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Abstract

Hierarchical log-linear models are essential tools used for relationship identification between vari-

ables in complex high-dimensional problems. In this thesis we study two problems: the compu-

tation and the existence of the maximum likelihood estimate (henceforth abbreviated MLE) in

high-dimensional hierarchical log-linear models.

When the number of variables is large, computing the MLE of the parameters is a difficult

task to accomplish. A popular approach is to estimate the composite MLE rather than the MLE

itself, that is, estimate the value of the parameter that maximizes the product of local conditional

likelihoods. A more recent development is to choose the components of the composite likelihood to

be local marginal likelihoods. We first show that the estimates obtained from local conditional and

marginal likelihoods are identical. Second, we study the asymptotic properties of the composite

MLE obtained by averaging the local estimates, under the double asymptotic regime, when both

the dimension p and sample size N go to infinity. We compare the rate of convergence to the true

parameter of the composite MLE with that of the global MLE under the same conditions. We also

look at the asymptotic properties of the composite MLE when p is fixed and N goes to infinity and

thus recover the same asymptotic results for p fixed as those of Liu and Ihler (2012).

The existence of the MLE in hierarchical log-linear models has important consequences for

statistical inference: estimation, confidence intervals and testing as we shall see. Determining
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whether this estimate exists is equivalent to finding whether the data belongs to the boundary of

the marginal polytope of the model or not. Fienberg and Rinaldo (2012) gave a linear programming

method that determines the smallest such face for relatively low-dimensional models. In this thesis,

we consider higher-dimensional problems. We develop the methology to obtain an outer and inner

approximation to the smallest face of the marginal polytope containing the data vector. Outer

approximations are obtained by looking at submodels of the original hierarchical model, and inner

approximations are obtained by working with larger models.
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1 Introduction

Hierarchical log-linear models are essential tools in the analysis of complex, high-dimensional

categorical data of the types routinely encountered when analyzing multiple choice survey questions

in social science or gene expression data in biology. Data points represent the values of the multi-

variate variable X = (Xv, v ∈ V ), where V is a finite set. Each variable Xv takes values in a finite

set Iv. The N data points are classified according to the values of Xv, v ∈ V , in a |V |-dimensional

array called a contingency table. There are I =
∏

v∈V |Iv| cells i = (iv, v ∈ V ) in this contingency

table. The cell counts, that is, the total number of data points falling in cell i, i ∈ I are denoted

by n(i), and the cell probabilities by p(i). As we shall see in Section 2, the hierarchical log-linear

model is defined by its generating set ∆, a subset of the power set of V , and the fact that log p(i)

can be written as

log p(i) = θ∅ +
∑
D∈∆

θD(iD),

where (θD(iD), D ∈ ∆) are indicative of the relationship between variables Xv, v ∈ D. If, moreover,

we assume that the cell counts (n(i), i ∈ I) follow a multinomial distribution M(N, p(i), i ∈ I),

then the density of cell counts, which is proportional to
∏

i∈I p(i)
n(i), can be written under a natural

exponential family form as

f(t; θ)dt = exp{〈θ, t〉 −Nk(θ)}ν(dt), (1.0.1)

where t is the sufficient statistic, 〈θ, t〉 denotes the inner product of t and θ, and ν(dt) is a discrete
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measure. The discrete graphical models class forms an important subclass of the hierarchical log-

linear models class. Discrete graphical models are models for random variables X = (Xv, v ∈ V )

with distribution Markov with respect to an undirected graph G with vertices set V . In the case of

discrete graphical models, the generating set is the set of complete induced subgraphs of G. More

details will be given in Section 2.

Given a contingency table, we would like to explore the conditional independence relationships

among the random variables, and to estimate the cell probabilities. The log-linear model is a

generative model which learns the joint distribution f(Xv, v ∈ V |θ). In order to conduct some

statistical inferences on f(Xv, v ∈ V |θ), we first take on the task of estimating the parameter

θ. One of the most popular estimates of θ is the MLE. When p is large, however, evaluating

the normalization constant k(θ) or even its approximation is NP−hard, see Cooper (1990) and

Roth (1996), and it is impossible to obtain the MLE of θ with a simple maximization of the

likelihood function. Approximate techniques such as variational methods ( see Jordan et al. (1999),

Wainwright and Jordan (2008)) or MCMC techniques (see Geyer (1991)) have been developed in

recent years. More recently still, work has been done on a third type of approximate techniques

based on the maximization of composite likelihoods (see Besag (1975) and Lindsay (1988)). For

a given data set {x(1), . . . , x(N)} from a distribution with density f(x|θ), the likelihood function

is L(θ) =
∏N

i=1 f(x(i)|θ). The composite likelihood is typically of the form
∏N

i=1

∏
v∈V f(x

(i)
v |x(i)

Nv),

where Nv is the set of neighbours of v in graph G. In other words, the composite likelihood is the

product of the local conditional likelihoods.

In recent papers such as those of Ravikumar et al. (2010), Wiesel and Hero (2012), Liu and Ihler

(2012), the estimate of θ is obtained from maximum likelihood estimates in the low dimensional

local models, by combining the estimates to give a global estimate for θ. See Section 3 for more
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details. In the case of statistical inference on Gaussian graphical models, Meng et al. (2014) consider

local marginal models of (Xv, XNv), v ∈ V , rather than the traditional local conditional models of

Xv given XNv .

In our work, we extended the estimates obtained from the local marginal likelihoods to discrete

graphical models. Moreover, we show that the estimate obtained from the composite likelihood built

on local marginal likelihoods is identical to the estimate obtained from the composite likelihood

built on local conditional likelihoods. We therefore establish that one should use local conditional

likelihoods instead of local marginal likelihoods, since the computational complexity of the former

is much smaller than that of the latter.

MLE is a point estimation of the parameter θ, but to evaluate how good this estimate is, we

need to study the asymptotic variance of the MLE. In this thesis, we extend the asymptotic analysis

further, since we study the asymptotic properties of our estimate under both the classical and the

double asymptotic regime, that is, when |V | = p is fixed, and the number of data points N tends

to infinity, but also when both p and N tend to infinity. The double asymptotic regime result is of

greater interest in this big data era, as the dimension of a data set is no smaller than, or sometimes

even larger than the number of data points.

The second main topic of this thesis is concerned with the existence of the MLE in the larger

class of hierarchical log-linear models. The nonexistence of the MLE has problematic consequences

for inference, clearly for estimation, but also for testing and model selection, see Fienberg and

Rinaldo (2012). After we fit a statistical model on a dataset, it comes very naturally that we should

test how well our model fits the data, or choose a better model from several candidates. In the

literature, two popular summary statistics, the Pearson X2 test and the likelihood ratio statistic G2

test, are used for the goodness of fit test and model selection, see Bishop et al. (1975a) and Agresti
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and Kateri (2011). If the MLE doesn’t exist the standard regularity conditions for the asymptotic

chi-square distribution no longer hold. Furthermore, as indicated in Geyer et al. (2009) the degrees

of freedom used to approximate various measures of fit are incorrect in this case. The statistical

implications of the nonexistence of the MLE on model selection in Bayesian inference are studied

in further detail by Letac and Massam (2012).

Given a contingency table with some zero cell counts, the MLE of the canonical parameter

θ doesn’t exist, and therefore a finite estimate cannot be found to maximize the log-likelihood

function. Example 3.3-1 in Bishop et al. (1975a) provides us with a 23 contingency table example

to illustrate a nonexistent MLE situation. When some of the cells have a zero count, the MLE

of some of the cell probabilities may not be positive. When the MLE doesn’t exist, part of the

natural parameters go to infinity, so the Fisher information matrix is singular. To resolve this,

Geyer proposed a one-side confidence interval in Geyer et al. (2009).

Nowadays, hierarchical log-linear models are used for the analysis of large sparse contingency

tables where many, if not most of the entries are small or zero counts. These zero counts often

cause the MLE not exist. It is therefore most important to know whether the MLE exists before

we analyze the data and goodness-of-fit of log-linear models. In Section 8, we show how one can

deal with these problems by using an adequate parametrization in a reduced model. We illustrate

this strategy on a real data example, see 10.1.2.

The remainder of this thesis is organized as follows. In Chapter 2, we give preliminary results that

we shall use in our work. In Chapter 3, we offer a brief review of the literature on contingency tables,

hierarchical log-linear models, and the existence of MLE. In Chapter 4, we study the composite

maximum likelihood estimate and show that the composite likelihood built from local marginal

models yields the same estimates as that built from local conditional models. In Chapter 5, we
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start working on the asymptotic properties of the maximum composite likelihood estimate. Both

the classical asymptotic regime result (Section 5.1) and the double asymptotic regime result (Section

5.2) are given. In Chapters 6 to 10, we develop our methodology to approximate the smallest facial

set containing sufficient statistic t: Ft = F∆(I+), and illustrate with several examples of simulated

and real data.
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2 Preliminaries

In this chapter, we list the basic notations we use in this paper and give some background

knowledge. First, we briefly introduce our parameterization of hierarchical log-linear models and

the corresponding likelihood function. Second, we define the face of the convex hull of sufficient

statistics, and talk about some properties of convex polytopes.

2.1 Hierarchical log-linear models

Let V denote a finite index set. Let X = (Xv, v ∈ V ) be a vector of discrete random variables.

We will assume that each variable takes values from a finite set Iv, and then X takes its values from

I =
V∏
v=1

Iv

let |Iv| denote the cardinality of the set Iv, then |I| =
∏V

v=1 |Iv|. We write i = (iv, v ∈ V ) for an

element of I, where xv = iv.

Definition 2.1.1. Given V, X and I defined as above and given a sample {x(1), x(2), · · · , x(N)} from

X, we cross-classify the sample points according to the value of each of the variables Xv, v ∈ V .

Each sample then falls into a cell i ∈ I. This set of cells is called a contingency table, the cell

count n(i) is the number of sample points falling into cell i, n(i) =
∑N

j=1 1{X=i}(x(j)), and we use

N =
∑

i∈I n(i) for the total sample size. We denote p(i) as the probability of each sample falling in

cell i.
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For E ⊂ V , let iE = (iv, v ∈ E) denote the cells in the E-marginal table with cell counts

nE(iE) =
∑

k∈IV \E

n(iE, k),

A family ∆ of subsets of V is called a simplicial complex if D ∈ ∆, D
′ ⊂ D, D

′ 6= ∅ implies

D
′ ∈ ∆. We assume ∪D∈∆D = V . We denote by Ω∆ the linear subspace of x ∈ RI such that there

exist functions θD ∈ RI for D ∈ ∆ depending only on iD and such that x =
∑

D∈∆ θD, that is

Ω∆ = {x ∈ RI : ∃θD, D ∈ ∆ such that θD(i) = θD(iD) and x =
∑
D∈∆

θD} (2.1.1)

The hierarchical log-linear model generated by ∆ is the set of positive cell probabilities p = (p(i))i∈I

over a contingency table such that log p ∈ Ω∆. The simplicial complex ∆ is also called the generating

class of the hierarchical log-linear model. For each cell probability we can write

log p(i) = θ∅ +
∑
D∈∆

θD(iD), (2.1.2)

where θ∅ doesn’t depend on i and is a constant. The parameterization (2.1.2) is not unique as

there are more parameters than the number of cells. In order to make it unique, we need to impose

certain constraints on the parameters θD(iD). We first select one of the values in Iv and denote it

0. The cell with all its components equal to 0 is the zero cell:

i = 0 = (0, 0, · · · , 0).

The choice of 0 is arbitrary. Changing the level of Xv that will be called 0 simply leads to an

affine transformation of the parameters. This allows us to impose the so called ”baseline” or

”corner”constraints

θD(iD) = 0, iv = 0, for some v ∈ D (2.1.3)

Using (2.1.3), equation (2.1.2) becomes

log p(i) = θ∅ +
∑

D∈∆,iv 6=0,∀v∈D
θD(iD), (2.1.4)
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Constraints (2.1.3) also imply that

log p(0) = θ∅, (2.1.5)

so we can change the notation to θ0.

Now we change to a more concise notation. First we define the support of a cell as follows:

S(i) = {v ∈ V ; iv 6= 0}

and the subset J of I:

J = {j ∈ I, S(j) ∈ ∆},

With the constraints (2.1.3) and the definition of set J above, in Proposition 2.1 of Letac and

Massam (2012), it is shown that for i 6∈ J, θi = 0 and

θD(iD) = θj for the unique j ∈ J with S(j) = D, iD = jD.

i.e. the elements in set J index the parameters in the hierarchical log-linear model generate by ∆,

so we name it the parameter set. Again, to simplify the notation, for any two cells i ∈ I, j ∈ J , we

define a new notation

j � i

to mean that S(j) is contained in S(i) and jS(j) = iS(j), then the representation (2.1.4) of log p in

terms of the free parameters θ = {θj, j ∈ J} becomes

log p(i) = θ0 +
∑

j∈J,j�i
θj, i ∈ I (2.1.6)

where θ0 = log p(0) is the normalization constant and is determined by requirement
∑

i∈I p(i) = 1.

Based on the Mobius inversion formula of (2.1.6), we can get

θj =
∑

j′∈J, j′/j
(−1)|S(j)|−|S(j′)| log

p(j′)

p(0)
, j ∈ J. (2.1.7)
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It is convenient to introduce the vectors

fi =
∑

j∈J,j�i
ej, i ∈ I

where ej, j ∈ J are the unit vectors in RJ . Then equation (2.1.6) becomes

log p(i) = θ0 + 〈θ, fi〉 = 〈θ̃, f̃i〉, (2.1.8)

where θ̃ = (θ0, θ) and f̃i = (1, fi). The log-linear model (2.1.6) can be rewritten in matrix form as

(log p(i)
p(0)

, i ∈ I) = Atθ, or

(log p(i), i ∈ I) = Ãtθ̃,

(2.1.9)

where A is a J × I matrix whose columns are the fi vectors and Ã is a (J + 1) × I matrix whose

columns are the f̃i vectors. Both A and Ã are called the design matrices of the log-linear model.

Here we give a hierarchical log-linear model example to help readers understand our notations.

Example 2.1.2. Let Xa, Xb denote two binary random variables. The sample of Xa, Xb can be

classified into a contingency table with cells I = {00; 01; 10; 11}. Here we consider two hierarchical

log-linear models. One is the saturated model with the simplicial complex ∆1 = {ab, a, b}, the other

one is the independent model with the simplicial complex ∆2 = {a, b}.

a b

Figure 2.1: The simplicial complex ∆1

a b

Figure 2.2: The simplicial complex ∆2

The parameter set for ∆1 is J1 = [01; 10; 11], and the parameter set for ∆2 is J2 = [01; 10].

The absence of parameter θab indicates that the two random variables are independent. The design

matrix Ã1 of ∆1 is
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Ã1 =

f00

f01

f10

f11



1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1


.

Discrete graphical models make up an important subset of the class of the hierarchical log-linear

models. A graphical model is a hierarchical log-linear model whose simplicial complex ∆ can be

represented by an undirected graph such that all the elements of the simplicial complex are the

complete induced sub-graphs. First we give some basic definitions from graph theory, and then we

consider their Markov properties.

Let G = (V,E) be an undirected graph where V is the vertex set and E is the set of edges. We

write (a,b) for the undirected edge between two vertices a and b. We say that a, b are adjacent if

(a, b) ∈ E. For a given vertex v, the set of its adjacent vertices is called the neighbours of v, which

we denote as Nv. If all the vertices are adjacent to each other, the graph is a complete graph. The

sequence of vertices {a1, a2, · · · , ak} form a path in G if (ai, ai + 1) ∈ E,∀i = 1, 2, · · · , k − 1. A

graph is connected if every pair of distinct vertices is joined by a path, otherwise it is disconnected.

When a graph is disconnected, we can study each component independently, so we only focus on

connected graphs in this thesis. For a subset A ⊂ V , the induced sub-graph GA is GA = (A,EA)

where EA is the set of edges in E with both endpoints in A. We now provide definitions of three

concepts that are fundamental to the theory we put forward in this thesis.

Definition 2.1.3. For G = (V,E) given, a subset S ⊂ V is called a separator if there exist

A ⊂ V, B ⊂ V , such that A,B, S are disjoint, A∪S ∪B = V , (A∪S)∩ (B ∪S) = S and any path

between a ∈ A and b ∈ B has to go through S. S is called a minimal separator if no non-trivial
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subset of separator S is a separator.

Definition 2.1.4. Given G = (V,E), we then say G can be decomposed into GA∪S and GB∪S if

S ⊂ V is a complete separator and S separates A from B.

Definition 2.1.5. The prime components of a given graph G are the induced sub-graphs that cannot

be decomposed and that are maximum in the sense of inclusion. A prime component that is complete

is called a maximal clique. From now on when we say clique, we mean a maximal clique unless

otherwise specified. If all the prime components are cliques, then the graph is called decomposable.

We denote the cliques in a decomposable graph as {C1, C2, · · · , Ck}.

A B

C D

E

Figure 2.3: A decomposable undirected graph

We give an example of decomposable graph in Figure 2.3, which is decomposed into three cliques

{ACD,ABD,BDE}. Set {AD,BD} is a separator set.

When the dimension of the graphical model is high, we often have to work with graphs induced

by the vertices v ∩Nv for v ∈ V . We now define one-hop and two-hop neighborhoods of v ∈ V .

Definition 2.1.6. For a given v ∈ V , we say thatMv is a one-hop neighborhood of v if it comprises

v and its immediate neighbours in G, i.e. if Mv = {v} ∪ Nv. We will say that Mv is a two-hop

neighborhood if it comprises v, its immediate neighbours, and the neighbours of the immediate neigh-

bours in G. For simplicity of notation, we will denote both the one-hop and two-hop neighborhoods
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by Mv. We use the notation

N2v =Mv \
(
{v} ∪ Nv

)
to denote the set of neighbours of the neighbours of v, as can be seen in Figure 2.4.

v

Figure 2.4: Neighbourhood structure in an undirected graph; blue vertices denote the neighbours

of vertex v: Nv, red nodes denote the neighbours of vertices in N2,v

Let us now recall Markov properties. Associated with an undirected graph G = (V,E) and a

collection of random variables {Xv, v ∈ V } taking value from discrete set I, a probability measure

P on I is said to obey

(P) Pairwise Markov property, if for any two random variable Xi, Xj,

Xi ⊥⊥ Xj|XV \{i,j} if (i, j) 6∈ E

(L) Local Markov property, if

Xv ⊥⊥ XV \{v∪Nv}|XNv ,

(G) Global Markov property, if

XA ⊥⊥ XB|XS,

where subsets A,B are separated by S.
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Lauritzen (1996) (Proposition 3.4) showed that (G) ⇒ (L) ⇒ (P ). It’s also well know that if the

probability measure P is positive on I, the three Markov properties are equivalent. The hierarchical

log-linear model we study in this thesis satisfies the positive probability measure condition, so we

won’t specify which Markov property we are using.

A hierarchical log-linear model is a graphical model Markov with respect to a graph G if its

simplicial complex is the set of cliques of G. Here is an example of a model which is hierarchical

but not graphical.

Example 2.1.7. Assume random variables X = (X1, X2, X3) belong to a hierarchical log-linear

model generated by ∆ = {12, 13, 23}. If we try to represent this simplicial complex by a graph, we

get a triangle, but the clique (123) doesn’t belong to ∆.

If ∆ = {12, 13, 23, 123} or ∆ = {12, 23}, the hierarchical log-linear model is a graphical model.

2.2 Exponential family and the maximum likelihood estimate

The probability distribution of log-linear model belongs to the natural exponential family EA

defined as follows

EA = {p : p(i) = exp(〈θ, fi〉 − k(θ)), θ ∈ RJ and i ∈ I} (2.2.1)

where k(θ) = −θ0 = log
∑

i∈I exp(〈θ, fi〉) is the normalization constant or the cumulative generating

function, and A is the design matrix with column vectors fi, i ∈ I.

We assume the cell counts (n(i), i ∈ I) to follow a multinomial distribution with total counts

N , then
∏

i∈I p(i)
n(i) can be written under the form of exponential family:

∏
i∈I p(i)

n(i) = exp(
∑

i∈I n(i) log p(i)) = exp(
∑

i∈I n(i)(〈θ, fi〉 − k(θ)))

= exp{〈θ,
∑

i∈I n(i)fi〉 −
∑

i∈I n(i)k(θ)))}
(2.2.2)
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We write t =
∑

i∈I n(i)fi. from the definition of fi, t is a |J |-dimensional vector

t =
∑
i∈I

n(i)
∑

j∈J,j�i
ej =

∑
j∈J

ej(
∑

i∈I,j�i
n(i)) =

∑
j∈J

ejnS(j)(jS(j)),

Since ej is the unit vector in RJ , tj = nS(j)(jS(j)), i.e. tj is the jS(j)-marginal cell count, which is

also the sufficient statistics of the contingency table. We can rewrite the equation (2.2.2) as follows

∏
i∈I

p(i)n(i) = exp{〈θ, t〉 −Nk(θ)}.

then the log-likelihood function of the contingency table is

l(θ|t) = 〈θ, t〉 −Nk(θ). (2.2.3)

In a natural exponential family of the form exp{〈θ, t〉−Nk(θ)}, the first derivative of the cumulative

generating function Nk(θ) equals the expectation of sufficient statistics t: E(t) = Nk
′
(θ), where

E(tj) = Nk
′
j(θ) = N

∑
i∈I,j�i exp(θ, fi)∑
i∈I exp(〈θ, fi〉

= N
∑

i∈I,j�i
p(i) = Np(jS(j))

the notation p(jS(j)) denotes the marginal probability of cell jS(j) and we denote the vector of

marginal probability of cell set JS(J) as P (θ) = (p(jS(j)), j ∈ J). Taking the second derivative, we

obtain

l
′′
(θ|t) = −Nk′′(θ) = −N(

∑
i∈I

exp〈θ, fi〉
L(θ)

fi ⊗ fi − P (θ)⊗ P (θ)),

where ⊗ denotes the outer product. The Fisher information matrix is

F = E(−l′′(θ|t)) = N(
∑
i∈I

exp〈θ, fi〉
L(θ)

fi ⊗ fi − P (θ)⊗ P (θ)).

Definition 2.2.1. A finite parameter value θ̂ is a maximum likelihood estimate(MLE) if it is a

global maximum of l(θ|t):

θ̂ = arg max
θ̂∈RJ

l(θ|t)
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Computing the MLE of the log-likelihood (2.2.3) becomes intractable in the high-dimensional

log-linear model because of the complexity of the partition function k(θ). Later in this thesis,

we will consider several composite likelihood methods to approximate the maximum likelihood

estimate(MLE).

2.3 The Marginal Polytope and Its Faces

We now define the marginal polytope, a central object for hierarchical log-linear models.

Definition 2.3.1. Given a log-linear model with design matrix A, the convex hull of the columns

{fi, i ∈ I} is called the marginal polytope of the log-linear model, and denoted by P∆ or PA,

PA = {x =
I∑
i=1

λifi, ∀λi ≥ 0 and
∑

λi = 1}

Since t
N

=
∑

i∈I
n(i)
N
fi,

t
N
∈ PA. As a result, the marginal polytope comprises the set of all

possible observable sufficient statistics. Lemma 3.2.2 of the following section shows that the MLE

of the parameters θ in (2.2.3) doesn’t exist if and only if the sufficient statistics lie on a face of the

marginal polytope PA. We now consider the notation and concept of face of a polytope.

Definition 2.3.2. A set P ⊂ Rh is a (convex) polytope if P is the convex hull of a finite sub-

set of Rh. Equivalently, a polytope can be defined as a bounded subset of Rh defined by linear

inequalities.

Definition 2.3.3. For any vector g ∈ Rh and any constant c ∈ R, define three sets Hg,c =
{
x ∈

Rh : 〈g, x〉 = c
}

, H+
g,c =

{
x ∈ Rh : 〈g, x〉 ≥ c

}
and H−g,c =

{
x ∈ Rh : 〈g, x〉 ≤ c

}
. If g 6= 0, then

Hg,c is an (affine) hyperplane, and H+
g,c and H−g,c are the positive and negative halfspaces defined

by g and c.
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Let P ⊆ Rh be a polytope, let g ∈ Rh and c ∈ R, and suppose that P ⊂ H+
g,c or P ⊂ H−g,c. Then

F := Hg,c ∩P is called a face of P. If g 6= 0, then Hg,c is called a supporting hyperplane of P. If

F 6= P and F 6= ∅, then F is a proper face of P.

The dimension of a face F is the dimension of the smallest affine subspace of Rh that contains

it. Its co-dimension is dim(P)− dim(F). A facet of a polytope P is a proper face that is maximal

with respect to inclusion and is thus of co-dimension 1. A minimal proper face of a polytope is a

singleton {p} ⊆ P; in this case, p is a vertex.

Intersections of faces are again faces: If g1, g2 ∈ Rh and c1, c2 ∈ R define faces F1,F2 of P

and if P ⊂ H+
g1,c1
∩ H+

g2,c2
, then P ⊂ H+

g1+g2,c1+c2 , and F1 ∩ F2 = P ∩ Hg1+g2,c1+c2 . Any face is an

intersection of facets.

By definition, every face F of a polytope P ⊂ Rh is characterized by a linear inequality 〈g, x〉 ≥ c

that is valid on P and that holds as an equality on F. This linear inequality is unique only if F is

a facet. Sometimes it is convenient to give all linear equations that hold on a face F. These linear

equations determine the smallest affine subspace of Rh containing F.

When a polytope is defined as the convex hull of a finite number of points fi, i ∈ I, then it is

of interest to know which subsets of {fi}i∈I lie on a common face. Indeed, it is the purpose of this

thesis to compute the smallest face of the marginal polytope containing the data vector t, and we

determine this face by identifying which vectors fi belong to it.

Definition 2.3.4. For a finite set I let {fi}i∈I ⊂ Rh, and let P be the convex hull of {fi}i∈I . A

subset F ⊆ I is called facial (with respect to P), if there exists a face F of P with F = {i : fi ∈ F}.

For any subset S ⊆ I, denote by FP(S) the smallest facial set that contains S.

Since the intersection of facial sets is again facial, FP(S) is well-defined.

16



Lemma 2.3.5. Let {fi}i∈I ⊂ Rh, let φ : Rh → Rh′ , x 7→ Bx + d be an affine map, and let

f ′i = φ(fi). If P is the convex hull of the fi, then P′ := φ(P) is the convex hull of the f ′i . The faces

and facial sets of P and P′ are related as follows:

1. Any inequality 〈g′, x′〉 ≥ c′ that is valid on P′ corresponds to an inequality 〈g, x〉 ≥ c that is

valid on P, where g = Btg′ and c = c′ − 〈g′, d〉. Thus, if F′ is a face of P′, then φ−1(F′) is a

face of P.

2. A subset of I that is facial with respect to P′ is also facial with respect to P. Thus, FP(S) ⊆

FP′(S) for any S ⊆ I.

Proof. The first statement follows from

c ≤ 〈g′, φ(fi)〉 = 〈g′, Bfi + d〉 = 〈Btg′, fi〉+ 〈g′, d〉,

which holds for any i ∈ I. The second statement follows immediately from the equation above and

the fact that FP(S) is the smallest facial set containing S.

We note that in Lemma 2.3.5, the dimension of φ(P) is at most equal to h. We only apply

Lemma 2.3.5 to coordinate projections φ with h′ < h.

Remark 2.3.1. Sometimes it is convenient to embed the polytope in a vector space that has one

additional dimension using a map Rh → Rh+1, x 7→ x̃ := (1, x). This has the advantage that all

defining inequalities can be brought into a homogeneous form with vanishing constant c: Note that

〈g, fi〉 − c = 〈g̃c, f̃i〉, where g̃c := (c, g).

When a defining inequality of a face F is given, its facial set F can be obtained by checking

whether fi ∈ F for each i ∈ I. In the other direction, when a facial set F is given, it is much more

difficult to compute a defining inequality of the corresponding face F. However, it is straightforward
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to compute the linear equations defining F: The set of such equations 0 = 〈g, x〉 − c = 〈g̃, x̃〉

corresponds to the set of vectors g̃ ∈ ker ÃtF , where ÃF is the matrix obtained from A by adding a

row of ones and dropping the columns not in F .

To sum up, we recall the two binary random variables hierarchical log-linear model example to

illustrate the basic concepts we covered in this section.

