	
12M	 20.7	 13.14	 10		 17	 0	 11	 5	 5	 7	 3	 15	 15	 7	 15	 14	 10	

	

DANCER	
SD	 		 7.39	 8.32	 		 	

	


