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ABSTRACT 
 
Many applications, such as topographic surveying for transportation engineering, have 

specific high accuracy requirements which MTL may be able to achieve under specific 

circumstances.  Since high rate, immersive (360° FOV), MTL is a relatively new device 

for the collection and extraction of survey data; the understanding and correction of 

errors within such systems is under researched.  Therefore, the goal of the work presented 

here is to quantify the geospatial accuracy of MTL data and improve the quality of MTL 

data products. 

 

Quantification of the geospatial accuracy of MTL systems was accomplished through the 

use of residual analysis, error propagation and conditional variance analysis.  Real data 

from two MTL systems was analyzed using these methods and it was found that the 

actual errors exceeded the manufacturer’s estimates of system accuracy by over 10mm.  

Conditional variance analysis on these systems has shown that the contribution by the 

interactions among the measured parameters to the variances of the points in MTL point 

clouds is insignificant.  The sizes of the variances for the measurements used to produce a 

point are the primary sources of error in the output point cloud.   

 

Improvement of the geospatial accuracy of MTL data products was accomplished by 

developing methods for the simultaneous multi-sensor calibration of the system’s 

boresight angles and lever arm offsets, zero error calibration, temperature correction, and 

both spatial and temporal outlier detection. Evaluation of the effectiveness of these 

techniques was accomplished through the use of two test cases, employing real MTL 
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data.  Test case 1 showed that the residuals between a control field and the MTL point 

cloud were reduced by 4.4cm for points located on both horizontal and vertical target 

surfaces.  Similarly, test case 2 showed a reduction in the residuals between control 

points and MTL data of 2~3cm on horizontal surfaces and 1~2cm on vertical surfaces.  

The most accurate point cloud produced through the use of these calibration and filtering 

techniques occurred in test case 1 (27mm ± 26mm).  This result is still not accurate 

enough for certain high accuracy applications such as topographic surveying for 

transportation engineering (20mm ± 10mm). 
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1. Introduction 

Within the last decade Mobile Terrestrial LiDAR (MTL) has progressed from using 

adapted low rate Static Terrestrial LiDAR (STL) sensors with limited fields of view 

(FOV) to using purpose built high rate LiDAR sensors capable of 360° scanning.  

Multiple purpose built MTL systems are commercially available today, including the 

Lynx Mobile Mapper (http://www.teledyneoptech.com/), StreetMapper 

(http://www.3dlasermapping.com/), the VMX 450 (http://www.riegl.com/), the MX8 

(http://www.trimble.com/), the Pegasus (http://leica-geosystems.com/) and the IP S3 

(https://www.topconpositioning.com/).  These MTL systems generally consist of multiple 

high rate (500kHz or more) LiDAR line sensors attached to a modern Direct-

Georeferencing (DG) system.  Similar to the Mobile Airborne LiDAR (MAL) sensors 

that preceded them, these MTL sensors are designed to scan in a single axis (i.e. line 

sensors) and therefore rely on the forward motion of the vehicle upon which they are 

mounted to produce three dimensional point clouds. 

1.1 Motivation 

MTL is used in multiple applications around the world as a means of rapidly measuring 

terrain or the geometry of a scene from a vehicle.  MTL sensors have been installed and 

used from boats, trains, all-terrain vehicles and trucks.  The high rate at which these 

sensors operate allows for the rapid measurement of all the objects on a project site.  The 

applications for which MTL is used vary widely in their scope, purpose and accuracy 

requirements.  Some applications, such as categorizing trees or inspecting railway ties for 

damage do not require geometrically or spatially accurate data.  Other applications 
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however, such as topographically surveying a concrete runway or highway asphalt to 

estimate their thickness or shape do require highly accurate spatial data.   

 

Even the most accurate MTL systems, such as the Lynx Mobile Mapper with an absolute 

accuracy as specified by the manufacturer of ±50mm [1, 2], the VMX-450 with an 

absolute accuracy as specified by the manufacturer of ±20-50mm [3] or the Pegasus with 

and accuracy as specified by the manufacturer of ±28mm [4], currently do not meet the 

minimum accuracy requirements for certain applications.  For example, the British 

Columbia Ministry of Transportation lays out a horizontal and vertical engineering 

survey point accuracy requirement of 20mm ± 10mm for all survey points of pavement 

and/or urban detail [5].  This accuracy specification from the British Columbia Ministry 

of Transportation is typical of the accuracy specifications from transportation 

departments across North America.  The consequence of this accuracy specification is 

that these MTL systems do not meet the engineering accuracy requirements set by the 

British Columbia Ministry of Transportation.  Therefore, to be able to use MTL systems 

for certain high accuracy applications, method(s) must be found to reduce the absolute 

positional error of the points in the MTL data. 

 

Since high rate, immersive (360° FOV), MTL is a relatively new device for the 

acquisition and retrieval of geospatial information; the understanding and correction of 

errors within such systems is under researched [6 – 12].  Specifically, the generation of 

high quality, geospatially accurate MTL data remains a major topic of investigation.  To 

date, much of the available research was produced to understand, quantify and correct the 
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errors in MAL or STL systems.  The problem with using algorithms designed for MAL 

systems in MTL work is that they make assumptions about the observation angles and 

ranges which are not valid for the majority of MTL systems [13, 14].  On the other hand, 

many algorithms designed for STL systems do not include consideration for the inclusion 

of a DG system with the LiDAR [15]. 

 

Previous work [15 – 19], has produced through descriptions of the types and 

consequences of various errors in pulsed time of flight STL sensors.  Other work [13, 20] 

has gone into the performance of MAL systems, while [14, 21 – 24] has focused on the 

interactions between MAL sensors and the DG system.  Yet further work [25 – 30] has 

focused on the integration and development of calibration and error models for STL 

systems attached to a DG system.  Little work exists describing algorithms designed to 

identify and remove outlier data in terrestrial LiDAR point clouds [31]. 

1.2 Objectives 

As previously stated, the most accurate MTL systems (20mm to 50mm) [1 – 4] provide 

error specifications which are adequate for some types of surveys, such as engineering 

surveys of open terrain (50mm ± 20mm) [5], but inadequate for other types of surveys, 

such as engineering surveys of pavement or urban detail (20mm ± 10mm) [5].  Therefore 

the objective of the work presented here is twofold.  Firstly, it is essential to establish 

methods to determine if the accuracy estimates stated by the MTL manufacturers are 

correct or whether they are overly optimistic.  Secondly, once the accuracy of the MTL 

data is established, it is necessary that methods for the reduction of errors in all phases of 

data acquisition and processing be established.  To this end, the work presented here 
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describes several new methodologies for analyzing and improving the accuracy of MTL 

data.  Since MTL systems are comprised of many separate and varied parts, multiple 

methods for improving the quality of the end results are needed.   

1.3 Outline 

A review of the current literature on LiDAR sensors and Mobile LiDAR systems was 

conducted to understand the available techniques for quantifying the geospatial accuracy 

and improving the quality of MTL data products.  The results of this literature review are 

presented in Chapter 2.  The material in Chapter 2 begins with descriptions of the 

components of typical MTL systems, including some of the design options available to 

manufacturers when building these systems.  The chapter then proceeds to list and 

describe the known error sources possible in MTL, along with a review of the current 

techniques available for mitigating them.   

 

Based on this literature review, it was decided to break the problem into three separate 

tasks.  The first task involved the development of methods for assessing the accuracy 

estimates of MTL systems.  Three different methods were developed, implemented and 

applied to MTL data from a Lynx Mobile Mapper.  The simplest method of estimating 

the error in MTL point clouds is by creating control targets using an accurate static 

method such as static GPS or a Total Station, and comparing MTL observations to this 

data.  A more complicated, but common method of estimating the error in MTL point 

clouds is to use error propagation to estimate the variances of the individual points.  A 

third technique involves the use of conditional variance analysis and Monte Carlo 

simulation to apportion the error in MTL point clouds among the various measurement 
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inputs.  Using conditional variance analysis on MTL data is a unique idea in the 

literature.  All three techniques contained in the first task are presented here in Chapter 3. 

 

The second task aimed to develop methods for reducing the identified errors in MTL 

data.  Reducing the errors inherent in MTL systems partially means reducing the errors of 

the measurements taken by individual components of these systems.  It also means 

reducing the errors generated by the interaction of dispirit components of MTL systems 

through calibration.  To this end, a new technique for measuring and correcting the 

temperature drift in MTL range finders is presented in Chapter 4.  Chapter 4 also 

introduces a new technique for calculating the zero error for MTL range finders under 

laboratory conditions.  Finally, and most importantly, Chapter 4 examines techniques for 

calibrating MTL sensors to the DG system and introduces a new calibration technique 

based on stereo pairs of LiDAR sensors. 

 

The third task involved developing methods to identify and filter erroneous data from 

MTL point clouds.  Even after all the errors from the components and their integration 

into the system have been controlled, errors from the MTL’s interaction with its 

environment will still occur.  This could be due to the properties of the targets being 

scanned, the weather conditions during the scan, or the presence of interfering radiation 

in the vicinity of a scan.  Therefore, Chapter 5 discusses experiments conducted with 

different outlier removal techniques in MTL data.  The outlier removal techniques 

considered in Chapter 5 make use of both the spatial and temporal data available from the 

processed MTL point clouds.  Using the locations of the individual points in the point 
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cloud, the spatial techniques considered here fit a polynomial surface to patches of the 

data and compare individual points to that surface.  One method in the spatial domain 

relies on the residuals from the surface fitting itself as a means of comparison between 

the point cloud and the surface.  The other spatial technique considered uses the student t 

test statistic to evaluate the position of individual points with respect to the surface.  The 

most novel method introduced in Chapter 5 involves the use of an α-β-γ Kalman 

smoother and the temporal data associated with the points in the point cloud to predict an 

expected location for individual points based on the positions of their neighbours.  

Comparing the actual positions of said points with their estimated positions provides a 

means for identifying points outside their neighbourhood. 

 

As a means of determining the amount of improvement to the quality of MTL data which 

is possible from the methods mentioned above, real MTL data from two different Lynx 

Mobile Mappers was used.  Two test scenarios were devised, the first using data from a 

commercial office building and the second from a typical street scene.  By analyzing the 

point clouds from these MTL data sets before and after corrections have been applied to 

the measurements and all outliers have been filtered, the effectiveness of the correction 

techniques described above was tested.  Chapter 6 discusses the implementation and 

results of these techniques in detail. 
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2. The Basics of Mobile Time-Of-Flight LiDAR and 

Literature Review 

The first task in dealing with errors in pulsed time-of-flight MTL systems involves 

understanding their components and how they interact with one another.  MTL systems 

from different manufacturers perform very similar tasks, but employ related but distinct 

methods for accomplishing these tasks.  Every mobile LiDAR has to consist of the same 

6 general components, the laser, the rangefinder, the deflection unit, the DG system, the 

controlling/recording equipment and the external position correction methodology [32].  

Some of these components, such as the laser range finder, deflection unit and DG system 

have to be rigidly mounted to the vehicle; other components such as the data recorder and 

correction station do not have to be rigidly fixed to the vehicle.  Figure 2.1 shows a block 

diagram of these components and how they connect together. 

 

From the components, their interactions with each other and their interactions with their 

environment, several potential sources for error are created in pulsed time of flight MTL.  

These errors can be broken down into four categories, instrument errors, target errors, 

positioning errors and environmental errors.  Instrument errors include random errors, 

time walk, temperature drift, zero error, scale error, mixed pixels, dynamic track error, 

velocity error and assembly balancing issues [13, 15]. Target errors can include object 

reflectance and laser beam incidence angle [15].  Positioning errors can include inertial 

measurement unit (IMU) errors, global navigation satellite system (GNSS) errors, 
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boresight angle errors and lever arm offset errors [13].  Environmental errors include 

atmospheric propagation errors [13, 15].   

 

Figure 2.1: Basic components of an MTL system (modified from [32]). 
 

2.1 Components of Mobile Time-Of-Flight LiDAR Systems 

2.1.1 The Laser 

The most important part of a LiDAR sensor is the laser device at the heart of the range 

finder sub-assembly.  The rate at which the laser discharges and more specifically, the 

signal generated by the laser device indicating a pulse has occurred (t0), initiates the 

actions of the other LiDAR sensor sub-systems, setting the pace at which the LiDAR 

sensor operates.  Lasers are generally classified by their wavelength and their pulse 

repetition frequencies (PRF) which, incidentally, are usually used to describe the entire 

LiDAR sensor.  The design of an MTL system must also take into account the width of 

the laser’s pulse and the divergence of the laser’s beam.   
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The first index used to classify a MTL system is the laser wavelength.  The choice of 

wavelength is important as it dictates the ability of a LiDAR sensor to operate within 

different medium (atmosphere, water, etc..), the type of targets and the ranges at which 

those targets can be observed, the eye-safety rating of the LiDAR sensor and the cost of 

the laser hardware [33].  The reflectance properties of various materials with respect to 

the wavelength of light used to irradiate them are shown in Figure 2.2.  At certain 

wavelengths, common materials such as asphalt, trees, snow and water will absorb most 

if not all light directed at them and would therefore be invisible to a LiDAR sensor 

operating at those wavelengths.  

 

Figure 2.2: The reflectance of common materials compared with the wavelength of light used to 
illuminate them [33]. 

 

One of the most important considerations when working with any laser equipment is how 

to keep people working around the equipment safe from injury.  In most cases the risk 
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with working around lasers is to a person’s vision.  Laser products are classified based on 

their potential to harm the vison of people exposed to the beam.  The classifications are 

fixed by the International Electronics Commission [34] and are based on the wavelength 

of light being emitted by the laser and the amount of power being output.  Figure 2.3 

shows the laser classes considered “eye safe”, the wavelengths these classes can operate 

within and the maximum allowed output power for each class. 

 

Figure 2.3: Revised IEC 60825 Standard for Laser Safety Classes [34]. 
 
Many time-of-flight terrestrial based LiDAR systems incorporate lasers which operate in 

the near infrared (1535nm ~ 1550 nm) [1, 2, 3, 35, 36].  From Figure 2.3, it is clear that 

the advantage to using this wavelength is that a higher output power can be achieved 

while maintaining a class 1 “eye safe” classification.  The disadvantages include not 

being able to see water or water saturated targets very well, ice and snow.  Some 

terrestrial LiDAR systems make use of lasers operating at wavelengths closer to the 

visible spectrum (785nm ~ 1064nm) [35 – 38].  The advantage to using these laser 
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wavelengths are increased range for the same input power and the ability to scan certain 

targets such as ice and snow.  The major disadvantage from Figure 2.3 is that higher 

output power at the emitter will cause the laser product to be classified as “non-eye safe”.  

Usually, this “non-eye safe” classification will only apply to a certain distance from the 

emitter since the pulse power diminishes as the collimated laser beam travels away from 

its emitter.  Being classified “non-eye safe” is a major disadvantage for laser devices 

which are intended to be used in built up areas or areas where the general public is in 

attendance.   

 

The second index used to classify an MTL laser is the pulse repetition frequency (PRF).  

This index gives the rate at which the laser can discharge light energy pulses.  It is this 

index that determines the overall speed of the time-of-flight terrestrial LiDAR system.  In 

many cases, the rate at which the laser pulses also has the side effect of determining the 

amount of outgoing power each pulse will contain.  Unless input power to the laser is 

increased, the faster you pulse the laser, the shorter the amount of time the capacitors 

within the laser have to build up a charge, and therefore the lower the power in the 

outgoing laser pulse.  Currently an MTL system such as the Riegl VMX 450 provides 

sensors with a maximum PRF for 550kHz [3].  The Optech Lynx Mobile Mapper SG1 

provides sensors with a maximum PRF of 600kHz [2].  The Optech Lynx Mobile Mapper 

M1 only has a maximum PRF of 500kHz [1].  Of course all of these sensors also provide 

for the ability to reduce the PRF during a scan, causing the sensors to operate slower, 

allowing the user to control the amount of data collected.  Some mobile systems such as 
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the ILRIS HD MC have a fixed PRF of 10kHz [35].  This causes slower scan speeds, but 

allows for much greater maximum ranges to be achieved.  

 

The third index that characterizes the laser onboard an MTL system is the laser’s pulse 

width.  While the term pulse width sounds like a measurement of linear distance, it is 

usually described as a unit of time.  Since time-of-flight LiDAR uses time to measure 

distance, measurements of time and distance are sometimes conflated.  A laser’s pulse 

width is the length of time it takes to emit the light energy of a single laser pulse.  For 

example, the Velodyne HDL-64E has an advertised pulse width of 10ns [38]. 

 

The last index that characterizes the laser onboard an MTL system is the beam 

divergence.  A laser is considered to be a collimated beam of light.  While this is the goal, 

no laser is 100% capable of maintaining the beam diameter it had when it exited the laser 

emitter, over a given range.  For example, the ILRIS HD has an advertised beam 

divergence of 150μrad and the ILRIS LR has an advertised beam divergence of 250μrad 

[35].  This means that the beam diameter of the ILRIS HD laser at 1000m from the 

instrument is expected to be 0.30m plus the beam diameter at the exit aperture of the 

LiDAR system.  Similarly, the beam diameter of the ILRIS LR laser at 1000m from the 

instrument is expected to be 0.50m plus the beam diameter at the exit aperture of the 

LiDAR system.  

2.1.2 The Range Finder 

The laser range finder of a time-of-flight LiDAR sensor is the combination of the laser, 

receiver(s) and timing mechanism.  Every time the laser pulses (t0), a timing trigger is 
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sent to the timing mechanism to start the clock.  The receiver opens, measuring all 

incoming radiation at or near the frequency of the emanated laser pulse.  When radiation 

of sufficient intensity is detected by the receiver (t1), a range calculation is performed 

based of the formula in Equation (2.1).   

( )012
ttcR −⋅=                                                        (2.1) 

Where R is the calculated range to target and c is the speed of light at sea level.  All 

terrestrial LiDAR sensors operate on the expectation of hitting a non-cooperative target 

that will scatter the incoming light ray equally in all directions (Figure 2.4, Lambertian 

reflectance).  This means that the expected amount of laser energy returned to the 

receiver is a tiny fraction of the light energy originally emitted from the range finder. 

 

Figure 2.4: Behavior of a light pulse as it interacts with a target (modified from [33]). 
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The amount of light returned to the receiver is governed by the laser range equation, 

which was originally derived from the microwave radar range equation.  The general 

form of the laser range equation is shown in Equation (2.2)   

SysAtm
TE
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D

rr
GPP ηηπ

π
s

π
⋅⋅

⋅
⋅

⋅⋅
⋅

⋅⋅
⋅

=
444

2

22                      (2.2) 

Where PE and PR are the emitted and received laser power, GT is the antenna gain of the 

transmitter, σ is the effective cross sectional area of the target, r is the range to target, D is 

the aperture diameter of the LiDAR and the η-terms are the system and atmospheric 

transmission factors [39]. 

 

When a specular target (Figure 2.4) is encountered, either the majority of the light pulse 

will be scattered into space causing no range to be recorded by the range finder (known 

as a drop out), or the pulse will reflect off the specular surface, hit an object and return to 

the range finder via the specular surface.  This results in a low RP value being measured 

by the receiver and a range which is the sum of the ray lengths of all paths travelled by 

the beam.  Alternatively, when a retro surface (Figure 2.4) is encountered, the RP value 

measured at the receiver will be much higher than the receiver’s maximum measureable 

value (known as saturation) causing an inaccurate range measurement to be recorded.   

2.1.3 The Deflection Unit 

Except for some Flash LiDAR systems, the majority of pulsed time-of-flight LiDAR 

sensors use a mechanical means of directing the laser beam so as to scan a target.  The 

mechanism used to direct the laser beam is required to have a highly accurate means of 

measuring the angle at which the pulse is directed.  This is usually accomplished by 
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means of a device such as a rotary encoder, or galvanometer.  Galvanometers give the 

precise and accurate ability to point the laser beam in any direction; however, they have a 

limited field of view.  Rotary encoders provide a 360° field of view, but are limited in the 

precision with which they can be used to direct the laser beam.  

 

Figure 2.5: Common scanning mechanisms used in MTL systems and their associated ground 
patterns (modified from [32]).  

 
The scanning pattern of the LiDAR sensor is derived from the type of deflection system 

used.  While some LiDAR sensors use other deflection methods, the most widely used 

methods for MTL sensors are those shown in Figure 2.5.  The oscillating mirror type of 
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scanning mechanism is usually a result of a deflection mechanism which employs a 

galvanometer.  While it is possible to produce such a scan pattern by oscillating an 

encoder based prism, LiDAR sensors such as the ILRIS MC (www.teledyneoptech.com) 

typically employ a galvanometer based oscillating mirror design.  Another LiDAR 

sensor, the VZ-1000 (www.riegl.com), employs a rotating polygon attached to a rotary 

encoder as the deflection unit.  Most of the high rate MTL systems such as the Lynx 

Mobile Mapper (www.teledyneoptech.com), the VMX-1HA (www.riegl.com) and the 

MX8 (www.trimble.com) prefer to use the rotating monogon type of scanning 

mechanism attached to a rotary encoder.  

2.1.4 The Control and Data Recorder 

Most MTL sensors do not have the control and storage facilities onboard the LiDAR 

sensors themselves, but within a separate unit.  This is usually done for practical reasons, 

as the type and amount of data being collected would usually overwhelm any storage 

devices built into the sensors.  A separate control unit also makes the synchronization and 

management of more than one sensor, be it a camera or LiDAR sensor, possible.  For 

some MTL systems like the Applanix LANDMark Marine [40], which incorporates a 

LiDAR sensor, digital camera and an optional SONAR system, the control unit is a 

laptop or desktop computer.  For higher rate sensors such as the Riegl VMX-450 or the 

Optech Lynx Mobile Mapper, specialty control devices are required to manage and store 

the flow of data from the two LiDAR sensors and the multiple cameras.  Figure 2.6 

shows the control units for the VMX-450 and the Lynx.  These are typical of the control 

units that are used with the other high rate MTL systems on the market.  
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Figure 2.6: Examples of control and data storage units for the Riegl VMX-450 [3] and the Lynx 

Mobile Mapper (www.teledyneoptech.com). 
 

2.1.5 The DG System 

Just as the laser forms the heart of the LiDAR sensor, a GNSS aided Inertial Navigation 

System (INS) forms the heart of the MTL system.  The INS, also called a Direct 

Georeferencing (DG) system, is used to directly georeference the kinematic platform 

upon which the LiDAR sensors are attached.  The DG system provides the position and 

orientation of the system at any time during the acquisition, as well as providing the 

timing synchronization needed to combine the various sensors of a MTL system.   

 

Several options exist for choice of DG system to use in a MTL system.  Among these 

options are the Applanix POS (www.applanix.com), Novatel SPAN (www.novatel.com) 

and the iXblue ATLANS (www.ixblue.com) etc.  All of these DG systems contain the 

same components, an IMU, one or more GNSS receivers and a microcomputer.  Some 

DG system variants also come with an optional distance measurement indicator (DMI), 

which may simply be a rotary encoder that attaches to the back wheel of a land vehicle 
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and can measure the linear distance traveled.  The expected accuracy of a DG system 

depends on the individual performance of the components mentioned above.  Section 

2.2.3 describes the types of errors and bias these DG system components are typically 

prone to experience. 

Table 2.1: Specifications for the Applanix LV DG system [41]. 

POS LV 

Performance with GNSS Performance after 60s GNSS Outage 

X,Y 
Position 

(m) 

Z 
Position 

(m) 

Roll 
and 
Pitch 

(°) 

True 
Heading 

(°) 

X,Y 
Position 

(m) 

Z 
Position 

(m) 

Roll 
and 
Pitch 

(°) 

True 
Heading 

(°) 
210 PP 0.02 0.05 0.02 0.05 0.32 0.13 0.06 0.06 
210 IARTK 0.035 0.05 0.02 0.1 1.27 0.35 0.06 0.1 
210 DGPS 0.3 0.5 0.02 0.2 2.51 0.61 0.06 0.2 
220 PP 0.02 0.05 0.02 0.025 0.24 0.13 0.06 0.03 
220 IARTK 0.035 0.05 0.02 0.05 0.69 0.35 0.06 0.07 
220 DGPS 0.3 0.5 0.02 0.05 0.88 0.61 0.06 0.07 
420 PP 0.02 0.05 0.015 0.02 0.12 0.1 0.02 0.02 
420 IARTK 0.035 0.05 0.015 0.02 0.34 0.27 0.02 0.03 
420 DGPS 0.3 0.5 0.015 0.02 0.45 0.56 0.02 0.03 

510/520 PP 0.02 0.05 0.005 0.015 0.1 0.07 0.005 0.015 
510/520 IARTK 0.035 0.05 0.008 0.02 0.3 0.1 0.008 0.02 
510/520 DGPS 0.3 0.5 0.008 0.02 0.42 0.53 0.008 0.02 
610/620 PP 0.02 0.05 0.005 0.015 0.1 0.07 0.005 0.015 
610/620 IARTK 0.035 0.05 0.005 0.02 0.28 0.1 0.005 0.02 
610/620 DGPS 0.3 0.5 0.005 0.02 0.41 0.51 0.005 0.02 
 

Table 2.1 lists the expected accuracy of the Applanix POS LV.  The accuracy with which 

the POS LV can calculate the position (X, Y, Z) and orientation (Roll, Pitch, True 

Heading) is greatly dependent on the type of IMU used, the number of GNSS receivers 

available and the processing method used to produce the trajectory.  This is reflected in 

the first column of Table 2.1.  In Table 2.1, the DG systems are listed in the order of the 

accuracy of the IMU option used.  The  DG systems containing the more accurate IMU 

options are located at the bottom of the table (POS LV 610/620, POS LV 510/520) and 

the DG systems containing less accurate IMU option are located at the top (POS LV 
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210).  The 20 in 220, 420, 520 and 620, indicates that these units have two onboard 

GNSS receivers, designed to assist the IMU in maintaining the True Heading of the 

system.  The designators PP (Post-Processing), IARTK (Inertially Aided Real Time 

Kinematic) and DGPS (Differential Global Positioning System) indicate the type of 

processing to which the trajectory information is subjected.  Table 2.1 shows that the best 

possible trajectory is expected to occur when it is collected with a 520 or 620 IMU 

employing two GNSS receivers with satellite lock and produced by post-processing the 

data after collection. 