Example 2.3.6 (Two binary variables example). Consider two binary random variables, Xa, Xb,

under the saturated hierarchical model. Let ∆ = {{a}, {b}, {a, b}}. That is, it contains all possible

probability distributions with full support.

a b

Figure 2.5: The simplicial complex ∆

ea

eb

eab

f00(0, 0, 0)
f10(1, 0, 0)

f01(0, 1, 0)

f11(1, 1, 1)

t1

t2

Figure 2.6: The marginal polytope P∆

The design matrix of this model is
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Ã =



f00︷︸︸︷
1

f01︷︸︸︷
1

f10︷︸︸︷
1

f11︷︸︸︷
1

0 1 0 1

0 0 1 1

0 0 0 1



θ00

θ01

θ10

θ11

or A =



f00︷︸︸︷
0

f01︷︸︸︷
1

f10︷︸︸︷
0

f11︷︸︸︷
1

0 0 1 1

0 0 0 1


θ01

θ10

θ11

In the following, we give two contingency tables and their corresponding sufficient statistics. The

first one belongs to the relative interior of the marginal polytope P∆, and the second one belongs to

a proper face of P∆.

• sample 1: {n(00) = 2, n(10) = n(01) = n(11) = 1}; t1
N

= [0.4, 0.4, 0.2], not on the face;

• sample 2:{n(00) = n(11) = 0, n(10) = n(01) = 1}; t2
N

= [0.5, 0.5, 0], on face.

19



3 Review of literature

3.1 Contingency tables, log-linear models: early developments

The history of the log-linear model and contingency tables is given in Fienberg and Rinaldo

(2007), from which we extract some important features that are related to our research.

The term ”contingency tables” refers to tables of cross-classified categorical data. Computing

the MLE for contingency tables started with Bartlett (1935) who showed that you can get the MLE

of a 2 × 2 × 2 table under the model with no three-way interaction and fixed two-way marginal

totals by solving a cubic equation. Here we give Bartlett’s example, but use our notation as follows:

Example 3.1.1. Consider data of three binary variables, which is classified into a 2×2×2 contin-

gency table. Bartlett’s model is based on the following two assumptions: no three-way interactions,

and fixed two-way marginal totals. Let I = {000, 100, 010, 110, 001, 101, 011, 111} be the set of cells,

and n = {n(i); i ∈ I} as the observed cell counts.

The cell probabilities of Bartlett’s model should fit the following equation:

p(000)p(110)p(101)p(011) = p(010)p(100)p(001)p(111) (3.1.1)

Since Bartlett assumes that the two-way marginal totals are fixed, whenever we adjust the count

of one cell, all other cell counts will make the same or the opposite adjustment. For example, if

we add a value c to n(000), we need to minus c from n(100) due to fixed total n(+00). Therefore
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the deviations from expectation in all cells are the same, which we denote as x here. The MLE

of the cell counts should fit Equation (3.1.1), and therefore can be solved with the following cubic

equation:

(n(000)+x)(n(110)+x)(n(101)+x)(n(011)+x) = (n(010)−x)(n(100)−x)(n(001)−x)(n(111)−x)

(3.1.2)

Bartlett was first to study the MLE computation of contingency tables, but he didn’t consider two

fundamental problems:

1. The systematic computation of the MLE;

2. The existence of this MLE.

As can readily been seen in Example 3.1.1, if cell counts n(000) = 0, n(111) = 0, then solving

the cubic Equation (3.1.2) will always end up with a negative cell count, i.e. the MLE of this

contingency table doesn’t exist.

Deming and Stephan (1940) proposed the practical Iterative Proportional Fitting (IPF) algo-

rithm to solve Equation (3.1.1): . To compute the MLE of the expected cell counts, the IPF updates

the cell counts iteratively using fixed marginal counts. The IPF is still used nowadays and we will

use it later in this thesis.

Roy and Kastenbaum (1956) studied three dimensional contingency tables with no three-way

interaction, and without fixing the marginal totals. They offered a new functional representation

of cell probabilities in any three-way interactions three dimensional contingency table(not limited

to 2× 2× 2 tables):

p(ijk) =
p(ij+)p(i+ k)p(+jk)

p(i+ +)p(+j+)p(+ + k)
(3.1.3)
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To compute the MLE of the cell counts, they use Lagrangian multipliers to make the likelihood

function subject to constraint (3.1.3). Both Bartlett (1935) and Roy and Kastenbaum (1956) didn’t

concern themselves with the existence of the MLE, maybe due to the fact that the contingency tables

they considered were of small dimension and the cell counts were all positive.

Birch (1963) first introduced the log-linear model of three dimensional contingency tables, and

this brought the research of contingency tables into a new era. Birch took the logarithm of (3.1.3):

log p(ijk) = − log p(i+ +)− log p(+j+)− log p(+ + k) + log p(ij+) + log p(i+ k) + log p(+jk),

which in general can be written as,

log p(ijk) = u+ u1i + u2j + u3k + u12ij + u13ik + u23jk + u123ijk, (3.1.4)

where in this case u123ijk = 0 since there is no three-way interaction. Birch (1963) derived the

likelihood function with respect to the log-linear parameters and computed the MLE. He also

showed that the MLE exists if all the cell counts are positive. Since then, the study of log-linear

models has drawn a lot of attention from the research community. Some of the first books on this

subject are Haberman (1974a) and Bishop et al. (1975b).

3.2 Existence of the MLE

The study of the existence of the MLE started at almost the same time as the study of log-

linear models. Fienberg (1970) gave sufficient conditions for the existence of the MLE under the

assumption that the model they consider cannot be written as the product of several independent

models. Fienberg’s sufficient conditions are: (1) the observed data cannot be split into several

disjoint subtables; (2) the observed marginal totals are positive.
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Haberman (1974b) gave a necessary and sufficient condition for the existence of the MLE, which

we state as a lemma here:

Lemma 3.2.1 (Haberman (1974b)). Let A, a |J |×|I| matrix, be the design matrix of the log-linear

model, and let n = (n(i), i ∈ I) be the vector of the observed cell counts. A necessary and sufficient

condition for the existence of the MLE is that there exists z ∈ ker(A) such that n+ z > 0.

Since Az = 0, we have An = A(n + z) = t, i.e. the two cell counts n and n + z have the

same sufficient statistic, and again since n+ z > 0, the MLE exists. For discrete log-linear models,

the distribution of cell counts is an exponential family. Barndorff-Nielsen (1978) (Theorem 9.13

and Corollary 9.6) gave necessary and sufficient conditions for the existence of the MLE of the

canonical parameters in the exponential family. Barndorff-Nielsen showed that the MLE exists

if and only if the data belongs to the relative interior of the convex support of the distribution.

Neither Haberman (1974b) nor Barndorff-Nielsen (1978)’s conditions are constructive. Eriksson

et al. (2006) gave a practical algorithm to detect the existence of the MLE. First they developed a

geometric interpretation of Lemma 3.2.1 as follows.

Lemma 3.2.2 (Eriksson et al. (2006)). The MLE of the log-linear models exists if and only if the

marginal totals(sufficient statistics) t = A∗n belong to the relative interior of the marginal polytope

CA. In other words the MLE doesn’t exist if and only if t belongs to a face of CA.

The term ”marginal polytope” was introduced by Wainwright and Jordan (2003), and denotes

the convex hull spanned by the fi’s as defined earlier in this thesis. Eriksson et al. (2006) gave

an algorithm for determining if the sufficient statistic t lies on a facet of the marginal polytope.

This was further developed by Fienberg and Rinaldo (2012), who proposed to check if the sufficient

statistic belongs to a face of the marginal polytope using a linear programming method as well
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as other methods. While their methodology can handle low dimensional data, it cannot be used

for more than 16 binary variables. In Chapter 7, we extend their approach to high dimensional

settings. This is done by finding good inner and outer approximations to the smallest face F of the

marginal polytope containing the data, i.e. by finding a face containing or contained by F as close

as possible in a sense that will be made clear in Chapter 7.

3.3 Computation of the MLE

When the dimension of the data becomes very large, neither the IPF algorithm nor regular

convex optimization methods are feasible for the MLE computation. The likelihood function is

intractable. In machine learning literature, a lot of effort has been devoted to the approximation

of this likelihood function. Peterson (1987) defined and applied a mean field learning algorithm

for neural networks. The basic idea is to approximate the complex CDF function (also called the

partition function in machine learning literature) by its mean. Saul et al. (1996) developed a mean

field theory for sigmoid belief networks, where they used a completely factorized distribution Q to

approximate the intractable distribution P by minimizing the Kullback-Leibler divergence between

P and Q: KL(Q|P ) =
∑
Q log Q

P
. For more variational methods, readers can refer to the following

review papers: Jordan et al. (1999) and Wainwright and Jordan (2008).

Recently another line of research on composite likelihood has become active, for instance, Dillon

and Lebanon (2010), Sutton and McCallum (2007), Asuncion et al. (2010), Wiesel and Hero (2012)

and Liu and Ihler (2012). The history of composite likelihood methods can be traced back to the

1970s. Besag (1974) first studied the conditional probability models for finite system of lattice

data. The conditional probability models approach was extended to non-lattice data in Besag

(1975). Besag proposed one special conditional composite likelihood technique, the product of local
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conditional densities of a single variable given its neighbours, which he named ”pseudo-likelihood”.

Lindsay (1988) proposed a more general version of pseudo-likelihood, which he named ”composite

likelihood”. Following the definition proposed by Dillon and Lebanon (2010), we now give the

definition of composite likelihood,

Definition 3.3.1. Let X = (X1, X2, · · · , Xp) be a random variable with a given probability den-

sity function p(x|θ) parameterized by θ. Let (XAi , XBi), i = 1, 2, · · · , k be k pairs of subsets of the

random variables, where Ai 6= ∅ and Ai ∩ Bi = ∅. The composite likelihood for θ corresponding to

the pairs (XAi , XBi), i = 1, 2, · · · , k is the product of the local likelihoods associated to the condi-

tional probabilities of XAi given XBi, p(x
(n)
Ai
|x(n)
Bi

; θ). For a given sample {x(1), x(2), · · · , x(N)}, this

composite log-likelihood cl(θ) is therefore equal to

cl(θ) =
N∑
n=1

k∑
i=1

log p(x
(n)
Ai
|x(n)
Bi

; θ). (3.3.1)

This is a very general definition of the composite likelihood. By choosing different Ai and Bi,

one can get various types of composite likelihood (see in Varin et al. (2011)). We note that for

Bi = ∅, i = 1, 2, · · · , k, cl(θ) is the sum of the logarithm of the likelihoods associated to the local

marginal probabilities. When working with graphical models, the most commonly used composite

likelihoods are those associated with the pairs Av = {v} and Bv = {Nv}, v = 1, 2, · · · , p. The max-

imum composite likelihood estimate of θ(abbreviated MCLE) is the value of θ that maximizes the

composite likelihood as given in (3.3.1). Lindsay (1988) showed that the MCLE is asymptotically

normally distributed with a covariance which is larger, in the positive definite matrix sense, than

that of the regular MLE.

Maximizing the composite likelihood is still a difficult task in a high dimensional setting. For

discrete graphical log-linear models, Liu and Ihler (2012) first proposed to compute the MCLE
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by maximizing separately each of the local components lv(θ) =
∑n

i=1 log p(x
(i)
v |x(i)

Nv
), v ∈ V by

distributed computing, and subsequently combining the local estimates through linear consensus

or maximum consensus to achieve a global estimate for θ. They showed that this global estimate

is consistent. For Gaussian graphical models, Wiesel and Hero (2012) also proposed the marginal

composite likelihood method as well as the pseudo-likelihood method. The local component of their

marginal likelihood is lv(θ) =
∑n

i=1 log p(x
(i)
v , x

(i)
Nv

). Like Liu and Ihler (2012), to find the MCLE,

Wiesel and Hero (2012) also used distributed computing and combined local results by an averaging

scheme or by ADMM. They also proved that the local marginal likelihood estimator is equal to the

local conditional estimator in each component. Meng et al. (2013) named the one-hop MCLE the

MCLE from the composite likelihood built from the local marginal model

lM,1(θ) =
n∑
i=1

∑
v∈V

log p(x(i)
v , x

(i)
Nv

; θ).

They then proposed the two-hop MCLE obtained by maximizing

lM,2(θ) =
n∑
i=1

∑
v∈V

p(x(i)
v , x

(i)
Nv
, x

(i)
N2,v

; θ).

As in the one-hop case, the two-hop MCLE is obtained by combining local maxima. They showed

numerically that the two-hop estimate was more accurate than the one-hop estimate under in-

creased computational cost. However, they stated that the two-hop estimate obtained from the

local marginal and conditional likelihoods are different. In our arXiv paper Massam and Wang

(2013), we showed that for the discrete model, the asymptotic variance of the two-hop estimate is

smaller than the asymptotic variance of the one-hop estimate. Following our paper, Meng et al.

(2014) proved a parallel theorem for the Gaussian graphical model and studied the asymptotic

properties of their estimates. In this thesis, parallel to their method on Gaussian graphical models,

we study the marginal likelihood and conditional likelihood in discrete log-linear models both in
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the one-hop case and two-hop case. First we prove that the conditional and marginal estimates,

one-hop and two-hop are equal. We then proceed to studying the asymptotic properties of these

estimates.
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4 Approximating the maximum likelihood estimate

In this section, we are going to study the first topic: the systematic computation of the MLE

in hierarchical log-linear models. To get the MLE, we need to solve the following optimization

problem:

θ̂g = arg max l(θ) = arg max〈θ, t
N
〉 − log

∑
i∈I

exp〈θ, fi〉 (4.0.1)

As we mentioned before, the log-partition function k(θ) = log
∑

i∈I exp〈θ, fi〉 is untraceable in high-

dimensional log-linear models. To avoid this problem, we can use the composite likelihood methods

in Definition 3.3.1. There are various types of composite likelihoods described in the literature,

the most popular one being defined as the product over all vertices v ∈ V of the local conditional

likelihood for Xv given XNv , where Nv denotes the set of neighbours of v in graph G. This type

of composite likelihood method breaks down equation (4.0.1) into the sum of p local composite

likelihood functions:

cl(θ) =
∑
v∈V

lv(θ
v) =

∑
v∈V

n∑
i=1

log p(x(i)
v |x

(i)
Nv ; θ

v),

where θv is a subset of θ which contains the parameters involved in p(Xv|XNv)

In recent work on high-dimensional Gaussian graphical models, Wiesel and Hero (2012) and

Meng et al. (2013) take another approach. They use a different composite likelihood which is the

product, over all vertices v ∈ V , of local marginal likelihoods. In this section, we first recall the

definition of the conditional composite likelihood estimate, then extend the marginal composite
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likelihood in Meng et al. (2013) to discrete graphical models, and finally show that the maximum

likelihood estimates obtained from these two types, conditional and marginal, of local models are

in fact identical and thus the composite likelihood obtained by any type of consensus from these

two types of likelihood are equal. The computational complexity of the marginal computation is

exponential in the number of vertices in the neighborhood of v, whereas the conditional computation

is linear in this number, so there is no advantage in working with marginal composite likelihoods.

4.1 Conditional composite likelihood methods

We first define the standard conditional composite likelihood function. For i = (iv, v ∈ V ), let

X(1), . . . , X(N) be a sample of size N from the distribution of X, which belongs to a hierarchical

log-linear model M∆. We recall that the global log-likelihood function is

l(θ) ∝
N∑
i=1

log p(X(i)) = 〈θ, t〉 −Nk(θ) (4.1.1)

For a given vertex v ∈ V , let Nv be the set of neighbours of v in the given graph G. The composite

likelihood function based on the local conditional distribution of Xv given XV \{v} or equivalently,

due to the Markov property, the conditional distribution of Xv given its neighbours XNv is LPS(θ) =∏
v∈V L

v,PS(θ) where

Lv,PS(θ) =
N∏
i=1

p(X(i)
v |X

(i)
Nv ; θ) (4.1.2)

and the superscript ”PS” stands for ”pseudo-likelihood”, the name often given to the conditional

composite likelihood (Besag (1974)). As given by (2.1.4), for a given cell i, we have

log p(i) = log p(Xv = iv, v ∈ V ) = θ0 +
∑
j/i

θj

= θ0 +
∑

j/i, S(j)⊆v∪Nv ,S(j)6⊆Nv

θj +
∑

j/i, S(j)⊆Nv

θj +
∑

j/i, S(j)6⊆v∪Nv

θj
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Let

JPSv = {j ∈ J | S(j) ⊆ v ∪Nv, S(j) 6⊆ Nv} = {j ∈ J | v ∈ S(j)},

next we show that elements of set JPSv index the parameters in the v-th component in the condi-

tional likelihood function, i.e. p(X
(i)
v |X(i)

Nv). For iv 6= 0, we have

p(Xv = iv| XNv = iNv) = p(Xv = iv| XV \{v} = iV \{v}) =
p(XV = iV )

p(XV \{v} = iV \{v})

=
eθ0+

∑
j/i, j∈JPSv θj+

∑
j/i, S(j)⊆Nv θj+

∑
j/i, S(j)6⊆v∪Nv θj∑

k∈I| kV \{v}=iV \{v}

(
eθ0+

∑
j/k, j∈JPSv θj+

∑
j/k, S(j)⊆Nv θj+

∑
j/k, S(j)6⊆v∪Nv θj

)
=

e
∑
j/i, j∈JPSv θj

1 +
∑

k∈I| kV \{v}=iV \{v}, kv 6=0 e
∑
j/k, j∈JPSv θj

(4.1.3)

and

p(Xv = 0| XV \{v} = iV \{v}) =
1

1 +
∑

k∈I| kV \{v}=iV \{v}, kv 6=0 e
∑
j/k, j∈JPSv θj

(4.1.4)

Equality (4.1.3) is due to the fact that the set of j ∈ J such that j / k, S(j) 6⊆ v ∪Nv, is the same

whether kv = iv or kv 6= iv, and therefore the term e
θ0+

∑
j/k, S(j)6⊆kv∪Nv

θj cancels out at the numerator

and the denominator. The same goes for the set of j ∈ J such that j / k, S(j) ⊆ Nv.

Remark 4.1.1. In the equation above, we worked with p(Xv|XV \{v}) rather than with P (Xv|XNv),

though the two are equal; we did this to emphasize that

θv,PS = (θj, j ∈ JPSv), v ∈ V (4.1.5)

of the v-th component Lv,PS of conditional composite distribution is a sub vector of θ, the parameter

of the global likelihood function.

Except for the pseudolikelihood, there are also some other types of conditional composite like-

lihood methods. Asuncion et al. (2010) proposed their version of composite likelihood which is the
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conditional likelihood of a subset of random variables conditional on another subset. By increasing

the size of the local components, the composite likelihood estimation can be made more accurate,

but computational complexity is sacrificed. In our research, we modified the pseudo-likelihood

based on this idea and proposed the two-hop conditional composite likelihood.

The two-hop conditional composite likelihood function is LPS2(θ) =
∏

v∈V L
v,PS2(θ) where

Lv,PS2(θ) =
N∏
i=1

p(X(i)
v , X

(i)
Nv |X

(i)
N2v

). (4.1.6)

The expression of p(X
(i)
v , X

(k)
Nv |X

(k)
N2v

) is the same as (4.1.3) and (4.1.4) but with Jv,PS replaced by

Jv,PS2 where

Jv,PS2 = {j ∈ J | S(j) ⊆Mv, S(j) 6⊆ N2v}.

In a parallel way to Remark 4.1.1, we note that

θv,PS2 = {θj, j ∈ Jv,PS2}

is a sub vector of θ = (θj, j ∈ J), the argument of the global likelihood function.

Let Mv be the one-hop or two-hop neighborhood of v. The marginal composite likelihood is

the product

LM(θ) =
∏
v∈V

N∏
k=1

p(X
(k)
Mv

) =
∏
v∈V

LMv(θ). (4.1.7)

where LMv(θ) =
∏N

k=1 p(X
(k)
Mv

). The Mv-marginal model is clearly multinomial and the corre-

sponding data can be read in theMv-marginal contingency table obtained from the full table. The

density of the Mv-marginal multinomial distribution is of the general exponential form

f(tMv ; θMv) = exp{〈tMv , θMv〉 −NkMv(θMv)} (4.1.8)

where tMv , θMv and kMv are respectively theMv-marginal canonical statistic, canonical parameter

and cumulate generating function.
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In order to identify the Mv-marginal model, we first establish the relationship between θ and

θMv . For the remainder of this thesis, the symbol j is to be understood as an element of IMv

whenever used in the notation θMv
j , and it is to be understood as the element of J obtained by

padding it with entries jV \Mv = 0 whenever used in the notation θj. We now give the general

relationship between the parameters of the overall model, and those of the Mv-marginal model.

The proof is given in Appendix B.1.

Lemma 4.1.1. Let Mv be the one-hop or two-hop neighborhood of v ∈ V . For j ∈ J, S(j) ⊂Mv,

the parameter θj of the overall model, and the parameter θMv
j of the marginal model are linked by

the following:

θMv
j = θj +

∑
j′|j′/0j

(−1)|S(j)−S(j
′
)| log

(
1 +

∑
i∈I,iMv=j′

exp
∑
k|k/i
k 6/j′

θk
)

(4.1.9)

We want to identify which of the marginal parameters are equal to the corresponding overall

parameter, and in particular which marginal parameters are equal to zero when the global parameter

is equal to zero. Let Mc
v denote the complement of Mv in V . We define the buffer set at v as

follows:

Bv = {w ∈Mv | ∃w′ ∈Mc
v with (w,w′) ∈ E}. (4.1.10)

We have the following result.

Lemma 4.1.2. Let Mv be the one-hop or two-hop neighborhood of v ∈ V . For j ∈ J, S(j) ⊂ Mv

the following holds:

(1.) if S(j) 6⊂ Bv, then θMv
j = θj,

(2.) if S(j) ⊂ Bv, then in general θMv
j 6= θj, and (4.1.9) holds.

Moreover, for i ∈ I, S(i) ⊂Mv,

32



(3.) If S(i) 6⊂ Bv, then θMv
i = 0 whenever θi = 0.

The proof is given in Appendix B.2. From the lemma above, we see that, for j ∈ J such that

S(j) ⊂Mv, S(j) 6⊂ Bv, the corresponding global andMv-marginal log-linear parameters are equal.

We see also that for i ∈ I such that S(i) ∈Mv, S(i) 6⊂ Bv, if the log-linear parameter is zero in the

global model, it remains zero in the Mv-marginal model.

4.2 A convex relaxation of the local marginal models

v a

b

c

d

e

(a) convex relaxation of one-hop marginal model

v a

b

c

d

e

(b) convex relaxation of two-hop marginal model

Figure 4.1: The convex relaxation of the one-hop and two-hop marginal models of vertex ”v” in the

4× 4 grid graph

It is clear from (4.1.9) that even though maximizing the marginal likelihood from (4.1.8) is

convex in θMv , it is not convex in θ. We would therefore like to replace the problem of maximizing
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the likelihood function (4.1.8) non convex in θ by a convex relaxation problem. We know from (1.)

of Lemma 4.1.2 that θMv
j = θj for j in the set {j ∈ J : S(j) ⊂Mv, S(j) 6⊂ Bv} .

We also know from (3.) of Lemma 4.1.2 that if the global model parameter θi, S(i) ⊂Mv, S(i) 6⊂

Bv is equal to zero, then θMv
i is also equal to zero. Following the work on Gaussian graphical models

by Meng et al. (2014), it is natural to consider the following graphical model relaxation of theMv-

marginal model.

LetMl,v denote the relaxed hierarchical log-linear model obtained from theMv-marginal model

by keeping interactions given by edges with at least one endpoint in Mv \ Bv and all interac-

tions in the power set 2Bv . The convex relaxation of the marginal model is illustrated with

a 4 × 4 grid graph in Figure 4.1. The parameter set of the one-hop marginal model for vari-

ables XM1,v is θM1,v = {θv, θva, θvb, θab}, and the parameter set of the two-hop marginal model is

θ = {θv, θa, θb, θva, θvb, θac, θad, θbd, θbe, θc, θd, θe, θcd, θde, θce, θcde}. The index l takes values l = 1 or

l = 2 when Mv is respectively the one-hop or two-hop neighborhood of v.

The J-set of this local model is

JMl,v = {j ∈ J | S(j) ⊂Mv, S(j) 6⊂ Bv} ∪ {i ∈ I | S(i) ⊂ Bv} . (4.2.1)

Let pMl,v(XMv) denote the marginal probability of XMv in theMl,v-marginal model. The local

estimates of θj, j ∈ {j ∈ J | S(j) ⊂Mv, S(j) 6⊂ Bv} are obtained by maximizing theMl,v-marginal

log likelihood

LMl,v(θ) =
N∏
k=1

pMl,v(XMv = i
(k)
Mv

) = exp{〈θMl,v , tMl,v〉 −NkMl,v(θMl,v)} (4.2.2)

which is a convex maximization problem in

θMl,v = (θj, j ∈ JMl,v).

At this point, we need to make two important remarks.
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Remark 4.2.1. The vector θv,PS defined in (4.1.5) is a sub vector of θMl,v . Therefore maximizing

(4.2.2) for either l = 1 or l = 2 will yield an estimate of θv,PS.

Remark 4.2.2. The Ml,v-marginal model, l = 1, 2, is a hierarchical log-linear model but not nec-

essarily a graphical model. For example, if we consider a four-neighbour lattice and a given vertex

v0 and its four neighbours that we will call 1, 2, 3, 4 for now, then the generating set of the relaxed

M1,v0-marginal model is

∆M1,v0 = {(v0, 1), (v0, 2), (v0, 3), (v0, 4), (1, 2, 3, 4)}.

This is not a discrete graphical model since a graphical model would also include the interactions

(v0, 1, 2), (v0, 2, 3), (v0, 3, 4), (v0, 1, 4), (v0, 1, 2, 3, 4). It was therefore crucial to set up our problem as

we did it in Section 2, within the framework of hierarchical log-linear models rather than the more

restrictive class of discrete graphical models.

4.3 Equality of the maximal conditional and marginal composite like-

lihood estimate

Let θ̂Ml,v , l = 1, 2 denote the maximum likelihood estimate of θMl,v obtained from the local

marginal likelihood (4.2.2).

Theorem 4.3.1. The ”PS” component of θ̂M1,v ,i.e. (θ̂
M1,v

j , j ∈ Jv,PS) is equal to the maximum

likelihood estimate of θv,PS obtained from the local conditional likelihood (4.1.2).

Similarly, The PS2 component of θ̂M2,v ,i.e. (θ̂
M2,v

j , j ∈ Jv,PS2) is equal to the maximum likelihood

estimate of θv,PS2 obtained from the local conditional likelihood (4.1.6).

The proof is given in Appendix B.3. At this point, we ought to make an important observation.

In the case of the two-hop marginal likelihood, it can happen that the buffer Bv may not be equal
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Vertex 39 Vertex 25

39 40

29

38

49

3028

50

19

48

37

2524 26

15 16

35

45

3634

14

5

2723

Figure 4.2: Two vertices in a 5× 10 lattice: Theorem 4.3.1 applies to vertex 25 but not vertex 39

to N2v. For example, if we consider a four-neighbour 5×10 lattice and number the vertices by rows

starting from the left, vertex 39 is such that N2v = {19, 28, 30, 37, 48, 50} while Bv = N2v \ {50}.

The argument in the proof of Theorem 4.3.1 for j such that S(j) 6⊂ N2v then breaks down since

in the M2,v-marginal model, some cells such as iMv = (i30 = 1, i50 = 1, 0Mv\{30,50}), with support

in N2v no longer have a complete support. This situation is illustrated in Figure 4.2 where for the

sake of comparison, we also look at vertex 25 for which N2v = Bv and so Theorem 4.3.1 applies.

In Tables 4.1 and 4.2 we give the numerical values of the maximum likelihood estimate θj, j ∈

JM2,v obtained from the four local models PS, PS2,M1,v and M2,v for j such that j ∈ JPS25 and

for j such that j ∈ JPS39 , respectively. We see that in the first case, the values of θ̂j obtained from

the local likelihoods lPS25 and lM1,25 are identical and similarly for those obtained from lPS2,25 and

lM2,25 , while in the second case, the values obtained from the PS2 and M2,v models are slightly

different. The values obtained from the PS andM1,v models are identical since then Bv = Nv and

the proof of Theorem 4.3.1 does not break down.

