

DEFECT PREDICTION ON THE HARDWARE REPOSITORY

- A CASE STUDY ON THE OPENRISC1000 PROJECT

SILVIU MUSA

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

GRADUATE PROGRAMME IN ELECTRICAL ENGINEERING AND COMPUTER

SCIENCE

YORK UNIVERSITY

TORONTO, ONTARIO

MARCH 2017

© SILVIU MUSA, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by YorkSpace

https://core.ac.uk/display/84743922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Abstract

Software defect prediction is one of the most active research topics in the area of

mining software engineering data. The software engineering data sources like the code

repositories and the bug databases contain rich information about software development

history. Mining these data can guide software developers for future development

activities and help managers to improve the development process. Nowadays, the

computer-engineering field has rapidly evolved from 1972 until present times to the

modern chip design, which looks superficially and very much like software design.

Hence, the main objective of this thesis is to check whether it would be possible to apply

software defect prediction techniques on hardware repositories. In this thesis, we have

applied various data mining methods (e.g., linear regression, logistic regression, random

forests, and entropy) to predict the post-release bugs of OpenRISC 1000 projects. We

have conducted two types of studies: classification (predicting buggy and non-buggy

files) and ranking (predicting the buggiest files). In particular, the classification studies

show promising results with an average precision and recall of up to 74% and 70% for

projects written in Verilog and close to 100% for projects written in C.

iii

Acknowledgements

I would like to thank my supervisor Prof. Mokhtar Aboelaze for the support,

guidance, and feedback which has helped me pursue my MSc. Equally, I would like to

thank my co-supervisor Prof. Zhen Ming (Jack) Jiang for extensively using his time to

provide me the best of guidance and support during this project. I am very grateful to Mr.

Jeremy Bennett (Open Cores community) for providing all the needed additional

information. My inexpressible appreciation goes to my family and friends. Their

unconditional love and support have always been the main source of motivation in my

personal and professional life. I would also like to thank the entire Graduate Studies

Department of the Electrical Engineering and Computer Science at York University for

making my master studies a wonderful experience.

iv

Table of Contents

Abstract ... ii

Acknowledgements .. iii

Table of Contents ... iv

List of Tables ... vi

List of Figures .. viii

Chapter 1 Introduction .. 1

Thesis Organization .. 2

Chapter 2 Background and Related Works ... 3

2.1 OpenRISC1000 Overview .. 3

2.1.1 OpenRISC1000 Architecture .. 5

2.1.2 OpenRISC1000 Repository Structure ... 10

2.2 Software Defect Prediction ... 12

Chapter 3 Case Study Overview and Setup .. 16

3.1 Overview ... 16

3.2 Setup ... 18

v

3.2.1 Data Download ... 19

3.2.2 Tools for Complexity Metrics Calculation ... 19

3.2.3 The Tool for Building the Prediction Models ... 21

Chapter 4 Experiments .. 23

4.1 Data Collection ... 23

4.1.1 The Hardware Repository ... 23

4.1.2 Bugs Collection ... 24

4.2 Data Cleaning.. 26

4.3 Complexity Metrics Calculation ... 27

4.4 Data Analysis .. 32

4.4.1 The “Verilog” Subprojects Group .. 32

4.4.2 The “C” Subprojects Group .. 33

4.4.3 Classification... 34

4.4.4 Ranking ... 51

Chapter 5 Conclusions and Future Work .. 63

Bibliography ... 65

vi

List of Tables

Table 1: Soft core processors .. 4

Table 2: HDL-Complexity Metrics ... 20

Table 3: C language – Complexity metrics... 21

Table 4: Complexity metrics summary for Mor1kx and Or1k-sim 24

Table 6: Released versions for Mor1kx project .. 32

Table 7: Mor1kx HCT metrics summary .. 33

Table 8: Released versions for Or1k-sim project ... 33

Table 9: Classification table.. 36

Table 10: The prediction of the Mor1kx (Verilog) experiment built using the logistic

regression prediction model - Precision .. 37

Table 11: The prediction of the Mor1kx (Verilog) experiment built using the logistic

regression prediction model - Recall .. 37

Table 12: The prediction of the Mor1kx (Verilog) experiment built using the logistic

regression prediction model - F-Measure ... 38

Table 13: The prediction of the Mor1kx (Verilog) experiment built using the random

forest prediction model - Precision ... 40

Table 14: The prediction of the Mor1kx (Verilog) experiment built using the random

forest prediction model - Recall .. 40

vii

Table 15: The prediction of the Mor1kx (Verilog) experiment built using the random

forest prediction model - F-Measure ... 41

Table 16: The prediction of the Or1k-sim (C) experiment built using the logistic

regression prediction model - Precision .. 44

Table 17: The prediction of the Or1k-sim (C) experiment built using the logistic

regression prediction model - Recall .. 45

Table 18: The prediction of the Or1k-sim (C) experiment built using the logistic

regression prediction model - F-Measure ... 46

Table 19: The prediction of the Or1k-sim (C) experiment built using the random forest

prediction model - Precision ... 47

Table 20: The prediction of the Or1k-sim (C) experiment built using the random forest

prediction model - Recall .. 48

Table 21: The prediction of the Or1k-sim (C) experiment built using the random forest

prediction model - F-Measure ... 49

Table 22: Mor1kx – Spearman correlation coefficient ... 53

Table 23: Or1k-sim – Spearman correlation coefficient ... 54

Table 24: Mor1kx – Linear regression - Root relative squared error 56

Table 25: Or1k-sim – Linear regression – Root relative squared error 56

Table 26: Mor1kx – Entropy of modified files ... 58

Table 27: Or1k-sim - Entropy of modified files ... 59

viii

List of Figures

Figure 1: OpenRISC1000 – Component blocks diagram ... 6

Figure 2: Functional Blocks for OR1200RTL .. 9

Figure 3: Our process to mine the OpenRISC1000 hardware repository 17

Figure 4: An example of code commit logs .. 25

Figure 5: Code commits and according version ... 26

Figure 6: Example of a .csv file .. 28

Figure 7: Mor1kx – HCT set of metrics.. 29

Figure 8: Mor1kx – UnderstandSCI set of metrics ... 30

Figure 9: Example of a csv file for a file written in C .. 31

Figure 10: Weka – The Explore Interface... 31

Figure 11: Mor1kx – Precision ... 42

Figure 12: Mor1kx – Recall .. 42

Figure 13: Mor1kx - F-Measure ... 43

Figure 14: Or1k-sim- Precision .. 50

Figure 15: Or1k-sim Recall .. 50

Figure 16: Or1k-sim F-Measure .. 51

Figure 17: Mor1kx- Linear Regression - Spearman correlation coefficient 57

Figure 18: Or1k-sim – Linear Regression – Spearman correlation coefficient 57

Defect_Prediction_Studies_Silviu_Musa_2017_Rev_v4.doc#_Toc477601485
Defect_Prediction_Studies_Silviu_Musa_2017_Rev_v4.doc#_Toc477601486

ix

Figure 19: Entropy .csv file example .. 60

Figure 20: Mor1kx- Comparison between linear regression (LR) and linear regression on

entropy .. 61

Figure 21: Or1k-sim - Comparison between linear regression and linear regression on

entropy .. 61

1

Chapter 1

Introduction

The hardware development complexity is exponentially increasing nowadays; a

single scale of chips may contain multiple billions of transistors [25]. The growing design

complexity requires efficient hardware quality assurance (QA) techniques that differ from

the software QA. A major difference between software and hardware QA process is that

the hardware QA is not done sequentially, the different functional blocks behave

simultaneously making the QA process more difficult. Generally, two thirds of the total

hardware design budget is used for design QA [2, 21]. Meanwhile, there is an increasing

number of projects that were written using a hardware description language (e.g.,

VHDL). Hence, it would be worthwhile to investigate whether some of the software QA

techniques would be applicable to the process of hardware QA.

One of the active research areas in software engineering is software defect

prediction. Software Defect Prediction (SDP) is the line of research that is concerned

with building prediction models, which leverage software metrics to predict defect-prone

areas within a software system. The typical metrics include code complexity metrics

(e.g., lines of code) or historical code change metrics (e.g., code churns). Together with

the traditional software testing approach, the data obtained from SDP can be used to

further improve the quality of various software systems. It would be worthwhile to

2

investigate whether the software prediction techniques can be applied to detect potential

issues in the hardware code.

With respect to applying SDP on hardware repositories, there is only one recent

work [21] which predicts hardware defects on one large-scale commercial product.

However, there are no published works on predicting defects on open source hardware

repositories. Hence, this would be the focus of this thesis.

This thesis contains the defect prediction work done over a very popular open

hardware project and open source development OpenRISC1000. Our goal was to perform

an empirical investigation on this hardware project studying the relationship between

various metrics (e.g., code complexity metrics and historical change metrics) and the

post-release bugs. By applying the SDP techniques on hardware repositories, we were

able to find the defect prone software modules. We focused on the post-release bugs

rather than pre-release bugs or all bugs because of the post-release bugs, which are bugs

discovered after the systems are released into the field, are more important with respect to

the customer experience.

Thesis Organization

This thesis is organized as follows: Chapter 2 presents the OpenRISC1000 project

and the background information about the SDP process. Chapter 3 provides an overview

of our case study. Chapter 4 describes our experiments and discusses our results. Chapter

5 concludes this thesis and presents some future work.

3

Chapter 2

Background and Related Works

This chapter is organized as follows. First, we will describe the open source

OpenRISC1000 project in Chapter 2.1. Then we will provide an overview of the related

works in the area of SDP in Chapter 2.2.

2.1 OpenRISC1000 Overview

Since 1960, the embedded computers have evolved continuously as a result of the

advances in the design and manufacture of microelectronic components and devices.

Starting 1980, there is a new architectural approach regarding microprocessors, favouring

a reduction in design complexity [12, 23].

