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Abstract

Hierarchical log-linear models are essential tools used for relationship identification between vari-
ables in complex high-dimensional problems. In this thesis we study two problems: the compu-
tation and the existence of the maximum likelihood estimate (henceforth abbreviated MLE) in
high-dimensional hierarchical log-linear models.

When the number of variables is large, computing the MLE of the parameters is a difficult
task to accomplish. A popular approach is to estimate the composite MLE rather than the MLE
itself, that is, estimate the value of the parameter that maximizes the product of local conditional
likelihoods. A more recent development is to choose the components of the composite likelihood to
be local marginal likelihoods. We first show that the estimates obtained from local conditional and
marginal likelihoods are identical. Second, we study the asymptotic properties of the composite
MLE obtained by averaging the local estimates, under the double asymptotic regime, when both
the dimension p and sample size N go to infinity. We compare the rate of convergence to the true
parameter of the composite MLE with that of the global MLE under the same conditions. We also
look at the asymptotic properties of the composite MLE when p is fixed and N goes to infinity and
thus recover the same asymptotic results for p fixed as those of Liu and Ihler (2012).

The existence of the MLE in hierarchical log-linear models has important consequences for

statistical inference: estimation, confidence intervals and testing as we shall see. Determining
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whether this estimate exists is equivalent to finding whether the data belongs to the boundary of
the marginal polytope of the model or not. Fienberg and Rinaldo (2012) gave a linear programming
method that determines the smallest such face for relatively low-dimensional models. In this thesis,
we consider higher-dimensional problems. We develop the methology to obtain an outer and inner
approximation to the smallest face of the marginal polytope containing the data vector. Outer
approximations are obtained by looking at submodels of the original hierarchical model, and inner

approximations are obtained by working with larger models.
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1 Introduction

Hierarchical log-linear models are essential tools in the analysis of complex, high-dimensional
categorical data of the types routinely encountered when analyzing multiple choice survey questions
in social science or gene expression data in biology. Data points represent the values of the multi-
variate variable X = (X,,v € V), where V is a finite set. Each variable X, takes values in a finite
set I,. The N data points are classified according to the values of X,,v € V| in a |V|-dimensional
array called a contingency table. There are I =[],y |L,| cells i = (i,,v € V) in this contingency
table. The cell counts, that is, the total number of data points falling in cell 7,7 € I are denoted
by n(i), and the cell probabilities by p(i). As we shall see in Section 2, the hierarchical log-linear
model is defined by its generating set A, a subset of the power set of V', and the fact that logp(7)

can be written as

logp(i) = 6y + Y On(in),

DeA

where (0p(ip), D € A) are indicative of the relationship between variables X,,v € D. If, moreover,
we assume that the cell counts (n(i),7 € I) follow a multinomial distribution M(N,p(i),i € I),
then the density of cell counts, which is proportional to ., p(1)"%, can be written under a natural

exponential family form as
f(t;0)dt = exp{(0,t) — NE(0)}v(dt), (1.0.1)

where ¢ is the sufficient statistic, (6, ¢) denotes the inner product of ¢ and 6, and v(dt) is a discrete
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measure. The discrete graphical models class forms an important subclass of the hierarchical log-
linear models class. Discrete graphical models are models for random variables X = (X,,v € V)
with distribution Markov with respect to an undirected graph G with vertices set V. In the case of
discrete graphical models, the generating set is the set of complete induced subgraphs of G. More
details will be given in Section 2.

Given a contingency table, we would like to explore the conditional independence relationships
among the random variables, and to estimate the cell probabilities. The log-linear model is a
generative model which learns the joint distribution f(X,,v € V1#). In order to conduct some
statistical inferences on f(X,,v € V|0), we first take on the task of estimating the parameter
6. One of the most popular estimates of 6 is the MLE. When p is large, however, evaluating
the normalization constant k() or even its approximation is NP—hard, see Cooper (1990) and
Roth (1996), and it is impossible to obtain the MLE of # with a simple maximization of the
likelihood function. Approximate techniques such as variational methods ( see Jordan et al. (1999),
Wainwright and Jordan (2008)) or MCMC techniques (see Geyer (1991)) have been developed in
recent years. More recently still, work has been done on a third type of approximate techniques
based on the maximization of composite likelihoods (see Besag (1975) and Lindsay (1988)). For
a given data set {z(M, ..., 2™} from a distribution with density f(z|@), the likelihood function
is L(A) = [IX, f(z?]8). The composite likelihood is typically of the form [, [Lev f(xgi)\x/(\%),
where N, is the set of neighbours of v in graph G. In other words, the composite likelihood is the
product of the local conditional likelihoods.

In recent papers such as those of Ravikumar et al. (2010), Wiesel and Hero (2012), Liu and Thler
(2012), the estimate of 6 is obtained from maximum likelihood estimates in the low dimensional

local models, by combining the estimates to give a global estimate for #. See Section 3 for more



details. In the case of statistical inference on Gaussian graphical models, Meng et al. (2014) consider
local marginal models of (X,, Xy, ),v € V, rather than the traditional local conditional models of
X, given Xy, .

In our work, we extended the estimates obtained from the local marginal likelihoods to discrete
graphical models. Moreover, we show that the estimate obtained from the composite likelihood built
on local marginal likelihoods is identical to the estimate obtained from the composite likelihood
built on local conditional likelihoods. We therefore establish that one should use local conditional
likelihoods instead of local marginal likelihoods, since the computational complexity of the former
is much smaller than that of the latter.

MLE is a point estimation of the parameter 6, but to evaluate how good this estimate is, we
need to study the asymptotic variance of the MLE. In this thesis, we extend the asymptotic analysis
further, since we study the asymptotic properties of our estimate under both the classical and the
double asymptotic regime, that is, when |V| = p is fixed, and the number of data points N tends
to infinity, but also when both p and N tend to infinity. The double asymptotic regime result is of
greater interest in this big data era, as the dimension of a data set is no smaller than, or sometimes
even larger than the number of data points.

The second main topic of this thesis is concerned with the existence of the MLE in the larger
class of hierarchical log-linear models. The nonexistence of the MLE has problematic consequences
for inference, clearly for estimation, but also for testing and model selection, see Fienberg and
Rinaldo (2012). After we fit a statistical model on a dataset, it comes very naturally that we should
test how well our model fits the data, or choose a better model from several candidates. In the
literature, two popular summary statistics, the Pearson X? test and the likelihood ratio statistic G*

test, are used for the goodness of fit test and model selection, see Bishop et al. (1975a) and Agresti



and Kateri (2011). If the MLE doesn’t exist the standard regularity conditions for the asymptotic
chi-square distribution no longer hold. Furthermore, as indicated in Geyer et al. (2009) the degrees
of freedom used to approximate various measures of fit are incorrect in this case. The statistical
implications of the nonexistence of the MLE on model selection in Bayesian inference are studied
in further detail by Letac and Massam (2012).

Given a contingency table with some zero cell counts, the MLE of the canonical parameter
0 doesn’t exist, and therefore a finite estimate cannot be found to maximize the log-likelihood
function. Example 3.3-1 in Bishop et al. (1975a) provides us with a 23 contingency table example
to illustrate a nonexistent MLE situation. When some of the cells have a zero count, the MLE
of some of the cell probabilities may not be positive. When the MLE doesn’t exist, part of the
natural parameters go to infinity, so the Fisher information matrix is singular. To resolve this,
Geyer proposed a one-side confidence interval in Geyer et al. (2009).

Nowadays, hierarchical log-linear models are used for the analysis of large sparse contingency
tables where many, if not most of the entries are small or zero counts. These zero counts often
cause the MLE not exist. It is therefore most important to know whether the MLE exists before
we analyze the data and goodness-of-fit of log-linear models. In Section 8, we show how one can
deal with these problems by using an adequate parametrization in a reduced model. We illustrate
this strategy on a real data example, see 10.1.2.

The remainder of this thesis is organized as follows. In Chapter 2, we give preliminary results that
we shall use in our work. In Chapter 3, we offer a brief review of the literature on contingency tables,
hierarchical log-linear models, and the existence of MLE. In Chapter 4, we study the composite
maximum likelihood estimate and show that the composite likelihood built from local marginal

models yields the same estimates as that built from local conditional models. In Chapter 5, we



start working on the asymptotic properties of the maximum composite likelihood estimate. Both
the classical asymptotic regime result (Section 5.1) and the double asymptotic regime result (Section
5.2) are given. In Chapters 6 to 10, we develop our methodology to approximate the smallest facial
set containing sufficient statistic t: F; = Fa(/l;), and illustrate with several examples of simulated

and real data.



2 Preliminaries

In this chapter, we list the basic notations we use in this paper and give some background
knowledge. First, we briefly introduce our parameterization of hierarchical log-linear models and
the corresponding likelihood function. Second, we define the face of the convex hull of sufficient

statistics, and talk about some properties of convex polytopes.

2.1 Hierarchical log-linear models

Let V' denote a finite index set. Let X = (X,,v € V) be a vector of discrete random variables.

We will assume that each variable takes values from a finite set I,,, and then X takes its values from

let |I,| denote the cardinality of the set I, then |I| = [[._, |I,|. We write i = (i,,v € V) for an

element of I, where x, = i,.

Definition 2.1.1. GivenV, X and I defined as above and given a sample {x(l), z@ ... ,x(N)} from
X, we cross-classify the sample points according to the value of each of the variables X,,v € V.
Each sample then falls into a cell 1 € I. This set of cells is called a contingency table, the cell
count n(i) is the number of sample points falling into cell i, n(i) = Zjvzl 1{X:i}(x(j)), and we use
N =3"..;n(i) for the total sample size. We denote p(i) as the probability of each sample falling in

cell 1.



For E C V|, let ig = (i,,v € E) denote the cells in the E-marginal table with cell counts

np(ip) = Y nlip k),

ke]v\E

A family A of subsets of V' is called a simplicial complex if D € A, D' ¢ D, D" # () implies
D' € A. We assume UpeaD = V. We denote by Qa the linear subspace of € R! such that there

exist functions 6p € R' for D € A depending only on ip and such that z = > ,,_, 0p, that is

Qa ={z € R":30p,D € A such that (i) = Op(ip) and 2 = Y _ 6p} (2.1.1)

DeA

The hierarchical log-linear model generated by A is the set of positive cell probabilities p = (p(7))ies
over a contingency table such that log p € Qa. The simplicial complex A is also called the generating

class of the hierarchical log-linear model. For each cell probability we can write

logp(i) =0y + > _ Op(ip), (2.1.2)

DeA

where 0y doesn’t depend on i and is a constant. The parameterization (2.1.2) is not unique as
there are more parameters than the number of cells. In order to make it unique, we need to impose
certain constraints on the parameters 0p(ip). We first select one of the values in I, and denote it

0. The cell with all its components equal to 0 is the zero cell:
i=0=(0,0,---,0).

The choice of 0 is arbitrary. Changing the level of X, that will be called 0 simply leads to an
affine transformation of the parameters. This allows us to impose the so called ”baseline” or

” corner” constraints

Op(ip) =0, 4, =0,for some v € D (2.1.3)

Using (2.1.3), equation (2.1.2) becomes

logp(i) =0+ > Oplip), (2.1.4)
DeA iy #0,YveD
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Constraints (2.1.3) also imply that

log p(0) = 6y, (2.1.5)

so we can change the notation to 6.

Now we change to a more concise notation. First we define the support of a cell as follows:
S(1) ={veV; i, # 0}
and the subset J of I:
J={jelS(j)eA}

With the constraints (2.1.3) and the definition of set J above, in Proposition 2.1 of Letac and

Massam (2012), it is shown that for ¢ € J, 6; = 0 and
Op(ip) = 0; for the unique j € J with S(j) = D, ip = jp.

i.e. the elements in set J index the parameters in the hierarchical log-linear model generate by A,
so we name it the parameter set. Again, to simplify the notation, for any two cellsi € I,j € J, we
define a new notation

j<i
to mean that S(j) is contained in S(i) and jg(;) = is(j), then the representation (2.1.4) of logp in

terms of the free parameters 6 = {6;, j € J} becomes

logp(i) =g+ > 0, i€l (2.1.6)

where 6y = log p(0) is the normalization constant and is determined by requirement ) ., p(i) = 1.

Based on the Mobius inversion formula of (2.1.6), we can get

b= Y (_1)|S(j)||5(j/)|10g%7 jel (2.1.7)

Jj'ed, 'y

8



It is convenient to introduce the vectors

fi: Z 6j,i€]

jEJj<i

where ¢;, j € J are the unit vectors in R’. Then equation (2.1.6) becomes

where § = (6,6) and f; = (1, f;). The log-linear model (2.1.6) can be rewritten in matrix form as

(logZY iel) = A, or
7(0) (2.1.9)

(logp(i),ie I) = A0,
where A is a J x I matrix whose columns are the f; vectors and A is a (J + 1) x I matrix whose

columns are the f; vectors. Both A and A are called the design matrices of the log-linear model.

Here we give a hierarchical log-linear model example to help readers understand our notations.

Example 2.1.2. Let X,, X, denote two binary random variables. The sample of X,, X, can be
classified into a contingency table with cells I = {00;01;10;11}. Here we consider two hierarchical
log-linear models. One is the saturated model with the simplicial complex Ay = {ab,a,b}, the other

one is the independent model with the simplicial complexr Ay = {a, b}.

o— 0

a b

Figure 2.1: The simplicial complex Ay

javl
o e

Figure 2.2: The simplicial complex A,

The parameter set for Ay is J; = [01;10;11], and the parameter set for Aq is Jo = [01;10].
The absence of parameter 0y, indicates that the two random variables are independent. The design

matrix 1211 of Ay is



fol1 000
. Jmu |1 100
A1:

fol1 0 10

fu\1r 1 1 1

Discrete graphical models make up an important subset of the class of the hierarchical log-linear
models. A graphical model is a hierarchical log-linear model whose simplicial complex A can be
represented by an undirected graph such that all the elements of the simplicial complex are the
complete induced sub-graphs. First we give some basic definitions from graph theory, and then we
consider their Markov properties.

Let G = (V, E)) be an undirected graph where V' is the vertex set and E' is the set of edges. We
write (a,b) for the undirected edge between two vertices a and b. We say that a,b are adjacent if
(a,b) € E. For a given vertex v, the set of its adjacent vertices is called the neighbours of v, which
we denote as N,. If all the vertices are adjacent to each other, the graph is a complete graph. The
sequence of vertices {ai,as, - ,a;} form a path in G if (a;,a; +1) € E,Vi = 1,2,--- [k —1. A
graph is connected if every pair of distinct vertices is joined by a path, otherwise it is disconnected.
When a graph is disconnected, we can study each component independently, so we only focus on
connected graphs in this thesis. For a subset A C V, the induced sub-graph G4 is Ga = (A, Ex)
where E, is the set of edges in E with both endpoints in A. We now provide definitions of three

concepts that are fundamental to the theory we put forward in this thesis.

Definition 2.1.3. For G = (V,E) given, a subset S C V s called a separator if there exist
ACV, BCV, suchthat A, B, S are disjoint, AUSUB =V, (AUS)N(BUS) =S and any path

between a € A and b € B has to go through S. S is called a minimal separator if no non-trivial

10



subset of separator S is a separator.

Definition 2.1.4. Given G = (V, E), we then say G can be decomposed into G aus and Gpgys if

S C V is a complete separator and S separates A from B.

Definition 2.1.5. The prime components of a given graph G are the induced sub-graphs that cannot
be decomposed and that are mazimum in the sense of inclusion. A prime component that is complete
15 called a maximal clique. From now on when we say clique, we mean a mazximal clique unless
otherwise specified. If all the prime components are cliques, then the graph is called decomposable.

We denote the cliques in a decomposable graph as {Cy,Cy, -+, Cy}.

Figure 2.3: A decomposable undirected graph

We give an example of decomposable graph in Figure 2.3, which is decomposed into three cliques
{ACD,ABD,BDE}. Set {AD,BD} is a separator set.
When the dimension of the graphical model is high, we often have to work with graphs induced

by the vertices v N N, for v € V. We now define one-hop and two-hop neighborhoods of v € V.

Definition 2.1.6. For a givenv € V, we say that M, is a one-hop neighborhood of v if it comprises
v and its immediate neighbours in G, i.e. if M, = {v} UN,. We will say that M, is a two-hop
neighborhood if it comprises v, its immediate neighbours, and the neighbours of the immediate neigh-

bours in G. For simplicity of notation, we will denote both the one-hop and two-hop neighborhoods

11



by M,. We use the notation

Now = My \ ({v} qu)

to denote the set of neighbours of the neighbours of v, as can be seen in Figure 2.J.

Figure 2.4: Neighbourhood structure in an undirected graph; blue vertices denote the neighbours

of vertex v: N, red nodes denote the neighbours of vertices in N,

Let us now recall Markov properties. Associated with an undirected graph G = (V, E) and a
collection of random variables {X,,v € V} taking value from discrete set I, a probability measure

P on [ is said to obey

(P) Pairwise Markov property, if for any two random variable X;, X,

Xi L XG| Xy if (4,5) € E

(L) Local Markov property, if

Xy 1L X founve} [ X, s

(G) Global Markov property, if

Xa 1L X5|Xs,

where subsets A, B are separated by S.
12



Lauritzen (1996) (Proposition 3.4) showed that (G) = (L) = (P). It’s also well know that if the
probability measure P is positive on I, the three Markov properties are equivalent. The hierarchical
log-linear model we study in this thesis satisfies the positive probability measure condition, so we
won’t specify which Markov property we are using.

A hierarchical log-linear model is a graphical model Markov with respect to a graph G if its
simplicial complex is the set of cliques of G. Here is an example of a model which is hierarchical

but not graphical.

Example 2.1.7. Assume random variables X = (X1, Xs, X3) belong to a hierarchical log-linear
model generated by A = {12,13,23}. If we try to represent this simplicial complex by a graph, we
get a triangle, but the clique (123) doesn’t belong to A.

If A ={12,13,23,123} or A = {12,23}, the hierarchical log-linear model is a graphical model.

2.2 Exponential family and the maximum likelihood estimate

The probability distribution of log-linear model belongs to the natural exponential family €4

defined as follows
Ea={p:p(i)=exp({(0, f;) — k(0)), 6 € R and i € I} (2.2.1)

where k(0) = —0y = log > ., exp((0, f;)) is the normalization constant or the cumulative generating
function, and A is the design matrix with column vectors f;,7 € I.
We assume the cell counts (n(i),7 € I) to follow a multinomial distribution with total counts

N, then T,.; p(i)"® can be written under the form of exponential family:

[Lierp(0)"? = exp(3ic; (i) log p(i)) = exp(3ie; n(i) (0, fi) — k(0)))

= exp{(0,>_,c;n(0)fi) = > ;e n()k(0)))}
13
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We write t =)

ey n(2) fi. from the definition of f;, ¢ is a |.J|-dimensional vector

=30l Y =Y @) =3 s lse).

iel jeT,j<i jed i€l j<i jeJ
Since e; is the unit vector in R”, t; = ng(;)(js()), 1.e. t; is the jg(;-marginal cell count, which is
also the sufficient statistics of the contingency table. We can rewrite the equation (2.2.2) as follows
[Tr()"® = exp{(6,1) — Nk(9)}.
iel

then the log-likelihood function of the contingency table is
1(0)t) = (0,t) — NKk(0). (2.2.3)

In a natural exponential family of the form exp{(f,t) — Nk(#)}, the first derivative of the cumulative

generating function Nk(#) equals the expectation of sufficient statistics t: E(t) = Nk (6), where

’ Zz I zeXp 6 fl
E(t;) = Nkj(e) =N Zeejzxp(w A =N Z = Np(jsg))

1€1,j<1

the notation p(js(j)) denotes the marginal probability of cell jg;) and we denote the vector of
marginal probability of cell set Jg(s) as P(0) = (p(Js¢)),J € J). Taking the second derivative, we
obtain

1610 =~k () = -N( 0 o £ p6) 0 POO)

where ® denotes the outer product. The Fisher information matrix is

F= B(-1'0) = N eXp(f )f% ® f,— P(0) ® P(0)).

Definition 2.2.1. A finite parameter value 0 is a mazimum likelihood estimate(MLE) if it is a

global mazimum of 1(0|t):

0 = arg max [(A]t)
geR’

14



Computing the MLE of the log-likelihood (2.2.3) becomes intractable in the high-dimensional
log-linear model because of the complexity of the partition function k(#). Later in this thesis,

we will consider several composite likelihood methods to approximate the maximum likelihood

estimate(MLE).

2.3 The Marginal Polytope and Its Faces

We now define the marginal polytope, a central object for hierarchical log-linear models.

Definition 2.3.1. Given a log-linear model with design matriz A, the convex hull of the columns

{fi,i € I} is called the marginal polytope of the log-linear model, and denoted by Pa or P4,

I
Pyi={r=) MNfi,VA>0and > X\ =1}
=1

Since % = Y el % fis % € P4. As a result, the marginal polytope comprises the set of all
possible observable sufficient statistics. Lemma 3.2.2 of the following section shows that the MLE
of the parameters 6 in (2.2.3) doesn’t exist if and only if the sufficient statistics lie on a face of the

marginal polytope P 4. We now consider the notation and concept of face of a polytope.

Definition 2.3.2. A set P C R" is a (convex) polytope if P is the convex hull of a finite sub-
set of R". Equivalently, a polytope can be defined as a bounded subset of R" defined by linear

mequalities.

Definition 2.3.3. For any vector g € R" and any constant ¢ € R, define three sets H, . = {x €
R": (g,2) =c}, Hf,={x e R": (g,x) > ¢} and H,, = {x e R" : (g,2) < c}. If g # 0, then

H,. is an (affine) hyperplane, and H, and H g are the positive and negative halfspaces defined

g,c c

by g and c.
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Let P C R" be a polytope, let g € R" and c € R, and suppose that P C H;c orP C H, .. Then
F:=H,.NP is called a face of P. If g # 0, then H, . is called a supporting hyperplane of P. If
F #P and F # 0, then F is a proper face of P.

The dimension of a face F is the dimension of the smallest affine subspace of R" that contains
it. Its co-dimension is dim(P) — dim(F). A facet of a polytope P is a proper face that is mazximal

with respect to inclusion and is thus of co-dimension 1. A minimal proper face of a polytope is a

singleton {p} C P; in this case, p is a vertex.

Intersections of faces are again faces: If g1,¢» € R" and ¢i,co € R define faces Fi,Fy of P

and if P C HY , N H' , then P C H}

gt LA htgacrtess a0d F1 N Fo = PN Hy 4y, 4c,- Any face is an

intersection of facets.

By definition, every face F of a polytope P C R is characterized by a linear inequality (g, ) > ¢
that is valid on P and that holds as an equality on F. This linear inequality is unique only if F is
a facet. Sometimes it is convenient to give all linear equations that hold on a face F. These linear
equations determine the smallest affine subspace of R" containing F.

When a polytope is defined as the convex hull of a finite number of points f;, i € I, then it is
of interest to know which subsets of {f;}ics lie on a common face. Indeed, it is the purpose of this
thesis to compute the smallest face of the marginal polytope containing the data vector ¢, and we

determine this face by identifying which vectors f; belong to it.

Definition 2.3.4. For a finite set I let {fi}ier C R", and let P be the convex hull of {fi}icr. A
subset [ C I is called facial (with respect to P), if there exists a face F of P with F' = {i : f; € F}.
For any subset S C I, denote by Fp(S) the smallest facial set that contains S.

Since the intersection of facial sets is again facial, Fp(S) is well-defined.

16



Lemma 2.3.5. Let {fi}ier C R", let ¢ : R* — RM 2 +— Bx +d be an affine map, and let
fl=0o(fi). If P is the convex hull of the f;, then P’ := ¢(P) is the convex hull of the f!. The faces

and facial sets of P and P’ are related as follows:

1. Any inequality (¢', 2"y > ¢ that is valid on P’ corresponds to an inequality {g,z) > c that is
valid on P, where g = B'g' and c = — (¢, d). Thus, if ¥ is a face of P’, then ¢~ (F') is a

face of P.

2. A subset of I that is facial with respect to P’ is also facial with respect to P. Thus, Fp(S) C

Fp/(S) for any S C I.