 

In contrast, Table 2.2 lists the expected accuracy of various models of the Novatel SPAN 

System [42].  Just as with the Applanix POS, the accuracy with which the SPAN systems 

can calculate their position (X, Y, Z) and orientation (Roll, Pitch, Heading) is greatly 

dependent on the type of IMU used, the number of GNSS receivers available and the 

processing method used to produce the trajectory.  The different models of the SPAN 

system represent some of the different IMU options available from Novatel.  Each of the 

Novatel models listed in Table 2.2 comes with a single GNSS receiver but can be 

upgraded to employ two GNSS receivers as a means of aiding heading determination 

during low dynamic applications.  In Table 2.2, the designators PP (Post-Processing), 

RTK (Real Time Kinematic) and SP (Single Point, i.e. No External Correction) indicate 

the type of processing to which the trajectory information is subjected.  Since, Table 2.2 

provides details on system performance after only a 10s GNSS outage, it is difficult to 

compare performance to the Applanix POS, however, with PP under normal GNSS 

availability, the positioning specs on the SPAN system seem to outperform the Applanix 
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POS by 2~3cm both horizontally and vertically, while the orientation accuracy of the 

Applanix POS seems higher by 0.01º. 

Table 2.2: Specifications for the SPAN GNSS/INS combined systems [42]. 

Span M
odel 

O
utage D

uration 

Positioning 
M

ode 

POSITION 
ACCURACY (M) 

RMS 

VELOCITY 
ACCURACY (M/S) 

RMS 

ATTITUDE ACCURACY 
(DEGREES) RMS 

Horizontal Vertical Horizontal Vertical Roll Pitch Heading 

Pw
rPak7-E1 

0 s 
RTK 0.020 0.030 0.020 0.010 0.030 0.030 0.100 
SP 1.000 0.600 0.020 0.010 0.030 0.030 0.100 
PP 0.010 0.020 0.020 0.010 0.010 0.010 0.040 

10 s 
RTK 0.350 0.130 0.100 0.021 0.060 0.060 0.150 
SP 1.300 0.700 0.100 0.021 0.060 0.060 0.150 
PP 0.010 0.020 0.020 0.010 0.010 0.010 0.040 

SPAN
-C

PT 

0 s 
RTK 0.020 0.030 0.015 0.010 0.020 0.020 0.060 
SP 1.000 0.600 0.020 0.010 0.020 0.020 0.060 
PP 0.010 0.020 0.015 0.010 0.008 0.008 0.035 

10 s 
RTK 0.250 0.180 0.045 0.025 0.030 0.030 0.080 
SP 1.200 0.750 0.050 0.025 0.030 0.030 0.080 
PP 0.020 0.020 0.015 0.010 0.008 0.008 0.035 

SPAN
-IG

M
-A1 

0 s 
RTK 0.020 0.030 0.020 0.010 0.035 0.035 0.150 
SP 1.000 0.600 0.020 0.010 0.035 0.035 0.150 
PP 0.010 0.020 0.020 0.020 0.012 0.012 0.074 

10 s 
RTK 0.460 0.130 0.100 0.021 0.072 0.072 0.210 
SP 1.410 0.700 0.100 0.021 0.072 0.072 0.210 
PP 0.020 0.020 0.020 0.010 0.012 0.012 0.074 

SPAN
-IG

M
-S1 

0 s 
RTK 0.020 0.030 0.020 0.010 0.015 0.015 0.080 
SP 1.000 0.600 0.020 0.010 0.015 0.015 0.080 
PP 0.010 0.020 0.020 0.010 0.015 0.015 0.080 

10 s 
RTK 0.270 0.140 0.051 0.017 0.025 0.025 0.095 
SP 1.220 0.710 0.051 0.017 0.025 0.025 0.095 
PP 0.020 0.020 0.020 0.010 0.015 0.015 0.080 

 

A third option, the iXblue, has the expected accuracy of three available models listed in 

Table 2.3 [43].  Just as with the Applanix POS and Novatel SPAN, the accuracy with 

which the ATLANS or AIRINS systems can calculate their position (X, Y, Z) and 
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orientation (Roll, Pitch, Heading) is greatly dependent on the type of IMU used, the 

number of GNSS receivers available and the processing method used to produce the 

trajectory.   

Table 2.3: Specifications for the iXblue INS-GNSS systems [43]. 

Environment ATLANS-C AIRINS 
Land Air Air 

True heading accuracy:    
DGPS N/A 0,100 deg 0,020 deg 
RTK 0,020 deg N/A N/A 
PPK 0,020 deg 0,020 deg 0,005 deg 

60 sec outage duration for RTK 0,020 deg N/A N/A 
60 sec outage duration for PPK 0,020 deg N/A 0,010 deg 

Position accuracy (X, Y):    
DGPS N/A 0,600 m 0,600 m 
RTK 0,035 m N/A N/A 
PPK 0,020 m 5 cm + 1 ppm 0,150 m 

60 sec outage duration for RTK 0,350 m N/A N/A 
60 sec outage duration for PPK 0,150 m N/A 0,100 m 

Position accuracy (Z):    
DGPS N/A 0,900 m 1,500 m 
RTK 0,050 m N/A N/A 
PPK 0,050 m 10 cm + 1 ppm 0,050 m 

60 sec outage duration for RTK 0,300 m N/A N/A 
60 sec outage duration for PPK 0,100 m N/A 0,070 m 

 

The two models of DG system available from iXblue, the ATLANS and the AIRINS, 

represent the two IMU options available from this manufacturer.  Both of the iXblue 

models listed in Table 2.3 come with a single GNSS receiver but unlike the POS or 

SPAN, they do not have an option to add a second antenna and their embedded software 

relies far more heavily on the IMU than GNSS data.  In Table 2.3, the designators PPK 

(Post-Processing Kinematic), RTK (Real Time Kinematic) and DGPS (Differential 

Global Positioning System) indicate the type of processing to which the trajectory 

information is subjected.  Comparing Table 2.3 to Table 2.1, the position accuracy during 
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normal GNSS availability seems comparable, however, the iXblue systems apparently 

experience greater IMU drift than the Applanix systems after a 60s GNSS outage.  For 

example, Table 2.1 indicates the Applanix POS 520 has position accuracies of 0.1m 

horizontally and 0.07m vertically after a 60s GNSS outage, while Table 2.3 indicates the 

iXblue ATLANS-C has position accuracies of 0.15m horizontally and 0.1m vertically 

after a 60s GNSS outage.  Again, doing this type of comparison with the SPAN system is 

harder as Table 2.2 reports accuracy after only a 10s GNSS outage, however, during 

normal GNSS availability the SPAN appears to be 2~3cm better in accuracy, both 

horizontally and vertically, than the iXblue systems. 

2.1.6 The Correction Station 

An important part of achieving accurate point clouds involves the method used to correct 

the trajectory provided by the DG system.  There are a few different methods available 

that can be used to correct the DG system, all of which require either real-time 

transmission of data to the DG system or post process combination with external 

correction data.  The most common correction method, which requires no interaction on 

the user’s part is the space based augmentation system (SBAS).  The free SBAS 

correction method available to the DG system is dependent upon where in the world the 

DG system is operating.  Figure 2.7 shows SBS systems and their coverage around the 

world.  The accuracies achievable using an SBS, specifically WAAS are on the order of 

±1.5m~±3.0m [44]. 

 

Methods for correcting DG system trajectories, which require user interaction, include 

post process double differencing with a base station (±0.02m~±0.05m) [44], real time 
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kinetic (RTK) correction from a single based station (±0.02m~±0.10m) [44], differential 

correction with a base station (DGPS) (±0.5m~±2m) [44], precise point positioning using 

a precise ephemeris (PPP) (±0.1m) [44] and correction with a virtual reference station 

(VRS) network (±0.1m~±0.5m) [44].  

 

Figure 2.7: SBAS systems and coverage around the world [45]. 

2.2 Errors in Mobile Time-Of-Flight LiDAR Systems 

As shown in the previous section, a MTL system consists of multiple independent 

components working together to form a larger system.  Being that any MTL system 

involves the marriage of a LiDAR scanner and a GNSS/DG system with an external 

correction station, the overall accuracy of the system is dependent on the errors from each 

component and the measurements used to link these disparate systems together. 

   

Measurements for the position and orientation of the MTL system are generated by the 

DG system for any time t along the vehicle’s path.  The DG system usually provides 

estimates of the errors for these position and orientation measurements.  These error 
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estimates are calculated real time by the DG system and are usually given in the form of 

root mean square (RMS) errors or one sigma standard deviations (σ), depending on the 

DG system in question.  On the other hand, the measurements made by the LiDAR 

provide information on the location of any point p in range of the system.  It is usual for 

the LiDAR to have fixed error quantities determined by the manufacturer or the surveyor 

in a controlled environment.  These error estimates are almost always given as one sigma 

standard deviations.  Many of the types of errors possible in a terrestrial pulsed time-of-

flight LiDAR system will be further discussed in this section. 

    

The errors associated with the integration of the LiDAR with the DG system are usually 

the least understood and generally the hardest to quantify.  While multiple methods have 

been proposed for LiDAR to DG system boresighting, few offer a reliable or rigorous 

approach for determining error.  Only the algorithm based methods really give a means 

for determining error estimates for the LiDAR to DG system calibration parameters.  The 

documented methods for determining sensor to DG system calibration parameters are 

detailed in Section 2.2.3.2.     

 

Some work has already been done to analyze the errors inherent in MTL systems.  The 

first and most common method for analyzing errors in MTL systems, as outlined in the 

literature, is error propagation.  A test MTL was assembled in [25] and the authours used 

error propagation to analyze the estimated data errors in this system.  Similarly, [26 – 28] 

use error propagation to study the effect of various types of error on both MAL and MTL 

systems. 
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Another, less rigorous approach to measuring the inherent errors in a MTL system is 

through comparison to some form of control field.  This approach is adopted by [29] as 

well as [46].   In both cases coordinates were affixed to a reference façade in a typical 

urban street scene, using a more accurate measurement method than the MTL.  In [46] a 

total station and static GPS observations were used to create the control field, while [29] 

relied on existing 3D city models as their control field.  In both cases, statistics were 

generated from the direct vector comparisons, made between the MTL point clouds and 

the control field. 

 

A third approach to the problem combined these two methods, performing both error 

prorogation and direct comparison [30].  Here, the authours chose to use error 

propagation to come up with a theoretical error budget and then compared this theory 

against statistics generated by comparing different MTL strips with each other and with a 

control field.  In this case the control field was established using Real Time Kinetic 

(RTK) Global Positioning System (GPS) observations. 

 

Chapter 3 will introduce a new way of analyzing the errors inherent in MTL, but before a 

new error analysis method is described, it is first necessary to understand the types of 

errors present in MTL.  The remainder of this section will detail the types of errors 

inherent in MTL and some of the strategies currently used to correct them. 
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2.2.1 Instrument Errors 

2.2.1.1 Random Errors 

The random errors for time-of-flight LiDAR are well understood, having been first 

described by [47, 48] and then reproduced in several works such as [15].  The accuracy of 

a time-of-flight laser range finder may be estimated by Equation (2.3). 

tr
c σσ ⋅=
2

                                                           (2.3) 

Where c is the speed of light and tσ  is the jitter of the timing moment.  The jitter of the 

timing moment can be estimated by Equation (2.4). 
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Where RMSn is the root mean square noise amplitude at the input of the time 

discriminator and tU ∂∂ /  is the slope of the timing pulse at the moment of timing, 

approximated by Equation (2.5). 
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Where Us is the peak value of the signal and trise the rise time of the pulse [48].  

Therefore, the range accuracy for a time-of-flight laser range finder can be written as is 

shown in Equation (2.6) [15]. 
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Alternatively, if the range is determined by averaging n independent range 

measurements, the range accuracy can be computed by Equation (2.7). 
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nSNR
tc rise

r ⋅=
2

s                                                        (2.7) 

For a time-of-flight range finder which employs a hard stop threshold in the receiver for 

determining a potential return, the signal-to-noise ratio of a given pulse detection is given 

by Equation (2.8). 

n

sUSNR
s

=                                                              (2.8) 

If the timing mechanism does not use a single hard stop threshold, but instead determines 

an instantaneous threshold based on the incoming signal level (constant fraction 

discrimination), then the signal-to-noise ratio for the pulse detection is given by Equation 

(2.9). 
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where 2
SIGi is the mean square signal current, 2

SNi is the signal induced or Poisson noise, 

2
BKi is the background induced noise, 2

THi is the thermal or Johnson noise in the receiver 

and 2
DKi is the dark noise current in the detector[15, 48].  

 

The signal-to-noise ratio is affected by the amount of received power from a laser pulse.  

Due to the relationship between the signal-to-noise ratio and the range accuracy, the 

amount of power received therefore also effects range accuracy.  Among other things, the 

amount of received power is dependent on the amount of transmitted power from the 

laser.  The relationship between the amount of received power to the amount of 

transmitted power is given by the laser range Equation (2.2). 
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The signal-to-noise ratio is also affected by the receiver characteristics [15], specifically, 

the responsiveness of the detector at the laser's wavelength.  This property of the receiver 

is given by the detectitvity of the receiver, the equation for which is given in Equation 

(2.10). 

NEP
AD =*                                                        (2.10)   

Where A is the area of the detector and NEP is the noise equivalent power or the amount 

of power required to overcome noise in the detector. 

 

Finally, an angular random error that is always present due to the laser geometry involves 

the uncertainty in the angular location of the range measurement within the laser 

footprint.  As was shown in [16], the actual measurement point can be located anywhere 

within the footprint of the laser beam.  The standard deviation of the measurement point 

can be calculated by Equation (2.11). 

4
γσ ±=beam                                                      (2.11)    

Whereγ is the beam divergence of the transmitted laser pulse. 

2.2.1.2 Timing Errors 

Since a time-of-flight LiDAR unit measures distances by measuring the time it takes light 

pulses to travel to and return from a target, the timing mechanism must be capable of 

extremely precise timing.  For example, for a time-of-flight LiDAR to measure a distance 
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of 1mm, then the timing mechanism must be able to accurately measure 6.7 picoseconds 

(see Equation (2.12)). 

 pss
sm

m
c
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⋅
= −                        (2.12) 

The effects from timing issues in LiDAR can be dramatic.  Figure 2.8 shows what can 

happen when the timing mechanism in a time-of-flight LiDAR fails. 

 

 
Figure 2.8: Data from two Lynx Mobile Mapper sensors.  Data on the left is from a LiDAR with a 

calibrated and functioning timing board.   Data on the right is from a LiDAR with a 
malfunctioning timing board. 
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The images in Figure 2.8 demonstrate the importance of the timing board in the overall 

health of the point cloud.  The scene depicted here was scanned with two sensors 

mounted on the same vehicle.  The image on the left shows the scene as it should be, the 

timing board was calibrated and healthy.  The section of the road depicted in the middle 

left panel, shows that the deviation to this surface from a best fit comparison plane is less 

than ±2cm.  The lower left panel confirms this, showing a maximum surface deviation 

from the comparison plane of exactly 3 cm.  Contrasting this with the images on the right 

of Figure 2.8, it is noticeable that the familiar street scene now resembles a plowed field.  

The road section (the same road section as depicted in the middle left panel), shown in 

the middle right panel now more closely resembles a helix instead of typical scan lines.  

The thickness of the road, shown in the bottom right panel, indicates that the road surface 

is almost 2m thick. 

 

Without a healthy and well calibrated timing mechanism, time-of-flight LiDAR does not 

function. 

2.2.1.2.1 Calibration/Malfunction 

Being that the timing board in a time-of-flight LiDAR is the core technology that all 

manufactures rely on to make their systems operate, the operation and calibration of these 

timing boards is treated as closely guarded proprietary information.  The best that can be 

accomplished by users of this technology is to study the effect of timing errors in the 

resultant point cloud and incorporate these observations into the LiDAR point error 

estimate. 
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First, it would be prudent to establish what a well behaved and calibrated, rotating 

monogon type LiDAR system should produce.  This can be done by scanning a known 

flat surface, in this case a wall, and extruding the two dimensional data produced into the 

third dimension.  Extruding the two dimensional data is accomplished through the use of 

an artificially calculated trajectory. 

 

 
Figure 2.9: Error map of a flat wall, produced from an extruded Lynx Mobile Mapper scan.  
 

Figure 2.9 shows an error map of such an extruded scan.  The colourized error map is 

comparing the individual Lynx data points to the best fit plane through the wall section.  

Figure 2.9 shows that the majority of points lie less than 5 mm, either side of the best fit 

plane.  Indeed, the calculated one sigma standard deviation for the data set indicates that 

they actually lie ± 3 mm from the best fit plane.  The cross section shown in the same 

figure shows a relatively flat profile, with a minimal amount of deviation.   
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Contrasting this with the same sensor, artificially stressed by high temperature (+70°C), 

the timing board calibration breaks down.  It should be noted that this temperature is 

outside the manufacture’s operating specification and the sensor is close to automatic 

thermal shutdown. 

  

 
Figure 2.10: Error map of a flat wall, produced from an extruded Lynx Mobile Mapper scan, where 

the sensor has been stressed by temperature.  
 
Figure 2.10, shows the results of such a test.  Again fitting a best fit plane to a small 

section of extruded flat wall and then comparing the data to that plane generates an error 

map as shown in Figure 2.10.  Notice the cyclical pattern in the coloured data points.  

This pattern is being produced by an alternating timing bias error.  This bias error is 

changing in a regular pattern; giving times shorter than actual time to longer than the 

actual time.  Examining the cross section shown in the same figure, it is noticeable that a 

cyclical bias appears as a type of sinusoidal wave throughout the data section.  The scale 

on the error map indicates that the extents of the wave are around ±1cm, making a total 

bias of around 2 cm. 
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This bias pattern is even more pronounced by viewing the results generated from an 

uncalibrated timing board.  Figure 2.11, shows a scan of the same flat section of wall, 

also extruded using an artificial trajectory.  The bias in this case is still approaching ±1 

cm, but no long looks like a sinusoidal pattern.  The cross section of the data shown in 

Figure 2.11 shows that the bias in this case has very sharp transition points, with the same 

magnitude as the previous example. 

  

 
Figure 2.11: Periodic timing error, shown with scan of a flat laboratory wall, using an extruded Lynx 

Mobile Mapper scan. 
 
All of these examples show that timing accuracy within the LiDAR system, can lead to 

bias which directly affect the health of the LiDAR data itself.  Under normal operating 

conditions the timing onboard a LiDAR system should give range data which falls within 

a very tight band around the true values for sensor ranges.  If the calibration of the timing 

mechanism is poor, its accuracy is problematic.  If it is malfunctioning, the health of the 

LiDAR point cloud is greatly impacted.  Most importantly, it must be understood by the 

operator of a LiDAR unit that it is important that the system be operated within the 

temperature range quoted by the manufacture, or else an unintended bias in the resulting 

data may occur.  
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2.2.1.2.2 Time Walk 

Due to the precise timing required in the laser range finder, even small variations in the 

measured times can have a significant effect on the output ranges.  In a system with a 

well calibrated timing mechanism, factors such as pulse amplitude, pulse shape and 

surface reflectance will still cause variations in the measured timings [49] (see Figure 

2.12). 

 

Other factors affecting the measured timings are changes in the propagation delay of the 

timing mechanism and potential crosstalk in said mechanism [17].  Reducing the effect of 

time walk involves determining an instantaneous threshold based on the incoming signal 

level (CFD) [49] and using a range intensity correction table to map signal amplitude 

with range correction. 

 
Figure 2.12: Time difference based on intensity return for three laser pulses in a time-of-flight, non-

waveform digitized LiDAR with a 12-bit receiver. 
          
Since most terrestrial based LiDAR systems don’t digitize the waveform of the returning 

pulse, they must use a receiver intensity value to determine when to stop timing and 
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calculate the range to target.  Most commercial LiDAR systems (that do not collect the 

entire waveform) use CFD (Constant Fraction Discrimination) to determine this value 

instantaneously depending on the incoming signal.  When the receiver rises above a 

certain intensity value, the LiDAR system accepts that a valid range measurement has 

been made and calculates the range.  Depending on the strength of the returning signal, 

the system may take this range reading at the base of the return pulse or closer to the 

peak.  This is shown in Figure 2.12, where the difference between tM and tA represents the 

timing error caused by measuring the pulse return time at the intensity threshold and not 

at the return peak.  This variable time measurement on pulses of different intensities may 

seem minuscule, but it can cause several centimeters of error in range measurements.  

Therefore, manufacturers of LiDAR equipment generally include a table of all possible 

intensity values for the LiDAR receiver along with a calibrated range correction at that 

intensity.  Sometimes this table is not accessible to the end user; it is hidden away in the 

software of the LiDAR system.  In the case of the Lynx Mobile Mapper, this table is 

provided in ASCII format along with the other calibration information and is eminently 

editable by the end user. 

 

Figure 2.13 shows a graph of the range intensity corrections for two typical Lynx Mobile 

Mapper sensors.  The corrections themselves vary depending on the variations in the 

timing board and receiver used in the LiDAR unit.  The scale of the correction being 

applied is very significant.  Sensor 1 in Figure 2.13 has corrections approaching 15cm for 

the midrange intensities.  Sensor 2 has corrections of 8mm~9mm at these same 

intensities.  This is important to note because sensor 2 has a range intensity problem. 
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Figure 2.13: Range intensity corrections for two Lynx Mobile Mapper sensors. 
 

 
Figure 2.14: Lynx Mobile Mapper scan of a parking lot paint line, compared with the best fit plane 

through the data segment. 
 
Figure 2.14 shows data of a parking lot line collected using Sensor 2.  The error map 

shown in Figure 2.14 clearly shows that the parking lot line is higher than the 
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surrounding data taken in the unpainted asphalt.  Looking at the cross section in Figure 

2.14, the elevation difference between the painted line and the surrounding asphalt is 

2.5cm. 

 

This type of bias error can cause a serious separation of adjacent objects in the LiDAR 

data and must be reduced or eliminated before data collection proceeds. 

2.2.1.2.3 Returned Intensity     

The amplitude of the returning pulse in Figure 2.12 is governed by the laser range 

equation (Equation (2.2)), presented in Section 2.3.  Generally, specific types of targets 

are used to determine the pulse amplitude effects on a LiDAR system.  Therefore, the 

laser range equation may be simplified based a series of assumptions.  It may generally 

be assumed that the target is larger than the footprint size of the laser beam, i.e. an 

extended target as opposed to a wire or point target.  It can be assumed that the apparent 

brightness of the target surface is the same regardless of the observer's angle of view, i.e. 

a Lambertian reflector.  Also, since most commercially available LiDAR systems have 

the laser emitter and receiver in close proximity, i.e. mono-static, it can be assumed that 

the receiver has the exact same field of view as the emitter.  Based on these assumptions 

the laser range equation may be expressed as shown in Equation (2.13). 

SysAtm
E

R r
PP ηη

αrπ
⋅⋅

⋅
⋅⋅⋅

= 24
)cos(                                 (2.13) 

Where ρ is the reflectance of the given material and α is the incidence angle of the laser 

beam [50].  Under laboratory conditions, when the time walk is established, the 

atmosphere is clear and unperturbed.  This means that the atmospheric transmission 
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factor does not fall below 99% and can therefore be neglected.  If the emitted laser power 

is unknown, but assumed to be constant, then the laser range equation can be further 

simplified as shown in Equation (2.14). 

C
r

i Sys ⋅⋅
⋅

= ηαr
2

)cos(                                          (2.14) 

Where i is the returned intensity and C is an unknown constant factor [51].  Using 

formulas similar to Equation (2.14) [18, 50] investigated the effect of range, surface 

reflectivity and angle of incidence on terrestrial based close range LiDAR.  In one study 

[50], a metal rig containing six specially constructed targets was affixed to a standard 

surveyor’s tripod.  The targets were made of material with known reflectivities of 5%, 

20%, 40%, 60%, 80% and 99%.  The metal rig could be rotated with a possible accuracy 

of ±2º.  Several experiments were conducted and it was found that the influence of the 

incidence angle and the target reflectivity were not separate from each other but each 

acted similar to a change in reflectivity.  It was also found that range to target acts 

differently than the angle of incidence and the target reflectivity.  Several empirical 

models were derived for the Riegl LMS-420i. 

 

Another study [18], used various types of mineral and construction specimens to see if 

surface roughness, colour, wetness and range effect the accuracy of range measurements.  

The various specimens used were cut with a saw and placed so that their planar surface 

was facing the scanner.  Two ranges were used 3m and 53m and the specimens were 

scanned dry and then wet.  The study found no significant range errors between the 

samples, but did find varying intensity values were returned by the laser range finder. 
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2.2.1.4 Zero and Scale Error 

All time-of-flight LiDAR equipment must provide a constant correction to each measured 

range. This standard range correction is used, mainly, to account for the distance traveled 

by the laser pulse from the laser emitter to the focusing mirror and the distance traveled 

by the returning pulse from the focusing mirror to the receiver.  The size of these range 

corrections varies depending on the LiDAR design and configuration.  In truth, this range 

correction is designed to take in all sources of range bias, the laser path out of and into 

the unit is simply the most significant.  Other factors causing range bias could include, 

but are not limited to, refraction delay through the LiDAR window, refraction delay 

through a beam expander (if present) and reflection delay off the various mirrors inside 

the unit.  In fact, it has been shown that a component of the zero error, which has been 

labelled range/reflectance crosstalk, can be linked to the dependence of the measured 

range on the surface reflectance [52].  The concept of zero error is explained in multiple 

papers and textbooks such as [53, 54].  The zero errors and their standard deviations for 

several time-of-flight and phase based terrestrial laser scanners were collected and 

summarized by [15].  These values are reproduced in Table 2.4. 

 

Scale error is an error in the scale factor being applied to the measured distance.  Not all 

time-of-flight LiDAR systems are calibrated to use this scale factor.  The ILRIS HD and 

ILRIS LR do not report a scale factor as part of their specifications [35].  The Riegl 

LMP321 on the other hand reports a scale error of +20 ppm as part of its specification 

[36].  In addition, independent testing [19] has shown that the Leica HDS 2500 has a 

scale error as high as +400 ppm. 
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Table 2.4: Zero error estimates for various time-of-flight and phase based STL[15].  