The Reduced Instruction Set Computing (RISC) is a type of microprocessor

architecture that utilizes a small, highly-optimized set of instructions, rather than a more

specialized one, often found in other types of architectures. The most important

characteristics of this family of processors are: one cycle execution time, pipelining and a

large number of registers [2].

Almost in the same period of time (mid 80’s) when the RISC architecture was

designed, there was a movement in terms of open source and free software systems. The

Free Software Foundation was born aiming to create the environment for less restrictive

software regarding freedom to access and open of suffocating “usage protective

measures” [1]. Fifteen years later, the philosophy was transferred to the discipline of

4

hardware design. As a result, a large number of soft cores are currently available as open

hardware. Cortex-M1, OpenRISC1000, OpenSPARC, LEON, Lattice Micro32, RISC-V

are only a few of names from the list. The most popular of open source hardware systems

are presented below.

Processor Developer Processor Developer

AEMB Shawn Tan Nios I, Nios II Altera

ARC ARC International OpenFire Virginia Tech

Cortex-M1 ARM OpenRISC OpenCores

ERIC5 Entner Electronics OpenSPARC SUN

eSI-RISC EnSillica T1 SUN

JOP Martin Schoeberi PacoBlaze Pablo Bleyer

Lattice Micro32 Lattice pAVR Doru Cuturela

LEON2 ESA PicoBlaze Xillinx

LEON 3/4 Aeroflex Gaisler RISC-V UC-Berkeley

MOL86 MicroCore Labs SecretBlaze U of Montpellier

Navre Seb Bourdeauducq

Table 1: Soft core processors [24]

In 1990, one of the most prominent projects aiming to develop an open source

processor architecture was initiated by a group of students. These students had the goal to

create a RISC processor design, including specifications and implementation. The name

5

of the project was OpenRISC1000 and, at the same time, an online open source hardware

design community called Open Cores was created.

The Open Source Hardware Community, known as Open Cores Community has

more than 150,000 registered users [3]. There are 20 programmers assigned to be the

maintainers of the project and the most popular names are: Damjan Lampret, Julius

Baxter, Jeremy Bennett, and Stefan Kristiansson.

In the absence of a widely accepted open source hardware license, the

components produced by the Open Cores initiative used initially several different

software licenses. The Open Cores portfolio consists of multiple design elements from

central processing units, memory controllers, peripherals, motherboards, and other

components. The cores are implemented in the hardware description languages like

Verilog, VHDL which may be synthesized to either silicon or gate arrays. Among the

components created by Open Cores contributors are: OpenRISC1000 - a highly

configurable RISC central processing unit, Amber (processor core) - an ARM-compatible

RISC central processing unit, a ZilogZ80 clone, USB 2.0 controller, Tri Ethernet

controller, 10/100/1000 Mbit. From the multitude of Open Cores community

achievements, the OpenRISC1000 project has the largest popularity [13].

2.1.1 OpenRISC1000 Architecture

OpenRISC1000 is an open source 32-bit processor IP core that has been widely

used in many academic and technologic projects [5]. Its nickname is OR1K and the

project is one important component of ORP “Open RISC reference platform”.

6

OpenRISC1000 provides a large area of implementations at a multitude of price

per performance levels for a large range of industrial and telecommunication applications

[20]. The basic implementations of the processor will only occupy 70% of a 50,000-gate

Xilinx Virtex FPGA board, running at 80 MHz, reaching 80 MIPS.

The microprocessor block components are described in detail by Pablo Sanchez

and Eugenio Villar in their paper “Using Open Source Cores in Real Applications” as

being a 32/64-bitload microprocessor with store RISC architecture that has been designed

with the emphasis on performance, simplicity, low power requirements, scalability and

versatility [24]. The main CPU unit is implemented in 15,400 System C code lines

(Figure 1) and has the following components described below according to the official

manual [24].

Figure 1: OpenRISC1000 – Component blocks diagram [13]

7

The Integer Unit is the main part of the CPU designed to decode each

instruction, to obtain the operation code and the operands. After each operation is

performed, the integer unit writes the existing results. The integer unit is designed to

allow the utilization of a higher clock frequency. The System C description of these units

has 4,100 code lines.

Data and instruction caches are separate modules according to the hardware

architecture of the design and are highly configurable. Cache size can be set from2

KBto8 KB and data block size can be set to 16, 32 or 64 bytes. Least Recently Used

(LRU) is the algorithm used and it proved to be very efficient. This unit is described in

5,900 System C code lines.

Exception management unit is designed to calculate the address where the

exception handler routine is placed and to decide which information about the status of

the core must be stored for later restoring of the execution. This unit is described in 600

System C code lines.

Debug unit and development interface is an optional block that provides the

possibility to create hardware breakpoints based on comparison conditions with stored or

loaded values, data and instruction memory addresses. This unit is very closely related to

the development interface which allows the debugging process to be completely in-

system. Through the development interface, the debugging software can analyze the

status of the CPU the memory content and trace information. The debug and development

interface description takes 2,600 System C code lines.

8

Programmable interrupt controller allows the connection of 32 external

masked interrupt lines through the interrupt line provided by the architecture. The

OpenRISC1000 architecture only provides an insufficient number of interrupt thus a

programmable interrupt controller (PIC) has to be implemented.

 Tick timer facility provides the software with a precise clock reference. The tick

timer generates an interrupt when the count reaches a programmed value.

Performance counters unit keeps a count of the number of times that a certain

event has occurred. These events can be: instruction fetches, load and store accesses,

cache misses and watch points.

Power management unit helps to better administer the power consumption of

the core. This unit can perform modifications of the system clock frequency; it can shut

down modules or can force the CPU to enter sleep mode.

Watchdog unit is used to prevent the CPU from entering into an endless loop or

an erroneous routine from which the system cannot recover from.

9

The functional blocks are presented in the Figure 2. All of these blocks were

designed with the focus on several principles such as ergonomics, efficiency, and lower

power consumption [17].

The project started in 1998 aiming to develop reusable IP cores processors in

Verilog/VHDL and since then each project has had several hundreds of code commits.

First edition was launched in 2000 and since then up to the present times has been

regularly updated to reflect the state of the latest implementations. The statistics provided

by the Open Cores community show a total of 1,093 downloads per year. The project is

known now as Design proven, ASIC proven, FPGA proven, but it is well known that still

suffers historically from a lack of testing [24]. Knowing the increasing trend of design

reuse, the developed IP cores have a high probability to be used in the research industry

Figure 2: Functional Blocks for OR1200RTL [14]

10

for the embedded control systems and fast FPGA prototyping and they can be

implemented as well for day by day use. There are already a few examples of real

implementations that have become a market success: Samsung DTV, Allwiner power

controllers, and NASA for the control of TechEdStad.

2.1.2 OpenRISC1000 Repository Structure

OpenRISC 1000 project can be considered as a showcase of an open, modular

standard specification geared towards real hardware implementations. The code for all

projects in the OpenRISC IP Core family, such as OpenRISC1000, OpenRISC1200, and

other builds, is combined into a single source tree and is hosted by the most popular web-

based Git repository service GitHub (https://github.com/openrisc). The tree contains the

complete source code for all the modules including project builds for each supported

Operating System (OS) platforms. Linux is the main platform and the biggest parts of the

project developments were done for it. In addition, the project has also been ported to

Real Time Operating Systems like freeRTOS, RTEMS, and eCOS.

 To fork all the OpenRISC repositories to a personal GitHub account and to

download them to the local computer was the first mandatory step in our study. The

complete project family, including compilers, tool chains, simulators and existing builds

has a size on disk very close to 10 GB with 726,134 files and 47,543 folders. Most of the

code was written in the Verilog, and C programming languages. Both languages have

concepts of components, functions, methods and modules like any other standard

programming languages.

11

The most important directories of the repository are the following:

• Mor1kx is a modular source base, the most recent version of the OR1K project.

Mor1kx core is intended to replace the existing current OpenRISC1200 version.

Mor1kx comes with 3 main configurations: Pronto-core is the configuration

having three stages “delay-slot-free” and does not have a memory management

unit (MMU); Espresso-core has a three-stage pipeline and does not have a MMU

as well; Cappuccino-core has 6-stage pipeline and it can have MMUs and caches,

which make it powerful enough to run Linux.

• ORPSoc is an OpenRISC reference platform (System on Chip) for further OS

development. The trend is towards standard software distributions.

• OpTiMSoc is a tiled multi-core platform included in the OpenRISC project. The

project can run on big FPGA boards.

• Or1k-gcc is the OR1KX Gnu collection compiler. Or1k-src it is a part of the tool

chain containing the binutils and GDB libraries.

• Or1ksim is the official emulator for the Or1k project and is built as a single core.

• Jor1k is a JavaScript simulator written in Java.

• UClibc-or1k contains the uClibc embedded C libraries.

• LLVM-Or1k (Low Level Virtual Machine for Or1k) contains the preliminary

support in LLVM and LINUX.

Each of the above-presented modules is hosted by GitHub as individual projects

and each project can have up to 13 versions. The main branch is the one that accepts the

12

current code commits. The testing is done using the mentioned simulators Orksim and

Jor1k and Verilator (Verilog to System C) the dedicated testing tool made by the largest

FPGA producer Xilinx. Using the existing results of the past testing activity and

considering the limitations of resources in the software industry, it is very valuable to

exactly predict the areas which are prone to failures in order distribute those resources

properly to ensure the best results on launching software products.

By analyzing the existing data contained in the above systems, we can obtain

valuable perspectives over their development processes [8, 18]. The large open software

and hardware systems are increasingly important in the daily lives, and the software

programming errors are affecting professionals at all levels. Hence, it is very important to

have an exploratory study over a large project in order to demonstrate how the collected

data and all the existing information on an open hardware project can help us to obtain

even more knowledge and information.