Proof. The first statement follows from

c< (g, o(f)) =g Bfi+d)=(B'g, fi) + (d,d),

which holds for any ¢ € I. The second statement follows immediately from the equation above and

the fact that Fp(S) is the smallest facial set containing S. O

We note that in Lemma 2.3.5, the dimension of ¢(P) is at most equal to h. We only apply

Lemma 2.3.5 to coordinate projections ¢ with A’ < h.

Remark 2.3.1. Sometimes it is convenient to embed the polytope in a vector space that has one
additional dimension using a map R" — R o+ 7 := (1,2). This has the advantage that all

defining inequalities can be brought into a homogeneous form with vanishing constant c¢: Note that

(9, f;) — ¢ = (Ges [}, where §. == (c, g).

When a defining inequality of a face F is given, its facial set ' can be obtained by checking
whether f; € F for each ¢ € I. In the other direction, when a facial set F' is given, it is much more

difficult to compute a defining inequality of the corresponding face F. However, it is straightforward

17



to compute the linear equations defining F: The set of such equations 0 = (g,z) — ¢ = (g, T)
corresponds to the set of vectors g € ker fl}, where Ay is the matrix obtained from A by adding a
row of ones and dropping the columns not in F'.

To sum up, we recall the two binary random variables hierarchical log-linear model example to

illustrate the basic concepts we covered in this section.

Example 2.3.6 (Two binary variables example). Consider two binary random variables, X,, Xy,
under the saturated hierarchical model. Let A = {{a},{b},{a,b}}. That is, it contains all possible

probability distributions with full support.

Figure 2.5: The simplicial complex A

€ab f11(1,171)

f b,

f00(0,0,0)

€q

f10(1,0,0)

Figure 2.6: The marginal polytope Pa

The design matriz of this model is
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In the following, we give two contingency tables and their corresponding sufficient statistics. The
first one belongs to the relative interior of the marginal polytope P, and the second one belongs to

a proper face of Pa.

o sample 1: {n(00) = 2,7(10) = n(01) = n(11) = 1}; ¢

% =10.4,0.4,0.2], not on the face;

e sample 2:{n(00) = n(11) = 0,n(10) = n(01) = 1}; &

N

[0.5,0.5,0], on face.
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3 Review of literature

3.1 Contingency tables, log-linear models: early developments

The history of the log-linear model and contingency tables is given in Fienberg and Rinaldo
(2007), from which we extract some important features that are related to our research.

The term ”contingency tables” refers to tables of cross-classified categorical data. Computing
the MLE for contingency tables started with Bartlett (1935) who showed that you can get the MLE
of a 2 x 2 x 2 table under the model with no three-way interaction and fixed two-way marginal

totals by solving a cubic equation. Here we give Bartlett’s example, but use our notation as follows:

Example 3.1.1. Consider data of three binary variables, which is classified into a 2 x 2 X 2 contin-
gency table. Bartlett’s model is based on the following two assumptions: no three-way interactions,
and fized two-way marginal totals. Let I = {000, 100,010, 110,001,101,011,111} be the set of cells,

and n = {n(i); i € I} as the observed cell counts.

The cell probabilities of Bartlett’s model should fit the following equation:

p(000)p(110)p(101)p(011) = p(010)p(100)p(001)p(111) (3.1.1)

Since Bartlett assumes that the two-way marginal totals are fixed, whenever we adjust the count
of one cell, all other cell counts will make the same or the opposite adjustment. For example, if

we add a value ¢ to n(000), we need to minus ¢ from n(100) due to fixed total n(+00). Therefore
20



the deviations from expectation in all cells are the same, which we denote as x here. The MLE
of the cell counts should fit Equation (3.1.1), and therefore can be solved with the following cubic

equation:

(n(000) +x)(n(110) 4+ x)(n(101) +2)(n(011) +x) = (n(010) — 2)(n(100) — x)(n(001) — z)(n(111) — z)
(3.1.2)
Bartlett was first to study the MLE computation of contingency tables, but he didn’t consider two

fundamental problems:

1. The systematic computation of the MLE;

2. The existence of this MLE.

As can readily been seen in Example 3.1.1, if cell counts n(000) = 0, n(111) = 0, then solving
the cubic Equation (3.1.2) will always end up with a negative cell count, i.e. the MLE of this
contingency table doesn’t exist.

Deming and Stephan (1940) proposed the practical Tterative Proportional Fitting (IPF) algo-
rithm to solve Equation (3.1.1): . To compute the MLE of the expected cell counts, the IPF updates
the cell counts iteratively using fixed marginal counts. The IPF is still used nowadays and we will
use it later in this thesis.

Roy and Kastenbaum (1956) studied three dimensional contingency tables with no three-way
interaction, and without fixing the marginal totals. They offered a new functional representation
of cell probabilities in any three-way interactions three dimensional contingency table(not limited
to 2 x 2 x 2 tables):

p(ij+)p(i + k)p(+jk)

PR = G P D p(r + ) (3.13)
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To compute the MLE of the cell counts, they use Lagrangian multipliers to make the likelihood
function subject to constraint (3.1.3). Both Bartlett (1935) and Roy and Kastenbaum (1956) didn’t
concern themselves with the existence of the MLE, maybe due to the fact that the contingency tables
they considered were of small dimension and the cell counts were all positive.

Birch (1963) first introduced the log-linear model of three dimensional contingency tables, and

this brought the research of contingency tables into a new era. Birch took the logarithm of (3.1.3):

logp(ijk) = —logp(i + +) — logp(+j+) — logp(+ + k) + log p(ij+) + log p(i + k) + log p(+7k),

which in general can be written as,

log p(ijk) = u + ui; + ugj + Uk + Ur2ij + Uizik + Uazjk + U123ijk, (3.1.4)

where in this case ujazj = 0 since there is no three-way interaction. Birch (1963) derived the
likelihood function with respect to the log-linear parameters and computed the MLE. He also
showed that the MLE exists if all the cell counts are positive. Since then, the study of log-linear
models has drawn a lot of attention from the research community. Some of the first books on this

subject are Haberman (1974a) and Bishop et al. (1975b).

3.2 Existence of the MLE

The study of the existence of the MLE started at almost the same time as the study of log-
linear models. Fienberg (1970) gave sufficient conditions for the existence of the MLE under the
assumption that the model they consider cannot be written as the product of several independent
models. Fienberg’s sufficient conditions are: (1) the observed data cannot be split into several

disjoint subtables; (2) the observed marginal totals are positive.
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Haberman (1974b) gave a necessary and sufficient condition for the existence of the MLE, which

we state as a lemma here:

Lemma 3.2.1 (Haberman (1974b)). Let A, a |J| x |I| matriz, be the design matriz of the log-linear
model, and let n = (n(i),i € I) be the vector of the observed cell counts. A necessary and sufficient

condition for the existence of the MLE is that there ezists z € ker(A) such that n+ z > 0.

Since Az = 0, we have An = A(n + z) = t, i.e. the two cell counts n and n + z have the
same sufficient statistic, and again since n + z > 0, the MLE exists. For discrete log-linear models,
the distribution of cell counts is an exponential family. Barndorff-Nielsen (1978) (Theorem 9.13
and Corollary 9.6) gave necessary and sufficient conditions for the existence of the MLE of the
canonical parameters in the exponential family. Barndorff-Nielsen showed that the MLE exists
if and only if the data belongs to the relative interior of the convex support of the distribution.
Neither Haberman (1974b) nor Barndorff-Nielsen (1978)’s conditions are constructive. Eriksson
et al. (2006) gave a practical algorithm to detect the existence of the MLE. First they developed a

geometric interpretation of Lemma 3.2.1 as follows.

Lemma 3.2.2 (Eriksson et al. (2006)). The MLE of the log-linear models exists if and only if the
marginal totals(sufficient statistics) t = Axn belong to the relative interior of the marginal polytope

Ca. In other words the MLE doesn’t exist if and only if t belongs to a face of Cjy.

The term "marginal polytope” was introduced by Wainwright and Jordan (2003), and denotes
the convex hull spanned by the f;’s as defined earlier in this thesis. Eriksson et al. (2006) gave
an algorithm for determining if the sufficient statistic t lies on a facet of the marginal polytope.
This was further developed by Fienberg and Rinaldo (2012), who proposed to check if the sufficient

statistic belongs to a face of the marginal polytope using a linear programming method as well
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as other methods. While their methodology can handle low dimensional data, it cannot be used
for more than 16 binary variables. In Chapter 7, we extend their approach to high dimensional
settings. This is done by finding good inner and outer approximations to the smallest face F' of the
marginal polytope containing the data, i.e. by finding a face containing or contained by F' as close

as possible in a sense that will be made clear in Chapter 7.

3.3 Computation of the MLE

When the dimension of the data becomes very large, neither the IPF algorithm nor regular
convex optimization methods are feasible for the MLE computation. The likelihood function is
intractable. In machine learning literature, a lot of effort has been devoted to the approximation
of this likelihood function. Peterson (1987) defined and applied a mean field learning algorithm
for neural networks. The basic idea is to approximate the complex CDF function (also called the
partition function in machine learning literature) by its mean. Saul et al. (1996) developed a mean
field theory for sigmoid belief networks, where they used a completely factorized distribution @) to
approximate the intractable distribution P by minimizing the Kullback-Leibler divergence between
Pand Q: KL(Q|P) =>_Qlog %. For more variational methods, readers can refer to the following
review papers: Jordan et al. (1999) and Wainwright and Jordan (2008).

Recently another line of research on composite likelihood has become active, for instance, Dillon
and Lebanon (2010), Sutton and McCallum (2007), Asuncion et al. (2010), Wiesel and Hero (2012)
and Liu and Ihler (2012). The history of composite likelihood methods can be traced back to the
1970s. Besag (1974) first studied the conditional probability models for finite system of lattice
data. The conditional probability models approach was extended to non-lattice data in Besag

(1975). Besag proposed one special conditional composite likelihood technique, the product of local
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conditional densities of a single variable given its neighbours, which he named ” pseudo-likelihood”.
Lindsay (1988) proposed a more general version of pseudo-likelihood, which he named ”composite
likelihood”. Following the definition proposed by Dillon and Lebanon (2010), we now give the

definition of composite likelihood,

Definition 3.3.1. Let X = (X;, Xy, ,X,) be a random variable with a given probability den-
sity function p(x|0) parameterized by 0. Let (Xa,, Xp,),i = 1,2,---  k be k pairs of subsets of the
random variables, where A; # O and A; N B; = 0. The composite likelihood for 6 corresponding to
the pairs (Xa,, Xp,),i = 1,2,--- ,k is the product of the local likelihoods associated to the condi-
tional probabilities of X, given Xp,, p(x%)\xg); 0). For a given sample {x™M 2@ ... M} this

composite log-likelihood cl(0) is therefore equal to

N k
cd(®) =Y logp(={|2); 0). (3.3.1)
n=1 i=1

This is a very general definition of the composite likelihood. By choosing different A; and B;,
one can get various types of composite likelihood (see in Varin et al. (2011)). We note that for
B;=0,i=1,2,--- k, cl(f) is the sum of the logarithm of the likelihoods associated to the local
marginal probabilities. When working with graphical models, the most commonly used composite
likelihoods are those associated with the pairs A, = {v} and B, = {N,}, v =1,2,---  p. The max-
imum composite likelihood estimate of f(abbreviated MCLE) is the value of § that maximizes the
composite likelihood as given in (3.3.1). Lindsay (1988) showed that the MCLE is asymptotically
normally distributed with a covariance which is larger, in the positive definite matrix sense, than
that of the regular MLE.

Maximizing the composite likelihood is still a difficult task in a high dimensional setting. For

discrete graphical log-linear models, Liu and Ihler (2012) first proposed to compute the MCLE
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by maximizing separately each of the local components [*(§) = > log p(xz(,z)|x§\z,1), v eV by
distributed computing, and subsequently combining the local estimates through linear consensus
or maximum consensus to achieve a global estimate for . They showed that this global estimate
is consistent. For Gaussian graphical models, Wiesel and Hero (2012) also proposed the marginal
composite likelihood method as well as the pseudo-likelihood method. The local component of their
marginal likelihood is [Y(0) = >, logp(wq(f),wg\l,) ). Like Liu and Ihler (2012), to find the MCLE,
Wiesel and Hero (2012) also used distributed computing and combined local results by an averaging
scheme or by ADMM. They also proved that the local marginal likelihood estimator is equal to the
local conditional estimator in each component. Meng et al. (2013) named the one-hop MCLE the

MCLE from the composite likelihood built from the local marginal model

Mg ZZlogp U,xN,H)

i=1 veV

They then proposed the two-hop MCLE obtained by maximizing

ZM2 Zzp 1} >$NaxN)2 ,9)

=1 veV

As in the one-hop case, the two-hop MCLE is obtained by combining local maxima. They showed
numerically that the two-hop estimate was more accurate than the one-hop estimate under in-
creased computational cost. However, they stated that the two-hop estimate obtained from the
local marginal and conditional likelihoods are different. In our arXiv paper Massam and Wang
(2013), we showed that for the discrete model, the asymptotic variance of the two-hop estimate is
smaller than the asymptotic variance of the one-hop estimate. Following our paper, Meng et al.
(2014) proved a parallel theorem for the Gaussian graphical model and studied the asymptotic
properties of their estimates. In this thesis, parallel to their method on Gaussian graphical models,

we study the marginal likelihood and conditional likelihood in discrete log-linear models both in

26



the one-hop case and two-hop case. First we prove that the conditional and marginal estimates,
one-hop and two-hop are equal. We then proceed to studying the asymptotic properties of these

estimates.
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4 Approximating the maximum likelihood estimate

In this section, we are going to study the first topic: the systematic computation of the MLE
in hierarchical log-linear models. To get the MLE, we need to solve the following optimization
problem:

R t
09 = argmax [(#) = arg max(0, N} — logZexp(@, fi) (4.0.1)

el

As we mentioned before, the log-partition function k(¢) = log ) .., exp(f, f;) is untraceable in high-
dimensional log-linear models. To avoid this problem, we can use the composite likelihood methods
in Definition 3.3.1. There are various types of composite likelihoods described in the literature,
the most popular one being defined as the product over all vertices v € V of the local conditional
likelihood for X, given Xy, , where N, denotes the set of neighbours of v in graph G. This type
of composite likelihood method breaks down equation (4.0.1) into the sum of p local composite

likelihood functions:

A0) = 310 = 33 log pla? 2 6,

veV veV =1

where Y is a subset of § which contains the parameters involved in p(X,|Xx,)

In recent work on high-dimensional Gaussian graphical models, Wiesel and Hero (2012) and
Meng et al. (2013) take another approach. They use a different composite likelihood which is the
product, over all vertices v € V, of local marginal likelihoods. In this section, we first recall the

definition of the conditional composite likelihood estimate, then extend the marginal composite
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likelihood in Meng et al. (2013) to discrete graphical models, and finally show that the maximum
likelihood estimates obtained from these two types, conditional and marginal, of local models are
in fact identical and thus the composite likelihood obtained by any type of consensus from these
two types of likelihood are equal. The computational complexity of the marginal computation is
exponential in the number of vertices in the neighborhood of v, whereas the conditional computation

is linear in this number, so there is no advantage in working with marginal composite likelihoods.

4.1 Conditional composite likelihood methods

We first define the standard conditional composite likelihood function. For i = (i,,v € V), let

XM XN be a sample of size N from the distribution of X, which belongs to a hierarchical

log-linear model M. We recall that the global log-likelihood function is

1(6) o< Y logp(XW) = (0, ) — Nk(6) (4.1.1)

For a given vertex v € V, let N, be the set of neighbours of v in the given graph G. The composite
likelihood function based on the local conditional distribution of X, given Xy, or equivalently,
due to the Markov property, the conditional distribution of X, given its neighbours Xy, is L¥%(6) =

[T,ev L75(6) where
N
LoP5(9) = [ p(x1x550) (4.1.2)

=1

and the superscript 7 PS” stands for ”pseudo-likelihood”, the name often given to the conditional

composite likelihood (Besag (1974)). As given by (2.1.4), for a given cell i, we have

logp(i) = logp(X, =i,,veV)=060+ Zﬁj

Jj<u

- 60+ Z 6j‘|‘ Z Qj—i- Z ¢9j

J<i, S(5) CvUN,S(§) LNy J<i, S(5)ENw J<i, S(5)ZvUNy
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Let

JPS = {ieJ|S() CvUN,, SG)ZN,Y={jeJ|veS3H}

next we show that elements of set J”% index the parameters in the v-th component in the condi-

tional likelihood function, i.e. p(Xéi)|Xj(\2). For i, # 0, we have

p(Xyv =iy)
X} = iv\(u})
00t 4, jeaPsv 05+ jai, shyene it e, s(ygeuny, 9

p(Xy =iy| Xu, = in,) = p(Xy = i| Xvr(o) = iv\(u}) = »

S . P02k, jeaPs 05+ 5ak, s(yeny Yt jan, s()gvuny, O
REI| kv (v} =iv\ (v}
e2jsi, jesPSv 0 ( )
= 4.1.3
> k, jegPSv 0
]_ + Zkell kV\{U}:Z‘V\{U}7 kvfo e— i<k, j& v

and

1

p(Xy = 0] Xvr\puy = dv\fu)) = (4.1.4)

2 jak, jesPSv 0
142 e kv o =iv o ko0 €777

Equality (4.1.3) is due to the fact that the set of j € J such that j <k, S(j) € v UN,, is the same
whether k, = i, or k, # i,, and therefore the term 20T 2iek, sizk,un, % cancels out at the numerator

and the denominator. The same goes for the set of j € J such that j <k, S(j) CN,.

Remark 4.1.1. In the equation above, we worked with p(Xy|Xv\(v}) rather than with P(X,| Xy, ),

though the two are equal; we did this to emphasize that
oS = (0;, j € J7), veV (4.1.5)

of the v-th component LVT5 of conditional composite distribution is a sub vector of 0, the parameter

of the global likelihood function.

Except for the pseudolikelihood, there are also some other types of conditional composite like-

lihood methods. Asuncion et al. (2010) proposed their version of composite likelihood which is the
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conditional likelihood of a subset of random variables conditional on another subset. By increasing
the size of the local components, the composite likelihood estimation can be made more accurate,
but computational complexity is sacrificed. In our research, we modified the pseudo-likelihood
based on this idea and proposed the two-hop conditional composite likelihood.

The two-hop conditional composite likelihood function is L7%2(0) = [T, ., L*"%2(#) where

N
(o) = T, XX (110

i=1
The expression of p(qui),Xﬁ’/mXﬁZ)v) is the same as (4.1.3) and (4.1.4) but with J*% replaced by
JU P92 where

TP = {j € J|S(j) C My, S(j) € Now}-

In a parallel way to Remark 4.1.1, we note that
QU,PSQ — {gj,j c J’U,PSQ}

is a sub vector of § = (6;,5 € J), the argument of the global likelihood function.
Let M, be the one-hop or two-hop neighborhood of v. The marginal composite likelihood is

the product

M) =TT [e(xi) = ] 2 (0). (4.1.7)

veV k=1 veV

where LM (0) = H,ivzl p(Xf(\]fl)v) The M,-marginal model is clearly multinomial and the corre-
sponding data can be read in the M, -marginal contingency table obtained from the full table. The

density of the M ,-marginal multinomial distribution is of the general exponential form
M M) = exp{(tM7, 6MY) — NEM(6M)} (4.1.8)

where tMv §Mv and kM@ are respectively the M,-marginal canonical statistic, canonical parameter

and cumulate generating function.
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In order to identify the M,-marginal model, we first establish the relationship between 6 and
Mo, For the remainder of this thesis, the symbol j is to be understood as an element of I,
whenever used in the notation 0?4“, and it is to be understood as the element of J obtained by
padding it with entries jj\ 4, = 0 whenever used in the notation 6;. We now give the general

relationship between the parameters of the overall model, and those of the M,-marginal model.

The proof is given in Appendix B.1.

Lemma 4.1.1. Let M, be the one-hop or two-hop neighborhood of v € V.. For j € J, S(j) C M,,
the parameter 0; of the overall model, and the parameter GJM” of the marginal model are linked by

the following:

oM =g+ S (—1)ISD=5) 1og 1+ > expd ) (4.1.9)

3'13'<03 i€lip, =5 K|k

Ko
We want to identify which of the marginal parameters are equal to the corresponding overall
parameter, and in particular which marginal parameters are equal to zero when the global parameter
is equal to zero. Let M denote the complement of M, in V. We define the buffer set at v as

follows:

B, ={we M, | I € M with (w,w') € E}. (4.1.10)
We have the following result.

Lemma 4.1.2. Let M, be the one-hop or two-hop neighborhood of v € V. For j € J S(j) C M,

the following holds:
(1.) if S(4) & B, then 95\4” =0,
(2.) if S(j) C By, then in general GJM” # 0;, and (4.1.9) holds.

Moreover, fori € I,S(i) C M,,
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(3.) If S(i) ¢ B, then 6 = 0 whenever 6; = 0.

The proof is given in Appendix B.2. From the lemma above, we see that, for 5 € J such that
S(j) € My, S(j) € B,, the corresponding global and M ,-marginal log-linear parameters are equal.
We see also that for ¢ € I such that S(i) € M,, S(i) ¢ B,, if the log-linear parameter is zero in the

global model, it remains zero in the M,-marginal model.

4.2 A convex relaxation of the local marginal models

\Vj a C Vv a C
L 4 & L @ y |
/7 /7
/7 /7
/ /
/ /
/ d / d
/
bl, d b o
L i L y_
/
/
/7
/
/
/
e e
[ [
(a) convex relaxation of one-hop marginal model (b) convex relaxation of two-hop marginal model

Figure 4.1: The convex relaxation of the one-hop and two-hop marginal models of vertex ”v” in the

4 x 4 grid graph

It is clear from (4.1.9) that even though maximizing the marginal likelihood from (4.1.8) is

convex in §Mv_ it is not convex in #. We would therefore like to replace the problem of maximizing
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the likelihood function (4.1.8) non convex in 6 by a convex relaxation problem. We know from (1.)
of Lemma 4.1.2 that QJM” =0; for jin the set {j € J: S(j) C M., S(j) € B,} .

We also know from (3.) of Lemma 4.1.2 that if the global model parameter 6;, S(i) C M,, S(i) ¢
B, is equal to zero, then QlM” is also equal to zero. Following the work on Gaussian graphical models
by Meng et al. (2014), it is natural to consider the following graphical model relaxation of the M,,-
marginal model.

Let M, ,, denote the relaxed hierarchical log-linear model obtained from the M,-marginal model
by keeping interactions given by edges with at least one endpoint in M, \ B, and all interac-
tions in the power set 25*. The convex relaxation of the marginal model is illustrated with
a 4 x 4 grid graph in Figure 4.1. The parameter set of the one-hop marginal model for vari-
ables Xy, , is My = {0, 0pa, Oup, 0.1}, and the parameter set of the two-hop marginal model is
0 = {0,,04, 00,004, O, Oacs Oady Ovd, Ove, Oc, 0, O, Ocas Oie, Oce, Ocae b The index | takes values [ = 1 or

[ = 2 when M, is respectively the one-hop or two-hop neighborhood of v.

The J-set of this local model is
JMiv = L5 J|S(j) € My, S(j) ¢ B,y u{ieI]S(i)CB,}. (4.2.1)

Let pMiv (X y,) denote the marginal probability of X, in the M; ,-marginal model. The local
estimates of 0;,j € {j € J| S(j) C M,, S(j) & B,} are obtained by maximizing the M, ,-marginal

log likelihood

N
LM (0) — HpMz,u (XMU — Zs\lil)v) — eXp{(@Ml’”, tMl,v> — NEMiw (QMZU)} (4.2.2)
k=1

which is a convex maximization problem in
M, _ - M,
0 —(Oj,jEJ l’).

At this point, we need to make two important remarks.
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Remark 4.2.1. The vector 0VF° defined in (4.1.5) is a sub vector of Mtv. Therefore mazimizing

(4.2.2) for either | =1 or | = 2 will yield an estimate of 6*F5.