Remark 4.3.1. The equality of the estimates holds also for the marginal estimates obtained by
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Models θ̂25 θ̂15,25 θ̂24,25 θ̂25,26 θ̂25,35

M1,v -0.0536 0.5914 -0.4808 -0.8314 -0.8461

M2,v -0.0779 0.5221 -0.5310 -0.7274 -0.7459

(v, PS) -0.0536 0.5914 -0.4808 -0.8314 -0.8461

(v, 2PS) -0.0779 0.5221 -0.5310 -0.7274 -0.7459

Table 4.1: The local MLE of some θj, j ∈ J25,PS in the 5× 10 lattice

Models θ̂39 θ̂29,39 θ̂38,39 θ̂39,40 θ̂39,49

M1,v -1.0799 -0.3306 -0.3647 -0.5791 1.1749

M2,v -1.0386 -0.3519 -0.5020 -0.5445 1.1946

(v, PS) -1.0799 -0.3306 -0.3647 -0.5791 1.1749

(v, 2PS) -1.0381 -0.3531 -0.5019 -0.5448 1.1947

Table 4.2: The local MLE of some θj, j ∈ J39,PS in the 5× 10 lattice

Mizrahi et al. (2014) if, for q a clique of G and v ∈ q ⊂ Aq, satisfying the strong LAP condition

with respect to Aq, we retain only the parameters θj, j ∈ JPSv ∩ q. We also note that Theorem 9 in

that paper may not be true in some cases. For example, take vertex 7 in a 3×3 lattice numbered from

left to right starting with the top row, take q = {7, 8} as the clique of interest. Then Aq = {4, 7, 8}

satisfies the strong LAP condition, but θ8 in the Aq-marginal model cannot be equal to θ8 in the

joint model as our Lemma 4.1.2 shows.
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4.4 Computational complexity of the local marginal and conditional

methods

In order to illustrate the algorithms and computational complexity of MLE computation of our

local marginal models and local conditional models, we use the Ising model with binary data as an

example.

v

N_1

N_2

Figure 4.3: A small example for one-hop and two-hop local models

The graph above illustrates the one-hop and two-hop local models of node v. We assume each

node takes binary values {0, 1}. Here we use N1 to denote the one-hop neighbours of v, N2 - the

neighbours of neighbours of node v, and N1 ∪N2 - the two-hop neighbours of v. Let p = |N1| and

q = |N2|, so p+ q = |N1 ∪N2|.

4.4.1 One-hop Local Conditional Model

In the one-hop conditional models, the probability density function of Xv given its 1-hop neigh-

bours XN1 is

f(xv|xN1 , θ) =
exp(xvθv + xvxN1θv,N1)

1 + exp(θv + xN1θv,N1)
,
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where θv is a scale value, θv,N1 ∈ Rp, so the number of parameters in the function is p + 1. Given

N sample points, we can write the negative pseudo log-likelihood function as follows:

l(θ) =
N∑
i=1

[log(1 + exp(θv + xiN1
θv,N1))− xivθv − xivxiN1

θv,N1 ],

We use the limited-memory BFGS algorithm found in the Matlab package ”minFunc” of Schmidt

(2005) to compute the pseudo-likelihood estimates for each local conditional model. One can refer to

Nocedal (1980) and Schmidt et al. (2009) for the details about the algorithm. The BFGS algorithm

approximates Newton’s method. We don’t need to evaluate the Hessian matrix, but the gradient

of the log-likelihood is necessary. The gradient can be computed as follows:

dl(θ)
dθv

=
∑N

i=1[
exp(θv+xiNv θv,N1

)

1+exp(θv+xiN1
θv,Nv )

− xiv]

dl(θ)
dθv,N1

=
∑N

i=1[
exp(θv+xiN1

θv,N1
)

1+exp(θv+xiN1
θv,N1

)
− xivxiN1

]

The cost for evaluating the negative log-likelihood function and its gradient is linear to the

number of parameters times sample size: O(N(p + 1)). As shown in Nocedal (1980) and Schmidt

et al. (2009), the cost per iteration of L-BFGS method is O(m(p+ 1)), where m is a small constant

chosen by user, and p + 1 is the number of parameters in the log-likelihood function. In order to

reach an accuracy of ε under standard assumptions, one needs O(log(1/ε)) iterations. Therefore, the

total cost for computing the MLE of a 1-hop local conditional model is O(log(1/ε[(m+N)(p+ 1)]),

which is linear to the number of parameters.

4.4.2 Two-hop Local Conditional Model

In the 2-hop local conditional model as shown in the previous example, there are some node

parameters: θv ∈ R, θN1 ∈ Rp and some edge parameters θ(v,N1) = {θij|i = v, j ∈ N1} ∈ Rp,

θ(N1,N2) = {θij|i ∈ N1, j ∈ N2} ∈ Rq. The parameter set is therefore Θ = {θv, θN1 , θ(v,N1), θ(N1,N2)} ∈
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R(1+2p+q). The probability density function of Xv∪N1 given XN2 is

f(xv∪N1|xN2 , θ) =
exp(xvθv + xN1θN1 + xvxN1θ(v,N1) + xN1xN2θ(N1,N2))∑

xv∪N1
∈Iv∪N1

exp(xvθv + xN1θN1 + xvxN1θ(v,N1) + xN1xN2θ(N1,N2))
,

Given N sample points, we can write the negative log-likelihood function:

l(θ) =
n∑
i=1

[
log(

∑
xv∪N1

∈Iv∪N1

exp(xvθv + xN1θN1 + xvxN1θ(v,N1) + xN1x
i
N2
θ(N1,N2)))

− (xivθv + xiN1
θN1 + xivx

i
N1
θ(v,N1) + xiN1

xiN2
θ(N1,N2))

]
(4.4.1)

We use the same algorithm to compute the MLE as we did in the 1-hop local conditional model.

Evaluating the negative log-likelihood function is, however, much more complex. The cost for

computing the logarithm in the log-likelihood function is exponential to the size of v∪N1: O(2p+1).

Since we need to compute this logarithm in the negative log-likelihood function and the gradient

function, the cost for one data point will be O((1 + 2p + q)2p+1), and O(N(1 + 2p + q)2p+1) for N

sample points. Similar to the 1-hop case, the total cost for computing the MLE of a 2-hop local

conditional model is O(log(1/ε[m(1 + 2p+ q) +N(1 + 2p+ q)2p+1]), which is exponential in the size

of v ∪N1, or M1.

4.4.3 One-hop Local Marginal Model

Recall that when we complete the buffer set of each local marginal model, the number of pa-

rameters increases exponentially with the number of nodes in the buffer set, but we only increase

one clique in each local marginal model. Therefore, using the IPF algorithm designed by Jirousek

and Preucil (1995) to compute the MLE of the local marginal model turns out to be much more

effective than maximizing the likelihood function. After we get the expected value of the marginal

contingency table, we can apply formula (2.15) provided in Letac et al. (2012) to get the MLE of
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nature parameters θ:

θj =
∑
j′/j

(−1)|S(j)−S(j
′
)| log

p(j
′
)

p(0)

We don’t need to compute all the parameters in the local marginal model, since we just need the

parameters {θj, v ∈ S(j)}. In our example we just need to compute θv, θ(v,N1), which costs O(p+1).

Recall thatM1 = v∪N1, and IMv denote the set of cells in theM1-marginal contingency table,

in the one-hop local marginal model of node v, so we have

|IM1| = 2p+1.

We need to update all the cell counts in the M1-marginal contingency table. Therefore the total

cost for the IPF algorithm is O(2p+1), which is exponential to |M1|.

4.4.4 Two-hop Local Marginal Model

The two-hop local marginal model is almost the same as the one-hop, except that the two-hop

local marginal model has 1 + p + q nodes and more cliques. In our experiments, we choose to use

the IPF algorithm to get the expected values of the two-hop marginal contingency table, and then

computed canonical parameters θv, θ(v,N1). The computational complexity is exponential to the

number of nodes in the local marginal model: |M2|.

We took advantage of Matlab’s matrix computation prowess to avoid multiple ”for-loops”. This

allows us to update the contingency table m at a high speed, and the computational time to grow

linearly with the number of cliques.
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4.5 The maximum composite likelihood estimate

Since we have proved that the estimates of θv,PS obtained from local conditional and relaxed

marginal likelihoods are identical, and computational complexity in the relaxed marginal model, we

work only with the local estimates obtained from local conditional likelihoods. More precisely, for

each local conditional likelihood lv,PS or lv,PS2 , we consider the local maximum likelihood estimate

θ̂v,PS or θ̂v,PS2 . We define

θ̂v =


θ̂v,PS if we work with lv,PS

(θ̂v,PS2

j , S(j) ⊂ {v} ∪ Nv) if we work with lv,PS2 .

(4.5.1)

In other words, from either lv,PS or lv,PS2 , we retain θ̂v = (θ̂vj , S(j) ⊂ ({v} ∪Nv) \ Nv) = (θ̂vj , , v ∈

S(j)) only. If we have mj estimates θ̂vlj , l = 1, . . . ,mj, then we define the maximum composite

likelihood estimate of θ to be

θ̄ = (θ̄j =

∑mj
l=1 θ̂

vl
j

mj

, j ∈ J), (4.5.2)

Let θ̂PS denote the vector obtained by stacking up the vectors θ̂v, v ∈ V . We then have

θ̄ = Aθ̂PS

where A is a |J | ×
∑

v∈V |Jv,PS| where Jv,PS is as defined in (4.1.5). If S(j) = {v}, then clearly, the

row of A corresponding to θ̄j has all its entries equal to zero except for one entry equal to one in the

column block Jv,PS. If j ∈ Jvl,PS, l = 1, . . . ,mj, and S(j) ⊂ ({vl}∪Nvl)\Nvl the row corresponding

to θ̄j has all its entries equal to zero except for one entry equal to 1
mj

in each of the column blocks

Jvl,PS, l = 1, . . . ,mj. For example, if the model considered is the discrete graphical model Markov
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with respect to the four-cycle with vertex set V = {a, b, c, d} and D = {ab, ac, bd, cd}, we have

θ̄ =



θ̄a

θ̄ab

θ̄b

θ̄bd

θ̄c

θ̄cd

θ̄d

θ̄db



=



1 0 0 0 0 0 0 0 0 0 0 0

0 0.5 0 0 0.5 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0.5 0 0 0 0 0.5 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0.5 0 0 0.5

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0.5 0 0 0 0 0.5 0





θ̂aa

θ̂aab

θ̂aac

θ̂bb

θ̂bab

θ̂bbd

θ̂cc

θ̂cca

θ̂ccd

θ̂dd

θ̂dbd

θ̂dcd



.

In general, for j ∈ J and k ∈ Jv,PS, v ∈ V , the matrix A is defined by

Aj,k =


1
mj

if jvl∪Nvl = k ∈ Jvl,PS, l = 1, . . . ,mj

0 otherwise.

(4.5.3)

We have now defined our MCLE which we use to replace the global MLE maximizing (4.1.1).

It is natural to ask whether the MCLE exists when the global MLE exists, and conversely, whether

the global MLE exists when the MCLE exists. The existence of the global MLE is an important

problem that has been considered in Fienberg and Rinaldo (2012) and more recently in Wang et al.

(2016). We say that the MLE does not exist if we cannot find θ̂ such that the corresponding cell

probabilities p(i) and p(0) as given by (2.1.4) and (2.1.5) are strictly positive. The nonexistence of

the global MLE has important consequences for inference. However, if we are only concerned with
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estimation of the parameter θ or equivalently with (p(i), i ∈ I), as the following lemma shows, the

global MLE may not exist, but we may still accept the MCLE as an estimate of the parameter.

Lemma 4.5.1. For a discrete log-linear model, if the global MLE exists, then the MCLE exists. but

the converse is not necessarily true.

Proof: If the global MLE exists, then p̂(X = i) > 0 and p̂(XNv = iNv) > 0,

p̂(Xv = iv|XNv = iNv) =
p̂(X = i)

p̂(XNv = iNv)
> 0,

i.e. the composite MLE exists. We now give an example where the MCLE exists but the global

MLE does not. Consider the four-cycle graphical model as described above, with binary variables.

Let the data be such that n(i) = 1, i ∈ {0000, 1000, 0100, 1010, 0101, 1011, 0111, 1111} and

n(i) = 0 otherwise so that the marginal counts are tc = td = 4, tab = 1, tbd = tcd = tac = 3 where

for A ⊂ V , tA denotes tj with jv = 1 if v ∈ A and jv = 0 otherwise. Thus the data vector lies on

the facet tc + td + tab − tbd − tcd − tac = 0 of the marginal polytope of the four-cycle model. The

reader is referred to Letac et al. (2012, Theorem 5.3) for the equations of the facets of the polytope

corresponding to the four-cycle. From the theory on the existence of the global maximum likelihood

estimate developed in Fienberg and Rinaldo (2012) and references therein, it can be concluded that

the global MLE does not exist in this case. The facets corresponding to the local models built on

v = a have equations

tab = 0;

ta − tab = 0;

tb − tab = 0;

1− ta − tb + tab = 0;

We can verify immediately that none of these equations are satisfied with the given data and
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therefore the MLE of θv,PS in the a-local model. Similarly the MLE of θv,PS, v = b, c, d exists and

thus the MCLE exists. �
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5 Asymptotic properties of the maximum composite

likelihood estimate

In this chapter, we look at the asymptotic properties of the MCLE θ̄ when p is fixed and then

when both p and N go to infinity. Though asymptotics when p is fixed have been given by Liu and

Ihler (2012), we give our result here in Section 5.1 for completeness in our own notation.

5.1 The classical asymptotic regime

We consider here the behaviour of the MCLE θ̄ when p = |V | is fixed and the sample size N

goes to infinity. We have the following result.

Theorem 5.1.1. The MCLE θ̄ as defined in (4.5.2) is asymptotically consistent and

√
N(θ̄ − θ∗)→ N(0, AGAt) (5.1.1)

where A is as defined in (4.5.3), G is the square
∑

v∈V |Jv,PS|-dimensional matrix with (vl, vm)-block

entry

Gvl,vm = I−1(θvl,∗)E(
∂l(θ∗vl)

∂θ∗vl

(∂l(θ∗vm)

∂θ∗vm

)t
)I−1(θ∗vm), (5.1.2)

l(θ∗vl) = lvl,PS((θ∗)vl,PS|X) is the local conditional likelihood, given one sample point X, evaluated

at the true local parameter (θ∗)vl,PS and I(θ∗vl) = E(∂l(θ
∗vl )

∂θ∗vl

(
∂l(θ∗vl )
∂θ∗vl

)t
) is the vl-local information

matrix evaluated at the true value θ∗vl , vl ∈ V.
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The mean square error therefore satisfies

NE(‖θ̄j − θ∗j‖2)
N→∞−−−→

mj∑
l=1

1

m2
j

[Ivl(θvl,∗)]−1
j,j +

mj∑
l1=1

mj∑
l2=l1+1

2

m2
j

[Gvl1 ,vl2
]j,j (5.1.3)

The proof is given in Appendix B.4. In the expression of the mean square error (5.1.3) above,

we note that to the diagonal elements of the inverse information matrix for each local model are

added the cross-product terms [Gvl1 ,vl2
]j,j, because the estimates of θ̂vj coming from the vl1 and vl2

local conditional models with j ∈ Jvl1 ,PS ∩ Jvl2 ,PS are not independent. We also note here that our

Theorem above coincides with Theorem 4.1 in Liu and Ihler (2012) with our matrix A being equal

to their (
∑

iW
i)−1.

To illustrate our result above, we simulate data from the 4-cycle graphical model. We simulate

our data for the following values of the parameters

[θa, θb, θc, θd, θab, θac, θbd, θcd] = [0.53, 1.83,−2.25, 0.86, 0.31,−1.30,−0.43, 0.34].

The results are illustrated in Figure 5.1.
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Figure 5.1: Empirical and theoretical mean square errors for the global MLE and the MCLE of the

parameters for the four-cycle graphical model.

We now examine the asymptotic variance of the two estimates θ
Mi,v

j , i = 1, 2, j ∈ J, S(j) ⊂

Mv, S(j) 6⊂ Bv. We distinguish between the buffer set of the relaxed M1,v−marginal model, and

that of the M2,v− marginal model, and denote them be Bi,v, where i = 1, 2 respectively. We will
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use the notation

Ji,v = {j ∈ IMi,v
: j ∈ J, S(j) ⊂Mi,v, S(j) 6⊂ Bi,v} ⊂ JMi,v

Bi,v = {j ∈ IMi,v
: S(j) ⊂ Bi,v}

θJi,v = {θj, j ∈ Ji,v}

θBi,v = {θj, j ∈ Bi,v}

(5.1.4)

We consider the following four models that are defined by their J-sets J :

1. the relaxed one-hop marginal model M1,v with J-set equal to J = J1,v ∪B1,v,

2. the relaxed two-hop marginal model M2, with J-set equal to J = J2,v ∪B2,v,

3. the overall model with J-set J = J ,

4. a new augmented marginal model, denoted M̄2,v that we will use in the argument below with

J-set equal to J = J1,v ∪B1,v ∪ J2\1,v ∪B2,v, where J2\1,v = J2,v \ J1,v.

We note that the density of the four models is of the general form (4.1.8) with θ = (θj, j ∈ J ) and

with cumulative generating functions

kMi,v(θMi,v) = log(
∑

k∈IMi,v
exp

∑
j/k,j∈J θj)

kJ(θ) = log
∑

i∈I exp
∑

j/i,j∈J θj

kM̄2,v(θM̄2,v) = log
∑

k∈IMv
exp

∑
j/k,j∈J θj)

for the modelsMi,v, i = 1, 2, the overall model and the augmented marginal model M̄2,v respectively

and where the set J changes accordingly.

Whatever the model is, the symmetric matrix of the covariance of t is the J × J matrix

∂2k(θ)

∂θ2
= (

∂2k(θ)

∂θj∂θj′
)j,j′∈J = (pj∪j′ − pjpj′ )j,j′∈J
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where we use the notation j ∪ j ′ to denote the cell i ∈ IMi,v
or i ∈ I with support j ∪ j ′ and

pj∪j′ = p((j ∪ j ′)S(j∪j′ )), pj = p(jS(j))

denote the marginal probabilities. For j, j
′

given, since pj∪j′ , pj, pj′ are marginal probabilities, the

entries pj∪j′ −pjpj′ are the same for all models with j, j
′ ∈ J . We will now give the following result

concerning the variance of the estimates.

Theorem 5.1.2. For any parameter θj, j ∈ J , we can find a vertex v ∈ V such that v ∈ S(j). Let

θ̂
M1,v

j , θ̂
M2,v

j be the estimates obtained from maximizing (4.2.2), the v-th component of the one-hop

and two-hop marginal likelihoods respectively. Let θ̂j be the MLE obtained from maximizing the

original likelihood function (2.2.3), then we have

var(θ̂
M1,v

j ) ≥ var(θ̂
M2,v

j ) ≥ var(θ̂j). (5.1.5)

The proof is given in Appendix B.5.

5.2 The double asymptotic regime

In this section, we consider the asymptotic properties of the MCLE when both p and N go to

+∞. In Theorem 5.2.1 below, we give its rate of convergence to the true value θ∗. In order to

compare the behaviour of the MCLE with the global MLE, we also give, in Theorem 5.2.2, the rate

of convergence of the global MLE under the same asymptotic regime.

It will be convenient to introduce the notation

fj(x) =
∏
l∈S(j)

1(xl = jl) =


1 if j / x

0 otherwise

,

and to write (4.1.3) as

p(xv|xNv) =
exp{

∑
j∈Jv,PS θjfj(xv, xNv)}

1 +
∑

yv∈Iv\{0} exp{
∑

j∈Jv,PS θjfj(yv, xNv)}
. (5.2.1)
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In this section, we work exclusively with lv,PS(θv,PS). Therefore for simplicity of notation we write

θ for θv,PS. Also, for convenience, we scale the log likelihood by the factor 1
N

. Then the v-local

conditional log likelihood function is

lv,PS(θ) = 1
N

∑N
n=1 log p(x

(n)
v |x(n)

Nv )

=
∑

j∈Jv,PS θj
1
N

∑N
n=1 fj(x

(n)
v , x

(n)
Nv )

− 1
N

∑N
n=1 log{1 +

∑
yv∈Iv\{0} exp{

∑
j∈Jv,PS θjfj(yv, x

(n)
Nv )}}

The sufficient statistic is tj = 1
N

∑N
n=1 fj(x

(n)
v , x

(n)
Nv ). We write

tJv,PS = [t1, t2, · · · , tdv ] (5.2.2)

and

kv,PS(θ) =
1

N

N∑
n=1

log{1 +
∑

yv∈Iv\{0}
exp{

∑
j∈Jv,PS

θjfj(yv, x
(n)
Nv

)}} =
1

N

N∑
n=1

logZn,v(θ),

where

Zn,v(θ) = 1 +
∑

yv∈Iv\{0}
exp{

∑
j∈Jv,PS

θjfj(yv, x
(n)
Nv )}.

Then the log likelihood function is

lv,PS(θ) =
∑

j∈Jv,PS
θjtj − kv,PS(θ) .

Its first derivative is

∂lv,PS(θ)

∂θk
= tk −

∂kv,PS(θ)

∂θk
,

∂kv,PS(θ)

∂θk
=

1

N

N∑
n=1

exp{
∑

j∈Jv,PS θjfj(kv, x
(n)
Nv )}}

Zn,v(θ)
fk(kv, x

(n)
Nv )

with

exp{
∑

j∈Jv,PS θjfj(kv, x
(n)
Nv )}}

Zn,v(θ)
= p(Xv = kv|x(n)

Nv ) (5.2.3)
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We now want to compute ∂2lv,PS(θ)
∂θk∂θl

= −∂2kv,PS(θ)
∂θk∂θl

, k, l ∈ Jv,PS. To simplify further our notation, we

set

zyv(θ) =
∑

j∈Jv,PS
θjfj(yv, x

(n)
Nv ). (5.2.4)

For kv = lv, using (5.2.3), we obtain

∂2kv,PS(θ)
∂θk∂θl

= 1
N

∑N
n=1

(
exp zkv (θ)

Zn,v(θ)
− (

exp zkv (θ)

Zn,v(θ)
)2
)
fk(kv, x

(n)
Nv )fl(lv, x

(n)
Nv )

= 1
N

∑N
n=1

(
p(Xv = kv|x(n)

Nv )− p(Xv = kv|x(n)
Nv )2)fk(kv, x

(n)
Nv )fl(lv, x

(n)
Nv

)
.

if kv 6= lv, then

∂2kv,PS(θ)
∂θk∂θl

= 1
N

∑N
n=1−

exp zkv (θ) exp zlv (θ)

(Zn,v(θ))2 fk(kv, x
(n)
Nv )fl(lv, x

(n)
Nv )

= 1
N

∑N
n=1(−p(Xv = kv|x(n)

Nv )p(Xv = lv|x(n)
Nv ))fk(kv, x

(n)
Nv )fl(lv, x

(n)
Nv ) .

Let W n,v = (fj(jv, x
(n)
Nv ), j ∈ Jv,PS) be the dv × 1 vector of indicators. We introduce the notation

ηn,vk,l (θ, x
(n)
Nv ) =


exp zkv (θ)

Zn,v(θ)
− (

exp zkv (θ)

Zn,v(θ)
)2, if kv = lv

− exp zkv (θ) exp zlv (θ)

(Zn,v(θ))2 , if kv 6= lv .

(5.2.5)

Let Hn,v(θ, x
(n)
Nv ) be the dv × dv matrix with (k, l) entry ηn,vk,l (θ, x

(n)
Nv ). Then the Fisher information

matrix derived from lv,PS is

(kv,PS)
′′
(θ) =

1

N

N∑
n=1

Hn,v(θ, x
(n)
Nv ) ◦ [W n,v(W n,v)t]

where ◦ denotes the Hadamard product of two matrices. We make two assumptions regarding

the behaviour of the cumulative generating function kv,PS, v ∈ V at θ∗, similar to those made by

Ravikumar et al. (2010) and Meng (2014).

(A) For the design matrix of the v-local conditional models, we assume that there exists Dmax > 0

such that

max
v∈V

λmax

( 1

N

N∑
n=1

W n,v(W n,v)t
)
≤ Dmax;
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(B) We assume the minimum eigenvalue of the Fisher Information matrices (kv,PS)
′′
(θ∗), v ∈ V

is bounded, i.e., there exists Cmin > 0 such that

Cmin = min
v∈V

λmin
1

N

N∑
n=1

[
Hn,v(θ∗, x(n)

Nv ) ◦ [W n,v(W n,v)t]
]
.

We are now ready to state our theorem on the asymptotic behaviour of θ̄.

Theorem 5.2.1. Assume conditions (A) and (B) hold. If the sample size N and |V | = p satisfy

N

log p
≥ max

v∈V
(
10CDmaxdv

C2
min

)2,

where C is a positive constant such that p
C2

2 ≥ 2|J |, then the MCLE θ̄ = (θ̄j, j ∈ J) is such that

‖θ̄ − θ∗‖F ≤
5C

Cmin

√∑
v∈V dv log p

N
(5.2.6)

with probability greater than 1− 2|J |
p
C2
2

.

The proof is given in Appendix B.6. With a similar argument, we can derive the behaviour of

the global MLE, which we will denote by θ̂G. We need to make assumptions similar to (A) and (B).

We assume that

(A′) there exists Dmax > 0 such that λmax

(∑
i∈I

fi ⊗ fi
)
≤ Dmax,

(B′) 0 < κ∗ = λmin

[
k
′′
(θ∗)

]
.

The asymptotic behaviour of θ̂G is given in the following theorem.

Theorem 5.2.2. Assume conditions (A′) and (B′) hold. If N and p satisfy the condition

N

log p
≥ (

40C|J |Dmax

κ∗2
)2,

where C is a positive constant such that p2C2 ≥ 2|J |, then the global MLE θ̂G = (θ̂Gj , j ∈ J) is such

that

‖θ̂G − θ∗‖F ≤
5C

κ∗

√
|J | log p

N
(5.2.7)
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with probability greater than 1− 2|J |
p2C2 .

The proof is given in Appendix B.7. Comparing Theorems 5.2.1 and 5.2.2, we see that for

N
log(p)

= O(|J |2), ‖θ̂G− θ∗‖F = O(
√
|J | log p

N
) with high probability while for N

log(p)
= O(maxv∈V (d2

v)),

‖θ̂ − θ∗‖F = O(

√∑
v∈V dv log p

N
). This implies that for the MCLE, the requirement on the sample

size N is not as stringent as for the global MLE but of course, we lose some accuracy in the

approximation of θ∗. The situation is, however, not bad since√∑
v∈V dv log p

N

/√ |J | log p

N
=

√∑
v∈V dv
|J |

which is the square root of the ratio of the sum over v ∈ V of the number of parameters in the v-local

conditional models and the number of parameters in the global model. If the number of neighbours

for each vertex is bounded by d, we see that this ratio is at most equal to 2d+1

|J | and usually much

smaller than that. For example, in an Ising model, |J | = p + |E| and
∑

v∈V dv = p + 2|E| and

therefore
∑
v∈V dv
|J | = 1 + |E|

p+|E| ≤ 2.
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6 Existence of MLE in hierarchical log-linear models

In this section, we will study the second problem: the existence of the MLE in hierarchical

log-linear models. We fix a discrete exponential family EA. While our main interest lies in hierar-

chical models, the results that we need are more naturally formulated in the language of discrete

exponential families. We assume that a vector of observed counts n = (n(i) : i ∈ I) is given. The

log-likelihood function of parameters θ = {θj, j ∈ J} is

l(θ|n) = 〈θ, t〉 −Nk(θ),

let θ̂ be the MLE of θ as defined in Definition 2.2.1. The function l(θ) is always bounded (clearly,

it is never positive). As stated above, l(θ) is strictly concave (if the parameters are identifiable),

and so the maximum is unique (up to identifiability), if it exists. However, a maximum need not

exist, since the domain of the parameters θ is unbounded. To understand this, it is convenient to

interpret the likelihood as a function of probabilities. Let l′ be the function that assigns to any

probability distribution p on I the value

l′(p) =
∑
i∈I

n(i) log p(i).

Then l(θ) = l′(pθ), and θ̂ is the MLE if and only if pθ̂ maximizes the log-likelihood function l′(p)

subject to the constraint that p belongs to the hierarchical model, and thus that it is of the form pθ

for some θ. While the set of all probability distributions on I is compact, the hierarchical model itself
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is not closed and therefore not compact, and so there is no guarantee that l̃ attains its maximum on

the hierarchical model. However, things become better when we pass from the hierarchical model

to its topological closure, where the topology comes from interpreting a probability distribution as

a vector p = (p(i))i∈I ∈ RI of real numbers (this choice of the topology is canonical since we are

dealing with a finite set I; for infinite sample spaces see Csiszár and Matúš (2005)). The closure

is sometimes also called completion (Barndorff-Nielsen, 2014, p. 154). Since the closure of the

hierarchical model is again compact, the continuous function l′ always attains its maximum.