2.2 Software Defect Prediction

A software defect, commonly referred as a “software bug” can be defined as an

issue or deficiency in the software product which causes it to perform in an unexpected

way [22]. Since defects in software can lead to malfunctioning of the system, which

could in some cases affect the overall quality of the project, the general objective of

software QA and validation activities is to release software with no known defects.

Trying to achieve this goal, all the unexpected malfunctions are reported and documented

in the defect database also known as online bug repository for the open source projects

13

[22]. All defects found during the software QA and validation activities become records

of the repositories in a pre-defined format, often with the sole purpose of facilitating their

resolution. Such repositories, which are usually accessible online, are generally called the

bug repositories, or issue tracking repositories [4, 29].

The online databases usually provide the platform where worldwide programmers

and testers can access the information about defects of their interest. They can add, edit,

or update the information related to a given defect or comment, provide expertise or

guidance to help resolve the defect, and track the progress of reported defects and

monitor their statistics. To facilitate the documentation and exchange of information,

various attributes are recorded for each reported defect. Some of these attributes are

mandatory aimed at providing the basic information pertaining to given defect, while

others are optional that provide additional details.

The most commonly used software QA and validation approach is software

testing [26, 19]. Software testing verifies the behavior of the software system by

executing the test scenarios and checking its runtime behavior against the specification.

In addition to software testing, recently SDP is another complementary approach which

can be used to reveal potential problems in a software system.

Software Defect Prediction (SDP) is an area of research that focuses on building

prediction models, which use software metrics to predict defect-prone areas of a software

system [28]. SDP uses various metrics extracted from the source code, the historical

revisions, as well as the bug repositories [31].

14

There are many existing works in the area of SDP. For details please refer to [11].

We describe here the two pieces of works which are most relevant to this thesis.

1. The ways to practically identify and prioritize defects are addressed in multiple

research papers in the software defect prediction field, including the one written by

Zimmermann and Zeller, “Predicting Defects for Eclipse” [32]. This paper is the first

work and proposes the idea of mining an open source, publicly available software

repositories to predict potential defects.

2. Regarding mining hardware repositories, there is only one published work. It is

written by Parizy, Takayama, and Kanazawa, called “Software Defect Prediction for

LSI Designs” [21]. This is a study that was developed by Fujitsu Laboratories aiming

to predict software defects by mining hardware repositories. This study was done in

the industry using proprietary software defect database and proprietary hardware

repositories focusing only on entropy studies.

However, there are no existing works which predict defects on open source

hardware repositories. Hence, the current state of the research in the field gives us the

opportunity to bring our contribution.

In this thesis, we have made a first empirical study on predicting bugs from open

source hardware repositories. We have used OpenRISC1000 project and proceeded in our

work using the existing state of the art methods and trying to see if there are better ways

to leverage the software metrics. Although Parizy et al. [21] also studied the projects

written in the Verilog language, they only applied the entropy as their prediction

15

techniques. In this work, in addition to the entropy studies, we have used several other

data mining techniques (e.g., regression and random forests) to predict the hardware

defects.

16

Chapter 3

Case Study Overview and Setup

In this chapter, we describe our process of applying SDP techniques to predict

potential defects in the hardware repositories. In particular, we explain the setup and the

tools used in our case study.

3.1 Overview

The main objective of this thesis was to apply the SDP technique to a hardware

repository. In this study, we picked OpenRISC1000 as our case study project. In order to

achieve this objective, similar as described in Zimmermann and Zeller paper [31], our

process consisted of five steps as illustrated in Figure 3: (1) data collection; (2) data

cleaning; (3) complexity metrics calculation; (4) building prediction model; and (5)

evaluation.

17

Figure 3: Our process to mine the OpenRISC1000 hardware repository

(1) During the data collection step, the historical data from the online OpenRISC1000

open source repository was extracted. There were two types of historical data in our

study:

i. the GitHub repository, which contains the past revisions of the

OpenRISC1000 source code; and

ii. the BugZilla database, which contains the reported defects for various

releases of the OpenRISC1000 projects.

(2) During the data cleaning step, the unnecessary data was removed and the input data

was converted into the desirable format which can be processed by the subsequent tools.

(3) During the complexity metrics calculation step, various complexity metrics were

calculated for different releases of the software system. These complexity metrics were

used in the later data mining models to predict the potential defects in the source code.

Since there were two types of programming languages used in the OpenRISC1000

18

project, the Verilog and C. Hence, different types of complexity metrics were calculated

for these two different programming languages.

(4) During the data analysis step, we studied the relationship between various code

metrics with the bugginess of the systems. In particular, we explored the correlations

between the complexity metrics and the past bug history.

(5) During the building prediction model step, various prediction models were built using

the calculated complexity metrics as well as the past defect history. In particular, in this

thesis, we studied two types of prediction models, classification, and ranking. For

classification, we used two methods: logistic regression and random forest in order to

determine which one provides better results. For ranking, we used the linear regression

method.

(6) During the Evaluation step, the effectiveness of the prediction models was evaluated.

In particular, we wanted to check whether the prediction models can be used to prediction

bugs on the future releases of the systems.

3.2 Setup

There are three aspects related to the case study setup: (1) data download; and (2)

the tools for complexity metrics calculation; and (3) the tool for building the prediction

models.

19

3.2.1 Data Download

For the case study, we used two main sources of data available for the

OpenRISC1000, the project repositories and the associated Bugzilla online database.

Both were forked from the official location to a personal GitHub account and

successfully downloaded to the local machine. For the hardware repository, the size of

the download was approximately 9 GB. For Bugzilla online database, the size was around

70 MB.

3.2.2 Tools for Complexity Metrics Calculation

After collecting all the necessary data related to the study, the complexity metrics

calculation phase naturally came next in the working flow. Software analysis generally

extracts arbitrary properties of software source code. Software metrics provides various

insights on various characteristics of the source code. Classic software metrics range in a

large variety, from the very simple Source Lines of Code (SLOC) to more complex

measures such as Cyclomatic Complexity measurements. Typical metrics report provides

details on individual modules and summaries for subsystems. Such metrics are widely

used to judge the quality or the complexity of source code.

The main advantages of using well-defined complexity metrics are their wide

acceptance, unbiased assessment of source code quality, repeatability of measurements,

ease of measurement, and the ability to judge progress in enhancing quality by comparing

before and after assessments.

20

We built the bug prediction models using the complexity metrics guided by the

thought that the most complex code would result in more bugs. However, as there were

various complexity metrics proposed, our goal was to collect as many complexity metrics

as possible when building the prediction models.

Since there were two types of programming languages in the OpenRISC1000

project, the Verilog and C, we used the HDL tool [16] to calculate the complexity metrics

for the Verilog code and the UnderstandSCI [27] tool to calculate the complexity metrics

for the C code.

The Hardware Description Language (HDL) Complexity Tool parses the Verilog

code and calculates the code complexity metrics (Table 2).

Name Description

Filename the name of the file

Module the name of the module

IO input output elements

Net design elements

McCabe cyclomatic complexity

Sloc lines of code

Comment lines lines containing comments

Time propagation time

Table 2: HDL-Complexity Metrics

The UnderstandSCI tool is a static analysis tool focused on source code

comprehension and software metrics. The UnderstandSCI tool was widely used in

various projects [16]. We used the UnderstandSCI tool to calculate the code complexity

metrics for the C code. The following (Table 3) metrics were calculated:

21

Name Description

Average Number of Blank Lines (Include

Inactive)

the average number of lines that are not

containing code

Average Number of Lines of Code (Include

Inactive)

the average number of lines that are containing

code

Average Number of Lines with Comments

(Include Inactive)

the average number of lines that are containing

comments

Blank Lines of Code (Include Inactive) the number of lines that are not containing code

Lines of Code (Include Inactive) the total number of lines of code

Lines with Comments (Include Inactive) the total number of lines that are containing

code

Average Cyclomatic Complexity the number of linearly independent paths

through a program's source code

Average Modified Cyclomatic Complexity the average of the modified number of linearly

independent paths through a program's source

code

Average Number of Lines the average number of lines

Average Number of Blank Lines the average number of blanc lines

Average Number of Lines of Code the average number of lines of code

Base Classes the number of classes from which other classes

are derived

Number of Children the total number of direct subclasses

Classes the total number of classes

Class Methods the total number of methods

Class Variables the total number of variables defined in a class

Number of Files the total number of files

Function the total number of functions

Instance Methods the total number of subroutines

Instance Variables the total number of variables defined in a class

Local Methods the total number of local methods

Methods the total number of methods

Modules the total number of modules

Program Units the total number of program units

Subprograms the total number of subprograms

Table 3: C language – Complexity metrics

3.2.3 The Tool for Building the Prediction Models

We used the Waikato Environment for Knowledge Analysis (WEKA) as our tool

to build the bug prediction model. WEKA is a machine learning workbench currently

22

being developed at the University of Waikato. Its purpose is to allow users to access a

variety of machine learning techniques for the purposes of experimentation and

comparison using real world datasets. A workbench represents a set of tools bound

together by the same user interface and each of these represents an individual program.

The machine learning tools are written in a variety of programming languages (C, C++

and LISP). The last version of WEKA application includes multiple machine learning

capabilities [10]. By providing the option to build a data mining model based on a

training dataset, Weka has proven to be the ideal tool for our study.

23

Chapter 4

Experiments

In this chapter, we present our experiment on prediction bugs for the

OpenRISC1000 project. The experiment was performed on a Dell XPS, I7-3770K single

core desktop computer with 16 GB of RAM and 1 TB hard disk drive storage capacity.

4.1 Data Collection

4.1.1 The Hardware Repository

For this study, we used two main sources of available data for the

OpenRISC1000, the project repositories and the associated Bugzilla online database. A

total of 9.06 GB was downloaded to the local machine.