Remark 4.2.2. The M;,-marginal model, | = 1,2, is a hierarchical log-linear model but not nec-
essarily a graphical model. For example, if we consider a four-neighbour lattice and a given vertex
vo and its four neighbours that we will call 1,2,3,4 for now, then the generating set of the relaxed

My 4, -marginal model is
AMLUO = {<v07 1)7 (UOv 2)? (U()? 3)7 (UO7 4)7 (17 27 37 4)}

This is not a discrete graphical model since a graphical model would also include the interactions
(vo, 1,2), (vo, 2,3), (vo, 3,4), (vo, 1,4), (vo, 1,2,3,4). It was therefore crucial to set up our problem as
we did it in Section 2, within the framework of hierarchical log-linear models rather than the more

restrictive class of discrete graphical models.

4.3 Equality of the maximal conditional and marginal composite like-

lihood estimate

Let éMlvv,l = 1,2 denote the maximum likelihood estimate of i+ obtained from the local

marginal likelihood (4.2.2).

Theorem 4.3.1. The ”PS” component of éMl»”,i.e. (éf/ll’”,j € JUP%) is equal to the mazimum

likelihood estimate of 6T obtained from the local conditional likelihood (4.1.2).
Similarly, The PSy component of éMZ“,z’.e. (éjf-vb’“,j € JvP5) s equal to the mazimum likelihood
estimate of 0752 obtained from the local conditional likelihood (4.1.6).

The proof is given in Appendix B.3. At this point, we ought to make an important observation.

In the case of the two-hop marginal likelihood, it can happen that the buffer B, may not be equal
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Figure 4.2: Two vertices in a 5 x 10 lattice: Theorem 4.3.1 applies to vertex 25 but not vertex 39

to Na,. For example, if we consider a four-neighbour 5 x 10 lattice and number the vertices by rows
starting from the left, vertex 39 is such that N, = {19,28,30,37,48,50} while B, = N3, \ {50}.
The argument in the proof of Theorem 4.3.1 for j such that S(j) ¢ Na, then breaks down since
in the My ,-marginal model, some cells such as iy, = (i30 = 1,950 = 1,04,\{30,50}), With support
in N3, no longer have a complete support. This situation is illustrated in Figure 4.2 where for the
sake of comparison, we also look at vertex 25 for which N5, = B, and so Theorem 4.3.1 applies.
In Tables 4.1 and 4.2 we give the numerical values of the maximum likelihood estimate 6;,j €
JMz22 obtained from the four local models PS, PS;, M, and My, for j such that j € JP925 and
for j such that j € J799 respectively. We see that in the first case, the values of éj obtained from
the local likelihoods {7925 and ™12 are identical and similarly for those obtained from (79225 and
[M225 while in the second case, the values obtained from the PS; and My, models are slightly
different. The values obtained from the PS and M, models are identical since then B, = N,, and

the proof of Theorem 4.3.1 does not break down.
Remark 4.3.1. The equality of the estimates holds also for the marginal estimates obtained by
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Models 925 é15,25 524,25 é25,26 é25,35
My, -0.0536 | 0.5914 | -0.4808 | -0.8314 | -0.8461
My, -0.0779 | 0.5221 | -0.5310 | -0.7274 | -0.7459

(v, PS) |-0.0536 | 0.5914 | -0.4808 | -0.8314 | -0.8461

(v,2PS) | -0.0779 | 0.5221 | -0.5310 | -0.7274 | -0.7459

Table 4.1: The local MLE of some 6,5 € J*>"9 in the 5 x 10 lattice

Models é39 é29,39 é38,39 é39,40 é39,49
My, | -1.0799 | -0.3306 | -0.3647 | -0.5791 | 1.1749
My, | -1.0386 | -0.3519 | -0.5020 | -0.5445 | 1.1946

(v, PS) |-1.0799 | -0.3306 | -0.3647 | -0.5791 | 1.1749

(v,2PS) | -1.0381 | -0.3531 | -0.5019 | -0.5448 | 1.1947

Table 4.2: The local MLE of some 6;, j € J3%P9 in the 5 x 10 lattice

Mizrahi et al. (2014) if, for q a clique of G and v € q¢ C A,, satisfying the strong LAP condition
with respect to A,, we retain only the parameters 0;,j € J¥5 N q. We also note that Theorem 9 in
that paper may not be true in some cases. For example, take vertex 7 in a 3 X 3 lattice numbered from
left to right starting with the top row, take ¢ = {7,8} as the clique of interest. Then A, ={4,7,8}
satisfies the strong LAP condition, but 0s in the A,-marginal model cannot be equal to Os in the

joint model as our Lemma 4.1.2 shows.
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4.4 Computational complexity of the local marginal and conditional

methods

In order to illustrate the algorithms and computational complexity of MLE computation of our
local marginal models and local conditional models, we use the Ising model with binary data as an

example.

Figure 4.3: A small example for one-hop and two-hop local models

The graph above illustrates the one-hop and two-hop local models of node v. We assume each
node takes binary values {0,1}. Here we use N; to denote the one-hop neighbours of v, Ny - the
neighbours of neighbours of node v, and N; U N; - the two-hop neighbours of v. Let p = |N;| and

q=|Ns|, s0 p+q=|NyUNs.

4.4.1 One-hop Local Conditional Model

In the one-hop conditional models, the probability density function of X, given its 1-hop neigh-

bours Xy, is

exp(z,0, + T2 N, 00 N,)

v 79 - ’
f(x |xN1 ) 1+exp(0v+x]\[191},N1)
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where 0, is a scale value, 0, 5, € RP, so the number of parameters in the function is p + 1. Given

N sample points, we can write the negative pseudo log-likelihood function as follows:

N
1(0) = [log(1 + exp(0y, + @y, 00.3,)) — 20, — iy, Oy,
i=1
We use the limited-memory BFGS algorithm found in the Matlab package "minFunc” of Schmidt
(2005) to compute the pseudo-likelihood estimates for each local conditional model. One can refer to
Nocedal (1980) and Schmidt et al. (2009) for the details about the algorithm. The BFGS algorithm

approximates Newton’s method. We don’t need to evaluate the Hessian matrix, but the gradient

of the log-likelihood is necessary. The gradient can be computed as follows:

dl(0) o ZN [ eXp(9v+$§vv Ov,N7) N l'z]
db, o i=1l14exp(0y+zYy 0y N, ) v
1Y,
dl(0) _ ZN [ eXp(9U+x§v19U7N1) i ]
do, N, =11 +exp(0u+ay, Ou,n,) v N

The cost for evaluating the negative log-likelihood function and its gradient is linear to the
number of parameters times sample size: O(N(p + 1)). As shown in Nocedal (1980) and Schmidt
et al. (2009), the cost per iteration of L-BFGS method is O(m(p+ 1)), where m is a small constant
chosen by user, and p + 1 is the number of parameters in the log-likelihood function. In order to
reach an accuracy of € under standard assumptions, one needs O(log(1/¢)) iterations. Therefore, the
total cost for computing the MLE of a 1-hop local conditional model is O(log(1/e[(m+ N)(p+1)]),

which is linear to the number of parameters.

4.4.2 Two-hop Local Conditional Model

In the 2-hop local conditional model as shown in the previous example, there are some node
parameters: ¢, € R, Oy, € RP and some edge parameters 6, n,) = {0;;]i = v,j € N1} € RP,

Ony ny) = {0ij]i € N1, j € Na} € RY. The parameter set is therefore © = {0, 0n,, 0, ny), O(ny N0 } €
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RU+2P+4)  The probability density function of X, y, given Xy, is

exp(zyb, + N, 0N, + vaNle(v,Nl) + N, $N29(N1,N2))

ZIUU]\Q EIUU./\/’l eXp(-Tvev + leeNl + 'CEUQ:Nle(U,Nl) + a:Nla:NQe(Nl,NQ))’

f(vaN1 |IN27 9) =

Given N sample points, we can write the negative log-likelihood function:
1(0) = Z [log( Z exp(2yly + TN, 0N, + TN, O Ny + :L‘leL‘é%Q(Nl,Nz)))

=1 mqulelvUNl

— (a:fﬁv + x§V19N1 + azixﬁvle(U,Nl) + mf\,lx?VQH(Nl,Nz))] (4.4.1)

We use the same algorithm to compute the MLE as we did in the 1-hop local conditional model.
Evaluating the negative log-likelihood function is, however, much more complex. The cost for
computing the logarithm in the log-likelihood function is exponential to the size of vU Ny: O(2PF).
Since we need to compute this logarithm in the negative log-likelihood function and the gradient
function, the cost for one data point will be O((1 + 2p + ¢)2P*!), and O(N(1 + 2p + q)2P*1) for N
sample points. Similar to the 1-hop case, the total cost for computing the MLE of a 2-hop local
conditional model is O(log(1/e[m(1+2p+ q) + N(1+2p+ q)2P™']), which is exponential in the size

of v UN;, or M.

4.4.3 One-hop Local Marginal Model

Recall that when we complete the buffer set of each local marginal model, the number of pa-
rameters increases exponentially with the number of nodes in the buffer set, but we only increase
one clique in each local marginal model. Therefore, using the IPF algorithm designed by Jirousek
and Preucil (1995) to compute the MLE of the local marginal model turns out to be much more
effective than maximizing the likelihood function. After we get the expected value of the marginal
contingency table, we can apply formula (2.15) provided in Letac et al. (2012) to get the MLE of
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i’y

We don’t need to compute all the parameters in the local marginal model, since we just need the
parameters {0;,v € S(j)}. In our example we just need to compute 6, 0, n,), which costs O(p+1).
Recall that M; = vUN7, and I, denote the set of cells in the M;-marginal contingency table,

in the one-hop local marginal model of node v, so we have

|]M1| = 2p+1.

We need to update all the cell counts in the M;-marginal contingency table. Therefore the total

cost for the IPF algorithm is O(2P!), which is exponential to |M].

4.4.4 Two-hop Local Marginal Model

The two-hop local marginal model is almost the same as the one-hop, except that the two-hop
local marginal model has 1 + p + ¢ nodes and more cliques. In our experiments, we choose to use
the IPF algorithm to get the expected values of the two-hop marginal contingency table, and then
computed canonical parameters 6, 0, n,). The computational complexity is exponential to the
number of nodes in the local marginal model: |Ms)|.

We took advantage of Matlab’s matrix computation prowess to avoid multiple ”for-loops”. This
allows us to update the contingency table m at a high speed, and the computational time to grow

linearly with the number of cliques.
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4.5 The maximum composite likelihood estimate

Since we have proved that the estimates of 6V obtained from local conditional and relaxed
marginal likelihoods are identical, and computational complexity in the relaxed marginal model, we

work only with the local estimates obtained from local conditional likelihoods. More precisely, for

lv,PS

each local conditional likelihood or [""P%2 we consider the local maximum likelihood estimate

0V or 0v-P52 We define

fv-PS if we work with (79
G _ (4.5.1)

(é;‘)’PSQ= S(j) € {v} UN,) if we work with [*F52

In other words, from either {""S or 172, we retain 6 = (67, S(j) C ({v} UN,)\N,) = (62, ,v €
S(j)) only. If we have m; estimates HA;-”,Z = 1,...,m;, then we define the maximum composite

likelihood estimate of 8 to be

B _ mj 6)1)1
0= (0; = i 0 L jed), (4.5.2)

m;

Let 0F5 denote the vector obtained by stacking up the vectors é”, v € V. We then have

0 = A9PS

where Ais a |[J]| x> _\, [J*P9| where J"FS is as defined in (4.1.5). If S(j) = {v}, then clearly, the

veV

row of A corresponding to éj has all its entries equal to zero except for one entry equal to one in the

column block J*F5, If j € JuPS 1 =1,... m;, and S(j) C ({vi}UN,,)\N,, the row corresponding

to éj has all its entries equal to zero except for one entry equal to mi in each of the column blocks
J

JuwPS 1 =1,...,m;. For example, if the model considered is the discrete graphical model Markov
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with respect to the four-cycle with vertex set V' = {a, b, ¢,d} and D = {ab, ac, bd, cd}, we have

0a
O
0a 1 000 0 0 000 O0 0 0 0e,
O 0050005 0 00 0 0 0 0 0}
0, 00 01 0 000 0 0 0 0 0°,
; Oba 00 00 0 0500 0 005 0 oL,
_éc_oooooo1ooooo 0¢
Ocd 000 00 0 0 00050 0 05 0,
04 00 00 0 000 01 0 0 0,
Oap 00 00O 0 0500 0 005 0 64
O
e,
In general, for j € J and k € J*P% v € V, the matrix A is defined by
it gy, =k €SP I=1, m;
Ajpg=4( ™ (4.5.3)
0 otherwise.

We have now defined our MCLE which we use to replace the global MLE maximizing (4.1.1).
It is natural to ask whether the MCLE exists when the global MLE exists, and conversely, whether
the global MLE exists when the MCLE exists. The existence of the global MLE is an important
problem that has been considered in Fienberg and Rinaldo (2012) and more recently in Wang et al.
(2016). We say that the MLE does not exist if we cannot find 0 such that the corresponding cell
probabilities p(i) and p(0) as given by (2.1.4) and (2.1.5) are strictly positive. The nonexistence of

the global MLE has important consequences for inference. However, if we are only concerned with
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estimation of the parameter 6 or equivalently with (p(7),7 € I), as the following lemma shows, the

global MLE may not exist, but we may still accept the MCLE as an estimate of the parameter.

Lemma 4.5.1. For a discrete log-linear model, if the global MLE exists, then the MCLFE exists. but

the converse is not necessarily true.

Proof: If the global MLE exists, then p(X =) > 0 and p(Xy, = in;,) > 0,

PX =)

~ ~ . ~ > O,
P(Xn, = in;,)

P(Xy =0 Xy, =in,) =

i.e. the composite MLE exists. We now give an example where the MCLE exists but the global
MLE does not. Consider the four-cycle graphical model as described above, with binary variables.

Let the data be such that n(i) = 1,4 € {0000,1000,0100,1010,0101,1011,0111,1111} and
n(7) = 0 otherwise so that the marginal counts are t. = t; = 4,t, = 1,tpq = teg = to = 3 where
for A C V, ts denotes t; with j, = 1 if v € A and j, = 0 otherwise. Thus the data vector lies on
the facet t. +tq + tap — tea — tea — tae = 0 of the marginal polytope of the four-cycle model. The
reader is referred to Letac et al. (2012, Theorem 5.3) for the equations of the facets of the polytope
corresponding to the four-cycle. From the theory on the existence of the global maximum likelihood
estimate developed in Fienberg and Rinaldo (2012) and references therein, it can be concluded that
the global MLE does not exist in this case. The facets corresponding to the local models built on

v = a have equations

Lab = 0
tg — tap - 07
ty — Tab = 0

1_ta_tb+tab - 07

We can verify immediately that none of these equations are satisfied with the given data and
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therefore the MLE of #*7° in the a-local model. Similarly the MLE of #*7° v = b, ¢, d exists and

thus the MCLE exists.
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5 Asymptotic properties of the maximum composite

likelihood estimate

In this chapter, we look at the asymptotic properties of the MCLE 6 when p is fixed and then
when both p and N go to infinity. Though asymptotics when p is fixed have been given by Liu and

Thler (2012), we give our result here in Section 5.1 for completeness in our own notation.

5.1 The classical asymptotic regime

We consider here the behaviour of the MCLE # when p = |V| is fixed and the sample size N

goes to infinity. We have the following result.

Theorem 5.1.1. The MCLE 0 as defined in (4.5.2) is asymptotically consistent and
VN(G — ) — N(0, AGA?) (5.1.1)

where A is as defined in (4.5.3), G is the square )

vey |8 |-dimensional matriz with (v, vy, )-block

entry

G, = T7H(0") E(

L(0™) <az(e*vm)

t
g (Tagen ) M), (5.1.2)

1(0) = [vePS((6%)wPS| X)) s the local conditional likelihood, given one sample point X, evaluated

*vU *v t
at the true local parameter (0*)°F5 and I(0™) = E(ag(g*vll) (ag(g*vlz)> ) is the v-local information

matriz evaluated at the true value 8, v, € V.

46



The mean square error therefore satisfies

n * N 0 v vl *
E([l6; - 0;1%) — Z Il@l “+Z Z G i (5.1.3)

Ih1=11le=l1+1 -7

The proof is given in Appendix B.4. In the expression of the mean square error (5.1.3) above,
we note that to the diagonal elements of the inverse information matrix for each local model are
added the cross-product terms [Gy, ., ];;, because the estimates of é; coming from the v;, and v,
local conditional models with j € J"1-F5 N Jv2P9 are not independent. We also note here that our
Theorem above coincides with Theorem 4.1 in Liu and Thler (2012) with our matrix A being equal
to their (>, W*)~!

To illustrate our result above, we simulate data from the 4-cycle graphical model. We simulate

our data for the following values of the parameters
104, 0y, 0c, 04, Oup, Oac, Oba, Oea] = [0.53,1.83,—2.25,0.86,0.31, —1.30, —0.43, 0.34].

The results are illustrated in Figure 5.1.
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Figure 5.1: Empirical and theoretical mean square errors for the global MLE and the MCLE of the

parameters for the four-cycle graphical model.

We now examine the asymptotic variance of the two estimates QfAi’”, i=1,2j€ J Sy C
M., S(j) ¢ B,. We distinguish between the buffer set of the relaxed M; ,—marginal model, and

that of the M, ,— marginal model, and denote them be B, ,, where ¢ = 1,2 respectively. We will

48



use the notation
Ji,v = {.] S [Miyv : ] € J7 S(]) C Mi,vﬂ S(]) ¢ B@U} - JMi,v
Bi,v = {j € [Mi,v : S(.]) - Bi,v}
(5.1.4)
05, = 1057 € Jin}
HBZ-,U = {ejaj € Bi,v}

We consider the following four models that are defined by their J-sets [J:
1. the relaxed one-hop marginal model M, , with J-set equal to J = J1, U By ,,
2. the relaxed two-hop marginal model My with J-set equal to J = Js, U Bsy,,
3. the overall model with J-set J = J,

4. a new augmented marginal model, denoted My, that we will use in the argument below with

J-set equal to J = J1, U By, U Jov14 U Bay, where Joy1,, = Jop \ Ji0.

We note that the density of the four models is of the general form (4.1.8) with § = (0;,j € J) and

with cumulative generating functions

Miw (9Miv) = 10g(ZkelMM exp i jes )

k7(6) = log) ;c;exp ijl,jej 0;

Mo (pM20) = log ZkeIMU exp Y iajes i)
for the models M, ,,,i = 1,2, the overall model and the augmented marginal model M, respectively
and where the set J changes accordingly.

Whatever the model is, the symmetric matrix of the covariance of ¢ is the J x J matrix

Ph(B) k()
oz~ o0, )5 = Py — PP )iges
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where we use the notation j U j to denote the cell i € Ipm,, or i € I with support j U j and

pjuy =p(( Uj,)S(jUj’))? p; =p(ise)
denote the marginal probabilities. For 7,j given, since Pjuj i, Py are marginal probabilities, the
entries p; v — p;p; are the same for all models with 7, j" € J. We will now give the following result
concerning the variance of the estimates.

Theorem 5.1.2. For any parameter 0;, j € J, we can find a vertex v € V such that v € S(j). Let

éMl,v

Y HA]/-VI"”” be the estimates obtained from mazximizing (4.2.2), the v-th component of the one-hop

and two-hop marginal likelthoods respectively. Let éj be the MLE obtained from mazximizing the

original likelihood function (2.2.3), then we have

~

Uar(éjj-vh’“) > Uar(éjM“) > var(6;). (5.1.5)

The proof is given in Appendix B.5.

5.2 The double asymptotic regime

In this section, we consider the asymptotic properties of the MCLE when both p and N go to
+00. In Theorem 5.2.1 below, we give its rate of convergence to the true value 6*. In order to
compare the behaviour of the MCLE with the global MLE, we also give, in Theorem 5.2.2, the rate
of convergence of the global MLE under the same asymptotic regime.

It will be convenient to introduce the notation

1 ifjax
fite) = T] 1@ =3)= :
)

les(i 0 otherwise

and to write (4.1.3) as

p(x |xN ) _ eXp{Zjer,PS ejf](xvﬂ J:Nv)} (5 2) 1)
Y v 1 + ZvaIu\{O} exp{Zjer,PS ij](yvv x/\fy)}

20




lv,PS (ev,PS)

In this section, we work exclusively with . Therefore for simplicity of notation we write

0 for 5. Also, for convenience, we scale the log likelihood by the factor % Then the v-local

conditional log likelihood function is
PESO) = L log ()
N n=1 v Ny

= Z]EJ”PS 9]117 Zn 1f3($v »$5\7))

N n
LS og{l+ X2, ooy XA jesnrs 05Fi (o, 250) 1)

The sufficient statistic is ¢; = 5 LS f (xv 2! N ). We write

tyors = [t1,ta, -+ tq,] (5.2.2)
and
| XN
RO Zlog{H S el Y i)} = 5 Yl 2(0)
Yo €1,\{0} jeJgv,Ps n=1
where

Zm0(0) =1+ Z exp{ Z ijj(yv,x(/\fnj)}-

yo€l,\{0} jeJuPs

Then the log likelihood function is

POy = Y 0t — kTS (0) .

jeJ’U,PS

Its first derivative is

alv,PS(e) . 8/€U’PS<9)

00, " 00,
ok"TS(0) 1 iexp{Zjer,Ps 0,1(kv, 2i))}} Follo, 2
aek Nn:1 Zn,v(@) vy VA,
with
ex i ro.ps 0 'kml'(n)
p{Z]EJ rs 055 N )Y — (X, = kv|$(Nn3) (5.2.3)

ZZ0)
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We now want to compute 82{;;;3959) = —32§; I;Z k.1 € J»TS. To simplify further our notation, we
set
2.0 = Y £y, 7). (5.2.4)
jeJ’U,PS

For k, = [,, using (5.2.3), we obtain

82kv-PS (0 exp 2k, (6 exp z
ng) = NZn 1< anfffg)) — ( anff@ ) >fk(kv,$/\/ )fl(lm%\/))
200 (PO = Rulali) = p(X, = ko222 fulkos ) fils 2l))
if k, # 1, then

32kvPS (0 __exp 2z, (0) expz n n
b = N Lon — g fu (ke ) il )
— LN (—p(X, = k(X = L]2)) fi (b, 2$) il 20)

Let W™ = (£;(Jo, x(Nnj),j € JUP9) be the d, x 1 vector of indicators. We introduce the notation

P, 0) (b )y gpg

n zee@) 7 )
77kl , (0, ac/(\/)) - (5:2:5)
_ema@eman g gy,

Let H™"(6, xj(f}v)) be the d, x d, matrix with (k,1) entry n, (Q,x(Nnj) Then the Fisher information

matrix derived from [vF% is
v PS ” n,v n,v n,v\t
(k" N}jH (0,20) o (W™ (W

where o denotes the Hadamard product of two matrices. We make two assumptions regarding
the behaviour of the cumulative generating function £*7% v € V at #*, similar to those made by

Ravikumar et al. (2010) and Meng (2014).

(A) For the design matrix of the v-local conditional models, we assume that there exists Dyq, > 0

such that
| N
>\ma33<_ e v ) Dmaxa
eV N;W (W)



(B) We assume the minimum eigenvalue of the Fisher Information matrices (k*"%)"(6*), v € V

is bounded, i.e., there exists C,,;, > 0 such that

N
. 1 nungx .(n) n,v n,v\t

We are now ready to state our theorem on the asymptotic behaviour of 6.

Theorem 5.2.1. Assume conditions (A) and (B) hold. If the sample size N and |V| = p satisfy

N 10C' D,q2d,
max (— =Y
logp = wev C?

min

)%,

where Cis a positive constant such that p= > 2|.J|, then the MCLE 6 = (0;,5 € J) is such that

_ . 5C ZUGV d, logp
— < 2.
160 —0%||F < Cmm\/ i (5.2.6)

2| J]
c2 -

p 2

with probability greater than 1 —

The proof is given in Appendix B.6. With a similar argument, we can derive the behaviour of
the global MLE, which we will denote by §¢. We need to make assumptions similar to (A) and (B).