Scanner Zero Error 
(mm) 

Standard 
Deviation 

(mm) 
Source 

Lecia HDS 3000 6.1 No Data [55] 
Lecia HDS 3000 2.9 0.6 [56] 

ILRIS 3D -41.0 11.0 [56] 
I-Site R-350 21.0 3.0 [56] 
Imager 5003 4.0 No Data [57] 
Imager 5003 0.73 0.36 [58] 
iQsun 880 7.4 0.1 [59] 

 
Zero and scale errors are applied directly to laser range measurements as shown in 

Equation (2.15). 

KDD Sijij +⋅=D δ                                                 (2.15) 

Where ijDD is the error in the measured range, ijD is the measured range, K is the zero 

error and Sδ is the scale error. 

 

The effect of zero error on a LiDAR unit’s output point cloud is a warped planar 

distortion.  If all ranges measured by the LiDAR unit are either too short or too long, then 

one can expect a planar object, perpendicular to the scanning direction, to curve around 

the scanner centre.  This effect has been likened to a smile (or frown) by [13, 60].  Figure 

2.15 shows Lynx Mobile Mapper data of a parking lot compared with a previously 

established control surface.  The control surface, having been established from total 

station observation, and adjusted to the same GPS base station as the Lynx data, is 

expected to show a more accurate representation of the parking lot than the Lynx.  The 

black dotted line through the scan shows the path on the vehicle through this data section.  

The colour scale on the error map shows that the further from the vehicle trajectory a data 

point lies, the more that point deviates above the control surface.  Directly along the 

vehicle path, the point cloud to surface deviation is approximately 4mm.  Along the edges 
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of the established cross section, the point cloud deviates over 4cm from the control 

surface.  The deviation is approximately symmetrical on either side of the vehicle’s 

trajectory.   

 

Figure 2.15: Lynx Mobile Mapper scan of a parking lot compared with a control surface established 
by total station observation. 

 

The bias error depicted in Figure 2.15 is what is referred to in literature as a “Smile”.  

This type of bias error can cause a serious distortion in LiDAR data and must be reduced 

or eliminated before data collection proceeds. 

2.2.1.5 Temperature Drift 

Temperature changes in a laser range finder occur because the two factors cited by [15].  

These two factors are changes in the external ambient temperature surrounding the 
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instrument and internal temperature changes caused by radiant heat generated by the 

system’s own electronics.  The greatest change usually occurs during the first 20 minutes 

[15] after the LiDAR system has been turned on.  It takes about this amount of time for 

the internal electronics to warm up after a cold start.  Once the unit has reached a stable 

temperature, the majority of temperature drift will be caused by changes in the ambient 

temperature, external to the LiDAR sensor.  This phenomenon has been described in 

literature for many different time-of-flight LiDAR systems.  Table 2.5 summarizes the 

results from these various published trials.   

Table 2.5: Range changes due to temperature drift from literature sources. 

Scanner 
Measurement 

Interval 
(Hours) 

Temperature 
Change 

(ºC) 

Range 
Change 

(mm) 
Source 

Callidus CP 3200 3.5 16 -3 [15] 
Leica HDS 3000 1.5 11 -2 [15] 
Lecia HDS 2500 3 15 +3 [15] 

LR-2000 1/3 4 -20 [48] 
Perceptron 1/2 24 -400 [52] 

Imager 5003 2  2 [57] 
 
Careful design and implementation of the laser range finder can reduce the range drift to 

the millimetre level [49].  Chapter 4 deals with experiments concerning the temperature 

drift in MTL sensors.  Specifically, Section 4.2 describes a laboratory calibration method 

which can compensate for the effects of temperature drift in MTL data. 

2.2.1.6 Mixed Pixels 

Mixed pixel is a photogrammetry term used in literature [15] to describe a phenomenon 

which can be a serious problem in all time-of-flight LiDAR systems.  It refers to the 

ability of a time of flight LiDAR to distinguish individual range returns from multiple 

surfaces in the field of view (as shown in Figure 2.16). 
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Figure 2.16: Separation of laser beam footprint due to a surface edge [61]. 

       
For many LiDAR systems it is expected that the minimum point pair separation is half 

the pulse width of the outgoing laser beam [56]. When the distance, D, in Figure 2.16 is 

larger than the minimum point pair separation for the LiDAR, then two ranges will 

generally be recorded as separate return values.  If the distance, D, in Figure 2.16 is 

smaller than the minimum point pair separation distance for the LiDAR, the receiver will 

not be able to distinguish between returned pulses [56].  In this event the returned range 

will not be to any one surface but instead be derived from a combination of all surfaces 

within the footprint of the laser beam.  This error may range from a few millimetres to 

several decimeters [62]. 

2.2.1.7 Dynamic Track Error 

This angular error comprises the total mechanical angular variation of the laser beam 

orthogonal to the scan line.  Typically this error is caused by a combination of regular 

and irregular deviations in the mirror surface, deviation of the mirror surface from its 

design angle and random non-repeatable errors caused by the bearing support system 

[63].  This error is depicted in Figure 2.17, were the angle α represents the dynamic track 

error. 
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Figure 2.17: Dynamic track error in a monogon based laser scanning system. 

2.2.1.8 Velocity Errors 

Velocity errors include jitter, rotational speed variation and synchronization errors.  Jitter 

is a high frequency variation in laser spot placement along a scan line [15].  This 

variation can be random or in a repeating pattern.  Rotational speed variation occurs 

within a scan line over multiple revolutions.  These first two velocity errors occur due to 

external vibration or shocks to the sensor mount, the inertia of the mirror, stability of the 

electric motor, oscillation of the motor speed, bearing resistance and mirror surface 

roughness [15].  Jitter and rotational speed variations can be seen in Figure 2.18.   

 
Synchronization errors occur at the beginning and end of a scan.  While the scanner is 

accelerating and decelerating the monogon, positional errors for laser shots increase.  

This type of error generally lasts 3 to 60 seconds [15].   
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Figure 2.18: Placement variation in Lynx Mobile Mapper data due to velocity errors. 

 

2.2.1.9 Scanner Assembly Balance 

Any object spinning at high velocity is subject to balancing issues.  Weight 

inconsistencies in the scanner assembly can cause vibration in the rotating monogon [15].  

This in turn can result in positional errors in laser placement during the scan.  Proper 

balancing of the scanner assembly can reduce this error, but generally does not eliminate 

it. 

2.2.2 Environmental Errors 

2.2.2.1 Atmospheric Propagation Errors  

The atmosphere affects the laser beam by distorting [64] and attenuating the pulse.  

Attenuation of the pulse is a result of Rayleigh type (air molecules) and Mie type (aerosol 

particles) scattering as well as absorption due to water vapor, carbon dioxide and/or 

ozone [15].  The amount of attenuation is dependent on the laser wavelength, the range to 

target, ambient temperature, atmospheric pressure, gaseous composition of the 

atmosphere, weather conditions and particulate matter in the air.    
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Attenuation was described by [54] and is shown in Equation (2.16). 

aR T
R
II ⋅= 2

0                                                 (2.16) 

Where RI  is the transmitted laser radiant intensity, 0I  is the emitted laser radiant 

intensity, R is the range to target and aT is the atmospheric transmittance.  Atmospheric 

transmittance can be determined by Equation (2.17) [65]. 

R
atteTa

γ−=                                                    (2.17) 

 Where R is again the range to target and attγ is the attenuation coefficient.  The 

attenuation coefficient is calculated by Equation (2.18) [66].  

aammatt βaβaγ +++=                                         (2.18) 

Where mα is the molecular absorption coefficient, aa is the aerosol absorption 

coefficient, mβ is the molecular scattering coefficient and aβ is the aerosol scattering 

coefficient. 

 

Many MTL units currently in operation use lasers with wavelengths of 1500nm.  This 

means that for all these units the atmospheric transmittance ( aT ) is close to 100% [54].  

Since the typical operational range of an MTL system is less than 200m [1], the effects of 

atmospheric attenuation are much reduced from those effecting total stations.  Combined 

with the monochromaticity of this type of LiDAR, little dispersion occurs in air and the 

dispersion which does occur may be modeled more closely [15]. 
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2.2.2.2 Adverse Weather Conditions 

Attenuation of the laser beam is wavelength dependent.  For the common MTL 

wavelength of 1500 nm, at sea level and a range of 100 m, the attenuation coefficient for 

clear atmospheric conditions (15km visibility) changes from 0.28km-1 ( %97=aT ) to 

0.16km-1 ( %98=aT ) [65].  During adverse weather conditions such as rain, fog, haze or 

snow, attenuation is mainly caused by scattering.  When the size of the particulate matter 

in the air matches the laser wavelength, such as when haze or fog is present, Mie-

scattering occurs.  Haze and fog therefore lead to a significant increase in the variation of 

the attenuation coefficient attγ .  During medium haze (5km visibility) the attenuation 

coefficient for the same 1500 nm wavelength laser at sea level, changes from 0.85km-1 to 

0.47km-1 [65].  In fact, [66] shows that dense fog is more problematic for laser ranging 

than heavy rain. 

 

During scanner operation, dropout ranges and false returns commonly occur during 

adverse weather due to laser beam attenuation [67].  Dropout ranges are those laser 

pulses whose returned intensity is too weak to trigger a range detection and therefore no 

range is recorded.  False returns occur when beam scattering due to raindrops, aerosols or 

particulate matter, cause the receiver to pass the detection threshold and record multiple 

ranges.  Some laser energy will invariably reflect from the airborne particulates, while 

others will reflect off the target surface.  Experiments carried out by [67] have shown a 

linear relationship between the number of dropout ranges/false returns and the rainfall 

rate.  It was found that the number of dropout ranges greatly exceeds the number of false 
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returns for the same rainfall rate.  It was also found that the number of dropout 

ranges/false returns exponentially increases as the visibility decreases in fog and rain. 

2.2.2.3 Other Atmospheric Conditions 

Since pulsed time-of-flight LiDAR is dependent on highly precise time measurements, 

the propagation of the light beam through the air is an important factor in determining 

accurate range measurements.  The velocity of the laser beam through the air depends on 

the refractive index of the air.  The refractive index is in turn dependent on the 

temperature, pressure, relative humidity and carbon dioxide content of the air. 

 

Several models exist for the refractive index of air.  One of the more recent models, 

proposed by [68, 69], is used by the Leica software package Cyclone [15] to correct 

atmospheric effects.  The model proposed by [68] is given in Equation (2.19). 
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Where propn is the group refractive index of air, aρ is the actual density of dry air, astdρ is 

the standard density of dry air, wρ is actual density of pure water vapour, wstdρ is the 

standard density of pure water vapour, astdn is the group refractive index of dry air under 

standard conditions and wstdn is the group refractive index of water vapour under standard 

conditions.  The standard conditions of dry air are given in [68] as 15°C and 

1013.25mbar.  The standard conditions of water vapour are given in [68] as 20°C and 

13.33mbar. 
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To compute the indexes of dry air and water vapour under standard conditions, [68] 

provides the formulas shown in Equations (2.20) and (2.21). 

( ) ( )
( )

( )
( ) ( )( )45010534.01110 6

22
2

2
23

22
0

2
018 −⋅⋅+⋅











−

+⋅
+

−

+⋅
=−⋅ −

castd x
k

kk
k

kkn
s
s

s
s       (2.20) 

( ) ( )6
3

4
2

2
10

8 753022.1110 σσσ ⋅⋅+⋅⋅+⋅⋅+⋅=−⋅ wwwwnwσtd                 (2.21) 

Where cx is the carbon dioxide content of the air in parts per million.  It was estimated 

[68] that the uncertainty for these refractive indexes is on the order of 0.06ppm~0.15ppm.  

The coefficients for these equations are listed in [68] and have been reproduced in Table 

2.6. 

 
Table 2.6: Coefficients for the indexes of dry air and water vapour under standard conditions [68]. 

Coefficient Numerical Value 
k0 238.0185 μm-2 

k1 5792105 μm-2 
k2 57.362 μm-2 
k3 167.917 μm-2 
w0 295.235 
w1 2.6422 μm2 
w2 -0.032380 μm4 
w3 0.004028 μm6 

   
Compared to the other standard models, the above model has the advantages of being 

valid for the range of wavelengths employed by all modern laser scanners and it includes 

the ability to account for the variation of carbon dioxide content in the equations.  Due to 

the relatively short ranges ( > 200m ) measured by MTL it is sufficient to only consider 

atmospheric parameters at the instrument itself [54]. 

 

The refractive index of air can vary under the influence of turbulence.  Refractive index 

fluctuations due to atmospheric turbulence have been computed by [66] and the model is 

given in Equation (2.22). 
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Where 4.1'=γ for air, T is temperature in Kelvin, p is pressure in mbar and Tδ is the 

temperature fluctuation.  The influence of this error cannot be ignored, especially in high 

accuracy work, since [70] showed that the accuracy of a scan can be decreased by up to 4 

mm due to atmospheric turbulence. 

 

 
Figure 2.19: Beam refraction through the atmosphere [66]. 

 
Atmospheric turbulence can cause other effects as well.  Notably, refraction or the 

random displacement of the laser beam from its original path [66] while the beam 

footprint remains constant.  The variance of this beam refraction has been described in 

[66] by Equation (2.23) 

6
17

6
122 83.1 RCnr ⋅⋅⋅=
−
λσ                                    (2.23)     

Where 2
rσ is the variance of the beam wander, nC is the refractive index coefficient which 

depends on the magnitude of the turbulence,λ is the laser wavelength and R is the range 

to target.  Typical values for nC include 7105 −⋅ for strong turbulence, 8104 −⋅ for medium 

turbulence and 9108 −⋅ for weak turbulence [66]. Figure 2.19 illustrates beam refraction 
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through at turbulent atmosphere.  Previous research has found that the amount of 

refraction at 100m for various terrestrial based LiDAR scanners is fairly constant [15].  It 

was found that with the Leica HDS 3000, the beam refraction was approximately 1.5 mm 

at 100m. 

 

Beam scintillation or beam intensity fluctuations can also be caused by a turbulent 

atmosphere.  This type of effect can cause the Gaussian footprint of the laser pulse to 

breakup into smaller "hot spots" [15].  It is dependent on the temperature differential 

between the scanner and the target, as well as, the height of the instrument above the 

ground.  The greater the temperature differential or the lower the instrument is to the 

ground, the more likely that scintillation will occur. 

2.2.2.4 Interfering Radiation 

External radiation from natural (sunlight) or artificial (lamps) sources can cause 

inaccurate range measurements if the external radiation is considerably stronger than the 

detected laser energy [62]. The amount of external radiation can be greatly reduced by 

placing a narrow-band optical filter between the lens and the detector [48].  Under most 

circumstances the problem of external radiation might be avoided by scanning at night.  

Some problems such as the loss of points on target surfaces have been reported when 

scanning at night [71]. 

2.2.2.5 Scanner Instability and Vibration 

During MTL operations, vehicle vibration or mount instability can degrade the accuracy 

of the data collected.  Vibration during scanning may cause mirror phase errors which in 
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turn induce errors in the measured angles [52].  This causes point clouds to become 

distorted and complicates data extraction and registration [72, 73].   

 

The most common way to deal with shock or vibration is to use an isolator.  An isolator 

absorbs or reduces external forces before they have a chance to affect the sensor.  

Isolators come in several forms, including elastometric pads, housed springs and 

pneumatic systems.  Each of these isolators can reduce vibration with natural frequencies 

of 5 to 20 Hz (pads), 1 to 6 Hz (springs) and 0.5 to 5 Hz (pneumatic systems) [15]. 

 

Another approach involves compensation for vibration during data processing.  One 

approach, presented in [74], uses a rough, distorted model of the moving object.  It then 

employs a recursive optimization algorithm using the acquired range information to 

better estimate the relative motion between object and scanner.  The procedure is based 

on the iterative closest point algorithm (ICP).  Tests presented in [74] show that accuracy 

of the obtained 3D model was comparable to the case where the scanner was not 

vibrating at all. 

2.2.3 Instrument Position Errors 

2.2.3.1 Trajectory Errors 

Trajectory errors are produced in the DG system used to position the LiDAR sensors.  

Position errors are largely due to the GNSS receivers built into the DG system.  Most of 

the time the positioning system is a combination of the GNSS receivers and the IMU, 

however, during GPS outages, the positioning solution is entirely dependent on the IMU.  
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The causes of these errors are atmospheric delay, cycle slips, erroneous ambiguity 

resolution (multipath), IMU bias and IMU drift [13].   

 

Attitude errors are largely due to errors in the IMU.  The IMU, consisting of 

accelerometers and gyros, is subject to time dependent drift.  This drift becomes more 

pronounced when the IMU is not kept constantly in motion.  The reported attitude of the 

LiDAR sensors depends on the quality and frequency of the IMU and the method by 

which the IMU and GNSS data is combined [13].  The Kalman filter used to produce DG 

system trajectories can be loosely coupled or tightly coupled.  A loosely coupled solution 

means that the IMU and GNSS data are processed independently and then combined after 

processing using time stamp interpolation.  A tightly coupled solution means that the 

IMU and GNSS data are processed together through the Kalman filter, providing a better 

solution overall.  The Kalman filter itself is also constantly being updated and improved.  

In fact, [75] did a quality assessment between two versions of the same post-process 

trajectory software (POSPac 4.4 and POSPac 5.0).  They were able to obtain error 

estimates for POSPac 5.0 that were almost 50% smaller for positional accuracy and 

2.87% smaller for orientation accuracy, for the same DG system hardware. 

2.2.3.2 Boresight and Lever Arm Errors 

The terms boresight and lever arms are used to describe the fixed offsets between the 

LiDAR sensor and the DG system.  Figure 2.20 shows a typical MTL system setup along 

with the positions and orientations of the various coordinate frames involved.  These 

angular and vector offsets play a critical part in the calibration of the MTL system.  

Boresight and lever arm errors in MTL data are caused by inaccurate position and 
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orientation information for the LiDAR sensor within the DG system coordinate frame.  

Depending on the local coordinate frames of the sensor and the DG system, as 

established by their respective manufacturers, the terms heading, pitch and roll might 

swap meaning.  In other words what is called a pitch error in one MTL system may be 

called a roll error in another MTL system.  The effects of these errors, however, will 

remain constant and will present themselves in the output point cloud in similar ways.  

 
Figure 2.20: LiDAR and DG system coordinate systems for the Lynx Mobile Mapper and how they 

relate to the Earth Centered Earth Fixed (ECEF) coordinate frame.  
 

2.2.3.2.1 Heading Errors 

Heading errors generally refer to errors in the fixed Euler rotation angle around the 

vertical axis of the DG system coordinate frame.  In practically all cases this means a 

rotation around the Z axis of the DG system.  For all MTL systems that use a spinning 

monogon mirror, an error in this boresight parameter will cause flat surfaces to loop back 

on themselves when scanned from more than one point along the vehicle’s trajectory.  

This data artifact has been termed a “fishhook” by some literature sources [76]. 
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Figure 2.21: Heading error in Lynx Mobile Mapper data which causes a flat surface to loop back 

upon itself.  This is known in literature as a “fishhook” [76]. 
 

 
Figure 2.22: Creation of fishhooks in LiDAR data from multiple observations of a planar surface. 
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Figure 2.23: Relationship between the direction the vehicle is driven around a building, the sign of 

the heading error and the type of fishhook [77]. 
 
Figure 2.21 shows a fishhook in Lynx Mobile Mapper data.  The fishhook in Figure 2.21 

was caused when the Lynx system scanned a flat building wall, first as it passed the wall, 

and then again as it turned a building corner.  Turning the building corner caused the 

LiDAR to get a view of the wall a second time at a longer range.  The error in the 

boresight heading angle caused the measured LiDAR points from the first observation of 

the wall to be offset from the measured LiDAR points from the second observation of the 

wall (Figure 2.22).  The direction that the vehicle was traveling around the building 
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combined with the size and sign of the heading error in question, will determine which 

walls will present a fishhook, the size of the fishhook and whether the fishhook will 

appear outside the building or inside the building.  Figure 2.23 shows this relationship 

and lays out the different types of fishhooks that may be encountered based on the 

heading error.    

2.2.3.2.2 Roll and Pitch Errors 

Depending on the coordinate system of the MTL system in question the roll and pitch 

errors maybe interchanged.  Roll errors are generally recognized as errors in the fixed 

Euler rotation angle about the DG system coordinate axis in the direction of motion of the 

vehicle.  Pitch errors generally refer to errors in the fixed Euler rotation angle about the 

DG system axis perpendicular to the direction of motion of the vehicle.  For MTL 

systems like the Lynx Mobile Mapper, the boresight roll angle occurs around the X axis 

of the DG coordinate system and the boresight pitch angle occurs around the Y axis of 

the DG coordinate system.  Errors in both the roll and pitch parameters will be exposed in 

the point cloud when opposing drive passes of an object from the same sensor are 

compared.  This technique, sometimes referred to as a “Patch Test”, is standard for 

correcting roll and pitch errors in MTL systems and is documented in [6, 7, 76 – 83].   

 

Figure 2.24 illustrates the effect of roll errors on planar surfaces passed by the Lynx 

system.  If the system is driven in opposing direction (read and blue arrows) planar 

surfaces perpendicular to the direction of motion of the vehicle will shift as shown in 

Figure 2.24.   
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Figure 2.24: The effect of a roll error in Lynx Mobile Mapper data on vertical surfaces [77]. 
 
   

 
Figure 2.25: Roll error in Lynx Mobile Mapper data which causes a separation in opposing drive 

passes of a flat road surface [76]. 
 
The effect of a roll error in real LiDAR data can be seen in Figure 2.25.  In Figure 2.25 

Lynx data from opposing drive passes in a parking lot is shown.  The crossed point 

clouds in Figure 2.25 intersect at the vehicle trajectory and the distance between the point 

clouds linearly increases with range.  

 

Figure 2.26 illustrates the effect of a pitch error on vertical planar surfaces collected on 

opposing drive passes by a Lynx system.  A pitch error generally presents itself as a lean 
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in flat vertical objects when two opposing drive passes from the same sensor are 

compared.   

 
Figure 2.26: The effect of a pitch error in Lynx Mobile Mapper data on vertical surfaces [77]. 
         

 
Figure 2.27: Pitch error in Lynx Mobile Mapper data which causes a separation in opposing drive 

passes of a flat surface [76]. 
 
The effect of a pitch error in real LiDAR data can be seen in Figure 2.27.  As the LiDAR 

is driven around the building in Figure 2.27, first clockwise and then counterclockwise, 

the pitch error in the sensor causes the point cloud of the imaged building walls to lean 

either toward the sensor or away from the sensor depending on the direction traveled.  
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When the two data strips are viewed together the V shape pattern in a cross section of the 

building wall can be seen. 

2.2.3.2.3 System Lever Arm Errors 

A MTL system contains several offsets that are generally referred to as lever arms.  Lever 

arm offsets are required for the offset between the LiDAR and the IMU, the GNSS 

antenna and the IMU and the DMI and the IMU.  Several methods exist for determining 

the lever arms for a MTL system, but the most common is direct measurement with a 

Total Station or tape measure.  For some MTL systems the lever arms are provided as a 

series of fixed numbers determined by the manufacturer [84].  Being that lever arms are 

linear offsets from the system’s coordinate origin, errors in the lever arms cause linear 

position changes in point cloud data.  Figure 2.28 shows the effect of a lever arm error on 

a random point in a LiDAR point cloud. If any particular lever arm value contains an 

error of size H and the MTL system is currently oriented within the survey coordinate 

frame at an angle of α, then a LiDAR point P will contain errors C and S, according to 

Equations (2.23) and (2.24). 

)sin(α⋅= HS                                                   (2.23) 

)cos(α⋅= HC                                                   (2.24) 

The errors S and C will cause the position of point P, in Figure 2.28, to be incorrectly 

calculated at point P’.  In some systems secondary effects of lever arm errors may occur 

if S and C are larger than a few centimeters.  Surfaces scanned while the MTL system is 

changing direction can exhibit bulges when lever arm errors are large.  These bulges are 

caused by the off centre positioning of the LiDAR sensor with respect to the IMU. 
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Figure 2.28: The effect of lever arm errors on an individual point in a MTL point cloud [84]. 
 

2.2.3.2.4 Methods for Computing Boresight Angles and Lever Arms 

The documented methods for determining sensor boresight and lever arm parameters 

include manual visual methods [76], software assisted visual methods [78 – 82] and 

algorithm based methods.  This section will focus on the rigorous algorithm based 

methods of computing LiDAR to DG system boresight angles and lever arms. 

 

Much work has gone into developing algorithms for determining the boresight angles and 

lever arms between airborne LiDAR sensor(s) and a DG system [8, 14, 22 – 24, 85].  

Much of this work has been done using Mobile Airborne LiDAR (MAL).  MAL differs 

significantly from MTL in the ranges being considered (MAL 50-1100m [86], MTL 0- 

250m [2]), the scanner field of view (MAL 50° [86], MTL 360° [2]) and the accuracies 

required (MAL 30-70mm [86], MTL 50mm [2]).  In many instances MAL is separated 
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from its target objects, giving little relief between objects and poor geometry for 

calibration purposes.  MTL by contrast is usually immersed in its target field, providing 

diverse geometry for use in calibration.   

 

Recently several algorithm based methods for boresighting MTL systems have been 

proposed in [6, 7, 9 – 12, 83, 87].  The techniques for boresighting MTL and MAL share 

the assumption that the lever arm offsets for the LiDAR sensor are better determined 

through some other means, usually mechanical drawings.  Mechanical drawings may not 

always be provided, and even when they are, it is possible that small defects in assembly 

or changes in the DG system reference point may make these drawings obsolete.  If 

reference points are not provided on the scanner itself, accurate physical measurement 

may be difficult or impossible.  In these cases, it would be useful to obtain good estimates 

of the lever arms in another way.    