Theorem 6.0.1. The closure of a discrete exponential family can be written as a union

EA =
⋃
F

EF,A,

where F runs over all facial sets of the convex support polytope PA and where EF,A consists of all

probability distributions of the form pF,θ, with

pF,θ =


exp(〈θ, fi〉 − kF (θ)), if i ∈ F,

0, otherwise,

where kF (θ) = log
∑

i∈F exp(〈θ, fi〉.

Proof. See Barndorff-Nielsen (2014). For self-containedness we provide a proof in our notation in

Appendix B.8.

Theorem 6.0.1 shows that EA is a finite union of sets EF,A that are exponential families themselves

with a very similar parametrization, using the same number of parameters and the same design

matrix A (or, rather, the submatrix AF consisting of those columns of A indexed by F ). However,

for any proper facial set F , the parametrization θ 7→ pF,θ is not injective, i.e. the parameters θ are

not identifiable on EF,∆. The reason is that the matrix ÃF does not have full rank, even if Ã has

full rank, since all columns of ÃF lie on a supporting hyperplane defining F .
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A second thing to note is that although the parameters θ on EA and the parameters θ on EF,A

play similar roles, they are very different in the following sense: If θ(s) is a sequence of parameters

with pθ(s) → pF,θ for some θ, then, in general, lims→∞ θ
(s)
j 6= θj for all j ∈ J .

Theorem 6.0.2. For any vector of observed counts n, there is a unique maximum p∗ of l̃ in EA.

For t as defined in (4.1.8), this maximum p∗ satisfies:

• Ap∗ = t
N

.

• supp(p∗) = Ft.

Proof. See Barndorff-Nielsen (2014). For self-containedness we provide a proof in our notation in

Appendix B.9.

Definition 6.0.3. The maximum in Theorem 6.0.2 is called the extended maximum likelihood

estimate (EMLE).

Clearly, if the MLE θ∗ exists, then p∗ = pθ∗ .

6.1 Faces of the marginal polytope P∆

As we showed in Lemma 3.2.2, the problem of determining the existence of MLE in hierarchical

log-linear models is equivalent to finding the face of the marginal polytope P containing the sufficient

statistics t. Recall that I+ denotes the cells with positive cell counts in a contingency table, and I0

denotes the empty cells, so we have the following lemma.

Lemma 6.1.1. The sufficient statistics t belongs to a face F of marginal polytope P, if and only if

fi ∈ F, ∀i ∈ I+.

57



Proof.

t =
∑
i∈I

n(i)

N
fi =

∑
i∈I+

n(i)

N
fi

t ∈ F ⇐⇒ 〈t, g〉 = 0 ⇐⇒
∑

i∈I+
n(i)
N
〈fi, g〉 = 0.

〈fi, g〉 ≥ 0 ∀i ∈ I, so

∑
i∈I+

n(i)

N
〈fi, g〉 = 0 ⇐⇒ 〈fi, g〉 = 0, ∀i ∈ I+

Let A, a |I| × |J | matrix be the design matrix of the hierarchical log-linear model generated

by ∆, A+ be the sub-matrix with rows indexed by the positive cells I+ and A0 as the sub-matrix

indexed by the empty cells I0. We give an algorithm to compute the smallest face or facial set

containing sufficient statistics t in the following lemma.

Lemma 6.1.2. Solution g∗ of the non-linear problem

max z = ‖Ag‖0

s.t. A+g = 0

A0g > 0

(6.1.1)

is a perpendicular vector to the smallest face containing t. The corresponding facial set is Ft =

I \ supp(Ag∗), where ”supp” means the support of a vector.

Any vector g that belongs to the feasible set of problem (6.1.1) defines a face in the marginal

polytope PA, we maximize the l0 norm ‖Ag‖0 so that we get the smallest facial set Ft. The

optimization problem (6.1.1) is highly non-linear and non-convex, but it can be solved by repeatedly

58



solving the associated `1-norm optimization problem:

max z = ‖A0g‖1

s.t. A+g = 0

A0g ≥ 0

A0g ≤ 1

(6.1.2)

Problem (6.1.2) is a linear programming problem: we iterate until we get the smallest facial set

Ft. The process is as follows:

Algorithm 1 Face computation using a linear programming method

Require: Design matrix A and positive cell index I+

INITIALIZE A+ = A(I+, :), A0 = A \ A+

Solve problem 6.1.2, get the solution g∗ and the corresponding maximum z∗

while A0 6= ∅ and z∗ 6= 0 do

Let matrix B be the submatrix of A0, by taking columns of A0 which satisfy 〈fi, g∗〉 > 0, update

A0 = A0 \B,

Solve problem 6.1.2, get the solution g∗ and the corresponding maximum z∗

end while

if A0 = ∅ then

Ft = I+

end if

if Z∗ = 0 then

Ft = I+ ∪ {i|i is the index of A0}

end if

Now we are going to prove that we can solve the l0 optimization problem (6.1.1), by implementing
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the LP problem (6.1.2) repeatedly. The equivalent statement is as follows:

Theorem 6.1.3. Assuming we get max z = 0 after repeatedly solving the linear programming

problem (6.1.2) K times, let g1, g2, · · · , gK be the corresponding optimization solutions. Denote

A
(1)
0 , A

(2)
0 , · · · , A(K)

0 the new matrix in the cost function of each LP problem (6.1.2), so we have

max z = ‖A(K)
0 g‖1 = 0. Then g =

∑K
k=1 gk is the optimization solution of problem (6.1.1).

Proof. Suppose g is not the optimization solution of (6.1.1), so there exists another vector g∗

belonging to the feasible set in (6.1.1), such that there exists at least one row fm in matrix A0

satisfying

〈fm, g〉 = 0; 〈fm, g∗〉 > 0.

〈fm, g〉 = 0 =⇒ 〈fm, gk〉 = 0, k = 1, 2, · · · , K. =⇒ fm is still a row in matrix A
(K)
0 .

Then 〈fm, g∗〉 > 0 is a contradiction to

max z = ‖A(K)
0 g‖1 = 0

Another similar way to compute Ft is to solve the |I| linear programming problems:

max zi =< fi, c >

s.t. < t, c >= 0

Ac ≥ 0

|c| ≤ 1.

(6.1.3)

Then

Ft = {i|zi = 0}.

This algorithm is less efficient due to the large number of cells in I. This said, the fact that

there is no communication among the |I| linear programming problems allows us to solve the |I|
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linear programming problems using the distributed computing. The algorithm is introduced in the

supplementary material of Fienberg and Rinaldo (2012), where it is also proved that it outputs the

correct result.
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7 Approximations to the faces of the marginal polytope

The linear programming algorithm 1 works pretty well in low-dimensional contingency tables,

but if the dimension p is very large, the number of rows of design matrix A is exponential in p,

so we won’t have enough memory or computing power to solve (6.1.2). Our simulations show that

when p > 16 and each variable takes binary values, we cannot solve (6.1.2) anymore. We use local

models to approximate facial sets in high-dimensional tables.

We consider a hierarchical model with simplicial complex ∆ and marginal polytope P∆. In this

section, we explain the details of our methodology for obtaining an inner and an outer approximation

to the facial set Ft of the smallest face Ft of P∆ containing the data vector t. Our main tool is

Lemma 7.0.1. For any S ⊆ I, we abbreviate the facial set FP∆
(S) by F∆(S).

Lemma 7.0.1. Let ∆ and ∆′ be simplicial complexes on the same vertex set with ∆′ ⊆ ∆, and

denote by fi, f
′
i (i ∈ I) the rows of the design matrices of the corresponding hierarchical models.

There exists a linear map φ : Rh → Rh′ such that φ(fi) = f ′i . In fact, φ is a coordinate projection.

In particular, the marginal polytope P∆′ is a coordinate projection of P∆. Thus, for any S ⊆ I, we

have F∆(S) ⊆ F∆′(S)

Proof. The design matrix A∆ has one column for each parameter θj, j ∈ J∆. Removing sets from ∆

leads to a smaller set J∆′ and thus leads to a matrix A∆′ with less rows. The definition of each row

that remains does not change. The lemma now clearly follows from Lemma 2.3.5.
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Next we discuss marginal polytopes of decomposable (or reducible) models. Then, in Sections 7.2

and 7.3, we explain how to use Lemma 7.0.1 to obtain inner and outer approximations to F∆(S).

7.1 Decomposable models

Definition 7.1.1. Let V ′ ⊂ V . The restriction, or induced sub-complex is ∆|V ′ = {S ∈ ∆ |

S ⊆ V ′}. The sub-complex ∆|V ′ is complete, if ∆|V ′ contains V ′ (and thus all subsets of V ′). For

brevity, in this case we say that V ′ is complete in ∆.

Definition 7.1.2. A subset S ⊂ V is a separator of ∆ if there exist V1, V2 ⊂ V with V1 ∩ V2 = S,

∆ = ∆|V1 ∪ ∆|V2 and V1 6= S 6= V2. A simplicial complex that has a complete separator is called

reducible. By extension, we also call the hierarchical model reducible.

Definition 7.1.3. A hierarchical model is decomposable if ∆ can be written as a union ∆ =

∆1 ∪∆2 ∪ · · · ∪∆r of induced sub-complexes ∆i = ∆|Vi in such a way that

1. each ∆i is a complete simplex: ∆i = {S ⊆ Vi}; and

2. (∆1 ∪ · · · ∪∆i) ∩∆i+1 is a complete simplex.

In other words, ∆ arises by iteratively gluing simplices along complete sub-simplices.

The faces of a reducible hierarchical model are combinations of the faces of its two parts:

Proposition 7.1.4 (Eriksson et al. (2006)). Suppose that ∆ has a complete separator S that sepa-

rates V into V1 and V2. Each face of P∆|V1
corresponds to an inequality

∑
j∈J∆|V1

g
(1)
j tj ≥ c1.
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The same inequality also defines a face of P∆. Similarly, each face of P∆|V2
defines a face of P∆.

Each face of P∆ either arises in this way, or it is the intersection of two such faces, one induced

by P∆|V1
and one induced by P∆|V2

.

Proof. See Eriksson et al. (2006), Lemma 8.

In the sequel, for any V ′ ⊆ V and i ∈ I =
∏

v∈V Iv, it will be convenient to use the seemingly

more complicated notation πV ′(i) = (iv, v ∈ V ′) for the marginal cell iV ′ ∈ IV ′ :=
∏

v∈V ′ Iv.

Similarly, for a set S ⊆ I, the restriction to V ′ is πV ′(S) :=
{
πV ′(i) : i ∈ S

}
. For T ⊂ IV ′ , the

opposite action yields π−1
V ′ (T ) = {i ∈ I | iV ′ ∈ T}.

We next translate Proposition 7.1.4 to the language of facial sets:

Lemma 7.1.5. Suppose that ∆ has a complete separator S that separates V into V1 and V2.

1. If F ⊆ I is facial with respect to ∆, then πV1(F ) and πV2(F ) are facial with respect to ∆|V1

and ∆|V2.

2. Conversely, if F1 ⊆ IV1 and F2 ⊆ IV2 are facial with respect to ∆|V1 and ∆|V2, then π−1
V1

(F1)∩

π−1
V2

(F2) is facial with respect to ∆.

Thus, for any T ⊆ I, let T1 = πV1(T ) and T2 = πV2(T ).

F∆(T ) = π−1
V1

(F∆|V1
(T1)) ∩ π−1

V2
(F∆|V2

(T2)).

Proof. Consider an inequality as in Proposition 7.1.4 that defines a face F of P∆ as well as a face

F1 of P∆1 . Then the corresponding facial sets F and F1 satisfy F = π−1
V1

(F1); in order to check

whether some fi, i ∈ I, satisfies the inequality, we only need to look at the components involving V1;

that is, we only need to look at πV1(i).
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Lemma 7.1.5 easily generalizes to more than one separator and thus to more than two com-

ponents and it becomes particularly simple when these components are complete. Indeed, in that

case, F∆|V1
(T1) = T1 and taking the preimage we obtain

π−1
V1

(πV1(T )) = {i ∈ I : ∃i′ ∈ T such that πV1(i) = πV1(i′)} ⊇ T.

The following lemma is an immediate consequence of Lemma 7.1.5.

Lemma 7.1.6. Let ∆ be a decomposable model with decomposition ∆ = ∆1 ∪∆2 ∪ · · · ∪∆r where

∆i is a complete simplex on Vi, and let πi = πVi be the corresponding marginalization map. Then,

for any T ⊆ I,

F∆(T ) = π−1
1 (π1(T )) ∩ π−1

2 (π2(T )) ∩ · · · ∩ π−1
r (πr(T )).

7.2 Inner approximations

To obtain an inner approximation, our strategy is to find a separator S of ∆ and to complete

it. More specifically, we augment ∆ by adding all subsets of S. The result is a simplicial complex

∆S = ∆ ∪ {M : M ⊆ S} in which S is a complete separator. We can apply Lemma 7.1.5 to find

the facial set F∆S
(I+), and this will be our inner approximation of F∆(I).

An even simpler approximation is obtained by not only completing the separator itself, but also

the two parts V1, V2 separated by S: The simplicial complex ∆V1,V2 := {M : M ⊆ V1} ∪ {M : M ⊆

V2} is decomposable and contains ∆. Its facial sets can be computed from Lemma 7.1.6.

In general, the approximation obtained from a single separator (or, in general, a single super-

complex) is not good; that is, Ft = F∆(I+) tends to be much larger than F∆S
(I+) or F∆V1,V2

(I+).

Thus we need to combine information from several separators. For example, given two separa-
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tors S, S ′ ⊆ V , we find a chain of approximations

G′0 := I+,

G1 := F∆S
(G′0), G′1 := F∆S′ (G1),

G2 := F∆S
(G′1), G′2 := F∆S′ (G2),

...

that satisfy

I+ ⊆ G1 ⊆ G′1 ⊆ G2 ⊆ · · · ⊆ Ft,

where all inclusions except the last one are due to the definition of F∆S
(T ) or F∆S′ (T ) as the

smallest facial sets containing T in ∆S or ∆S′ . The last inclusion is a consequence of Lemma 7.0.1

since both ∆S and ∆S′ contain ∆.

This chain of approximations has to stabilize at a certain point; that is, after a certain num-

ber of iterations, the approximations will not improve any more. The limit, which we denote by

FS,S′(I
+) :=

⋃
iGi =

⋃
iG
′
i, can be characterized as the smallest subset of I that contains I+ and

is facial both with respect to ∆S and ∆S′ . The same iteration can be done replacing ∆S and ∆S′

by ∆V1,V2 and ∆V ′1 ,V
′
2
. Applying in turn F∆V1,V2

and F∆V ′1,V
′
2

gives another approximation F̃S,S′(I
+),

namely the smallest subset of I that contains I+ and is facial both with respect to ∆V1,V2 and ∆V ′1 ,V
′
2
.

This latter approximation will be used in Section 10.1.1. Since F̃S,S′(I
+) ⊆ FS,S′(I

+) ⊆ Ft, F̃S,S′(I
+)

is a worse approximation than FS,S′(I
+); it is, however, easier to compute.

We use the following strategies:

1 If possible, use all graph separators.

There are two problems with this strategy: First, if S is such that either V1 or V2 is large, then

it is almost as difficult to compute F∆|V1
and F∆|V2

, as F∆|V . Such “bad” separators always exist:
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namely, each node i ∈ V is separated by its neighbours from all other nodes. In this case, V1

consists of i and its neighbours, and V2 consists of V \ {i}. For such a “bad” separator we can

only compute F∆V1,V2
, but not F∆S

. Second, the number of separators may be large. Since we have

to iterate over this set until the approximation converges, it may take a long time to compute the

inner approximation. A faster alternative strategy is the following:

2 Look at separators such that both V1 \S and V2 \S are not too small (for example, min{|V1 \

S|, |V1 \ S|} ≥ 3).

We illustrate the first strategy in Section 10.1.2, using a graphical model associated with the NLTCS

data set. In the case of the grids studied in Sections 10.1.1 and 10.2.2, which display a lot of

regularity, we use an adapted strategy:

3 In a grid, use the horizontal, vertical and diagonal separators.

In the case of grids, the vertical separators form a family of pairwise disjoint separators. In Sec-

tion 10.2 we show how we can make use of such a family to study faces of hierarchical models, even

when the facial sets are so large that they become computationally intractable.

7.3 Outer approximations

According to Lemma 7.0.1, when we compute F∆′(S) for a simplicial complex ∆′ ⊆ ∆, we obtain

an outer approximation of F∆(S). Removing sets from ∆ decreases the dimension of the marginal

polytope, so it is often easier to compute F∆′(S) than to compute F∆(S). Our main strategy is to

look at subcomplexes induced by subset V ′ ⊂ V .

Let ∆V ′ be the simplicial complex induced by V ′. Let J ⊂ I be its set of interactions. When

comparing ∆ with ∆|V ′ , we have to be precise about whether we consider ∆|V ′ as a simplex on V
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or on V ′: when we consider it on V , Let A be the I × J design matrix with rows fi, i ∈ I, when we

consider it on V ′, the design matrix A′ is an IV ′ × J matrix with columns f ′i′ , i
′ ∈ IV ′ . Because we

have the same set of interactions whether we are on V or V ′, for i ∈ I and i′ ∈ IV ′ , we have:

fi = f ′i′ ⇔ i ∈ π−1
V ′ (i

′). (7.3.1)

Therefore the marginal polytopes of the two models are the same since they are the convex hull of

the same set of vectors {fi, i ∈ I} = {f ′i′ , i′ ∈ IV ′}. The relationship between the facial sets on V

and V ′ is as follows:

Lemma 7.3.1. Let V ′ ⊆ V . For K ⊂ I, we have

F∆|V ′ (K) = π−1
V ′ (F

′
∆|V ′ (πV ′(K))).

Here, F ′∆|V ′ denotes the facial set when ∆V ′ is considered as a simplicial complex on V ′, and F∆|V ′

denotes the facial set when ∆V ′ is considered as a simplicial complex on V .

Proof. For K ⊂ I, the two sets A = {ai, i ∈ K} and B = {bi′ , i′ ∈ πV ′(K)} are identical and

therefore the smallest faces of the marginal polytopes for ∆V ′ on V or V ′ containing A and B

respectively are the same.

From the definition of F ′∆V ′
(πV ′(K)), we know that the smallest face containing B is defined

by {bi′ , i′ ∈ F ′∆V ′
(πV ′(K))}. From the definition of F∆V ′ (K), the smallest face containing A is

{ai, i ∈ F∆V ′ (K)}. Also, from the equation (7.3.1), we have that {ai, i ∈ π−1
V ′ (F

′
∆V ′

(πV ′(K)))} =

{bi′ , i′ ∈ F ′∆V ′
(πV ′(K))}. Therefore, F∆V ′ (K) = π−1

V ′ (F
′
∆V ′

(πV ′(K))).

In general, F∆|V ′ (I+) is not a good approximation of F∆(I+). We can improve this approximation

by considering several subsets of V . To be precise, if V1, . . . , Vr ⊆ V , then F∆(I+) ⊆ F∆|Vi (I+) for

i = 1, . . . , r, and thus F∆(I+) ⊆
⋂r
i=1 F∆|Vi (I+) =: FV1,...,Vr;∆(I+).
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The question is now how to choose the subsets Vi. Clearly, the subsets Vi should cover V ,

and, more precisely, they should cover ∆, in the sense that for any D ∈ ∆ there should be one Vi

with D ⊆ Vi. The larger the sets Vi, the better the approximation becomes, but the more difficult

it is to compute FV1,...,Vr;∆(I+).

One generic strategy is the following:

1. Use all subsets of V of fixed cardinality k plus all facets D ∈ ∆ with |D| ≥ k.

This choice of subsets indeed covers ∆. The parameter k should be chosen as large as possible such

that computing FV1,...,Vr;∆(I+) is still feasible. Note that computing F∆|D(I+) for D ∈ ∆ is trivial,

since P∆|D is a simplex.

Another natural strategy first described in Massam and Wang (2015) is the following:

2. For fixed k, use balls Bk(v) = {w : d(v, w) ≤ k} around the nodes v ∈ V , where d(·, ·) denotes

the edge distance in the graph.

In general, we choose subsets Vi to be large enough to preserve some of the structure of ∆. For

example, for the grid graphs, we suggest the use of 3 × 3-subgrids. These graphs have two nice

properties: first, they already have the appearance of a small grid, second, for any vertex v ∈ V ,

there is a 3 × 3 sub-grid that contains v and all neighbours of v. We will compare two different

strategies:

3. For a grid, use all 3× 3-subgrids.

4. Cover a grid by 3× 3-subgrids.

In Section 10.2.2 we compare these two methods, and we observe that in the case of the 5 × 10

grid, it suffices to only look at a covering. In general, it is not enough to look at induced sub-
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complexes, unless ∆ has a complete separator (see Section 7.1). The approximation tends to be

good nevertheless and gives the correct facial set in many cases.

7.4 Comparing the two approximations

Suppose that we have computed two approximations F1, F2 of Ft such that F1 ⊆ Ft ⊆ F2. If we

are in the lucky case when F1 = F2, then we know that Ft = F1 = F2. In general, the cardinality

of F2 \ F1 indicates the quality of our approximations.

F1, F2 and Ft can also be compared by the ranks of the matrices ÃF1 , ÃF2 and ÃFt obtained

from Ã by keeping only the columns indexed by F1, F2 and Ft, respectively. Clearly, rankÃF1 ≤

rankÃFt ≤ rankÃF2 . Note that rankÃF2 equals the dimension of the corresponding face F2 of P,

and rankÃFt equals the dimension of Ft. But F1 does not necessarily correspond to a face of P.

Nevertheless, we can bound the codimension of Ft in F2 by

dim F2 − dim Ft ≤ rankAF2 − rankAF1 .

In particular, if rankAF2 = rankAF1 , then we know that Ft = F2. In this case, our approximations

give us a precise answer, even if F1 6= F2 and the lower approximation F1 is not tight.
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8 Statistical inference for the nonexistent MLE

Finding the smallest face containing the data vector t is one of the major accomplishments of

our work. This is done, of course, to allow for correct statistical inference.

Given a contingency table, we would like to fit a log-linear model that generates this data. Such

a log-linear model can help us understand the data and the relationship among variables. The first

step in statistical inference of the hierarchical log-linear model is to estimate log-linear parameters,

which will also give us the estimate of the cell probabilities. Next we provide the confidence interval.

As a last step, we usually conduct the goodness-of-fit test or likelihood ratio test to see which model

fits the given data set better. When the MLE exists, all these tasks can be achieved by traditional

methods, which are explained in more detail in Agresti and Kateri (2011) and Bishop et al. (1975a).

Whenever the MLE doesn’t exist, a common occurence in discrete data analysis, we can’t rely on

any of the traditional methods, but alternative solutions are provided by Geyer et al. (2009) and

Fienberg and Rinaldo (2012).

Now that we have identified the facial set of the smallest face containing t, we want to draw

correct inference. We start by offering an identifiable and estimable parametrization in which the

linear combinations of the original parameters can be estimated. Second, we use the dimension

of the face defined by the facial set Ft to give the correct approximation to the chi-square or G2

statistics. Confidence intervals in the correct model defined on Ft can then be obtained using
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traditional methods.

8.1 Computing the extended MLE

If the MLE θ∗ exists, then it can be computed by finding the unique maximum of the log-

likelihood function l(θ) given in (2.2.3). As mentioned before, l(θ) is concave (or even strictly

concave, if parameter θ is identifiable), and thus the maximum is, at least in principle, easy to find

(in practice, for larger models, it may be difficult to evaluate the function k(θ), which involves a

sum over I; but we will not discuss this problem here). In general, the maximum cannot be found

analytically, but there are efficient numerical algorithms to maximize concave functions. Regular

Newton’s method or any modification of Newton’s method can be used to find the MLE. An example

of an algorithm commonly used is iterative proportional fitting (IPF), which can be thought of as

an algorithm of Gauss-Seidel type.

When the MLE does not exist but the facial set F = Ft of the data is known, then it is straight

forward to compute the extended MLE p∗. In this case, we know that p∗ lies in EF,A. To find p∗, we

need to optimize the log-likelihood l̃ over EF,A = {pF,θ : θ ∈ R|J |}, where J is the dimension of the

original model. After plugging the parametrization pF,θ into l̃, we need to optimize the restricted

log-likelihood function

lF (θ) = log(
∏
i∈I+

pF,θ(i)
n(i)) =

∑
j∈J

θjtj −NkF (θ). (8.1.1)

This problem is of a similar type as the problem to maximize l in the case when the MLE exists, and

the same algorithms as discussed above can be used. The problem here is slightly easier, since F is

smaller than I. The submatrix AF from the original design matrix A by taking the rows indexed by

cells in facial set Ft becomes the new design matrix of the distributions in the exponential family

72



EF,A. The original design matrix A is full rank, but AF is not a full rank matrix as we remove rows

that’s not indexed by the facial set. As a result, the parametrization θ 7→ pF,θ is not identifiable.

Of course, this problem is easy to solve by selecting a set of independent parameters among the θj.

Depending on the choice of the independent subset, the values of the parameters change, and in

particular, it is meaningless to compare the values of the parameters θj with parameter values of

any other distribution in EA or in the closure EA.

Before explaining how to find better parameters on EF,A, let us discuss what happens if the facial

set Ft of the data is not known. As mentioned before, whether or not the MLE exists, the log-

likelihood function l(θ) is always strictly concave (assuming that the parametrization is identifiable).

When the MLE does not exist, then the maximum is not at a finite value θ∗, but lies “at infinity.”

Still, as noted in Geyer et al. (2009, Section 3.15), any reasonable version of Newton’s method that

tries to maximize the likelihood will send θ to infinity in the right direction. Such a numerical

algorithm generates a sequence of parameter values θ(1), θ(2), θ(3), . . . with increasing log-likelihood

values l(θ(1)) ≤ l(θ(2)) ≤ . . . . Since l(θ) is concave, our optimization problem is numerically

easy (at least in theory), and for any such reasonable algorithms, the limit lims→∞ l(θ(s)) will

equal supθ l(θ) = maxp∈EA l̃(p). The algorithm stops when the difference l(θ(s+1))− l(θ(s)) becomes

negotiably small. The output, θ(s), then gives a good approximation of the EMLE, in the sense

that p∗ and pθ(s) are close to each other.

For many applications, such as those found in machine learning, where it is more important

to have good parameter values rather than modeling the “true underlying distribution,” or when

doing a likelihood test, where the value of the likelihood is more important than parameter values,

this may be good enough.

However, in this numerical optimization, some of the parameters θj will tend to ±∞, which may
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lead to numerical problems. For example, it may happen that one parameter goes to +∞ and a

second parameter to −∞ in such a way that their sum remains finite. This implies that a difference

between two large numbers has to be computed, however, this is numerically unstable. Also, it is

not clear which parameters numerically tend to infinity. In fact, this may depend on the chosen

algorithm; i.e. different algorithms may yield approximations of the EMLE that are qualitatively

different in the sense that different parameters diverge. We give an example of this in Appendix C.

To avoid such problems, we propose a change of coordinates that allows us to control which

parameters diverge, at least in the case where we know the facial set Ft. If we don’t know Ft, but

we know the approximations F1 ⊆ Ft ⊆ F2, we can use this knowledge to identify some of thoses

parameters that definitely remain finite, and some of those parameters definitely diverge. Although

we cannot control the behaviour of the remaining parameters, the more information we have about

the facial set Ft, the better control we have of the above mentioned problems.

8.2 An identifiable parametrization

We have seen that when we use the parametrization θ 7→ pFt,θ of EA,Ft in the case where Ft 6= I,

we have to expect the following (interrelated) issues:

1. The parametrization is not identifiable, i.e. there are parameters θ, θ′ with pFt,θ = pFt,θ′ .

2. While the parametrization θ 7→ pFt,θ looks similar to the parametrization θ 7→ pθ of EA, the

values of the parameters in both parametrizations are not related to each other.