We assume that

(A") there exists D, > 0 such that A, ( Z i ® fz> < Diaws
icl

(B)) 0< K = Ain [k”(e*)].
The asymptotic behaviour of 6% is given in the following theorem.

Theorem 5.2.2. Assume conditions (A’) and (B') hold. If N and p satisfy the condition

N 40C|J| D
> (

logp —

)%,

K*Q

where C'is a positive constant such that p*¢” > 2|J|, then the global MLE 0¢ = (éjG,j € J) is such

. 5C [|J]| logp
G _ p* < Ty 2L res
16% = 0"llr < —\/ = (5.2.7)
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2|J]|
7 .
pZC

with probability greater than 1 —

The proof is given in Appendix B.7. Comparing Theorems 5.2.1 and 5.2.2, we see that for

Gy = O(J[), 10 =07l = O(4 [HL5222) with high probability while for X = O(max,ey (d2)),
160 — 0%z = O(y/ M). This implies that for the MCLE, the requirement on the sample

size N is not as stringent as for the global MLE but of course, we lose some accuracy in the

approximation of #*. The situation is, however, not bad since

\/Zvevdvlogp/\/|J| log p _ > vey o
N N ||

which is the square root of the ratio of the sum over v € V' of the number of parameters in the v-local

conditional models and the number of parameters in the global model. If the number of neighbours

2d+1

T and usually much

for each vertex is bounded by d, we see that this ratio is at most equal to

smaller than that. For example, in an Ising model, |J| = p + |E| and >, ., d, = p + 2|E| and

therefore % =1+ 2 < 2.
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6 Existence of MLE in hierarchical log-linear models

In this section, we will study the second problem: the existence of the MLE in hierarchical
log-linear models. We fix a discrete exponential family £4. While our main interest lies in hierar-
chical models, the results that we need are more naturally formulated in the language of discrete
exponential families. We assume that a vector of observed counts n = (n(i) : ¢ € I) is given. The

log-likelihood function of parameters § = {6;,j € J} is
1(0ln) = (0.1) — NK(6).

let @ be the MLE of 6 as defined in Definition 2.2.1. The function I(6) is always bounded (clearly,
it is never positive). As stated above, [(f) is strictly concave (if the parameters are identifiable),
and so the maximum is unique (up to identifiability), if it exists. However, a maximum need not
exist, since the domain of the parameters 6 is unbounded. To understand this, it is convenient to
interpret the likelihood as a function of probabilities. Let I’ be the function that assigns to any
probability distribution p on [ the value
U(p) = n(i)logp(i).
iel

Then 1(6) = I'(pg), and @ is the MLE if and only if p; maximizes the log-likelihood function !'(p)
subject to the constraint that p belongs to the hierarchical model, and thus that it is of the form py
for some 6. While the set of all probability distributions on [ is compact, the hierarchical model itself
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is not closed and therefore not compact, and so there is no guarantee that [ attains its maximum on
the hierarchical model. However, things become better when we pass from the hierarchical model
to its topological closure, where the topology comes from interpreting a probability distribution as
a vector p = (p(i))ie; € R of real numbers (this choice of the topology is canonical since we are
dealing with a finite set [; for infinite sample spaces see Csiszar and Matus (2005)). The closure
is sometimes also called completion (Barndorff-Nielsen, 2014, p. 154). Since the closure of the

hierarchical model is again compact, the continuous function !’ always attains its maximum.

Theorem 6.0.1. The closure of a discrete exponential family can be written as a union

Er= U Era,
F

where F' runs over all facial sets of the convex support polytope P 4 and where Ep 4 consists of all

probability distributions of the form prg, with

exp((ﬁ,fﬁ - kF(6>>> Zfl S F7
Pro =

0, otherwise,
where kp(0) = log Y .. pexp((0, fi)-

Proof. See Barndorff-Nielsen (2014). For self-containedness we provide a proof in our notation in

Appendix B.8. O]

Theorem 6.0.1 shows that €4 is a finite union of sets € .4 that are exponential families themselves
with a very similar parametrization, using the same number of parameters and the same design
matrix A (or, rather, the submatrix Ap consisting of those columns of A indexed by F'). However,
for any proper facial set I, the parametrization 6 — pry is not injective, i.e. the parameters 6 are
not identifiable on £pa. The reason is that the matrix AF does not have full rank, even if A has

full rank, since all columns of Ar lie on a supporting hyperplane defining F'.
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A second thing to note is that although the parameters 6 on £4 and the parameters 6 on Ep 4
play similar roles, they are very different in the following sense: If ) is a sequence of parameters

with py) — pre for some 6, then, in general, lim,_, 0§s) #0; for all j € J.

Theorem 6.0.2. For any vector of observed counts n, there is a unique maximum p* ole in E4.

Fort as defined in (4.1.8), this mazimum p* satisfies:

o Ap* = £.

o supp(p*) = F;.

Proof. See Barndorff-Nielsen (2014). For self-containedness we provide a proof in our notation in

Appendix B.9. O

Definition 6.0.3. The mazimum in Theorem 6.0.2 is called the extended mazimum likelihood

estimate (EMLE).

Clearly, if the MLE 6* exists, then p* = pg-.

6.1 Faces of the marginal polytope Pa

As we showed in Lemma 3.2.2, the problem of determining the existence of MLE in hierarchical
log-linear models is equivalent to finding the face of the marginal polytope P containing the sufficient
statistics t. Recall that I, denotes the cells with positive cell counts in a contingency table, and I,

denotes the empty cells, so we have the following lemma.

Lemma 6.1.1. The sufficient statistics t belongs to a face F of marginal polytope P, if and only if

fieFViel,.
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Proof.

t:2$f1221$ﬁ
teF = (t9) =0 = Ziel+#<fi>g>:0-
(fi,g) >0Viel, so
Z#%W =0 < (fi,9)=0, Viel,

1€l

]

Let A, a |I| x |J| matrix be the design matrix of the hierarchical log-linear model generated
by A, A, be the sub-matrix with rows indexed by the positive cells I, and Ay as the sub-matrix
indexed by the empty cells I,. We give an algorithm to compute the smallest face or facial set

containing sufficient statistics ¢ in the following lemma.

Lemma 6.1.2. Solution g* of the non-linear problem

max z= |lAglo
st. Ayg=0 (6.1.1)
Apg =0

1s a perpendicular vector to the smallest face containing t. The corresponding facial set is Fy, =

I\ supp(Ag*), where ” supp” means the support of a vector.

Any vector g that belongs to the feasible set of problem (6.1.1) defines a face in the marginal
polytope P4, we maximize the o norm ||Ag|lo so that we get the smallest facial set F;. The

optimization problem (6.1.1) is highly non-linear and non-convex, but it can be solved by repeatedly
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solving the associated ¢1-norm optimization problem:

max z = || Aogl|x
st. Ayg=0 (6.1.2)
Apg >0
Apgg <1

Problem (6.1.2) is a linear programming problem: we iterate until we get the smallest facial set

F;. The process is as follows:

Algorithm 1 Face computation using a linear programming method

Require: Design matrix A and positive cell index I

INITIALIZE A, = A(14,:), Ag = A\ Ay

Solve problem 6.1.2, get the solution ¢g* and the corresponding maximum z*

while Ay # 0 and z* 40 do
Let matrix B be the submatrix of Ay, by taking columns of Ag which satisfy (f;, ¢*) > 0, update
Ay = Ap\ B,
Solve problem 6.1.2, get the solution ¢g* and the corresponding maximum z*

end while

if Ap =0 then

end if
if Z* =0 then
F, = I, U {i]i is the index of Ay}

end if

Now we are going to prove that we can solve the [y optimization problem (6.1.1), by implementing
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the LP problem (6.1.2) repeatedly. The equivalent statement is as follows:

Theorem 6.1.3. Assuming we get max z = 0 after repeatedly solving the linear programming

problem (6.1.2) K times, let g1,9q,- - ,gKx be the corresponding optimization solutions. Denote
Aél),A((]Q), e ,A(()K) the new matriz in the cost function of each LP problem (6.1.2), so we have

max z = ||A(()K)g||1 =0. Then g = Zszl gk 18 the optimization solution of problem (6.1.1).

Proof. Suppose ¢ is not the optimization solution of (6.1.1), so there exists another vector g*
belonging to the feasible set in (6.1.1), such that there exists at least one row f,, in matrix A,
satisfying

(fm: 9) =0; (fm, ) > 0.
(fm, ) =0= (fum, gr) =0, k=1,2,--- K. = f,, is still a row in matrix A(()K).

Then (f,,, ¢g*) > 0 is a contradiction to

max z = ||A(()K)g||1 =0

O]
Another similar way to compute F; is to solve the || linear programming problems:
mar z; =< fi,c>
st. <t,c>=0
(6.1.3)
Ac >0
le] < 1.
Then
F, = {i]z; = 0}.

This algorithm is less efficient due to the large number of cells in /. This said, the fact that

there is no communication among the |/| linear programming problems allows us to solve the |I|
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linear programming problems using the distributed computing. The algorithm is introduced in the
supplementary material of Fienberg and Rinaldo (2012), where it is also proved that it outputs the

correct result.
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7 Approximations to the faces of the marginal polytope

The linear programming algorithm 1 works pretty well in low-dimensional contingency tables,
but if the dimension p is very large, the number of rows of design matrix A is exponential in p,
so we won’t have enough memory or computing power to solve (6.1.2). Our simulations show that
when p > 16 and each variable takes binary values, we cannot solve (6.1.2) anymore. We use local
models to approximate facial sets in high-dimensional tables.

We consider a hierarchical model with simplicial complex A and marginal polytope PA. In this
section, we explain the details of our methodology for obtaining an inner and an outer approximation
to the facial set F} of the smallest face F; of P containing the data vector t. Our main tool is

Lemma 7.0.1. For any S C I, we abbreviate the facial set Fp, (S) by Fa(5).

Lemma 7.0.1. Let A and A’ be simplicial complexes on the same verter set with A" C A, and
denote by fi, f (i € 1) the rows of the design matrices of the corresponding hierarchical models.
There ezists a linear map ¢ : R" — R such that o(fi) = fl. In fact, ¢ is a coordinate projection.

In particular, the marginal polytope Par is a coordinate projection of Pa. Thus, for any S C I, we

have FA(S) C Fa(5)

Proof. The design matrix Ax has one column for each parameter §;, j € Jo. Removing sets from A
leads to a smaller set Jas and thus leads to a matrix Axs with less rows. The definition of each row

that remains does not change. The lemma now clearly follows from Lemma 2.3.5. [
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Next we discuss marginal polytopes of decomposable (or reducible) models. Then, in Sections 7.2

and 7.3, we explain how to use Lemma 7.0.1 to obtain inner and outer approximations to F(S).

7.1 Decomposable models

Definition 7.1.1. Let V' C V. The restriction, or induced sub-complex is Alyy = {S € A |
S C V'}. The sub-complex Aly: is complete, if Alyr contains V' (and thus all subsets of V'). For

brevity, in this case we say that V' is complete in A.

Definition 7.1.2. A subset S C V is a separator of A if there exist Vi,Vo CV with Vi NV, =S5,
A = Aly, UA|y, and Vi # S # Va. A simplicial complex that has a complete separator is called

reducible. By extension, we also call the hierarchical model reducible.

Definition 7.1.3. A hierarchical model is decomposable if A can be written as a union A =

Ay UAU---UA, of induced sub-complexes A; = Aly, in such a way that
1. each A; is a complete simplex: A; = {S C V;}; and
2. (A U---UA) N A is a complete simplex.
In other words, A arises by iteratively gluing simplices along complete sub-simplices.
The faces of a reducible hierarchical model are combinations of the faces of its two parts:

Proposition 7.1.4 (Eriksson et al. (2006)). Suppose that A has a complete separator S that sepa-

rates V' into Vi and Va. Each face of Pa),, corresponds to an inequality

OIS

I€J Ay,
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The same inequality also defines a face of Pa. Similarly, each face of P, defines a face of Pa.

Each face of Pa either arises in this way, or it is the intersection of two such faces, one induced

by Pay, and one induced by Pa,, .
Proof. See Eriksson et al. (2006), Lemma 8. O

In the sequel, for any V' C V and i € I = [] . I, it will be convenient to use the seemingly
more complicated notation my:(i) = (i,,v € V') for the marginal cell iyv» € Iy = [[,cy Lo
Similarly, for a set S C I, the restriction to V' is my/(S) := {my (i) : i € S}. For T' C Iy, the
opposite action yields ;) (T) = {i € I | iy» € T}.

We next translate Proposition 7.1.4 to the language of facial sets:
Lemma 7.1.5. Suppose that A has a complete separator S that separates V' into Vi and Vs.

1. If F C I is facial with respect to A, then my, (F) and 7y, (F) are facial with respect to Aly,

and Aly,.

2. Conversely, if Fy C Iy, and Fy C Iy, are facial with respect to Aly, and Aly,, then 7T‘711(F1) N

7y, (F») is facial with respect to A.
Thus, for any T C I, let Ty = my,(T') and Ty = my,(T).
FA(T) = my; (Fayp, (T1) N1y, (Fap, (T2)).

Proof. Consider an inequality as in Proposition 7.1.4 that defines a face F of P, as well as a face
F, of Pa,. Then the corresponding facial sets [’ and F} satisfy F' = 7T‘711(F1); in order to check
whether some f;, i € I, satisfies the inequality, we only need to look at the components involving V7;

that is, we only need to look at 7y, (7). O
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Lemma 7.1.5 easily generalizes to more than one separator and thus to more than two com-
ponents and it becomes particularly simple when these components are complete. Indeed, in that

case, Fa, (Ty) = Ty and taking the preimage we obtain
T (my (T)) = {i € I+ 3i' € T such that my, (i) = m, ()} 2 T.
The following lemma is an immediate consequence of Lemma 7.1.5.

Lemma 7.1.6. Let A be a decomposable model with decomposition A = Ay U Ay U ---U A, where
A; is a complete simplex on V;, and let m; = my, be the corresponding marginalization map. Then,

forany T C I,

7.2 Inner approximations

To obtain an inner approximation, our strategy is to find a separator S of A and to complete
it. More specifically, we augment A by adding all subsets of S. The result is a simplicial complex
Ag=AU{M : M C S} in which S is a complete separator. We can apply Lemma 7.1.5 to find
the facial set Fa (), and this will be our inner approximation of Fa([).

An even simpler approximation is obtained by not only completing the separator itself, but also
the two parts Vi, V4 separated by S: The simplicial complex Ay, v, :={M : M CVi} U{M : M C
V,} is decomposable and contains A. Its facial sets can be computed from Lemma 7.1.6.

In general, the approximation obtained from a single separator (or, in general, a single super-
complex) is not good; that is, F; = Fa(l) tends to be much larger than Fay(Iy) or Fa,, ,, (1)

Thus we need to combine information from several separators. For example, given two separa-
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tors S, 5" C V', we find a chain of approximations

G6 = I+7
Gy = Fag(Gy), G o= Fa, (Gh),

Gg = FAS(GQ), GIQ = FAS,(GQ),

that satisfy

I,.CG CG CGyC---CF,

where all inclusions except the last one are due to the definition of Fa (1) or Fa,(T) as the
smallest facial sets containing 7" in Ag or Ag.. The last inclusion is a consequence of Lemma 7.0.1
since both Ag and Ag contain A.

This chain of approximations has to stabilize at a certain point; that is, after a certain num-
ber of iterations, the approximations will not improve any more. The limit, which we denote by
Fss/(IT) :=J;G; = U, G}, can be characterized as the smallest subset of I that contains I and
is facial both with respect to Ag and Ag/. The same iteration can be done replacing Ag and Ag
by Av, v, and Ayy vy, Applying in turn F, Ay, v, and F Ayt gives another approximation F. 55 (I7),
namely the smallest subset of I that contains I and is facial both with respect to Ay, v, and Ay vy
This latter approximation will be used in Section 10.1.1. Since F&SI(I*) C Fso(IT) C F, F’S,S/(IJF)
is a worse approximation than Fg ¢ (I7); it is, however, easier to compute.

We use the following strategies:
1 If possible, use all graph separators.

There are two problems with this strategy: First, if S is such that either V; or V5 is large, then

it is almost as difficult to compute F. Alv, and F Alyys 88 Fp|,,. Such “bad” separators always exist:
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namely, each node ¢ € V is separated by its neighbours from all other nodes. In this case, V}
consists of ¢ and its neighbours, and V, consists of V' \ {i}. For such a “bad” separator we can
only compute Fa,. .., but not Fay. Second, the number of separators may be large. Since we have
to iterate over this set until the approximation converges, it may take a long time to compute the

inner approximation. A faster alternative strategy is the following:

2 Look at separators such that both V3 \ .S and V5 \ S are not too small (for example, min{|V; \

SLIVi\ S|} = 3).

We illustrate the first strategy in Section 10.1.2; using a graphical model associated with the NLTCS
data set. In the case of the grids studied in Sections 10.1.1 and 10.2.2, which display a lot of

regularity, we use an adapted strategy:
3 In a grid, use the horizontal, vertical and diagonal separators.

In the case of grids, the vertical separators form a family of pairwise disjoint separators. In Sec-
tion 10.2 we show how we can make use of such a family to study faces of hierarchical models, even

when the facial sets are so large that they become computationally intractable.

7.3 Outer approximations

According to Lemma 7.0.1, when we compute Fa/(S) for a simplicial complex A’ C A we obtain
an outer approximation of Fa(S). Removing sets from A decreases the dimension of the marginal
polytope, so it is often easier to compute Fa/(S) than to compute Fa(S). Our main strategy is to
look at subcomplexes induced by subset V' C V.

Let Ay be the simplicial complex induced by V’. Let J C I be its set of interactions. When

comparing A with Aly/, we have to be precise about whether we consider Al as a simplex on V'
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or on V’': when we consider it on V', Let A be the I x J design matrix with rows f;, i € I, when we
consider it on V', the design matrix A" is an Iy x J matrix with columns f,,i" € Iy+. Because we

have the same set of interactions whether we are on V or V', for i € I and ' € Iy, we have:
fi=fieiem ). (7.3.1)

Therefore the marginal polytopes of the two models are the same since they are the convex hull of
the same set of vectors {f;,7 € I} = {f},7 € Iy+}. The relationship between the facial sets on V'

and V"’ is as follows:

Lemma 7.3.1. Let V' C V. For K C I, we have
Fay, (K) = my (Fh, (1 (K)).

Here, FlA'V’ denotes the facial set when Ay is considered as a simplicial complex on V', and Fy|,,

denotes the facial set when Ay is considered as a simplicial complex on V.

Proof. For K C I, the two sets A = {a;,i € K} and B = {by,i € 7y (K)} are identical and
therefore the smallest faces of the marginal polytopes for Ay, on V or V' containing A and B
respectively are the same.

From the definition of FA ,(my/(K)), we know that the smallest face containing B is defined
by {by,i" € Fj ,(my(K))}. From the definition of Fa,(K), the smallest face containing A is
{as,i € Fa,, (K)}. Also, from the equation (7.3.1), we have that {a;, i € W;}(F’AV, (mv/(K)))} =

{bs, i € ), (mv(K))}. Therefore, Fa,(K) = ﬂ;}(F’Avl(wv/(K))). O

In general, Fa|,, (1) is not a good approximation of Fa(Iy). We can improve this approximation
by considering several subsets of V. To be precise, if Vi,..., V., CV, then FA(I;) C FAM(LF) for

i=1,...,r, and thus Fa(I}) C (o, Fay, (1) = Fuyvea(ly)
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The question is now how to choose the subsets V;. Clearly, the subsets V; should cover V,
and, more precisely, they should cover A, in the sense that for any D € A there should be one V;
with D C V;. The larger the sets V;, the better the approximation becomes, but the more difficult
it is to compute Fy,; v,.a(l+).

One generic strategy is the following:

1. Use all subsets of V' of fixed cardinality k plus all facets D € A with |D| > k.

This choice of subsets indeed covers A. The parameter k£ should be chosen as large as possible such
that computing Fy, . v..a(l4) is still feasible. Note that computing Fa|,(I;) for D € A is trivial,
since P, is a simplex.

Another natural strategy first described in Massam and Wang (2015) is the following:

2. For fixed k, use balls By (v) = {w : d(v,w) < k} around the nodes v € V| where d(-, -) denotes

the edge distance in the graph.

In general, we choose subsets V; to be large enough to preserve some of the structure of A. For
example, for the grid graphs, we suggest the use of 3 x 3-subgrids. These graphs have two nice
properties: first, they already have the appearance of a small grid, second, for any vertex v € V,
there is a 3 x 3 sub-grid that contains v and all neighbours of v. We will compare two different

strategies:

3. For a grid, use all 3 x 3-subgrids.

4. Cover a grid by 3 x 3-subgrids.

In Section 10.2.2 we compare these two methods, and we observe that in the case of the 5 x 10

grid, it suffices to only look at a covering. In general, it is not enough to look at induced sub-

69



complexes, unless A has a complete separator (see Section 7.1). The approximation tends to be

good nevertheless and gives the correct facial set in many cases.

7.4 Comparing the two approximations

Suppose that we have computed two approximations F}, F5 of F; such that F; C F; C Fy. If we
are in the lucky case when F; = Fj, then we know that F;, = F} = F5. In general, the cardinality
of Fy \ F} indicates the quality of our approximations.

Fi, F5 and F; can also be compared by the ranks of the matrices flpl, AFQ and flpt obtained
from A by keeping only the columns indexed by Fi, F» and Fj, respectively. Clearly, rcmkflpl <
rankAp, < rankAp,. Note that rankAp, equals the dimension of the corresponding face Fy of P,
and mnk:flpt equals the dimension of F;. But F} does not necessarily correspond to a face of P.

Nevertheless, we can bound the codimension of F; in Fy by
dimFy — dimF; < rankAp, — rankAg,.

In particular, if rankAp, = rankApg,, then we know that F; = F,. In this case, our approximations

give us a precise answer, even if F} # Fy and the lower approximation F} is not tight.
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8 Statistical inference for the nonexistent MLE

Finding the smallest face containing the data vector t is one of the major accomplishments of
our work. This is done, of course, to allow for correct statistical inference.

Given a contingency table, we would like to fit a log-linear model that generates this data. Such
a log-linear model can help us understand the data and the relationship among variables. The first
step in statistical inference of the hierarchical log-linear model is to estimate log-linear parameters,
which will also give us the estimate of the cell probabilities. Next we provide the confidence interval.
As a last step, we usually conduct the goodness-of-fit test or likelihood ratio test to see which model
fits the given data set better. When the MLE exists, all these tasks can be achieved by traditional
methods, which are explained in more detail in Agresti and Kateri (2011) and Bishop et al. (1975a).
Whenever the MLE doesn’t exist, a common occurence in discrete data analysis, we can’t rely on
any of the traditional methods, but alternative solutions are provided by Geyer et al. (2009) and
Fienberg and Rinaldo (2012).

Now that we have identified the facial set of the smallest face containing ¢, we want to draw
correct inference. We start by offering an identifiable and estimable parametrization in which the
linear combinations of the original parameters can be estimated. Second, we use the dimension
of the face defined by the facial set F; to give the correct approximation to the chi-square or G?

statistics. Confidence intervals in the correct model defined on F; can then be obtained using
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traditional methods.

8.1 Computing the extended MLE

If the MLE 6#* exists, then it can be computed by finding the unique maximum of the log-
likelihood function I(#) given in (2.2.3). As mentioned before, I(#) is concave (or even strictly
concave, if parameter 6 is identifiable), and thus the maximum is, at least in principle, easy to find
(in practice, for larger models, it may be difficult to evaluate the function k(6), which involves a
sum over [; but we will not discuss this problem here). In general, the maximum cannot be found
analytically, but there are efficient numerical algorithms to maximize concave functions. Regular
Newton’s method or any modification of Newton’s method can be used to find the MLE. An example
of an algorithm commonly used is iterative proportional fitting (IPF), which can be thought of as
an algorithm of Gauss-Seidel type.

