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Abstract 

Software defect prediction is one of the most active research topics in the area of 

mining software engineering data. The software engineering data sources like the code 

repositories and the bug databases contain rich information about software development 

history. Mining these data can guide software developers for future development 

activities and help managers to improve the development process. Nowadays, the 

computer-engineering field has rapidly evolved from 1972 until present times to the 

modern chip design, which looks superficially and very much like software design.  

Hence, the main objective of this thesis is to check whether it would be possible to apply 

software defect prediction techniques on hardware repositories. In this thesis, we have 

applied various data mining methods (e.g., linear regression, logistic regression, random 

forests, and entropy) to predict the post-release bugs of OpenRISC 1000 projects. We 

have conducted two types of studies: classification (predicting buggy and non-buggy 

files) and ranking (predicting the buggiest files). In particular, the classification studies 

show promising results with an average precision and recall of up to 74% and 70% for 

projects written in Verilog and close to 100% for projects written in C.  
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Chapter 1  

Introduction 

The hardware development complexity is exponentially increasing nowadays; a 

single scale of chips may contain multiple billions of transistors [25]. The growing design 

complexity requires efficient hardware quality assurance (QA) techniques that differ from 

the software QA. A major difference between software and hardware QA process is that 

the hardware QA is not done sequentially, the different functional blocks behave 

simultaneously making the QA process more difficult. Generally, two thirds of the total 

hardware design budget is used for design QA [2, 21]. Meanwhile, there is an increasing 

number of projects that were written using a hardware description language (e.g., 

VHDL). Hence, it would be worthwhile to investigate whether some of the software QA 

techniques would be applicable to the process of hardware QA.  

One of the active research areas in software engineering is software defect 

prediction. Software Defect Prediction (SDP) is the line of research that is concerned 

with building prediction models, which leverage software metrics to predict defect-prone 

areas within a software system. The typical metrics include code complexity metrics 

(e.g., lines of code) or historical code change metrics (e.g., code churns). Together with 

the traditional software testing approach, the data obtained from SDP can be used to 

further improve the quality of various software systems. It would be worthwhile to 
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investigate whether the software prediction techniques can be applied to detect potential 

issues in the hardware code.  

With respect to applying SDP on hardware repositories, there is only one recent 

work [21] which predicts hardware defects on one large-scale commercial product. 

However, there are no published works on predicting defects on open source hardware 

repositories. Hence, this would be the focus of this thesis.  

This thesis contains the defect prediction work done over a very popular open 

hardware project and open source development OpenRISC1000. Our goal was to perform 

an empirical investigation on this hardware project studying the relationship between 

various metrics (e.g., code complexity metrics and historical change metrics) and the 

post-release bugs. By applying the SDP techniques on hardware repositories, we were 

able to find the defect prone software modules. We focused on the post-release bugs 

rather than pre-release bugs or all bugs because of the post-release bugs, which are bugs 

discovered after the systems are released into the field, are more important with respect to 

the customer experience.  

Thesis Organization  

This thesis is organized as follows: Chapter 2 presents the OpenRISC1000 project 

and the background information about the SDP process. Chapter 3 provides an overview 

of our case study. Chapter 4 describes our experiments and discusses our results. Chapter 

5 concludes this thesis and presents some future work.  
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Chapter 2  

Background and Related Works 

This chapter is organized as follows. First, we will describe the open source 

OpenRISC1000 project in Chapter 2.1. Then we will provide an overview of the related 

works in the area of SDP in Chapter 2.2.  

2.1 OpenRISC1000 Overview 

Since 1960, the embedded computers have evolved continuously as a result of the 

advances in the design and manufacture of microelectronic components and devices. 

Starting 1980, there is a new architectural approach regarding microprocessors, favouring 

a reduction in design complexity [12, 23]. 

The Reduced Instruction Set Computing (RISC) is a type of microprocessor 

architecture that utilizes a small, highly-optimized set of instructions, rather than a more 

specialized one, often found in other types of architectures. The most important 

characteristics of this family of processors are: one cycle execution time, pipelining and a 

large number of registers [2]. 

Almost in the same period of time (mid 80’s) when the RISC architecture was 

designed, there was a movement in terms of open source and free software systems. The 

Free Software Foundation was born aiming to create the environment for less restrictive 

software regarding freedom to access and open of suffocating “usage protective 

measures” [1]. Fifteen years later, the philosophy was transferred to the discipline of 
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hardware design. As a result, a large number of soft cores are currently available as open 

hardware. Cortex-M1, OpenRISC1000, OpenSPARC, LEON, Lattice Micro32, RISC-V 

are only a few of names from the list. The most popular of open source hardware systems 

are presented below.  

Processor  Developer Processor  Developer 

AEMB Shawn Tan Nios I, Nios II Altera 

ARC ARC International OpenFire Virginia Tech 

Cortex-M1 ARM OpenRISC OpenCores 

ERIC5 Entner Electronics OpenSPARC SUN 

eSI-RISC EnSillica T1 SUN 

JOP Martin Schoeberi PacoBlaze Pablo Bleyer 

Lattice Micro32 Lattice pAVR Doru Cuturela 

LEON2 ESA PicoBlaze Xillinx 

LEON 3/4 Aeroflex Gaisler RISC-V UC-Berkeley 

MOL86 MicroCore Labs  SecretBlaze U of Montpellier 

Navre Seb Bourdeauducq   

Table 1: Soft core processors [24] 

In 1990, one of the most prominent projects aiming to develop an open source 

processor architecture was initiated by a group of students. These students had the goal to 

create a RISC processor design, including specifications and implementation. The name 
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of the project was OpenRISC1000 and, at the same time, an online open source hardware 

design community called Open Cores was created. 

The Open Source Hardware Community, known as Open Cores Community has 

more than 150,000 registered users [3]. There are 20 programmers assigned to be the 

maintainers of the project and the most popular names are: Damjan Lampret, Julius 

Baxter, Jeremy Bennett, and Stefan Kristiansson. 

In the absence of a widely accepted open source hardware license, the 

components produced by the Open Cores initiative used initially several different 

software licenses. The Open Cores portfolio consists of multiple design elements from 

central processing units, memory controllers, peripherals, motherboards, and other 

components.  The cores are implemented in the hardware description languages like 

Verilog, VHDL which may be synthesized to either silicon or gate arrays. Among the 

components created by Open Cores contributors are: OpenRISC1000 - a highly 

configurable RISC central processing unit, Amber (processor core) - an ARM-compatible 

RISC central processing unit, a ZilogZ80 clone, USB 2.0 controller, Tri Ethernet 

controller, 10/100/1000 Mbit. From the multitude of Open Cores community 

achievements, the OpenRISC1000 project has the largest popularity [13]. 

2.1.1 OpenRISC1000 Architecture 

OpenRISC1000 is an open source 32-bit processor IP core that has been widely 

used in many academic and technologic projects [5].  Its nickname is OR1K and the 

project is one important component of ORP “Open RISC reference platform”. 
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OpenRISC1000 provides a large area of implementations at a multitude of price 

per performance levels for a large range of industrial and telecommunication applications 

[20]. The basic implementations of the processor will only occupy 70% of a 50,000-gate 

Xilinx Virtex FPGA board, running at 80 MHz, reaching 80 MIPS. 

The microprocessor block components are described in detail by Pablo Sanchez 

and Eugenio Villar in their paper “Using Open Source Cores in Real Applications” as 

being a 32/64-bitload microprocessor with store RISC architecture that has been designed 

with the emphasis on performance, simplicity, low power requirements, scalability and 

versatility [24]. The main CPU unit is implemented in 15,400 System C code lines 

(Figure 1) and has the following components described below according to the official 

manual [24]. 

Figure 1: OpenRISC1000 – Component blocks diagram [13] 
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The Integer Unit is the main part of the CPU designed to decode each 

instruction, to obtain the operation code and the operands. After each operation is 

performed, the integer unit writes the existing results. The integer unit is designed to 

allow the utilization of a higher clock frequency. The System C description of these units 

has 4,100 code lines. 

Data and instruction caches are separate modules according to the hardware 

architecture of the design and are highly configurable. Cache size can be set from2 

KBto8 KB and data block size can be set to 16, 32 or 64 bytes.  Least Recently Used 

(LRU) is the algorithm used and it proved to be very efficient. This unit is described in 

5,900 System C code lines. 

Exception management unit is designed to calculate the address where the 

exception handler routine is placed and to decide which information about the status of 

the core must be stored for later restoring of the execution. This unit is described in 600 

System C code lines. 

Debug unit and development interface is an optional block that provides the 

possibility to create hardware breakpoints based on comparison conditions with stored or 

loaded values, data and instruction memory addresses. This unit is very closely related to 

the development interface which allows the debugging process to be completely in-

system. Through the development interface, the debugging software can analyze the 

status of the CPU the memory content and trace information. The debug and development 

interface description takes 2,600 System C code lines. 
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Programmable interrupt controller allows the connection of 32 external 

masked interrupt lines through the interrupt line provided by the architecture. The 

OpenRISC1000 architecture only provides an insufficient number of interrupt thus a 

programmable interrupt controller (PIC) has to be implemented. 