 

The first approach to calibrating MAL systems was introduced in [14].  Further testing of 

this approach was conducted in [22].  This method proposed two separate algorithms for 

calculating the boresight angles, 1) comparing MAL data to ground control, 2) comparing 

overlapping strips of MAL data, collected from different perspectives in order to get the 

necessary geometric dispersion.  The mathematical theories behind these approaches are 

described in Sections 4.3.2.1 and 4.3.2.2 respectively.  Common points between the MAL 

data and the control field or between opposing MAL strips were extracted and used as 

observations in the adjustment.  Lever arm estimates were excluded from this calculation 
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and the algorithms assume that the LiDAR is oriented such that the boresight angles 

should all be close to zero.  

     

A second approach to calibrating a mobile LiDAR system [6] extracts planar features 

from overlapping strips of data and performs a similar adjustment to that described by 

[14].  Some literature [7] has taken this further, extracting both planar and catenary 

features from overlapping scans of MTL data.  In the case of [6], the processed described 

only one LiDAR sensor, however, [7] describes preforming this process on multiple 

LiDAR sensors at once.  The functional models given in [7] were separately established 

for the individual LiDAR sensors, i.e. the adjustment of the individual sensors was done 

piecemeal, and in this way makes the boresight adjustment similar to [6].  In addition, no 

consideration is made for the lever arms as these are assumed to be better estimated 

through direct measurements. 

 

A third approach for calibrating the boresight angles of LiDAR to a DG system involves 

using multiple LiDARs from a static position [9, 12].  By being static, the positioning 

components, both at the component level and the system level can be removed from 

consideration.  This method is also based on planar extraction and comparison, but in this 

case the point clouds come from different LiDAR sensors and not from multiple passes of 

an object with a single sensor.  A similar approach was adopted by [83], in that a series of 

static scans would be collected under laboratory conditions and used to calibrate the 

boresight angles between a single LiDAR sensor and the DG system.  However, in this 

case only one LiDAR system was used and the static scans were conducted from multiple 
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different perspectives to the elliptical calibration target.  The methodology in [83] 

assumes that the LiDAR system is a two axis scanner capable of creating 3D point clouds 

without the aid of motion from a vehicle.    

 

A fourth approach to calibrating MTL systems [87], adjusted a series of LiDAR sensors 

on a mobile device to a reference MTL point cloud.  The reference MTL point cloud 

would have been calibrated in a standard way using multiple passes of an object by the 

same sensor.  The authors stated that “the reference LiDAR is regarded as a target for 

another LiDAR, so the calibration error of the reference LiDAR will pass to the 

calibrated LiDAR”.  They also assumed that the trajectory of the vehicle would be 

straight, so that the calibration would remain an invertible affine transformation. 

 

A fifth approach [10], also used a reference LiDAR scanner to calibrate multiple other 

LiDAR systems.  This approach was presented as a two-step process where the first step 

involved differencing the sensors between a reference LiDAR and multiple other LiDAR 

scanners under laboratory conditions.  The second step involved calibrating the reference 

LiDAR sensor with respect to the INS under real world conditions by relying on a 

mixture of techniques, some of which require multiple passes of a calibration object. 

 

A sixth approach [11] uses planar geometry from multiple passes of a calibration object 

to simultaneously adjust the internal scanner parameters of a Velodyne HDL-64E S2 

scanner and calculate its boresight offsets from the DG system to which it’s attached.  

Calibration of the Velodyne HDL-64E S2 scanner is required, since unlike other LiDAR 
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line scanners, this scanner collects 64 lines of point data simultaneously by splitting its 

outgoing laser beams and then using an array of receivers to collect the returning laser 

beams.  Like most other methods, this method ignores the determination of the lever 

arms.    

 

A study of the effect of bias in the lever arms of the linear scanner type of MAL system 

was undertaken in [85].  Simulated data was used to test out both boresight and lever arm 

biases in the calibration parameters.  No control was considered and as such the vertical 

lever arm component was excluded from analysis as there was insufficient geometry 

provided by the multiple flight lines considered to estimate this parameter. In addition, 

the functional model used in [85] was designed for MAL systems and under the 

assumption that the system was vertical (i.e. Pitch and Roll were almost zero) and the 

boresight angles were all close to zero.  

2.2.4 Target Errors 

2.2.4.1 Object Reflectance 

The percentage of incident light returned by an object greatly affects the ability of the 

LiDAR to make accurate range measurements between the scanner and said object.  It 

affects the signal to noise ratio to a great extent [88] and induces a time walk error in the 

sensor for different returning light intensities.  The reflectance of an object is mainly 

determined by the material properties of that object, such as electric permittivity, 

magnetic permittivity and conductivity.  Other factors affecting the reflectance of an 

object include the colour, roughness, temperature and moisture content of the object 
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surface, as well as the wavelength of the laser used and the incidence angle of the laser 

beam. 

 

The relationship between the returned laser intensity and surface reflectance is given by 

[89] for both Lambertian and specular reflectance.  The relationship for Lambertian 

reflectance is given by Equation (2.25).  

2

cos
R

I βρ ⋅
∝                                                     (2.25) 

Where I is the returned intensity, ρ is the surface albedo, β  is the incidence angle and R 

is the range to target.  The relationship for specular reflection is given by the Torrance 

and Sparrow model shown in Equations (2.26) and (2.27). 
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The Torrance and Sparrow model adds terms for surface roughness (σ ), the percentage 

of laser energy reflected diffusely (C) and a constant value (k). 

 

In many time of flight LiDAR systems that use a threshold method of determining 

ranges, a range-intensity table is used to correct for this error [90]. 
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2.2.4.2 Laser Beam Incidence Angle 

The angle at which a laser beam interacts with a target can cause a systematic range bias 

[59].  The effect of the incident angle on the measured range can be computed by 

Equation (2.28). 

βγ tan
2

⋅
⋅

=∆
RR                                              (2.28) 

Where R∆ is the range error, R is the measured range, γ is the beam divergence angle 

and β is the incidence angle.  The geometry of this range bias is shown in Figure 2.29.   

 
Figure 2.29: Range error due to laser beam incidence angle [15]. 

 
If the surface is highly reflective a large incidence angle may cause a multipath error.  

When this occurs the laser beam can bounce from one surface to another, causing an 

entirely inaccurate range measurement to occur.  Alternatively, under the right conditions 

(laser beam frequency and material encountered) the laser beam can penetrate some 

target surfaces.  Penetration of the target material causes a refraction delay in the range 

measurement.  Surfaces like wood, marble, styrofoam, plastic or glass can allow some 
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amount of penetration for some laser beam frequencies. One source, [91], recorded range 

errors of 15mm for laser penetration into styrofoam and 5mm for laser penetration into 

wood. 

2.2.4.3 User Pick Errors 

When extracting objects from LiDAR point clouds, the accuracy with which the extracted 

object is placed within the global reference frame is a combination of the point cloud 

accuracy and the accuracy of the methodology used to extract the object.  Since LiDAR 

collects clusters of points on a target, with no guarantee that features of interest on that 

target will be included in the cluster, methods for locating and extracting features of 

interest are needed.  This is especially true when control points or other control objects 

need to be extracted from a point cloud.  Extraction of control points could involve the 

selection of the nearest LiDAR point to the control point, computing the average 

coordinate from a cluster of LiDAR points, or computing the coordinate from the 

intersection of other various extracted primitive shapes (i.e. polylines, vectors, planes, 

cylinders, spheres, etc…).  

 

No matter the method used to extract features from LiDAR point clouds, the density and 

distribution of points in the point cloud becomes the biggest factor in determining the 

accuracy with which the feature can be extracted.  For example, if shadowing or 

systematic point errors render parts of the target unusable, then the extraction method 

used to locate the centre of a target will likely be biased toward the densest part of the 

point cloud.  The use of primitive geometry is a very effective method for the accurate 

extraction of 3D targets such as the corners of buildings.  It can be accomplished 
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manually, or through the use of automated extraction routines such as plane growing 

algorithms. 

 

Another option for increasing the accuracy with which feature points can be extracted 

from LiDAR point clouds would be the use of custom designed targets.  Custom designed 

targets provide a means through which control points can be more easily searched within 

a larger point cloud.  They also allow for the development of specific methods of 

extraction designed to more precisely and accurately locate the target centre.  The 

downside to using custom targets is that they must be setup before LiDAR collection 

commences and may require a property owners consent to be deployed. 

2.3 Outlier Detection 

As the previous section shows, errors can be generated in MTL data for a variety of 

reasons.  Some of these reasons, such as boundaries of occlusion, surface reflectance and 

multi-path reflection are described in [92].  Instrument errors, environmental errors, 

positioning errors and target errors all have the potential to create stray points within a 

point cloud.   In addition, terrestrial based scenes are collected faster than ever before, 

firstly because they are being collected from a moving platform and secondly, because 

collection speeds have greatly increased (600,000 points per second [2]).  This increase in 

the number of terrestrial based data points collected during a survey, means greater and 

greater amounts of data are being produced faster.  To further complicate matters, due to 

the fact that the scanners are now immersed in the scene being scanned, instead of flying 

high above it, the geometry contained in these massive data files is more complex than 
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those encountered previously.  This makes filtering of the data harder than previously 

encountered, but even more necessary.   

 

Several sources [92 – 94], provide definitions for the term outlier.  Simply stated, an 

outlier is a point which differs from its neighbours or neighbourhood significantly.  The 

determination of what the term significantly means is, of course, up to the individual user 

of the data.  Of course, the significance threshold will change depending on the method 

used to detect the outlier.   

 

Most methods for performing outlier detection in LiDAR data remain wholly in the 

spatial domain.  These methods can be broken into the general categories of distribution-

based, depth-based, distance-based, clustering-based and density-based [95].  In Chapter 

5, three new ways of filtering outliers in MTL will be introduced.  The first outlier 

detector introduced in Chapter 5 will combine the general principals of distance-based 

outlier detection with data segmentation and 10 parameter polynomial surface fitting.  

The second outlier detector introduced in Chapter 5 will combine the general principals 

of distribution-based outlier detection with data segmentation and the same 10 parameter 

polynomial surface fitting.  The third outlier detector in Chapter 5 will incorporate the 

temporal data available in MTL data through the use of a α-β-γ Kalman smoother 

combined with the principals of a distance-based outlier detector. 

2.3.1 Distribution-Based Outlier Detection 

Distribution-based approaches to outlier detection in LiDAR use statistical distribution 

models to test whether the statistical discordancy of the points belongs to the model.  By 
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fitting the data to a probability distribution model, such as the normal distribution, points 

which deviate from the distribution model can be flagged as outlier points [95].  Such a 

strategy is detailed in [96], where two types of algorithms, one based on a Gaussian 

mixture model and another based on a kernel mixture model were used to score the 

statistical likelihood of the input data being an outlier.  The advantages of this type of 

model are that it’s adaptive to non-stationary sources of data, it provides a clear statistic 

with theoretical meaning, it is computationally inexpensive and it can handle both 

discrete and continuous variables [96].   

 

A distribution-based approach to outlier detection was tried specifically on MAL data in 

[97].  To use this form of outlier detector in LiDAR data, the point cloud was segmented 

and a kernel density estimation model was employed to estimate the probability that a 

point was an outlier.  It was reported that this form of outlier detector performed well on 

MAL data especially when it was paired with a distance-based outlier detector [97]. 

2.3.2 Depth-Based Outlier Detection 

Depth-based approaches to outlier detection in LiDAR are based on organizing the data 

into a k-dimensional data space, from which each point has a given depth within that 

space compared to the other points.  Those points with smaller depths, i.e. those points 

which are more “exposed” within the data space, are more likely to be outlier points [95].  

Detecting outliers in MAL data using a k-d tree approach was studied by [31]. Combined 

with a simple distance-based point filter, [31] first constructs kd-trees from the remaining 

points and then computes the distances between points within that k-dimensional space.  

Outliers are then identified through a threshold value set before the routine is executed.   
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2.3.3 Distance-Based Outlier Detection 

Distance-based approaches to outlier detection in LiDAR use the direct spatial distance of 

a point from its neighbours.  Assuming that there are less than m points within d distance 

from a test point q, then point q would be considered an outlier [95].  This type of 

approach is used in [98] and [99] on MAL data.  In [98], points are connected to their 

nearest neighbours following the rules of Delaunay triangulation.  The vectors between 

the points are then examined and the points are considered outliers if at least one of the 

vector’s lengths are above some threshold set by the user.   

 

In [99], the k-nearest neighbours to a test point are used to interpolate the expected 

position of a test point and then the difference between the actual point and its predicted 

position is tested.  If the difference between the predicted and actual point is greater than 

some threshold, the point is classified as an outlier and removed. 

2.3.4 Clustering-Based Outlier Detection 

Clustering-based approaches to outlier detection in LiDAR gather points or objects which 

resemble each other into groups or clusters.  The approach generally groups data into 

clusters of different density.  Points in smaller clusters are flagged as candidate outliers 

and candidate points which lay farther than a certain distance from non-candidate points 

are removed as outliers.   

 

In a survey of outlier techniques presented in [100], several examples of these types of 

techniques were discussed.  In one method, the data is divided into k clusters, each of 

which provides a local model of the data.  In this case, the user of this algorithm would be 
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expected to supply the optimal number of clusters before executing the routine.  Each of 

the k clusters is represented as a prototype (average) vector with attribute values equal to 

the mean across all points in that cluster [100].  Each cluster in this algorithm then has a 

calculated radius which is the distance between the prototype vector and the most distant 

point in the cluster.  If new points assigned to the cluster lay outside this radius, the 

points are discarded as outliers [100].   

 

In another example, the PAM (Partition Around Medoids) algorithm represents each 

cluster using an actual point and a radius instead of a prototype (average) point and radius 

[100, 101].  The PAM algorithm is otherwise similar to the previous algorithm.  PAM has 

the advantages of being robust to outliers, less susceptible to local minima, data order 

independent and provides better class separation than the previous clustering method 

[100].  It is however, more computationally expense, taking exponentially more running 

time than the previous clustering method [100].   

 

A hybrid cluster method is discussed in [102], wherein the algorithm combines the 

theories of fuzzy logic with cluster-based outlier detection methods to filter both discrete 

and continuous variables.   

2.3.5 Density-Based Outlier Detection 

Density-based approaches to outlier detection in LiDAR rely on the calculation of a local 

outlier factor (LOF), which is a measure of the local density of a point from its k nearest 

neighbours.  The distances between the individual pairs of k nearest neighbours are used 

to estimate the local density of the cluster.  By comparing the local density of a point to 
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the local densities of its neighbours, outliers can be found as they are expected to have 

substantially lower densities than their neighbours.   

 

Detecting outliers using LOF ratios was studied by [92] on MAL and STL data.  It was 

found that the LOF algorithm was unable to identify outlier points in both data sets with 

point densities higher than the point density threshold value (MinPts) [92].  Also, [92] 

concluded that the algorithm had a challenge with clustered outliers, but might be dealt 

with through the addition of image information.   

 

A density-based approach was also discussed in [93], where a k-dimensional 

neighbourhood of points was setup and three tests were proposed.  The first algorithm in 

[93] removes outliers based on the LOF ratio and then iteratively updates the 

neighbourhood function and performs the LOF ratio calculation again.  This continues 

until no more LOF ratios meet the density criteria of an outlier or a specific number of 

outlier detections have occurred.  The second function in [93] works in a similar manner 

to the first, but examines the LOF ratio for only the z component of the spatial data under 

consideration.  The third function in [93] also works similarly to the first, but defines the 

neighbourhood of the spatial data by means of calculating the median average of the 

points instead of the mean.   

 

In the algorithms presented in [92, 93], the user sets the neighbourhood size (k) before 

the algorithm begins, however in [94], the algorithm uses Delaunay Triangulation to 

automatically localize the neighbourhood for a given point.  This approach accounts for 
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the problem of spatial autocorrelation in the LOF ratios.  The conclusion in [94] was that 

this algorithm could effectively detect more outliers than previous density-based 

approaches. 
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3. Error Analysis of MTL Systems 

3.1 Introduction 

The current techniques for performing error analysis in LiDAR data were discussed in 

Chapter 2, Section 2.2.  Building on the techniques discussed in Section 2.2, this chapter 

introduces the idea of using Monte Carlo simulation in conditional variance analysis to 

estimate the errors in MTL point clouds and more specifically, to apportion those errors 

among the various measurements used in the data’s creation.  The analysis is compared to 

the types of analysis discussed in Section 2.2, namely, error propagation and control field 

comparison.   

 

To accomplish this, it is first necessary to examine the discrepancies between a number 

of calibrated Lynx Mobile Mapper systems and a control field.  This will indicate the 

error envelope that can be expected from modern MTL systems.  Next, the results of a 

series of simulations will be presented.  These simulations introduced known errors into 

the observations of the LiDAR and then examined the changes in the output point cloud.  

Error prorogation will be used to examine the errors within the MTL point clouds and 

then conditional variance analysis will be performed on those same point clouds, 

allowing the results between these two methods of error analysis to be compared. 

 

Much of the content in this chapter has been published as “Extraction of geo-spatial 

information from LiDAR-based mobile mapping system for crowd control planning” [46] 

and “Error Analysis of a Mobile Terrestrial LiDAR System” [103]. 
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3.2 The Mathematical Models 

3.2.1 LiDAR to Geocentric Coordinate Conversion  

MTL systems consist of two distinct components, the DG system and the laser ranging 

system, as shown by a typical system configuration in Figure 2.20 from Section 2.2.3.2.  

As shown in Figure 2.20, the coordinates of point p in the Earth Centered Earth Fixed 

(ECEF) coordinate system ECEFP  are a function of the laser range vector, the relative 

location and orientation of the LiDAR sensor to the DG system and the position and 

orientation of the DG system.  The base equation of this relationship can be expressed by 

Equation (3.1). 

ECEF
pLiDAR

ECEF
LiDARINS

ECEF
INS

ECEF LLPP −− ++=                              (3.1) 

In Equation (3.1) ECEF
INSP  is the position of the DG system, ECEF

LiDARINSL −  is the vector from the 

DG system to the LiDAR sensor and ECEF
pLiDARL −  is the vector from the LiDAR to the target 

point p.  ECEF
LiDARINSL −  and ECEF

pLiDARL −  can be further deconstructed as expressed in Equations 

(3.2) and (3.3). 

),,(),,(),( 21 ZYX
INS
LiDAR

ECEF
LiDARINS llllhprRLBRL ⋅⋅=−                         (3.2) 

),,,(),,(),,(),( 321 KdlRhprRLBRL LiDAR
pZYX

ECEF
LiDARINS βαθθθ ⋅⋅⋅=−            (3.3) 

Where NSI
LiDARl  is the lever arm vector in the DG system body frame from the DG system to 

the origin of the LiDAR body frame, LiDAR
pl  is the laser range vector between the LiDAR 

and the target point p, 1R  is the rotation matrix between the local geodetic coordinates 

and the ECEF coordinate frame, 2R  is the rotation matrix between the DG system body 
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frame and the local geodetic frame and 3R  is the rotation matrix between LiDAR body 

frame and the DG system body frame. 

 

Certain constants can be known, such as the offset from the LiDAR coordinate center to 

the scanning mirror.  Most manufacturers disseminate or publish this information as it is 

needed to make proper measurements of the LiDAR sensor lever arms.  For the Lynx 

Mobile Mapper the coordinates of the target points in the LiDAR body frame can be 

calculated as follows. 
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p                                     (3.4) 

Where α  represents the horizontal angle measured by the LiDAR in the LiDAR body 

frame, β  represents the vertical angle measured by the LiDAR in the LiDAR body 

frame, d  represents the distance measured by the LiDAR to the target point p and K  

represents the zero error of the LiDAR instrument.  In the case of a MTL, only the 

vertical angle is measured, so the horizontal angle is fixed at an appropriate value.  In the 

case of the Lynx, this value is zero. 

 

Negating the Z term in Equation (3.4) creates the right-handed LiDAR coordinate system 

depicted in Figure 2.20 from Section 2.2.3.2.  This mean that the rotation matrix ( 1R ) can 

be defined as shown in Equation (3.5).    
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Where B represents the geodetic latitude of the DG system and L represents the geodetic 

longitude of the DG system.  A third variable that does not occur in Equation (3.5) but 

that is linked to the latitude and longitude can be defined as the ellipsoidal height, h. 

 

The rotation matrices for the orientation of the DG system ( 2R ) and the boresight angles 

of the LiDAR ( 3R ) can be defined as shown in Equation (3.6) and Equation (3.7). 
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Where r is the roll, p is the pitch and h is the heading of the DG system with respect to 

the local geodetic coordinate frame and Xθ  is the rotation about the x-axis of the DG 

system body frame, Yθ  is the rotation about the y-axis of the DG system body frame and 

Zθ  is the rotation about the z-axis of the DG system body frame. 

 

It is also possible to apply a form of differential rotation to Equation (3.7).  Equation 

(3.7) can be replaced with Equation (3.8). 

( ) ( )
( ) ( )
( ) ( ) 
















++−
+−+
++−

=
1

1
1

00

00

00

3

XXYY

XXZZ

YYZZ

dd
dd
dd

R
θθθθ

θθθθ
θθθθ

                                (3.8) 

Where 0
Xθ , 0

Yθ  and 0
Zθ are the initial approximates to the boresight angles and Xdθ , 

Ydθ and Zdθ are the small changes applied to these angles.  The advantage to using 

differential rotation in ridged body transformations is that the order of rotation no longer 
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matters.  However, it must be remembered that 1θd , 2θd and 3θd have to be vanishingly 

small and therefore 0
Xθ , 0

Yθ  and 0
Zθ have to be quite close to their true values.  In practical 

terms, the values of Xdθ , Ydθ and Zdθ  should not exceed 0.02º to maintain a 

transformation difference below 5cm at ranges of 100m.         

      

As shown in Equations (3.4) to (3.8), the vectors INS
LiDARl , LiDAR

pl  and the matrices 1R , 2R , 

3R  are themselves products of various measurements.  These measurements can be 

grouped based on their dependencies.  Group 1 consists of the DG system position in 

Cartesian ECEF coordinates ( ECEF
INSX , ECEF

INSY , ECEF
INSZ ).  The Group 1 parameters are 

converted from the geodetic latitude (B) longitude (L) and ellipsoidal height (h) measured 

by the DG system.  Group 2 consists of r , p , h , which represent the roll, pitch and 

heading of the DG system with respect to the local geodetic coordinate frame.  Group 3 

consists of Xl , Yl , Zl , which represent the components of the lever arm vector between the 

DG system and the LiDAR.  Group 4 consists of Xθ , Yθ , Zθ , which represent the x, y and 

z Euler rotations of the LiDAR coordinate frame in the DG system frame.  Group 5 

consists of the LiDAR measurements α( , β , d , )K    

  

Each of the 18 aforementioned variables, have an associated error estimate usually in the 

form of an RMS or standard deviation.  It is usual to assume that each of the 

measurements is normally distributed with a mean of zero.  Under these circumstances 

the further assumption that RMS values equal standard deviations is valid and all error 
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estimates can be assumed to be one sigma standard deviations (σ ).  These 18 standard 

deviations can be assigned to the same groups previously discussed. 

3.2.2 Error Propagation Analysis 

Error prorogation analysis is a standard technique used to estimate errors in calculated 

values.  The equations for error propagation are fairly well understood and used across 

many disciplines [27, 28, 104, 105].  Performing error prorogation first requires that the 

non-linear equation presented in Equation (3.1) be linearized as shown in Equation (3.9). 
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(3.9) 

In Equation (3.9), ECEFP0 represents Equation (3.1) evaluated at the initial approximates 

( )0(ECEF
INSX , )0(ECEF

INSY , )0(ECEF
INSZ , 0B , 0L , 0r , 0p , 0h , 0

Xl , 0
Yl , 0

Zl , 0
Xθ , 0

Yθ , 0
Zθ , 0α , 0β , 0d , 

0K ) for the 18 measurements previously identified.  Using the first derivatives from 

Equation (3.9), evaluated at each component (X,Y,Z) of the ECEF position, the design 

matrix (U) for a least square adjustment may be formed as shown in Equation (3.10).   
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Using the additional information provided from the individual error estimates of the 18 

input parameters and assuming no correlation between these variables, the variance-

covariance matrix (Q) may be form as shown in Equation (3.11).   
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This allows the formation of the error propagation model shown in Equation (3.12). 

           T
P UQUECEF ⋅⋅= −12σ                                              (3.12) 

3.2.3 Conditional Variance Analysis 

Conditional variance analysis is a method of global sensitivity analysis.  Global 

sensitivity analysis is primarily used to study how the uncertainty in the output of a 

model can be apportioned to different sources of uncertainty in the model inputs [106].  

Preforming conditional variance analysis involves rewriting the terms of the Equation 

(3.1) in terms of generic variables; Equation (3.1) can be expressed as shown in Equation 

(3.13). 

   ( ) 181 ≤≤= iforXfP i
ECEF                               (3.13) 

Variance based sensitivity analysis is carried out by using Monte Carlo simulation to 

generate N random draws from a given probability distribution, for each of the 18 

variables ( iX ) in Equation (3.13) [107, 108].  The number of random draws N, must be 

sufficient to provide a statistically meaningful sample of probable outcomes for the 

equation being analyzed.  In the case of the analysis being performed on Equation (3.13), 

82 
 



N equals 1700 random samples, generated for each variable ( iX ) according to the normal 

distribution.   

 

Holding variable ( iX ) fixed at the mean value of its randomly generated samples, while 

allowing the other variables to vary, N random values can be generated from Equation 

(3.13).  The variance of the outputs of Equation (3.13) ( ( )i
ECEF XPV | ) can be calculated.  

If this variance is then averaged over all possible values of , the expectation of the 

variance becomes ( )( )i
ECEF XPVE | .  Based on linear algebra the main effect of iX  on 

ECEFP  ( ( )( )i
ECEF XPEV | ) can be computed from Equation (3.14) [106].  

( ) ( )( ) ( )( )i
ECEF

i
ECEFECEF XPEVXPVEPV || +=                          (3.14) 

The larger ( )( )i
ECEF XPEV |  is the more influential iX  is on the output of Equation 

(3.13).  Therefore, from the relationship shown in Equation (3.14), the first order Sobol 

index for the variable iX  can be computed according to Equation (3.15) [106]. 