When the MLE does not exist but the facial set I' = F; of the data is known, then it is straight
forward to compute the extended MLE p*. In this case, we know that p* lies in £ 4. To find p*, we
need to optimize the log-likelihood [ over Era=Apro:0¢€ R}, where J is the dimension of the
original model. After plugging the parametrization ppy into l~, we need to optimize the restricted
log-likelihood function

1p(0) =log(] [ pro(i)"®) = 0;t; — Nkp(0). (8.1.1)

iely jeJ
This problem is of a similar type as the problem to maximize [ in the case when the MLE exists, and
the same algorithms as discussed above can be used. The problem here is slightly easier, since F' is
smaller than I. The submatrix Ar from the original design matrix A by taking the rows indexed by

cells in facial set I} becomes the new design matrix of the distributions in the exponential family
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Er a. The original design matrix A is full rank, but Ay is not a full rank matrix as we remove rows
that’s not indexed by the facial set. As a result, the parametrization ¢ — pry is not identifiable.
Of course, this problem is easy to solve by selecting a set of independent parameters among the ;.
Depending on the choice of the independent subset, the values of the parameters change, and in
particular, it is meaningless to compare the values of the parameters ¢; with parameter values of
any other distribution in £4 or in the closure Ea.

Before explaining how to find better parameters on £ 4, let us discuss what happens if the facial
set F; of the data is not known. As mentioned before, whether or not the MLE exists, the log-
likelihood function [(#) is always strictly concave (assuming that the parametrization is identifiable).
When the MLE does not exist, then the maximum is not at a finite value *, but lies “at infinity.”
Still, as noted in Geyer et al. (2009, Section 3.15), any reasonable version of Newton’s method that
tries to maximize the likelihood will send 6 to infinity in the right direction. Such a numerical
algorithm generates a sequence of parameter values ), 93 with increasing log-likelihood
values [(01)) < 1(§®)) < .... Since [(f) is concave, our optimization problem is numerically
easy (at least in theory), and for any such reasonable algorithms, the limit limsﬁool(é(s)) will
equal supy [(0) = max,z; I(p). The algorithm stops when the difference {(#tD) — 1(§®)) becomes
negotiably small. The output, 6®), then gives a good approximation of the EMLE, in the sense
that p* and py) are close to each other.

For many applications, such as those found in machine learning, where it is more important
to have good parameter values rather than modeling the “true underlying distribution,” or when
doing a likelihood test, where the value of the likelihood is more important than parameter values,
this may be good enough.

However, in this numerical optimization, some of the parameters 6; will tend to +o0, which may
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lead to numerical problems. For example, it may happen that one parameter goes to +oo and a
second parameter to —oo in such a way that their sum remains finite. This implies that a difference
between two large numbers has to be computed, however, this is numerically unstable. Also, it is
not clear which parameters numerically tend to infinity. In fact, this may depend on the chosen
algorithm; i.e. different algorithms may yield approximations of the EMLE that are qualitatively
different in the sense that different parameters diverge. We give an example of this in Appendix C.

To avoid such problems, we propose a change of coordinates that allows us to control which
parameters diverge, at least in the case where we know the facial set F;. If we don’t know F}, but
we know the approximations F} C F; C F;, we can use this knowledge to identify some of thoses
parameters that definitely remain finite, and some of those parameters definitely diverge. Although
we cannot control the behaviour of the remaining parameters, the more information we have about

the facial set F}, the better control we have of the above mentioned problems.

8.2 An identifiable parametrization

We have seen that when we use the parametrization 6 — pg, g of €4 , in the case where F} # I,

we have to expect the following (interrelated) issues:
1. The parametrization is not identifiable, i.e. there are parameters 0,6 with pg, ¢ = pp, .

2. While the parametrization 6 — pp, ¢ looks similar to the parametrization 6 — py of €4, the

values of the parameters in both parametrizations are not related to each other.

3. When pgy — pr g as s — oo for some parameter values 6) 6, then some of the parameter
values 0 diverge to +00. When computing probabilities, there may be linear combinations

of these diverging parameters that remain finite.
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We can introduce an alternative parameterization of log-linear models as follows,

pi(0) = (0, f;) = logp(i)/p(0),i € I. (8.2.1)

The parameters j; can be interpreted as log odds ratios. Next we show that if F} is known,
then, with a convenient choice of L, the parameters p solve 1 and 2 and improve 3. Afterwards,
we discuss what can be done if F} is not known. We briefly discuss the general solution of 3 in
Appendix D. In any case, parameter choose depends on the facial set F}; i.e. it is not possible to
define a single parametrization that works for all facial sets simultaneously.

Suppose that F; is known. We consider the parameters u; as in (8.2.1), and we make sure to
choose the zero element 0 in I, since p(0) is in the denominator in (8.2.1). The parameters p; are

not independent, so we need to choose an independent subset L. We do this in two steps:
1. Choose a maximal subset L; of F} such that the parameters p;, ¢+ € L; are independent.

2. Then extend L; to a maximal subset L C I such that the parameters y;, 2 € L are independent

by adding elements ¢ € I\ Fj.
It follows from Theorem 6.0.2 that the following holds:
1. The subset pu;, ¢ € L, of the parameters j, gives an identifiable parametrization of £p, 4.

2. Let pf, i € Ly, be the parameter values that maximize [, (and thus give the EMLE). When

the likelihood (1) is maximized numerically on I, then in successive iterations of the maxi-

(s)

mization, the estimates p;’ are such that

,u;?v =1,

=

—o00, otherwise.
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In particular, no parameter tends to 4o0.

The last property ensures a consistency of the parameters y; on £4 and on Ep, 4. This is important
in those cases where the parameters have an interpretation, and where it is of interest to know
the value of those parameters, which are well-defined. For example, in hierarchical models, the
parameters correspond to “interactions” of the random variables, and it may be of interest to know
which of these interactions are important, and the size of corresponding parameters. It is usually
not parameter p;, but the original parameters #; that have an interpretation. When we understand
parameters p;, we can also tell which of parameters 6; or which combinations of parameters 6; have

finite well-defined values and can be computed, and which parameters diverge:

Lemma 8.2.1. Suppose that ), s € N, are parameter values such that py.y — p* as s — co. For

any t© € Ly, the linear combination
! = (0, 1)

has a well-defined finite limit as s — oco. Any linear combination of the Gfs) that has a well-defined
finite limit (that is, a limit that is independent of the choice of the sequence 0'%)) is itself a linear-

combination of the p{” with i € L,.

Proof. The first statement follows from ul(-s)

= log pys) (1) /Py (0) — log p*(i) /p*(0). For the second
statement, note that any linear combination of the € is also a linear combination of the u, since the
linear map 0 — (6) is invertible. We now show that if a linear combination ), a;; involves some

/(s

w; with j ¢ Ly, then there exist sequences 1) 1) of parameters with

: — 1 : () : ()
lim p,e) = Slgglopws) and slg?ozazﬂi #* SILI?OZazui :

5—00
So suppose that p(®) is a sequence of parameters such that lim, . Pu exists and such that
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limg oo ), aipz(.s) is finite. Define

(s) e
PR IZ AR N

Ky =
uz(»s) , otherwise.
An easy computation shows that
Sli)rglo Puts) = slggo JZN0) and Slincz}o Z aill,; slglolo Z a;p;’ + aj. O
7 7

Suppose now that we do not know F;, but that instead we have approximations Fj, F, that

satisfy

I,.ChnCHCkKRCIL
In this case, we proceed as follows to obtain an independent subset L among the parameters y;:

1. Choose a maximal subset L; of F} such that parameters p;, ¢ € L, are independent.

2. Then extend L; to a maximal subset Ly C Fy by adding elements i € Fy \ Fjy such that

parameters p;, ¢ € Ly remain independent.

3. Finally, extend Ly to a maximal subset L. C I by adding elements ¢ € I \ Fy such that

parameters u;, ¢+ € L remain independent
These parameters have the following properties that follow directly from Lemma 8.2.1:

Corollary 8.2.2. Suppose that 0%), s € N, are parameter values such that pys — p* as s — o0,

and let p\” = (69 f).

1. For any 1 € Ly, the linear combination

u =0, ;)
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has a well-defined finite limit as s — oo. Thus, any linear combination of the /LES) with i € Ly

has a well-defined limit as s — oo.

2. Any linear combination ), ai,ul(s) that has a well-defined limit as s — oo is in fact a linear

(s)

combination of the qu(s) with © € Ly. Thus, a linear combination that involves at least one p;

with j € L'\ Ly does not have a well-defined limit.

Now let’s have a look at the goodness-of-fit tests of log-linear models when the MLE doesn’t
exist. As we said in the introduction, the standard regularity conditions for the asymptotic distri-
bution don’t hold anymore. The Fisher information matrix of the original likelihood is singular,
so the confidence interval of the MLE is not well defined. When the MLE exists, the asymptotic
distribution of both the Pearson test and the likelihood ratio test a Chi-square distribution withs
the degree of freedom(df) equal to the model’s dimension, or the difference between the dimensions
of the two compared models. In the non-existent MLE scenario, the asymptotic distribution is still
a Chi-square distribution, but the value of the degrees of freedom is different. Suppose we want to
compare the performance of two log-linear models M, and My, the likelihood ratio statistic can

be written as

G* = —=2(Io(6) — Li(61)),

where [y and [; are the log-likelihood functions of the two models respectively. Although we can’t
get the MLE, we can plugin the extended MLE to get the maximum value of the log-likelihood
functions. When it comes to the degrees of freedom of G?, we can get it from the difference of the
dimensions of the two smallest faces containing the sufficient statistics of My and M. Therefore,
being able to get the smallest face F; is crucial when conducting goodness-of-fit tests, whenever the

MLE doesn’t exist. We will illustrate the above statistical inference with the real data example in
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Section 10.1.2.
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9 Numerical experiments for the computation of the MLE

In this chapter, we compare the performance of parameter estimation on several moderate

dimensional and high dimensional graphical models using;:

the local one-hop relaxed marginal likelihood method, denoted M;-MLE in legends,

the local two-hop relaxed marginal likelihood method, denoted My-MLE in legends,

the local pseudo-likelihood method, denoted PS-MLE in legends,

the local 2-hop composite likelihood method, denoted PSo,-MLE in legends,

the global likelihood method of the overall model, denoted as G-MLE in the legends,

First, several graph structures are given,and the parameters are either randomly assigned +0.5, or
generated from normal distributions, then we generate sample points from each given model using

the Gibbs sampling scheme. We compute the relative mean square error(MSE) defined as:

10— 0> Zje](éj —0;)?

16112 > jea ¥

on sample points of different size. We also compare the accuracy of our estimates by looking at

their sample variance.
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9.1 Models of moderate dimension

Three moderate-size graphs are considered: a 5 x 5 grid graph(Fig. 9.1), 3 x 10 grid graph(Fig.
9.2) and 5 x 10 grid graph(Fig.9.3). For the 5 x 5 gird graph, the node in the middle of the grid has
the largest two-hop marginal model, which includes 13 variables out of 25, that is 52% of the global
model in the case of the 3 x 10 grid graph, the largest two-hop marginal model includes 11 variables
out of 30, that is 37% of the global model in the case of the 5 x 10 graph, the largest two hop
marginal model has 13 variables out of 50, 26% of the global model. From the MSE curves below,
we can see that our two-hop marginal estimate Mo-MLE is extremely close to the global estimate
G-MLE, and this is not because the two-hop marginal model almost covers the variables in the
global model. That’s why we choose these three moderate-size models to illustrate our methods.

Figure 9.1: The 5 x 5 undirected grid graph. The one-hop neighbourhood of the red node is given
by the blue nodes together with the red node. The two-hop neighbourhood is obtained from the

one-hop neighbourhood by adding the black nodes.
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Figure 9.2: The 3 x 10 undirected grid graph. The one-hop neighbourhood of the red node is given
by the blue nodes together with the red node. The two-hop neighbourhood is obtained from the

one-hop neighbourhood by adding the black nodes.

Figure 9.3: The 5 x 10 undirected grid graph. The one-hop neighbourhood of the red node is given
by the blue nodes together with the red node. The two-hop neighbourhood is obtained from the

one-hop neighbourhood by adding the black nodes.

We generate parameters from two different distributions: 6; = +0.5 or 6; «~ N(0,0.1),6; ; «

N(0,0.5) for 3x 10 and 5 x 5 grid graphs. The relative MSE of different estimates are plotted versus
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sample size as shown in Fig.9.4a, Fig.9.4b, Fig.9.4c and Fig. 9.4d . From these MSE curves, we
can see that our one-hop marginal estimates(M;-MLE) is extremely close to the pseudo-likelihood
estimates(PS-MLE), and our two-hop marginal estimates(Msy-MLE) is extremely close to the global
estimates(G-MLE). The MSE curves of the 3 x 10 graphical model and 5 x 5 graphical model are
very similar, that’s due to the fact that we compute the MLE from local marginal models, which
share similar structures for these two models. Therefore the structure of the global model doesn’t

affect the estimates in a significant manner.
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Figure 9.4: Relative MSE vs. sample size. The result is averaged over 100 experiments
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We also compare the accuracy of different estimates by looking at their sample variance as shown

in Fig 9.5a and Fig9.5b. The results in the plots are consistent with Theorem 2.

L L L L L L L L L 0.2 L L L L L L L T
100 110 120 130 140 150 160 170 180 190 200 100 110 120 130 140 150 160 170 180 190 200

Sample size Sample size

(a) sample variance of 5 x 5 grid graph (b) sample variance 3 x 10 grid graph

Figure 9.5: Sample variance vs. sample size for (a) 9 in the 5 x 5 grid graph and (b) fg in the

3 x 10 grid graph. The result is averaged over 100 experiments.

9.2 High-dimensional models

We first consider two high-dimensional discrete graphical models: 10 x 10 grid network(Fig.
9.6a) and 100-node random network (Fig. 9.6b). The 10 x 10 grid network describes the situation
where every variable is affected only by its neighbours, or equivalently, it is independent of other
nodes, given its neighbours. The random network is widely used in social science. Each vertex of a

random network is connected to a limited number of members. Both of these two graphs are sparse
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(a) the 10 x 10 grid graph (b) the 100-node random network

Figure 9.6: The two graphs underlying the two high-dimensional graphical models in section 9.2

graphical models, as the graph degree is not too large, and thus the MLE computation is easier.
In Fig. 9.7a and Fig. 9.7b, we can see that the relative mean square error of the conditional and
marginal likelihood methods are the same, and that the two-hop cases are better than the one-hop
cases. We also compute the MLE of the grid network graphical model, and we can’t really see
any difference between the MLE and the two-hop composite likelihood estimates. We also give the

sample variance of some parameters in Fig. 9.7c and Fig. 9.7d.
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Figure 9.7: Relative MSE v.s. sample size for (a) the 10 x 10 grid graph and (b) the 100-node
random graph. Sample variance vs. sample size for (¢) 643 in the 10 x 10 grid graph and (d) 0g74
in the 100-node random graph. Parameters are assigned to 4+0.5 randomly, and the results are
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(a) The 100-node hub graph (b) The relative MSE of parameters in the hub graph

The third example we look at is the hub network graph (Fig. 9.8a), which is also called the
scale-free network. The biggest difference between the hub network and random network is the
existence of hub nodes, whose degree increase as the number of variables increases: the hub graph
is therefore not a sparse graphical model. In the 100-node hub network we generate, the degree of 5
vertices is 10, while the degree of other vertices is no larger than 5. For the vertices of large degree,
the size of the local models is also large. We therefore only use conditional likelihood methods, as

we have already shown that marginal and conditional methods are equivalent.
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10 Numerical experiments on the existence of the MLE

10.1 Simulation study and application to real data

In this section, we illustrate our methodology. In 10.1.1, we simulate data for the graphical
model of the 4 x 4 grid and show how to exploit the various types of separators in order to obtain
good inner and outer approximations. We find that our methods give very accurate results in this
model of modest size. In 10.1.2, we work with the NLTCS data set, a real-world data set. We
compare different inner approximations F; and notice that most of the time, F; and F5 are equal,
and thus that they are both equal to F;. We also compute the EMLE and compare the result to

what happens when maximizing the likelihood functions [ and lp,.

10.1.1 The 4 x 4 grid graph

We generated random samples of varying sizes for the graphical model of the 4 x 4 grid graph
(Fig. 10.1). For each sample, we compute inner and outer approximations F; and F,, and we
compare them to the true facial set F}, which we can obtain using linear programming. To obtain
an inner approximation, we pick a separate set and complete it to create a reducible simplicial
complex containing the 4 x 4 grid, we iterate the process over the 3 horizontal, 3 vertical and 8
diagonal separators. To compute the outer approximation, we cover the 4 x4 grid by four 3 x 3-grids.

We first generate random samples from the uniform distribution, that is, from the probability
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Figure 10.1: The 4 x 4 grid graph

distribution Py in the hierarchical model where all parameters 6, j € J are set to zero. The results
are given in Table 10.1. We repeat the experiment a thousand times for each sample size. As
the table shows, for larger samples the probability that our random sample lies on a proper face
becomes very small. If F}; = I, then clearly F; = F,. But we also found F; = F5 for all samples with
t lying on a proper face, which shows that F5 is an excellent approximation of F; in this model. For

the inner approximation, we observed some samples with F; # F}, but they seem to be very rare.

Table 10.1: Facial set approximation for the 4 x 4 grid graph sampling from the uniform distribution

sample size data on face F; =F, Fy,=F,

10 98.5% 96.3%  100.0%
15 68.9% 99.9%  100.0%
20 29.0% 100.0%  100.0%
50 0.0% 100.0%  100.0%

Second, to better understand what happens in the case of large samples, we change our sampling
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scheme. Instead of sampling from the uniform distribution, we generate samples from the hierar-
chical model Py, where the vector of parameters # is drawn from a multivariate standard normal
distribution (for each sample, new parameters were drawn). The results are given in Table 10.2.
Again, for each sample size, we run the experiment a thousand times. One can see that in this
sampling scheme, we are much more likely to find that F; # I. Observe that the squared length of
the parameter vector 6 is x2-distributed with 39 degrees of freedom (since the number of parameters
is 40). Thus, the expected length of 6 is 39, which is large enough to move the distribution py close
to the boundary of the model. Indeed, we observed that when the MLE does not exist, the length of
the numerical estimate of the MLE vector is of the order of magnitude 40(see also the next example
in Section 10.1.2). Again, in all the samples that we generated, F; = Fy, and F; = F; in the vast

majority of cases. Thus, for this graph of relatively modest size, our approximations are very good.

Table 10.2: Facial set approximation for the 4 x 4 grid graph with log-linear parameters from the

standard normal distribution

sample size data on face Fy=F, F,=1F,

10 100.0% 97.7%  100.0%
50 89.5% 100.0%  100.0%
100 71.0% 100.0%  100.0%
150 52.0% 100.0%  100.0%

10.1.2 The NLTCS data set

In order to illustrate how approximate knowledge of the facial set allows us to say which param-

eters can be estimated, and to conduct statistical inference (as explained in Section 8), we study
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10.2: The graph for the NLTCS dataset

Figure
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the NLTCS data set, which consists of 21574 observations on 16 binary variables, called ADL1, ...,
ADLG6, TADL1, ..., TADL10. In our code and the following equations, these variables are indexed
by 16 integers from 1 to 16. The reader is referred to Dobra et al. (2011) for a detailed description
of the data set. To associate a hierarchical log-linear model to this data, we rely on the results of
Dobra et al. (2011) who use a Bayesian approach to estimate the posterior inclusion probabilities
of edges. We construct a graph by saying that (z,y) is an edge if and only if the posterior inclusion
probability of (x,y) is at least 0.40; see Figure 10.2. We then take the corresponding clique complex
of this graph so that our hierarchical model is a graphical model. There are 314 parameters in this
model, including up to 6-way interactions.

Using linear programming, we find the smallest facial set F; containing the sufficient statistic.

The face F; is then the convex hull of the f;,i € F;. The dimension of F; is 302, and we can compute
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the basis of the kernel space of F;, which gives us the following equations representation of F;:

p

t10,12,13,16 — t12,13,16 — t10,13,16 + 13,06 = 0
89,10 — tg9 — to,10 + 1o =0
t78,9,10 —tr89 — tr910 +t79 =0
15,10,12,13,16 — 15,10,13,16 — {5,12,13,16 1 t5,13,16 = 0
37,910 — t379 — 139,10 +t39 =0
t1,10,12,06 — t1,10,16 — t1,12,16 + 1,06 = 0
(10.1.1)
t189,10 — t189 — 1910 +t19=0
t1,7910 — t170 — 19,10 +t19 =0
t1,789,10 — t1,7.890 — t1,9,10 T t190 =0
t15,10,12,16 — t1,5,12,16 — 1,510,106 + 11516 = 0

t13910 —t139 —ti1910 + 119 =0

t137910 —t1379 —ti910 +t19 =0

\

Each equation represents a facet of some clique after we verified in the program. The intersection
of these 12 facets gives us the smallest face containing sufficient statistic. Therefore our program
can give both the facial set and the face equations. As we show in section 8.2, We can compute the
extended MLE of the estimable parameters in a reduced exponential family supported on the facial
set F;, whose log-likelihood function is
15, (0) = log([ [ pro(i)"™) =) " 6t; — Nkp,(6). (10.1.2)
icly jEJ

The log-likehood function Ir,(f) with # € RII is not identifiable, and the optimization algorithm
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doesn’t converge. We can find a linear transformation of # such that the corresponding new pa-
rameterization is identifiable. In section 8.2, we introduced a new identifiable parameterization pu,
which can be easily found if we know the facial set F;. The log-likelihood function with respect to
W is

(i) = 3 pun(i) — Nlog 3 exp(ys). (10.1.3)

i€l 1€ Fy

In order to compare the maximum likelihood estimate obtained with or without worrying about
its existence and with or without approximation to Fj, we maximize the log-likelihood function
given in terms of p (rather than 6) as in (8.2.1).

First we ignore the fact that the MLE might not exist and compute the MLE of u using the
standard "Minfunc” optimization software in Matlab: we call this estimate gMYE. Second, we find
F, and compute the EMLE with parameters denoted "M Third, we obtain an inner and outer
approximation to F; and consider the resulting information on the MLE of the parameters. We call

the resulting estimate ji71/%z.

To compute A"MP we first compute the inner approximation Fj that makes use of all the
separators in the graph (Strategy 7.2 in Section 7.2). We also compute an outer approximation F;
from all (156) = 4368 size five local models and the cliques of size six (Strategy 1 in Section 7.3).
We obtain F; = F, and thus deduce that F; = F} = F,. We find |F;| = 49536, and so |Ff| =
216 — 49536 = 16000. Therefore, 16000 cell probabilities are zero in the EMLE. We can obtain
the MLE by maximizing the log likelihood function lp, as in (8.1.1). Since rank(Ag,) = 302, the
dimension of F; is 302, and there are only 302 parameters in [p.

To show how to use the inner and outer approximations when F; is not known, we choose
to find coarser inner and outer approximations to Fj, respectively denoted F] and Fj, and use

them to compute the other approximation ifi/%3 to the MLE. To compute F|, we just use 10
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random separators. We find |Fj| = 36954 and dim F} = rankAg, = 300. To compute the outer
approximation Fj, we consider the 4368 local size-five induced models and select from them those
1000 which have the facial sets of smallest cardinality, and then we glue them together. We find
| F3] = 50688 and dim F = rankAp; = 310. Thus, we know that at least |1\ Fj| = 2'° — 50688 =
14848 cell probabilities vanish in the extended MLE. Since we pretend not to know F}, we replace
Ik, by

lpy(p) = Z uin(i) — N Z exp( ;). (10.1.4)

i€l i€k}

For i € F|, we know that ; is estimable, p; goes to negative infinity when i € F,¢, and we cannot
say anything for p; when i € F} \ F.

As explained in Section 8.2, the components of y are not functionally independent. We choose
Ly C F|, Ly C Fjand L C I as in Section 8.2 (we note that the zero cell belongs to I). Then any p;,
i € F}, can be written as a linear combination of pr, = (u;,7 € Ls), and we can write p; = (b, pur.)
for an appropriate vector b;. Thus, Iz (1) only depends on pr, = (ui,i € Lg), and (10.1.4) can be

rewritten as

Urg(pe) =Y (i pon(i) = N~ exp(by, ). (10.1.5)

i€l ieF}

Of course, the maximum of /; does not exist, but, insofar as the maximization of /, the computer
can still give us a numerical approximation, /iy, and thus also a numerical estimate i; = (b;, fir.), 7 €

In total, there are |Ly| = rank(Ap;) = 310 independent parameters in the log likelihood func-
tion (10.1.5). Among them, we find |Ly| = rank(Ag;) = 300 estimable parameters y;,1 € Ly. We
cannot say anything about the 10 parameters indexed by Ly \ L;. If we know F;, we can identify
two more estimable parameters.