 Tick timer facility provides the software with a precise clock reference. The tick 

timer generates an interrupt when the count reaches a programmed value. 

Performance counters unit keeps a count of the number of times that a certain 

event has occurred. These events can be: instruction fetches, load and store accesses, 

cache misses and watch points.  

Power management unit helps to better administer the power consumption of 

the core. This unit can perform modifications of the system clock frequency; it can shut 

down modules or can force the CPU to enter sleep mode. 

Watchdog unit is used to prevent the CPU from entering into an endless loop or 

an erroneous routine from which the system cannot recover from. 
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The functional blocks are presented in the Figure 2. All of these blocks were 

designed with the focus on several principles such as ergonomics, efficiency, and lower 

power consumption [17]. 

The project started in 1998 aiming to develop reusable IP cores processors in 

Verilog/VHDL and since then each project has had several hundreds of code commits. 

First edition was launched in 2000 and since then up to the present times has been 

regularly updated to reflect the state of the latest implementations. The statistics provided 

by the Open Cores community show a total of 1,093 downloads per year.  The project is 

known now as Design proven, ASIC proven, FPGA proven, but it is well known that still 

suffers historically from a lack of testing [24]. Knowing the increasing trend of design 

reuse, the developed IP cores have a high probability to be used in the research industry 

Figure 2: Functional Blocks for OR1200RTL [14] 
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for the embedded control systems and fast FPGA prototyping and they can be 

implemented as well for day by day use. There are already a few examples of real 

implementations that have become a market success: Samsung DTV, Allwiner power 

controllers, and NASA for the control of TechEdStad. 

2.1.2 OpenRISC1000 Repository Structure 

OpenRISC 1000 project can be considered as a showcase of an open, modular 

standard specification geared towards real hardware implementations. The code for all 

projects in the OpenRISC IP Core family, such as OpenRISC1000, OpenRISC1200, and 

other builds, is combined into a single source tree and is hosted by the most popular web-

based Git repository service GitHub (https://github.com/openrisc). The tree contains the 

complete source code for all the modules including project builds for each supported 

Operating System (OS) platforms. Linux is the main platform and the biggest parts of the 

project developments were done for it. In addition, the project has also been ported to 

Real Time Operating Systems like freeRTOS, RTEMS, and eCOS. 

 To fork all the OpenRISC repositories to a personal GitHub account and to 

download them to the local computer was the first mandatory step in our study. The 

complete project family, including compilers, tool chains, simulators and existing builds 

has a size on disk very close to 10 GB with 726,134 files and 47,543 folders. Most of the 

code was written in the Verilog, and C programming languages. Both languages have 

concepts of components, functions, methods and modules like any other standard 

programming languages. 
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The most important directories of the repository are the following: 

• Mor1kx is a modular source base, the most recent version of the OR1K project. 

Mor1kx core is intended to replace the existing current OpenRISC1200 version. 

Mor1kx comes with 3 main configurations: Pronto-core is the configuration 

having three stages “delay-slot-free” and does not have a memory management 

unit (MMU); Espresso-core has a three-stage pipeline and does not have a MMU 

as well; Cappuccino-core has 6-stage pipeline and it can have MMUs and caches, 

which make it powerful enough to run Linux. 

• ORPSoc is an OpenRISC reference platform (System on Chip) for further OS 

development. The trend is towards standard software distributions. 

• OpTiMSoc is a tiled multi-core platform included in the OpenRISC project.  The 

project can run on big FPGA boards. 

• Or1k-gcc is the OR1KX Gnu collection compiler. Or1k-src it is a part of the tool 

chain containing the binutils and GDB libraries. 

• Or1ksim is the official emulator for the Or1k project and is built as a single core. 

• Jor1k is a JavaScript simulator written in Java.  

• UClibc-or1k contains the uClibc embedded C libraries. 

• LLVM-Or1k (Low Level Virtual Machine for Or1k) contains the preliminary 

support in LLVM and LINUX. 

Each of the above-presented modules is hosted by GitHub as individual projects 

and each project can have up to 13 versions. The main branch is the one that accepts the 
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current code commits. The testing is done using the mentioned simulators Orksim and 

Jor1k and Verilator (Verilog to System C) the dedicated testing tool made by the largest 

FPGA producer Xilinx. Using the existing results of the past testing activity and 

considering the limitations of resources in the software industry, it is very valuable to 

exactly predict the areas which are prone to failures in order distribute those resources 

properly to ensure the best results on launching software products. 

By analyzing the existing data contained in the above systems, we can obtain 

valuable perspectives over their development processes [8, 18]. The large open software 

and hardware systems are increasingly important in the daily lives, and the software 

programming errors are affecting professionals at all levels. Hence, it is very important to 

have an exploratory study over a large project in order to demonstrate how the collected 

data and all the existing information on an open hardware project can help us to obtain 

even more knowledge and information. 

2.2 Software Defect Prediction 

A software defect, commonly referred as a “software bug” can be defined as an 

issue or deficiency in the software product which causes it to perform in an unexpected 

way [22]. Since defects in software can lead to malfunctioning of the system, which 

could in some cases affect the overall quality of the project, the general objective of 

software QA and validation activities is to release software with no known defects. 

Trying to achieve this goal, all the unexpected malfunctions are reported and documented 

in the defect database also known as online bug repository for the open source projects 
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[22]. All defects found during the software QA and validation activities become records 

of the repositories in a pre-defined format, often with the sole purpose of facilitating their 

resolution. Such repositories, which are usually accessible online, are generally called the 

bug repositories, or issue tracking repositories [4, 29].  

The online databases usually provide the platform where worldwide programmers 

and testers can access the information about defects of their interest. They can add, edit, 

or update the information related to a given defect or comment, provide expertise or 

guidance to help resolve the defect, and track the progress of reported defects and 

monitor their statistics. To facilitate the documentation and exchange of information, 

various attributes are recorded for each reported defect. Some of these attributes are 

mandatory aimed at providing the basic information pertaining to given defect, while 

others are optional that provide additional details.  

The most commonly used software QA and validation approach is software 

testing [26, 19]. Software testing verifies the behavior of the software system by 

executing the test scenarios and checking its runtime behavior against the specification. 

In addition to software testing, recently SDP is another complementary approach which 

can be used to reveal potential problems in a software system.  

Software Defect Prediction (SDP) is an area of research that focuses on building 

prediction models, which use software metrics to predict defect-prone areas of a software 

system [28]. SDP uses various metrics extracted from the source code, the historical 

revisions, as well as the bug repositories [31]. 
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There are many existing works in the area of SDP. For details please refer to [11]. 

We describe here the two pieces of works which are most relevant to this thesis.  

1. The ways to practically identify and prioritize defects are addressed in multiple 

research papers in the software defect prediction field, including the one written by 

Zimmermann and Zeller, “Predicting Defects for Eclipse” [32]. This paper is the first 

work and proposes the idea of mining an open source, publicly available software 

repositories to predict potential defects.  

2. Regarding mining hardware repositories, there is only one published work. It is 

written by Parizy, Takayama, and Kanazawa, called “Software Defect Prediction for 

LSI Designs” [21].  This is a study that was developed by Fujitsu Laboratories aiming 

to predict software defects by mining hardware repositories. This study was done in 

the industry using proprietary software defect database and proprietary hardware 

repositories focusing only on entropy studies.  

However, there are no existing works which predict defects on open source 

hardware repositories. Hence, the current state of the research in the field gives us the 

opportunity to bring our contribution.  

In this thesis, we have made a first empirical study on predicting bugs from open 

source hardware repositories. We have used OpenRISC1000 project and proceeded in our 

work using the existing state of the art methods and trying to see if there are better ways 

to leverage the software metrics. Although Parizy et al. [21] also studied the projects 

written in the Verilog language, they only applied the entropy as their prediction 
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techniques. In this work, in addition to the entropy studies, we have used several other 

data mining techniques (e.g., regression and random forests) to predict the hardware 

defects.  
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Chapter 3  

Case Study Overview and Setup 

In this chapter, we describe our process of applying SDP techniques to predict 

potential defects in the hardware repositories. In particular, we explain the setup and the 

tools used in our case study.  

3.1 Overview 

The main objective of this thesis was to apply the SDP technique to a hardware 

repository. In this study, we picked OpenRISC1000 as our case study project. In order to 

achieve this objective, similar as described in Zimmermann and Zeller paper [31], our 

process consisted of five steps as illustrated in Figure 3: (1) data collection; (2) data 

cleaning; (3) complexity metrics calculation; (4) building prediction model; and (5) 

evaluation. 
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Figure 3: Our process to mine the OpenRISC1000 hardware repository 

(1) During the data collection step, the historical data from the online OpenRISC1000 

open source repository was extracted. There were two types of historical data in our 

study: 

i. the GitHub repository, which contains the past revisions of the 

OpenRISC1000 source code; and  

ii. the BugZilla database, which contains the reported defects for various 

releases of the OpenRISC1000 projects. 