 By looking through the downloaded data, we understood that this project started

in 2001 and it is still ongoing at the present time. In total, there were 28 components/sub-

projects inside the OpenRISC1000 project. Within these 28 sub-projects, there were more

than 635,127 files overall. In total, there were more than 183,344,000 lines of code and

87,768,000 of statements for the entire project. Among them, 15,655 lines of code

contained in 529 files were written in Verilog. The rest of 634,598 files containing

183,328,345 lines of code were written in C.

 From all the OpenRISC1000 component sub-projects, we selected for our study

only those that had multiple released versions in order to make possible future

24

comparisons. As a result, only 2 sub-projects fulfilled this condition. To have a balanced

study, we selected Mor1kx, the actual processor design written in Verilog, and Or1k-sim,

the current simulator of the processor, written in C.

Table 4: Complexity metrics summary for Mor1kx and Or1k-sim

4.1.2 Bugs Collection

A copy of the project’s post-release bugs was obtained from the online

OpenRISC1000 Bugzilla Database. This database collects all the reported issues and

modification requests that are submitted electronically by worldwide users. They are

commonly referred to as “bug reports”. This term is quite misleading as not all reported

issues are defects, as some of the reported issues are just requests for optimization, or

suggestion for different future improvements. Normally, every bug report should contain

a variety of supporting meta-information such as a unique identification number, the

software version, and the operating system it relates to, or the reporter’s perceived

importance. In addition, the entries should contain a short one-line summary of the issue

at hand, followed by a more elaborate description. In our case, the additional information

was missing for some of the reported bugs. Considering also the fact that the number of

reported issues present in the database (106 instances in total) was too small to be used in

the data mining study, we had to consider the second solution. Hence, we examined the

Verilog C

Mor1kx Or1k-sim

529 files 2,063 files

15,655 lines of code 704,430 lines of code

25

commit logs of the online code repositories. Methodically, we analyzed all the existing

logs of the code commits and we included the code revisions whose commit logs

contained the words like “corrections” or “fixes”. Usually, when the developers submit

their code, they usually include some short messages, called the commit logs, which

contain the purpose of their submission. For example, if their code commit is for fixing

some bugs, their commit log might contain phrases like “fixed 1067” or “bug #1025”.

Figure 4 shows an example.

Figure 4: An example of code commit logs

We built a group of large spreadsheets for each sub-project containing the list of

bugs, the patch for each modified file when fixing that bug and the date when the code

commit was submitted.

26

Knowing the release date for each version and the date when each code commit

was submitted, we checked and ensured that all the software defects were post-release

bugs. Post-release bugs refer to bugs reported after that version of the system is released.

We also took into consideration the existing comments inside the code commits. In this

thesis, we focus on analyzing and predicting the post-release bugs is because these are the

bugs which escape from software testing and can potentially impact the customer

experience.

Figure 5: Code commits and according version

4.2 Data Cleaning

The second step in our data processing process is data cleaning. We verified if the

data values were correct and conform to the existing dataset of rules. The non-useful

information such as the “author” and “submission date” fields was removed. In this way,

the existing data was prepared to be used for in depth analysis.

27

4.3 Complexity Metrics Calculation

Using the UnderstandSCI and HCT tools, we were able to extract from the

analyzed repositories all the useful complexity metrics [6].

Verilog C

 Filename Average Number of Blank Lines (Include Inactive)

 Module Average Number of Lines of Code (Include Inactive)

 IO Average Number of Lines with Comments (Include

Inactive)

 Net Blank Lines of Code (Include Inactive)

 Mccabe Lines of Code (Include Inactive)

 Sloc Lines with Comments (Include Inactive)

 Comment lines Average Cyclomatic Complexity

 Time Average Modified Cyclomatic Complexity

AverageCyclomatic Average Strict Cyclomatic Complexity

AvgCyclomaticModified Average Essential Cyclomatic Complexity

Count Line Average Essential Strict Modified Complexity

CountLineBlank Average Number of Lines

CountLineCode Average Number of Blank Lines

Count Line Comment Average Number of Lines of Code

Count Stmt Average Number of Lines with Comments

CountStmtDecl Base Classes

CountStmtDecl Number of Children

CountStmtExe Classes

RatioComment Class Methods

 Class Variables

 Number of Files

 Function

 Instance Methods

 Instance Variables

 Local Methods

 Methods

 Modules

 Inputs

Table 5: List of C and Verilog code complexity metrics used in our study

https://scitools.com/support/metrics_list#AltAvgLineBlank
https://scitools.com/support/metrics_list#AltAvgLineCode
https://scitools.com/support/metrics_list#AltAvgLineComment
https://scitools.com/support/metrics_list#AltAvgLineComment
https://scitools.com/support/metrics_list#AltCountLineBlank
https://scitools.com/support/metrics_list#AltCountLineCode
https://scitools.com/support/metrics_list#AltCountLineComment
https://scitools.com/support/metrics_list#AvgCyclomatic
https://scitools.com/support/metrics_list#AvgCyclomaticModified
https://scitools.com/support/metrics_list#AvgCyclomaticStrict
https://scitools.com/support/metrics_list#AvgEssential
https://scitools.com/support/metrics_list#AvgEssentialStrictModified
https://scitools.com/support/metrics_list#AvgLine
https://scitools.com/support/metrics_list#AvgLineBlank
https://scitools.com/support/metrics_list#AvgLineCode
https://scitools.com/support/metrics_list#AvgLineComment
https://scitools.com/support/metrics_list#CountClassBase
https://scitools.com/support/metrics_list#CountClassDerived
https://scitools.com/support/metrics_list#CountDeclClass
https://scitools.com/support/metrics_list#CountDeclClassMethod
https://scitools.com/support/metrics_list#CountDeclClassVariable
https://scitools.com/support/metrics_list#CountDeclFile
https://scitools.com/support/metrics_list#CountDeclFunction
https://scitools.com/support/metrics_list#CountDeclInstanceMethod
https://scitools.com/support/metrics_list#CountDeclInstanceVariable
https://scitools.com/support/metrics_list#CountDeclMethod
https://scitools.com/support/metrics_list#CountDeclMethodAll
https://scitools.com/support/metrics_list#CountDeclModule
https://scitools.com/support/metrics_list#CountInput

28

UnderstandSCI was used to analyze the C code and provided a generous set of

metrics. The program proved to be very efficient in collecting them. Figure 6 shows a

snippet of the collected metrics from the UnderstandSCI tool.

Figure 6: Example of a .csv file

Most of the metrics in UnderstandSCI can be categorized as complexity metrics

or volume metrics groups [30]. Cyclomatic complexity, Essential Complexity, Nesting

level of Control Constructs are a few examples from the Complexity Metrics group. The

Total number of Lines of Code, Total Number of Blank Lines or Total Number of

Commented Lines, Number of Functions, Number of local Internal Methods are a few

other examples belonging to the Volume Metrics group.

29

For Verilog language, the situation was a bit more complex. Using the HCT tool,

a freely available program dedicated to Verilog code analysis, we were able to extract the

most important code complexity metrics such us, Net, IO, McCabe, and Time.

Those metrics strictly describe the hardware design providing the Number of

gates used (Net), the number of Input-Output elements (IO), the complexity of the design

(McCabe) and the propagation time (Time) (Figure 7). They are essential in any hardware

design analysis. We also understood that for a better study the set of metrics should be

larger. Luckily, we found a way to enrich the Verilog set of metrics with code Volume

Metrics.

Figure 7: Mor1kx – HCT set of metrics

Going back to the UnderstandSCI tool, we made this powerful tool able to

analyze Verilog Code. In this way, we extracted the Total number of Lines of Code, Total

Number of Blank Lines or Total Number of Commented Lines and a few other useful

metrics. The two complexity metrics tables, for each released version, were merged

30

according to the commune column containing the path and the file name. An example of

a merged table is showed in Figure 8.

Figure 8: Mor1kx – UnderstandSCI set of metrics

In the next phase, we merged the total complexity metrics files with the bugs

collection files resulted from harvesting the code commits for both projects Mor1kx and

Or1k-sim.

The final resulting .csv files were enriched with 3 extra columns, the number of

time when a file was modified after release, the number of bugs reported for that file,

both being numeric fields and the field “buggy” a yes or no nominal field (Figure 9).

Those last three fields were extremely important in our next steps.

31

Figure 9: Example of a csv file for a file written in C

The final resulting .csv files were converted into .arff type of file, which is the

preferred dataset format by the Weka application (Figure 10).

Figure 10: Weka – The Explore Interface

32

4.4 Data Analysis

4.4.1 The “Verilog” Subprojects Group

Mor1kx, the current design from the OpenRISC1000 processor family is the

single package written in Verilog. Table 6 shows the existing released versions, the

released date, the number of commits associated with each of them and the number of

modified files before the next release.

Verilog

Mor1kx

version official

name

Date ID code # of

commits

of

touched

files

mor1kx.1.0 v1.0 9/1/2013 b5ca2ea 10 17

mor1kx.1.1 v1.1 9/9/2013 1eb23f2 1 1

mor1kx1.2 v.1.2 10/2/2103 143d9b8 34 65

mor1kx.2.1 v2.1 6/22/2014 7358c97 21 58

mor1kx.2.2 v2.2 8/8/2014 83d3415 57 73

mor1kx.2.3 v2.3 12/9/2014 91acc03 2 2

mor1kx.3.1 v3.1 12/13/2014 39c074a 15 20

mor1kx.4.1 v4.1 11/3/2015 b8c1a18 6 9

 Bug-fixing commits 146 245

 Total # of commits 594

Table 5: Released versions for Mor1kx project

The statistics per entire Mor1kx project were resumed in the Table 7.

33

Table 6: Mor1kx HCT metrics summary

4.4.2 The “C” Subprojects Group

The second analyzed subproject ORK-Sim written in C had also eight released

versions. They are presented in Table 8.