In Table 10.3, we give the three estimates of y; that we mentioned above, namely, gMLE jEMLE
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and iF1/%: . For convinence, in the parameter column, we write y1; as (i) Where k(i) = Z;il ;27 e
{0,...,2'% —1}. We also list the naive estimator log ;‘—O We list estimates for 19 of the 310 possible
parameters. In the first column of the table, we indicate which category index ¢ belongs to, that
is, whether it belongs to F}, F; or Fj. In the second column, we list the particular parameters
considered.

In Table 10.4, we list the estimates of the top five cell counts obtained using our method and
compare them with those obtained by other methods in Dobra et al. (2011).

The graphical model of the NLTCS dataset we use above includes up to six-way interaction
parameters. Let M denote this graphical model. Now let’s consider another model with only
two-way interaction parameters, and denote it by M;. We have already known that the MLE of
M doesn’t exist, and we observe that the MLE of M; exists from our program. Let M, denote
the original six-way interaction model, M; denote the two-way interaction model, and [y, I; be the
log-likelihood functions of My and M; respectively. We can use the likelihood ratio test to see

which model fits the data well. We define the test as follows,
Hy : The reduced model M; fits the data better

H, : The current model M, fits the data better

Although we don’t have the MLE for M, the maximum value of [y using the extended MLE is still
approximately correct. From the experiment, we get lo(6y) = —1.2954 x 105, [ (6;) = —1.2971 x 10,

so the likelihood ratio statistic,
G? = =2(1,(6,) — Iy(6)) = 170.

The asymptotic distribution of G? is chi-quare distribution, and the adjust degree of freedom of

this test is 214. The p-value p(x?(214) > G?) is less then 0.001, so we reject the null hypothesis.
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Table 10.3: The MLE from 3 methods and the naive estimate for the NLTCS dataset.

naive estimate  maximum likelihood estimates

A ~ ~ I /
Parameter log n;/ng fMLE EMLE [iF /s

i€ F,\ F] 132960 —00 —13.8205 —13.8207 —13.8205
34881 —00 —14.3693 —14.3693 —14.3692

i€ Fy\ Fy 136864 —00 —30.8729 —00 —34.9805
36880 —00 —39.6536 —00 —45.2229

1388 —00 —28.9090 —00 —29.4525

32769 —00 —32.3799 —00 —36.9537

385 —00 —37.1365 —00 —35.9399

Haa9 —00 —38.9673 —00 —44.9405

32785 —00 —40.1221 —00 —45.8318

1389 —00 —43.7297 —00 —40.0158
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Table 10.4: Top six largest expected cell counts for the NLTCS data set according to the Grade

of Membership model (GoM), Latent class model (LC), copula Gaussian graphical model (CGGM)

and MLE.

Support of Cell Observed GoM LC CGGMs MLE on facial set

0 3853 3269 3836.01 3767.76 3647.4
{10} 1107 1010 1111.51 1145.86 1046.9
{1:16} 660 612  646.39  574.76 604.4
{5} 351 331 360.52  452.75 336
{5,10} 303 273 285.27  350.24 257.59
{12} 216 202 22047  202.12 239.24

10.2 Computing faces for large complexes

If our statistical model contains many variables and is not reducible, the problem of determining
F,; quickly becomes infeasible. Not only does the marginal polytope become very complicated, but
also the size of the objects that one has to store or compute grows exponentially. Consider for
example a 10 x 10 grid of binary random variables. This hierarchical model has 280 parameters,
and the total sample space has cardinality |/]| = 2! ~ 1.27 x 10%. If F; is close to I, we cannot
even list the elements of F}, which consists of approximately 10%° elements. Therefore, we take a
local approach and look for separators.

If A contains a complete separator separating V' into V; and Vs, we can identify a facial set
F implicitly without listing it explicitly. We only need the two projections Fy, = my, (F) and

Fy, = my,(F). Since F = m,'(Fy,) Ny, (Fy,) (by Lemma 7.1.5), these two projections identify F,
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and they allow us to do most of the operations that we would want to do with F'. For example,
for any i € I, we can check whether i € F' by checking whether vy, (i) € Fy, and my, (i) € Fy,, and
we can check whether ' = I by checking whether Fy, = Iy, and Fy, = [y,. In particular, we can
check whether the MLE exists by looking only at the two subsets V; and V5.

If A contains a separator that is not complete, we can use similar ideas as those above, when
computing inner and outer approximations to F}, and also when comparing these two approxima-
tions. Suppose that S separates V; from V5 in A. We want to use Fy := Fap, (1) N Eay, (1) as
an outer approximation and Fy := Fa ([} ) as an inner approximation to F;. Due to the problems
mentioned above, we do not directly compute F; and F3, but we compute their projections on V;
and V5. Instead of Fh, we compute the facial set Fhy, = Fapy, (v, (14)) of the Vi-marginal my, (1)
with respect to Aly;, and similarly we compute Fy, 1= Fa,, (m,(I)). Instead of Fy, we compute
Fiv, = Fag)y, (mvi(11)) and Fiy, := Fagly, (M, (14)). Then we could recover Fy and Fy from the
equations

F2 == 7T‘;11(F27V1) N 7T‘;21 (F27V2) and F1 == 7T‘;11 (FLVl) N 7T‘;21 (FI,V2>-

For any = € I, we can check whether x € F} by checking whether 7y, (z) € Fiy, and my,(x) € F1 .
More importantly, we can check whether [} = F5 by checking whether Fy, = Fyy, and Fiy, =
F,y,. This idea can be applied iteratively when Aly, or Aly, has a separator.

The next two subsections illustrate these ideas. In Section 10.2.1, we consider a graph with
no particular regularity pattern on 100 nodes, and identify two convenient separators. In Section
10.2.2, we consider a grid graph and work with two families of “parallel” separators that can be

used to iteratively improve the inner approximation.
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10.2.1 US Senate Voting Records dataset

We consider the voting record of all 100 US Senators on 309 bills from January 1 to November
19 2015. Similar data for the years 2004-2006 was analyzed by Banerjee et al. (2008). The votes

PREN14

are recorded as “yea,” “nay” or “not voting.” We transformed the “not voting” into “nay” and
consequently have a 100-dimensional binary data set. To fit a hierarchical model to this data set,
we use the ¢;-regularized logistic regression method proposed by Ravikumar et al. (2011) to identify
the neighbours of each variable and construct an Ising model. We set the penalty parameter to
A= SQW ~ 0.35, resulting in the sparse graph in Figure 10.3. There are 277 parameters
in this model (the number of vertices plus the number of edges). The graph consists of two large
connected components and 14 independent nodes.

There are 309 sample points, and |1 | = 278. We want to know whether the data lies on a proper
face of the marginal polytope to see if the MLE of the parameters exists. From Lemma 7.1.5, we
know that if we find complete separators, we need only work with each of the irreducible simplicial
complexes defined by these separators. We easily “cut-off” a number of relatively small prime
components and verify that the data does not lie on a proper face of their corresponding marginal
polytopes. We are left with one irreducible prime component in each of the two connected subgraphs,
i.e. one for each of the two parties as shown in Figure 10.4.

The democratic party simplicial complex Ay consists of 26 variables, and the model induced
from A, contains 77 parameters. The size of the design matrix Aa, is 2?° x 77, which is too
large to use linear programming to compute the facial set of the face P, containing the vector ¢,.
Therefore we look for separators that will help us obtain good inner and outer approximations. In
Figure 10.4b, we indicate in yellow and pink two separators, which separate A, into three simplicial

complexes denoted (from top to bottom) by A,, Ag and A,. The number of vertices of the three
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Graham
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Sullivan
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Figure 10.3: The graph for the US Senate Voting Records dataset. Golden nodes denote independent

senators, blue nodes - democrats, and red nodes - republicans.
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[Coons] [Gillibrand——— Schumer]|

Murphy

ccccc

Whitehouse

Mikulski]
[Hoeven} [Ernst]

(a) (b)

Figure 10.4: The simplicial complexes after cutting off the small complete prime components: (a) the
republican party prime component A, (b) the democratic party prime component A,. The light

green and pink nodes are the two separator sets we selected to compute the facial sets.

simplicial complexes are 9, 13, and 11, respectively, so we can apply linear programming method
first mentioned in the introduction to the three corresponding marginal polytopes.

The dimension of the model induced by A, is 24. The corresponding data vector t, lies in the
relative interior of Pa,,.

The dimension of the model induced by Ag is 34, and the data vector 4 lies on a facet F; 5 of Pa 5

To simplify our notation, we denote the 100 senators by an integer between 1 and 100, rather than

ID Senator ID Senator ID Senator ID Senator

22 Nelson 37 Cardin 52  Murphy 61 Whitehouse
23  Reed 41 Markey 53 Hirono 87 Warren

26  Schumer 47 Udall 56 Gillibrand

Table 10.5: Assigning numbers to the senators appearing in the equation of the faces
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by their names. We only need to identify a few and their numbers are given in Table 10.5. The
inequality of Fy, is

tg7 — tse g7 > 0, (10.2.1)

where tg7 denotes the marginal count of senator Warren voting “yea” and t56 g7 denotes the marginal
counts of both senators Gillibrand and Warren voting “yea.”

The dimension of the model induced by A, is 27. The data vector ¢, lies on the facet of Pa,
with inequality

tog — ta353 > 0. (10.2.2)

The intersection of the two facets (10.2.1) and (10.2.2) gives the outer approximation Fy to Fj.

To get an inner approximation, we complete each separator, i.e. the yellow vertices are com-
pleted, and the pink vertices are completed, as shown in Figure 10.4b. Denote the three simplicial
complexes with complete separators as Az, Aj, Aj respectively. Then Aj = Az UAzU A5 is a
simplicial complex with two complete separators. The smallest face F;. of the marginal polytope
P, containing the data vector ¢; is our inner approximation. Now the models of Ag, Az, A5 and
Aj; are not models with main effects and two-way interactions only; they also include parameters
for third and fourth order interactions. The dimension of the model induced by Aj; is 91: we added
14 parameters to the original model by completing the two separators. Again, we apply the linear
programming method to the three marginal polytopes Pa_, PAB and Pa_.

The dimension of the model of Aj is 27, and F,_ is a facet with equation

(g1, ta) = tar — tooa1 — tar70 + taza1,70 = 0. (10.2.3)

It follows that {g1} is a basis of the kernel of A}, .
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The dimension of the model for Az is 48. The face th has codimension 5, with defining equations

(

(92, t5) =tsr — tsegr =0
(94, t/§> = t3747,52,61 — tar 52,61 = 0 (10.2.4)

(95, t5) = tar 52+ tas — tags2 — tasar =0

(96, t5> =t41 — tooa1 — tar70 + to2.41,70 = 0

\

Again, {gs, 93, 94, g5, g6 } is a basis of the kernel of Ap,.
The dimension of the model for Ay is 38. The face F;, has codimension 3. It is defined by the

equations
.

(g7, t5) = tazs261 + 37,52 — tars2.61 — tazarse =0

(gs, t5) = tsr.a7.52.61 — tar52,61 = 0 (10.2.5)
\ (go, t5) = taz — tags3 =0
Again, {g7, gs, go} is a basis of the kernel of Ap..
From Lemma 7.1.5, we know that F;, = Fz N Fz N F5, and the equations for F;_ are
(
(g1, tg) =tan —tooar — tarzo +tooar0 =0
(g5, tg) = tsr —tses7 = 0
(g5, t7) = tarso61 + tarsa — tsrp2.61 — tarazse =0
, (10.2.6)

! _ —
(g, t7) = tarars2,61 — tarsoe1 =0

(g5, t7) = tarse + tag — tag 52 — tasar =0

(g, t7) =tog —tag53 =10
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where the vectors gi,..., gy are the vectors gi,..., g9 extended to R' by adding zeros on the
corresponding complementary coordinates. Note that since ¢] = g4, g5 = g7, 95 = gs, we only need
six of the nine equations. Thus, F; := F;_, defined by (10.2.6), is a strict subset of the face Fy
defined by (10.2.1) and (10.2.2). Next, we refine our argument and show that indeed F;, = F5.
From what we know, it follows that the orthogonal complement of the subspace generated by
th is
G ={g € R"¢' = kig| + kags + kags + kagy + ksgs + kogy}-

To describe F,,, we want to describe the defining equations of F,,. Each such equation is of the
form (g,t4) = 0, where g is orthogonal to F,,. For any such g, let ¢’ be its extension to a vector in
R°! by adding zero components. Then ¢’ L F,, which implies that g € G. Therefore, we can find
g by finding all vectors ¢’ € G that vanish on all added components. This yields a system of linear
equations in ki, ..., ks, k9. We claim that all solution must satisfy k; = k3 = k4 = k5 = 0. Indeed,
the coefficient of any triple or quadruple interaction must vanish (since these don’t belong to the
original Ising model), which implies ky = k3 = k4, = 0, and also the coefficient of t37 50 must vanish,
which implies k5 = 0. On the other hand, the vectors g5 and ¢ only contain interactions that are

already present in A, and so coefficients k, and kg are free. Thus the equations for F,, are

(g2, t5) =tsr —tsesr =0,
(10.2.7)

(9o, ti) = 193 — log53 = 0.

This is the same as the outer approximation Fs.

The republican simplicial complex A, consists of 20 variables, and the model induced from A,
contains 46 parameters. The size of the design matrix Aa, is 22° x 46, which is also too large to
directly compute F;. The yellow nodes in Figure 10.4a separate A, into two simplicial complexes

denoted (from left to right) by A, and A,. To compute the inner approximation, we complete the
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Figure 10.5: The two sets of separators used to get the inner approximation F} to F; are represented

by the red and blue nodes respectively

yellow separators and we get two new simplicial complexes A; and A;. With the linear programming
algorithm, we find that the corresponding data ¢; and ¢; lie in the relative interior of the polytopes
Pa, and Pa_, respectively. Therefore we have Fy = Pa,. Since F; C F, C Px,, we conclude that

the corresponding data vector ¢, lies in the relative interior of P .

10.2.2 The 5 x 10-grid graph

Let A be the simplicial complex of the 5 x 10 grid graph. We exploit the regularity of this
graph and make use of the vertical separators in the grid to obtain inner and outer approximations
of the facial sets. The graph has 50 nodes, which makes it too large to directly compute a facial
set or even to store it. However, the 5 x 10 grid has 8 vertical separators marked in red and blue
in Figure 10.5, and we can use these to approximate F;. Since facial sets for 5 x 3-grids can be
computed reasonably fast (3 to 4 seconds on a laptop with 2.50 GHz processor and 12 GB memory),

we only use three of these vertical separators at a time, say the blue separators

Sy ={11,...,15}, Sy = {21,...,25}, Ss = {31,...,35}, Sy = {41,...,45}.
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1 6 11 11 16 21 21 26 31 31 36 41 41 46

5 10 15 15 20 25 25 30 35 35 40 45 45 50

Figure 10.6: Five induced subgraphs
These separators separate the vertex sets

Vi ={1,...,15}, Vs = {11,...,25}, Vs = {21,...,35},

Vo ={31,...,45}, Vo ={41,...,50}.
Adding the blue separators to A gives a simplicial complex

AS2;S4§SG§58 =A U {F LB C Sj}

§=2,4,6,8
with five irreducible components supported on the vertex sets Vi, Vs, Vs, V7 and Vy (Figure 10.7).

To compute a facial set with respect to Ag,.s,.5,:5:, according to Lemma 7.1.5, we need to compute

Gl,V1 = FASQ\Vl (ﬂ-Vl (I-l—))v GI,V3 = FASQ;S4|V3 (WV3 <I+))7
G17V5 = FAS4;SG|V5 (WV5 (I+>>> Gl,V? = FASG;SS\W (7TV7(I+))7

Gl,Vg = FASslVg (77‘/9([+))'

Then Gy := ;7 (G1y,) is equal to Fas, 5,555 (L+), and thus an inner approximation of Fy. As
stated before, we do not need to compute G, explicitly, but we represent it by means of the G y;.

We can farther improve the approximations by also considering the red separators

Sy ={6,...,10}, S5 = {16,...,20}, S5 = {26,...,30}, S; = {36,...,40},
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that separate

Vo ={1,...,10}, Vo = {6,...,20}, V4 = {16,...,30},

Vo = {26,...,40}, Vs = {36,...,50}.

As explained in Section 7.2, we want to compute GSQ) 1= Fag, (G1). Again, instead of com-

;53;55;97 (
: 2 (2 . (2) (2 ._
puting G~ directly, we need only compute the much smaller sets Gy, = my,(Gy7), Gy, =
TV, (G(lg)), ce G(f‘)/g = 7TV8(G§2)). So the question is: Is it possible to compute Gf\)/m Gf‘)@ e
Gf‘)/s from G v,,G1 vy, - .., G1v, Without computing G; in between?
It turns out that this is indeed possible: By Lemma 7.1.5, all we need to compute Gﬁ)f is Gy, =
mv,(G1), j=1—1,i+1. Fori =0, since V5 C Vi, we can compute Gy, from 7y, (G1) = G1y,. For

i =2,4,6,8, since V; C V;_1 U V41, we can compute G4y, from my,_,uv;,, (G1), which itself can be

obtained by “gluing” v, ,(G1) = Gyv,_, and 7y, (G1) = G1v,,,:
TV;_1UVigq (Gl) = <7T\‘2:1UVZ+1) (Gl,‘/i—l) N (W\‘z;iu‘/Hl) (Gl,‘/i+1)7

where 7}, for V" C V' denotes the marginalization map from Iy to Iy~ and where (7‘(“%) B denotes
the lifting from Iy~ to Iy:.

As explained in Section 7.2, we have to iterate this procedure: From G?) we want to compute
Gf’) 1= Fag,.5,.55.5, (G1) or, more precisely, we want to compute Ggg‘)/ = 7rVZ.(G§3)) fori=1,3,...,9.
Again, we do this without looking at GG §2) directly just by using the information provided by the Gg?")/ .

k

Iterating this procedure, we obtain a sequence of sets Gglf‘)/i, Gg‘)/J (with odd 7 and even j), which

stabilizes after a finite number of steps. Let

k
Py =6
Our best inner approximation is then F; = ﬂ?zo W‘Zl(F Lv;). Again, we do not compute F explicitly,

but we represent it in terms of the F} y;.
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(a) (b)
Figure 10.7: (a) The 5 x 10 grid graph with the blue separators completed. (b) The five irreducible

subcomplexes after completion of the separators.

The process is visually represented in Figure 10.8.

Let us now consider the outer approximation F». We adapt Strategy 3 of Section 7.3 and cover
the graph with 5 x 3 grid subgraphs, since the facial sets for such graphs can easily be computed.
These subgrids are supported on the same vertex subsets V;,2 = 1, ..., 8 as used when computing Fj.
This makes it possible to compare F} and F». Fori =1,3,...,8 we compute Fhy, = Fay,, (v, (14)).
Our outer approximation is then F, = [, W‘ZI(FQJ/Z.). Again, we don’t compute Fy explicitly, but
we only store Fyy; in a computer as a representation of F. To compare the two approximations F}
and F», we need only compare their projections F} y;, and Fyy, pairwise, ¢ = 1,...,8. We generated
random data of varying sample size. For each fixed sample size, we generated 100 data samples.
The simulation results are show in Table 10.6. For each simulated sample, we compute the sets F} y,
and Fyy, as described above. When computing £ y;, we found that 2 iterations actually suffice.
Then we checked whether F;, is a proper subset of I (second column), and we checked whether

F} = F, (third column). Both for small and large sample sizes, we found that F; = F, quite often.
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Table 10.6: Facial set approximation for the 5 x 10 grid graph

sample size Fy #1 F| =F,

50 100.0%  94.3%

100 100.0%  82.5%

150 99.9%  76.5%
200 99.6%  81.2%
300 96.4%  87.7%
400 92.9%  91.5%
500 84.8%  93.9%

1000 44.7%  99.9%

111



’data Iy onbx10 grid‘

marginalize

=m0 [ B =m0 | |1} =m0 | [1] =me (0] (18 =m0
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marginalize marginalize marginalize

and glue

marginalize
and glue

marginalize

CHHKE
|ie
2R D 6

Figure 10.8: Flow chart describing the steps leading to the inner approximation

We also investigated what happens when the outer approximation is not computed using all
3 X b-subgrids, but only a cover of four 3 x 5-subgrids and one 2 x 5-subgrid (as in Figure 10.6).

In all our simulations, this easier approximation gave the same result. The same is not true for the
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inner approximation: When using just one of the two families of parallel separators we obtain an

inner approximation that is much too small.
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11 Conclusion

In this thesis, we studied hierarchical log-linear models. We made two main contributions to
this topic. First, we studied different types of composite likelihoods and succeeded in parameter
estimation of high-dimensional log-linear models. We proved nice asymptotic properties of our
estimates both when the dimension of data p is fixed and also when p — oco. As the dimension of
statistical problems grows rapidly and sometimes the sample size is not sufficiently large, or even
smaller than p, our asymptotic property when p — oo is more relevant for big data analysis. Second,
we studied the existence of the MLE by finding the smallest facial set of the marginal polytope of
the hierarchical log-linear model. When the dimension of the marginal polytope is very large, we
propose proper inner and outer approximations. Most of the time our approximations can capture
the smallest face of the sufficient statistic, which is the real space the data fall into.

Throughout our research, we assume that the hierarchical log-linear model structure is known
as a prior knowledge. For real data examples, we apply the [1-penalized logistic regression method
proposed by Ravikumar et al. (2011) for finding the model structure. A problem of this method is
that the logistic regression only gave the neighbours of a vertex, it didn’t take 3-way or high-way
interactions among variables into consideration. The model learning problem is still a difficult task
to accomplish in the areas of hierarchical log-linear and graphical models. In Gaussian graphical

model literature, researchers proposed various Bayesian structure learning algorithms, but we didn’t
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see much work in the discrete graphical model field. In terms of the prior distribution for the
parameters in hierarchical log-linear models, we can use the conjugate prior distribution given by
Massam et al. (2009), but we still need to think about the graph structure search algorithms. This
will be the direction of our future work, and the research in Gaussian graphical models can give us

a good point of departure.
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A Three properties of matrix eigenvalues

The following two lemmas about the eigenvalue of rank one matrices have trivial proofs.

Lemma A.0.1. A matriz u ® u where u is a vector of dimension |J| has only one non-zero eigen-

value, which is equal to ||ul|%.

Lemma A.0.2. Let a,b be two vectors of same dimension J. The matrix a ® b has rank one, and

therefore has only one nonzero eigenvalue whose value is {(a,b).

Lemma A.0.3. If A, B, C are three square matrices such that A = B+C', then we have the classical

inequality for minimum eigenvalue \pin(A) > Apin(B) + Apin(C). We also have the inequality:
where ||C||2 is the operator norm of C.

Proof. We need only prove the second inequality.

Amin(B) = min 2 Br = min {ZL‘,AI‘ + x/(—C’)m} < y/Ay + y/(—C)y, Vy such that ||y|| = 1.

[l]l2=1 llzll2=1
Let 1o be the unit-norm eigenvector of A corresponding to the minimum eigenvalue of A. Then
since yo(—C)yo < max|, =12 (—C)z,

yBAyO = Amin(A) = Amin(B) — yé(—C)yo > Amin(B) — max Z/(_C)Z

[[zll2=1

= )\mm(B) - Amax(_c)

2 Amin(B) = [|[=Cll2 = Amin(B) = [|Cl2,
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where the last inequality is due to the fact that A,..(—C) < ||—C]J|2 and the lemma is proved. [
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B Some proofs

B.1 Proof of Lemma 4.1.1

We will use the notation j < j’ to mean that j <’ or j = 0, the zero cell. Let p™ (i) denote the
marginal probability of i € I,,. We know that the M ,-marginal distribution of X, is multinomial.
By the general parametrization of the multinomial model (2.1.7), for j € J, S(j) C M,, since S(j)

is complete,

M SGI-18G) 100 P ()

where by abuse of notation, j such that S(j) C M, is considered as an element of I, .