( )( )
( )ECEF

i
ECEF

i PV
XPEV

S
|

=                                                 (3.15) 

Higher order indexes are computed by holding more than one variable fixed as shown in 

Equation (3.16) [106]. 
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 kjiECEF
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PV

XXXPEV
S −−−=

,,,|
,,,                 (3.16) 

Computing all the higher order terms becomes inefficient due to the large number of 

combinations for models with a large number of variables.  For the 18 variables in 

Equation (3.1), there will be 48,620 ninth order Sobol indexes alone.  It is therefore 
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desirable to calculate the total effect for a variable (
it

S ).  This can be done by calculating 

the variance of the expected values when all the variables in the model are held fixed 

while allowing only iX  to vary ( ( )( )i
ECEF XPEV ~| ).  The total effect can be computed as 

shown in Equation (3.17) [106]. 

( )( )
( )ECEF
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ECEF

t PV
XPEVS

i

~|1−=                                             (3.17) 

First order sensitivity indexes are a quantitative measure of the importance of the input 

variables on the calculated results.  They apply to additive models.  The more sensitive 

the calculated results are to small variances in any particular input variable, the greater 

the first order sensitivity index.  The total effect indexes are also a quantitative measure 

of the importance of the input variables on the calculated results.   Unlike first order 

indexes however, they are applicable to all types of models independent of their model 

characteristics [109].  

  

Additional properties of the first order Sobol indexes include 

For additive models                           1
1

=∑
=

n

i
iS , it SS

i
=  

For non-additive models                    it SS
i
>  

3.3 Comparing MTL to Control 

Another method for evaluating the accuracy of any mapping system is to compare it to a 

more accurate reference.  Therefore, to evaluate the average performance of MTL 

systems, 5 Lynx Mobile Mapper MTL systems were used to scan a control field.  The 

control field was placed on identifiable features on the walls and ground around a two 
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story office building.  It was surveyed using a total station with an angular accuracy of 2 

arc-seconds and a range accuracy of 2mm+2ppm.  A four point traverse was constructed 

to tie the surveyed control points together.  Absolute position of the control network was 

determined by referencing a local base station and several control monuments maintained 

by the City of Vaughan.  The adjusted coordinates for the control points were determined 

to have positional accuracies of ±5mm or less.   

 

The Lynx Mobile Mapper is designed to consist of either one or two LiDAR sensors.  In 

this case, the Lynx systems used, consisted of two LiDAR sensors each.  For the purpose 

of testing the accuracy of the mobile LiDAR system used here, tests were conducted over 

several days.  During these trials, 9 or more satellites were visible and PDOP values of 3 

or less were maintained.  The area in which the tests were conducted was quite open, with 

no obstructions to cause canyoning and only one building close by that could serve as a 

source for multipath.  The GNSS/DG system that was used was an Applanix POS LV 420 

(www.applanix.com), which is considered by the industry to contain a medium grade 

IMU.  It has an Applanix quoted drift rate of 0.02º per minute [44].  The method of 

correction was a single GPS only reference station, used to correct the trajectory post-

process.  In all of these test cases the same GPS only base station was used to correct the 

GNSS/DG.  The base line between the mobile LiDAR system and this reference station 

never exceeded 500m during these tests.  
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Figure 3.1: One sigma standard deviations for the horizontal residuals resulting from the comparison 

of 5 MTL systems to a pre-determined control field. 
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Figure 3.2: One sigma standard deviations for the vertical residuals resulting from the comparison of 

5 MTL systems to a pre-determined control field. 
 

To account for the variable nature of the GNSS constellation and the variable properties 

of the ionosphere and tropospheric delays that are inherent in any GNSS system, multiple 

data sets where collected on different days and in different weather conditions.  The 
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control point locations were then identified in each point cloud and coordinates for these 

locations were extracted.  To ensure that the control points were extracted as accurately 

as possible from the point cloud, only window corner points were used.  Each of these 

window points was surrounded by at least three planar surfaces with differing 

orientations.  Planar surface fitting was used to extract the surfaces and the intersection of 

the extracted planes was used to identify the control points.  Residuals were formed by 

comparing the point cloud extracted coordinates with the known coordinates for the 

control field.  Computing the standard deviation for each set of residuals, it was found 

that the order of magnitude of the errors were fairly consistent, with maximum standard 

deviations of 1.7cm in the horizontal and 2.6cm in the vertical.  The results for each of 

the 5 Lynx systems tested are shown in Figure 3.1 and Figure 3.2. 

 

Figure 3.1 and Figure 3.2 show, in some places, significant variation in the magnitudes of 

the standard deviations calculated for each sensor in the same trial.  Since the position of 

the LiDAR points, depend on the lever arms and boresight angles of the sensors with 

respect to the GNSS/IMU reference frame, one would expect that the standard deviations 

for Sensor 1 and Sensor 2 would be equal for each trial.  However, the 6 parameters 

which make up the lever arm and boresight angle values also contain errors, causing this 

assumption to be false.  Since these 6 parameters are fixed values, the next expectation 

would be that given similar collection conditions, the standard deviations for each sensor 

would be offset by similar amounts for each trial.  Due to variations in the performance 

of each LiDAR sensor and the interaction of the laser beam with the target at varying 
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angles of incidence, as well as, limitations on the precision with which the control points 

could be extracted from the point cloud, this is simply not the case. 

3.4 Sensitivity Testing 

Using the mathematical model presented in Equation (3.1) several simulations were run 

to gauge the effect of errors in the boresight, lever arm and zero error calibration 

numbers.  The data used came from a single 360º rotation of a real MTL sensor.  The data 

was first run with known calibration values for the boresight, lever arm and zero error.  It 

was then run again with a varying known quantity added to each parameter in turn.  The 

error offsets used for the boresight parameters include -1 º, -0.5º, -0.2º, -0.1º, -0.01º, 

0.01º, 0.1º, 0.2º, 0.5º and 1º.  The zero error and lever arms used error offset values 

including -0.5m, -0.1m, -0.05m, -0.02m, -0.01m, 0.01m, 0.02m, 0.05m, 0.1m and 0.5m. 

Several variables can affect the comparison of the results.  By choosing a point out of the 

comparison pairs the vertical angle and range can be set to fixed values.  The direction of 

the error and the magnitude of the individual ECEF residuals do not mean much in this 

comparison as they will change depending on the orientation of the DG system within the 

local tangential plane coordinate system.  Therefore, only the overall magnitude of the 

error is of interest in this analysis.  Figure 3.3 shows the maximum error in the ECEF 

coordinate point cloud for each error offset in each calibration parameter for a point in 

the point cloud that was 76.62m from the sensor and roughly in line with the Y axis of 

the sensor. 

 

In Figure 3.3 it can be noticed, as expected, at long range, as the offset introduced into 

the boresight parameters increases, the roll and heading appear to become the most 
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significant parameters.  At long range, when the offsets in the boresight parameters are 

kept small, the significance of the roll and pitch parameters become less significant.  

Interestingly enough, the amount of error introduced by the boresight angles is not equal.  

The pitch angle seems to contribute little error to the solution at range.  In fact the pitch 

error is less significant than the linear offsets such as the lever arms or zero error when 

those values have large offsets.  The linear parameters themselves contribute the induced 

offset directly into the point cloud.  For example, when an offset of 0.5m was applied to 

each of the lever arms, the amount of deviation of the point cloud was exactly 0.5m from 

its zero position.  
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Figure 3.3: Maximum error in the ECEF point cloud at a point 75.62m from the sensor and at an 

angle of 3.371 degrees to the Y axis of the LiDAR coordinate frame. 
 
Looking at another example (Figure 3.4), using a point with a distance of 2.481m and an 

angle to the Y axis of the sensor of 270.249°, it can be noticed that the zero error and 

lever arm terms have exactly the same amount of error as in the previous example.  As 

expected, the angular boresight parameters are not contributing much error to the point 
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cloud at such a short range.  Even with a one degree boresight offset for each of the 

parameters, the amount of observed deviation is less than 5mm. 
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Figure 3.4: Maximum error in the ECEF point cloud at a point 2.481m from the sensor and at an 

angle of 270.249 degrees to the Y axis of the LiDAR coordinate frame. 

3.5 Error Propagation 

The error propagation described in Section 3.2.2 was implemented in Microsoft Visual 

C++ 6.0.  For testing purposes, MTL data was collected using the Lynx Mobile Mapper.  

This data was collected in a mostly empty parking lot to allow the LiDAR to reach its 

maximum range.  The data used is shown in Figure 3.5.  The northern section of the Lynx 

data shown in Figure 3.5 contains a tree line that is located approximately 50m from the 

LiDAR sensor.  The southern section of the data contains an open parking lot with some 

hedges and a lamp post.  A building and two cars exist in the parking at long range for the 

LiDAR sensor.  They are not seen in Figure 3.5 as they are at extreme long range for the 

LiDAR system, but random shots where collected off of them. 
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Figure 3.5: Lynx data collected in a parking lot in Vaughan Ontario Canada on May 19th 2012. 

 
To analyze the effect of measurement errors in the 18 parameters of Equation (3.1) on the 

output point cloud, it is first necessary to collect the error estimates for each parameter.  

The error estimates concerning the position and orientation of the MTL system in the 

ECEF mapping frame are generated in real time by the DG system.  In the case of the 

Lynx system the DG system used is an Applanix POS.  Out of the five variables related 

to the position of the DG system, it was found that the latitude and longitude contribute 
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less than a millimetre of error to the final solution.  For the purposes of testing, they were 

therefore excluded from further consideration since their contribution to the overall error 

is insignificant.   The manufacturer states that the 1 sigma range accuracy of the LiDAR 

is 0.005m [1].  Examining planar surfaces in multiple points taken by the MTL system 

reveals that the range accuracy of the system is generally better than this, usually around 

0.003m.  Therefore these numbers will be compared to see the effect of each. 

 

That leaves the 6 errors associated with the integration of the LiDAR and DG system, the 

so called boresight and lever arm parameters.  Typically, the boresight operation for 

many MTL and multibeam SONAR systems is done using non-rigorous methods such as 

the so-called “Patch Test” [78].  Multiple manufacturers of this equipment and the 

software used to process the data use these methods for determining boresight parameters 

for MTL [78 – 82].   Table 3.1 gives a breakdown of the 18 parameters from Equation 

(3.1), the groups to which they have been assigned, the measurement errors expected 

from the MTL based on non-rigorous calibration methods and the ideal error values 

based on rigorous calibration methodologies and observed performance of a MTL 

system. 

 
One literature source agrees that the expected lever arm uncertainties listed in Table 3.1 

are typical for most systems [27].  However, the same source indicates that the typical 

manual boresight method should facilitate an uncertainty of 0.005° for roll and pitch and 

0.008° for heading [27].  The same source further states that the expected results from a 

least squares adjustment should have a typical uncertainty of 0.001° for roll and pitch and 

0.004° for heading.   
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Table 3.1: Expected and ideal uncertainties in MTL parameters. 
Parameter Group Expected Ideal 

, Position X [m] 1 
Estimated from DG 

system 
Estimated from DG 

system 

, Position Y [m] 1 
Estimated from DG 

system 
Estimated from DG 

system 

,Position Z [m] 1 
Estimated from DG 

system 
Estimated from DG 

system 

, Platform Roll [degrees] 2 
Estimated from DG 

system 
Estimated from DG 

system 

, Platform Pitch [degrees] 2 
Estimated from DG 

system 
Estimated from DG 

system 

, Platform Heading [degrees] 2 
Estimated from DG 

system 
Estimated from DG 

system 
, LiDAR X Lever Arm [m] 3 0.02 0.004 
, LiDAR Y Lever Arm [m] 3 0.02 0.004 
, LiDAR Z Lever Arm [m] 3 0.02 0.004 

, LiDAR Roll [degrees] 4 0.02 0.001 
, LiDAR Pitch [degrees] 4 0.02 0.001 

, LiDAR Heading [degrees] 4 0.02 0.001 
, LiDAR Horizontal Angle [degrees] 5 0.0055 0.0055 
, LiDAR Vertical Angle [degrees] 5 0.0055 0.0055 

, LiDAR Distance [m] 5 0.008 0.003 
, LiDAR Zero Error [m] 5 0.01 0.005 

 

Since the manufacturer of the Lynx Mobile Mapper does not provide references for a user 

to locate the centre of the LiDAR sensor and since the DG system only has an imprecise 

sticker, indicating the general centre and approximate axes of the DG coordinate system, 

manually measuring the lever arms between the DG system and the LiDAR is extremely 

difficult.  Therefore, the lever arm uncertainty estimates stated by [27] and which are 

reflected in Table 3.1, are plausible for the MTL being used here and conform to the 

accuracy estimates observed by the authour during experimentation with the 5 Lynx 

Mobile Mappers used in Section 3.3.   

 

On the other hand, estimating the boresight angles based on non-rigorous patch test 

methods depends on the user manually adjusting the input boresight angles and observing 
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the results in the point cloud.  This technique relies on the user looking for visual cues 

within the point cloud and adjusting the boresight angles until these cues disappear.  

Based on the boresights performed on the 5 MTL systems in Section 3.3, these visual 

ques tend to disappear within Lynx Mobile Mapper data while adjusting the boresight 

angles at the second decimal place.  Therefore, the boresight uncertainties stated by [27] 

seem optimistic as they are given to three decimal places.  When performing a manual 

boresight on a Lynx Mobile Mapper, a more likely value for the boresight roll, pitch and 

heading uncertainty is 0.02°, as reflected in Table 3.1. 

 

MTL data was run through the error propagation in Section 3.2.2 for both the expected 

error estimates and the ideal error estimates.  The results were converted to a colour scale 

and applied to the point cloud.  The error propagation analysis for the expected error 

estimates are show in Figure 3.6. 

 

The colour scales applied to the point clouds in Figure 3.6 show that the largest source of 

error in the resultant point cloud is consistently caused by the DG system positional 

errors.  The poor quality of the lever arm estimates in this case makes the lever arms 

between the LiDAR and the DG system the second most consistent source of error in the 

system.  The angular errors from the DG system orientation variables, as well as the 

LiDAR to DG system boresight variables take on increasing significance as the range 

from the LiDAR sensor increases.  The LiDAR measurements themselves comprise the 

least source of error in the point cloud. 
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Figure 3.6: Results of error propagation, using the expected error estimates.  Each of the five 

identified groups of variables was isolated and the error propagation performed. 
 
The results from the error propagation for the ideal error estimates are shown in Figure 

3.7.  Figure 3.7 shows that the ideal error estimates produce a point cloud containing 

errors which are heavily influenced by the errors inherent in the DG system.  The most 

significant source of error in Figure 3.7 is in the DG system position (Group 1) at a 

constant 3 to 4 cm.  The second largest source of error according to Figure 3.7 is given by 

the DG system orientation data (Group 2).  This error is insignificant at the LiDAR and 

increases as the range from the LiDAR increases.  The LiDAR to DG system lever arms, 

the rotations of the LiDAR coordinate frame in the DG system frame and the LiDAR 

measurements themselves are shown to contribute an insignificant amount of error in 

Figure 3.7. 
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Figure 3.7: Results of error propagation, using the ideal error estimates.  Each of the five identified 

groups of variables was isolated and the error propagation performed. 

3.6 Conditional Variance Analysis 

The conditional variance analysis described in Section 3.2.3 was implemented in 

MATLAB R14.  The same data set (Figure 3.5) and the same set of expected and ideal 

measurement errors (Table 3.1) used in the previous section were processed using 

conditional variance analysis.  The colour mapped data from the first order conditional 

variance analysis for the expected error estimates is shown in Figure 3.8.  The colour 

maps in Figure 3.8 show that when the expected error estimates exist in the point cloud, 

the largest proportion of the error in the MTL point cloud is given by the LiDAR to DG 

system lever arm values in Group 3.  The rotations between the LiDAR coordinate frame 

and the DG system coordinate frame (Group 4) in turn take on increasing significance as 

the range from the LiDAR sensor increases.   
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Since the color maps in Figure 3.8 refer to groups of variables instead of individual 

variables, the Sobol Indexes for each variable were calculated.  It was found that the lever 

arm almost exclusively responsible for the results from Group 3 is the Z lever arm.  The 

scatter plots in Figure 3.9 show that at close ranges the Z lever arm from the LiDAR to 

DG system contributes up to 90% of the error in the point cloud.  Figure 3.9 also shows 

that as the range from the sensor increases the significance of the Z lever arm tappers off 

and is replaced by the LiDAR to DG system roll angle.  At the maximum range of the 

MTL sensor, the effect of roll under these conditions becomes the single most significant 

source of error in the point cloud.  Figure 3.9 shows that at the maximum range of the 

MTL sensor the error generated by the LiDAR to DG system roll angle is upwards of 

70%. 

 

In addition to the first order indexes of the conditional variance analysis, the total effect 

indexes for the 5 groups were also computed.  These total effect indexes were converted 

to a colour scale and applied to the point cloud.  Figure 3.10 shows the total effect 

indexes for the expected error estimates.  Figure 3.11 shows the two most important 

scatter plots of the total effect indexes for the expected error estimates. The colour 

mapped data in Figure 3.10 show that when the expected error estimates exist in the point 

cloud, the total effect indexes from the conditional variance analysis are practically 

identical to the first order effect. 
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Figure 3.8: Results of first order conditional variance analysis using the expected error estimates.  

Each of the five identified groups of variables was isolated and the Sobol indexes 
computed. 

 

 
Figure 3.9: Scatter plot of first order Sobol indexes for Z lever arm and boresight roll in Lynx Mobile 

Mapper data. 
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Figure 3.10: Results of the total effect conditional variance analysis using the expected error 

estimates.  Each of the five identified groups of variables were isolated and the Sobol 
indexes computed. 

 

 
Figure 3.11: Scatter plot of total effect Sobol indexes for Z lever arm and boresight roll in Lynx 

Mobile Mapper data. 
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The fact that the first order sensitivity indexes in Figure 3.8 add up to one and that the 

first order indexes closely mirror the total effect indexes shown in Figure 3.10, indicates 

that Equation (3.1) is an additive model.  This implies that the majority of the total effect 

can be attributed to the individual variables, i.e., the first order effect.  Cross-effects 

caused by the various variable combinations are minimal and can be regarded as 

insignificant.  The higher order indexes from Equation (3.16) can therefore be 

disregarded from further error analysis. 

 

Breaking down the groups into individual variables as was done with the first order 

indexes, again it can be noticed that the LiDAR to DG system Z lever arm and the 

LiDAR to DG system roll angle are the most significant parameters in terms of their 

proportional effect on the point cloud.  The scatter plots shown in Figure 3.11 indicate 

that the LiDAR to DG system Z lever arm contributes upwards of 90% of the error at 

ranges close to the LiDAR sensor and declines as the range increases.  Figure 3.11 also 

shows that the LiDAR to DG system roll angle has little significance close to the LiDAR 

sensor, but makes up almost 70% of the error at maximum range. 

 

The colour maps in Figure 3.12 show that when the ideal error estimates exist in the point 

cloud, the largest proportion of error in the MTL point cloud is given by the DG system 

position parameters of Group 1.  The LiDAR measurement parameters of Group 5 

contribute the next highest percentage of error in the MTL point cloud, while the other 

groups disappear into insignificance. 

100 
 



 

The colour mapped data in Figure 3.13 show that when the ideal error estimates exist in 

the point cloud, the total effect indexes from the conditional variance analysis are also 

very similar to the first order effect.  The DG system position (Group 1) consistently 

contributes the largest proportion of error to the MTL point cloud, with the LiDAR 

measurements (Group 5) contributing the next largest proportion of error to the MTL 

point cloud.  The other groups vanish into insignificance.  

 
Figure 3.12: Results of first order conditional variance analysis using the ideal error estimates.  Each 

of the five identified groups of variables was isolated and the Sobol indexes computed. 
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Figure 3.13: Results of total effect conditional variance analysis using the ideal error estimates.  Each 

of the five identified groups of variables was isolated and the Sobol indexes computed. 
 

Figures 3.12 and 3.13 reinforce the implication that the majority of total effect can be 

attributed to the first order effect.  The higher order effects from Equation (3.16) can 

therefore be treated as insignificant.   

 

3.7 Discussion   

Comparing the data from several MTL systems to the positional coordinates of the 

control points has shown that under ideal GPS conditions and at ranges of approximately 
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15m the MTL can achieve the standard deviations of ±1.7cm horizontally (Figure 3.1) 

and ±2.6cm vertically (Figure 3.2).  Simulating errors in the boresight angles and lever 

arms at both short and long ranges (Figure 3.3) indicate that these results are highly 

dependent on the quality of the boresight angles for heading and roll.  Indeed the heading 

and roll seem to be more important than the pitch or any of the lever arm components.   

  

Error propagation, on the other hand, with the expected error estimates (Figure 3.6) 

indicates that the largest source of error in the point cloud comes from the DG system 

position.  The LiDAR to DG system boresight angles and lever arms do show a 

significant contribution to the error in the point cloud, however, this contribution is far 

less significant than the error being generated by the DG system position.  In comparison, 

the results obtained using the ideal error estimates in the error propagation model show 

that the DG system position is the main source of error in the point cloud (Figure 3.7).  In 

Figure 3.7 only the DG system position (Group 1) and orientation (Group2) errors play a 

significant role in the final point cloud error.  All other groups of variables show error 

estimates less than 1cm in the ideal case.  In both cases (expected and ideal error 

estimates) the LiDAR errors themselves comprise the least amount of error in the MTL 

system.       

 

The first order conditional variance analysis using the expected error estimates for the 

MTL measurements tells a different story from the error propagation.  It supports the 

observations made during the simulations.  Figure 3.8 indicates that the DG system 

position only accounts for about 12% of the total error in the point cloud.  The largest 
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source of error is actually the LiDAR to DG system lever arms, not the DG system 

position.  The fact that both Figures 3.8 and 3.9 show the Z-lever arm and the LiDAR to 

DG system roll angle contributing upwards of 90% and 70% to the total error at various 

times highlights the significance of these two parameters.  This was not apparent from the 

error propagation model.  The fact that the Z lever arm is one of the most significant 

parameters makes sense, since the position of the MTL system is mostly determined by 

the onboard GNSS, which in itself measures its position in the gravity direction less 

accurately due to the bias caused by all the GNSS satellites being located on the skyward 

side of the antenna. 

 

Examining the results of conditional variance analysis using the ideal error estimates, it 

can now be noticed that the DG system position errors make up more than 50% of the 

errors throughout the point cloud (Figure 3.12).  The conditional variance analysis now 

agrees with the error propagation in that the DG system position is the most significant 

factor.  Figure 3.12 shows that the DG system orientation, LiDAR lever arms and the 

LiDAR boresight collectively make up a small percentage of the total error.  In addition, 

Figure 3.12 shows that the second most significant source of error is from the LiDAR and 

that it occurs directly along the MTL system’s path.  This is due to effects in the LiDAR 

receiver caused by the extreme short ranges measured by the system.  The rest of the 

error from the LiDAR increases as the range increases.  This indicates that the angular 

uncertainties in the LiDAR’s encoder combined with range and zero error uncertainties 

become more pronounced in the resulting point cloud at range. 
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3.8 Summary 

In this chapter methods for analyzing the accuracy of points in MTL point clouds were 

discussed.  For the first time, the concepts of conditional variance analysis were used to 

analyze the accuracy of real MTL data.  It revealed that the cross effects between the 

measurements were insignificant contributors to the uncertainty in the MTL point cloud 

and that the measurements could be dealt with as individual error sources.  Conditional 

variance analysis also revealed that the greatest source of error in the tested MTL point 

clouds was the system calibration parameters, which position and orient the LiDAR 

sensors within the DG system coordinate frame.  Comparing the uncertainty condition 

when the patch test calibration parameters were used with the uncertainty condition 

achievable through a rigorous calibration, conditional variance analysis revealed that the 

next two sources of error in the point cloud come from the DG system position and the 

LiDAR sensor’s range measurements.  Therefore, improvement of the accuracy of the 

MTL point clouds requires the development of rigorous calibration methods for the 

LiDAR sensors to the DG system and the correction of the laser ranges from the LiDAR 

sensors to the targets being scanned.  To this end, the next chapter discusses the 

procedures developed to correct the LiDAR’s laser ranges for zero error and temperature 

drift and a rigorous method for calculating the boresight angles and lever arms for dual 

sensor MTL systems. 
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4. Calibration of MTL Systems 

As shown in Chapter 3, the output of a high accuracy point cloud from a MTL system is 

dependent on a number of measurements made by the various components of the MTL 

system.  The LiDAR component of the MTL system has a number of biases and 

systematic errors inherent in it that can affect the output point cloud.  In this chapter 

novel methods for correcting three of these errors will be examined.  First a new method 

for determining the size and accuracy of the zero and scale errors for the LiDAR sensor is 

presented, then a new method for identifying and correcting range errors caused by 

temperature changes inside the LiDAR sensor is described and finally a new method for 

simultaneously determining the position and orientation of the LiDAR sensors with 

respect to the DG system is presented.  Much of the content in the section dealing with 

the determination of the position and orientation of the LiDAR sensors with respect to the 

DG system has been published as “Boresight and Lever Arm Calibration of a Mobile 

Terrestrial LiDAR System” [112]. 

4.1 Zero Error of an MTL Sensor 

4.1.1 Introduction 

Among the biases inherent within any LiDAR sensor is the zero and scale errors for the 

laser range finder.  The concepts behind zero and scale error were previously discussed in 

Section 2.2.1.4   As stated in Section 2.2.1.4, the zero error is a standard range correction 

used, mainly, to account for the distance traveled by the laser pulse from the laser emitter 

to the focusing mirror and the distance traveled by the returning pulse from the focusing 
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mirror to the receiver.  Depending on the design of the LiDAR, the magnitude of this 

systematic bias can be in the metres.  In addition, when the PRF of the laser is variable 

but the input power to the laser remains constant, the laser range finder zero error will 

vary in accordance with the selected PRF.  

 

In this section, a new method for calculating the zero error of a MTL sensor is presented.  