(2) During the data cleaning step, the unnecessary data was removed and the input data 

was converted into the desirable format which can be processed by the subsequent tools.  

(3) During the complexity metrics calculation step, various complexity metrics were 

calculated for different releases of the software system. These complexity metrics were 

used in the later data mining models to predict the potential defects in the source code. 

Since there were two types of programming languages used in the OpenRISC1000 
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project, the Verilog and C. Hence, different types of complexity metrics were calculated 

for these two different programming languages.  

(4) During the data analysis step, we studied the relationship between various code 

metrics with the bugginess of the systems. In particular, we explored the correlations 

between the complexity metrics and the past bug history.  

(5) During the building prediction model step, various prediction models were built using 

the calculated complexity metrics as well as the past defect history. In particular, in this 

thesis, we studied two types of prediction models, classification, and ranking. For 

classification, we used two methods:  logistic regression and random forest in order to 

determine which one provides better results. For ranking, we used the linear regression 

method. 

(6) During the Evaluation step, the effectiveness of the prediction models was evaluated. 

In particular, we wanted to check whether the prediction models can be used to prediction 

bugs on the future releases of the systems.  

3.2 Setup 

There are three aspects related to the case study setup: (1) data download; and (2) 

the tools for complexity metrics calculation; and (3) the tool for building the prediction 

models.  
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3.2.1 Data Download 

For the case study, we used two main sources of data available for the 

OpenRISC1000, the project repositories and the associated Bugzilla online database. 

Both were forked from the official location to a personal GitHub account and 

successfully downloaded to the local machine. For the hardware repository, the size of 

the download was approximately 9 GB. For Bugzilla online database, the size was around 

70 MB. 

3.2.2 Tools for Complexity Metrics Calculation 

After collecting all the necessary data related to the study, the complexity metrics 

calculation phase naturally came next in the working flow. Software analysis generally 

extracts arbitrary properties of software source code. Software metrics provides various 

insights on various characteristics of the source code. Classic software metrics range in a 

large variety, from the very simple Source Lines of Code (SLOC) to more complex 

measures such as Cyclomatic Complexity measurements. Typical metrics report provides 

details on individual modules and summaries for subsystems. Such metrics are widely 

used to judge the quality or the complexity of source code.  

The main advantages of using well-defined complexity metrics are their wide 

acceptance, unbiased assessment of source code quality, repeatability of measurements, 

ease of measurement, and the ability to judge progress in enhancing quality by comparing 

before and after assessments. 
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We built the bug prediction models using the complexity metrics guided by the 

thought that the most complex code would result in more bugs. However, as there were 

various complexity metrics proposed, our goal was to collect as many complexity metrics 

as possible when building the prediction models.   

Since there were two types of programming languages in the OpenRISC1000 

project, the Verilog and C, we used the HDL tool [16] to calculate the complexity metrics 

for the Verilog code and the UnderstandSCI [27] tool to calculate the complexity metrics 

for the C code.   

The Hardware Description Language (HDL) Complexity Tool parses the Verilog 

code and calculates the code complexity metrics (Table 2). 

Name Description  

Filename              the name of the file 

Module the name of the module 

IO                          input output elements 

Net                       design elements 

McCabe               cyclomatic complexity 

Sloc                       lines of code 

Comment lines   lines containing comments 

Time propagation time 

Table 2: HDL-Complexity Metrics 

The UnderstandSCI tool is a static analysis tool focused on source code 

comprehension and software metrics. The UnderstandSCI tool was widely used in 

various projects [16]. We used the UnderstandSCI tool to calculate the code complexity 

metrics for the C code. The following (Table 3) metrics were calculated: 
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Name Description  

Average Number of Blank Lines (Include 

Inactive) 

the average number of lines that are not 

containing code 

Average Number of Lines of Code (Include 

Inactive) 

the average number of lines that are containing 

code 

Average Number of Lines with Comments 

(Include Inactive) 

the average number of lines that are containing 

comments 

Blank Lines of Code (Include Inactive) the number of lines that are not containing code 

Lines of Code (Include Inactive) the total number of lines of code 

Lines with Comments (Include Inactive) the total number of lines that are containing 

code 

Average Cyclomatic Complexity the number of linearly independent paths 

through a program's source code 

Average Modified Cyclomatic Complexity the average of the modified number of linearly 

independent paths through a program's source 

code 

Average Number of Lines the average number of lines 

Average Number of Blank Lines the average number of blanc lines 

Average Number of Lines of Code the average number of lines of code 

Base Classes the number of classes from which other classes 

are derived 

Number of Children the total number of direct subclasses 

Classes the total number of classes 

Class Methods the total number of methods 

Class Variables the total number of variables defined in a class 

Number of Files the total number of files 

Function the total number of functions 

Instance Methods the total number of subroutines 

Instance Variables the total number of variables defined in a class 

Local Methods the total number of local methods 

Methods the total number of methods 

Modules the total number of modules 

Program Units the total number of program units 

Subprograms the total number of subprograms 

Table 3: C language – Complexity metrics 

3.2.3 The Tool for Building the Prediction Models  

We used the Waikato Environment for Knowledge Analysis (WEKA) as our tool 

to build the bug prediction model. WEKA is a machine learning workbench currently 
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being developed at the University of Waikato. Its purpose is to allow users to access a 

variety of machine learning techniques for the purposes of experimentation and 

comparison using real world datasets. A workbench represents a set of tools bound 

together by the same user interface and each of these represents an individual program. 

The machine learning tools are written in a variety of programming languages (C, C++ 

and LISP).  The last version of WEKA application includes multiple machine learning 

capabilities [10]. By providing the option to build a data mining model based on a 

training dataset, Weka has proven to be the ideal tool for our study. 
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Chapter 4  

Experiments 

In this chapter, we present our experiment on prediction bugs for the 

OpenRISC1000 project. The experiment was performed on a Dell XPS, I7-3770K single 

core desktop computer with 16 GB of RAM and 1 TB hard disk drive storage capacity.  

4.1 Data Collection 

4.1.1 The Hardware Repository 

For this study, we used two main sources of available data for the 

OpenRISC1000, the project repositories and the associated Bugzilla online database. A 

total of 9.06 GB was downloaded to the local machine.  

  By looking through the downloaded data, we understood that this project started 

in 2001 and it is still ongoing at the present time. In total, there were 28 components/sub-

projects inside the OpenRISC1000 project. Within these 28 sub-projects, there were more 

than 635,127 files overall. In total, there were more than 183,344,000 lines of code and 

87,768,000 of statements for the entire project. Among them, 15,655 lines of code 

contained in 529 files were written in Verilog. The rest of 634,598 files containing 

183,328,345 lines of code were written in C. 

 From all the OpenRISC1000 component sub-projects, we selected for our study 

only those that had multiple released versions in order to make possible future 
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comparisons. As a result, only 2 sub-projects fulfilled this condition. To have a balanced 

study, we selected Mor1kx, the actual processor design written in Verilog, and Or1k-sim, 

the current simulator of the processor, written in C.  

Table 4: Complexity metrics summary for Mor1kx and Or1k-sim 

4.1.2 Bugs Collection 

A copy of the project’s post-release bugs was obtained from the online 

OpenRISC1000 Bugzilla Database. This database collects all the reported issues and 

modification requests that are submitted electronically by worldwide users. They are 

commonly referred to as “bug reports”. This term is quite misleading as not all reported 

issues are defects, as some of the reported issues are just requests for optimization, or 

suggestion for different future improvements. Normally, every bug report should contain 

a variety of supporting meta-information such as a unique identification number, the 

software version, and the operating system it relates to, or the reporter’s perceived 

importance. In addition, the entries should contain a short one-line summary of the issue 

at hand, followed by a more elaborate description. In our case, the additional information 

was missing for some of the reported bugs. Considering also the fact that the number of 

reported issues present in the database (106 instances in total) was too small to be used in 

the data mining study, we had to consider the second solution. Hence, we examined the 

Verilog C 

Mor1kx Or1k-sim 

529 files 2,063 files 

15,655 lines of code 704,430 lines of code 
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commit logs of the online code repositories. Methodically, we analyzed all the existing 

logs of the code commits and we included the code revisions whose commit logs 

contained the words like “corrections” or “fixes”.  Usually, when the developers submit 

their code, they usually include some short messages, called the commit logs, which 

contain the purpose of their submission. For example, if their code commit is for fixing 

some bugs, their commit log might contain phrases like “fixed 1067” or “bug #1025”. 

Figure 4 shows an example.  