3. When pθ(s) → pFt,θ as s → ∞ for some parameter values θ(s), θ, then some of the parameter

values θ(s) diverge to ±∞. When computing probabilities, there may be linear combinations

of these diverging parameters that remain finite.
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We can introduce an alternative parameterization of log-linear models as follows,

µi(θ) = 〈θ, fi〉 = log p(i)/p(0), i ∈ I. (8.2.1)

The parameters µi can be interpreted as log odds ratios. Next we show that if Ft is known,

then, with a convenient choice of L, the parameters µL solve 1 and 2 and improve 3. Afterwards,

we discuss what can be done if Ft is not known. We briefly discuss the general solution of 3 in

Appendix D. In any case, parameter choose depends on the facial set Ft; i.e. it is not possible to

define a single parametrization that works for all facial sets simultaneously.

Suppose that Ft is known. We consider the parameters µi as in (8.2.1), and we make sure to

choose the zero element 0 in I+, since p(0) is in the denominator in (8.2.1). The parameters µi are

not independent, so we need to choose an independent subset L. We do this in two steps:

1. Choose a maximal subset Lt of Ft such that the parameters µi, i ∈ Lt are independent.

2. Then extend Lt to a maximal subset L ⊆ I such that the parameters µi, i ∈ L are independent

by adding elements i ∈ I \ Ft.

It follows from Theorem 6.0.2 that the following holds:

1. The subset µi, i ∈ Lt, of the parameters µL gives an identifiable parametrization of EFt,A.

2. Let µ∗i , i ∈ Lt, be the parameter values that maximize lFt (and thus give the EMLE). When

the likelihood l(µ) is maximized numerically on I, then in successive iterations of the maxi-

mization, the estimates µ
(s)
i are such that

µ
(s)
i →


µ∗i , i = 1, . . . , ht,

−∞, otherwise.
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In particular, no parameter tends to +∞.

The last property ensures a consistency of the parameters µi on EA and on EFt,A. This is important

in those cases where the parameters have an interpretation, and where it is of interest to know

the value of those parameters, which are well-defined. For example, in hierarchical models, the

parameters correspond to “interactions” of the random variables, and it may be of interest to know

which of these interactions are important, and the size of corresponding parameters. It is usually

not parameter µi, but the original parameters θi that have an interpretation. When we understand

parameters µi, we can also tell which of parameters θi or which combinations of parameters θi have

finite well-defined values and can be computed, and which parameters diverge:

Lemma 8.2.1. Suppose that θ(s), s ∈ N , are parameter values such that pθ(s) → p∗ as s→∞. For

any i ∈ Lt, the linear combination

µ
(s)
i = 〈θ(s), fi〉

has a well-defined finite limit as s→∞. Any linear combination of the θ
(s)
i that has a well-defined

finite limit (that is, a limit that is independent of the choice of the sequence θ(s)) is itself a linear-

combination of the µ
(s)
i with i ∈ Lt.

Proof. The first statement follows from µ
(s)
i = log pθ(s)(i)/pθ(s)(0)→ log p∗(i)/p∗(0). For the second

statement, note that any linear combination of the θ is also a linear combination of the µ, since the

linear map θ 7→ µ(θ) is invertible. We now show that if a linear combination
∑

i aiµi involves some

µj with j /∈ Lt, then there exist sequences µ(s), µ′(s) of parameters with

lim
s→∞

pµ(s) = lim
s→∞

pµ′(s) and lim
s→∞

∑
i

aiµ
(s)
i 6= lim

s→∞

∑
i

aiµ
′(s)
i .

So suppose that µ(s) is a sequence of parameters such that lims→∞ pµ(s) exists and such that
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lims→∞
∑

i aiµ
(s)
i is finite. Define

µ
′(s)
i =


µ

(s)
j + 1, if i=j,

µ
(s)
i , otherwise.

An easy computation shows that

lim
s→∞

pµ′(s) = lim
s→∞

pµ(s) and lim
s→∞

∑
i

aiµ
′(s)
i = lim

s→∞

∑
i

aiµ
(s)
i + aj.

Suppose now that we do not know Ft, but that instead we have approximations F1, F2 that

satisfy

I+ ⊆ F1 ⊆ Ft ⊆ F2 ⊆ I.

In this case, we proceed as follows to obtain an independent subset L among the parameters µi:

1. Choose a maximal subset L1 of F1 such that parameters µi, i ∈ L1 are independent.

2. Then extend L1 to a maximal subset L2 ⊆ F2 by adding elements i ∈ F2 \ F1 such that

parameters µi, i ∈ L2 remain independent.

3. Finally, extend L2 to a maximal subset L ⊆ I by adding elements i ∈ I \ F2 such that

parameters µi, i ∈ L remain independent

These parameters have the following properties that follow directly from Lemma 8.2.1:

Corollary 8.2.2. Suppose that θ(s), s ∈ N , are parameter values such that pθ(s) → p∗ as s → ∞,

and let µ
(s)
i = 〈θ(s), fi〉.

1. For any i ∈ L1, the linear combination

µ
(s)
i = 〈θ, fi〉
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has a well-defined finite limit as s→∞. Thus, any linear combination of the µ
(s)
i with i ∈ L1

has a well-defined limit as s→∞.

2. Any linear combination
∑

i aiµ
(s)
i that has a well-defined limit as s → ∞ is in fact a linear

combination of the µ
(s)
i with i ∈ L2. Thus, a linear combination that involves at least one µ

(s)
j

with j ∈ L \ L2 does not have a well-defined limit.

Now let’s have a look at the goodness-of-fit tests of log-linear models when the MLE doesn’t

exist. As we said in the introduction, the standard regularity conditions for the asymptotic distri-

bution don’t hold anymore. The Fisher information matrix of the original likelihood is singular,

so the confidence interval of the MLE is not well defined. When the MLE exists, the asymptotic

distribution of both the Pearson test and the likelihood ratio test a Chi-square distribution withs

the degree of freedom(df) equal to the model’s dimension, or the difference between the dimensions

of the two compared models. In the non-existent MLE scenario, the asymptotic distribution is still

a Chi-square distribution, but the value of the degrees of freedom is different. Suppose we want to

compare the performance of two log-linear models M0 and M1, the likelihood ratio statistic can

be written as

G2 = −2(l0(θ0)− l1(θ1)),

where l0 and l1 are the log-likelihood functions of the two models respectively. Although we can’t

get the MLE, we can plugin the extended MLE to get the maximum value of the log-likelihood

functions. When it comes to the degrees of freedom of G2, we can get it from the difference of the

dimensions of the two smallest faces containing the sufficient statistics of M0 and M1. Therefore,

being able to get the smallest face Ft is crucial when conducting goodness-of-fit tests, whenever the

MLE doesn’t exist. We will illustrate the above statistical inference with the real data example in
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Section 10.1.2.
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9 Numerical experiments for the computation of the MLE

In this chapter, we compare the performance of parameter estimation on several moderate

dimensional and high dimensional graphical models using:

• the local one-hop relaxed marginal likelihood method, denoted M1-MLE in legends,

• the local two-hop relaxed marginal likelihood method, denoted M2-MLE in legends,

• the local pseudo-likelihood method, denoted PS-MLE in legends,

• the local 2-hop composite likelihood method, denoted PS2-MLE in legends,

• the global likelihood method of the overall model, denoted as G-MLE in the legends,

First, several graph structures are given,and the parameters are either randomly assigned ±0.5, or

generated from normal distributions, then we generate sample points from each given model using

the Gibbs sampling scheme. We compute the relative mean square error(MSE) defined as:

‖θ̂ − θ‖2

‖θ‖2
=

∑
j∈J (θ̂j − θj)2∑

j∈J θ
2
j

on sample points of different size. We also compare the accuracy of our estimates by looking at

their sample variance.
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9.1 Models of moderate dimension

Three moderate-size graphs are considered: a 5× 5 grid graph(Fig. 9.1), 3× 10 grid graph(Fig.

9.2) and 5× 10 grid graph(Fig.9.3). For the 5× 5 gird graph, the node in the middle of the grid has

the largest two-hop marginal model, which includes 13 variables out of 25, that is 52% of the global

model in the case of the 3×10 grid graph, the largest two-hop marginal model includes 11 variables

out of 30, that is 37% of the global model in the case of the 5 × 10 graph, the largest two hop

marginal model has 13 variables out of 50, 26% of the global model. From the MSE curves below,

we can see that our two-hop marginal estimateM2-MLE is extremely close to the global estimate

G-MLE, and this is not because the two-hop marginal model almost covers the variables in the

global model. That’s why we choose these three moderate-size models to illustrate our methods.

Figure 9.1: The 5× 5 undirected grid graph. The one-hop neighbourhood of the red node is given

by the blue nodes together with the red node. The two-hop neighbourhood is obtained from the

one-hop neighbourhood by adding the black nodes.
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Figure 9.2: The 3× 10 undirected grid graph. The one-hop neighbourhood of the red node is given

by the blue nodes together with the red node. The two-hop neighbourhood is obtained from the

one-hop neighbourhood by adding the black nodes.

Figure 9.3: The 5× 10 undirected grid graph. The one-hop neighbourhood of the red node is given

by the blue nodes together with the red node. The two-hop neighbourhood is obtained from the

one-hop neighbourhood by adding the black nodes.

We generate parameters from two different distributions: θj = ±0.5 or θj v N (0, 0.1), θi,j v

N (0, 0.5) for 3×10 and 5×5 grid graphs. The relative MSE of different estimates are plotted versus
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sample size as shown in Fig.9.4a, Fig.9.4b, Fig.9.4c and Fig. 9.4d . From these MSE curves, we

can see that our one-hop marginal estimates(M1-MLE) is extremely close to the pseudo-likelihood

estimates(PS-MLE), and our two-hop marginal estimates(M2-MLE) is extremely close to the global

estimates(G-MLE). The MSE curves of the 3× 10 graphical model and 5× 5 graphical model are

very similar, that’s due to the fact that we compute the MLE from local marginal models, which

share similar structures for these two models. Therefore the structure of the global model doesn’t

affect the estimates in a significant manner.
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(a) 3× 10 grid graph; θj = ±0.5
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(b) 3× 10 grid graph θj v N (0, 0.1), θi,j v N (0, 0.5)
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(c) 5× 5 grid graph;θj = ±0.5
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(d) 5× 5 grid graph;θj v N (0, 0.1), θi,j v N (0, 0.5)

Figure 9.4: Relative MSE vs. sample size. The result is averaged over 100 experiments

.

84



We also compare the accuracy of different estimates by looking at their sample variance as shown

in Fig 9.5a and Fig9.5b. The results in the plots are consistent with Theorem 2.
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(a) sample variance of 5× 5 grid graph
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(b) sample variance 3× 10 grid graph

Figure 9.5: Sample variance vs. sample size for (a) θ9 in the 5 × 5 grid graph and (b) θ8 in the

3× 10 grid graph. The result is averaged over 100 experiments.

.

9.2 High-dimensional models

We first consider two high-dimensional discrete graphical models: 10 × 10 grid network(Fig.

9.6a) and 100-node random network (Fig. 9.6b). The 10× 10 grid network describes the situation

where every variable is affected only by its neighbours, or equivalently, it is independent of other

nodes, given its neighbours. The random network is widely used in social science. Each vertex of a

random network is connected to a limited number of members. Both of these two graphs are sparse

85



(a) the 10× 10 grid graph
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(b) the 100-node random network

Figure 9.6: The two graphs underlying the two high-dimensional graphical models in section 9.2

.

graphical models, as the graph degree is not too large, and thus the MLE computation is easier.

In Fig. 9.7a and Fig. 9.7b, we can see that the relative mean square error of the conditional and

marginal likelihood methods are the same, and that the two-hop cases are better than the one-hop

cases. We also compute the MLE of the grid network graphical model, and we can’t really see

any difference between the MLE and the two-hop composite likelihood estimates. We also give the

sample variance of some parameters in Fig. 9.7c and Fig. 9.7d.
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(a) MSE of 10× 10 grid graph
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(b) MSE of 100-node random graph
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(c) sample variance of 10× 10 grid graph
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(d) sample variance of 100-node random graph

Figure 9.7: Relative MSE v.s. sample size for (a) the 10 × 10 grid graph and (b) the 100-node

random graph. Sample variance vs. sample size for (c) θ43 in the 10 × 10 grid graph and (d) θ8,74

in the 100-node random graph. Parameters are assigned to ±0.5 randomly, and the results are

averaged over 100 experiments.
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(a) The 100-node hub graph
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(b) The relative MSE of parameters in the hub graph

The third example we look at is the hub network graph (Fig. 9.8a), which is also called the

scale-free network. The biggest difference between the hub network and random network is the

existence of hub nodes, whose degree increase as the number of variables increases: the hub graph

is therefore not a sparse graphical model. In the 100-node hub network we generate, the degree of 5

vertices is 10, while the degree of other vertices is no larger than 5. For the vertices of large degree,

the size of the local models is also large. We therefore only use conditional likelihood methods, as

we have already shown that marginal and conditional methods are equivalent.
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10 Numerical experiments on the existence of the MLE

10.1 Simulation study and application to real data

In this section, we illustrate our methodology. In 10.1.1, we simulate data for the graphical

model of the 4× 4 grid and show how to exploit the various types of separators in order to obtain

good inner and outer approximations. We find that our methods give very accurate results in this

model of modest size. In 10.1.2, we work with the NLTCS data set, a real-world data set. We

compare different inner approximations F1 and notice that most of the time, F1 and F2 are equal,

and thus that they are both equal to Ft. We also compute the EMLE and compare the result to

what happens when maximizing the likelihood functions l and lF2 .

10.1.1 The 4× 4 grid graph

We generated random samples of varying sizes for the graphical model of the 4 × 4 grid graph

(Fig. 10.1). For each sample, we compute inner and outer approximations F1 and F2, and we

compare them to the true facial set Ft, which we can obtain using linear programming. To obtain

an inner approximation, we pick a separate set and complete it to create a reducible simplicial

complex containing the 4 × 4 grid, we iterate the process over the 3 horizontal, 3 vertical and 8

diagonal separators. To compute the outer approximation, we cover the 4×4 grid by four 3×3-grids.

We first generate random samples from the uniform distribution, that is, from the probability
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Figure 10.1: The 4× 4 grid graph

distribution Pθ in the hierarchical model where all parameters θj, j ∈ J are set to zero. The results

are given in Table 10.1. We repeat the experiment a thousand times for each sample size. As

the table shows, for larger samples the probability that our random sample lies on a proper face

becomes very small. If Ft = I, then clearly Ft = F2. But we also found Ft = F2 for all samples with

t lying on a proper face, which shows that F2 is an excellent approximation of Ft in this model. For

the inner approximation, we observed some samples with F1 6= Ft, but they seem to be very rare.

Table 10.1: Facial set approximation for the 4×4 grid graph sampling from the uniform distribution

sample size data on face F1 = Ft F2 = Ft

10 98.5% 96.3% 100.0%

15 68.9% 99.9% 100.0%

20 29.0% 100.0% 100.0%

50 0.0% 100.0% 100.0%

Second, to better understand what happens in the case of large samples, we change our sampling
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scheme. Instead of sampling from the uniform distribution, we generate samples from the hierar-

chical model Pθ, where the vector of parameters θ is drawn from a multivariate standard normal

distribution (for each sample, new parameters were drawn). The results are given in Table 10.2.

Again, for each sample size, we run the experiment a thousand times. One can see that in this

sampling scheme, we are much more likely to find that Ft 6= I. Observe that the squared length of

the parameter vector θ is χ2-distributed with 39 degrees of freedom (since the number of parameters

is 40). Thus, the expected length of θ is 39, which is large enough to move the distribution pθ close

to the boundary of the model. Indeed, we observed that when the MLE does not exist, the length of

the numerical estimate of the MLE vector is of the order of magnitude 40(see also the next example

in Section 10.1.2). Again, in all the samples that we generated, Ft = F2, and F1 = F2 in the vast

majority of cases. Thus, for this graph of relatively modest size, our approximations are very good.

Table 10.2: Facial set approximation for the 4 × 4 grid graph with log-linear parameters from the

standard normal distribution

sample size data on face F1 = Ft F2 = Ft

10 100.0% 97.7% 100.0%

50 89.5% 100.0% 100.0%

100 71.0% 100.0% 100.0%

150 52.0% 100.0% 100.0%

10.1.2 The NLTCS data set

In order to illustrate how approximate knowledge of the facial set allows us to say which param-

eters can be estimated, and to conduct statistical inference (as explained in Section 8), we study
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Figure 10.2: The graph for the NLTCS dataset
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the NLTCS data set, which consists of 21574 observations on 16 binary variables, called ADL1, . . . ,

ADL6, IADL1, . . . , IADL10. In our code and the following equations, these variables are indexed

by 16 integers from 1 to 16. The reader is referred to Dobra et al. (2011) for a detailed description

of the data set. To associate a hierarchical log-linear model to this data, we rely on the results of

Dobra et al. (2011) who use a Bayesian approach to estimate the posterior inclusion probabilities

of edges. We construct a graph by saying that (x, y) is an edge if and only if the posterior inclusion

probability of (x, y) is at least 0.40; see Figure 10.2. We then take the corresponding clique complex

of this graph so that our hierarchical model is a graphical model. There are 314 parameters in this

model, including up to 6-way interactions.

Using linear programming, we find the smallest facial set Ft containing the sufficient statistic.

The face Ft is then the convex hull of the fi, i ∈ Ft. The dimension of Ft is 302, and we can compute
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the basis of the kernel space of Ft, which gives us the following equations representation of Ft:

t10,12,13,16 − t12,13,16 − t10,13,16 + t13,16 = 0

t8,9,10 − t8,9 − t9,10 + t9 = 0

t7,8,9,10 − t7,8,9 − t7,9,10 + t7,9 = 0

t5,10,12,13,16 − t5,10,13,16 − t5,12,13,16 + t5,13,16 = 0

t3,7,9,10 − t3,7,9 − t3,9,10 + t3,9 = 0

t1,10,12,16 − t1,10,16 − t1,12,16 + t1,16 = 0

t1,8,9,10 − t1,8,9 − t1,9,10 + t1,9 = 0

t1,7,9,10 − t1,7,9 − t1,9,10 + t1,9 = 0

t1,7,8,9,10 − t1,7,8,9 − t1,9,10 + t1,9 = 0

t1,5,10,12,16 − t1,5,12,16 − t1,5,10,16 + t1,5,16 = 0

t1,3,9,10 − t1,3,9 − t1,9,10 + t1,9 = 0

t1,3,7,9,10 − t1,3,7,9 − t1,9,10 + t1,9 = 0

(10.1.1)

Each equation represents a facet of some clique after we verified in the program. The intersection

of these 12 facets gives us the smallest face containing sufficient statistic. Therefore our program

can give both the facial set and the face equations. As we show in section 8.2, We can compute the

extended MLE of the estimable parameters in a reduced exponential family supported on the facial

set Ft, whose log-likelihood function is

lFt(θ) = log(
∏
i∈I+

pFt,θ(i)
n(i)) =

∑
j∈J

θjtj −NkFt(θ). (10.1.2)

The log-likehood function lFt(θ) with θ ∈ R|J | is not identifiable, and the optimization algorithm
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doesn’t converge. We can find a linear transformation of θ such that the corresponding new pa-

rameterization is identifiable. In section 8.2, we introduced a new identifiable parameterization µ,

which can be easily found if we know the facial set Ft. The log-likelihood function with respect to

µ is

lFt(µ) =
∑
i∈I+

µin(i)−N log
∑
i∈Ft

exp(µi). (10.1.3)

In order to compare the maximum likelihood estimate obtained with or without worrying about

its existence and with or without approximation to Ft, we maximize the log-likelihood function

given in terms of µ (rather than θ) as in (8.2.1).

First we ignore the fact that the MLE might not exist and compute the MLE of µ using the

standard ”Minfunc” optimization software in Matlab: we call this estimate µ̂MLE. Second, we find

Ft and compute the EMLE with parameters denoted µ̂EMLE. Third, we obtain an inner and outer

approximation to Ft and consider the resulting information on the MLE of the parameters. We call

the resulting estimate µ̂F
′
1/F

′
2 .

To compute µ̂EMLE, we first compute the inner approximation F1 that makes use of all the

separators in the graph (Strategy 7.2 in Section 7.2). We also compute an outer approximation F2

from all
(

16
5

)
= 4368 size five local models and the cliques of size six (Strategy 1 in Section 7.3).

We obtain F1 = F2 and thus deduce that Ft = F1 = F2. We find |Ft| = 49536, and so |F c
t | =

216 − 49536 = 16000. Therefore, 16000 cell probabilities are zero in the EMLE. We can obtain

the MLE by maximizing the log likelihood function lFt as in (8.1.1). Since rank(AFt) = 302, the

dimension of Ft is 302, and there are only 302 parameters in lF .

To show how to use the inner and outer approximations when Ft is not known, we choose

to find coarser inner and outer approximations to Ft, respectively denoted F ′1 and F ′2, and use

them to compute the other approximation µ̂F
′
1/F

′
2 to the MLE. To compute F ′1, we just use 10
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random separators. We find |F ′1| = 36954 and dim F′1 = rankAF ′1 = 300. To compute the outer

approximation F ′2, we consider the 4368 local size-five induced models and select from them those

1000 which have the facial sets of smallest cardinality, and then we glue them together. We find

|F ′2| = 50688 and dim F′2 = rankAF ′2 = 310. Thus, we know that at least |I \ F ′2| = 216 − 50688 =

14848 cell probabilities vanish in the extended MLE. Since we pretend not to know Ft, we replace

lFt by

lF ′2(µ) =
∑
i∈I+

µin(i)−N
∑
i∈F ′2

exp(µi). (10.1.4)

For i ∈ F ′1, we know that µi is estimable, µi goes to negative infinity when i ∈ F ′c2 , and we cannot

say anything for µi when i ∈ F ′2 \ F ′1.

As explained in Section 8.2, the components of µ are not functionally independent. We choose

L1 ⊆ F ′1, L2 ⊆ F ′2 and L ⊆ I as in Section 8.2 (we note that the zero cell belongs to I+). Then any µi,

i ∈ F ′2, can be written as a linear combination of µL2 = (µi, i ∈ L2), and we can write µi = 〈bi, µL〉

for an appropriate vector bi. Thus, lF ′2(µ) only depends on µL2 = (µi, i ∈ L2), and (10.1.4) can be

rewritten as

lF ′2(µL) =
∑
i∈I+
〈bi, µL〉n(i)−N

∑
i∈F ′2

exp〈bi, µL〉. (10.1.5)

Of course, the maximum of lF ′2 does not exist, but, insofar as the maximization of l, the computer

can still give us a numerical approximation, µ̂L, and thus also a numerical estimate µ̂i = 〈bi, µ̂L〉, i ∈

F ′2.

In total, there are |L2| = rank(AF ′2) = 310 independent parameters in the log likelihood func-

tion (10.1.5). Among them, we find |L2| = rank(AF ′2) = 300 estimable parameters µi, i ∈ L2. We

cannot say anything about the 10 parameters indexed by L2 \ L1. If we know Ft, we can identify

two more estimable parameters.

In Table 10.3, we give the three estimates of µi that we mentioned above, namely, µ̂MLE
i , µ̂EMLE

i
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and µ̂F
′
1/F

′
2

i . For convinence, in the parameter column, we write µi as µk(i) where k(i) =
∑16

j=1 ij2
j−1 ∈

{0, . . . , 216− 1}. We also list the naive estimator log ni
n0

. We list estimates for 19 of the 310 possible

parameters. In the first column of the table, we indicate which category index i belongs to, that

is, whether it belongs to F ′1, Ft or F ′2. In the second column, we list the particular parameters

considered.

In Table 10.4, we list the estimates of the top five cell counts obtained using our method and

compare them with those obtained by other methods in Dobra et al. (2011).

The graphical model of the NLTCS dataset we use above includes up to six-way interaction

parameters. Let M0 denote this graphical model. Now let’s consider another model with only

two-way interaction parameters, and denote it by M1. We have already known that the MLE of

M0 doesn’t exist, and we observe that the MLE of M1 exists from our program. Let M0 denote

the original six-way interaction model, M1 denote the two-way interaction model, and l0, l1 be the

log-likelihood functions of M0 and M1 respectively. We can use the likelihood ratio test to see

which model fits the data well. We define the test as follows,

H0 : The reduced model M1 fits the data better

Ha : The current model M0 fits the data better

Although we don’t have the MLE for M0, the maximum value of l0 using the extended MLE is still

approximately correct. From the experiment, we get l0(θ̂0) = −1.2954×105, l1(θ̂1) = −1.2971×105,

so the likelihood ratio statistic,

G2 = −2(l1(θ̂1)− l0(θ̂0)) = 170.

The asymptotic distribution of G2 is chi-quare distribution, and the adjust degree of freedom of

this test is 214. The p-value p(χ2(214) > G2) is less then 0.001, so we reject the null hypothesis.
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Table 10.3: The MLE from 3 methods and the naive estimate for the NLTCS dataset.

naive estimate maximum likelihood estimates

Parameter log ni/n0 µ̂MLE
i µ̂EMLE

i µ̂F
′
1/F

′
2

i

i ∈ F ′1 µ512 −1.2472 −1.2482 −1.2482 −1.2482

µ65536 −1.7644 −1.7976 −1.7975 −1.7975

µ16 −2.3958 −2.3844 −2.3846 −2.3846

µ528 −2.5429 −2.6504 −2.6504 −2.6504

µ2048 −2.8813 −2.7246 −2.7243 −2.7243

i ∈ Ft \ F ′1 µ32960 −∞ −13.8205 −13.8207 −13.8205

µ34881 −∞ −14.3693 −14.3693 −14.3692

i ∈ F ′2 \ Ft µ36864 −∞ −30.8729 −∞ −34.9805

µ36880 −∞ −39.6536 −∞ −45.2229

µ388 −∞ −28.9090 −∞ −29.4525

µ32769 −∞ −32.3799 −∞ −36.9537

µ385 −∞ −37.1365 −∞ −35.9399

µ449 −∞ −38.9673 −∞ −44.9405

µ32785 −∞ −40.1221 −∞ −45.8318

µ389 −∞ −43.7297 −∞ −40.0158

i ∈ I \ F ′2 µ256 −∞ −35.5482 −∞ −∞

µ320 −∞ −42.5454 −∞ −∞

µ257 −∞ −52.9224 −∞ −∞

µ321 −∞ −60.2208 −∞ −∞

98



Table 10.4: Top six largest expected cell counts for the NLTCS data set according to the Grade

of Membership model (GoM), Latent class model (LC), copula Gaussian graphical model (CGGM)

and MLE.

Support of Cell Observed GoM LC CGGMs MLE on facial set

∅ 3853 3269 3836.01 3767.76 3647.4

{10} 1107 1010 1111.51 1145.86 1046.9

{1 : 16} 660 612 646.39 574.76 604.4

{5} 351 331 360.52 452.75 336

{5, 10} 303 273 285.27 350.24 257.59

{12} 216 202 220.47 202.12 239.24

10.2 Computing faces for large complexes

If our statistical model contains many variables and is not reducible, the problem of determining

Ft quickly becomes infeasible. Not only does the marginal polytope become very complicated, but

also the size of the objects that one has to store or compute grows exponentially. Consider for

example a 10 × 10 grid of binary random variables. This hierarchical model has 280 parameters,

and the total sample space has cardinality |I| = 2100 ≈ 1.27 × 1030. If Ft is close to I, we cannot

even list the elements of Ft, which consists of approximately 1030 elements. Therefore, we take a

local approach and look for separators.

If ∆ contains a complete separator separating V into V1 and V2, we can identify a facial set

F implicitly without listing it explicitly. We only need the two projections FV1 = πV1(F ) and

FV2 = πV2(F ). Since F = π−1
V1

(FV1) ∩ π−1
V2

(FV2) (by Lemma 7.1.5), these two projections identify F ,
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and they allow us to do most of the operations that we would want to do with F . For example,

for any i ∈ I, we can check whether i ∈ F by checking whether πV1(i) ∈ FV1 and πV2(i) ∈ FV2 , and

we can check whether F = I by checking whether FV1 = IV1 and FV2 = IV2 . In particular, we can

check whether the MLE exists by looking only at the two subsets V1 and V2.