By using the UnderstandSCI tool, we were able to compute the complexity

metrics for each package and each version.

 An example of some complexity metrics statistics for each Or1k-sim released

version is presented in the next table.

C

Or1k-sim

version official name date ID code # of

commits

of touched

files

or1ksim-0.3.0 or1ksim-0.3.0 5/25/2009 0b63f32 3 148

or1ksim-0.4.0rc1 or1ksim-0.4.0rc1 6/3/2010 48c3d23 12 130

or1ksim-0.4.0rc2 or1ksim-0.4.0rc2 6/16/2010 c7a1d5e 2 14

or1ksim-0.4.0 or1ksim-0.4.0 6/22/2010 27806aa 15 208

or1ksim-0.5.0rc1 or1ksim-0.5.0rc1 9/7/2010 ef54033 2 22

or1ksim-0.5.0rc2 or1ksim-0.5.0rc2 10/2/2010 b55e843 21 131

or1ksim-0.5.0rc3 or1ksim-0.5.0rc3 2/11/2011 ae337dc 2 50

or1ksim-0.5.1rc1 or1ksim-0.5.1rc1 4/8/2011 7672c7e 45 179

 Bug-fixing commits 102 882

 Total # of commits 129

Table 7: Released versions for Or1k-sim project

Project version IO NET MCCABE SLOC COMM

Mork1x-1.0 84 10 40 2,268 692

Mork1x-1.1 158 10 30 2,268 692

Mork1x-1.2 158 32 38 2,268 692

Mor1kx-2.1 126 10 40 2,377 788

Mor1kx-2.2 94 24 42 2,377 788

Mor1kx-2.3 58 2 36 2,377 788

Mor1kx-3.1 22 0 34 1,611 715

Mor1kx-4.1 62 18 35 1,293 592

34

We wanted to study the following two research questions regarding the defect

prediction studies on the OpenRISC1000 hardware repository:

1. Classification: to predict the files which contain software bugs (e.g., Mor1kx

or Or1k-sim) and,

2. Ranking: to predict the files which contain the largest number of software

defects.

4.4.3 Classification

The first analysis that had to be done was naturally the classification. Using this

method, we were able to differentiate between buggy or not buggy files. In this work, we

compared the results built using the random forest and logistic regression model to see

which prediction model provides the best results.

• Logistic regression is used to estimate the probability of a binary response

based on one or more predictor variables. Logistic regression measures the

relationship between the categorical dependent variable, in our case “buggy or

not buggy” and one or more independent variables. To classify files/packages

as defect-prone or not based on code metrics we define the following based on

the values outputted by the logistic regression model:

Defect Classification =

defect-prone (0.5 < value ≤ 1)

defect-free (0 ≤ value ≤ 0.5)

35

• Random forest is another useful prediction method when predicting a binary

outcome [15], in our case post-release bugs from a set of continuous or

categorical variables. Compared to the logistic regression model, in which

there are a few assumptions associated with the model (e.g., the normality of

the data, the balance of the output data, etc.), the random forest model is less

constrained.

Since there were more “bug-free” files than the “buggy” files, we had to re-

sample the data before we can train them using the logistic regression model. The data

was sampled automatically before proceeding with the logistic regression method to

every dataset. By doing this, we ensured that for every test dataset the number of buggy

records equals the number of the not buggy ones. Every version from both projects was

used as a training dataset and all the remaining versions became one after another the test

dataset.

Below we describe the performance metrics used to evaluate the effectiveness of

the defect prediction models: precision, recall, and F-measure.

To properly explain the above three metrics, we need to consider the following

prediction outcomes (Table 9):

• True positive (TP): buggy instances predicted as buggy

• False positive (FP): clean instances predicted as buggy

• True negative (TN): clean instances predicted as clean

• False negative (FN): buggy instances predicted as clean

36

 Actual Results

 Yes No

Predictive Results
Yes TP (true positive) FP (false positive)

No FN (false negative) TN (true negative)

Table 8: Classification table

With these prediction outcomes, which are mostly used in the defect prediction literature,

the following measures are defined:

• Precision – measures the ratio of the correctly classified positive modules to the

set of positive modules.

• Recall – measures the ratio of correctly predicted positive modules in the whole

modules with defects.

• F-measure – is the harmonic mean of precision and recall.

Having this knowledge and based on the output values, the data can be interpreted

immediately and it is easy to know if a file or a package contains software defects or not.

The Precision, Recall and F-measure values for the logistic regression models are

listed below (Tables 10, 11, 12).

37

Precision

testing\

training

mor1kx-1.0 mor1kx-1.1 mor1kx-1.2 mor1kx-2.1 mor1kx-2.2 mor1kx-2.3 mor1kx-3.1 mor1kx-4.1 average

mor1kx-1.0 0.25 0.974 0.563 0.612 0.25 0.573 0.813 0.576

mor1kx-1.1 1 0.974 0.594 0.612 0.833 0.573 0.917 0.786

mor1kx-1.2 0.875 1 0.563 0.584 0.833 0.537 0.917 0.758

mor1kx-2.1 0.837 1 0.751 0.612 0.25 0.837 0.292 0.654

mor1kx-2.2 0.612 0.25 0.612 0.657 0.5 0.786 0.4 0.545

mor1kx-2.3 1 1 1 0.612 0.612 0.643 0.708 0.796

mor1kx-3.1 0.569 1 0.431 0.597 0.563 1 0.5 0.665

mor1kx-4.1 0.661 1 0.633 0.5 0.359 0.833 0.407 0.627

Table 9: The prediction of the Mor1kx (Verilog) experiment built using the logistic regression prediction model - Precision

Recall

testing\

training

mor1kx-1.0 mor1kx-1.1 mor1kx-1.2 mor1kx-2.1 mor1kx-2.2 mor1kx-2.3 mor1kx-3.1 mor1kx-4.1 average

mor1kx-1.0 0.5 0.972 0.563 0.611 0.5 0.571 0.7 0.631

mor1kx-1.1. 1 0.972 0.594 0.611 0.75 0.571 0.9 0.771

mor1kx-1.2 0.833 1 0.563 0.583 0.75 0.536 0.9 0.737

mor1kx-2.1 0.833 1 0.75 0.611 0.5 0.821 0.3 0.687

mor1kx-2.2 0.611 0.5 0.611 0.656 0.5 0.786 0.4 0.58

mor1kx-2.3 1 1 1 0.611 0.611 0.643 0.7 0.795

mor1kx-3.1 0.556 1 0.444 0.594 0.556 1 0.5 0.664

mor1kx-4.1 0.611 1 0.583 0.5 0.444 0.75 0.464 0.621

Table 10: The prediction of the Mor1kx (Verilog) experiment built using the logistic regression prediction model - Recall

F-Measure

38

testing\

training

mor1kx-1.0 mor1kx-1.1 mor1kx-1.2 mor1kx-2.1 mor1kx-2.2 mor1kx-2.3 mor1kx-3.1 mor1kx-4.1 average

mor1kx-1.0 0.333 0.972 0.563 0.61 0.333 0.569 0.67 0.578

mor1kx-1.1 1 0.972 0.593 0.61 0.733 0.569 0.899 0.768

mor1kx-1.2 0.829 1 0.561 0.583 0.733 0.53 0.899 0.733

mor1kx-2.1 0.833 1 0.75 0.61 0.333 0.819 0.293 0.662

mor1kx-2.2 0.61 0.333 0.61 0.656 0.5 0.786 0.4 0.556

mor1kx-2.3 1 1 1 0.61 0.61 0.643 0.697 0.794

mor1kx-3.1 0.532 1 0.416 0.59 0.543 1 0.495 0.653

mor1kx-4.1 0.579 1 0.54 0.382 0.345 0.733 0.367 0.536

Table 11: The prediction of the Mor1kx (Verilog) experiment built using the logistic regression prediction model - F-Measure

39

The above charts show that the vast majority of the values for precision, recall,

and accuracy are in the [0.5:1] interval. It means we can use the logistic regression

method to perform bug prediction on all mor1kx versions.

Similarity, we used one version of the data as training data for the random forest

model and tested it against other versions. The tables below show the precision, recall

and F-measure number for the Mor1kx project obtained by using this second method

(Tables 13, 14, 15 for Mor1kx).

By analyzing the precision, recall, and accuracy results obtained through the

random forest method, we can reach the same conclusion as for the logistic regression

method: we can use the random forest method to perform bug prediction on all mor1kx

versions. In addition, the prediction performance for the random forest method is better

than the logistic regression method.