 

Figure 4: An example of code commit logs  

We built a group of large spreadsheets for each sub-project containing the list of 

bugs, the patch for each modified file when fixing that bug and the date when the code 

commit was submitted. 



26 

Knowing the release date for each version and the date when each code commit 

was submitted, we checked and ensured that all the software defects were post-release 

bugs. Post-release bugs refer to bugs reported after that version of the system is released. 

We also took into consideration the existing comments inside the code commits. In this 

thesis, we focus on analyzing and predicting the post-release bugs is because these are the 

bugs which escape from software testing and can potentially impact the customer 

experience. 

 

Figure 5: Code commits and according version 

4.2 Data Cleaning 

The second step in our data processing process is data cleaning. We verified if the 

data values were correct and conform to the existing dataset of rules. The non-useful 

information such as the “author” and “submission date” fields was removed. In this way, 

the existing data was prepared to be used for in depth analysis. 
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4.3 Complexity Metrics Calculation 

Using the UnderstandSCI and HCT tools, we were able to extract from the 

analyzed repositories all the useful complexity metrics [6]. 

Verilog C 

 Filename         Average Number of Blank Lines (Include Inactive)  

 Module Average Number of Lines of Code (Include Inactive) 

 IO    Average Number of Lines with Comments (Include 

Inactive)  

 Net  Blank Lines of Code (Include Inactive) 

 Mccabe Lines of Code (Include Inactive)  

 Sloc Lines with Comments (Include Inactive) 

 Comment lines   Average Cyclomatic Complexity 

 Time Average Modified Cyclomatic Complexity 

AverageCyclomatic Average Strict Cyclomatic Complexity 

AvgCyclomaticModified Average Essential Cyclomatic Complexity 

Count Line Average Essential Strict Modified Complexity 

CountLineBlank Average Number of Lines 

CountLineCode Average Number of Blank Lines 

Count Line Comment Average Number of Lines of Code 

Count Stmt Average Number of Lines with Comments  

CountStmtDecl Base Classes 

CountStmtDecl Number of Children 

CountStmtExe Classes 

RatioComment Class Methods 

 Class Variables 

 Number of Files 

 Function 

 Instance Methods 

 Instance Variables 

 Local Methods 

 Methods 

 Modules 

 Inputs 

Table 5: List of C and Verilog code complexity metrics used in our study 

https://scitools.com/support/metrics_list#AltAvgLineBlank
https://scitools.com/support/metrics_list#AltAvgLineCode
https://scitools.com/support/metrics_list#AltAvgLineComment
https://scitools.com/support/metrics_list#AltAvgLineComment
https://scitools.com/support/metrics_list#AltCountLineBlank
https://scitools.com/support/metrics_list#AltCountLineCode
https://scitools.com/support/metrics_list#AltCountLineComment
https://scitools.com/support/metrics_list#AvgCyclomatic
https://scitools.com/support/metrics_list#AvgCyclomaticModified
https://scitools.com/support/metrics_list#AvgCyclomaticStrict
https://scitools.com/support/metrics_list#AvgEssential
https://scitools.com/support/metrics_list#AvgEssentialStrictModified
https://scitools.com/support/metrics_list#AvgLine
https://scitools.com/support/metrics_list#AvgLineBlank
https://scitools.com/support/metrics_list#AvgLineCode
https://scitools.com/support/metrics_list#AvgLineComment
https://scitools.com/support/metrics_list#CountClassBase
https://scitools.com/support/metrics_list#CountClassDerived
https://scitools.com/support/metrics_list#CountDeclClass
https://scitools.com/support/metrics_list#CountDeclClassMethod
https://scitools.com/support/metrics_list#CountDeclClassVariable
https://scitools.com/support/metrics_list#CountDeclFile
https://scitools.com/support/metrics_list#CountDeclFunction
https://scitools.com/support/metrics_list#CountDeclInstanceMethod
https://scitools.com/support/metrics_list#CountDeclInstanceVariable
https://scitools.com/support/metrics_list#CountDeclMethod
https://scitools.com/support/metrics_list#CountDeclMethodAll
https://scitools.com/support/metrics_list#CountDeclModule
https://scitools.com/support/metrics_list#CountInput
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UnderstandSCI was used to analyze the C code and provided a generous set of 

metrics. The program proved to be very efficient in collecting them. Figure 6 shows a 

snippet of the collected metrics from the UnderstandSCI tool. 

 

Figure 6: Example of a .csv file 

Most of the metrics in UnderstandSCI can be categorized as complexity metrics 

or volume metrics groups [30]. Cyclomatic complexity, Essential Complexity, Nesting 

level of Control Constructs are a few examples from the Complexity Metrics group. The 

Total number of Lines of Code, Total Number of Blank Lines or Total Number of 

Commented Lines, Number of Functions, Number of local Internal Methods are a few 

other examples belonging to the Volume Metrics group. 
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For Verilog language, the situation was a bit more complex. Using the HCT tool, 

a freely available program dedicated to Verilog code analysis, we were able to extract the 

most important code complexity metrics such us, Net, IO, McCabe, and Time. 

Those metrics strictly describe the hardware design providing the Number of 

gates used (Net), the number of Input-Output elements (IO), the complexity of the design 

(McCabe) and the propagation time (Time) (Figure 7). They are essential in any hardware 

design analysis. We also understood that for a better study the set of metrics should be 

larger. Luckily, we found a way to enrich the Verilog set of metrics with code Volume 

Metrics.  

 

Figure 7: Mor1kx – HCT set of metrics 

Going back to the UnderstandSCI tool, we made this powerful tool able to 

analyze Verilog Code. In this way, we extracted the Total number of Lines of Code, Total 

Number of Blank Lines or Total Number of Commented Lines and a few other useful 

metrics. The two complexity metrics tables, for each released version, were merged 
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according to the commune column containing the path and the file name. An example of 

a merged table is showed in Figure 8. 

 

Figure 8: Mor1kx – UnderstandSCI set of metrics 

In the next phase, we merged the total complexity metrics files with the bugs 

collection files resulted from harvesting the code commits for both projects Mor1kx and 

Or1k-sim.  

The final resulting .csv files were enriched with 3 extra columns, the number of 

time when a file was modified after release, the number of bugs reported for that file, 

both being numeric fields and the field “buggy” a yes or no nominal field (Figure 9). 

Those last three fields were extremely important in our next steps. 



31 

 

Figure 9: Example of a csv file for a file written in C 

The final resulting .csv files were converted into .arff type of file, which is the 

preferred dataset format by the Weka application (Figure 10). 

 

Figure 10: Weka – The Explore Interface 
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4.4 Data Analysis 

4.4.1 The “Verilog” Subprojects Group 

Mor1kx, the current design from the OpenRISC1000 processor family is the 

single package written in Verilog. Table 6 shows the existing released versions, the 

released date, the number of commits associated with each of them and the number of 

modified files before the next release. 

Verilog 

Mor1kx 

version official 

name 

Date ID code # of 

commits 

# of 

touched 

files 

mor1kx.1.0 v1.0 9/1/2013 b5ca2ea 10 17 

mor1kx.1.1 v1.1 9/9/2013 1eb23f2 1 1 

mor1kx1.2 v.1.2 10/2/2103 143d9b8 34 65 

mor1kx.2.1 v2.1 6/22/2014 7358c97 21 58 

mor1kx.2.2 v2.2 8/8/2014 83d3415 57 73 

mor1kx.2.3 v2.3 12/9/2014 91acc03 2 2 

mor1kx.3.1 v3.1 12/13/2014 39c074a 15 20 

mor1kx.4.1 v4.1 11/3/2015 b8c1a18 6 9 

      Bug-fixing commits 146 245 

      Total # of commits 594   

Table 5: Released versions for Mor1kx project 

The statistics per entire Mor1kx project were resumed in the Table 7. 
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Table 6: Mor1kx HCT metrics summary 

4.4.2 The “C” Subprojects Group 

The second analyzed subproject ORK-Sim written in C had also eight released 

versions. They are presented in Table 8.  

By using the UnderstandSCI tool, we were able to compute the complexity 

metrics for each package and each version.  

 An example of some complexity metrics statistics for each Or1k-sim released 

version is presented in the next table. 