J'ed, j'<y

Moreover,

PG = Y e = > exp{ Y O+ > 0}

i€l ipg, =) i€l ipg, =] 3’| §'<0d 3| 5’
'
i, 907
= (exp E 9j/) <1 + E exp E Gj/> )
3’| §'<0j i€l ipm, =4 3| 5’
3’
3, 903

Therefore log p™v(j) = Dot jraog O 108 (1 + el ian, = CXP i i Hj/> , which we can write

34
Z 0, = logp™(j) — log (1 + Z exp Z 9k> : (B.1.2)
3" 1303 i€, i, =g k| bai

Moebius inversion formula states that for a C V' an equality of the form } -, ®(b) = ¥(a) is

equivalent to ®(a) = Zbga(—l)m\b'\lf(b). Here, using a generalization of the Moebius inversion

124



formula to the partially ordered set given by < on J, we derive from (B.1.2) that for j € JM> C J

0, = Z (_1)\5(1)*5(J”)|logp/vlv(j/)

7' 3'<0g

— Y (F1)OSl g <1+ Yooen Y 9k>

it ilan iel, i =4/ k| k<i
7' 5'<0j My =] g

_ (93/\/% _ Z (_1)|S(j)—5(jl)\10g <1 + Z exp Z 919) (Bl?))

J' 1 3'<0j i€l, i, =4 k| ki

which we prefer to write as (4.1.9).

B.2 Proof of lemma 4.1.2

Since (4.1.9) is already proved, statement (2.) holds. Let us prove that statement (7.) holds,
i.e., that when S(j) ¢ B,, the alternating sum on the right-hand side of (4.1.9) is equal to 0. Since
j € J, S(j) is necessarily complete and j’ < j is obtained by removing one or more vertices from
S0)-

If S(j)NB, # 0 but S(j) ¢ B,, there is at least one vertex w € S(j) which is not in B,. Let
lo and [,, be the log terms in the alternating sum corresponding to 7/ = 0 and j/, < j such that
S(jr,) = {w} respectively. Since for any neighbours u of w in M, and for any i € I such that
ipm, = j', the u-th coordinate i, must be zero and since w cannot have a neighbour outside M,,,
the set {0, k<) k Aj'} in Iy for iM) such that ig\l,l)v = 0 is the same as the set {0, k<i® k Aj'}
in 1, for i® such that igil)v = j/ and igin = igin. The terms in [y and [, in (4.1.9) are therefore
exactly the same except for their sign, and these two terms cancel out. Similarly, for any given j’<j
with w & S(j), let j/, € J be such that S(j°) = S(j)U{w} and j’, <4, then, the set O, k<iM) &k Aj’

in ;; and the set 0, k 2i® k Ajy, in 1 are identical where, similarly to the argument above, i is

(1)

such that 2'5\1/1)1, = 4" and i® is such that iS\IA)U = j! and igiMU = i\,

. Therefore the terms [;; and

lj; cancel out and (1.) is proved.
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To prove that (3.) holds, following (2.1.7), we have, for S(i) = E C M,

o = > (=) log pMe(ip, 0a,\r)

FCE
= Z(_1)|E\F‘10g<p(iF>0V\F)+ > Zp(iFyo/\/lv\FykLyo\/\(MuuL)))
FCE LCV\M, kp€ely,
= S0P (exp( 3 0)+ 3 Ml D 0+ > 6)
FCFE jeJ juip LCV\F krely, jeEJ jip Jjip,j<(ip,kr)
- Z(—1)IE\F\1og<exp( 3 ej)) (B.2.1)
FCE jGJLjQiF
+Z(—1)|E\F‘log(1+ Z Z exp( Gj))
FCE LCV\F kr€lp, Jir,ja(ir,kr)
= 6+ Y ()P og1+ S Y (Y ej)) (B.2.2)
FCE LCV\F kp€lp, JiF,3<(ir,kL)

Now, following an argument similar to that of (1.) above, we can show that the second component
of the sum in (B.2.2) is equal to zero. It follows that when 6; = 0, we have #* = 0. This completes

the proof of Lemma 4.1.2.

B.3 Proof of Theorem 4.3.1

The local relaxed marginal log likelihood is

N
P (M) =Y logpMir (X, = i) = > nling,)logp™ (i)

k=1 My €My

— <9Ml,1}’ tMl,v> _ Nk»Ml,v (eMl,v)

.. . Miv (gMiw . . . .
It is immediate to see that % = 1(j) — le’”(JS(j)) where pMiv (4s@)) denotes the jg(;)-
. el . 1. . oM (eMivy
marginal cell probability in the M, ,-marginal model. Therefore the likelihood equations e, =

0, j € JMuv yield
t(j) = p"" (ds) = 0, (B.3.1)

where t(7) = n(js())-
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The following proof stands both in the case of one-hop and two-hop neighbourhood. We present

it for the more general case of the two hop neighbourhood. The local conditional log likelihood is

X'u = .’U7X =1 7X =1
lv,2PS (GU,QPS) — Z n<ZMU) log p( 1 Ny N, Nay ZNgv)

EMy ELM,
M2,v .
: P (X, = imy)
= ’)’L(ZMU) log ) .
iM;MU pM2 (XNQ'U - ZN2’U)
. 2,v . . 2,v .
= Z ,n’(ZMv) logpM (XMU = 7/./\/',0) - Z n(ZNQU) logpM (XN211 = ZN2U)
I My €10, Ny €ING,
= ZMZ!U (QMZU) - Z n(?/NZ'u) ]'Og Z pMQ’U (X'UUNU = x'UUNU’ XN2’U = Z’N2v)
Ny EING, TyUNy €LvUN,
s e (B.3.2)

where

Q = Z n(in,, ) log Z exp (60—1— Z Gk) (B.3.3)

iNQU GINQU TyUNy EIUUNU kq(szNU'iNgv)
resM2v

and 0y = —log(D_, o7\, €XPD 4 resmaw Or). The second equality above is due to the fact that

in the expression (4.1.3) of 2 (X”:ivﬁ)j?j’v:igﬁj\/f”:w%), the 6; such that S(j) ¢ M, and the #; such
2v 2v

that S(j) C Na, cancel out from the numerator and denominator, and it therefore does not matter,
for the conditional distribution of X, given Xy, , what the relationship between the neighbours
are. The only thing that matters is the relationship between the vertices in v UN,,, and the vertices
in M,, and according to Lemma 4.1.2, that remains unchanged when we change from the global
model to the My ,-marginal models.

We now differentiate the expression of [“*"% in (B.3.3) with respect to 6;,7 € JM2v. We first

note that

690 o M2,v .
0, P (Jse))-
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If we use the notation

1 lf] 4 (xUUNu7iN2v)
1j<1(00uu/vv7i/\/2v) = )
0 otherwise

and the notation pM2»(iy), E C M, to denote the marginal probability of Xp = ig in the My,
marginal model, we have
2,v . 20/ .
Zacquvelquv pM (x"uUNv’ ZNz,v) (qu(xvu./\/fg iNGy) pM (]S(j)>)

0Q |
0; 2, i) M (ing,,)

iNQ’U GINQ'U

If j € JM2v is such that S(j) C Ny, then Lja(esinring,) = Ling, in,, and

2,0 /. Lo, .
M (ZNQU)<1J'N2,”<1¢N2U —pM (JS(j>)>

0Q .
an = n(ZN v) DCAY N
89-7 iNQ;NQU 2 pM2 (ZNQv)
. 2,0, .
= > nlin,) <1J‘/\/’2’U<”.N’2’U —p™ (JS(j)))
7:',\[21) GINQU

. 2v , .
n(jsiy) — Np™ (Js))

At the MLE of the local M;, model, from standard likelihood equations (see Lauritzen, 1996,

Theorem 4.11), we have M (Jsiy)) = w and therefore

9Q _

=0, je JM2 S(j) C Ny (B.3.4)
90,

If j € JM2v is such that S(j) ¢ Nay, ie. if j € J"2F5,

NORVN . 2,0, . 20 /.
Q M Usiineuns) s ine ) L, ing, — P (s (ing,)
20, Z n(ing, ) P ()
! iNQUEINZ'U NQU
= U)X mla) b Y e i)«
= p JS(35) NN, pMZ’”(iN )p JS(HNWUN)» tUN2, TNy SN,
iNQ'UGINZ'U 7"~/\/’2v€]'/\[2v 2

Since in the My ,-marginal model, all the vertices in Ny, are connected by construction, at the

MLE of the local M, model, pM*" iy, ) = 20x%.) and therefore

N
aQ 2v , . 20, . .
0. —Np™ (jsgy) + N Z P (sineuns); Nz ) Ly, <ingy,
! iNQvEIN2ﬂ
2v , . 2,0, .
= —NpM (4s¢)) + NpM (4sg)) =0 (B.3.5)
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It follows from (B.3.4) and (B.3.5) that the 2PS component of 0M2+ i.e.

ALK 2,PS
0,75 €d

is the MLE of the local two-hop conditional likelihood. We therefore have

ev 2PS __ (9./\/12 v>2PS-

B.4 Proof of Theorem 5.1.1
Given the definition of f, to show (5.1.1), we only need to show that
VN - 6*) = N(0,G)

where 6* is the column vector obtained by stacking up *,v € V into one column vector. Through
a classical expansion of the local conditional likelihood function 1(6°) = S5 1%F5(§*PS| X)) we

have that
N

X*U *’U 8[ H*U )
VNG -6 ):T[ (6 Z g+ B
k=1

. .1 v x (k)
where R,, tends to 0 in probability as n — 4o0o0. Let U, = I~ (6*”)% and let Uj be the
vector obtained by stacking up the vectors U, ,v € V into a column vector. For U, = Z]kvz1 Uk,

we can then write

VN —6") =V NUy + Ry.

Each vector Uy, k = 1,..., N clearly have mean 0 and covariance G, as defined in (5.1.2). It is
immediate to show that @ is finite. By the central limit theorem we thus have that v/N (6 — %) —
N(0,G) and VN (6 —6*) — N(0, AGA?). The asymptotic expression for (5.1.3) is also an immediate

consequence of this asymptotic distribution.
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B.5 Proof of Theorem 5.1.2

From standard asymptotic theory, we know that the asymptotic variance of 4 is equal to

(a(?zﬁ%fi‘;)_l (B5.1)

evaluated at the corresponding true value of the parameter. It will be convenient in the sequel to

92kM20

20720 according to the different blocks determined by the

represent the symmetric matrix K =

subvectors of M2 as follows

Kpono Knos. Kinona, Kns.
KBI,U?‘]LU KBI,UyBl,U KBI,U:JQ\LU KBI,U7BQ,U

KJQ\l,U)Jl,’U KJQ\l,U)Bl,’U KJ2\1,U7J2\1,U KJQ\I,’(HBZ,’U

KBQ,U,Jl,v KBQ,U,BLU KBQ,u,Jz\Lv KBQ,’LMBQ,’U
We observe that in the M** model, the subset By, C V separates {v} from V \ M,, and the set

B, is complete. Therefore using a standard formula in graphical models, we have that

-1

—1
KBl,vaBl,'u KBl,’LMJQ\LU KBl,’U7BZ,’U

KJl,vle,'u KJl,IMBl,v 1

K ' = — K
KJQ\l,val,v KJ2\1,U7J2\1,11 KJ2\1,U=B27v Bi1,v,B1,0

KBl,vlem KBl,vyBl,v
KBQ,'uaBl,'U KB2,’U7J2\1,’U KBQ,'U:BQ,U

where matrices on the right-hand-side of the equation are "padded” with zeros in the appropriate

blocks.

Let 65, , = (05,7 € J1,,), then the covariance matrix of (HAMM)JM is [K~1 ., . From the previous

1,

expression of K1, we have

Ky ,n, Kin,n
[K_l]le _ 1, 1,v 1,v,D1,v (B52)
, 7 ’U
KBl,vaJl,'u KBl,'mBl,v 1



Since (0)4,7 € Ji, U By,) = 01V we have that

KJl,v,Jl,v KJl,vyBl,v anMl‘v

== [war ()]

8(0./\;[1,’0>

KBl,vv]l,v KBl,vaBl,'u

and therefore

[Kﬁl]Jl,v = [UGT(GMLU)]JLU = Uar([eMlﬂv]Jl,v)'

Moreover, using standard linear algebra formulas, we have that

-1

-1

[K_I]Jl,'u - (KJl71)O(B1,’UUJ2\17’UUB2,U)) Z <KJ1,UO(‘]2\1,UUB2,U)>
(KJLUUJQ\LUUBZ’,U)_I — var(éMZv)’

(KJI,UUJQ\LUUBZ’U)_I Z (KJLUUJ2\1,UUB2YU>_1.

Combing (B.5.2), (B.5.3) and (B.5.4), we obtain that

Uar([éMLv]Jl,v) > UCLT([QAMZ”]JLU),

(B.5.3)

_ -1
= |:(KJLUUJ2\1‘UUBQ7U) :| )
Jl,v

(B.5.4)

(B.5.5)

which is the first inequality in (5.1.5). Now, combining (B.5.4) and (B.5.5), we obtain that

var([0*2];,,) = var(8,,,)

U

and taking the diagonal elements of those matrices yields (5.1.5). O

B.6 Proof of Theorem 5.2.1

To prove Theorem 5.2.1, we need two preliminary results.

Lemma B.6.1. Let 0" = (6*)%7% be the true value of the parameter for the conditional model of

X, giwen Xy, and let 6vFS be the value of 0°F5 that mazimizes 1“F5(0%F5). Then, for t urs as

in (5.2.2), if there exists € > 0 such that

2

! C )
) _ v,PS v,* < < ——
|t jo.ps — (K ) (07 )[oo <€ < 10D,,42d,
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then

5v/d, €

év,PS — pvr <
u e < 2%

(B.6.2)

Proof. To simplify our notation in this proof, we drop any subscripts and superscripts containing v
or PS, except when it is necessary to keep them to make the argument clear.
Let Q(A) = 1(0%) — 1(0* + A). Clearly Q(0) = 0 and Q(A) < Q(0) = 0, where A = § — 6*. Let

A[[F = /> cv.ps AF denote the Frobenius norm of A. Define C'(0) = {A | s.t. Al = 0}. Since

Q(A) is a convex function of A, if we can prove

At Q(8) >0, (B.6.3)

then, by convexity of @, it will follow that A must lie within the sphere defined by C(4), i.e.
|A||lp < 6. We are now going to prove that there exists § > 0 such that on C(8), Q(A) > 0. For

A € C(0), we have

Q(A) = 1) — 10" + A) = 0"t — k(0%) — (0" + A)'t — k(6" + A))

= k(0" +A) — k(0*) — Alt = A'K'(07) + SA'K" (0" + aA)A — A, a €0, 1]

(B.6.4)
! 1 "
= A'[k(0%) —t] + =A'k (0* + aA)A
—_— 2 B
Q1 g
2
By Holder’s and Cauchy’s inequality, we have the following bound for Q).
(@1 = [ATE (07) — 1] < K (0) — tlllAll < eVd|Allr = eV/ds (B.6.5)
For ()5, we have
1 2 . " « 1 2 . 7 «
Q2 > —||All% min Ak (0% + @A) = =6° min Ak (6° + @A) (B.6.6)
a€l0,1] 2 g0,

We now want to bound the term ¢ = mingepo,i] Amin[k (0 + @A)] from below. We change the

input of function 2, (0) in equation (5.2.4) to be 2, (6 + @A) = 3. ;. c5;)(0; + ad;)f; (yv,$§\7}3),
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so that we can rewrite the entries of H in (5.2.5) as

exp zg,, (0* +al) B ( exp zg,, (0*+aA) )2 f k=1
1422y er\{0} &XP Zyy (07 +ald) 143y, €Iu\ {0} €XP 2k, (0*+aA)

77kz(‘9*+04A $N)

__exp 2k, (0" +ad)exp 2, (0" +ad) )
(1422, €10\ {0} &P 2yy (07 +aA))2? if ky # 1,
then
M (9*+an ) ot .0z
oo - Z (M1 )y, (07 + A, -T ) 854
Yo €L, \{0}
Bnk L (0*+aA, a:(n))

where (1) ) (0" + aA, ! N ) = . It is easy to see that these derivatives can all be

Ozy,

expressed in terms of probabilities of the type (5.2.3) and that they are always less than 1 in absolute

value. Therefore, since W =2 jerwes() Difi(Yo Ty, ), We have

ol (0* +aA, :v(n)) Ozy, n

| =4 da | < Zyvelu\{O} o = Zyvelv\{()} ZjGJ;UES(j) Ajfj(yml'm) (B.6.7)

= ZjeJ;v€S(j) Aj Zy”elu\{o} fj(yva I?\fv) = <A7 Wn) )
since for each j € JvF9, Zyvelv\{O} Fio ) = fiGo, 2ke,) = WS
The Taylor series expansion of 7,y (6 + @A, x ) yields
* n,v n 877 (6* + CY,A x ) /
77kz(‘9 + aA, :UN)—nk”l (0, J(\/))—i— 9 a €10,a] .

N / (n) . . 87]2’;)(9*—&-@A,x.(,\7;)) .

Let K (0" +a A, x),) denote the d, x d, matrix with entry ————-**_ Coming back to (B.6.6),

we have

E'(0" +ad) = L0 [HO +an,aly) o (W (W)]
= LYV HO2) o [WrW +ad SN K (0 + o/ A i) o [Wr (W)

We write || X||2 = Aoz (X) for the operator norm of a matrix X. By Lemma A.0.3,

D)ol (W) ~flay: ZK (0"+a' A, ) W (W)

=~
]
=
fen)

/\mm<k:"(0*+aA)> > Amm(—
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and since |a| < 1, we have

¢ = mingep )\mm[ Zn LH(0 + oA, x )W”(W”) ]
Amin (% Son_y [H(0%, 2)) o (W (W™)1)])

— MaXaefo,1] Ha (Son KO0+ @l ad)) o (W (W)l

v

(B.6.8)
> oo~ o |5 3 AW

n=1
7

A
= Omm — MaXquelo,1] ||A||2 )
where the last but one inequality is due to our Assumption (B). We now need to bound the spectral

norm of A = + SN AW (W W™, For any a € [0,1] and y € R% with ||y||r = 1, we have

N
(v, Ay) = ZNW” (y'wm)? <—Z!NW” (y'wm)?,

n

AW < \/_|_A||F:\/_6. (B.6.9)

and, by definition of the operator norm and from Assumption (B),

N N

1 1

N > Wy < I > W) < Dias - (B.6.10)
n=1 n=1

From (B.6.8), (B.6.9) and (B.6.10), we obtain maxac(o1) || All2 < DinarV/dd and therefore
q 2 Cinin — DinasV'd5 .
Substituting this into (B.6.6), we get
Qs > %52((1% — DyparVdb). (B.6.11)
From the two inequalities (B.6.5) and (B.6.11), it follows that

QA) > Qo — Q1] > 25 (G — Dy V5) — /s (.6.12)
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To simplify the problem, we can choose ¢ such that Cpin — DinazVd0 > %, that is, 0 < 2;%&.

Then inequality (B.6.12) becomes

Q(A) > ijl“ eVdo

and Q(A) is positive if we let § = 37@? Moreover § < - Di";i” 7 yields the following bound of e:
2
< min
= 10D, ,,0d
We have therefore shown that (B.6.3) holds for 6 = g_\/ée and the lemma is proved. O

In the next lemma, we make use of the Hoeffding inequality (seeHoeffding (1963), Theorem 2)
which states the following. If X, X5, -+, X,, are independent and a; < X; < b;(i = 1,2,--- ,n),

then for e > 0

(IX = pl > €) < 2exp ( e ) (B.6.13)

p — W Z€) > 2€XP(m . 6.
> iz (b — a;)?

Lemma B.6.2. Let tju.rs, kTS and d, be as defined above. For any e > 0, we have
p({magc”tjv,ps — (k*T9) (6" || s > €}) < 2|J| exp(—2N€?) . (B.6.14)

ve
Proof. For j € J"9 we clearly have
al(6) Ok (0) Lo o ) - )

(n) . (n) (n)

We note that since x/ is given and f; (xv , Ty ) takes values 0 or 1, we have E(f; (xv JTa)) =

(T = JolZR ) fi (20 = Ju, xN ) and by Hoeffding’s inequality (B.6.13), we have

2N?2e?

plt; = k;(07)] = €) < 2exp ——

= 2exp(—2Né?)

Since {max,cy ||t jurs — (KF5) (0%)]0o < €} = Njeugurs{|[tjors — (k%) (0| < €}, we have
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that

P(max[ty.rs — (k"7%) (0")]w <€) = 1= P(Ujeupmrstyurs — (K*75) (0] = €)
ve

> 1= Y P(tyers — (k"7 (07)] = o),

jEUJ'”vPS

> 1 —2|J|exp(—2Né?)

which proves the lemma.

Proof of Theorem 5.2.1

Let ¢ = Cy/ 101%19 , where C' is a constant that we will choose later in this proof. From Lemma

B.6.2, we have
max||t jors — (K75 (0* >C log < 2|J] exp(—=2C? 1o 2|J| 1
p(v W H Ju.PS ( ) ( )Hoo = N ) > ‘ ’ p( gp) - pzcz (B.G. 5)

cz. . ,
From Lemma B.6.1, for e = C' 10]%/;; < ot Le for N > (%Pbg}?a we have

O?nm v v, % ) dU €
s = (RS0 < € < im0 oo < SV

D max dv min

The MCLE 6 obtained by the local averaging of the 6P from each conditional model can then

be bounded as follows:

10 =01l < (Zoer 0075 = 0[17)?

5VdyC/ 1282 o\ 1 Spev dol
< (Cpev (P ) = 25 S

)21log p, we have

Therefore under the condition N > max,cy (NCC%—@M

man

n * 5C ZU \% dU logp "v,PS [ p* logp 2|J’
I8~ 1l < o D) > s — K50 < Oy B2y 21 - 2]

with the last inequality due to (B.6.15).

The theorem would make no sense if the probability of the convergence rate was negative, and

thus C' must satisfy
log(2]J])
2logp

2|J
1— | 2|>0:>02
pZC’
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B.7 Proof of Theorem 5.2.2

We first need to prove a series of lemmas. We recall our two assumptions:

(A") there exists D,,qr > 0 such that A,z ( Z fi ® fz> < Diaws
i€l

(B') 0 < K" = Apuin [k”(e*)].

Assumption A’ yields an upper bound for the maximum eigenvalue of the Fisher information

matrix as stated in the following lemma.

Lemma B.7.1. If assumption A" is satisfied, then
Amaz(k(6%)) < Dinas

Proof. First, the diagonal elements of k" (6*) are {P; — P?|j € J}, therefore, since P} — P;? < 1,

we have

"% * *2 |’]‘
Amax(k (9 )) S ZP] _Pj S T
JjeJ
Since for a symmetric matrix A, \,q,(A) = max;,=1y" Ay, we have

I 1]

1
Amax(Zfz@)fz) Zmzzaij7
icl i=1 j=1

where a;; are the entries of ), ; fi ® fi. The sum of the elements in matrix f; ® f; is [{j]j <}|?

and therefore

[J] 1]

YD ay =Y Iili<i? = P

i=1 j=1 el
Thus

“]| "%
) > > — >
Amam(%fz(gfz) - ’J‘ - 4 — )\max(k (9 ))7

and



]
The next lemma gives an upper bound for the square error of the MLE 0% in the global model.

Lemma B.7.2. Let t = {t;|j € J} be the vector of marginal cell counts, and let P(0*) € R/! be
the vector of marginal cell probabilities in the global model at the true value of the parameter 6*. If

*2

t / K
KO S e< —— B.7.1
HN k(9)||°°_€_40\JIDmax’ (B.7.1)
then
A 5+/|J
HW_ﬂWF§—7£E. (B.7.2)

Proof. From the log-likelihood function of our discrete graphical model, we have% =K (é) Consider

the function Q(A) = 1(8*) — 1(0* + A), A € RV, Clearly, Q(0) = 0 and Q(A) < Q(0) = 0, where

A = 9% — o~

Define C(0) = {A] ||All2 = 0}. Since Q(A) is a convex function of A, if we can prove

inf A
A£®Q()>Q

it will follow that A must lie in the sphere defined by C(8). Therefore
1A[l2 < 6.