The sensor used to test this method came from a Lynx Mobile Mapper; however, this 

methodology would work for any LiDAR sensor that uses a spinning mirror to scan a 

360° profile.  The Lynx sensor lends itself to this type of testing since the calibration 

numbers are provided by the manufacture in ASCII text file format.  Unlike some other 

systems, where the calibration is stored in proprietary binary formats, the Lynx 

calibration values are open to the end user. 

4.1.2 Mathematical Model and System Setup 

The relationship between the zero error and the scale error was presented as Equation 

(2.15) in Section 2.2.1.4.  For most instruments, the standard relationship between zero 

and scale error is shown in Equation (4.1). 

KDD Sijij +⋅=D δ                                                      (4.1) 

Where ijDD is the error in the measured range, ijD is the measured range, K is the zero 

error and Sδ is the scale error.  Traditionally, the measured range in Equation (4.1) was 

obtained by locating the LiDAR at one end of a pre-surveyed line.  A target would be 

placed at the other end of this line and the LiDAR would measure a range to the target.  

This type of setup is not ideal for the current generation of MTL systems since locating 
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the center of the mirror at one end of a survey line can be exceedingly difficult.  The 

360º, planar, measurement produced by all the purpose built MTL systems currently on 

the market provides an alternative. 

 

By placing a LiDAR sensor between two surveyed targets (as shown in Figure 4.1), the 

tricky problem of accurately locating the LiDAR system can be avoided.  By using 

measurements on either side of the LiDAR system the range between the targets can be 

reconstructed quite simply.   

 
Figure 4.1: Positions of Lynx sensors and fixed targets during zero and scale error calibration. 
    
Based on these measurements, the distances between the targets were simply the sum of 

the two sensor distances as shown in Equation (4.2). 

)2()1(
ijijij DDD +=                                                     (4.2) 

108 
 



A simple least square adjustment ( 0=− LAx ) can be used to compute the zero and scale 

errors for the two sensors.  The normal equations for this adjustment are given in 

Equation (4.3). 

( )

( )
0

2

2

)2()1(

)2(
12

)1(
1212

)2()1(

)2(
12

)1(
12

=
















−−

−−
−








⋅

















+

+

ijijij
S

ijij DDD

DDD
K

DD

DD


δ
                      (4.3) 

The residuals for this adjustment can be determined according to Equation (4.4). 

( ) KDDDDDv Sijijijijijij ⋅−⋅+−−−= 2)2()1()2()1( δ                             (4.4) 

Some LiDAR sensors such as the Lynx do not use a scale error in their range estimates; 

therefore, it may also be justified to estimate the zero error without a scale error 

component.  Equations (4.3) and (4.4) may be modified to exclude the scale error as 

shown in Equations (4.5) and (4.6). 
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The accuracy of the computed zero and scale errors can be computed from the least 

squares matching as shown in Equations (4.7), (4.8) and (4.9). 
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Where m is the number of targets, n is the number of Equations and Q11 and Q22 are the 

diagonal terms of the inverse of the coefficient matrix. 

4.1.3 Experimental Results 

Using the methodology outlined in the previous section, the horizontal distance between 

the four targets, labeled P1 to P4  in Figure 4.1, were measured by total station, a MTL 

sensor was calibrated by placing it in a set of arbitrary positions between the targets and 

recording the distances from the sensor to each target.  In the setup used for these trials, 

the maximum range between the targets employed (P1 to P4) was 29.8252m.  To ensure 

that the sensor was collecting data in the centre of the appropriate targets an InGas 

camera, capable of detecting 1500 nm light was used to view the laser crossing the target.  

The sensor was adjusted until the laser was striking the appropriate targets on opposite 

sides of the sensor, through the target centres.  The Lynx M1 LiDAR sensor [1] is 

capable of pulsing at rates of 500kHz, 250kHz, 125kHz and 75kHz.  During this 

experiment, data was collected at each laser PRF for each sensor position on each target.  

     

Having collected the raw data in the lab, the data was processed in the Optech software 

package Dashmap.  A fake SBET (Smoothed Best Estimated Trajectory) was created so 

that the collected data could be extruded along the sensor’s X axis.  Using the extruded 

Cartesian data produced by Dashmap, each target was found and the associated scanner 

angles recorded by the system were identified.  Using these angles to search an un-

extruded version of the point cloud, ranges between each set of targets were found and 

average values for the slope distances from the sensors to the point cloud were computed.  

The angles recorded by the sensor where used to compute the horizontal distances from 
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the sensor to each target.  From the internal temperature sensors within the Lynx sensor, 

it was noted that the average internal temperature of the sensor during the zero error 

collected was 60°C.   

 

For the Lynx sensor being tested here, the manufacturer’s calibrated values for the zero 

error are given in Table 4.1. 

Table 4.1: Manufacturer’s zero error estimates for Lynx Mobile Mapper sensor SN131104. 
PRF (kHz) Zero Error (mm) 

75 -543.36 
125 -924.138 
250 -1239.56 
500 -1268.489 

  
 
Table 4.2: Zero and scale errors for Lynx sensor SN131104 at a laser PRF of 500kHz. 

Data Set Mirror 
Speed (Hz) 

Zero Error 
(mm) 

Sigma 
(mm) 

Scale Error 
(mm/m) 

Sigma 
(mm/m) 

Trial 1 22-10-2011 200 -1271.150 2.408 0.504 0.203 
Trial 2 18-03-2012 200 -1272.225 3.589 0.520 0.303 
Trial 3 18-03-2012 200 -1271.006 3.432 0.418 0.290 
Trial 4 22-04-2012 200 -1271.642 3.942 0.359 0.333 
Trial 5 22-04-2012 200 -1271.605 2.400 0.471 0.203 
Trial 1 22-10-2011 80 -1272.390 3.097 0.568 0.245 
Trial 2 18-03-2012 80 -1272.598 2.505 0.442 0.211 
Trial 3 18-03-2012 80 -1273.229 3.725 0.517 0.315 
Trial 4 22-04-2012 80 -1270.982 2.488 0.400 0.210 
Trial 5 22-04-2012 80 -1271.987 2.933 0.470 0.248 

   
Table 4.3: Zero and scale errors for Lynx sensor SN131104 at a laser PRF of 250kHz. 

Data Set Mirror 
Speed (Hz) 

Zero Error 
(mm) 

Sigma 
(mm) 

Scale Error 
(mm/m) 

Sigma 
(mm/m) 

Trial 1 22-10-2011 200 -1255.393 6.360 0.641 0.538 
Trial 2 18-03-2012 200 -1252.165 5.023 0.247 0.425 
Trial 3 18-03-2012 200 -1255.490 7.441 0.699 0.629 
Trial 4 22-04-2012 200 -1252.393 5.863 0.264 0.496 
Trial 5 22-04-2012 200 -1255.519 6.691 0.510 0.566 
Trial 1 22-10-2011 80 -1256.586 6.455 0.784 0.546 
Trial 2 18-03-2012 80 -1252.003 5.386 0.299 0.455 
Trial 3 18-03-2012 80 -1255.070 8.264 0.555 0.699 
Trial 4 22-04-2012 80 -1255.993 5.591 0.579 0.473 
Trial 5 22-04-2012 80 -1256.320 5.246 0.613 0.444 
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Table 4.4: Zero and scale errors for Lynx sensor SN131104 at a laser PRF of 125kHz. 

Data Set Mirror 
Speed (Hz) 

Zero Error 
(mm) 

Sigma 
(mm) 

Scale Error 
(mm/m) 

Sigma 
(mm/m) 

Trial 1 22-10-2011 200 -1286.473 9.259 3.288 0.783 
Trial 2 18-03-2012 200 -1288.106 14.148 3.575 1.197 
Trial 3 18-03-2012 200 -1288.604 13.711 3.694 1.160 
Trial 4 22-04-2012 200 -1289.516 5.739 3.564 0.485 
Trial 5 22-04-2012 200 -1288.165 4.888 3.560 0.414 
Trial 1 22-10-2011 80 -1287.634 9.698 3.582 0.820 
Trial 2 18-03-2012 80 -1289.926 17.840 3.668 1.509 
Trial 3 18-03-2012 80 -1288.879 17.941 3.548 1.518 
Trial 4 22-04-2012 80 -1288.912 7.986 3.576 0.676 
Trial 5 22-04-2012 80 -1289.115 6.845 3.551 0.579 

 
Five independent data collects on three separate dates were performed using the MTL 

sensor.  Using the information gathered during these data collects a zero and scale error 

was computed based on Equations (4.3) and (4.4).  This was done for two different 

rotational mirror speeds of 200Hz and 80Hz.  The results for each laser PRF are listed in 

Table 4.2, Table 4.3, Table 4.4 and Table 4.5, respectively.  

Table 4.5: Zero and scale errors for Lynx sensor SN131104 at a laser PRF of 75kHz. 

Data Set Mirror 
Speed (Hz) 

Zero Error 
(mm) 

Sigma 
(mm) 

Scale Error 
(mm/m) 

Sigma 
(mm/m) 

Trial 1 22-10-2011 200 -1246.286 12.330 4.059 1.047 
Trial 2 18-03-2012 200 -1245.979 9.413 4.121 0.799 
Trial 3 18-03-2012 200 -1245.730 6.602 3.996 0.561 
Trial 4 22-04-2012 200 -1246.325 8.153 4.085 0.692 
Trial 5 22-04-2012 200 -1244.222 8.529 3.695 0.724 
Trial 1 22-10-2011 80 -1246.419 16.475 3.829 1.399 
Trial 2 18-03-2012 80 -1244.438 4.871 3.929 0.414 
Trial 3 18-03-2012 80 -1245.577 5.800 3.896 0.492 
Trial 4 22-04-2012 80 -1246.167 13.057 4.063 1.109 
Trial 5 22-04-2012 80 -1244.379 11.929 3.835 1.013 

 
While values for the scale error computed here seem high compared to those of a total 

station, [19] reported scale errors of +400ppm for the Leica HDS 2500 laser scanner.  

The variation in the scale errors given in Tables 4.2 to 4.5 is more than could be expected 

by other devices such as a total station.  The length of the base line used in testing 

(29.8252m) is 1/3 the maximum distance of the LiDAR sensor and should, therefore, 

provide a sufficient range for accurate scale factor error calibration.  Since the zero and 
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scale error numbers generated have a high relative uncertainty and considering that the 

base line should be sufficient for calibration, the question must be considered as to 

whether the scale error needs to be computed at all. 

Table 4.6: Zero errors for Lynx sensor SN131104 at a laser PRF of 500kHz. 

Data Set Mirror 
Speed (Hz) 

Zero Error 
(mm) 

Sigma 
(mm) 

Trial 1 22-10-2011 200 -1265.502 0.983 
Trial 2 18-03-2012 200 -1266.402 1.289 
Trial 3 18-03-2012 200 -1266.327 1.183 
Trial 4 22-04-2012 200 -1267.619 1.295 
Trial 5 22-04-2012 200 -1266.327 0.954 
Trial 1 22-10-2011 80 -1265.614 1.324 
Trial 2 18-03-2012 80 -1267.651 0.956 
Trial 3 18-03-2012 80 -1267.442 1.322 
Trial 4 22-04-2012 80 -1266.498 0.921 
Trial 5 22-04-2012 80 -1266.723 1.084 

 
Table 4.7: Zero errors for Lynx sensor SN131104 at a laser PRF of 250kHz. 

Data Set Mirror 
Speed (Hz) 

Zero Error 
(mm) 

Sigma 
(mm) 

Trial 1 22-10-2011 200 -1248.230 2.121 
Trial 2 18-03-2012 200 -1249.401 1.577 
Trial 3 18-03-2012 200 -1247.680 2.457 
Trial 4 22-04-2012 200 -1249.439 1.834 
Trial 5 22-04-2012 200 -1249.816 2.158 
Trial 1 22-10-2011 80 -1247.826 2.225 
Trial 2 18-03-2012 80 -1248.658 1.700 
Trial 3 18-03-2012 80 -1248.862 2.638 
Trial 4 22-04-2012 80 -1249.524 1.872 
Trial 5 22-04-2012 80 -1249.461 1.795 

 
Table 4.8: Zero errors for Lynx sensor SN131104 at a laser PRF of 125kHz. 

Data Set Mirror 
Speed (Hz) 

Zero Error 
(mm) 

Sigma 
(mm) 

Trial 1 22-10-2011 200 -1249.708 5.081 
Trial 2 18-03-2012 200 -1248.143 6.308 
Trial 3 18-03-2012 200 -1247.316 6.329 
Trial 4 22-04-2012 200 -1249.667 4.894 
Trial 5 22-04-2012 200 -1248.372 4.801 
Trial 1 22-10-2011 80 -1247.589 5.469 
Trial 2 18-03-2012 80 -1248.921 7.210 
Trial 3 18-03-2012 80 -1249.211 7.135 
Trial 4 22-04-2012 80 -1248.937 5.194 
Trial 5 22-04-2012 80 -1249.413 5.011 
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Table 4.9: Zero errors for Lynx sensor SN131104 at a laser PRF of 75kHz. 

Data Set Mirror 
Speed (Hz) 

Zero Error 
(mm) 

Sigma 
(mm) 

Trial 1 22-10-2011 200 -1201.100 6.435 
Trial 2 18-03-2012 200 -1200.111 6.019 
Trial 3 18-03-2012 200 -1201.245 5.506 
Trial 4 22-04-2012 200 -1200.851 5.802 
Trial 5 22-04-2012 200 -1203.083 5.412 
Trial 1 22-10-2011 80 -1203.781 7.053 
Trial 2 18-03-2012 80 -1200.702 5.251 
Trial 3 18-03-2012 80 -1202.202 5.300 
Trial 4 22-04-2012 80 -1200.938 6.573 
Trial 5 22-04-2012 80 -1201.685 6.132 

 
Based on Equations (4.5) and (4.6), a zero error only solution was calculated.  The results 

for calculating just the zero error from known target distances for each trial are given in 

Table 4.6, Table 4.7, Table 4.8 and Table 4.9, respectively.  The zero error results 

reported in Tables 4.6 to 4.9 are noticeably different from those reported in Tables 4.2 to 

4.5.  This is not surprising as removing the scale error as a parameter in the adjustment 

means that the zero error is now solely compensating for the perceived error in the actual 

and measured ranges between the targets used in this test. 

 

4.1.4 Field Verification of Results 

The effect of an error in the zero error value for a LiDAR sensor is a warped planar 

distortion.  If all ranges measured by the LiDAR unit are either too short or too long, then 

one can expect a planar object, perpendicular to the scanning direction, to curve around 

the scanner centre.  This effect has been likened to a smile (or frown) by [20, 21].  A 

range bias error can cause a serious distortion in LiDAR data and must be reduced or 

eliminated before data collection proceeds.  Not all sources are in agreement about this 

however.  Some sources [13, 110] believe that the warped planar distortion is caused by a 
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mirror angle scale error.  It is possible that this distortion is caused by a combination of 

these two errors. 

 

To evaluate the effect of the calculated zero errors on real data, test data sets were 

collected at each laser PRF in a commercial parking lot, over which, a control surface had 

been surveyed.  The LiDAR data was processed using no zero error correction, the 

manufacturer’s zero error correction and the calculated zero error correction.  The MTL 

data was compared to the survey control surface using Polyworks IMSurvey’s error map 

feature.  Cross sections perpendicular to the direction of the vehicle where cut through 

the data and additional measurements made.   

 

Figure 4.2: Lynx Mobile Mapper scan of a parking lot processed with no zero error applied 
compared with a control surface established by Total Station observation.  Each error 
map represents the surface at a PRF of 1.) 500kHz, 2.) 250kHz, 3.) 125kHz, 4.) 75kHz. 
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Figure 4.2 shows the effect of setting the zero error to zero for each laser PRF collected.  

The purple strip through the center of all four data fragments shown in Figure 4.2, 

indicate the presence of a trench in the data, directly under the LiDAR sensor and in the 

direction of motion of the vehicle.  The cross sections shown in Figure 4.2 reveal that the 

depth of this trench varies between 1.086m to 1.196m below the control surface.    

 
Figure 4.3: 500kHz Lynx Mobile Mapper scan of a parking lot 1.) using manufacturer derived zero 

error, 2.) using average zero error from values in Table 4.6, compared with a control 
surface established by Total Station observation. 

 

 
Figure 4.4: 250kHz Lynx Mobile Mapper scan of a parking lot 1.) using manufacturer derived zero 

error, 2.) using average zero error from values in Table 4.7, compared with a control 
surface established by Total Station observation. 
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Figure 4.5: 125kHz Lynx Mobile Mapper scan of a parking lot 1.) using manufacturer derived zero 

error, 2.) using average zero error from values in Table 4.8, compared with a control 
surface established by Total Station observation. 

 

 
Figure 4.6: 75kHz Lynx Mobile Mapper scan of a parking lot 1.) using manufacturer derived zero 

error, 2.) using average zero error from values in Table 4.9, compared with a control 
surface established by Total Station observation. 

 

Figures 4.3 and 4.4 show that the zero errors for 500kHz and 250kHz generally contain 

the same amount of deviation from the control surface whether the manufacturer’s zero 

error is used or the zero error calculated in the field is used.  This is due to the fact that 

the zero errors reported by the manufacturer and the zero errors calculated in the lab did 

closely agree with one another.  Figures 4.5 and 4.6 show that the zero errors for 125kHz 

and 75kHz deviate widely from the control surface, while using the manufacturer’s zero 

error, but are much better behaved with the zero errors calculated in the lab.  These zero 
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errors were different by decimeters between the manufacturer’s zero error values and the 

calculated zero error values.  The cross sections of Figures 4.4 and 4.5 show that the 

manufacturer determined zero errors deviate from the control surface in the classical 

smile pattern discussed in [20, 21].  The calculated average zero error produced a much 

closer approximation to the control surface with little smile or frown present. 

4.2 Temperature Changes in MTL Sensors 

4.2.1 Introduction 

As discussed in Section 2.2.1.5, the pulsed time-of-flight LiDAR sensor experiences a 

range walk as temperature changes.  A commercial pulsed time-of-flight LiDAR is a 

precise timing instrument similar to GPS.  Unlike GPS however, LiDAR does not have 

any access to the adjusted atomic clock data.  Instead, it relies on a purely electronic 

means of measuring time.  Modern electronics, when operating, generate a lot of heat.  

Sealing these electronics inside a weather proof case, such as is done with LiDAR 

sensors, causes heat to build up inside this case.  Excessive heat can not only disturb the 

sensitive measurements being performed by the electronics in a laser range finder, it can 

damage those electronics.  Fans and heat transferable paste are used to control this 

temperature rise and direct heat away from the electronics.  This allows a LiDAR sensor 

to operate for long periods of time without damaging the electronics inside.  [15, 48, 52, 

57] have documented this phenomenon in STL systems. 

    

As the timing board inside a LiDAR set is stressed by temperature, the time it reports will 

become a few nanoseconds longer or shorter.  Whether the error is longer or shorter 
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varies from timing board to timing board.  In either case, this error is directly translated 

into the range reported by the unit and is measurable.  During the first few minutes after a 

LiDAR sensor is started, the temperature inside the LiDAR unit will increase until a 

stable temperature is reached.  This stable temperature is the point at which the 

manufacturer designed cooling methods counteracts further heat buildup.  The LiDAR 

system was most likely calibrated at or around this temperature, so this would be the 

temperature at which maximum range accuracy can be achieved.  This stable temperature 

will vary from LiDAR startup to LiDAR startup and is affected by the ambient 

temperature surrounding the unit. 

    

Some types of LiDAR equipment have built-in means of automatically estimating and 

applying corrections for this temperature walk.  Other types of LiDAR equipment use 

material or mechanical means of keeping the temperature stable.  In most cases it is the 

type and use of the LiDAR equipment which dictates the method of temperature 

correction.  Terrestrial based static scanners such as Optech’s ILRIS HD 

(www.optech.ca), use a series of internal targets of different intensity values, set at 

precisely known distances from the scanning mechanism, to estimate the temperature 

error at regular intervals.  This methodology requires the ILRIS scanner to pause 

scanning at regular intervals, and spend a couple of seconds scanning the internal targets.  

The differences between the known target ranges and the measured target ranges are 

stored and applied to the range data post-process. 
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This is fine for a static scanner, but a MTL, cannot afford to pause scanning and conduct 

this type of test.  Doing so would cause gaps in the resulting point cloud.  Therefore, the 

temperature must be controlled so that temperature walk does not become too great.  To 

do this, the timing board is surrounded by a heat absorbent material and a cooling system 

employing low voltage fans is deployed.  If the mobile LiDAR is moving fast enough, 

exposure of the system to the air flowing across the vehicle will work as well.  Of course, 

if the ambient air temperature is low and the speed is great, this could cause the sensor to 

operate at too cool a temperature and introduce a range error. 

 

Among the pieces of information collected by the Lynx Mobile Mapper sensor are 

measurements of both the exterior and interior temperatures of the sensor.  These 

temperatures are collected at a rate of 1 reading per second while the sensor is operating.  

This type of information gives a new option in correcting range measurements based on 

sensor temperature.  In this chapter, a novel approach to temperature correction in MTL 

systems using observed interior temperature readings and ranges is presented.  Due to the 

nature of the observations collected by the Lynx sensor, the noise in the observed 

temperature/range readings precluded the formation of a range correction table.  To solve 

this problem, a form of the Kalman filter, known as the α-β-γ smoother was employed to 

smooth the noise in the range readings and produce a range correction table based on the 

observed temperature/range data.  
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4.2.2 Establishing the Amount of Temperature Walk in an MTL Sensor 

4.2.2.1 Experiment 1 

An experiment was conducted to understand the effect of temperature walk on MTL 

sensors.  A MTL sensor was placed in a holder on a table in the laboratory.  The sensor 

was placed in such a way that the laser path was roughly perpendicular with two of the 

room’s walls.  The system was started and the path of the laser beam was traced using an 

InGaAs camera.  Two black and white circular targets were placed on the opposing 

laboratory walls such that they were the same height above the floor and the centre of the 

laser beam passed through the centre of the targets.  The MTL sensor was powered off 

and allowed to cool.   

 
Figure 4.7: Results of laboratory temperature tests on a Lynx Mobile Mapper sensor head. 
 
The distance between the two targets was measured, first using a surveyor’s chain, and 

then verified using a laser range finder.  The distance between the two targets was 
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determined to be between 8.234 m ( surveyor’s chain ) and 8.236 m ( laser range finder ).  

The measurements were conducted several times to verify the distance. 

 
Two test runs were conducted.  The first oriented the sensor on its side; the second 

oriented the sensor similar to how it would mount on a vehicle.  In both test cases, data 

was collected as soon as possible after startup.  In each test, three 1 minute long data 

strips were collected with 10 minute idle intervals in between data collects.  The data was 

then processed, using an artificially derived trajectory file to extrude the sensor data.  The 

timestamps, associated with each LiDAR point, were used to trace scan lines and ensure 

that measurements were taken between points collected milliseconds apart.  To account 

for white noise in the sensor, nine consecutive points of comparison were taken across 

each of the opposing targets.  The range between the opposing pairs of consecutive points 

was measured from the LiDAR data and the average range was computed.  The results 

are given in Figure 4.7. 

 

Figure 4.7 shows that in test 1, the sensor started with a board temperature of 65.5°C and 

ended with a board temperature of 68.0°C.  Over this interval the difference between the 

physically measured target to target range and the LiDAR measured target to target range 

became smaller by about 9mm.  Test 2 showed a similar performance.  This time the 

starting temperature was 57.8°C and the ending temperature was 67.2°C.  The difference 

in range between the two targets became smaller by about 12mm. 
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4.2.2.2 Experiment 2 

Two MTL sensors were subjected to temperature variation under laboratory conditions.  

A target was placed at a distance of approximately 12.5m from the sensors.  The 

experiment had the LiDAR unit begin scanning the target while the exterior temperature 

of the sensor was maintained at 21ºC.  The temperature was then decreased by 20ºC 

every 20 minutes, until the sensors exterior temperature reached -20ºC.  The exterior 

temperature of the sensor was then increased at a similar rate of 20ºC every 20 minutes, 

until the unit reached an exterior temperature of 50ºC.  This temperature range was 

slightly beyond the manufacturer’s stated operating range of -10ºC to +40ºC [1], but 

within the normal operating conditions of people in the field.  While the unit was 

scanning the target, the temperature on the LiDAR's timing board was recorded at a rate 

of one reading per second.  After the test was complete, the outside air pressure was 

recorded as 102.004 kPa with an average humidity of 77%. 

  

The LiDAR’s measured angle and range data was processed so that the zero error 

correction and the optical model were applied to the data.  The angle and range data were 

scanned and all range readings with measured angles of 0.002644º for Sensor 1 and 

0.004128º for Sensor 2 were extracted.  The timestamp associated with each of the ranges 

was used to identify the correct temperature for the timing board.  Linear interpolation 

was used to compute the exact temperature from the temperature data. The temperatures 

were then used to bin the range data.  For each unique temperature, all range data at that 

temperature was averaged and a standard deviation was computed.  These results are 

show in Figure 4.8 for Sensors 1 and 2.    
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Figure 4.8: Range variation in Sensors 1 and 2 due to external temperature fluctuation.  Results are 

for experiments conducted on April 7th, 2011. 
 
The curves shown in Figure 4.8 clearly show that both sensors are subject to a range 

variation due to the interior temperature of the sensor.  The amount of variation caused by 

the changing temperature can be seen most clearly in Table 4.10.  From Table 4.10, it can 

be observed that the overall drift in Sensor 1 was 0.015m and that the overall drift in 

Sensor 2 was 0.025m.  As was expected, the maximum and minimum values occurred 

close to the extremes of the temperature range tested. 

 

Looking at the curves in Figure 4.8 it can also be observed that the drift due to 

temperature variation is not the same for each sensor.  Computing the correlation values 

for the two curves results in a correlation value of 0.39, indicating that the curves are not 

very similar. 
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Table 4.10: Maximum and minimum data values for ranges measured during temperature testing.  
Results are for experiments conducted on April 7th, 2011. 