C 

Or1k-sim 

version official name date ID code # of 

commits 

# of touched 

files 

or1ksim-0.3.0 or1ksim-0.3.0 5/25/2009 0b63f32 3 148 

or1ksim-0.4.0rc1 or1ksim-0.4.0rc1 6/3/2010 48c3d23 12 130 

or1ksim-0.4.0rc2 or1ksim-0.4.0rc2 6/16/2010 c7a1d5e 2 14 

or1ksim-0.4.0 or1ksim-0.4.0 6/22/2010 27806aa 15 208 

or1ksim-0.5.0rc1 or1ksim-0.5.0rc1 9/7/2010 ef54033 2 22 

or1ksim-0.5.0rc2 or1ksim-0.5.0rc2 10/2/2010 b55e843 21 131 

or1ksim-0.5.0rc3 or1ksim-0.5.0rc3 2/11/2011 ae337dc 2 50 

or1ksim-0.5.1rc1 or1ksim-0.5.1rc1 4/8/2011 7672c7e 45 179 

      Bug-fixing commits 102 882 

      Total # of commits 129   

Table 7: Released versions for Or1k-sim project 

Project version  IO     NET     MCCABE     SLOC    COMM 

Mork1x-1.0 84 10 40 2,268 692 

Mork1x-1.1 158 10 30 2,268 692 

Mork1x-1.2 158 32 38 2,268 692 

Mor1kx-2.1 126 10 40 2,377 788 

Mor1kx-2.2 94 24 42 2,377 788 

Mor1kx-2.3 58 2 36 2,377 788 

Mor1kx-3.1 22 0 34 1,611 715 

Mor1kx-4.1 62 18 35 1,293 592 
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We wanted to study the following two research questions regarding the defect 

prediction studies on the OpenRISC1000 hardware repository:  

1. Classification: to predict the files which contain software bugs (e.g., Mor1kx 

or Or1k-sim) and, 

2. Ranking: to predict the files which contain the largest number of software 

defects. 

4.4.3 Classification 

The first analysis that had to be done was naturally the classification. Using this 

method, we were able to differentiate between buggy or not buggy files. In this work, we 

compared the results built using the random forest and logistic regression model to see 

which prediction model provides the best results. 

• Logistic regression is used to estimate the probability of a binary response 

based on one or more predictor variables. Logistic regression measures the 

relationship between the categorical dependent variable, in our case “buggy or 

not buggy” and one or more independent variables. To classify files/packages 

as defect-prone or not based on code metrics we define the following based on 

the values outputted by the logistic regression model: 

 

Defect Classification = 
 

defect-prone (0.5 < value ≤ 1) 

defect-free (0 ≤ value ≤ 0.5) 
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• Random forest is another useful prediction method when predicting a binary 

outcome [15], in our case post-release bugs from a set of continuous or 

categorical variables. Compared to the logistic regression model, in which 

there are a few assumptions associated with the model (e.g., the normality of 

the data, the balance of the output data, etc.), the random forest model is less 

constrained.  

Since there were more “bug-free” files than the “buggy” files, we had to re-

sample the data before we can train them using the logistic regression model. The data 

was sampled automatically before proceeding with the logistic regression method to 

every dataset. By doing this, we ensured that for every test dataset the number of buggy 

records equals the number of the not buggy ones. Every version from both projects was 

used as a training dataset and all the remaining versions became one after another the test 

dataset.  

Below we describe the performance metrics used to evaluate the effectiveness of 

the defect prediction models: precision, recall, and F-measure.  

To properly explain the above three metrics, we need to consider the following 

prediction outcomes (Table 9): 

• True positive (TP): buggy instances predicted as buggy 

• False positive (FP): clean instances predicted as buggy 

• True negative (TN): clean instances predicted as clean 

• False negative (FN): buggy instances predicted as clean 
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 Actual Results 

 Yes No 

Predictive Results 
Yes TP (true positive) FP (false positive) 

No FN (false negative) TN (true negative) 

Table 8: Classification table 

With these prediction outcomes, which are mostly used in the defect prediction literature, 

the following measures are defined:  

• Precision – measures the ratio of the correctly classified positive modules to the 

set of positive modules. 

                           

• Recall – measures the ratio of correctly predicted positive modules in the whole 

modules with defects. 

                          

• F-measure – is the harmonic mean of precision and recall. 

                              

Having this knowledge and based on the output values, the data can be interpreted 

immediately and it is easy to know if a file or a package contains software defects or not.  

The Precision, Recall and F-measure values for the logistic regression models are 

listed below (Tables 10, 11, 12). 
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Precision 

testing\ 

training  

mor1kx-1.0 mor1kx-1.1 mor1kx-1.2 mor1kx-2.1 mor1kx-2.2 mor1kx-2.3 mor1kx-3.1 mor1kx-4.1 average 

mor1kx-1.0   0.25 0.974 0.563 0.612 0.25 0.573 0.813 0.576 

mor1kx-1.1 1   0.974 0.594 0.612 0.833 0.573 0.917 0.786 

mor1kx-1.2 0.875 1   0.563 0.584 0.833 0.537 0.917 0.758 

mor1kx-2.1 0.837 1 0.751   0.612 0.25 0.837 0.292 0.654 

mor1kx-2.2 0.612 0.25 0.612 0.657   0.5 0.786 0.4 0.545 

mor1kx-2.3 1 1 1 0.612 0.612   0.643 0.708 0.796 

mor1kx-3.1 0.569 1 0.431 0.597 0.563 1   0.5 0.665 

mor1kx-4.1 0.661 1 0.633 0.5 0.359 0.833 0.407   0.627 

Table 9: The prediction of the Mor1kx (Verilog) experiment built using the logistic regression prediction model - Precision 

 

Recall 

testing\ 

training  

mor1kx-1.0 mor1kx-1.1 mor1kx-1.2 mor1kx-2.1 mor1kx-2.2 mor1kx-2.3 mor1kx-3.1 mor1kx-4.1 average 

mor1kx-1.0   0.5 0.972 0.563 0.611 0.5 0.571 0.7 0.631 

mor1kx-1.1. 1   0.972 0.594 0.611 0.75 0.571 0.9 0.771 

mor1kx-1.2 0.833 1   0.563 0.583 0.75 0.536 0.9 0.737 

mor1kx-2.1 0.833 1 0.75   0.611 0.5 0.821 0.3 0.687 

mor1kx-2.2 0.611 0.5 0.611 0.656   0.5 0.786 0.4 0.58 

mor1kx-2.3 1 1 1 0.611 0.611   0.643 0.7 0.795 

mor1kx-3.1 0.556 1 0.444 0.594 0.556 1   0.5 0.664 

mor1kx-4.1 0.611 1 0.583 0.5 0.444 0.75 0.464   0.621 

Table 10: The prediction of the Mor1kx (Verilog) experiment built using the logistic regression prediction model - Recall 

 

 

F-Measure 
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testing\ 

training  

mor1kx-1.0 mor1kx-1.1 mor1kx-1.2 mor1kx-2.1 mor1kx-2.2 mor1kx-2.3 mor1kx-3.1 mor1kx-4.1 average 

mor1kx-1.0   0.333 0.972 0.563 0.61 0.333 0.569 0.67 0.578 

mor1kx-1.1 1   0.972 0.593 0.61 0.733 0.569 0.899 0.768 

mor1kx-1.2 0.829 1   0.561 0.583 0.733 0.53 0.899 0.733 

mor1kx-2.1 0.833 1 0.75   0.61 0.333 0.819 0.293 0.662 

mor1kx-2.2 0.61 0.333 0.61 0.656   0.5 0.786 0.4 0.556 

mor1kx-2.3 1 1 1 0.61 0.61   0.643 0.697 0.794 

mor1kx-3.1 0.532 1 0.416 0.59 0.543 1   0.495 0.653 

mor1kx-4.1 0.579 1 0.54 0.382 0.345 0.733 0.367   0.536 

Table 11: The prediction of the Mor1kx (Verilog) experiment built using the logistic regression prediction model - F-Measure 
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The above charts show that the vast majority of the values for precision, recall, 

and accuracy are in the [0.5:1] interval. It means we can use the logistic regression 

method to perform bug prediction on all mor1kx versions.  

Similarity, we used one version of the data as training data for the random forest 

model and tested it against other versions. The tables below show the precision, recall 

and F-measure number for the Mor1kx project obtained by using this second method 

(Tables 13, 14, 15 for Mor1kx ). 