40

Precision

testing\

training

mor1kx-1.0 mor1kx-1.1 mor1kx-1.2 mor1kx-2.1 mor1kx-2.2 mor1kx-2.3 mor1kx-3.1 mor1kx-4.1 average

mor1kx-1.0 1 1 0.65 0.594 0.974 0.644 0.946 0.829

mor1kx-1.1. 0.832 0.757 0.76 0.237 0.974 0.776 0.904 0.748

mor1kx-1.2 1 1 0.598 0.594 0.974 0.622 0.946 0.819

mor1kx-2.1 0.861 0.974 0.951 0.732 0.951 0.76 0.716 0.849

mor1kx-2.2 0.677 0.924 0.679 0.736 0.896 0.683 0.735 0.761

mor1kx-2.3 0.832 1 0.757 0.765 0.757 0.787 0.834 0.818

mor1kx-3.1 0.875 0.975 0.759 0.75 0.639 0.954 0.771 0.817

mor1kx-4.1 0.849 1 0.771 0.367 0.586 0.946 0.654 0.739

Table 12: The prediction of the Mor1kx (Verilog) experiment built using the random forest prediction model - Precision

Recall

testing\

training

mor1kx-1.0 mor1kx-1.1 mor1kx-1.2 mor1kx-2.1 mor1kx-2.2 mor1kx-2.3 mor1kx-3.1 mor1kx-4.1 average

mor1kx-1.0 1 0.947 0.619 0.595 0.973 0.649 0.946 0.818

mor1kx-1.1 0.784 0.514 0.459 0.486 0.973 0.649 0.892 0.679

mor1kx-1.2 1 1 0.595 0.595 0.973 0.622 0.946 0.818

mor1kx-2.1 0.676 0.459 0.946 0.73 0.486 0.703 0.405 0.629

mor1kx-2.2 0.568 0.514 0.676 0.73 0.486 0.649 0.459 0.583

mor1kx-2.3 0.784 1 0.514 0.486 0.514 0.676 0.865 0.691

mor1kx-3.1 0.838 0.676 0.73 0.703 0.622 0.703 0.595 0.695

mor1kx-4.1 0.811 1 0.568 0.405 0.514 0.946 0.649 0.699

Table 13: The prediction of the Mor1kx (Verilog) experiment built using the random forest prediction model - Recall

 F-Measure

41

testing\

training

mor1kx-1.0 mor1kx-1.1 mor1kx-1.2 mor1kx-2.1 mor1kx-2.2 mor1kx-2.3 mor1kx-3.1 mor1kx-4.1 average

mor1kx-1.0 1 0.973 0.634 0.594 0.969 0.646 0.946 0.823

mor1kx-1.1 0.711 0.376 0.318 0.318 0.969 0.535 0.859 0.583

mor1kx-1.2 1 1 0.596 0.594 0.969 0.622 0.946 0.818

mor1kx-2.1 0.696 0.601 0.946 0.729 0.603 0.706 0.489 0.681

mor1kx-2.2 0.598 0.66 0.675 0.731 0.612 0.654 0.541 0.638

mor1kx-2.3 0.711 1 0.376 0.37 0.376 0.588 0.839 0.608

mor1kx-3.1 0.846 0.782 0.724 0.7 0.613 0.784 0.657 0.729

mor1kx-4.1 0.761 1 0.477 0.289 0.411 0.946 0.569 0.636

Table 14: The prediction of the Mor1kx (Verilog) experiment built using the random forest prediction model - F-Measure

42

Based on the existing data, we have plotted 3 graphs where logistic regression and

random forest can be accurately compared (Figures 11, 12, 13).

Figure 11: Mor1kx – Precision

Figure 12: Mor1kx – Recall

43

Figure 13: Mor1kx - F-Measure

We did a similar study for the Or1k-sim subproject. We applied both the logistic

regression and the random forest methods. In this second study, the values for precision,

recall, and accuracy were in the [0.92:0.99] interval. Similar as the mor1kx versions, the

precision, recall, and F-measure values obtained through the random forest method were

a little bit higher than the ones obtained through the logistic regression. The data is shown

in the following tables.

44

Precision

test\training or1k-

sim.0.3.0

or1k-

sim.0.4.0

or1k-

sim.0.4.0.rc1

or1k-

sim.0.4.0.rc2

or1k-

sim.0.5.0.rc1

or1k-

sim.0.5.0.rc2

or1k-

sim.0.5.0.rc3

or1k-

sim.0.5.1.rc1

average

or1k-

sim.0.3.0

 0.97 0.978 1 0.978 0.957 0.987 0.953 0.974

or1k-

sim.0.4.0

0.963 0.936 0.982 0.981 0.944 0.969 0.902 0.953

or1k-

sim.0.4.0.rc1

0.948 0.922 0.979 0.96 0.906 0.94 0.922 0.939

or1k-

sim.0.4.0.rc2

0.943 0.912 0.95 0.921 0.922 0.93 0.887 0.923

or1k-

sim.0.5.0.rc1

0.959 0.942 0.958 0.965 0.937 0.974 0.93 0.952

or1k-

sim.0.5.0.rc2

0.979 0.983 0.967 0.991 0.991 0.982 0.966 0.979

or1k-

sim.0.5.0.rc3

0.979 0.959 0.962 0.996 0.987 0.974 0.953 0.972

or1k-

sim.0.5.1.rc1

1 0.987 0.986 1 0.991 0.987 1 0.993

Table 15: The prediction of the Or1k-sim (C) experiment built using the logistic regression prediction model - Precision

Recall

test\training or1k-

sim.0.3.0

or1k-

sim.0.4.0

or1k-

sim.0.4.0.rc1

or1k-

sim.0.4.0.rc2

or1k-

sim.0.5.0.rc1

or1k-

sim.0.5.0.rc2

or1k-

sim.0.5.0.rc3

or1k-

sim.0.5.1.rc1

average

45

or1k-

sim.0.3.0

 0.969 0.978 1 0.978 0.955 0.987 0.951 0.974

or1k-

sim.0.4.0

0.961 0.947 0.982 0.982 0.946 0.973 0.901 0.956

or1k-

sim.0.4.0.rc1

0.952 0.929 0.973 0.964 0.919 0.951 0.915 0.943

or1k-

sim.0.4.0.rc2

0.939 0.902 0.947 0.96 0.915 0.964 0.87 0.928

or1k-

sim.0.5.0.rc1

0.957 0.938 0.956 0.982 0.933 0.973 0.924 0.951

or1k-

sim.0.5.0.rc2

0.978 0.982 0.969 0.991 0.991 0.982 0.964 0.979

or1k-

sim.0.5.0.rc3

0.978 0.96 0.964 0.996 0.987 0.973 0.951 0.972

or1k-

sim.0.5.1.rc1

1 0.987 0.987 1 0.991 0.987 1 0.993

Table 16: The prediction of the Or1k-sim (C) experiment built using the logistic regression prediction model - Recall

F-Measure

test\training or1k-

sim.0.3.0

or1k-

sim.0.4.0

or1k-

sim.0.4.0.rc1

or1k-

sim.0.4.0.rc2

or1k-

sim.0.5.0.rc1

or1k-

sim.0.5.0.rc2

or1k-

sim.0.5.0.rc3

or1k-

sim.0.5.1.rc1

average

or1k-

sim.0.3.0

 0.966 0.975 1 0.973 0.949 0.985 0.946 0.97

or1k- 0.953 0.936 0.982 0.981 0.938 0.969 0.88 0.948

46

F-Measure

test\training or1k-

sim.0.3.0

or1k-

sim.0.4.0

or1k-

sim.0.4.0.rc1

or1k-

sim.0.4.0.rc2

or1k-

sim.0.5.0.rc1

or1k-

sim.0.5.0.rc2

or1k-

sim.0.5.0.rc3

or1k-

sim.0.5.1.rc1

average

sim.0.4.0

or1k-

sim.0.4.0.rc1

0.95 0.922 0.976 0.962 0.908 0.945 0.898 0.937

or1k-

sim.0.4.0.rc2

0.914 0.863 0.927 0.94 0.882 0.947 0.817 0.898

or1k-

sim.0.5.0.rc1

0.946 0.926 0.944 0.973 0.915 0.965 0.911 0.94

or1k-

sim.0.5.0.rc2

0.976 0.982 0.966 0.991 0.991 0.982 0.962 0.978

or1k-

sim.0.5.0.rc3

0.976 0.957 0.96 0.995 0.985 0.971 0.946 0.97

or1k-

sim.0.5.1.rc1

1 0.987 0.986 1 0.99 0.986 1 0.992

Table 17: The prediction of the Or1k-sim (C) experiment built using the logistic regression prediction model - F-Measure

Random forest method

Precision

47

test\training or1k-

sim.0.3.0

or1k-

sim.0.4.0

or1k-

sim.0.4.0.rc1

or1k-

sim.0.4.0.rc2

or1k-

sim.0.5.0.rc1

or1k-

sim.0.5.0.rc2

or1k-

sim.0.5.0.rc3

or1k-

sim.0.5.1.rc1

average

or1k-

sim.0.3.0

 0.97 0.978 1 0.978 0.957 0.987 0.953 0.974

or1k-

sim.0.4.0

0.963 0.936 0.982 0.981 0.944 0.969 0.902 0.953

or1k-

sim.0.4.0.rc1

0.948 0.922 0.979 0.96 0.906 0.94 0.922 0.939

or1k-

sim.0.4.0.rc2

0.943 0.912 0.95 0.921 0.922 0.93 0.887 0.923

or1k-

sim.0.5.0.rc1

0.959 0.942 0.958 0.965 0.937 0.974 0.93 0.952

or1k-

sim.0.5.0.rc2

0.979 0.983 0.967 0.991 0.991 0.982 0.966 0.979

or1k-

sim.0.5.0.rc3

0.979 0.959 0.962 0.996 0.987 0.974 0.953 0.972

or1k-

sim.0.5.1.rc1

1 0.987 0.986 1 0.991 0.987 1 0.993

Table 18: The prediction of the Or1k-sim (C) experiment built using the random forest prediction model - Precision

Recall

test\training or1k-

sim.0.3.0

or1k-

sim.0.4.0

or1k-

sim.0.4.0.rc1

or1k-

sim.0.4.0.rc2

or1k-

sim.0.5.0.rc1

or1k-

sim.0.5.0.rc2

or1k-

sim.0.5.0.rc3

or1k-

sim.0.5.1.rc1

average

or1k-

sim.0.3.0

 0.969 0.978 1 0.978 0.955 0.987 0.951 0.974

48

Recall

test\training or1k-

sim.0.3.0

or1k-

sim.0.4.0

or1k-

sim.0.4.0.rc1

or1k-

sim.0.4.0.rc2

or1k-

sim.0.5.0.rc1

or1k-

sim.0.5.0.rc2

or1k-

sim.0.5.0.rc3

or1k-

sim.0.5.1.rc1

average

or1k-

sim.0.4.0

0.961 0.947 0.982 0.982 0.946 0.973 0.901 0.956

or1k-

sim.0.4.0.rc1

0.952 0.929 0.973 0.964 0.919 0.951 0.915 0.943

or1k-

sim.0.4.0.rc2

0.939 0.902 0.947 0.96 0.915 0.964 0.87 0.928

or1k-

sim.0.5.0.rc1

0.957 0.938 0.956 0.982 0.933 0.973 0.924 0.951

or1k-

sim.0.5.0.rc2

0.978 0.982 0.969 0.991 0.991 0.982 0.964 0.979

or1k-

sim.0.5.0.rc3

0.978 0.96 0.964 0.996 0.987 0.973 0.951 0.972

or1k-

sim.0.5.1.rc1

1 0.987 0.987 1 0.991 0.987 1 0.993

Table 19: The prediction of the Or1k-sim (C) experiment built using the random forest prediction model - Recall