If ∆ contains a separator that is not complete, we can use similar ideas as those above, when

computing inner and outer approximations to Ft, and also when comparing these two approxima-

tions. Suppose that S separates V1 from V2 in ∆. We want to use F2 := F∆|V1
(I+) ∩ F∆|V2

(I+) as

an outer approximation and F1 := F∆S
(I+) as an inner approximation to Ft. Due to the problems

mentioned above, we do not directly compute F1 and F2, but we compute their projections on V1

and V2. Instead of F2, we compute the facial set F2,V1 := F∆|V1
(πV1(I+)) of the V1-marginal πV1(I+)

with respect to ∆|V1 , and similarly we compute F2,V2 := F∆|V2
(πV2(I+)). Instead of F1, we compute

F1,V1 := F∆S |V1
(πV1(I+)) and F1,V2 := F∆S |V2

(πV2(I+)). Then we could recover F1 and F2 from the

equations

F2 = π−1
V1

(F2,V1) ∩ π−1
V2

(F2,V2) and F1 = π−1
V1

(F1,V1) ∩ π−1
V2

(F1,V2).

For any x ∈ I, we can check whether x ∈ F1 by checking whether πV1(x) ∈ F1,V1 and πV2(x) ∈ F1,V2 .

More importantly, we can check whether F1 = F2 by checking whether F1,V1 = F2,V1 and F1,V2 =

F2,V2 . This idea can be applied iteratively when ∆|V1 or ∆|V2 has a separator.

The next two subsections illustrate these ideas. In Section 10.2.1, we consider a graph with

no particular regularity pattern on 100 nodes, and identify two convenient separators. In Section

10.2.2, we consider a grid graph and work with two families of “parallel” separators that can be

used to iteratively improve the inner approximation.
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10.2.1 US Senate Voting Records dataset

We consider the voting record of all 100 US Senators on 309 bills from January 1 to November

19 2015. Similar data for the years 2004–2006 was analyzed by Banerjee et al. (2008). The votes

are recorded as “yea,” “nay” or “not voting.” We transformed the “not voting” into “nay” and

consequently have a 100-dimensional binary data set. To fit a hierarchical model to this data set,

we use the `1-regularized logistic regression method proposed by Ravikumar et al. (2011) to identify

the neighbours of each variable and construct an Ising model. We set the penalty parameter to

λ = 32
√

log p/n ≈ 0.35, resulting in the sparse graph in Figure 10.3. There are 277 parameters

in this model (the number of vertices plus the number of edges). The graph consists of two large

connected components and 14 independent nodes.

There are 309 sample points, and |I+| = 278. We want to know whether the data lies on a proper

face of the marginal polytope to see if the MLE of the parameters exists. From Lemma 7.1.5, we

know that if we find complete separators, we need only work with each of the irreducible simplicial

complexes defined by these separators. We easily “cut-off” a number of relatively small prime

components and verify that the data does not lie on a proper face of their corresponding marginal

polytopes. We are left with one irreducible prime component in each of the two connected subgraphs,

i.e. one for each of the two parties as shown in Figure 10.4.

The democratic party simplicial complex ∆d consists of 26 variables, and the model induced

from ∆d contains 77 parameters. The size of the design matrix A∆d
is 226 × 77, which is too

large to use linear programming to compute the facial set of the face P∆d
containing the vector td.

Therefore we look for separators that will help us obtain good inner and outer approximations. In

Figure 10.4b, we indicate in yellow and pink two separators, which separate ∆d into three simplicial

complexes denoted (from top to bottom) by ∆α, ∆β and ∆γ. The number of vertices of the three
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Figure 10.3: The graph for the US Senate Voting Records dataset. Golden nodes denote independent

senators, blue nodes - democrats, and red nodes - republicans.
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Figure 10.4: The simplicial complexes after cutting off the small complete prime components: (a) the

republican party prime component ∆r (b) the democratic party prime component ∆d. The light

green and pink nodes are the two separator sets we selected to compute the facial sets.

simplicial complexes are 9, 13, and 11, respectively, so we can apply linear programming method

first mentioned in the introduction to the three corresponding marginal polytopes.

The dimension of the model induced by ∆α is 24. The corresponding data vector tα lies in the

relative interior of P∆α .

The dimension of the model induced by ∆β is 34, and the data vector tβ lies on a facet Ftβ of P∆β
.

To simplify our notation, we denote the 100 senators by an integer between 1 and 100, rather than

ID Senator ID Senator ID Senator ID Senator

22 Nelson 37 Cardin 52 Murphy 61 Whitehouse

23 Reed 41 Markey 53 Hirono 87 Warren

26 Schumer 47 Udall 56 Gillibrand

Table 10.5: Assigning numbers to the senators appearing in the equation of the faces
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by their names. We only need to identify a few and their numbers are given in Table 10.5. The

inequality of Ftβ is

t87 − t56,87 ≥ 0, (10.2.1)

where t87 denotes the marginal count of senator Warren voting “yea” and t56,87 denotes the marginal

counts of both senators Gillibrand and Warren voting “yea.”

The dimension of the model induced by ∆γ is 27. The data vector tγ lies on the facet of P∆γ

with inequality

t23 − t23,53 ≥ 0. (10.2.2)

The intersection of the two facets (10.2.1) and (10.2.2) gives the outer approximation F2 to Ft.

To get an inner approximation, we complete each separator, i.e. the yellow vertices are com-

pleted, and the pink vertices are completed, as shown in Figure 10.4b. Denote the three simplicial

complexes with complete separators as ∆α̃, ∆β̃, ∆γ̃ respectively. Then ∆d̃ = ∆α̃ ∪ ∆β̃ ∪ ∆γ̃ is a

simplicial complex with two complete separators. The smallest face Ftd̃
of the marginal polytope

P∆d̃
containing the data vector td̃ is our inner approximation. Now the models of ∆α̃, ∆β̃, ∆γ̃ and

∆d̃ are not models with main effects and two-way interactions only; they also include parameters

for third and fourth order interactions. The dimension of the model induced by ∆d̃ is 91: we added

14 parameters to the original model by completing the two separators. Again, we apply the linear

programming method to the three marginal polytopes P∆α̃
, P∆β̃

and P∆γ̃
.

The dimension of the model of ∆α̃ is 27, and Ftα̃ is a facet with equation

〈g1, tα̃〉 = t41 − t22,41 − t41,70 + t22,41,70 = 0. (10.2.3)

It follows that {g1} is a basis of the kernel of AtFα̃ .
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The dimension of the model for ∆β̃ is 48. The face Ftβ̃
has codimension 5, with defining equations

〈g2, tβ̃〉 = t87 − t56,87 = 0

〈g3, tβ̃〉 = t47,52,61 + t37,52 − t37,52,61 − t37,47,52 = 0

〈g4, tβ̃〉 = t37,47,52,61 − t47,52,61 = 0

〈g5, tβ̃〉 = t37,52 + t26 − t26,52 − t26,37 = 0

〈g6, tβ̃〉 = t41 − t22,41 − t41,70 + t22,41,70 = 0

. (10.2.4)

Again, {g2, g3, g4, g5, g6} is a basis of the kernel of AFβ̃ .

The dimension of the model for ∆γ̃ is 38. The face Ftγ̃ has codimension 3. It is defined by the

equations 

〈g7, tγ̃〉 = t47,52,61 + t37,52 − t37,52,61 − t37,47,52 = 0

〈g8, tγ̃〉 = t37,47,52,61 − t47,52,61 = 0

〈g9, tγ̃〉 = t23 − t23,53 = 0

. (10.2.5)

Again, {g7, g8, g9} is a basis of the kernel of AFγ̃ .

From Lemma 7.1.5, we know that Ftd̃
= Fα̃ ∩ Fβ̃ ∩ Fγ̃, and the equations for Ftd̃

are

〈g′1, td̃〉 = t41 − t22,41 − t41,70 + t22,41,70 = 0

〈g′2, td̃〉 = t87 − t56,87 = 0

〈g′3, td̃〉 = t47,52,61 + t37,52 − t37,52,61 − t37,47,52 = 0

〈g′4, td̃〉 = t37,47,52,61 − t47,52,61 = 0

〈g′5, td̃〉 = t37,52 + t26 − t26,52 − t26,37 = 0

〈g′9, td̃〉 = t23 − t23,53 = 0

, (10.2.6)
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where the vectors g′1, . . . , g
′
9 are the vectors g1, . . . , g9 extended to R91 by adding zeros on the

corresponding complementary coordinates. Note that since g′1 = g′6, g′3 = g′7, g′4 = g′8, we only need

six of the nine equations. Thus, F1 := Ftd̃
, defined by (10.2.6), is a strict subset of the face F2

defined by (10.2.1) and (10.2.2). Next, we refine our argument and show that indeed Ftd = F2.

From what we know, it follows that the orthogonal complement of the subspace generated by

Ftd̃
is

G = {g′ ∈ R91|g′ = k1g
′
1 + k2g

′
2 + k3g

′
3 + k4g

′
4 + k5g

′
5 + k9g

′
9}.

To describe Ftd , we want to describe the defining equations of Ftd . Each such equation is of the

form 〈g, td〉 = 0, where g is orthogonal to Ftd . For any such g, let g′ be its extension to a vector in

R91 by adding zero components. Then g′ ⊥ Ftd̃
, which implies that g′ ∈ G. Therefore, we can find

g by finding all vectors g′ ∈ G that vanish on all added components. This yields a system of linear

equations in k1, . . . , k5, k9. We claim that all solution must satisfy k1 = k3 = k4 = k5 = 0. Indeed,

the coefficient of any triple or quadruple interaction must vanish (since these don’t belong to the

original Ising model), which implies k1 = k3 = k4 = 0, and also the coefficient of t37,52 must vanish,

which implies k5 = 0. On the other hand, the vectors g′2 and g′9 only contain interactions that are

already present in ∆, and so coefficients k2 and k9 are free. Thus the equations for Ftd are
〈g2, tβ̃〉 = t87 − t56,87 = 0,

〈g9, tγ̃〉 = t23 − t23,53 = 0.

(10.2.7)

This is the same as the outer approximation F2.

The republican simplicial complex ∆r consists of 20 variables, and the model induced from ∆r

contains 46 parameters. The size of the design matrix A∆r is 220 × 46, which is also too large to

directly compute Ft. The yellow nodes in Figure 10.4a separate ∆r into two simplicial complexes

denoted (from left to right) by ∆a and ∆b. To compute the inner approximation, we complete the
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Figure 10.5: The two sets of separators used to get the inner approximation F1 to Ft are represented

by the red and blue nodes respectively

yellow separators and we get two new simplicial complexes ∆ã and ∆b̃. With the linear programming

algorithm, we find that the corresponding data tã and tb̃ lie in the relative interior of the polytopes

P∆ã
and P∆ã

, respectively. Therefore we have F1 = P∆r . Since F1 ⊆ Ft ⊆ P∆r , we conclude that

the corresponding data vector tr lies in the relative interior of P∆r .

10.2.2 The 5× 10-grid graph

Let ∆ be the simplicial complex of the 5 × 10 grid graph. We exploit the regularity of this

graph and make use of the vertical separators in the grid to obtain inner and outer approximations

of the facial sets. The graph has 50 nodes, which makes it too large to directly compute a facial

set or even to store it. However, the 5 × 10 grid has 8 vertical separators marked in red and blue

in Figure 10.5, and we can use these to approximate Ft. Since facial sets for 5 × 3-grids can be

computed reasonably fast (3 to 4 seconds on a laptop with 2.50 GHz processor and 12 GB memory),

we only use three of these vertical separators at a time, say the blue separators

S2 = {11, . . . , 15}, S4 = {21, . . . , 25}, S6 = {31, . . . , 35}, S8 = {41, . . . , 45}.
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Figure 10.6: Five induced subgraphs

These separators separate the vertex sets

V1 = {1, . . . , 15}, V3 = {11, . . . , 25}, V5 = {21, . . . , 35},

V7 = {31, . . . , 45}, V9 = {41, . . . , 50}.

Adding the blue separators to ∆ gives a simplicial complex

∆S2;S4;S6;S8 := ∆
⋃

j=2,4,6,8

{F : F ⊆ Sj}

with five irreducible components supported on the vertex sets V1, V3, V5, V7 and V9 (Figure 10.7).

To compute a facial set with respect to ∆S2;S4;S6;S8 , according to Lemma 7.1.5, we need to compute

G1,V1 := F∆S2
|V1

(πV1(I+)), G1,V3 := F∆S2;S4
|V3

(πV3(I+)),

G1,V5 := F∆S4;S6
|V5

(πV5(I+)), G1,V7 := F∆S6;S8
|V7

(πV7(I+)),

G1,V9 := F∆S8
|V9

(πV9(I+)).

Then G1 :=
⋂
i π
−1
Vi

(G1,Vi) is equal to F∆S2;S4;S6;S8
(I+), and thus an inner approximation of Ft. As

stated before, we do not need to compute G1 explicitly, but we represent it by means of the G1,Vi .

We can farther improve the approximations by also considering the red separators

S1 = {6, . . . , 10}, S3 = {16, . . . , 20}, S5 = {26, . . . , 30}, S7 = {36, . . . , 40},
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that separate

V0 = {1, . . . , 10}, V2 = {6, . . . , 20}, V4 = {16, . . . , 30},

V6 = {26, . . . , 40}, V8 = {36, . . . , 50}.

As explained in Section 7.2, we want to compute G
(2)
1 := F∆S1;S3;S5;S7

(G1). Again, instead of com-

puting G
(2)
1 directly, we need only compute the much smaller sets G

(2)
1,V0

:= πV0(G
(2)
1 ), G

(2)
1,V2

:=

πV2(G
(2)
1 ), . . . , G

(2)
1,V8

:= πV8(G
(2)
1 ). So the question is: Is it possible to compute G

(2)
1,V0

, G
(2)
1,V2

, . . . ,

G
(2)
1,V8

from G1,V1 , G1,V3 , . . . , G1,V9 , without computing G1 in between?

It turns out that this is indeed possible: By Lemma 7.1.5, all we need to compute G
(2)
1,Vi

is G1,Vj :=

πVj(G1), j = i− 1, i+ 1. For i = 0, since V0 ⊂ V1, we can compute G1,V0 from πV1(G1) = G1,V1 . For

i = 2, 4, 6, 8, since Vi ⊂ Vi−1 ∪ Vi+1, we can compute G1,Vi from πVi−1∪Vi+1
(G1), which itself can be

obtained by “gluing” πVi−1
(G1) = G1,Vi−1

and πVi+1
(G1) = G1,Vi+1

:

πVi−1∪Vi+1
(G1) =

(
π
Vi−1∪Vi+1

Vi−1

)−1

(G1,Vi−1
) ∩
(
π
Vi−1∪Vi+1

Vi+1

)−1

(G1,Vi+1
),

where πV
′

V ′′ for V ′′ ⊆ V ′ denotes the marginalization map from IV ′ to IV ′′ and where
(
πV
′

V ′′

)−1

denotes

the lifting from IV ′′ to IV ′ .

As explained in Section 7.2, we have to iterate this procedure: From G
(2)
1 we want to compute

G
(3)
1 := F∆S2;S4;S6;S8

(G′1) or, more precisely, we want to compute G
(3)
1,Vi

= πVi(G
(3)
1 ) for i = 1, 3, . . . , 9.

Again, we do this without looking atG
(2)
1 directly just by using the information provided by theG

(3)
1,Vi

.

Iterating this procedure, we obtain a sequence of sets G
(k)
1,Vi
, G

(k)
1,Vj

(with odd i and even j), which

stabilizes after a finite number of steps. Let

F1,Vi :=
⋃

G
(k)
1,Vi
,

Our best inner approximation is then F1 =
⋂9
i=0 π

−1
Vi

(F1,Vi). Again, we do not compute F1 explicitly,

but we represent it in terms of the F1,Vi .
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Figure 10.7: (a) The 5× 10 grid graph with the blue separators completed. (b) The five irreducible

subcomplexes after completion of the separators.

The process is visually represented in Figure 10.8.

Let us now consider the outer approximation F2. We adapt Strategy 3 of Section 7.3 and cover

the graph with 5 × 3 grid subgraphs, since the facial sets for such graphs can easily be computed.

These subgrids are supported on the same vertex subsets Vi, i = 1, . . . , 8 as used when computing F1.

This makes it possible to compare F1 and F2. For i = 1, 3, . . . , 8 we compute F2,Vi = F∆|Vi (πVi(I+)).

Our outer approximation is then F2 =
⋂
i π
−1
Vi

(F2,Vi). Again, we don’t compute F2 explicitly, but

we only store F2,Vi in a computer as a representation of F2. To compare the two approximations F1

and F2, we need only compare their projections F1,Vi and F2,Vi pairwise, i = 1, . . . , 8. We generated

random data of varying sample size. For each fixed sample size, we generated 100 data samples.

The simulation results are show in Table 10.6. For each simulated sample, we compute the sets F1,Vi

and F2,Vi as described above. When computing F1,Vi , we found that 2 iterations actually suffice.

Then we checked whether F2 is a proper subset of I (second column), and we checked whether

F1 = F2 (third column). Both for small and large sample sizes, we found that F1 = F2 quite often.

110



Table 10.6: Facial set approximation for the 5× 10 grid graph

sample size F2 6= I F1 = F2

50 100.0% 94.3%

100 100.0% 82.5%

150 99.9% 76.5%

200 99.6% 81.2%

300 96.4% 87.7%

400 92.9% 91.5%

500 84.8% 93.9%

1000 44.7% 99.9%
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data I+ on 5× 10 grid

marginalize

I5+ := πV5 (I+)I3+ = πV3 (I+)I1+ = πV1 (I+) I7+ = πV7 (I+) I9+ = πV9 (I+)

G1,V1
G1,V3

G1,V5
G1,V7

G1,V9

marginalize
and glue

marginalize
and glue

marginalize
and glue

marginalize
and glue

G1,V2
G1,V4

G1,V6
G1,V8

G1,V0

marginalize

G′
1,V0

G′
1,V2

G′
1,V4

G′
1,V6

G′
1,V8

...
...

...
...

...

LP

LP

LP

LP

LP

LP

LP

LP

LP

LP

Figure 10.8: Flow chart describing the steps leading to the inner approximation

We also investigated what happens when the outer approximation is not computed using all

3 × 5-subgrids, but only a cover of four 3 × 5-subgrids and one 2 × 5-subgrid (as in Figure 10.6).

In all our simulations, this easier approximation gave the same result. The same is not true for the
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inner approximation: When using just one of the two families of parallel separators we obtain an

inner approximation that is much too small.
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11 Conclusion

In this thesis, we studied hierarchical log-linear models. We made two main contributions to

this topic. First, we studied different types of composite likelihoods and succeeded in parameter

estimation of high-dimensional log-linear models. We proved nice asymptotic properties of our

estimates both when the dimension of data p is fixed and also when p → ∞. As the dimension of

statistical problems grows rapidly and sometimes the sample size is not sufficiently large, or even

smaller than p, our asymptotic property when p→∞ is more relevant for big data analysis. Second,

we studied the existence of the MLE by finding the smallest facial set of the marginal polytope of

the hierarchical log-linear model. When the dimension of the marginal polytope is very large, we

propose proper inner and outer approximations. Most of the time our approximations can capture

the smallest face of the sufficient statistic, which is the real space the data fall into.

Throughout our research, we assume that the hierarchical log-linear model structure is known

as a prior knowledge. For real data examples, we apply the l1–penalized logistic regression method

proposed by Ravikumar et al. (2011) for finding the model structure. A problem of this method is

that the logistic regression only gave the neighbours of a vertex, it didn’t take 3-way or high-way

interactions among variables into consideration. The model learning problem is still a difficult task

to accomplish in the areas of hierarchical log-linear and graphical models. In Gaussian graphical

model literature, researchers proposed various Bayesian structure learning algorithms, but we didn’t
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see much work in the discrete graphical model field. In terms of the prior distribution for the

parameters in hierarchical log-linear models, we can use the conjugate prior distribution given by

Massam et al. (2009), but we still need to think about the graph structure search algorithms. This

will be the direction of our future work, and the research in Gaussian graphical models can give us

a good point of departure.
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A Three properties of matrix eigenvalues

The following two lemmas about the eigenvalue of rank one matrices have trivial proofs.

Lemma A.0.1. A matrix u⊗ u where u is a vector of dimension |J | has only one non-zero eigen-

value, which is equal to ‖u‖2
F .

Lemma A.0.2. Let a, b be two vectors of same dimension J . The matrix a⊗ b has rank one, and

therefore has only one nonzero eigenvalue whose value is 〈a, b〉.

Lemma A.0.3. If A,B,C are three square matrices such that A = B+C, then we have the classical

inequality for minimum eigenvalue λmin(A) ≥ λmin(B) + λmin(C). We also have the inequality:

λmin(A) ≥ λmin(B)− ‖C‖2,

where ‖C‖2 is the operator norm of C.

Proof. We need only prove the second inequality.

λmin(B) = min
‖x‖2=1

x
′
Bx = min

‖x‖2=1
{x′Ax+ x

′
(−C)x} ≤ y

′
Ay + y

′
(−C)y, ∀y such that ||y|| = 1.

Let y0 be the unit-norm eigenvector of A corresponding to the minimum eigenvalue of A. Then

since y
′
0(−C)y0 ≤ max||z||=1z

′
(−C)z,

yt0Ay0 = λmin(A) ≥ λmin(B)− y′0(−C)y0 ≥ λmin(B)− max
‖z‖2=1

z
′
(−C)z

= λmin(B)− λmax(−C)

≥ λmin(B)− ‖−C‖2 = λmin(B)− ‖C‖2,
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where the last inequality is due to the fact that λmax(−C) ≤ ‖−C‖2 and the lemma is proved.
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B Some proofs

B.1 Proof of Lemma 4.1.1

We will use the notation j /0 j
′ to mean that j / j′ or j = 0, the zero cell. Let pMv(i) denote the

marginal probability of i ∈ IMv . We know that theMv-marginal distribution ofXMv is multinomial.

By the general parametrization of the multinomial model (2.1.7), for j ∈ J, S(j) ⊂Mv, since S(j)

is complete,

θMv
j =

∑
j′∈J, j′/j

(−1)|S(j)|−|S(j′)| log
pMv(j′)

pMv(0)
, (B.1.1)

where by abuse of notation, j such that S(j) ⊂Mv is considered as an element of IMv .

Moreover,

pMv(j) =
∑

i∈I: iMv=j

p(i) =
∑

i∈I, iMv=j

exp{
∑

j′ | j′/0j

θj′ +
∑
j′ | j′/i
j′ 6/j

j′Mv
/0j

θj′}

=
(

exp
∑

j′ | j′/0j

θj′
)(

1 +
∑

i∈I, iMv=j

exp
∑
j′ | j′/i
j′ 6/j

j′Mv
/0j

θj′
)
.

Therefore log pMv(j) =
∑

j′ | j′/0j
θj′+log

(
1+
∑

i∈I, iMv=j exp
∑

j′ | j′/i
j′ 6/j

θj′
)
, which we can write

∑
j′ | j′/0j

θj′ = log pMv(j)− log
(

1 +
∑

i∈I, iMv=j

exp
∑
k | k/i
k 6/j

θk

)
. (B.1.2)

Moebius inversion formula states that for a ⊆ V an equality of the form
∑

b⊆a Φ(b) = Ψ(a) is

equivalent to Φ(a) =
∑

b⊆a(−1)|a\b|Ψ(b). Here, using a generalization of the Moebius inversion
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formula to the partially ordered set given by / on J , we derive from (B.1.2) that for j ∈ JMv ⊂ J

θj =
∑

j′ | j′/0j

(−1)|S(j)−S(j′)| log pMv(j′)

−
∑

j′ | j′/0j

(−1)|S(j)−S(j′)| log
(

1 +
∑

i∈I, iMv=j′

exp
∑
k | k/i
k 6/j′

θk

)
= θMv

j −
∑

j′ | j′/0j

(−1)|S(j)−S(j′)| log
(

1 +
∑

i∈I, iMv=j′

exp
∑
k | k/i
k 6/j′

θk

)
(B.1.3)

which we prefer to write as (4.1.9).

B.2 Proof of lemma 4.1.2

Since (4.1.9) is already proved, statement (2.) holds. Let us prove that statement (1.) holds,

i.e., that when S(j) 6⊂ Bv, the alternating sum on the right-hand side of (4.1.9) is equal to 0. Since

j ∈ J , S(j) is necessarily complete and j′ / j is obtained by removing one or more vertices from

S(j).

If S(j) ∩ Bv 6= ∅ but S(j) 6⊂ Bv, there is at least one vertex w ∈ S(j) which is not in Bv. Let

l0 and lw be the log terms in the alternating sum corresponding to j′ = 0 and j′w / j such that

S(j′w) = {w} respectively. Since for any neighbours u of w in Mv and for any i ∈ I such that

iMv = j′, the u-th coordinate iu must be zero and since w cannot have a neighbour outside Mv,

the set {θk, k / i(1), k 6 /j′} in l0 for i(1) such that i
(1)
Mv

= 0 is the same as the set {θk, k / i(2), k 6 /j′}

in lw for i(2) such that i
(2)
Mv

= j′w and i
(2)
V \Mv

= i
(1)
V \Mv

. The terms in l0 and lw in (4.1.9) are therefore

exactly the same except for their sign, and these two terms cancel out. Similarly, for any given j′ /j

with w 6∈ S(j′), let j′w ∈ J be such that S(j′w) = S(j)∪{w} and j′w /j, then, the set θk, k / i
(1), k 6 /j′

in lj′ and the set θk, k / i
(2), k 6 /j′w in lj′w are identical where, similarly to the argument above, i(1) is

such that i
(1)
Mv

= j′ and i(2) is such that i
(1)
Mv

= j′w and i
(2)
V \Mv

= i
(1)
V \Mv

. Therefore the terms lj′ and

lj′w cancel out and (1.) is proved.
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To prove that (3.) holds, following (2.1.7), we have, for S(i) = E ⊂Mv

θMv
i =

∑
F⊂E

(−1)|E\F | log pMv(iF , 0Mv\F )

=
∑
F⊂E

(−1)|E\F | log
(
p(iF , 0V \F ) +

∑
L⊂V \Mv

∑
kL∈IL

p(iF , 0Mv\F , kL, 0V \(Mv∪L))
)

=
∑
F⊂E

(−1)|E\F | log
(

exp(
∑

j∈J,j/iF
θj) +

∑
L⊂V \F

∑
kL∈IL

exp(
∑

j∈J,j/iF
θj +

∑
j 6/iF ,j/(iF ,kL)

θj)
)

=
∑
F⊂E

(−1)|E\F | log
(

exp(
∑

j∈J,j/iF
θj)
)

(B.2.1)

+
∑
F⊂E

(−1)|E\F | log(1 +
∑

L⊂V \F

∑
kL∈IL

exp(
∑

j 6/iF ,j/(iF ,kL)

θj)
)

= θi +
∑
F⊂E

(−1)|E\F | log(1 +
∑

L⊂V \F

∑
kL∈IL

exp(
∑

j 6/iF ,j/(iF ,kL)

θj)
)

(B.2.2)

Now, following an argument similar to that of (1.) above, we can show that the second component

of the sum in (B.2.2) is equal to zero. It follows that when θi = 0, we have θMv
i = 0. This completes

the proof of Lemma 4.1.2.

B.3 Proof of Theorem 4.3.1

The local relaxed marginal log likelihood is

lMl,v(θMl,v) =
N∑
k=1

log pMl,v(XMv = i
(k)
Mv

) =
∑

iMv∈IMv

n(iMv) log pMl,v(iMv)

= 〈θMl,v , tMl,v〉 −NkMl,v(θMl,v)

It is immediate to see that ∂l
Ml,v (θ

Ml,v )
∂θj

= t(j) − pMl,v(jS(j)) where pMl,v(jS(j)) denotes the jS(j)-

marginal cell probability in theMl,v-marginal model. Therefore the likelihood equations ∂l
Ml,v (θ

Ml,v )
∂θj

=

0, j ∈ JMl,v yield

t(j)− pMl,v(jS(j)) = 0, (B.3.1)

where t(j) = n(jS(j)).
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The following proof stands both in the case of one-hop and two-hop neighbourhood. We present

it for the more general case of the two hop neighbourhood. The local conditional log likelihood is

lv,2PS(θv,2PS) =
∑

iMv∈IMv

n(iMv) log
p(Xv = iv, XNv = iNv , XN2v = iN2v)

p(XN2v = iN2v)

=
∑

iMv∈IMv

n(iMv) log
pM

2,v
(XMv = iMv)

pM2,v(XN2v = iN2v)

=
∑

iMv∈IMv

n(iMv) log pM
2,v

(XMv = iNv)−
∑

iN2v
∈IN2v

n(iN2v) log pM
2,v

(XN2v = iN2v)

= lM2,v(θM2,v)−
∑

iN2v
∈IN2v

n(iN2v) log
∑

xv∪Nv∈Iv∪Nv

pM
2,v

(Xv∪Nv = xv∪Nv , XN2v = iN2v)

= lM2,v(θM2,v)−Q (B.3.2)

where

Q =
∑

iN2v
∈IN2v

n(iN2v) log
∑

xv∪Nv∈Iv∪Nv

exp
(
θ0 +

∑
k/(xv∪Nv ,iN2v

)

k∈JM2,v

θk

)
(B.3.3)

and θ0 = − log(
∑

iMv∈IMv
exp

∑
k/iMv ,k∈JM2,v θk). The second equality above is due to the fact that

in the expression (4.1.3) of
p(Xv=iv ,XNv=iNv ,XN2v

=iN2v
)

p(XN2v
=iN2v

)
, the θj such that S(j) 6∈ Mv and the θj such

that S(j) ⊂ N2v cancel out from the numerator and denominator, and it therefore does not matter,

for the conditional distribution of Xv∪Nv given XN2v , what the relationship between the neighbours

are. The only thing that matters is the relationship between the vertices in v∪Nv, and the vertices

in Mv, and according to Lemma 4.1.2, that remains unchanged when we change from the global

model to the M2,v-marginal models.