By analyzing the precision, recall, and accuracy results obtained through the 

random forest method, we can reach the same conclusion as for the logistic regression 

method: we can use the random forest method to perform bug prediction on all mor1kx 

versions. In addition, the prediction performance for the random forest method is better 

than the logistic regression method. 
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Precision 

testing\ 

training  

mor1kx-1.0 mor1kx-1.1 mor1kx-1.2 mor1kx-2.1 mor1kx-2.2 mor1kx-2.3 mor1kx-3.1 mor1kx-4.1 average 

mor1kx-1.0   1 1 0.65 0.594 0.974 0.644 0.946 0.829 

mor1kx-1.1. 0.832   0.757 0.76 0.237 0.974 0.776 0.904 0.748 

mor1kx-1.2 1 1   0.598 0.594 0.974 0.622 0.946 0.819 

mor1kx-2.1 0.861 0.974 0.951   0.732 0.951 0.76 0.716 0.849 

mor1kx-2.2 0.677 0.924 0.679 0.736   0.896 0.683 0.735 0.761 

mor1kx-2.3 0.832 1 0.757 0.765 0.757   0.787 0.834 0.818 

mor1kx-3.1 0.875 0.975 0.759 0.75 0.639 0.954   0.771 0.817 

mor1kx-4.1 0.849 1 0.771 0.367 0.586 0.946 0.654   0.739 

Table 12: The prediction of the Mor1kx (Verilog) experiment built using the random forest prediction model - Precision 

Recall 

testing\ 

training  

mor1kx-1.0 mor1kx-1.1 mor1kx-1.2 mor1kx-2.1 mor1kx-2.2 mor1kx-2.3 mor1kx-3.1 mor1kx-4.1 average 

mor1kx-1.0   1 0.947 0.619 0.595 0.973 0.649 0.946 0.818 

mor1kx-1.1 0.784   0.514 0.459 0.486 0.973 0.649 0.892 0.679 

mor1kx-1.2 1 1   0.595 0.595 0.973 0.622 0.946 0.818 

mor1kx-2.1 0.676 0.459 0.946   0.73 0.486 0.703 0.405 0.629 

mor1kx-2.2 0.568 0.514 0.676 0.73   0.486 0.649 0.459 0.583 

mor1kx-2.3 0.784 1 0.514 0.486 0.514   0.676 0.865 0.691 

mor1kx-3.1 0.838 0.676 0.73 0.703 0.622 0.703   0.595 0.695 

mor1kx-4.1 0.811 1 0.568 0.405 0.514 0.946 0.649   0.699 

Table 13: The prediction of the Mor1kx (Verilog) experiment built using the random forest prediction model - Recall 

 

  F-Measure  
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testing\ 

training  

mor1kx-1.0 mor1kx-1.1 mor1kx-1.2 mor1kx-2.1 mor1kx-2.2 mor1kx-2.3 mor1kx-3.1 mor1kx-4.1 average 

mor1kx-1.0   1 0.973 0.634 0.594 0.969 0.646 0.946 0.823 

mor1kx-1.1 0.711   0.376 0.318 0.318 0.969 0.535 0.859 0.583 

mor1kx-1.2 1 1   0.596 0.594 0.969 0.622 0.946 0.818 

mor1kx-2.1 0.696 0.601 0.946   0.729 0.603 0.706 0.489 0.681 

mor1kx-2.2 0.598 0.66 0.675 0.731   0.612 0.654 0.541 0.638 

mor1kx-2.3 0.711 1 0.376 0.37 0.376   0.588 0.839 0.608 

mor1kx-3.1 0.846 0.782 0.724 0.7 0.613 0.784   0.657 0.729 

mor1kx-4.1 0.761 1 0.477 0.289 0.411 0.946 0.569   0.636 

Table 14: The prediction of the Mor1kx (Verilog) experiment built using the random forest prediction model - F-Measure 
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Based on the existing data, we have plotted 3 graphs where logistic regression and 

random forest can be accurately compared (Figures 11, 12, 13). 

 

Figure 11: Mor1kx – Precision 

 

Figure 12: Mor1kx – Recall 



43 

 

Figure 13: Mor1kx - F-Measure 

We did a similar study for the Or1k-sim subproject. We applied both the logistic 

regression and the random forest methods. In this second study, the values for precision, 

recall, and accuracy were in the [0.92:0.99] interval. Similar as the mor1kx versions, the 

precision, recall, and F-measure values obtained through the random forest method were 

a little bit higher than the ones obtained through the logistic regression. The data is shown 

in the following tables. 
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Precision 

test\training or1k-

sim.0.3.0 

or1k-

sim.0.4.0 

or1k-

sim.0.4.0.rc1 

or1k-

sim.0.4.0.rc2 

or1k-

sim.0.5.0.rc1 

or1k-

sim.0.5.0.rc2 

or1k-

sim.0.5.0.rc3 

or1k-

sim.0.5.1.rc1 

average 

or1k-

sim.0.3.0 

  0.97 0.978 1 0.978 0.957 0.987 0.953 0.974 

or1k-

sim.0.4.0 

0.963   0.936 0.982 0.981 0.944 0.969 0.902 0.953 

or1k-

sim.0.4.0.rc1 

0.948 0.922   0.979 0.96 0.906 0.94 0.922 0.939 

or1k-

sim.0.4.0.rc2 

0.943 0.912 0.95   0.921 0.922 0.93 0.887 0.923 

or1k-

sim.0.5.0.rc1 

0.959 0.942 0.958 0.965   0.937 0.974 0.93 0.952 

or1k-

sim.0.5.0.rc2 

0.979 0.983 0.967 0.991 0.991   0.982 0.966 0.979 

or1k-

sim.0.5.0.rc3 

0.979 0.959 0.962 0.996 0.987 0.974   0.953 0.972 

or1k-

sim.0.5.1.rc1 

1 0.987 0.986 1 0.991 0.987 1   0.993 

Table 15: The prediction of the Or1k-sim (C) experiment built using the logistic regression prediction model - Precision 

 

 

 

 

 

 

Recall 

test\training or1k-

sim.0.3.0 

or1k-

sim.0.4.0 

or1k-

sim.0.4.0.rc1 

or1k-

sim.0.4.0.rc2 

or1k-

sim.0.5.0.rc1 

or1k-

sim.0.5.0.rc2 

or1k-

sim.0.5.0.rc3 

or1k-

sim.0.5.1.rc1 

average 
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or1k-

sim.0.3.0 

  0.969 0.978 1 0.978 0.955 0.987 0.951 0.974 

or1k-

sim.0.4.0 

0.961   0.947 0.982 0.982 0.946 0.973 0.901 0.956 

or1k-

sim.0.4.0.rc1 

0.952 0.929   0.973 0.964 0.919 0.951 0.915 0.943 

or1k-

sim.0.4.0.rc2 

0.939 0.902 0.947   0.96 0.915 0.964 0.87 0.928 

or1k-

sim.0.5.0.rc1 

0.957 0.938 0.956 0.982   0.933 0.973 0.924 0.951 

or1k-

sim.0.5.0.rc2 

0.978 0.982 0.969 0.991 0.991   0.982 0.964 0.979 

or1k-

sim.0.5.0.rc3 

0.978 0.96 0.964 0.996 0.987 0.973   0.951 0.972 

or1k-

sim.0.5.1.rc1 

1 0.987 0.987 1 0.991 0.987 1   0.993 

Table 16: The prediction of the Or1k-sim (C) experiment built using the logistic regression prediction model - Recall 

 

 

 

 

 

F-Measure 

test\training or1k-

sim.0.3.0 

or1k-

sim.0.4.0 

or1k-

sim.0.4.0.rc1 

or1k-

sim.0.4.0.rc2 

or1k-

sim.0.5.0.rc1 

or1k-

sim.0.5.0.rc2 

or1k-

sim.0.5.0.rc3 

or1k-

sim.0.5.1.rc1 

average 

or1k-

sim.0.3.0 

  0.966 0.975 1 0.973 0.949 0.985 0.946 0.97 

or1k- 0.953   0.936 0.982 0.981 0.938 0.969 0.88 0.948 
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F-Measure 

test\training or1k-

sim.0.3.0 

or1k-

sim.0.4.0 

or1k-

sim.0.4.0.rc1 

or1k-

sim.0.4.0.rc2 

or1k-

sim.0.5.0.rc1 

or1k-

sim.0.5.0.rc2 

or1k-

sim.0.5.0.rc3 

or1k-

sim.0.5.1.rc1 

average 

sim.0.4.0 

or1k-

sim.0.4.0.rc1 

0.95 0.922   0.976 0.962 0.908 0.945 0.898 0.937 

or1k-

sim.0.4.0.rc2 

0.914 0.863 0.927   0.94 0.882 0.947 0.817 0.898 

or1k-

sim.0.5.0.rc1 

0.946 0.926 0.944 0.973   0.915 0.965 0.911 0.94 

or1k-

sim.0.5.0.rc2 

0.976 0.982 0.966 0.991 0.991   0.982 0.962 0.978 

or1k-

sim.0.5.0.rc3 

0.976 0.957 0.96 0.995 0.985 0.971   0.946 0.97 

or1k-

sim.0.5.1.rc1 

1 0.987 0.986 1 0.99 0.986 1   0.992 

Table 17: The prediction of the Or1k-sim (C) experiment built using the logistic regression prediction model - F-Measure 

 

 

 

 