F-Measure

test\training or1k-

sim.0.3.0

or1k-

sim.0.4.0

or1k-

sim.0.4.0.rc1

or1k-

sim.0.4.0.rc2

or1k-

sim.0.5.0.rc1

or1k-

sim.0.5.0.rc2

or1k-

sim.0.5.0.rc3

or1k-

sim.0.5.1.rc1

average

49

or1k-

sim.0.3.0

 0.966 0.975 1 0.973 0.949 0.985 0.946 0.97

or1k-

sim.0.4.0

0.953 0.936 0.982 0.981 0.938 0.969 0.88 0.948

or1k-

sim.0.4.0.rc1

0.95 0.922 0.976 0.962 0.908 0.945 0.898 0.937

or1k-

sim.0.4.0.rc2

0.914 0.863 0.927 0.94 0.882 0.947 0.817 0.898

or1k-

sim.0.5.0.rc1

0.946 0.926 0.944 0.973 0.915 0.965 0.911 0.94

or1k-

sim.0.5.0.rc2

0.976 0.982 0.966 0.991 0.991 0.982 0.962 0.978

or1k-

sim.0.5.0.rc3

0.976 0.957 0.96 0.995 0.985 0.971 0.946 0.97

or1k-

sim.0.5.1.rc1

1 0.987 0.986 1 0.99 0.986 1 0.992

Table 20: The prediction of the Or1k-sim (C) experiment built using the random forest prediction model - F-Measure

50

Similar graphs were plotted to compare the logistical regression and random forest

methods, for Or1k-sim project in this case (Figures 14, 15, 16).

Figure 14: Or1k-sim- Precision

Figure 15: Or1k-sim Recall

51

Figure 16: Or1k-sim F-Measure

Using classification through logistic regression, we were able to determine which

released versions were prone to software defects. The data indicated that the Mor1kx.1.1

and Or1k-sim.0.4.0.rc2 were the most prone to bugs versions.

 In general, the random forest models had higher precision than the logistic

regression models for both Or1k and Mor1kx sub-projects. For the Or1k sub-project, the

random forest model generally out-performed the logistic regression model in all three

metrics (precision, recall, and F-measure).

4.4.4 Ranking

To answer the second question related to which files and released versions contain

the most of the software defects, we applied the linear regression method and the entropy

method to the “number of bugs field” for every remaining version of those 2 projects.

52

• Given a dataset of n statistical units, a linear

regression model assumes that the relationship between the dependent

variable yi and the p-vector of regressors xi is linear.

Another idea to predict the number of bugs is based on the entropy of changes.

Hassan et al proposed the use of Shannon Entropy defined as [2]: . The

idea consists in measuring over a time interval how the changes are distributed in a

system. The more spread they are, the higher the complexity is.

To evaluate the effectiveness of the above two ranking approaches, we used the

Spearman correlation coefficient as a statistical tool to measure the strength of the

relationship between two sets of data. The values of Spearman’s correlation coefficient

can be between -1 and +1. A positive correlation coefficient indicates a positive

relationship between the two variables (the higher the x values, also the higher the y

values), while a negative correlation coefficient expresses a negative relationship (the

lower the x values, the lower the y values). A correlation coefficient of 0 indicates that

there is no relationship between the two studied variables.

In our case, the Spearman’s correlation coefficient measures the correlation

between the predicted bugs and the existing observed bugs. The results are shown in

Tables 22 and 23.

https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Statistical_unit
https://en.wikipedia.org/wiki/Multivector
https://en.wikipedia.org/wiki/Multivector
https://en.wikipedia.org/wiki/Linear_function

53

Spearman Correlation Coefficient

testing\training mor1kx-1.0 mor1kx-1.1 mor1kx-1.2 mor1kx-2.1 mor1kx-2.2 mor1kx-2.3 mor1kx-3.1 mor1kx-4.1 average

mor1kx-1.0 0.2035 0.8824 0.584 0.6509 0.2164 0.4369 0.2301 0.457

mor1kx-1.1. 0.8356 0.9541 0.9724 0.9513 0.9227 0.8743 0.955 0.923

mor1kx-1.2 0.7179 0.0116 0.3585 0.0978 0.0111 0.1542 0.0362 0.198

mor1kx-2.1 0.0551 0.0202 0.4266 0.1241 0.0207 0.0724 0.1166 0.119

mor1kx-2.2 0.0107 0.1244 0.0906 0.0188 0.1238 0.5347 0.0311 0.133

mor1kx-2.3 0.4444 0.9964 0.6525 0.5799 0.6065 0.3685 0.5129 0.594

mor1kx-3.1 0.4852 0.1868 0.7065 0.5914 0.8507 0.1817 0.1883 0.455

mor1kx-4.1 0.4981 0.3755 0.8581 0.8544 0.8623 0.372 0.462 0.611

Table 21: Mor1kx – Spearman correlation coefficient

Spearman Correlation Coefficient

test\

training

or1k-

sim.0.3.0

or1k-

sim.0.4.0

or1k-

sim.0.4.0.rc1

or1k-

sim.0.4.0.rc2

or1k-

sim.0.5.0.rc1

or1k-

sim.0.5.0.rc2

or1k-

sim.0.5.0.rc3

or1k-

sim.0.5.1.rc1

average

54

Spearman Correlation Coefficient

test\

training

or1k-

sim.0.3.0

or1k-

sim.0.4.0

or1k-

sim.0.4.0.rc1

or1k-

sim.0.4.0.rc2

or1k-

sim.0.5.0.rc1

or1k-

sim.0.5.0.rc2

or1k-

sim.0.5.0.rc3

or1k-

sim.0.5.1.rc1

average

or1k-

sim.0.3.0

 0.5091 0.4742 0.1457 0.1992 0.3708 0.0592 0.3314 0.298

or1k-

sim.0.4.0

0.2735 0.5004 0.3237 0.1721 0.3143 0.1133 0.3545 0.293

or1k-

sim.0.4.0.rc1

0.3319 0.6121 0.5757 0.1023 0.3883 0.048 0.5802 0.376

or1k-

sim.0.4.0.rc2

0.346 0.694 0.7974 0.2134 0.6562 0.1716 0.6666 0.506

or1k-

sim.0.5.0.rc1

0.2888 0.4892 0.3908 0.0681 0.4863 0.0996 0.4665 0.327

or1k-

sim.0.5.0.rc2

0.1778 0.4677 0.3842 0.1773 0.151 0.5416 0.4202 0.0331

or1k-

sim.0.5.0.rc3

0.1336 0.3688 0.2776 0.0452 0.0976 0.7112 0.3857 0.288

or1k-

sim.0.5.1.rc1

0.1002 0.3966 0.5174 0.3172 0.1502 0.3214 0.1168 0.274

Table 22: Or1k-sim – Spearman correlation coefficient

55

 By studying the Spearman correlation coefficient obtained by applying the

logistic regression method, we noticed that the complexity metrics and the number of

software defects were positively correlated. The coefficient values were in the 0.119 and

0.923 interval. The strongest correlation coefficient (0.923) was observed when we used

Mor1k-1.1 as the training dataset and all the other remaining versions as the testing

dataset. The weakest correlation coefficient (0.119) was observed when Mor1kx-2.1 was

used as the training dataset and all remaining versions as the testing dataset.

For Or1k-sim, the correlation coefficients values were even smaller, being in the

interval [0.274:0.506]. The highest correlation coefficient was obtained when or1k-sim-

0.4.0rc2 was used as the training dataset.

We listed as well the root relative squared error for both Mor1k and Or1k-sim

groups, which measure the goodness of fit for the linear regression models (Tables 24

and 25).

56

Root relative squared error

testing\

training

mor1kx-1.0 mor1kx-1.1 mor1kx-1.2 mor1kx-2.1 mor1kx-2.2 mor1kx-2.3 mor1kx-3.1 mor1kx-4.1

mor1kx-1.0 155.31% 65.26% 85.53% 82.84% 148.03% 91.73% 121.76%

mor1kx-1.1. 53.25% 42.71% 56% 50.56% 41.81% 57.68% 41.28%

mor1kx-1.2 132.33% 151.90% 104.59% 117.10% 150.40% 159.52% 157.81%

mor1kx-2.1 148.87% 138.15% 106.92% 118.76% 138.16% 154.04% 141.32%

mor1kx-2.2 151.34% 140.85% 135.82% 136.40% 141.34% 134.99% 146.82%

mor1kx-2.3 90.71% 8.55% 91.70% 93.99% 93.67% 93.80% 87.21%

mor1kx-3.1 108.15% 141.34% 70.87% 81.06% 65.12% 144.11% 129.98%

mor1kx-4.1 86.87% 135.11% 70.22% 76.28% 74.37% 136.22% 87.22%

Table 23: Mor1kx – Linear regression - Root relative squared error

or1k-

sim.0.3.0

or1k-

sim.0.4.0

or1k-

sim.0.4.0.rc1

or1k-

sim.0.4.0.rc2

or1k-

sim.0.5.0.rc1

or1k-

sim.0.5.0.rc2

or1k-

sim.0.5.0.rc3

or1k-

sim.0.5.1.rc1

 86.79% 88.63% 201.52% 141.26% 92.91% 170.38% 98.11%

145.19% 94.64% 239.95% 192.25% 101.10% 221.43% 112.35%

137.98% 87.07% 252.19% 73.02% 74.86% 88.93% 60.27%

93.60% 81.14% 76.72% 102.26% 87.19% 108.63% 81.76%

102.46% 86.78% 91.93% 171.77% 88.86% 137.60% 88.09%

168.53% 114.54% 114.61% 269.32% 212.90% 212.54% 119.40%

107.86% 92.42% 96.18% 163.66% 118.33% 81.68% 91.96%

150.50% 105.48% 91.78% 206.06% 175.86% 99.38% 99.38%

Table 24: Or1k-sim – Linear regression – Root relative squared error

57

Based on the tables above, we obtained the following charts (Figures 17 and 18):

Figure 17: Mor1kx- Linear Regression - Spearman correlation coefficient

Figure 18: Or1k-sim – Linear Regression – Spearman correlation coefficient

58

All correlations with metrics were positive. It is obvious that an increase in the

file complexity from one version to the other implies and increase the probability of

containing defects but this relation is very strong only for mor1kx-1.1, mor1kx-2.3, and

mor1kx-4.1.