We now try to find a suitable radius ¢ for which Q(6) > 0.

For A € C(9):

Q(A) = 1(67) = 10"+ A)
= < L.0" > —k(0") — (< L,0"+ A > k(0" + A)) (B.7.3)

= KO +A)—k(0)— < L, A>
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Inserting the Taylor expansion of k(6* + A) around 6%,
/ 1 1"
k(0" + A) — k(0%) =< K (6°), A > +AT[/ (1— a)k" (6" + al)da] A,
0
into (B.7.3), we obtain

A >+AT[/1 (1 —a)k" (0" + al)da]A (B.7.4)

- s
~ g

Q1 Q-

For ()¢, we have

Q1] = <K(0)—L,A>] < [[K(0*) — L]l|AlL

(B.7.5)
< /Al = ey/] 716
For ()5, we have
Q2 > (AR win(fy (1 — )K" (6" + al)da)
> AR [} (1= @) Amin (k" (07 + al))da (B.7.6)

> 3IA[3 mingefo) Amin (k" (07 4+ aA))

We now need to bound the term min,ep Aminlk” (6* + aA)]. The Fisher information matrix is

exp <0, f; exp <0, f; ic1 exp <0,f;
K'(0) = M(ﬁ@)ﬁ) (%ﬁ)@)(%ﬁ)
= Lol (£ f;) — P(0) © P(6)

where P(0) = k'(0) is the vector of marginal probabilities. Therefore

Yoierexp< 0 + oA, f; >

kE (0" + aA) L T ol (fi® fi) = P(0" + « )iei (0" + aA) (B.7.7)
N . . S
Ty
A Taylor expansion of % around o = 0 is
(0" +a i) ROND (0" +a A fi) A RO o7+ A f3) A -
L+ ad) L) [L(e* Tom) A T T ) “ L(0% + a*A) Vud)] (B8

>

g

A;
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for some a* € [0, a]. For each i € I,

e G N RN AR N SN OSTNITZNN]
= [Pil0"+aTA) D5 Ay = pil0" +a"A) ) e, P(jS(j))Aj]
= [ Zjapil0 + @A) = Plis)A; = Y pil6" + 0" A) Pljis(y)A, |

= <7riaA>v

where
™ =pi(0" + " A) <(1 — P(jsgy)s  7<i, —P(isy)), J ﬁl)-
Therefore, by Cauchy-Schwarz inequality, we have that

[Ail <[lmillz x [|Alls < VIJ[IA[l2 = VI J]0.

Then T can be written as

L= Ty R+ Alfiof)

el

For term Ty, there exists a |.J|-dimensional vector u, such that
PO + alA) = P(0") + u,
which means

u = PO +ald) - P0) = PO)A+o(A) = k" (6)A + o(A?)

and thus ||u||r < Amae[k” (0%)]||Al|F +0(||Al|%). Therefore using Lemma B.7.1 and the fact that the
magnitude of o(||A|%) is much smaller than the difference between Aq. (k" (6%)) and Apas (i) fi®
fi), we have ||u||F < Dinas0-

Now, T can be written as

T =PO)@PO)+u® Pl)+ PO)du+u®u.
140



If we plug T3, T, back into (B.7.7), we have

/{3”(0* + CYA) = T1 — T2

= Yoot G (i ® F) + Y Ailfi ® f1) — P(O7) @ P(07)

—u® P(0*) —Pl*)@u—u®u

(B.7.9)

= K0+, Alfi®f) —u® P(0*) — P(0*) @u—u®u
From the first inequality of Lemma A.0.3, we know that
Amink” (0% +a8) 2 A [K'(0%) + D Ai(fi @ ;)]
iel
Fhnin| = P(07) © 0] + Ain | — w0
= Amin [k//(e*) + Z Ai(fi ® fz)i|
iel

s [PO7) @ P(0%)] ~ As [ ® P

e [P0 @ ] = A [0 ]

where we also use the fact that P(6*) ® u, u ® P(6*), u ® u are rank one matrices with only one
nonzero eigenvalue (positive or negative). From the second inequality of Lemma A.0.3, we know
that
Amin (K07 + D7 Aif @ ]2 A [K(07)] = 11 2e Ailfi @ i)l
il

Therefore

min Ao (K (0" +al)) 2 Auin(K'(67)) — maXHZA (fi @ fi)ll2

a€l0,1] a€(0,1]

_)\max<u ® P(9 )) - )‘ma:c(P(e*) ® u) - )\mam(u ® u)
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Bound the terms in the above formula, one by one:
Amin(K(8%)) > K*.

We now want to control the spectral norm of the matrix » .., A;(f; ® f;) for o € [0,1]. For any

fixed a € [0, 1], and vector y € RV with llyll2 = 1, we have
1 ier Ailfi @ fi)llz = maxyyp,—1y’ ( ier Ailfi® fi))ZJ — max|ye1 Yy Ai (y/(fi ® fi)y>
< max|y =1 Y [Aily (fi ® fi)y.

Recall that for any a € [0,1], |A;] < /[J]0. Moreover, we have Aoz (D i/ (fi @ fi)) < Diae by

assumption. Combining these two pieces, we get

max 1> Ai(fi @ fi)ll2 < V116 max 4> (£ @ £)y = V1 T16Amar (O (i ® £)) < /1716 Dymaa-
1€l

€lo,1 =1
aEl0,1] £ Iyl —

The eigenvalue of P ® u and u ® P as in Lemma A.0.2 is
Amaz (U ® P(6%)) = Amaa (P(07) @ u) < [(P(07), w)| < [[P(07)]|pllullr,
and since we have ||P(0%)||r = «/Z;]:l P;(0%)2 < V/J and ||u||p < Dypasd, then
Amaz (1 @ P(07)) < /]J|Dinaz0 -
The eigenvalue of u ® u as in Lemma A.0.1 is
Amaz (U @ u) = (u, u) = [Jul|pllulr < V/[J][Dmazd,

since ||ul|p = |[|[P(6* + aA) — P(0*)||r < V/J (the difference of two positive quantities less than 1).
Combining all these pieces, we get the bound of the minimum eigenvalue of the Fisher informa-

tion matrix:

min Apin(k (6° + aA)) > £° = /|70 Dmaz — 33/ | Dimazo-

a€gl0,1]
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Substitute this into (B.7.6) and we get
Q» > %52@* /716 Dos — 33171 Do) = %5%* — 4\/[T6D ). (B.7.10)
From the two inequalities (B.7.5) and (B.7.10), we have
QA) > Qs — [Qu] 2 55" ~ 4V[T16Das) — e/ [715. (B.7.11)

To simplify the problem, we can choose § such that £* — 41/|J|d Dy > %*, so that § < i

8v/1J1Dmaz

Then inequality (B.7.11) becomes

*62
Q(A) = = —e/[J5

5+/|J e

Q(A) can be positive if we let § = =—=—, which also gives us the following bound for e:
:‘1*2
e — .
~ 40|J| Dyas

So, we have found a § > 0 such that Q(A) > 0 and therefore

I

. 5/ |J
169 — 6 ||r < 6= J
Y

when

K*Q

¢
P <e< —
I | == 10]7| Do

where P* = E'(6). O

We can now proceed to proving Theorem 5.2.2

Proof of Theorem 5.2.2

Proof. Let e = C 10%, where C' is a constant to be chosen later in the proof. From Hoeffding’s

inequality (see main file), we have

t; 1 2
P{|N] — P/ > Cy/ %} < 2exp(—2N¢e*) = e
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Applying the union bound yields

t . log . log 2J
P(||(N—P)J||oo20\/ ZPH - P =C }— lcl

jeJ

From Lemma B.7.2:

t log p . 5C [|J]|logp
[ = Pl < O/ 2E = - < 2y [0
lo K*2
€ = O\/ N < 10[J[Drmas

N <4OC|J|DmaI)

when

v

logp.

Therefore when N > (400“;%)2 log p,

* |J|1ng t * /logp 2|J|

The theorem would not make sense if the probability of the convergence rate is negative. It follows

we need to have

21J log 2|.J
1— |l>0:>022 —0g||.
p*© log p

B.8 Proof of Theorem 6.0.1

Theorem 6.0.1 goes back to Barndorff-Nielsen (2014), who studies the closure of much more
general exponential families. The case of a discrete exponential family is much easier.
For a probability measure p on I given, let supp(p) be the support of p. The theorem follows

from the following lemmas:

Lemma B.8.1. Let p € £4. Thenp € E A supp(p) -

144



Lemma B.8.2. Let p € E4. Then Ea,supp(p) C Ea.
Lemma B.8.3. Let p € £4. Then supp(p) is facial.
Lemma B.8.4. If I is facial, then there exists p € E4 with supp(p) = F.

Indeed, Lemma B.8.1 shows that £4 C »€a,r, where the union is over all support sets F.
Lemma B.8.2 shows the converse containment is also true, so that €4 = UpE€ap. It remains to
see that a subset F' C [ is a support set if and only if F' is facial. This follows from Lemma B.8.3
and B.8.4.

In the proofs of Lemma B.8.1 to B.8.4, we need the following easy lemma for which we don’t

provide the proof:
Lemma B.8.5. p € &4 if and only if log(p) L ker A.

Proof of Lemma B.8.1. Let p = limy_,o pr, where py € E4, and let F' = supp(p). Then E4 p is the
exponential family £4,., where Ap consists of the columns of A indexed by F. Any v € ker Ap can

be extended by zeros to v € ker A. By Lemma B.8.5,

0 = (log(px),v') = > log(pk(i))v(i) = (log(p), v).

el

Thus, log(p) L ker Ap, which implies p € €4 p. O
Proof of Lemma B.8.2. Let p = limy_,o0 pr, where py € Ea, let ' = supp(p), and let ¢ € Eap.
Then there exists parameter § with log(q(i)) — log(p(i)) = (0, f;) for all i« € F. For any k, there

exists a positive constant ¢ such that g := cxprexp((6, A)) € E4. Then ¢, — q as k — oo, and so

qea. O

Proof of Lemma B.8.3. Let p = limyg_ o, px, Where p, € €4, and let F = F4(supp(p)). Then

T = —— Zi@upp(p) fi is an interior point of the face corresponding to F, and thus there exist

 |supp(p)|
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positive coefficients A\; > 0, 7 € F', with x = >, . A; fi. The vector v = (v;,7 € I) defined by

)
S — N 4 € supp(p),
vi=1 i € F\ supp(p),
0, 1 ¢ F,
\

satisfies Av = x — 2 = 0. By Lemma B.8.5, log(pg) L v for all k. In particular,

> Nlog(pe(i) = > log(pk(i))vi — Y log(p(i))v:.

i€ F\supp(p) i€supp(p) i€supp(p)

On the other hand, note that each coefficient \; for ¢« € F'\ supp(p) on the left hand side is positive,

while log(py (7)) — —oo for i ¢ supp(p). This shows that F'\ supp(p) = 0. O

Proof of Lemma B.8.4. If F is facial, there exist ¢ € R" and ¢ € R with (g, f;) > cfor alli € I

and (g, f;) = c if and only if i € F. Let # = —s-g. Then

B (9 + se = log 3 exp(—s{g. fi) + s¢) = log |F],

iel
and so
log pg) (1) = —s(g, fi) — kr(0(s)) = (sc — s(g, fi)) — (kr(0()) + sc)
—log|F|, 1ifi€F,
%
—00, ifi ¢ F,

as s — 0o. Thus, pys) converges to the uniform distribution on F. O

B.9 Proof of Theorem 6.0.2

By definition, any EMLE p, belongs to the closure of the model. According to Theorem 6.0.1,

the support of p, is facial. If supp(p) does not contain supp(n), then the log-likelihood goes to
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minus infinity, (p) = —oco, and so p does not maximize the likelihood, therefore, supp(p,) is a facial
set containing supp(n). Thus, F;, C supp(ps).
By Lemma B.8.1, p, belongs to Ea supp(p. ), which is parametrized by a vector ¢, see Theorem 6.0.1.
On EA supp(p. ), the log-likelihood function in terms of this parameter 0 is
0) = 0;t; — Nkp(0).
jed

[ is strictly concave, and so it has a unique maximum. The critical equations are

t
Ap, = N’
proving the first property. Note that these equations are independent of the parameters and the
support of p,. We now show that any solution to these equations is supported on the same face
of P as £
Let p be a probability distribution on I such that supp(p) does not contain F;. This means that

there is a linear inequality (g,t) > c¢ that is valid on P and such that
e (g, fi) =cforallie Fj
e (g, fi) > c for some i € supp(p).

Then

(0.0 = S 40uFapli) > 0= 3 S ) = 0 )

which implies Ap # % This shows supp(p.) C F; and finishes the proof of supp(p.) = F;.
We have now shown the two properties, and it remains to argue that the EMLE is unique.
But this follows from the fact that supp(p.) is equal to F;, and [ is strictly convex, such that the

likelihood has a unique maximizer on &a f,.
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C Example: Two binary random variables

Consider two binary random variables, and let A = {0, {1}, {2}, {1,2}}. The hierarchical model

En is the saturated model; that is, it contains all possible probability distributions with full support.

Then foo fo1 fio0 fi1
AN AN AN A

11 1 1) 6w

0 1 0 1 On

2
I

0 0 1 1 010

0 0 0 1 011

The marginal polytope is a 3-simplex (a tetrahedron) with facets

Foo:1—tor —tio+tin >0, For:ter —1t11 >0,

Fio:tio—ti1 >0, Fii:t11 2>0.

Each of the corresponding facets contains three columns of A. Facet F; in the above list does not
contain the column f; of A.
The EMLE of the saturated model is just the empirical distribution; that is, p, = %n Suppose

that ¢ lies on the facet Foy (i.e. n = (0, ng1, 110, n11) with n(01),n(10),n(11) > 0). If pyey — px,
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then py) (00) — 0, while all other probabilities converge to a non-zero value. It follows that

9(5) _

00 —

log pgcs) (00) — —o0,

On the other hand, 0(()81) —I—G(()f)) = log py») (01) converges to a finite value, as do 6’%) +0(()‘3) = log py(s (10)

and 6 + 65 = log pycs) (11)/pgee) (10).

Proceeding similarly for the other facets, one can show for the limits 0;; := lim,_, 05):

Boo 001 010 01, finite parameter combinations:
Foo —o0o +oo foo —oo 6y + 05, 05 + 05, 017 + 0
: _ : (5) pls) pls) (s)
Fy; finite oo finite +o0 B0 » 010 Oo1 + 011
. . _ (s) pls) pls) (s)
: : : _ (5) pls) pls)
F,; finite finite finite —oo 000 » 010 s 0o

Each line of the last column contains three combinations of the parameters 91@ that converge to a

finite value. Any other parameter combination that converges is a linear combination of these three.

This can be seen by using coordinates p; introduced in Section 8.2 and applying Lemma 8.2.1. For

example, on the facet Fy;, consider the parameters

p1o = log p(10) /p(00) = 610,

p11 = log p(11)/p(00) = 610 + Oor + 011,

Ho1 = logp(Ol)/p(OO) = Oo1.

Then (119 and p;1 are identifiable parameters on Eg,,, and po; diverges close to Fp;. By Lemma 8.2.1,

the linear combinations that are well-defined are 19 = 019 and p11 = 619 + (61 + 611). The above
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table also lists g9, which is not a linear combination of other parameter, but 6y, is not free.
We obtain similar results for facets Fy; and Fi;. The results are summarized in the following

table:

facet  po1 10 H11

Fop —oo finite finite
Fi;, finite —oo finite
F,; finite finite —o0

Of course, by definition of yu;s, we cannot consider facet Foy where n(00) = 0. To study Fgyo, we
have to choose another zero cell and redefine the parameters ;.

The situation is more complicated for faces smaller than facets, because sending a single parame-
ter to plus or minus infinity can be enough to send the distribution to a face F' of higher codimension,
as we will see below. The remaining parameters then determine the position within s p. Thus, in
this case there are more remaining parameters than the dimension of £ p.

For example, the data vector n = (ngo, 0,710, 0) (with ngg, n1p > 0) lies on the face F = Fo; NFy;

of codimension two. If py) — p., then

s n

05 = log pyc) (00) — log %
+(01)

L) = 1og P2 ( — —00,

o o= (00)
£ (10

68 = lo P (10) — log —2.

pg(s)(O()) Moo

Py(s) (11)p, (s (00)

. . o (s)
Dot (O, (10) 15 not determined. The only constraint is that 6]

However, the limit of 63 = log

cannot go to 4oo faster than 6’(()81) goes to —oo, since p,i) = exp(&éf)) + 9(()“? + 9%‘8) + 6’3)) has to
11

converge to zero.

With the same data vector n = (ngo, 0,119, 0), suppose we use a numerical algorithm to optimize

the likelihood function by optimizing parameters ; in turn. To be precise, we order the parameters
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¢; in some way. For simplicity, say that the parameters are 0;,0,,...,0,. Then we let

k+1 k+1 k k
(954‘) 9(4‘) 9() .’9}(1))

(k+1) _
0 = arg max |/ sy U5 Y050,

J yeR

This is called the non-linear Gauss-Seidel method. Let us choose the ordering 6y, 619, 611, where
0o = —k(0) is not a free parameter. We start at 0(()?) = 9%%) = 99 = 0. In the first step, we only

look at #y;. That is, we want to solve

0 oxpld) vl + 0+ 6)
——1(0) = — 6 (0) (1) (0) (0)
1+ exp(@m ) + eXP(910 ) + eXP(901 + 619 + 044 )

= 90y,

_Zew(in) (C.0.1)
1+2 exp(@éll))

Clearly, the derivative is negative for any finite value of 9(()11), and thus the critical equation has no
finite solution. If we try to solve this equation numerically, we will find that 9(()11) will be a large

negative number. Next, we look at 6;y9. We fix the other variables and try to solve

0= iz(e) _ Mo exp(648) + exp (85 + 6 +61)
0019 N 1+ exp(eéll)) + exp(e%)) + eXp(@éll) L (9%) N gg‘i))

o exp(dyy)
N 1+ exp(0yy)

where we have used that 0(()? is a large negative number. This equation always has the unique

solution
9(1) ~ 1 &.
10 0g N — g
Finally, we look at #;;. We have to solve
o (0l + 0 + oY)
00 (0) = - (1) 1) OIFOINION
1 1 +exp(fy,) +exp(0yy') +exp(byy + 01y + 617)

This equation has no solution, and therefore the numerical solution for eﬁ) should be close to

numerical minus infinity. However, since 6’(()11) is already close to —oo, the equation is already
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approximately satisfied. Thus, there is no need to change 6;;. In simulations, we observed that
usually 9%11) is negative, but not as small as «9(()11). In theory, we would have to iterate and now
optimize 6y; again. But the values will not change much, since the critical equations are already
satisfied to a high numerical precision after one iteration.

It is not difficult to see that the result is different if we change the order of the variables. If 6,
is optimized before 6y, then 0, will in any case be a large negative number.

For general data, the derivative of with respect to #y; (equation (C.0.1)) takes the form

o, tn exp(0y,) + exp(dg)’ + 03 +017)
0o N 14 exp(6ly) + exp(017) + exp (65 + 013 + 617)

Setting this derivative to zero and solving for 9[()11) leads to a linear equation in 0&) with symbolic

solution
1 9(0) to1
+ exp(fyy ) N
L+exp(dyy +069) 1= %

0y = log

In fact, for any hierarchical model, the likelihood equation is linear in any single parameter ¢;, as
long as all other parameters are kept fixed (more generally this is true when the design matrix A is
a 0-1-matrix). Instead of optimizing the likelihood numerically with respect to one parameter, it is
possible to use these symbolic solutions. This leads to the Iterative Proportional Fitting Procedure
(IPFP). In our example, the IPFP would lead to a division by zero right in the first step, which

indicates that the MLE does not exist.
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D Parametrizations adapted to facial sets

Let us briefly discuss how to remedy problems 1. to 3. presented at the beginning of Section 8.2.
The idea behind the remedy for 1. and 2. is to define parameters p;, i € L, of £4, such that a subset
L, C L of p; parametrizes Ep, 4 in a consistent way. Denote by A* = (@ii,j € L,i € I) the design

matrix of £4 corresponding to the new parameters . Then the necessary conditions are:

(¥) Let A}, 5, := (a};,j € Ly,i € Fy) be the submatrix of A* with rows indexed by L; and columns
indexed by L;, and denote by fl’it , the same matrix with an additional row of ones. The

rank of flﬁt’Ft is equal to |L;| + 1, the number of its rows (and thus, A7, r has rank |L|).
(#) af; =0foralli € Iy and j € L\ L;.

In fact, (x*) implies that A’zh r, is the design matrix of £4 r,, since the parameters y; with i ¢ L; do
not play a role in the parametrization 1 — pp, ,. Moreover, (x) implies that the parametrization
i+ pr,, is identifiable. In this sense, we have remedied problem 1. from the beginning of the
section.

Since the matrix A%, ., has full row rank, it has a right inverse matrix C, such that A%, ,,C =

Ii,1+1 equals the identity matrix of size |L;| 4+ 1. Recall that

10g pr, (i) = (1!, fI') — kp(p),
log py (i) = (@', fI') — k(p),
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for any parameter vector p and all ¢ € Fy. Since f!* are the columns of A* and since the components
of f! corresponding to L \ L; vanish according to (xx), we may apply matrix C' obtained from C

by dropping the row corresponding to kr or k£ and obtain

(logpu)C = pr, and  (logpr,.)C = pr. (D.0.1)

When p, is a sequence in £4 with limit p, in &g, 4, then (D.0.1) shows that ugs) — p; for i € Ly.
In this sense, we have remedied problem 2.

Finally, we solve problem 3. Suppose that we have chosen parameters py, as in Section 8.2, and
let A#L be the design matrix with respect to these parameters. Then (A#%);; = 0 if ¢ € F} and
j ¢ L. Moreover, for j € L, the jth column of A,, has a single non-vanishing entry (equal to one)
at position j. Suppose that F} corresponds to a face F; of codimension c¢. Then there are ¢ facets
of P whose intersection is F;. Thus, following the notation introduced in Remark 2.3.1, there exist
¢ inequalities

(G1,2) 20, ..., (g, @) =0 (D.0.2)

that together define F,. In this case, vectors gy, ..., g. are linearly independent and satisfy (g;, ﬁ) =
0; thus, they are a basis of the kernel of (A‘}f)t It follows that the kth component of g;, denoted
by gjk, vanishes if k& € L;; that is, the inequalities (D.0.2) do not involve the variables corresponding
to L;. Let G be the square matrix, indexed by L\ L; with entries g;x, j,k € L\ L;. Then the

square matrix

is invertible. We claim that parameters A = G~'uy, are what we are looking for.
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The design matrix with respect to the parameters A is A* = GA#L. For any j ¢ Ly,
AN =0, ifiekF, and A}, = (g, fi) >0, ifi¢F.
This implies the following properties:

1. If all parameters \; with j ¢ L; are sent to —oo, then p, tends towards a limit distribution

with support Fj;.
2. The coefficient of \; in any log-probability is non-negative, so there is no cancellation of £oo.

So far, we only used the fact that vectors g; define valid inequalities for the face F,. Suppose
that we choose §; in such a way that each inequality (g;,Z) > 0 defines a facet. The intersection
of less than ¢ facets is a face that strictly contains F;. This implies that for each j, there exists

i; € I\ Fy such that f; satisfies
(955 fiy) > 0, and  (gy, fi;) = 0 for all j' # j.
This implies
A;ij > 0, and A?,,ij =0 for all j’ # 7.
This implies the following:

3. If )\;5) are sequences of parameters such that p,.) tends towards a limit distribution with

support F}, then /\gs) — —oo for all j ¢ L;.

It is not difficult to see that, conversely, any parametrization that satisfies these three properties

comes from facets defining the face F;.
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