Random forest method 

Precision 
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test\training or1k-

sim.0.3.0 

or1k-

sim.0.4.0 

or1k-

sim.0.4.0.rc1 

or1k-

sim.0.4.0.rc2 

or1k-

sim.0.5.0.rc1 

or1k-

sim.0.5.0.rc2 

or1k-

sim.0.5.0.rc3 

or1k-

sim.0.5.1.rc1 

average 

or1k-

sim.0.3.0 

  0.97 0.978 1 0.978 0.957 0.987 0.953 0.974 

or1k-

sim.0.4.0 

0.963   0.936 0.982 0.981 0.944 0.969 0.902 0.953 

or1k-

sim.0.4.0.rc1 

0.948 0.922   0.979 0.96 0.906 0.94 0.922 0.939 

or1k-

sim.0.4.0.rc2 

0.943 0.912 0.95   0.921 0.922 0.93 0.887 0.923 

or1k-

sim.0.5.0.rc1 

0.959 0.942 0.958 0.965   0.937 0.974 0.93 0.952 

or1k-

sim.0.5.0.rc2 

0.979 0.983 0.967 0.991 0.991   0.982 0.966 0.979 

or1k-

sim.0.5.0.rc3 

0.979 0.959 0.962 0.996 0.987 0.974   0.953 0.972 

or1k-

sim.0.5.1.rc1 

1 0.987 0.986 1 0.991 0.987 1   0.993 

Table 18: The prediction of the Or1k-sim (C) experiment built using the random forest prediction model - Precision 

 

 

 

 

Recall 

test\training or1k-

sim.0.3.0 

or1k-

sim.0.4.0 

or1k-

sim.0.4.0.rc1 

or1k-

sim.0.4.0.rc2 

or1k-

sim.0.5.0.rc1 

or1k-

sim.0.5.0.rc2 

or1k-

sim.0.5.0.rc3 

or1k-

sim.0.5.1.rc1 

average 

or1k-

sim.0.3.0 

  0.969 0.978 1 0.978 0.955 0.987 0.951 0.974 
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Recall 

test\training or1k-

sim.0.3.0 

or1k-

sim.0.4.0 

or1k-

sim.0.4.0.rc1 

or1k-

sim.0.4.0.rc2 

or1k-

sim.0.5.0.rc1 

or1k-

sim.0.5.0.rc2 

or1k-

sim.0.5.0.rc3 

or1k-

sim.0.5.1.rc1 

average 

or1k-

sim.0.4.0 

0.961   0.947 0.982 0.982 0.946 0.973 0.901 0.956 

or1k-

sim.0.4.0.rc1 

0.952 0.929   0.973 0.964 0.919 0.951 0.915 0.943 

or1k-

sim.0.4.0.rc2 

0.939 0.902 0.947   0.96 0.915 0.964 0.87 0.928 

or1k-

sim.0.5.0.rc1 

0.957 0.938 0.956 0.982   0.933 0.973 0.924 0.951 

or1k-

sim.0.5.0.rc2 

0.978 0.982 0.969 0.991 0.991   0.982 0.964 0.979 

or1k-

sim.0.5.0.rc3 

0.978 0.96 0.964 0.996 0.987 0.973   0.951 0.972 

or1k-

sim.0.5.1.rc1 

1 0.987 0.987 1 0.991 0.987 1   0.993 

Table 19: The prediction of the Or1k-sim (C) experiment built using the random forest prediction model - Recall 

 

 

 

 

 

F-Measure 

 

test\training or1k-

sim.0.3.0 

or1k-

sim.0.4.0 

or1k-

sim.0.4.0.rc1 

or1k-

sim.0.4.0.rc2 

or1k-

sim.0.5.0.rc1 

or1k-

sim.0.5.0.rc2 

or1k-

sim.0.5.0.rc3 

or1k-

sim.0.5.1.rc1 

average 
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or1k-

sim.0.3.0 

  0.966 0.975 1 0.973 0.949 0.985 0.946 0.97 

or1k-

sim.0.4.0 

0.953   0.936 0.982 0.981 0.938 0.969 0.88 0.948 

or1k-

sim.0.4.0.rc1 

0.95 0.922   0.976 0.962 0.908 0.945 0.898 0.937 

or1k-

sim.0.4.0.rc2 

0.914 0.863 0.927   0.94 0.882 0.947 0.817 0.898 

or1k-

sim.0.5.0.rc1 

0.946 0.926 0.944 0.973   0.915 0.965 0.911 0.94 

or1k-

sim.0.5.0.rc2 

0.976 0.982 0.966 0.991 0.991   0.982 0.962 0.978 

or1k-

sim.0.5.0.rc3 

0.976 0.957 0.96 0.995 0.985 0.971   0.946 0.97 

or1k-

sim.0.5.1.rc1 

1 0.987 0.986 1 0.99 0.986 1   0.992 

Table 20: The prediction of the Or1k-sim (C) experiment built using the random forest prediction model - F-Measure 
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Similar graphs were plotted to compare the logistical regression and random forest 

methods, for Or1k-sim project in this case (Figures 14, 15, 16). 

 

Figure 14: Or1k-sim- Precision 

 

Figure 15: Or1k-sim Recall 
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Figure 16: Or1k-sim  F-Measure 

Using classification through logistic regression, we were able to determine which 

released versions were prone to software defects. The data indicated that the Mor1kx.1.1 

and Or1k-sim.0.4.0.rc2 were the most prone to bugs versions.  

 In general, the random forest models had higher precision than the logistic 

regression models for both Or1k and Mor1kx sub-projects. For the Or1k sub-project, the 

random forest model generally out-performed the logistic regression model in all three 

metrics (precision, recall, and F-measure).  

4.4.4 Ranking 

To answer the second question related to which files and released versions contain 

the most of the software defects, we applied the linear regression method and the entropy 

method to the “number of bugs field” for every remaining version of those 2 projects.   
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• Given a dataset  of n statistical units, a linear 

regression model assumes that the relationship between the dependent 

variable yi and the p-vector of regressors xi is linear. 

Another idea to predict the number of bugs is based on the entropy of changes. 

Hassan et al proposed the use of Shannon Entropy defined as [2]: . The 

idea consists in measuring over a time interval how the changes are distributed in a 

system. The more spread they are, the higher the complexity is. 

To evaluate the effectiveness of the above two ranking approaches, we used the 

Spearman correlation coefficient as a statistical tool to measure the strength of the 

relationship between two sets of data. The values of Spearman’s correlation coefficient 

can be between -1 and +1. A positive correlation coefficient indicates a positive 

relationship between the two variables (the higher the x values, also the higher the y 

values), while a negative correlation coefficient expresses a negative relationship (the 

lower the x values, the lower the y values). A correlation coefficient of 0 indicates that 

there is no relationship between the two studied variables. 

In our case, the Spearman’s correlation coefficient measures the correlation 

between the predicted bugs and the existing observed bugs. The results are shown in 

Tables 22 and 23. 

https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Statistical_unit
https://en.wikipedia.org/wiki/Multivector
https://en.wikipedia.org/wiki/Multivector
https://en.wikipedia.org/wiki/Linear_function
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Spearman Correlation Coefficient 

testing\training  mor1kx-1.0 mor1kx-1.1 mor1kx-1.2 mor1kx-2.1 mor1kx-2.2 mor1kx-2.3 mor1kx-3.1 mor1kx-4.1 average 

mor1kx-1.0  0.2035 0.8824 0.584 0.6509 0.2164 0.4369 0.2301 0.457 

mor1kx-1.1. 0.8356   0.9541 0.9724 0.9513 0.9227 0.8743 0.955 0.923 

mor1kx-1.2 0.7179 0.0116   0.3585 0.0978 0.0111 0.1542 0.0362 0.198 

mor1kx-2.1 0.0551 0.0202 0.4266   0.1241 0.0207 0.0724 0.1166 0.119 

mor1kx-2.2 0.0107 0.1244 0.0906 0.0188  0.1238 0.5347 0.0311 0.133 

mor1kx-2.3 0.4444 0.9964 0.6525 0.5799 0.6065   0.3685 0.5129 0.594 

mor1kx-3.1 0.4852 0.1868 0.7065 0.5914 0.8507 0.1817   0.1883 0.455 

mor1kx-4.1 0.4981 0.3755 0.8581 0.8544 0.8623 0.372 0.462   0.611 

Table 21: Mor1kx – Spearman correlation coefficient 

 

 

 

 

 

 

 

 

 

 