We now differentiate the expression of lv,2PS in (B.3.3) with respect to θj, j ∈ JM2,v . We first

note that

∂θ0

∂θj
= pM

2,v

(jS(j)).
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If we use the notation

1j/(xv∪Nv ,iN2v
) =


1 if j / (xv∪Nv , iN2v)

0 otherwise

,

and the notation pM2,v(iE), E ⊂ Mv to denote the marginal probability of XE = iE in the M2,v-

marginal model, we have

∂Q

∂θj
=

∑
iN2v

∈IN2v

n(iN2v)

∑
xv∪Nv∈Iv∪Nv p

M2,v
(xv∪Nv , iN2,v)

(
1j/(xv∪Nv ,iN2v

) − pM
2,v

(jS(j))
)

pM2,v(iN2,v)
.

If j ∈ JM2,v is such that S(j) ⊂ N2v, then 1j/(xv∪Nv ,iN2v
) = 1jN2v

/iN2v
and

∂Q

∂θj
=

∑
iN2v

∈IN2v

n(iN2v)
pM

2,v
(iN2v)

(
1jN2,v

/iN2v
− pMl,v

(jS(j))
)

pM2,v(iN2v)

=
∑

iN2v
∈IN2v

n(iN2v)
(
1jN2,v

/iN2,v
− pM2,v

(jS(j))
)

= n(jS(j))−NpM
2,v

(jS(j))

At the MLE of the local Ml,v model, from standard likelihood equations (see Lauritzen, 1996,

Theorem 4.11), we have p̂M
l,v

(jS(j)) =
n(jS(j))

N
and therefore

∂Q

∂θj
= 0, j ∈ JM2,v , S(j) ⊂ N2v. (B.3.4)

If j ∈ JM2,v is such that S(j) 6⊂ N2v, i.e. if j ∈ Jv,2PS,

∂Q

∂θj
=

∑
iN2v

∈IN2v

n(iN2v)
pM

2,v
(jS(j)∩(v∪Nv), iN2v)1jN2v

/iN2v
− pM2,v

(jS(j))p
M2,v

(iN2v)

pM2,v(iN2v)

= −pM2,v

(jS(j))
∑

iN2v
∈IN2v

n(iN2v) +
∑

iN2v
∈IN2v

n(iN2v)

pM2,v(iN2v)
pM

2,v

(jS(j)∩(v∪Nv), iN2v)1jN2v
/iN2v

Since in the M2,v-marginal model, all the vertices in N2,v are connected by construction, at the

MLE of the local M2,v model, p̂M
2,v

(iN2v) =
n(iN2v

)

N
and therefore

∂Q

∂θj
= −NpM2,v

(jS(j)) +N
∑

iN2v
∈IN2v

pM
2,v

(jS(j)∩(v∪Nv), iN2v)1jN2v
/iN2v

= −NpM2,v

(jS(j)) +NpM
2,v

(jS(j)) = 0 (B.3.5)
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It follows from (B.3.4) and (B.3.5) that the 2PS component of θ̂M2,v , i.e.

θ̂
M2,v

j , j ∈ J2,PS

is the MLE of the local two-hop conditional likelihood. We therefore have

θ̂v,2PS = (θ̂M2,v)2PS.

B.4 Proof of Theorem 5.1.1

Given the definition of θ̄, to show (5.1.1), we only need to show that

√
N(θ̂ − θ̃∗)→ N(0, G)

where θ̃∗ is the column vector obtained by stacking up θ∗v, v ∈ V into one column vector. Through

a classical expansion of the local conditional likelihood function l(θv) =
∑N

k=1 l
v,PS(θv,PS|X(k)), we

have that

√
N(θ̂v − θ̃∗v) =

1√
N
I−1(θ∗v)

N∑
k=1

∂l(θ∗v|X(k))

∂θ∗v
+RN

where Rn tends to 0 in probability as n → +∞. Let Uv,k = I−1(θ∗v)∂l(θ
∗v |X(k))
∂θ∗v and let Uk be the

vector obtained by stacking up the vectors Uv,k, v ∈ V into a column vector. For Ūn =
∑N

k=1 Uk,

we can then write

√
N(θ̂v − θ̃∗v) =

√
NŪN +RN .

Each vector Uk, k = 1, . . . , N clearly have mean 0 and covariance G, as defined in (5.1.2). It is

immediate to show that G is finite. By the central limit theorem we thus have that
√
N(θ̂− θ̃∗)→

N(0, G) and
√
N(θ̂−θ∗)→ N(0, AGAt). The asymptotic expression for (5.1.3) is also an immediate

consequence of this asymptotic distribution.
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B.5 Proof of Theorem 5.1.2

From standard asymptotic theory, we know that the asymptotic variance of θ is equal to

( ∂2kM̄2,v

∂(θM̄2,v)2

)−1

(B.5.1)

evaluated at the corresponding true value of the parameter. It will be convenient in the sequel to

represent the symmetric matrix K = ∂2kM̄2,v

∂(θM̄2,v )2
according to the different blocks determined by the

subvectors of θM̄2,v as follows

K =



KJ1,v ,J1,v KJ1,v ,B1,v KJ1,v ,J2\1,v KJ1,v ,B2,v

KB1,v ,J1,v KB1,v ,B1,v KB1,v ,J2\1,v KB1,v ,B2,v

KJ2\1,v ,J1,v KJ2\1,v ,B1,v KJ2\1,v ,J2\1,v KJ2\1,v ,B2,v

KB2,v ,J1,v KB2,v ,B1,v KB2,v ,J2\1,v KB2,v ,B2,v


.

We observe that in the M̄2,v model, the subset B1,v ⊂ V separates {v} from V \M1,v and the set

B1,v is complete. Therefore using a standard formula in graphical models, we have that

K−1 =

KJ1,v ,J1,v KJ1,v ,B1,v

KB1,v ,J1,v KB1,v ,B1,v


−1

+


KB1,v ,B1,v KB1,v ,J2\1,v KB1,v ,B2,v

KJ2\1,v ,B1,v KJ2\1,v ,J2\1,v KJ2\1,v ,B2,v

KB2,v ,B1,v KB2,v ,J2\1,v KB2,v ,B2,v



−1

−K−1
B1,v ,B1,v

where matrices on the right-hand-side of the equation are ”padded” with zeros in the appropriate

blocks.

Let θJ1,v = (θj, j ∈ J1,v), then the covariance matrix of (θ̂M̄
2,v

)J1,v is [K−1]J1,v . From the previous

expression of K−1, we have

[K−1]J1,v =
[KJ1,v ,J1,v KJ1,v ,B1,v

KB1,v ,J1,v KB1,v ,B1,v


−1 ]

J1,v

(B.5.2)
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Since (θ)j, j ∈ J1,v ∪B1,v) = θM1,V , we have thatKJ1,v ,J1,v KJ1,v ,B1,v

KB1,v ,J1,v KB1,v ,B1,v

 =
∂2kM̄1,v

∂(θM̄1,v)2
= [var(θM1,v)]−1

and therefore

[K−1]J1,v = [var(θM1,v)]J1,v = var([θM1,v ]J1,v). (B.5.3)

Moreover, using standard linear algebra formulas, we have that

[K−1]J1,v =
(
KJ1,v◦(B1,v∪J2\1,v∪B2,v)

)−1

≥
(
KJ1,v◦(J2\1,v∪B2,v)

)−1

=
[
(KJ1,v∪J2\1,v∪B2,v)

−1
]
J1,v

,

(KJ1,v∪J2\1,v∪B2,v)
−1 = var(θ̂M2,v), (B.5.4)

(KJ1,v∪J2\1,v∪B2,v)
−1 ≥ (KJ1,v∪J2\1,v∪B2,v)

−1. (B.5.5)

Combing (B.5.2), (B.5.3) and (B.5.4), we obtain that

var([θ̂M1,v ]J1,v) ≥ var([θ̂M2,v ]J1,v),

which is the first inequality in (5.1.5). Now, combining (B.5.4) and (B.5.5), we obtain that

var([θ̂M2,v ]J1,v) ≥ var(θ̂J1,v)

and taking the diagonal elements of those matrices yields (5.1.5). �

B.6 Proof of Theorem 5.2.1

To prove Theorem 5.2.1, we need two preliminary results.

Lemma B.6.1. Let θv,∗ = (θ∗)v,PS be the true value of the parameter for the conditional model of

Xv given XNv , and let θ̂v,PS be the value of θv,PS that maximizes lv,PS(θv,PS). Then, for tJv,PS as

in (5.2.2), if there exists ε > 0 such that

‖tJv,PS − (kv,PS)
′
(θv,∗)‖∞ ≤ ε ≤ C2

min

10Dmaxdv
(B.6.1)
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then

‖θ̂v,PS − θv,∗‖F ≤
5
√
dvε

Cmin
(B.6.2)

Proof. To simplify our notation in this proof, we drop any subscripts and superscripts containing v

or PS, except when it is necessary to keep them to make the argument clear.

Let Q(∆) = l(θ∗)− l(θ∗ + ∆). Clearly Q(0) = 0 and Q(∆̂) ≤ Q(0) = 0, where ∆̂ = θ̂ − θ∗. Let

||∆||F =
√∑

j∈Jv,PS ∆2
j denote the Frobenius norm of ∆. Define C(δ) = {∆ | s.t. ‖∆‖F = δ}. Since

Q(∆) is a convex function of ∆, if we can prove

inf
∆∈C(δ)

Q(∆) > 0, (B.6.3)

then, by convexity of Q, it will follow that ∆̂ must lie within the sphere defined by C(δ), i.e.

‖∆̂‖F ≤ δ. We are now going to prove that there exists δ > 0 such that on C(δ), Q(∆) > 0. For

∆ ∈ C(δ), we have

Q(∆) = l(θ∗)− l(θ∗ + ∆) = θ∗tt− k(θ∗)− ((θ∗ + ∆)tt− k(θ∗ + ∆))

= k(θ∗ + ∆)− k(θ∗)−∆tt = ∆tk
′
(θ∗) + 1

2
∆tk

′′
(θ∗ + α∆)∆−∆tt, α ∈ [0, 1]

= ∆t[k
′
(θ∗)− t]︸ ︷︷ ︸
Q1

+
1

2
∆tk

′′
(θ∗ + α∆)∆︸ ︷︷ ︸
Q2

(B.6.4)

By Hölder’s and Cauchy’s inequality, we have the following bound for Q1.

|Q1| = |∆t[k
′
(θ∗)− t]| ≤ ‖k′(θ∗)− t‖∞||∆||1 ≤ ε

√
d‖∆‖F = ε

√
dδ (B.6.5)

For Q2, we have

Q2 ≥
1

2
‖∆‖2

F min
α∈[0,1]

λmink
′′
(θ∗ + α∆) =

1

2
δ2 min

α∈[0,1]
λmink

′′
(θ∗ + α∆) (B.6.6)

We now want to bound the term q = minα∈[0,1] λmin[k
′′
(θ∗ + α∆)] from below. We change the

input of function zyv(θ) in equation (5.2.4) to be zyv(θ + α∆) =
∑

j∈J ;v∈S(j)(θj + α∆j)fj(yv, x
(n)
Nv ),
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so that we can rewrite the entries of H in (5.2.5) as

ηn,vk,l (θ∗ + α∆, x
(n)
Nv ) =


exp zkv (θ∗+α∆)

1+
∑
yv∈Iv\{0} exp zyv (θ∗+α∆)

− (
exp zkv (θ∗+α∆)

1+
∑
yv∈Iv\{0} exp zkv (θ∗+α∆)

)2, if kv = lv

− exp zkv (θ∗+α∆) exp zlv (θ∗+α∆)

(1+
∑
yv∈Iv\{0} exp zyv (θ∗+α∆))2 , if kv 6= lv

then

∂ηn,vk,l (θ∗ + α∆, x
(n)
Nv )

∂α
=

∑
yv∈Iv\{0}

(ηn,vk,l )
′
yv(θ

∗ + α∆, x
(n)
Nv )

∂zyv
∂α

,

where (ηn,vk,l )
′
yv(θ

∗ + α∆, x
(n)
Nv ) =

∂ηn,vk,l (θ∗+α∆,x
(n)
Nv )

∂zyv
. It is easy to see that these derivatives can all be

expressed in terms of probabilities of the type (5.2.3) and that they are always less than 1 in absolute

value. Therefore, since ∂zyv (θ+α∆)

∂α
=
∑

j∈J ;v∈S(j) ∆jfj(yv, x
n
Nv), we have

|∂η
n,v
k,l (θ∗+α∆,x

(n)
Nv )

∂α
| ≤

∑
yv∈Iv\{0}

∂zyv
∂α

=
∑

yv∈Iv\{0}
∑

j∈J ;v∈S(j) ∆jfj(yv, x
n
Nv)

=
∑

j∈J ;v∈S(j) ∆j

∑
yv∈Iv\{0} fj(yv, x

n
Nv) = 〈∆,W n〉 ,

(B.6.7)

since for each j ∈ Jv,PS,
∑

yv∈Iv\{0} fj(yv, x
n
Nv) = fj(jv, x

n
Nv) = W n

j .

The Taylor series expansion of ηn,vk,l (θ∗ + α∆, x
(n)
Nv ) yields

ηn,vk,l (θ∗ + α∆, x
(n)
Nv ) = ηn,vk,l (θ∗, x(n)

Nv ) + α
∂ηn,vk,l (θ∗ + α′∆, x(n)

Nv )

∂α
, α

′ ∈ [0, α] .

Let K(θ∗+α
′
∆, x

(n)
Nv ) denote the dv×dv matrix with entry

∂ηn,vk,l (θ∗+α∆,x
(n)
Nv )

∂α
. Coming back to (B.6.6),

we have

k
′′
(θ∗ + α∆) = 1

N

∑N
n=1

[
H(θ∗ + α∆, x

(n)
Nv ) ◦ [W n(W n)t]

]
= 1

N

∑N
n=1H(θ∗, x(n)

Nv ) ◦ [W n(W n)t] + α 1
N

∑N
n=1K(θ∗ + α

′
∆, x

(n)
Nv ) ◦ [W n(W n)t] .

We write ||X||2 = λmax(X) for the operator norm of a matrix X. By Lemma A.0.3,

λmin

(
k
′′
(θ∗+α∆)

)
≥ λmin

( 1

N

N∑
n=1

H(θ∗, x(n)
Nv )◦[W n(W n)t]

)
−‖α 1

N

N∑
n=1

K(θ∗+α
′
∆, x

(n)
Nv )◦[W n(W n)t]‖2
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and since |α| < 1, we have

q = minα∈[0,1] λmin[ 1
N

∑N
n=1H(θ∗ + α∆, x

(n)
Nv )W n(W n)t]

≥ λmin( 1
N

∑N
n=1

[
H(θ∗, x(n)

Nv ) ◦ (W n(W n)t)
]
)

−maxα∈[0,1] ‖α 1
N

[
∑N

n=1 K(θ∗ + α∆, x
(n)
Nv ) ◦ (W n(W n)t)]‖2

≥ Cmin −maxα∈[0,1]‖
1

N

N∑
n=1

∆tW n(W n(W n)t)︸ ︷︷ ︸
A

‖2

= Cmin −maxα∈[0,1] ||A||2 ,

(B.6.8)

where the last but one inequality is due to our Assumption (B). We now need to bound the spectral

norm of A = 1
N

∑N
n=1 ∆tW n(W n(W n)t). For any α ∈ [0, 1] and y ∈ Rdv with ||y||F = 1, we have

〈y, Ay〉 =
1

N

N∑
n=1

(∆tW n)(ytW n)2 ≤ 1

N

N∑
n=1

|∆tW n|(ytW n)2,

|∆tW n| 6
√
d||∆||F =

√
dδ . (B.6.9)

and, by definition of the operator norm and from Assumption (B),

1

N

N∑
n=1

(ytW n)2 ≤ || 1
N

N∑
n=1

W n(W n)t||2 < Dmax . (B.6.10)

From (B.6.8), (B.6.9) and (B.6.10), we obtain maxα∈[0,1] ||A||2 ≤ Dmax

√
dδ and therefore

q ≥ Cmin −Dmax

√
dδ .

Substituting this into (B.6.6), we get

Q2 ≥
1

2
δ2(Cmin −Dmax

√
dδ). (B.6.11)

From the two inequalities (B.6.5) and (B.6.11), it follows that

Q(∆) ≥ Q2 − |Q1| ≥
1

2
δ2(Cmin −Dmax

√
dδ)− ε

√
dδ. (B.6.12)
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To simplify the problem, we can choose δ such that Cmin −Dmax

√
dδ ≥ Cmin

2
, that is, δ ≤ Cmin

2Dmax
√
d
.

Then inequality (B.6.12) becomes

Q(∆) ≥ Cminδ
2

4
− ε
√
dδ

and Q(∆) is positive if we let δ = 5
√
dε

Cmin
. Moreover δ ≤ Cmin

2Dmax
√
d

yields the following bound of ε:

ε ≤ C2
min

10Dmaxd
.

We have therefore shown that (B.6.3) holds for δ = 5
√
dε

Cmin
and the lemma is proved.

In the next lemma, we make use of the Hoeffding inequality (seeHoeffding (1963), Theorem 2)

which states the following. If X1, X2, · · · , Xn are independent and ai ≤ Xi ≤ bi(i = 1, 2, · · · , n),

then for ε > 0

p(|X̄ − µ| ≥ ε) ≤ 2 exp
( −2n2ε2∑n

i=1(bi − ai)2

)
. (B.6.13)

Lemma B.6.2. Let tJv,PS , k
v,PS and dv be as defined above. For any ε > 0, we have

p({max
v∈V
‖tJv,PS − (kv,PS)

′
(θv,∗)‖∞ ≥ ε}) ≤ 2|J | exp(−2Nε2) . (B.6.14)

Proof. For j ∈ Jv,PS, we clearly have

Eθ∗
(∂l(θ)
∂θj

)
= Eθ∗

(
tj −

∂k(θ)

∂θj

)
= Eθ∗

( 1

N

N∑
n=1

fj(x
(n)
v , x

(n)
Nv )− p(xv = jv|xnNv)fj(xv = jv, x

(n)
Nv )
)

= 0

We note that since x
(n)
Nv is given and fj(x

(n)
v , x

(n)
Nv ) takes values 0 or 1, we have E(fj(x

(n)
v , x

(n)
Nv )) =

p(xv = jv|xnNv)fj(xv = jv, x
(n)
Nv ) and by Hoeffding’s inequality (B.6.13), we have

p(|tj − k
′
j(θ
∗)| ≥ ε) ≤ 2 exp−2N2ε2

2N
= 2 exp(−2Nε2)

Since {maxv∈V ‖tJv,PS − (kv,PS)
′
(θ∗)‖∞ ≤ ε} = ∩j∈∪Jv,PS{‖tJv,PS − (kv,PS)

′
(θ∗)‖ ≤ ε}, we have
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that

P (max
v∈V
‖tJv,PS − (kv,PS)

′
(θ∗)‖∞ ≤ ε) = 1− P (∪j∈∪Jv,PS‖tJv,PS − (kv,PS)

′
(θ∗)‖ ≥ ε)

≥ 1−
∑

j∈∪Jv,PS
P (‖tJv,PS − (kv,PS)

′
(θ∗)‖ ≥ ε),

≥ 1− 2|J | exp(−2Nε2)

which proves the lemma.

Proof of Theorem 5.2.1

Let ε = C
√

log p
N

, where C is a constant that we will choose later in this proof. From Lemma

B.6.2, we have

p(max
v∈V
‖tJv,PS − (kv,PS)′(θ∗)‖∞ ≥ C

√
log p

N
) ≤ 2|J | exp(−2C2 log p) =

2|J |
p2C2 (B.6.15)

From Lemma B.6.1, for ε = C
√

log p
N
≤ C2

min

10Dmaxdv
, i.e. for N ≥ (10CDmaxdv

C2
min

)2 log p, we have

‖tJv,PS − (kv,PS)′(θ∗)‖∞ ≤ ε ≤ C2
min

10Dmaxdv
⇒ ‖θ̂v,PS − θv,∗‖F ≤

5
√
dvε

Cmin
.

The MCLE θ̄ obtained by the local averaging of the θ̂v,PS from each conditional model can then

be bounded as follows:

‖θ̄ − θ∗‖F ≤
(∑

v∈V ‖θ̂v,PS − θv,∗‖2
F

) 1
2

≤ (
∑

v∈V (
5
√
dvC
√

log p
N

Cmin
)2)

1
2 = 5C

Cmin

√∑
v∈V dv log p

N

Therefore under the condition N ≥ maxv∈V (10CDmaxdv
C2
min

)2 log p, we have

p(‖θ̄ − θ∗‖F ≤
5C

Cmin

√∑
v∈V dv log p

N
) ≥ p(max

v∈V
‖tJv,PS − k

′v,PS(θ∗)‖∞ ≤ C

√
log p

N
) ≥ 1− 2|J |

p2C2

with the last inequality due to (B.6.15).

The theorem would make no sense if the probability of the convergence rate was negative, and

thus C must satisfy

1− 2|J |
p2C2 > 0⇒ C ≥

√
log(2|J |)

2 log p
.

�
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B.7 Proof of Theorem 5.2.2

We first need to prove a series of lemmas. We recall our two assumptions:

(A′) there exists Dmax > 0 such that λmax

(∑
i∈I

fi ⊗ fi
)
≤ Dmax,

(B′) 0 < κ∗ = λmin

[
k
′′
(θ∗)

]
.

Assumption A
′

yields an upper bound for the maximum eigenvalue of the Fisher information

matrix as stated in the following lemma.

Lemma B.7.1. If assumption A
′

is satisfied, then

λmax(k
′′
(θ∗)) ≤ Dmax

Proof. First, the diagonal elements of k
′′
(θ∗) are {P ∗j − P ∗2j |j ∈ J}, therefore, since P ∗j − P ∗2j ≤ 1

4
,

we have

λmax(k
′′
(θ∗)) ≤

∑
j∈J

P ∗j − P ∗2j ≤
|J |
4
.

Since for a symmetric matrix A, λmax(A) = max||y||=1y
tAy, we have

λmax

(∑
i∈I

fi ⊗ fi
)
≥ 1

|J |

|J |∑
i=1

|J |∑
j=1

aij,

where aij are the entries of
∑

i∈I fi ⊗ fi. The sum of the elements in matrix fi ⊗ fi is |{j|j / i}|2

and therefore
|J |∑
i=1

|J |∑
j=1

aij =
∑
i∈I
|{j|j / i}|2 ≥ |J |2.

Thus

λmax

(∑
i∈I

fi ⊗ fi
)
≥ |J | ≥ |J |

4
≥ λmax(k

′′
(θ∗)),

and

max
v∈V

λmax(k
′′
(θ∗)) ≤ Dmax
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The next lemma gives an upper bound for the square error of the MLE θ̂G in the global model.

Lemma B.7.2. Let t = {tj|j ∈ J} be the vector of marginal cell counts, and let P (θ∗) ∈ R|J | be

the vector of marginal cell probabilities in the global model at the true value of the parameter θ∗. If

‖ t
N
− k′(θ∗)‖∞ ≤ ε ≤ κ∗2

40|J |Dmax

, (B.7.1)

then

‖θ̂G − θ∗‖F ≤
5
√
|J |ε
κ∗

. (B.7.2)

Proof. From the log-likelihood function of our discrete graphical model, we have t
N

= k
′
(θ̂). Consider

the function Q(∆) = l(θ∗) − l(θ∗ + ∆), ∆ ∈ R|J |. Clearly, Q(0) = 0 and Q(∆̂) ≤ Q(0) = 0, where

∆̂ = θ̂G − θ∗.

Define C(δ) = {∆| ‖∆‖2 = δ}. Since Q(∆) is a convex function of ∆, if we can prove

inf
∆∈C(δ)

Q(∆) > 0,

it will follow that ∆̂ must lie in the sphere defined by C(δ). Therefore

‖∆̂‖2 ≤ δ.

We now try to find a suitable radius δ for which Q(δ) > 0.

For ∆ ∈ C(δ):

Q(∆) = l(θ∗)− l(θ∗ + ∆)

= < t
N
, θ∗ > −k(θ∗)− (< t

N
, θ∗ + ∆ > −k(θ∗ + ∆))

= k(θ∗ + ∆)− k(θ∗)− < t
N
,∆ >

(B.7.3)
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Inserting the Taylor expansion of k(θ∗ + ∆) around θ∗,

k(θ∗ + ∆)− k(θ∗) =< k
′
(θ∗),∆ > +∆T [

∫ 1

0

(1− α)k
′′
(θ∗ + α∆)dα]∆,

into (B.7.3), we obtain

Q(∆) = < k
′
(θ∗)− t

N
,∆ >︸ ︷︷ ︸

Q1

+ ∆T [

∫ 1

0

(1− α)k
′′
(θ∗ + α∆)dα]∆︸ ︷︷ ︸

Q2

(B.7.4)

For Q1, we have

|Q1| = | < k
′
(θ∗)− t

N
,∆ > | ≤ ‖k′(θ∗)− t

N
‖∞||∆||1

≤ ε
√
|J |‖∆‖2 = ε

√
|J |δ

(B.7.5)

For Q2, we have

Q2 ≥ ‖∆‖2
2λmin(

∫ 1

0
(1− α)k

′′
(θ∗ + α∆)dα)

≥ ‖∆‖2
2

∫ 1

0
(1− α)λmin(k

′′
(θ∗ + α∆))dα

≥ 1
2
‖∆‖2

2 minα∈[0,1] λmin(k
′′
(θ∗ + α∆))

(B.7.6)

We now need to bound the term minα∈[0,1] λmin[k
′′
(θ∗ + α∆)]. The Fisher information matrix is

k
′′
(θ) =

∑
i∈I exp<θ,fi>

L(θ)
(fi ⊗ fi)− (

∑
i∈I exp<θ,fi>

L(θ)
fi)⊗ (

∑
i∈I exp<θ,fi>

L(θ)
fi)

=
∑
i∈I exp<θ,fi>

L(θ)
(fi ⊗ fi)− P (θ)⊗ P (θ)

where P (θ) = k′(θ) is the vector of marginal probabilities. Therefore

k
′′
(θ∗ + α∆) =

∑
i∈I exp< θ∗ + α∆, fi >

L(θ∗ + α∆)
(fi ⊗ fi)︸ ︷︷ ︸

T1

−P (θ∗ + α∆)⊗ P (θ∗ + α∆)︸ ︷︷ ︸
T2

(B.7.7)

A Taylor expansion of e〈θ
∗+α∆,fi〉

L(θ∗+α∆)
around α = 0 is

e〈θ
∗+α∆,fi〉

L(θ∗ + α∆)
=
e〈θ
∗,fi〉

L(θ∗)
+
[ e〈θ∗+α∗∆,fi〉
L(θ∗ + α∗∆)

〈fi,∆〉 −
e〈θ
∗+α∗∆,fi〉

L(θ∗ + α∗∆)

∑
i∈I

e〈θ
∗+α∗∆,fi〉

L(θ∗ + α∗∆)
〈fi,∆〉

]
︸ ︷︷ ︸

Ai

(B.7.8)
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for some α∗ ∈ [0, α]. For each i ∈ I,

Ai =
[
pi(θ

∗ + α∗∆)〈fi,∆〉 − pi(θ∗ + α∗∆)
∑

i′∈I pi′ (θ
∗ + α∗∆)〈fi′ ,∆〉

]
=

[
pi(θ

∗ + α∗∆)
∑

j/i ∆j − pi(θ∗ + α∗∆)
∑

j∈J P (jS(j))∆j

]
=

[∑
j/i pi(θ

∗ + α∗∆)(1− P (jS(j))∆j −
∑

j 6/i pi(θ
∗ + α∗∆)P (jS(j))∆j

]
= 〈πi,∆〉,

where

πi = pi(θ
∗ + α∗∆)

(
(1− P (jS(j)), j / i, −P (jS(j)), j 6 /i

)
.