Trough ranking and linear regression, we detected Mor1kx-1.1 and Or1k-

sim.0.4.0.rc2 as being the released versions having the largest number of software

defects.

The second approach was to predict the number of bugs based on the entropy of

changes. We present below the calculated Shannon Entropy value for each analyzed

version (Tables 26 and 27).

 Shannon Entropy

Mor1kx-1.0 3.175

Mor1kx-1.1 1

Mor1kx-1.2 4.115

Mor1kx-2.1 4.054

Mor1kx-2.2 4.120

Mor1kx-2.3 1

Mor1kx-3.1 3.64

Mor1kx-4.1 2.725

Table 25: Mor1kx – Entropy of modified files

59

 Shannon Entropy

Or1k-sim.0.3.0 6.02

Or1k-sim.0.4.0 6.7

Or1k-sim.0.4.0.rc1 5.04

Or1k-sim.0.4.0.rc2 3.80

Or1k-sim.0.5.0.rc1 4.45

Or1k-sim.0.5.0.rc2 5.586

Or1k-sim.0.5.0.rc3 4.508

Or1k-sim.0.5.1.rc1 5.88

Table 26: Or1k-sim - Entropy of modified files

To use the entropy of code changes, Hassan et al defined the weighted history of

complexity metric (WHCM) where each modified file gets the entropy of the system, in

our case the release version, weighted with the probability of the file being modified [2]

We proceeded with the calculation of each file weight Cij for each file of each

version. As a final result, we obtained .csv files containing three fields, file name, bugs

and WHCM. The figure below presents an example of those values.

60

Figure 19: Entropy .csv file example

As a final step of our entropy studies, we performed the linear regression method

(LR) on the entropy field and we listed the following charts. We compared the Spearman

coefficient obtained by applying the linear regression analysis to every released version

with the Spearman coefficient obtained by applying the linear regression analysis to the

entropy field and we plotted the graphs below (Figures 20 and 21).

61

Figure 20: Mor1kx- Comparison between linear regression (LR) and linear regression on

entropy

Figure 21: Or1k-sim - Comparison between linear regression and linear regression on

entropy

62

We identified the Mor1kx-1.1 and Mor1kx-2.3 as having the highest probability

to have bugs in the future. However, the ranking study was not as good as the

classification study due to the very small number of files that had changed between the

versions and the frequently changed files were different between each two adjacent

versions. Hence, the historical data cannot help too much in terms of predicting the

buggiest files in the future.

63

Chapter 5

Conclusions and Future Work

The importance of mining software repositories field increased over the years due

to the availability of a large number of free and available software and hardware

repositories [9]. While mining software repositories is an area that has been booming

over the last 12 years, hardware repository mining has just started. As a result, we had the

chance to do a first empirical defect prediction study on an open source hardware project.

Based on the similarities between hardware description languages and the software

programming languages, we successfully adapted the existing SDP work to the open

source hardware design making a step ahead in the industry and opening the door to other

similar studies.

The project was a big challenge due to the size of the project. During our study,

by exploring the relationship between the code complexity metrics and the hardware

design bugs, we were able to answer which of the released version for the Verilog

processor design and the C simulator had the largest number of defects.

We were able to demonstrate that the random forest model provided slightly more

accurate results than logistic regression when predicting which files were more bug-prone

(classification). This was probably because of the random forest, which is an ensemble

method and is more robust towards noisy data.

64

In terms of predicting which files have more bugs (ranking), we found that the

linear regression model built using the complexity metrics was more effective than the

entropy model built using the historical data. We think this is likely due to the lack of

historical change data (a.k.a., less number of revisions in the hardware repositories than

the software repositories).

Our work provides a good starting point for mining hardware repositories

considering that the programming languages for hardware systems are very different

from the software systems and the complexity metrics are also different.

 The future work will include the study of additional complexity metrics for the

hardware-based programming languages in order to increase the precision for predicting

bugs in hardware repositories. In addition, we also plan to contact the open source

hardware development communities to gather feedback on our research. Finally, we will

look into new approaches to improve the performance of our ranking studies.

65

Bibliography

1. Baxter, J. “Open Source Hardware Development and the OpenRISC Project”, IMIT,

2012

2. Baxter, J., Lampret, D. “OpenRISC 1200 IP Core Specification” (Preliminary Draft),

January 2011.

3. Bennett, J. “Integrating the GNU Debugger with Cycle Accurate Models: A Case

Study using a Verilator SystemC Model of the OpenRISC 1000”, Embecosm

Application Note 7, Issue 1, March 2009.

4. Betenburg, N., Hassan, A.E. “Studying the impact of Social Structures on Software

Quality”, The 18th IEEE International Conference on Program Comprehension,

Portugal, 2010.

5. Clarke, P. “Free 32-bit processor hits the Net”, EE Times, February 2008.

6. Dinari, F. “Halstead Complexity Metrics in Software Engineering”, 2015.

7. Hassan, A.E. “Minning Software Repositories to Assist Developers and Support

Managers”, 2006.

8. Hassan, A.E. “The Road Ahead for Mining Software Repositories”, Software

Analysis and Intelligence Lab, School of Computing, Queen’s University, Canada,

2006.

9. Hassan, A.E., Holt, R.C., Mockus, A. “Mining Software repositories”, MSR,

Edinburgh, Scotland, 2004.

10. Holmes, G., Donkin, A., Witten, I.H. “WEKA: A machine Learning Workbench”,

University of Waikato, Hamilton, NewZealand, 2001.

11. Kamei, Y., Shihab, E. “Defect Prediction: Accomplishments and Future

Challenges”. In proceedings of 23rd IEEE International Conference on Software

Analysis, Evolution, and Reengineering (SANER), 2016.

12. Lammers, D. “VSIA’s new leader has revitalization plan”, EE-design, 2003.

13. Lampret, D. “OpenRISC 1000 architecture”. Retrieved from

http://opencores.org/openrisc,architecture, October 2016.

14. Lampret, D. “OpenRISC 1200 IP core specification”. Retrieved from

http://opencores.org/openrisc,or1200, October 2016.

15. Malik, H., Hassan, A.E. “Supporting software evolution using adaptive change

propagation heuristics”. In proceedings of the International Conference in Software

Maintenance (ICSM), 2008.

66

16. Maurer, S. “The HDL Complexity Tool”, 2009. Retrieved from

http://hct.sourceforge.net/, October 2016.

17. Moertti, G. “Your Core, my design, our problem”, October 11, 2001.

18. Nagappan, N., Williams, L., Vouk, M., Osborne, J. “Using In-Process Testing

Metrics to Estimate Post Release Field Quality of Java Programs”, Trollhattan,

Sweden, 2007.

19. Ohlsson, N., Alberg, H. “Predicting fault-prone software modules in telephone

switches”, Linkoping Univ., Sweden, 1996.

20. OpenCores Project website http://www.opencores.com. Retrieved from

http://hct.sourceforge.net/, October 2016.

21. Parizy, M., Takayama, K., Kanazawa, Y. “Software Defect Prediction for LSI

Designs”, IEEE 2014.

22. Rana, R. “Software Defect Prediction Techniques in Automotive Domain”,

University of Gothenburg, Sweden, 2015.

23. Salem, M.A., Khatib, J. “An Introduction to Open-source Hardware Development”,

EEDesign.com, 2008.

24. Sanchez, P., Villar, E. “Using OpenSource Cores in Real Applications”, Universidad

de Calabria, Conference Paper, January, 2003.

25. Schaller, R.R. “Technological innovation in the Semiconductor Industry”, 2004.

26. Schroter, A., Zimmermann, T. ”Predicting Component Failures at Design Time”.

Saarland University, Germany, 2006.

27. Scientific Toolworks Inc, “Understand SCI Tools” 2015. Retrieved from

https://scitools.com, October 2016.

28. Shihab, E. “An Exploration of Challenges Limiting Pragmatic Software Defect

Prediction”, 2012.

29. Thomas, S.W., Hassan, A.E., Blostein, D. “Mining Unstructured Software

Repositories”, 2014.

30. Wanner, J.F. “Source Monitor: Expose Your Code”, 2000.

31. Zimmermann, T., Nagappan, N., Zeller, A. “Predicting Bugs from History”.

Software Evolution, Chapter 4, Pages 69-88, Springer, March 2008.

32. Zimmermann, T., Premaj, R., Zeller, A. “Predicting Defects for Eclipse”. In

proceedings of the Third International Workshop on Predictor Models in Software

Engineering (PROMISE), 2007.