Spearman Correlation Coefficient 

test\ 

training 

or1k-

sim.0.3.0 

or1k-

sim.0.4.0 

or1k-

sim.0.4.0.rc1 

or1k-

sim.0.4.0.rc2 

or1k-

sim.0.5.0.rc1 

or1k-

sim.0.5.0.rc2 

or1k-

sim.0.5.0.rc3 

or1k-

sim.0.5.1.rc1 

average 
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Spearman Correlation Coefficient 

test\ 

training 

or1k-

sim.0.3.0 

or1k-

sim.0.4.0 

or1k-

sim.0.4.0.rc1 

or1k-

sim.0.4.0.rc2 

or1k-

sim.0.5.0.rc1 

or1k-

sim.0.5.0.rc2 

or1k-

sim.0.5.0.rc3 

or1k-

sim.0.5.1.rc1 

average 

or1k-

sim.0.3.0 

  0.5091 0.4742 0.1457 0.1992 0.3708 0.0592 0.3314 0.298 

or1k-

sim.0.4.0 

0.2735   0.5004 0.3237 0.1721 0.3143 0.1133 0.3545 0.293 

or1k-

sim.0.4.0.rc1 

0.3319 0.6121   0.5757 0.1023 0.3883 0.048 0.5802 0.376 

or1k-

sim.0.4.0.rc2 

0.346 0.694 0.7974   0.2134 0.6562 0.1716 0.6666 0.506 

or1k-

sim.0.5.0.rc1 

0.2888 0.4892 0.3908 0.0681   0.4863 0.0996 0.4665 0.327 

or1k-

sim.0.5.0.rc2 

0.1778 0.4677 0.3842 0.1773 0.151   0.5416 0.4202 0.0331 

or1k-

sim.0.5.0.rc3 

0.1336 0.3688 0.2776 0.0452 0.0976 0.7112   0.3857 0.288 

or1k-

sim.0.5.1.rc1 

0.1002 0.3966 0.5174 0.3172 0.1502 0.3214 0.1168   0.274 

Table 22: Or1k-sim – Spearman correlation coefficient
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                 By studying the Spearman correlation coefficient obtained by applying the 

logistic regression method, we noticed that the complexity metrics and the number of 

software defects were positively correlated. The coefficient values were in the 0.119 and 

0.923 interval. The strongest correlation coefficient (0.923) was observed when we used 

Mor1k-1.1 as the training dataset and all the other remaining versions as the testing 

dataset. The weakest correlation coefficient (0.119) was observed when Mor1kx-2.1 was 

used as the training dataset and all remaining versions as the testing dataset. 

For Or1k-sim, the correlation coefficients values were even smaller, being in the 

interval [0.274:0.506]. The highest correlation coefficient was obtained when or1k-sim-

0.4.0rc2 was used as the training dataset. 

We listed as well the root relative squared error for both Mor1k and Or1k-sim 

groups, which measure the goodness of fit for the linear regression models (Tables 24 

and 25). 
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Root relative squared error 

testing\ 

training  

mor1kx-1.0 mor1kx-1.1 mor1kx-1.2 mor1kx-2.1 mor1kx-2.2 mor1kx-2.3 mor1kx-3.1 mor1kx-4.1 

mor1kx-1.0   155.31% 65.26% 85.53% 82.84% 148.03% 91.73% 121.76% 

mor1kx-1.1. 53.25%   42.71% 56% 50.56% 41.81% 57.68% 41.28% 

mor1kx-1.2 132.33% 151.90%   104.59% 117.10% 150.40% 159.52% 157.81% 

mor1kx-2.1 148.87% 138.15% 106.92%   118.76% 138.16% 154.04% 141.32% 

mor1kx-2.2 151.34% 140.85% 135.82% 136.40%   141.34% 134.99% 146.82% 

mor1kx-2.3 90.71% 8.55% 91.70% 93.99% 93.67%   93.80% 87.21% 

mor1kx-3.1 108.15% 141.34% 70.87% 81.06% 65.12% 144.11%   129.98% 

mor1kx-4.1 86.87% 135.11% 70.22% 76.28% 74.37% 136.22% 87.22%   

Table 23: Mor1kx – Linear regression - Root relative squared error 

or1k-

sim.0.3.0 

or1k-

sim.0.4.0 

or1k-

sim.0.4.0.rc1 

or1k-

sim.0.4.0.rc2 

or1k-

sim.0.5.0.rc1 

or1k-

sim.0.5.0.rc2 

or1k-

sim.0.5.0.rc3 

or1k-

sim.0.5.1.rc1 

  86.79% 88.63% 201.52% 141.26% 92.91% 170.38% 98.11% 

145.19%   94.64% 239.95% 192.25% 101.10% 221.43% 112.35% 

137.98% 87.07%   252.19% 73.02% 74.86% 88.93% 60.27% 

93.60% 81.14% 76.72%   102.26% 87.19% 108.63% 81.76% 

102.46% 86.78% 91.93% 171.77%   88.86% 137.60% 88.09% 

168.53% 114.54% 114.61% 269.32% 212.90%   212.54% 119.40% 

107.86% 92.42% 96.18% 163.66% 118.33% 81.68%   91.96% 

150.50% 105.48% 91.78% 206.06% 175.86% 99.38% 99.38%   

Table 24: Or1k-sim – Linear regression – Root relative squared error 
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Based on the tables above, we obtained the following charts (Figures 17 and 18): 

 

Figure 17: Mor1kx- Linear Regression - Spearman correlation coefficient 

  

 

Figure 18: Or1k-sim – Linear Regression – Spearman correlation coefficient 
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All correlations with metrics were positive. It is obvious that an increase in the 

file complexity from one version to the other implies and increase the probability of 

containing defects but this relation is very strong only for mor1kx-1.1, mor1kx-2.3, and 

mor1kx-4.1. 

Trough ranking and linear regression, we detected Mor1kx-1.1 and Or1k-

sim.0.4.0.rc2 as being the released versions having the largest number of software 

defects. 

The second approach was to predict the number of bugs based on the entropy of 

changes. We present below the calculated Shannon Entropy value for each analyzed 

version (Tables 26 and 27). 

  Shannon Entropy 

Mor1kx-1.0 3.175 

Mor1kx-1.1 1 

Mor1kx-1.2 4.115 

Mor1kx-2.1 4.054 

Mor1kx-2.2 4.120 

Mor1kx-2.3 1 

Mor1kx-3.1 3.64 

Mor1kx-4.1 2.725 

Table 25: Mor1kx – Entropy of modified files 
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  Shannon Entropy 

Or1k-sim.0.3.0 6.02 

Or1k-sim.0.4.0 6.7 

Or1k-sim.0.4.0.rc1 5.04 

Or1k-sim.0.4.0.rc2 3.80 

Or1k-sim.0.5.0.rc1 4.45 

Or1k-sim.0.5.0.rc2 5.586 

Or1k-sim.0.5.0.rc3 4.508 

Or1k-sim.0.5.1.rc1 5.88 

Table 26: Or1k-sim - Entropy of modified files 

To use the entropy of code changes, Hassan et al defined the weighted history of 

complexity metric (WHCM) where each modified file gets the entropy of the system, in 

our case the release version, weighted with the probability of the file being modified [2] 

                                   

We proceeded with the calculation of each file weight Cij for each file of each 

version. As a final result, we obtained .csv files containing three fields, file name, bugs 

and WHCM. The figure below presents an example of those values. 



60 

 

Figure 19: Entropy .csv file example 

As a final step of our entropy studies, we performed the linear regression method 

(LR) on the entropy field and we listed the following charts. We compared the Spearman 

coefficient obtained by applying the linear regression analysis to every released version 

with the Spearman coefficient obtained by applying the linear regression analysis to the 

entropy field and we plotted the graphs below (Figures 20 and 21).  
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Figure 20: Mor1kx- Comparison between linear regression (LR) and linear regression on 

entropy 

 

 

Figure 21: Or1k-sim - Comparison between linear regression and linear regression on 

entropy 
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We identified the Mor1kx-1.1 and Mor1kx-2.3 as having the highest probability 

to have bugs in the future. However, the ranking study was not as good as the 

classification study due to the very small number of files that had changed between the 

versions and the frequently changed files were different between each two adjacent 

versions. Hence, the historical data cannot help too much in terms of predicting the 

buggiest files in the future.  
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Chapter 5  

Conclusions and Future Work 

The importance of mining software repositories field increased over the years due 

to the availability of a large number of free and available software and hardware 

repositories [9]. While mining software repositories is an area that has been booming 

over the last 12 years, hardware repository mining has just started. As a result, we had the 

chance to do a first empirical defect prediction study on an open source hardware project. 

Based on the similarities between hardware description languages and the software 

programming languages, we successfully adapted the existing SDP work to the open 

source hardware design making a step ahead in the industry and opening the door to other 

similar studies. 

The project was a big challenge due to the size of the project.  During our study, 

by exploring the relationship between the code complexity metrics and the hardware 

design bugs, we were able to answer which of the released version for the Verilog 

processor design and the C simulator had the largest number of defects. 

We were able to demonstrate that the random forest model provided slightly more 

accurate results than logistic regression when predicting which files were more bug-prone 

(classification). This was probably because of the random forest, which is an ensemble 

method and is more robust towards noisy data.  
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In terms of predicting which files have more bugs (ranking), we found that the 

linear regression model built using the complexity metrics was more effective than the 

entropy model built using the historical data. We think this is likely due to the lack of 

historical change data (a.k.a., less number of revisions in the hardware repositories than 

the software repositories).  

Our work provides a good starting point for mining hardware repositories 

considering that the programming languages for hardware systems are very different 

from the software systems and the complexity metrics are also different. 

 The future work will include the study of additional complexity metrics for the 

hardware-based programming languages in order to increase the precision for predicting 

bugs in hardware repositories. In addition, we also plan to contact the open source 

hardware development communities to gather feedback on our research. Finally, we will 

look into new approaches to improve the performance of our ranking studies.  
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