 Sensor 1 Sensor 2 

 Temp 
(ºC) 

Average 
Range 

(m) 

Standard 
Deviation 

(m) 

No. of 
Ranges 

Temp 
(ºC) 

Average 
Range 

(m) 

Standard 
Deviation 

(m) 

No. of 
Ranges 

Max Range 34.4 12.5901 0.0065 266 78.4 12.5807 0.0038 151 
Min Range 79.7 12.5747 0.0035 145 33.9 12.5561 0.0063 231 
Max STD 39.5 12.5849 0.0080 101 36.3 12.5586 0.0074 108 
Min STD 73.7 12.5763 0.0024 63 57.5 12.5675 0.0028 22 

Max No. of 
Ranges 57.8 12.5790 0.0045 450 56.7 12.5674 0.0040 510 

Min No. of 
Ranges 59.5 12.5852 0.0029 11 58.9 12.5667 0.0048 16 
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Figure 4.9: Range variation in Sensor 2 due to external temperature fluctuation.  Results are for 

experiments conducted on June 6th, 2011. 
 
To ensure that the results showing temperature walk were reproducible, the same test was 

performed on Sensor 2.  Performing the test again, when the atmospheric pressure was 

different, was important in showing that temperature drift could be modeled.  After the 

test was completed, atmospheric pressure was measured at 101.438 kPa with an average 

humidity of 70%.  The results of the second test, performed on June 6th, 2011, are shown 

in Figure 4.9 and Table 4.11.  
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Table 4.11: Maximum and minimum data values for ranges measured during temperature testing.  
Results are for experiments conducted on June 6th, 2011. 

 Sensor 2 

 Temp 
(ºC) 

Average 
Range 

(m) 

Standard 
Deviation 

(m) 

No. of 
Ranges 

Max Range 78.5 12.6849 0.0044 139 
Min Range 38.5 12.6612 0.0046 127 
Max STD 47.5 12.6639 0.0062 56 
Min STD 72.7 12.6778 0.0030 30 

Max No. of 
Ranges 65.4 12.6667 0.0051 508 

Min No. of 
Ranges 71.0 12.6761 0.0036 27 

 
Due to the arbitrary distance used when placing the sensor, the ranges collected do not 

match those from the previous trial.  The data in Table 4.11 shows that the maximum and 

minimum ranges occur at the temperature extremes exactly as before.  It also shows that 

the data trends the same way and that the difference between the maximum and minimum 

ranges is 0.024m which is pretty much the same as before.  In addition, calculating a 

value of 0.95 for the correlation coefficient between the data from the two trials of Sensor 

2 indicates that the two data sets closely agree.  Despite different humidity and 

atmospheric pressure variables, the two trials of Sensor 2 show that the range walk due to 

temperature is repeatable on an individual MTL sensor. 

4.2.3 Estimating Temperature Corrections 

To create a set of correction tables, the temperature at which the zero error for each 

sensor was calculated was found and used as the point of zero correction.  For both 

sensors it was determined that the zero error was set when the sensor had an internal 

average temperature of 60ºC.  All other range readings were subtracted from the recorded 

range at this temperature.  Several attempts to model the curves in Figure 4.8 using 

polynomial regression were made; however, no single model could be found which could 
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describe both curves.  The curves previously established contained a lot of high 

frequency white noise, which is incompatible with creating an error graph or error 

reference table.  It was decided to filter out the white noise using the version of the α-β-γ  

smoother described in Section 5.2.1.  Using the ranges and the standard deviation 

estimates generated by the bins of temperature data, a smoothed table of values was 

generated. 
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Figure 4.10: Average errors and α-β-γ smoothed errors for LiDAR ranges taken with Sensor 1.  

These errors are centred on a standard operating temperature of 60ºC.  
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Figure 4.11: Average errors and α-β-γ smoothed errors for LiDAR ranges taken with Sensor 2.  

These errors are centred on a standard operating temperature of 60ºC. 
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Figure 4.10 shows the curves for the estimated average errors for Sensor 1 compared to 

the α-β-γ smoothed errors for Sensor 1.  Similarly, Figure 4.11 shows the curves for the 

estimated average errors for Sensor 2 compared to the α-β-γ smoothed errors for Sensor 

2.  In both cases one can see how the white noise has been removed by the α-β-γ 

smoother, from the average errors for each sensor.   

4.2.4 Evaluating the Results 

To evaluate how well the range temperature correction table works, base lines of known 

length needed to be established.  Since the MTL sensors are not really designed to be 

positioned over a known point and surveying in the scanning centre of the MTL sensors 

proved too difficult, a different strategy needed to be adopted.  Therefore, the same setup 

used for calculating the instruments zero error (Section 4.1) was employed to test the 

range correction tables.  Four targets were placed over permanent survey points and 

horizontal ranges were measured between these stations using a Leica TC1800 (1”, 1mm 

+ 2ppm) total station.  The MTL sensors were placed between these target sets and ranges 

were measured to both targets using the 360° vertical rotation of the LiDAR scanner.  

Combining the ranges measured by the LiDAR to each target gave a LiDAR range 

between targets.  This setup resulted in 10 different ranges measured by the LiDAR 

between the known targets.  Figure 4.1 in Section 4.1.2 illustrates the setup of the four 

targets and the positions of the LiDAR in-between these targets. 

 

Two trials were conducted using Sensor 2.  The zero error, established in 4.1 was applied 

to all the ranges before temperature testing began.  Between the two scans of the control 

field, the pressure, humidity and ambient temperature of the surroundings varied.  The 
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first trial was performed on October 22, 2011 when the pressure was 994.7hPa, the 

relative humidity was 68% and the ambient temperature was 19.1°C.  The results from 

the first trial are shown in Table 4.12.  The second trial occurred on March 18, 2012 

when the pressure was 1021.32hPa, the relative humidity was 92% and the ambient 

temperature was 22.0°C.  The results of the second trial are shown in Table 4.13. 

Table 4.12: Comparison of LiDAR measured ranges to total station measured ranges before 
and after temperature compensation was applied.  This trial was conducted on 
October 22nd, 2011. 

Position 

R
ange 

Average Sensor 
Tem

perature (°C
) 

Total Station 
M

easurem
ent 

R
TS (m

) 

LiD
AR
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N

o Tem
perature 
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orrection R

N
T (m

) 

LiD
AR

 
M

easurem
ent w

ith 
Tem

perature 
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orrection R
T (m

) 

Δ Betw
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Station and 
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ncorrected 
R
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TS - R

N
T ] 

(m
) 

Δ Betw
een Total 

Station and 
C

orrected R
anges 

[R
TS - R

T ] (m
) 

1 D12 58.4 9.5407 9.533 9.533 0.007 0.007 

1 D13 62.2 19.4335 19.435 19.434 -0.002 -0.001 

1 D14 63.6 29.8252 29.825 29.822 0.000 0.003 

2 D13 69.6 19.4335 19.442 19.438 -0.008 -0.004 

2 D14 69.4 29.8252 29.825 29.820 0.001 0.005 

2 D23 69.8 9.8629 9.873 9.869 -0.010 -0.006 

2 D24 69.9 20.2545 20.270 20.266 -0.015 -0.011 

3 D14 69.3 29.8252 29.834 29.830 -0.009 -0.005 

3 D24 68.7 20.2545 20.265 20.260 -0.011 -0.006 

3 D34 66.8 10.3616 10.375 10.370 -0.014 -0.009 

 

As Tables 4.12 and 4.13 show in most cases there was a substantial improvement in the 

ranges measured between the two targets.  In many cases the temperature correction in 

the range accounted for more than 1cm of error.  Being that the accuracy of the laser 

rangefinder used in the Lynx Mobile Mapper is ±5mm [1]; this correction is outside the 

white noise of the laser rangefinder and therefore a significant error.  In one case the 
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temperature correction made no difference.  Target 12D in Table 4.12 saw no significant 

correction applied.  Target 14D  in Table 4.12, on the other hand, shows that the 

temperature correction made the measured range slightly worse.  In this case, the 

maximum correction applied to Target 14D  in Table 4.12 is 4mm.  It is safe to conclude 

that the effect of the temperature for target 14D  is within the white noise of the laser 

range finder and therefore acceptable. 

 

On the other hand, both 14D and 34D  in Table 4.13 still show range discrepancies greater 

than 1cm after temperature correction.  As previously stated, there are many factors that 

contribute to the error in a laser range finder.  From the intensity information for the 

ranges collected on Target 4 from position 3 on March 18th, 2012, it becomes apparent 

that the receiver in the sensor was close to saturation.  This is probably due to the 

proximity of the sensor to that target.  Saturation in the receiver during measurement can 

Table 4.13: Comparison of LiDAR measured ranges to total station measured ranges before and 
after temperature compensation was applied.  This trial was conducted on March 
18th, 2012. 

Position 

R
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Station and 
C
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[R
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T ] (m
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1 D12 64.25 9.5407 9.551 9.544 -0.011 -0.003 
1 D13 67.5 19.4335 19.441 19.430 -0.007 0.003 
1 D14 69 29.8252 29.838 29.830 -0.013 -0.005 
2 D13 71.8 19.4335 19.451 19.439 -0.017 -0.005 
2 D14 71.1 29.8252 29.840 29.830 -0.014 -0.005 
2 D23 72.4 9.8629 9.886 9.871 -0.023 -0.008 
2 D24 72.6 20.2545 20.274 20.258 -0.019 -0.004 
3 D14 72.05 29.8252 29.852 29.839 -0.027 -0.014 
3 D24 72.7 20.2545 20.274 20.258 -0.020 -0.004 
3 D34 73 10.3616 10.397 10.382 -0.036 -0.020 
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greatly add error to that range measurement.  However, the temperature corrections for 

these measurements were applied correctly and these corrections cause the LiDAR ranges 

to more closely conform to the total station measured ranges. 

4.3 Calibration of MTL Sensors to the DG System 

4.3.1 Introduction 

One of the most pressing problems for MTL users to solve is system integration between 

the LiDAR sensor and the DG system.  As was shown in Section 3.0, the integration of 

LiDAR and DG system creates the need for precise and accurate alignment information 

between the two sensor coordinate frames.  If the error in the angular alignment in any of 

the three boresight parameters is allowed to become 0.02° or higher, then this error will 

become the dominant error source in the final data set.  Similarly, if the lever arm offset 

between the LiDAR and the DG system is allowed to become 0.02m or higher, then this 

error will similarly dominate the error in the final point cloud. 

 

Methods for performing a rigorous boresight of LiDAR sensors to a DG system were 

discussed in Section 2.2.3.2.4.  Methods for accurately selecting target objects from the 

point cloud have been proposed by several sources [6, 7, 23].  These methods are needed 

when calibrating LiDAR sensors since LiDAR data is, by its nature, discreet.  This means 

that control points usually do not coincide with any single LiDAR point.  Therefore a 

means for dealing with the mismatch between LiDAR and control is required lest user 

pick error becomes the limiting factor in calibrating a sensor.  The methods for dealing 

with this problem generally fall into one of three categories, point based, line based and 
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plane based.  It has been shown [111] that point-based and plane-based self-calibration of 

STL scanners can produce comparable results.  

 

In this chapter, a new method for determining the boresight angles and lever arm offsets 

for MTL systems with multiple pairs of sensors is explored.  To understand how this new 

method works, it is first important to derive the mathematical framework behind two 

accepted methods in use today, finding boresight and lever arms from ground control 

(BLAGC) and finding boresight and lever arms from opposing data strips (BLAOS).  

Finding boresight and lever arms from ground control (BLAGC) is a fairly straight 

forward process where a least squares adjustment is employed to calibrate a single MTL 

sensor by fitting the data to the predefined geometry of a field of control points.  Finding 

boresight and lever arms from opposing data strips (BLAOS) is a method for calibrating a 

single MTL sensor by fitting the data from a single pass of a calibration scene or object to 

the data from a different pass of that same scene or object, as observed from a different 

viewing angle and position.   

 

The new method, finding boresight and lever arms from data collected by two sensors 

operating concurrently (BLATS), extends and combines the previous two methods.  It 

uses the geometry created by simultaneously operating pairs of LiDAR sensors to 

compute the calibration parameters for both sensors simultaneously.  One of the benefits 

of using pairs of sensors in such an adjustment is that multiple passes of a group of target 

objects is not necessary to estimate boresight parameters for the system.  Another benefit 

of concurrently calibrating two sensors is the nullification of much of the positioning 
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error inherent in the DG system [112].  In addition, this chapter will present the results of 

experiments to determine how well the lever arms can be determined.  It will be shown 

how vector geometry can be used in a point based correction methodology to reduce the 

discrepancy between control points and LiDAR points. 

4.3.2 The Mathematical Models 

4.3.2.1 Finding Boresight Angles and Lever Arms from Ground Control 

(BLAGC) 

Using the LiDAR trajectory Equation (3.1) from Section 3.2.1, an adjustment to find the 

three boresight angles ( )ZYX θθθ ,,  and the three lever arm offsets ( )ZYX lll ,,  can be 

formed.  By comparing the results of Equation (3.1) with control points provided by the 

user, the basic equation of the adjustment can be formed as is given in Equation (4.10) 

( ) 0,,,,, =− ECEF
ZYXZYX

ECEF ClllP θθθ                                    (4.10) 

Where ECEFP is the computed position of a LiDAR point and ECEFC is the corresponding 

user provided control point.  Similar to Equation (3.9), a linearized form of Equation 

(3.1) must be produced, as shown in Equation (4.11). 
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Using the linearized equation (Equation (4.11)), the least square adjustment can be 

formed. 

 11111 LWAXAWA TT ⋅⋅=⋅⋅⋅                                   (4.12.1) 

Where 
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( ) ( )[ ]TN
ECEFECEFECEFECEF PCPCL )(0)1(01 −−=                    (4.12.4)

 
 























=

)(
2

)1(
2

100
00

001

NC

C

W

σ

σ
                                         (4.12.4) 

Solving Equation (4.12.1) at the initial approximates for the boresight and lever arm 

values ( )000000 ,,,,, ZYXZYX lllθθθ  results in Equation (4.13) 

( ) 11
1

111 LWAAWAX TT
BL ⋅⋅⋅⋅⋅=

−                                        (4.13) 

4.3.2.2 Finding Boresight Angles and Lever Arms from Opposing Data 

Strips (BLAOS) 

One of the most popular ways of deriving boresight values for MAL and MTL is to 

compare multiple passes of a target object or scene against one another.  Again, using the 

LiDAR trajectory Equation (3.1) from Section 3.2.1 and differencing data taken in the 

same area but at different times along the trajectory, the boresight angles can be 

estimated without the aid of ground control.  The new basic equation of the adjustment is 

shown in Equation (4.14). 

( ) ( ) 0,,,,,,,,,, 21 =− ZYXZYX
ECEF

PZYXZYX
ECEF

P lllPlllP θθθθθθ            (4.14) 
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Where the label (P1) denotes the first pass of the sensor by the calibration object and the 

label (P2) denotes the second pass of the sensor by the same calibration object.  The 

adjustment proceeds similarly as previously shown.  Equations (4.11) to (4.13) remain 

the same, except for Equation (4.12.2) and Equation (4.12.4) which are replaced by 

Equation (4.15) and Equation (4.16). 
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( ) ( )( ) ( ) ( )( )[ ]TNP
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ECEF PPPPL )(1020)1(10202 −−=            (4.16) 

While control points are not necessary to perform this type of boresight adjustment, they 

can be introduced as conditions to constrain the adjustment.  To introduce these 

constraints on the adjustment, Equation (4.15) and (4.16) can be replaced with Equations 

(4.17) and (4.18), respectively.  
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Where both 2B  and 2H consist of N pairs of common points and M pairs of control 

points.  The solution to the set of linear equation then becomes Equation (4.19). 

( ) 22
1

222 HWBBWBX TT
BL ⋅⋅⋅⋅⋅=

−                                    (4.19) 

4.3.2.3 Finding Boresight Angles and Lever Arms from Data from Two 

Sensors, Collected Concurrently (BLATS) 

Since many MTL systems consist of two or more LiDAR sensors, the differences in 

geometry between one sensor observing a point and another sensor observing that same 

point can be used to compute the boresight and lever arm of each LiDAR sensor with 

respect to a common DG system.  The base equation of the adjustment is shown in 

Equation (4.20). 

( ) ( ) 0,,,,,,,,,, 22222221111111 =− ZYXZYX
ECEF

SZYXZYX
ECEF

S lllPlllP θθθθθθ          (4.20) 
 

Where the label (S1) denotes a point scanned from the first sensor on the calibration 

object, with ( )111111 ,,,,, ZYXZYX lllθθθ  representing the boresight and lever arms between 

Sensor 1 and the DG system.  The label (S2) denotes a point scanned from the second 

sensor on the same calibration object as S1, with ( )222222 ,,,,, ZYXZYX lllθθθ  representing 

the boresight and lever arms between Sensor 2 and the DG system.  Again the adjustment 

proceeds along the lines of Equations (4.11) to (4.13), except for Equations (4.12.2), 
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(4.12.3) and (4.12.4) which are replaced by Equations (4.21), (4.22) and (4.23), 

respectively. 

 

( ) ( )[ ]21113 SS AAB =                                              (4.21) 

( ) ( )[ ]TSBLSBLBL XXX 21113 =                                       (4.22) 
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ECEF PPPPL )(1020)1(10203 −−= 3        (4.23) 

Again, control points may optionally be introduced to the adjustment as constraints.  To 

introduce these constraints on the adjustment, Equation (4.21) and (4.23) can be replaced 

with Equation (4.24) and Equation (4.25).  
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Where ( ) 11 SA , ( ) 21 SA and 3L consist of N pairs of common points between the two 

sensors, ( )CSA 11  and ( )CSL 11  consist of M1 pairs of LiDAR to control comparisons from 

Sensor 1 data and ( )CSA 11  and ( )CSL 21 consist of M2 pairs of LiDAR to control comparisons 

from Sensor 2.  The solution to the set of linear equation then becomes Equation (4.26). 

( ) 33
1

333 HWBBWBX TT
BL ⋅⋅⋅⋅⋅=

−                                    (4.26) 
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4.3.2.4 Correcting Point Selections 

Points extracted from a LiDAR point cloud generally fall between MTL scan lines.  This 

occurs as the object upon which the extracted point lies is usually not directly scanned by 

the MTL system.  Assume there exists four three dimensional points 

[ ] [ ] [ ]333322221111 ,,,,,,,, ZYXPZYXPZYXP ===  and [ ]EEE ZYXE ,,=  that are not 

collinear.  Let it further be assumed that the relative positions of these points will remain 

constant while the boresight and lever arm values are adjusted.  These four points 

represent the point (E) extracted from the point cloud and the three closest LiDAR points 

( )321 ,, PPP  to this extracted point.  Figure 4.12 shows how vector addition can be used to 

describe the location of the point extracted from the LiDAR point cloud with respect to 

the other three points.   

 

In general, point E can be located with respect to the LiDAR points  through 

vector addition as shown in Equation (4.27). 

( ) ( ) ( ) ( ) ( ) ( )2312
2312

3
2321211 PPXPP

PPXPP
S

PPSPPSPE −−⋅
−−

+−⋅+−⋅+=  (4.27) 

Where  is the scale factor needed to adjust the magnitude of the vector between  and 

,  is the scale factor needed to adjust the magnitude of the vector between  and , 

and is the scale factor used to adjust the normalized normal vector of the plane formed 

by , and . 
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Figure 4.12: Vector addition used to describe the position of a point selected out of the LiDAR point 
cloud with respect to points measured in that point cloud.  A) shows the extracted point 
within the context of the LiDAR point Cloud.  B) shows the vector addition used to 
describe the extracted point with respect to the other measured points. 

 

Making the further assumption that all points extracted from the point cloud will lie in the 

same plane as , Equation (4.18) can be simplified as shown in Equation (4.28). 

( ) ( )2321211 PPSPPSPE −⋅+−⋅+=                                      (4.28) 

Since there are three equations and two unknowns, this system of linear equations can be 

written in matrix form and solved as a least square adjustment.  The design matrix, 

observation vector and parameter vector for the adjustment are shown in Equations 

(4.29.1), (4.29.2) and (4.29.3), respectively. 
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( ) ( ) ( )[ ]TEEE ZZYYXXL 1114 −−−=                              (4.29.2) 

[ ]TS SSX 21=                                                (4.29.3) 

The solution to this set of linear Equations is given in Equation (4.30) 

( ) 44
1

44 LAAAX TT
S ⋅⋅⋅=

−                                         (4.30) 
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Using  and combining Equation (4.28) with Equation (4.11) produces 

Equation (4.31). 

( )

( )

( )

( )

( )

Z
Z

ECEF

Y
Y

ECEF

X
X

ECEFECEFECEFECEF

ECEF
Z

Z

ECEF

Y
Y

ECEF

X
X

ECEF

ECEFECEFECEF
ECEF

Z
Z

ECEF

Y
Y

ECEF

X
X

ECEFECEF

ECEFECEF
ECEF

Z
Z

ECEF

Y
Y

ECEF

X
X

ECEFECEFECEF

ECEF
ECEF

Z
Z

ECEF

Y
Y

ECEF

X
X

ECEFECEFECEFECEF
ECEF

l
l

PSl
l

PS

l
l

PSPSPSPS

PSl
l

P
Sl

l
P

Sl
l

P
S

P
S

P
S

P
SPS

l
l

PSl
l

PSl
l

PSPS

PSPSPSl
l

PS

l
l

PSl
l

PSPSPS

PSPSl
l

Pl
l

P

l
l

PPPPPE

∆⋅
∂

∂
⋅−∆⋅

∂
∂
⋅−

∆⋅
∂

∂
⋅−∆⋅

∂
∂
⋅−∆⋅

∂
∂
⋅−∆⋅

∂
∂
⋅−

⋅−∆⋅
∂

∂
⋅+∆⋅

∂
∂
⋅+∆⋅

∂
∂
⋅+

∆⋅
∂

∂
⋅+∆⋅

∂
∂
⋅+∆⋅

∂
∂
⋅+⋅+

∆⋅
∂

∂
⋅−∆⋅

∂
∂
⋅−∆⋅

∂
∂
⋅−∆⋅

∂
∂
⋅−

∆⋅
∂

∂
⋅−∆⋅

∂
∂
⋅−⋅−∆⋅

∂
∂
⋅+

∆⋅
∂

∂
⋅+∆⋅

∂
∂
⋅+∆⋅

∂
∂
⋅+∆⋅

∂
∂
⋅+

∆⋅
∂

∂
⋅+⋅+∆⋅

∂
∂

+∆⋅
∂

∂
+

∆⋅
∂

∂
+∆⋅

∂
∂

+∆⋅
∂

∂
+∆⋅

∂
∂

+=

2
2

2
2

2
23

3

2
22

2

2
21

1

2
2

202
3

2
3

2
3

2

3
3

3
22

2

3
21

1

3
2302

1
1

1
1

1
13

3

1
1

2
2

1
11

1

1
1101

2
1

2
1

2
13

3

2
12

2

2
1

1
1

2
1201

11

1
3

3

1
2

2

1
1

1

1
10

θ
θ

θ
θ

θ
θ

θ
θ

θ
θ

θ
θ

θ
θ

θ
θ

θ
θ

θ
θ

θ
θ

θ
θ

θ
θ

θ
θ

θ
θ

 (4.31) 

Collecting like terms produces Equation (4.32). 

lzlylx EEEEEEEE ++++++= 3210 θθθ                            (4.32.1) 

Where    

( ) ( ) ( ) ( ) ( )202302101201100
ECEFECEFECEFECEFECEF PSPSPSPSPE ⋅−⋅+⋅−⋅+=        (4.32.2) 

1
1

2
2

1

3
2

1

1
1

1

2
1

1

1
1 θ

θθθθθθ ∆⋅







∂

∂
⋅−

∂
∂
⋅+

∂
∂
⋅−

∂
∂
⋅+

∂
∂

=
ECEFECEFECEFECEFECEF PS

P
SPSPSPE  (4.32.3) 

140 
 



 2
2

2
2

2

3
2

2

1
1

2

2
1

2

1
2 θ

θθθθθθ ∆⋅







∂

∂
⋅−

∂
∂
⋅+

∂
∂
⋅−

∂
∂
⋅+

∂
∂

=
ECEFECEFECEFECEFECEF PS

P
SPSPSPE  (4.32.4) 

3
3

2
2

3

3
2

3

1
1

3

2
1

3

1
3 θ

θθθθθθ ∆⋅







∂

∂
⋅−

∂
∂
⋅+

∂
∂
⋅−

∂
∂
⋅+

∂
∂

=
ECEFECEFECEFECEFECEF PS

P
SPSPSPE  (4.32.5) 

x
x

ECEF

x

ECEF

x

ECEF

x

ECEF

x

ECEF

lx l
l

PS
l

P
S

l
PS

l
PS

l
PE ∆⋅








∂

∂
⋅−

∂
∂
⋅+

∂
∂
⋅−

∂
∂
⋅+

∂
∂

= 2
2

3
2

1
1

2
1

1  (4.32.6) 

y
y

ECEF

y

ECEF

y

ECEF

y

ECEF

y

ECEF

ly l
l

PS
l

P
S

l
PS

l
PS

l
PE ∆⋅











∂
∂
⋅−

∂
∂
⋅+

∂
∂
⋅−

∂
∂
⋅+

∂
∂

= 2
2

3
2

1
1

2
1

1  (4.32.7) 

z
z

ECEF

z

ECEF

z

ECEF

z

ECEF

z

ECEF

lz l
l

PS
l

P
S

l
PS

l
PS

l
PE ∆⋅








∂

∂
⋅−

∂
∂
⋅+

∂
∂
⋅−

∂
∂
⋅+

∂
∂

= 2
2

3
2

1
1

2
1

1  (4.32.8) 

The design and observation matrices, which can be used to calculate the boresight and 

lever arms, can therefore be constructed as shown in Equations (4.33), (4.34) and (4.35). 
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The solution to the set of linear equations then becomes Equation (4.36). 

( ) 555
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−                                    (4.36) 

4.3.2.5 Adjustment Statistics 

For all the adjustments in the previous Sections, several types of statistics may be 

generated to aid the adjustment or evaluate its results.  The most common statistic to 

calculate for a least squares adjustment are the residuals and the variance of unit weight 

as shown in Equation (4.37) and Equation (4.38). 