Therefore, by Cauchy-Schwarz inequality, we have that

|Ai| ≤ ||πi||2 × ||∆||2 ≤
√
|J |||∆||2 =

√
|J |δ.

Then T1 can be written as

T1 =
∑
i∈I

e〈θ
∗,fi〉

L(θ∗)
(fi ⊗ fi) +

∑
i∈I

Ai(fi ⊗ fi)

For term T2, there exists a |J |-dimensional vector u, such that

P (θ∗ + α∆) = P (θ∗) + u,

which means

u = P (θ∗ + α∆)− P (θ∗) = P (θ∗)
′
∆ + o(∆) = k

′′
(θ∗)∆ + o(∆2)

and thus ||u||F ≤ λmax[k
′′
(θ∗)]||∆||F +o(||∆||2F ). Therefore using Lemma B.7.1 and the fact that the

magnitude of o(||∆||2F ) is much smaller than the difference between λmax(k
′′
(θ∗)) and λmax(

∑
i∈I fi⊗

fi), we have ||u||F ≤ Dmaxδ.

Now, T2 can be written as

T2 = P (θ∗)⊗ P (θ∗) + u⊗ P (θ∗) + P (θ∗)⊗ u+ u⊗ u.
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If we plug T1, T2 back into (B.7.7), we have

k
′′
(θ∗ + α∆) = T1 − T2

=
∑

i∈I
e〈θ
∗,fi〉

L(θ∗) (fi ⊗ fi) +
∑

i∈I Ai(fi ⊗ fi)− P (θ∗)⊗ P (θ∗)

−u⊗ P (θ∗)− P (θ∗)⊗ u− u⊗ u

= k
′′
(θ∗) +

∑
i∈I Ai(fi ⊗ fi)− u⊗ P (θ∗)− P (θ∗)⊗ u− u⊗ u

(B.7.9)

From the first inequality of Lemma A.0.3, we know that

λmink
′′
(θ∗ + α∆) ≥ λmin

[
k
′′
(θ∗) +

∑
i∈I

Ai(fi ⊗ fi)
]

+λmin

[
− P (θ∗)⊗ P (θ∗)

]
+ λmin

[
− u⊗ P (θ∗)

]
+λmin

[
− P (θ∗)⊗ u

]
+ λmin

[
− u⊗ u

]
= λmin

[
k
′′
(θ∗) +

∑
i∈I

Ai(fi ⊗ fi)
]

−λmax
[
P (θ∗)⊗ P (θ∗)

]
− λmax

[
u⊗ P (θ∗)

]
−λmax

[
P (θ∗)⊗ u

]
− λmax

[
u⊗ u

]

where we also use the fact that P (θ∗) ⊗ u, u ⊗ P (θ∗), u ⊗ u are rank one matrices with only one

nonzero eigenvalue (positive or negative). From the second inequality of Lemma A.0.3, we know

that

λmin

[
k
′′
(θ∗) +

∑
i∈I

Ai(fi ⊗ fi)
]
≥ λmin

[
k
′′
(θ∗)

]
− ‖
∑

i∈I Ai(fi ⊗ fi)‖2

Therefore

min
α∈[0,1]

λmin(k
′′
(θ∗ + α∆)) ≥ λmin(k

′′
(θ∗))− max

α∈[0,1]
‖
∑
i∈I

Ai(fi ⊗ fi)‖2

−λmax(u⊗ P (θ∗))− λmax(P (θ∗)⊗ u)− λmax(u⊗ u)
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Bound the terms in the above formula, one by one:

λmin(k
′′
(θ∗)) ≥ κ∗.

We now want to control the spectral norm of the matrix
∑

i∈I Ai(fi ⊗ fi) for α ∈ [0, 1]. For any

fixed α ∈ [0, 1], and vector y ∈ RJMi,v
with ‖y‖2 = 1, we have

‖
∑

i∈I Ai(fi ⊗ fi)‖2 = max‖y‖2=1 y
′
(∑

i∈I Ai(fi ⊗ fi)
)
y = max‖y‖2=1

∑
i∈I Ai

(
y
′
(fi ⊗ fi)y

)
≤ max‖y‖2=1

∑
i∈I |Ai|y

′
(fi ⊗ fi)y.

Recall that for any α ∈ [0, 1], |Ai| ≤
√
|J |δ. Moreover, we have λmax(

∑
i∈I(fi ⊗ fi)) ≤ Dmax by

assumption. Combining these two pieces, we get

max
α∈[0,1]

‖
∑
i∈I

Ai(fi ⊗ fi)‖2 ≤
√
|J |δ max

‖y‖2=1
y
′∑
i∈I

(fi ⊗ fi)y =
√
|J |δλmax(

∑
i∈I

(fi ⊗ fi)) ≤
√
|J |δDmax.

The eigenvalue of P ⊗ u and u⊗ P as in Lemma A.0.2 is

λmax(u⊗ P (θ∗)) = λmax(P (θ∗)⊗ u) ≤ |〈P (θ∗), u〉| ≤ ‖P (θ∗)‖F‖u‖F ,

and since we have ‖P (θ∗)‖F =
√∑J

j=1 Pj(θ
∗)2 ≤

√
J and ‖u‖F ≤ Dmaxδ, then

λmax(u⊗ P (θ∗)) ≤
√
|J |Dmaxδ .

The eigenvalue of u⊗ u as in Lemma A.0.1 is

λmax(u⊗ u) = 〈u, u〉 = ‖u‖F‖u‖F ≤
√
|J |Dmaxδ,

since ‖u‖F = ‖P (θ∗ + α∆)− P (θ∗)‖F ≤
√
J (the difference of two positive quantities less than 1).

Combining all these pieces, we get the bound of the minimum eigenvalue of the Fisher informa-

tion matrix:

min
α∈[0,1]

λmin(k
′′
(θ∗ + α∆)) ≥ κ∗ −

√
|J |δDmax − 3

√
|J |Dmaxδ.
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Substitute this into (B.7.6) and we get

Q2 ≥
1

2
δ2(κ∗ −

√
|J |δDmax − 3

√
|J |Dmaxδ) =

1

2
δ2(κ∗ − 4

√
|J |δDmax). (B.7.10)

From the two inequalities (B.7.5) and (B.7.10), we have

Q(∆) ≥ Q2 − |Q1| ≥
1

2
δ2(κ∗ − 4

√
|J |δDmax)− ε

√
|J |δ. (B.7.11)

To simplify the problem, we can choose δ such that κ∗ − 4
√
|J |δDmax ≥ κ∗

2
, so that δ ≤ κ∗

8
√
|J |Dmax

.

Then inequality (B.7.11) becomes

Q(∆) ≥ κ∗δ2

4
− ε
√
|J |δ .

Q(∆) can be positive if we let δ =
5
√
|J |ε
κ∗ , which also gives us the following bound for ε:

ε ≤ κ∗2

40|J |Dmax

.

So, we have found a δ > 0 such that Q(∆) ≥ 0 and therefore

‖θ̂G − θ∗‖F ≤ δ =
5
√
|J |ε
κ∗

,

when

‖ t
N
− P ∗‖∞ ≤ ε ≤ κ∗2

40|J |Dmax

where P ∗ = k′(θ∗).

We can now proceed to proving Theorem 5.2.2

Proof of Theorem 5.2.2

Proof. Let ε = C
√

log p
N

, where C is a constant to be chosen later in the proof. From Hoeffding’s

inequality (see main file), we have

P{| tj
N
− P ∗j | ≥ C

√
log p

N
} ≤ 2 exp(−2Nε2) =

2

p2C2 .
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Applying the union bound yields

P (||( t
N
− P ∗)J ||∞ ≥ C

√
log p

N
) ≤

∑
j∈J

P{| tj
N
− P ∗j | ≥ C

√
log p

N
} ≤ 2|J |

p2C2 .

From Lemma B.7.2:

‖( t
N
− P ∗)J‖∞ ≤ C

√
log p

N
⇒ ‖θ̂ − θ∗‖F ≤

5C

κ∗

√
|J | log p

N
,

when

ε = C
√

log p
N
≤ κ∗2

40|J |Dmax

N ≥ (40C|J |Dmax
κ∗2 )2 log p.

Therefore when N ≥ (40C|J |Dmax
κ∗2 )2 log p,

p(‖θ̂ − θ∗‖F ≤
5C

κ∗

√
|J | log p

N
) ≥ p(‖( t

N
− P ∗)J‖∞ ≤ C

√
log p

N
) ≥ 1− 2|J |

p2C2 .

The theorem would not make sense if the probability of the convergence rate is negative. It follows

we need to have

1− 2|J |
p2C2 > 0⇒ C ≥ 2

√
log 2|J |

log p
.

B.8 Proof of Theorem 6.0.1

Theorem 6.0.1 goes back to Barndorff-Nielsen (2014), who studies the closure of much more

general exponential families. The case of a discrete exponential family is much easier.

For a probability measure p on I given, let supp(p) be the support of p. The theorem follows

from the following lemmas:

Lemma B.8.1. Let p ∈ EA. Then p ∈ EA,supp(p).
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Lemma B.8.2. Let p ∈ EA. Then EA,supp(p) ⊆ EA.

Lemma B.8.3. Let p ∈ EA. Then supp(p) is facial.

Lemma B.8.4. If F is facial, then there exists p ∈ EA with supp(p) = F .

Indeed, Lemma B.8.1 shows that EA ⊆
⋃
F EA,F , where the union is over all support sets F .

Lemma B.8.2 shows the converse containment is also true, so that EA =
⋃
F EA,F . It remains to

see that a subset F ⊆ I is a support set if and only if F is facial. This follows from Lemma B.8.3

and B.8.4.

In the proofs of Lemma B.8.1 to B.8.4, we need the following easy lemma for which we don’t

provide the proof:

Lemma B.8.5. p ∈ EA if and only if log(p) ⊥ kerA.

Proof of Lemma B.8.1. Let p = limk→∞ pk, where pk ∈ EA, and let F = supp(p). Then EA,F is the

exponential family EAF , where AF consists of the columns of A indexed by F . Any v ∈ kerAF can

be extended by zeros to v′ ∈ kerA. By Lemma B.8.5,

0 = 〈log(pk), v
′〉 =

∑
i∈F

log(pk(i))v(i)→ 〈log(p), v〉.

Thus, log(p) ⊥ kerAF , which implies p ∈ EA,F .

Proof of Lemma B.8.2. Let p = limk→∞ pk, where pk ∈ EA, let F = supp(p), and let q ∈ EA,F .

Then there exists parameter θ with log(q(i)) − log(p(i)) = 〈θ, fi〉 for all i ∈ F . For any k, there

exists a positive constant ck such that qk := ckpk exp(〈θ, A〉) ∈ EA. Then qk → q as k →∞, and so

q ∈ EA.

Proof of Lemma B.8.3. Let p = limk→∞ pk, where pk ∈ EA, and let F = FA(supp(p)). Then

x = 1
|supp(p)|

∑
i∈supp(p) fi is an interior point of the face corresponding to F , and thus there exist
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positive coefficients λi > 0, i ∈ F , with x =
∑

i∈F λifi. The vector v = (vi, i ∈ I) defined by

vi =



1
|supp(p)| − λi, i ∈ supp(p),

−λi, i ∈ F \ supp(p),

0, i /∈ F,

satisfies Av = x− x = 0. By Lemma B.8.5, log(pk) ⊥ v for all k. In particular,

∑
i∈F\supp(p)

λi log(pk(i)) =
∑

i∈supp(p)
log(pk(i))vi →

∑
i∈supp(p)

log(p(i))vi.

On the other hand, note that each coefficient λi for i ∈ F \ supp(p) on the left hand side is positive,

while log(pk(i))→ −∞ for i /∈ supp(p). This shows that F \ supp(p) = ∅.

Proof of Lemma B.8.4. If F is facial, there exist g ∈ Rh and c ∈ R with 〈g, fi〉 ≥ c for all i ∈ I

and 〈g, fi〉 = c if and only if i ∈ F . Let θ(s) = −s · g. Then

kF (θ(s)) + sc = log
∑
i∈I

exp(−s〈g, fi〉+ sc)→ log |F |,

and so

log pθ(s)(i) = −s〈g, fi〉 − kF (θ(s)) = (sc− s〈g, fi〉)− (kF (θ(s)) + sc)

→


− log |F |, if i ∈ F,

−∞, if i /∈ F,

as s→∞. Thus, pθ(s) converges to the uniform distribution on F .

B.9 Proof of Theorem 6.0.2

By definition, any EMLE p∗ belongs to the closure of the model. According to Theorem 6.0.1,

the support of p∗ is facial. If supp(p) does not contain supp(n), then the log-likelihood goes to

146



minus infinity, l̃(p) = −∞, and so p does not maximize the likelihood, therefore, supp(p∗) is a facial

set containing supp(n). Thus, Ft ⊆ supp(p∗).

By Lemma B.8.1, p∗ belongs to E∆,supp(p∗), which is parametrized by a vector θ, see Theorem 6.0.1.

On E∆,supp(p∗), the log-likelihood function in terms of this parameter θ is

lF (θ) =
∑
j∈J

θjtj −NkF (θ).

lF is strictly concave, and so it has a unique maximum. The critical equations are

Ap∗ =
t

N
,

proving the first property. Note that these equations are independent of the parameters and the

support of p∗. We now show that any solution to these equations is supported on the same face

of P as t
N

.

Let p be a probability distribution on I such that supp(p) does not contain Ft. This means that

there is a linear inequality 〈g, t〉 ≥ c that is valid on P and such that

• 〈g, fi〉 = c for all i ∈ Ft;

• 〈g, fi〉 > c for some i ∈ supp(p).

Then

〈g, Ap〉 =
∑
i

〈g, fi〉p(i) > c =
1

N

∑
i

n(i)〈g, fi〉 = 〈g, t
N
〉,

which implies Ap 6= t
N

. This shows supp(p∗) ⊆ Ft and finishes the proof of supp(p∗) = Ft.

We have now shown the two properties, and it remains to argue that the EMLE is unique.

But this follows from the fact that supp(p∗) is equal to Ft, and lF is strictly convex, such that the

likelihood has a unique maximizer on E∆,Ft .
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C Example: Two binary random variables

Consider two binary random variables, and let ∆ = {∅, {1}, {2}, {1, 2}}. The hierarchical model

E∆ is the saturated model ; that is, it contains all possible probability distributions with full support.

Then

Ã =



f00︷︸︸︷
1

f01︷︸︸︷
1

f10︷︸︸︷
1

f11︷︸︸︷
1

0 1 0 1

0 0 1 1

0 0 0 1



θ00

θ01

θ10

θ11

The marginal polytope is a 3-simplex (a tetrahedron) with facets

F00 : 1− t01 − t10 + t11 ≥ 0, F01 : t01 − t11 ≥ 0,

F10 : t10 − t11 ≥ 0, F11 : t11 ≥ 0.

Each of the corresponding facets contains three columns of Ã. Facet Fi in the above list does not

contain the column fi of Ã.

The EMLE of the saturated model is just the empirical distribution; that is, p∗ = 1
N
n. Suppose

that t lies on the facet F00 (i.e. n = (0, n01, n10, n11) with n(01), n(10), n(11) > 0). If pθ(s) → p∗,
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then pθ(s)(00)→ 0, while all other probabilities converge to a non-zero value. It follows that

θ
(s)
00 = log pθ(s)(00)→ −∞,

θ
(s)
01 = log

pθ(s)(01)

pθ(s)(00)
→ +∞,

θ
(s)
10 = log

pθ(s)(10)

pθ(s)(00)
→ +∞,

θ
(s)
11 = log

pθ(s)(11)pθ(s)(00)

pθ(s)(01)pθ(s)(10)
→ −∞.

On the other hand, θ
(s)
01 +θ

(s)
00 = log pθ(s)(01) converges to a finite value, as do θ

(s)
10 +θ

(s)
00 = log pθ(s)(10)

and θ
(s)
11 + θ

(s)
01 = log pθ(s)(11)/pθ(s)(10).

Proceeding similarly for the other facets, one can show for the limits θij := lims→∞ θ
(s)
ij :

θ00 θ01 θ10 θ11 finite parameter combinations:

F00 −∞ +∞ +∞ −∞ θ
(s)
01 + θ

(s)
00 , θ

(s)
10 + θ

(s)
00 , θ

(s)
11 + θ

(s)
01

F01 finite −∞ finite +∞ θ
(s)
00 , θ

(s)
10 , θ

(s)
01 + θ

(s)
11

F10 finite finite −∞ +∞ θ
(s)
00 , θ

(s)
01 , θ

(s)
10 + θ

(s)
11

F11 finite finite finite −∞ θ
(s)
00 , θ

(s)
10 , θ

(s)
01

Each line of the last column contains three combinations of the parameters θ
(s)
i that converge to a

finite value. Any other parameter combination that converges is a linear combination of these three.

This can be seen by using coordinates µi introduced in Section 8.2 and applying Lemma 8.2.1. For

example, on the facet F01, consider the parameters

µ10 = log p(10)/p(00) = θ10, µ11 = log p(11)/p(00) = θ10 + θ01 + θ11,

µ01 = log p(01)/p(00) = θ01.

Then µ10 and µ11 are identifiable parameters on EF01 , and µ01 diverges close to F01. By Lemma 8.2.1,

the linear combinations that are well-defined are µ10 = θ10 and µ11 = θ10 + (θ01 + θ11). The above
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table also lists θ00, which is not a linear combination of other parameter, but θ00 is not free.

We obtain similar results for facets F01 and F11. The results are summarized in the following

table:

facet µ01 µ10 µ11

F01 −∞ finite finite

F10 finite −∞ finite

F11 finite finite −∞

Of course, by definition of µis, we cannot consider facet F00 where n(00) = 0. To study F00, we

have to choose another zero cell and redefine the parameters µi.

The situation is more complicated for faces smaller than facets, because sending a single parame-

ter to plus or minus infinity can be enough to send the distribution to a face F of higher codimension,

as we will see below. The remaining parameters then determine the position within E∆,F . Thus, in

this case there are more remaining parameters than the dimension of E∆,F .

For example, the data vector n = (n00, 0, n10, 0) (with n00, n10 > 0) lies on the face F = F01∩F11

of codimension two. If pθ(s) → p∗, then

θ
(s)
00 = log pθ(s)(00)→ log

n00

N
,

θ
(s)
01 = log

pθ(s)(01)

pθ(s)(00)
→ −∞,

θ
(s)
10 = log

pθ(s)(10)

pθ(s)(00)
→ log

n10

n00

.

However, the limit of θ
(s)
11 = log

p
θ(s)

(11)p
θ(s)

(00)

p
θ(s)

(01)p
θ(s)

(10)
is not determined. The only constraint is that θ

(s)
11

cannot go to +∞ faster than θ
(s)
01 goes to −∞, since p

θ
(s)
11

= exp(θ
(s)
00 + θ

(s)
01 + θ

(s)
10 + θ

(s)
11 ) has to

converge to zero.

With the same data vector n = (n00, 0, n10, 0), suppose we use a numerical algorithm to optimize

the likelihood function by optimizing parameters θj in turn. To be precise, we order the parameters
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θj in some way. For simplicity, say that the parameters are θ1, θ2, . . . , θh. Then we let

θ
(k+1)
j = arg max

y∈R
l(θ

(k+1)
1 , . . . , θ

(k+1)
j−1 , y, θ

(k)
j+1, . . . , θ

(k)
h )

This is called the non-linear Gauss-Seidel method. Let us choose the ordering θ01, θ10, θ11, where

θ00 = −k(θ) is not a free parameter. We start at θ
(0)
01 = θ

(0)
10 = θ

(0)
11 = 0. In the first step, we only

look at θ01. That is, we want to solve

0 =
∂

∂θ01

l(θ) = − exp(θ
(1)
01 ) + exp(θ

(1)
01 + θ

(0)
10 + θ

(0)
11 )

1 + exp(θ
(1)
01 ) + exp(θ

(0)
10 ) + exp(θ

(1)
01 + θ

(0)
10 + θ

(0)
11 )

= − 2 exp(θ
(1)
01 )

1 + 2 exp(θ
(1)
01 )

. (C.0.1)

Clearly, the derivative is negative for any finite value of θ
(1)
01 , and thus the critical equation has no

finite solution. If we try to solve this equation numerically, we will find that θ
(1)
01 will be a large

negative number. Next, we look at θ10. We fix the other variables and try to solve

0 =
∂

∂θ10

l(θ) =
n10

N
− exp(θ

(1)
10 ) + exp(θ

(1)
01 + θ

(1)
10 + θ

(0)
11 )

1 + exp(θ
(1)
01 ) + exp(θ

(1)
10 ) + exp(θ

(1)
01 + θ

(1)
10 + θ

(0)
11 )

≈ n10

N
− exp(θ

(1)
10 )

1 + exp(θ
(1)
10 )

,

where we have used that θ
(1)
01 is a large negative number. This equation always has the unique

solution

θ
(1)
10 ≈ log

n10

N − n10

.

Finally, we look at θ11. We have to solve

0 =
∂

∂θ11

l(θ) = − exp(θ
(1)
01 + θ

(1)
10 + θ

(1)
11 )

1 + exp(θ
(1)
01 ) + exp(θ

(1)
10 ) + exp(θ

(1)
01 + θ

(1)
10 + θ

(1)
11 )

.

This equation has no solution, and therefore the numerical solution for θ
(1)
11 should be close to

numerical minus infinity. However, since θ
(1)
01 is already close to −∞, the equation is already
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approximately satisfied. Thus, there is no need to change θ11. In simulations, we observed that

usually θ
(1)
11 is negative, but not as small as θ

(1)
01 . In theory, we would have to iterate and now

optimize θ01 again. But the values will not change much, since the critical equations are already

satisfied to a high numerical precision after one iteration.

It is not difficult to see that the result is different if we change the order of the variables. If θ11

is optimized before θ01, then θ1
11 will in any case be a large negative number.

For general data, the derivative of with respect to θ01 (equation (C.0.1)) takes the form

∂

∂θ01

l(θ) =
t01

N
− exp(θ

(1)
01 ) + exp(θ

(1)
01 + θ

(0)
10 + θ

(0)
11 )

1 + exp(θ
(1)
01 ) + exp(θ

(0)
10 ) + exp(θ

(1)
01 + θ

(0)
10 + θ

(0)
11 )

.

Setting this derivative to zero and solving for θ
(1)
01 leads to a linear equation in θ

(1)
01 with symbolic

solution

θ
(1)
01 = log

1 + exp(θ
(0)
10 )

1 + exp(θ
(0)
10 + θ

(0)
11 )

t01

N

1− t01

N

.

In fact, for any hierarchical model, the likelihood equation is linear in any single parameter θj, as

long as all other parameters are kept fixed (more generally this is true when the design matrix A is

a 0-1-matrix). Instead of optimizing the likelihood numerically with respect to one parameter, it is

possible to use these symbolic solutions. This leads to the Iterative Proportional Fitting Procedure

(IPFP). In our example, the IPFP would lead to a division by zero right in the first step, which

indicates that the MLE does not exist.
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D Parametrizations adapted to facial sets

Let us briefly discuss how to remedy problems 1. to 3. presented at the beginning of Section 8.2.

The idea behind the remedy for 1. and 2. is to define parameters µi, i ∈ L, of EA, such that a subset

Lt ⊆ L of µi parametrizes EFt,A in a consistent way. Denote by Aµ = (aµj,i, j ∈ L, i ∈ I) the design

matrix of EA corresponding to the new parameters µ. Then the necessary conditions are:

(∗) Let AµLt,Ft := (aµj,i, j ∈ Lt, i ∈ Ft) be the submatrix of Aµ with rows indexed by Lt and columns

indexed by Lt, and denote by ÃµLt,Ft the same matrix with an additional row of ones. The

rank of ÃµLt,Ft is equal to |Lt|+ 1, the number of its rows (and thus, AµLt,Ft has rank |Lt|).

(∗∗) aµj,i = 0 for all i ∈ Ft and j ∈ L \ Lt.

In fact, (∗∗) implies that AµLt,Ft is the design matrix of EA,Ft , since the parameters µi with i /∈ Lt do

not play a role in the parametrization µ 7→ pFt,µ. Moreover, (∗) implies that the parametrization

µ 7→ pFt,µ is identifiable. In this sense, we have remedied problem 1. from the beginning of the

section.

Since the matrix ÃµLt,Ft has full row rank, it has a right inverse matrix C̃, such that ÃµLt,FtC̃ =

I|Lt|+1 equals the identity matrix of size |Lt|+ 1. Recall that

log pFt,µ(i) = 〈µt, fµi 〉 − kF (µ),

log pµ(i) = 〈µ̃t, fµi 〉 − k(µ),
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for any parameter vector µ and all i ∈ Ft. Since fµi are the columns of Aµ and since the components

of fµi corresponding to L \ Lt vanish according to (∗∗), we may apply matrix C obtained from C̃

by dropping the row corresponding to kF or k and obtain

(log pµ)C = µLt and (log pFt,µ)C = µL. (D.0.1)

When pµ(s) is a sequence in EA with limit pµ in EFt,A, then (D.0.1) shows that µ
(s)
i → µi for i ∈ Lt.

In this sense, we have remedied problem 2.

Finally, we solve problem 3. Suppose that we have chosen parameters µL as in Section 8.2, and

let AµL be the design matrix with respect to these parameters. Then (AµL)j,i = 0 if i ∈ Ft and

j /∈ Lt. Moreover, for j ∈ Lt, the jth column of AµL has a single non-vanishing entry (equal to one)

at position j. Suppose that Ft corresponds to a face Ft of codimension c. Then there are c facets

of P whose intersection is Ft. Thus, following the notation introduced in Remark 2.3.1, there exist

c inequalities

〈g̃1, x̃〉 ≥ 0, . . . , 〈g̃c, x̃〉 ≥ 0 (D.0.2)

that together define Ft. In this case, vectors g̃1, . . . , g̃c are linearly independent and satisfy 〈g̃j, f̃i〉 =

0; thus, they are a basis of the kernel of (ÃµLFt )t. It follows that the kth component of gj, denoted

by gj,k, vanishes if k ∈ Lt; that is, the inequalities (D.0.2) do not involve the variables corresponding

to Lt. Let G be the square matrix, indexed by L \ Lt with entries gj,k, j, k ∈ L \ Lt. Then the

square matrix

G̃ =

1 0

0 G


is invertible. We claim that parameters λ = G̃−1µL are what we are looking for.
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The design matrix with respect to the parameters λ is Aλ = G̃AµL . For any j /∈ Lt,

Aλj,i = 0, if i ∈ Ft, and Aλj,i = 〈g̃j, f̃i〉 ≥ 0, if i /∈ Ft.

This implies the following properties:

1. If all parameters λj with j /∈ Lt are sent to −∞, then pλ tends towards a limit distribution

with support Ft.

2. The coefficient of λj in any log-probability is non-negative, so there is no cancellation of ±∞.

So far, we only used the fact that vectors g̃j define valid inequalities for the face Ft. Suppose

that we choose g̃j in such a way that each inequality 〈g̃j, x̃〉 ≥ 0 defines a facet. The intersection

of less than c facets is a face that strictly contains Ft. This implies that for each j, there exists

ij ∈ I \ Ft such that fij satisfies

〈g̃j, f̃ij〉 > 0, and 〈g̃j′ , f̃ij〉 = 0 for all j′ 6= j.

This implies

Aλj,ij > 0, and Aλj′ , ij = 0 for all j′ 6= j.

This implies the following:

3. If λ
(s)
j are sequences of parameters such that pλ(s) tends towards a limit distribution with

support Ft, then λ
(s)
j → −∞ for all j /∈ Lt.

It is not difficult to see that, conversely, any parametrization that satisfies these three properties

comes from facets defining the face Ft.
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