LXAV BL −⋅=                                                    (4.37) 

ji
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−
=2

0σ̂                                                        (4.38) 

Where V is the residual vector, 2
0σ̂ is the variance of unit weight, i is the number of 

observations and j is the number of unknowns.  Using the design (A) and weight (W) 
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matrices previously defined, some useful matrices for calculating a number of statistics 

can be created.  If the number of unknowns is j and the number of observations is k, then 

the matrices shown in Equations (4.39) can be formed.      
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The estimates for the quality of the unknown parameters can be obtained from the 

diagonal elements of Equation (4.39.1) and the variance of unit weight according to 

Equation (4.40). 

( )jiaaiii ,,2,1ˆˆ 0 2=⋅= σσ                                        (4.40) 

Outlier detection can be implemented in the adjustment to eliminate any observations that 

may be biasing the adjustment.  Using critical values taken from the Tau distribution, 

outliers may be identified as shown in Equation (4.41.1).  
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Where iv are the individual a-posteriori residuals from vector V and  is the degrees of 

freedom of the adjustment.   Since the Tau critical values are not easily accessible, the 
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student t critical value can be modified to conform to the Tau distribution as shown in 

Equation (4.41.2) [113]. 
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In addition to outlier detection, another form of reliability analysis that can be performed 

is to calculate the reliability indexes.  The redundancy of the observations can be 

calculated as shown in Equation (4.42) [114]. 

   WQR ⋅=                                                            (4.42) 

The redundant indexes for each observation in the adjustment are the diagonal terms (  

of the matrix R from Equation (4.42).  The lower  the more important the observation 

is to the solution of the boresight and lever arm parameters. 

   

Another measure of the importance of the individual equations to the adjustment is the 

contribution index given by Equation (4.43.2) [114]. 

  AAAW ⋅⋅= 1α                                                      (4.43.1) 

     
i
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i w
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=                                                           (4.43.2) 

In the case of the contribution index, the higher the value of each individual term, the 

more effect the equation has on parameter j. 

 

Having computed the redundant indexes for each of the observations, variance 

component estimation can be used to re-estimate the standard deviations of the measured 
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quantities ( ( )
2

iCσ ) for each group of measurements.  The equation for computing the new 

standard deviations is shown in Equation (4.44) [115].  

  ( ) ( ),,1

1

1



 ==

∑

∑

=

= i
r

v

k

l
kk

k

l
l

iCσ                                                     (4.44)    

4.3.3 Implementation and Testing     

4.3.3.1 The Calibration Site 

For testing purposes, MTL data was collected using the Lynx Mobile Mapper.  This data 

was collected around a commercial office building with control points surveyed onto the 

face of the building and on the lines painted onto the asphalt surrounding it.  The data 

used is shown in Figure 4.13. 

 
Figure 4.13: Lynx data collected around an office building in Vaughan Ontario Canada on February 

5th, 2013.  Control points are present on the building walls and on paint lines in the 
parking lot. 

 
The LiDAR data comes with two sets of boresight and lever arm values.  Table 4.14 

shows the boresight and lever arm values that are indicated on the mechanical drawings 

for a generic Lynx system that uses an FMU P300 model IMU.  Table 4.15 shows the 
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boresight and lever arms values provided by the manufacture of the LiDAR for this 

particular system.  For processing purposes the point clouds were created using both sets 

of boresight and lever arm values.  The control points on the face of the building were 

extracted from an initial processing of each of these point clouds.   

 
Table 4.14: Generic boresight and lever arm values for a Lynx Mobile Mapper system. 

Value Roll (°) Pitch(°) Heading (°) X (m) Y (m) Z (m) 
Sensor 1 0 -30 35 0.035 -0.727 -0.169 
Sensor 2 0 -30 -35 0.035 0.673 -0.169 

 
Table 4.15: Manufacturer provided boresight and lever arm values for the Lynx Mobile Mapper 

system used in testing. 
Value Roll (°) Pitch(°) Heading (°) X (m) Y (m) Z (m) 

Sensor 1 0.07 -29.7 37.55 0.035 -0.717 -0.169 
Sensor 2 -0.15 -29.85 -37.05 0.035 0.673 -0.169 

 

The control coordinates were surveyed by traversing around the target site with a Leica 

TC1800 (1”, 1mm + 2ppm) total station.  ECEF coordinates were established by post 

processing static GPS observations of the control traverse and referencing them to the 

same base station as the Lynx Mobile Mapper data. The static GPS data was collected 

using a Leica 1200 GPS receiver (5mm + 0.5ppm (horizontal), 10mm + 0.5ppm 

(vertical)).  The control coordinates established at the target site are given in Table 4.16, 

along with error estimates.   

 

The control points listed in Table 4.16 are located on 3 walls of the commercial building 

and on the parking lines.  The V200 and H200 series points are located on the Eastern 

walls of the building and the Eastern parking lot lines respectively.  The V300 and H300 

series points are located on the Northern wall of the building and the Northern parking lot 

lines.   The V400 series points are located on the Western wall of the building.   
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Table 4.16: ECEF control coordinates established at the target site using Total Station. 

Target 
ID X [m] Y [m] Z [m] 

σX σY σZ σ3D 
[mm] [mm] [mm] [mm] 

V201 838501.714 -4535000.057 4391303.864 3.0 2.7 1.9 4.4 
V202 838501.356 -4534995.841 4391308.258 3.1 2.6 1.8 4.4 
V203 838501.178 -4534993.735 4391310.453 3.2 2.6 1.8 4.5 
V205 838501.482 -4534998.784 4391302.619 3.0 2.6 2.0 4.4 
V206 838501.087 -4534994.581 4391307.034 7.4 2.5 5.7 9.7 
V209 838501.182 -4534997.019 4391300.934 4.0 3.6 2.9 6.1 
V211 838500.718 -4534990.707 4391307.480 10.0 5.0 8.2 13.8 
V212 838500.259 -4534986.472 4391311.917 5.2 3.5 2.6 6.7 
V213 838500.944 -4534995.744 4391299.689 4.1 3.5 3.0 6.1 
V302 838473.501 -4534979.052 4391330.731 2.3 3.2 2.3 4.5 
V303 838470.494 -4534979.482 4391330.865 2.2 3.4 2.5 4.8 
V308 838473.272 -4534977.782 4391329.487 2.3 3.0 2.4 4.5 
V309 838470.257 -4534978.211 4391329.619 2.2 3.3 2.6 4.7 
V315 838469.933 -4534976.468 4391327.921 3.6 4.7 4.0 7.1 
V316 838463.897 -4534977.288 4391328.228 3.5 5.7 4.6 8.1 
V317 838460.854 -4534977.706 4391328.313 1.2 3.0 2.0 3.8 
V321 838469.652 -4534975.258 4391326.678 1.4 1.9 1.8 2.9 
V323 838460.632 -4534976.481 4391327.142 1.2 2.8 2.2 3.8 
V324 838454.606 -4534977.266 4391327.407 5.3 7.4 6.2 11.1 
V403 838445.664 -4534997.083 4391317.459 3.7 1.8 1.5 4.4 
V405 838446.178 -4535003.395 4391310.890 5.2 2.9 2.4 6.4 
V424 838445.541 -4534998.226 4391310.185 4.7 2.2 2.4 5.6 
V425 838445.626 -4535000.375 4391307.945 5.3 2.6 2.9 6.6 
H215 838508.279 -4534994.819 4391296.377 2.4 1.8 1.7 3.5 
H216 838508.269 -4534994.740 4391296.463 2.4 1.8 1.7 3.5 
H235 838507.915 -4534991.132 4391300.274 3.6 2.4 2.1 4.8 
H236 838507.904 -4534991.060 4391300.357 3.6 2.4 2.1 4.8 
H255 838507.582 -4534987.429 4391304.223 3.3 2.0 1.7 4.2 
H256 838507.568 -4534987.349 4391304.307 3.4 2.0 1.7 4.2 
H315 838477.939 -4534967.735 4391330.728 1.0 0.6 0.7 1.4 
H316 838477.825 -4534967.749 4391330.731 1.0 0.6 0.7 1.4 
H385 838458.643 -4534970.169 4391331.471 1.0 0.8 0.9 1.5 
H386 838458.531 -4534970.185 4391331.479 1.0 0.8 0.9 1.5 

 
In all cases natural building features and paint lines were used in lieu of placing 

predefined targets.  It was decided to use existing features as these are more readily 

accessible to most surveyors and do not require the permission of property owners for 
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their placement.  Using building features also means that historic or previously collected 

LiDAR data can be used, as pre-preparation of the target site is not required. 

4.3.3.2 Utility Development 

The mathematical model described above was implemented in Microsoft Visual C++ 6.0 

and tested using the workflow depicted in Figure 4.14.   

 

Point clouds were generated for Sensor 1 and Sensor 2 using both the boresight and lever 

arm values in Table 4.14 and the boresight and lever arm values in Table 4.15.  Between 

the data from the LiDAR sensors 33 pairs of common points were extracted from the four 

point clouds.  The control points were then apportioned such that each control point was 

assigned to a particular sensor’s point cloud and so as to evenly distribute control across 

the entire length of each sensor’s point cloud.  It should be noted that far fewer control 

points in the parking lot could be extracted from Sensor 2 due to the angles at which the 

targets were seen and the brightness of the intensity return from these points on this 

sensor. 

 

An initial adjustment was performed on the data and outlier detection based on the Tau 

test statistic given in Equation (4.41.1) was performed on both sets of point clouds.  

Identified points that exceeded the Tau critical value as defined by Equation (4.41.2) 

were removed from the adjustment.  Of the 33 common points between the two sensors, 

29 remained after outlier detection was performed.  Of the 33 control points used, 21 

remained after outlier detection was performed.  The redundancy for the adjustment used 

after outlier detection was performed was 38 points (29 + 21 – 12). 
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Figure 4.14: Block diagram of the utility testing workflow used to evaluate the effectiveness of the 

boresight and lever arm adjustment. 
 

Variance component estimation was used on the cleaned data set to refine the estimated 

errors for the common picked points between the two sensors and the control points 

picked from each sensor.  At first the common points were estimated to have an error 

envelope of 50mm based on the manufacturer’s documentation [2].  The control points 

were assigned a common error envelope of 15mm to account for the error estimates in 

Table 4.16 and the error in the point selection.  After several iterations were completed, 

the standard deviation of unit weight approached 1.0 and the common points had an 

149 
 



estimated error envelope of 9mm.  The control points had a larger error envelope of 

17mm. 

 

Once the error estimates for the point comparisons were established, the data sets were 

run through the adjustment again and standard deviations were calculated for the adjusted 

boresight parameters according to Equation (4.40).  Reliability analysis was performed 

and the redundancy vector of Equation (4.42) and a matrix of contribution indexes 

(Equation (4.43.2)) were computed.  As an additional indication of the quality of the 

boresight and lever arms being calculated, conditional variance analysis was performed 

similar to that performed in [103]. 

4.3.3.3 Determining the Minimum Number of Control Points to 

Incorporate into the Adjustment 

To get a good solution several control points, both on the asphalt and on the building, 

were used in the solution.  It is necessary to figure out if control points are required to 

accurately determine the boresight and lever arms and if so, how much control and how 

does it need to be distributed.  The adjustment was run several times using varying 

numbers of control points.  Control points were eliminated from the solution based on 

their Tau critical values and in such a way as to maintain an approximately equal 

distribution over the collection area.  Figure 4.15 and Figure 4.16 show the estimated 

errors for the boresight and lever arm parameters of Sensors 1 and 2 as the number of 

control points in the solution were reduced. 
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Figure 4.15: One sigma accuracy estimates for the boresight parameters of Sensor 1 when the control 

points were systematically removed from the adjustment.  Standard deviation of roll, 
pitch and heading are given in degrees and X, Y, Z are given in metres.  

 

 
Figure 4.16: One sigma accuracy estimates for the boresight parameters of Sensor 2 when the control 

points were systematically removed from the adjustment.  Standard deviation of roll, 
pitch and heading are given in degrees and X, Y, Z are given in metres. 

 
In both Figure 4.15 and Figure 4.16, it can be noticed that a gradual increase in the 

estimated errors for all three lever arms occurs as the amount of control used in the 

solution is reduced.  The boresight angles generally are not affected by the presence of 
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the control.  The Z lever arm is the most effected by control as its complete absence 

causes the Z lever arm error to soar.   

 

  
Figure 4.17: Redundancy indexes for the X, Y, Z components of the boresight and lever arm 

adjustment when 29 common LiDAR points and 7 control points are used in the 
adjustment.  

 
The point where the most noticeable transition in Figure 4.15 and Figure 4.16 occurs is 

when 6 control points are used.  Looking more closely at the redundancy values (Figure 

4.17) just before this point, when 7 control points were used, it can be noticed that the 

P400 series values and the single control point left on the vertical surface are the least 

redundant observations in the adjustment.  Looking closer at the single control point on a 

vertical surface, the redundancy of this observation on the Z coordinate is relatively quite 

small.  Looking at the contribution of point V316 to the total error (Figure 4.18), it can be 

noticed that the Y and Z lever arms for both sensors are heavily dependent on this lone 

control point on a vertical surface.  
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Figure 4.18: Contribution indexes for point V316 when 29 comparison points and 7 control points 

are used in the adjustment. 
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Figure 4.19: One sigma accuracy estimates for the boresight parameters of Sensor 1 when the control 

points were systematically removed from the adjustment.  Standard deviation of roll, 
pitch and heading are given in degrees and X, Y, Z are given in metres.  
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Figure 4.20: One sigma accuracy estimates for the boresight parameters of Sensor 2 when the control 

points were systematically removed from the adjustment.  Standard deviation of roll, 
pitch and heading are given in degrees and X, Y, Z are given in metres. 

 

Running the adjustment multiple times with varying levels of control points has shown 

that the lever arm adjustment can be quite stable with relatively few control points, 

However, the distribution of control so far has favored those control point collected on 

the horizontal road surface.  This has led to a situation where the lone control point on a 

vertical surface has become overly significant in determining the adjusted values for two 

of the three lever arms for both sensors.  Removing the control points located on 

horizontal surfaces and running the same test again with only those control points located 

on vertical surfaces, it can be noticed that the effect of these vertical surface control 

points on the end result is significant.  

 

Figure 4.19 and Figure 4.20 show the estimated errors for the boresight and lever arm 

parameters of Sensors 1 and 2 using only those control points located on vertical 
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surfaces.  The graphs in Figure 4.19 and Figure 4.20 show what happens when the 

number of vertical surface control points in the solution was systematically reduced.    

 

In Figure 4.19 and Figure 4.20, the boresight angles were again not greatly affected by 

the presence or lack thereof of control points.  The Z lever arm estimates are consistently 

quite a bit higher than previously determined for both sensors.  The standard deviation for 

the lever arms remained fairly steady until the number of control point dropped below 6 

and then they began to increase. 

 
Figure 4.21: Redundancy indexes for the X, Y, Z components of the boresight and lever arm 

adjustment when 29 common LiDAR points and 7 control points are used in the 
adjustment.   

 

Looking closer at the redundancy values (Figure 4.21) when 7 control points were used in 

the solution, it is clear that again the redundancy on the common points selected on the 

western wall is low.  It is also clear that the distribution among the control is more even.  

Looking at the control point with the lowest redundancy values (V405), it is clear from 
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the contribution index for this point (Figure 4.22) that the Z lever arm is much more 

affected by the contributions of this control point than all the other parameters for both 

sensors.  

 
Figure 4.22: Contribution indexes for point V405 when 29 comparison points and 7 control points 

are used in the adjustment. 
 

Comparing the contribution index in Figure 4.18 with the contribution index in Figure 

4.22 it is clear that the Z lever arm is the calibration parameter that is most affected by 

the presence of the control points.  It also seems that this calibration parameter is the one 

that most requires dispersion of the control points across both vertical and horizontal 

surfaces during the collect.  The number of control points need not be excessive, in this 

case, with 29 common points between the sensors and 7 control points with good 

dispersion, the adjustment had sufficient redundancy (29 + 7 – 12 = 24) to get centimeter 

or sub centimeter accuracy on all three of the lever arm estimates in Sensor 1. 
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4.3.4 Results and Discussion 

Since a manufacturer’s calibration existed, determination of the accuracy of that 

calibration was performed.  The common points extracted from the manufacturer’s 

calibrated point cloud were run through a single iteration of the adjustment and the 

standard deviations of the boresight and lever arm parameters for both sensors were 

determined.   These values are given in Table 4.17. 

Table 4.17: Boresight and lever arm values with their standard deviations for data from a Lynx 
Mobile Mapper, as provided by the manufacturer. 
Value Roll (°) Pitch(°) Heading (°) X (m) Y (m) Z (m) 

Sensor 
1 

Calibration 
Values 

0.07 -29.7 37.55 0.035 -0.717 -0.169 

Standard 
Deviation 

0.0031 0.0025 0.0018 0.0103 0.0108 0.0127 

Sensor 
2 

Calibration 
Values 

-0.15 -29.85 -37.05 0.035 0.673 -0.169 

Standard 
Deviation 

0.0038 0.0025 0.002 0.0121 0.0136 0.0202 

 

To understand the amount of error incorporated within the point clouds created using the 

manufacturer’s calibration values (Table 4.17), all surveyed control points (33 in total) 

were extracted from the LiDAR point clouds of both sensors of the MTL system and used 

as check points.  Residuals were formed between the control points and the extracted 

check points, the results of which are displayed in Figure 4.23.  The check point residuals 

in Figure 4.23 are separated into their horizontal and vertical components and are further 

separated into categories depending on whether they are located on a horizontal feature 

(parking lot line) or a vertical feature (building wall).  The designator V and H are used 

on the check point residuals to indicate if the feature is a vertical (V) feature such as a 

building wall or a horizontal (H) feature such as a parking lot paint line. 
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Figure 4.23: Check point residuals computed from point primitives extracted from the LiDAR point 
clouds of each sensor in the MTL system and compared to the control points associated 
with unique building features before boresight and lever arm correction. 

 

Examining the check point residuals in Figure 4.23, it is found that the horizontal 

component of the residuals of Sensor 1 have a mean average of 55mm and a standard 

deviation of 21mm.  The vertical components of the check point residuals for Sensor 1 

have a mean of 31mm and a standard deviation of 24mm.  Similarly, the horizontal 
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components of the Sensor 2 check point residuals in Figure 4.23 have a mean of 43mm 

and a standard deviation of 31mm, while, the vertical components have a mean of 31mm 

and a standard deviation of 18mm. 

 
Figure 4.24: Sobol total effect indexes for the Z lever arm of all Sensor 1 points using manufacturer 

calibration values. 
 

 
Figure 4.25: Sobol total effect indexes for the Z lever arm of all Sensor 2 points using manufacturer 

calibration values. 
 

It is also possible to use conditional variance analysis to view these errors by how much 

they contribute to the error in the final point cloud.  Running conditional variance 

analysis, it is found that the largest single contributor to the error for all the points in the 
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point cloud is the Z lever arm.  Depending on the range from the LiDAR to the target the 

error in the Z lever arm accounts for between 30% (long range) and 75% (short range) of 

the total error in the point cloud from Sensor 1 (Figure 4.24).  Similarly, the Z lever arm 

accounts for between 65% (long range) and 88% (short range) of the total error in the 

point cloud from Sensor 2 (Figure 4.25).   

 

Selecting points V316, H215, H216, H315, H316, H385 and H386 as the control points 

which will be used in the adjustment, the algorithm was run using an additional 29 

common points (24 degrees of freedom).  Running the adjustment with these 36 points 

and using the initial estimates taken from the mechanical drawing calibration values 

listed in Table 4.15 produced a new set of calibration values and their estimated errors.  

The output calibration values are given in Table 4.18.   

Table 4.18: Calculated boresight and lever arm values with standard deviation error estimates for 
data from a Lynx Mobile Mapper point cloud. 
Value Roll (°) Pitch(°) Heading (°) X (m) Y (m) Z (m) 

Sensor 
1 

Calibration 
Values 

0.1217 -29.6692 37.4554 0.019 -0.749 -0.181 

Standard 
Deviation 

0.0012 0.0014 0.0010 0.0065 0.0055 0.0068 

Sensor 
2 

Calibration 
Values 

-0.1136 -29.4622 -37.3087 0.0358 0.612 -0.175 

Standard 
Deviation 

0.0013 0.0011 0.0010 0.0072 0.0076 0.0111 

 
To confirm that the adjustment has improved the MTL system calibration, all surveyed 

control points (33 in total), including the 7 control points used in the calibration process, 

were extracted from the LiDAR point clouds of both sensors after the calibration was 

performed.  Residuals were formed between the control points and the extracted check 

points from point clouds created for both sensors using the estimated calibration values of 
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Table 4.18 (Figure 4.26).  The 7 control points (V316, H215, H216, H315, H316, H385 

and H386) used as constraints were included in Figure 4.26 to quantify the final size of 

the minimized residuals and so they may be contrasted with the pre-adjustment residuals 

(Figure 4.23).  The number of independent check points depicted in Figure 4.26 is 

therefore reduced to the other 26 check point residuals. 

 

The check point residuals in Figure 4.26 are separated into their horizontal and vertical 

components and are further separated into categories depending on whether they are 

located on a horizontal feature (paint line) or a vertical feature (building wall).  The 

designator V and H are used on residuals to indicate if the feature is a vertical (V) feature 

such as a building wall or a horizontal (H) feature such as a parking lot paint line. 

 

Examining the residuals in Figure 4.26, it is found that the of the horizontal component of 

the residuals of Sensor 1 have a mean average of 25mm and a standard deviation of 

14mm.  The vertical components of the residuals for Sensor 1 have a mean of 13mm and 

a standard deviation of 11mm.  Similarly, the horizontal components of the Sensor 2 

residuals in Figure 4.26 have a mean of 22mm and a standard deviation of 17mm, while, 

the vertical components have a mean of 18mm and a standard deviation of 11mm. 

 

Running conditional variance analysis again results in the Z lever arm being the most 

significant source of error in the point cloud.  Depending on the range from the LiDAR 

sensor, the Z lever arm accounts for between 20% (long range) and 60% (short range) of 

the total error in point cloud as shown in Figure 4.27 and Figure 4.28. 
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Figure 4.26: Check point residuals computed from point primitives extracted from the LiDAR point 
clouds of each sensor in the MTL system and compared to the control points associated 
with unique building features after boresight and lever arm correction.  Note that points 
V316, H215, H216, H315, H316, H385 and H386 were used in the adjustment process 
leaving the other 26 points as independent check points. 
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Figure 4.27: Sobol total effect indexes for the Z lever arm of Sensor 1 using calibration values 

determined from the routine. 
 

 
Figure 4.28: Sobol total effect indexes for the Z lever arm of Sensor 2 using calibration values 

determined from the routine. 
 

The standard deviations of the boresight and lever arm values that were produced by the 

routine (Table 4.18) do indicate a significant improvement over those received with the 

system (Table 4.17).  Residual comparison between control points and the point cloud 

produced by the manufacture’s calibration and the algorithm calibration show a general 

accuracy improvement in both Sensors 1 and 2 of approximately 18mm.  Conditional 
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variance analysis confirms that a significant reduction in the percentage of error caused 

by the most significant parameter (Z lever arm) also occurred.  The lever arms between 

Table 4.17 and Table 4.18 indicate that the two sensors shifted 3cm toward the driver 

side of the vehicle from the IMU position.  Sensor 1 was raised by about 12mm and 

Sensor 2 was raised by about 6mm.  These changes in the estimated position of the 

sensors within the MTL system may be a result of variation in manufacturing, variation 

in the calibration center of the sensor or mounting tolerances.  It could very well be that 

all these factors are contributing to this result.   

4.4 Summary 

In this chapter, methods for improving the accuracy of measurements from a MTL 

system’s laser range finder and for calibrating the LiDAR sensor offset values were 

discussed.  A new method for zero error calibration of a 360º LiDAR sensor was 

presented.  The zero error calibration method presented in this chapter removed the 

requirement of precisely fixing the location of the sensor with respect to some calibration 

target and instead, made use of two fixed targets, allowing the sensor to freely move 

between them.  Field testing of the zero error has shown that this calibration produced 

results in real MTL data that conformed to a control surface with deviations as small as 

7mm.  This result was better than that obtained with the zero error calibration supplied by 

the MTL manufacturer. 

 

In addition, a new method for producing temperature correction tables for a MTL laser’s 

range finder was proposed and tested.  This method uses a α-β-γ smoother as a low pass 

filter to remove white noise and produce an accurate reproducible curve of temperature 
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corrections.  Testing showed that the range reported by multiple MTL laser range finders 

drifted by 15mm~25mm as the ambient temperature varied between -20ºC and +50ºC.  

This temperature range was chosen as it falls within the normal operating conditions of 

MTL systems in the field.  Applying the correction tables to test data collected in a fixed 

position to a stationary target showed that the estimated errors in the laser range 

measurements were reduce in many cases from centimeters to millimeters. 

 

Finally, a new rigorous boresight angle and lever arm calibration method for dual sensor 

MTL systems was proposed and tested.  Employing a new concept for extracted point 

correction based on vector geometry and using enough extracted information from the 

two sensor’s point clouds (29 common points, 7 control points, 24 degrees of freedom), 

to produce boresight and lever arm values for the MTL with error estimates similar to the 

ideal error estimates discussed in Table 3.1 in Section 3.5.  Comparison between the pre 

and post calibration MTL point clouds showed a general accuracy improvement in both 

Sensors 1 and 2 of approximately 18mm.   

 

Having improved the accuracy of the laser range finder through zero error and 

temperature correction and having improved the accuracy of the boresight angles and 

lever arm values for the LiDAR sensors, two of the most significant sources of error 

identified by the conditional variance analysis conducted in Chapter 3 have been 

controlled.  There are, however, other causes of errors as outlined in Chapter 2 which 

may cause individual LiDAR observations to become biased in some manner.  To ensure 

that the points remaining in the MTL data are free of bias caused by such factors as solar 
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radiation, particulate matter in the air, specular reflection or mixed pixels, outlier 

detection should be perform within the processed point cloud.  To this end, the next 

chapter discusses new outlier detection methods and details the testing performed to 

verify their effectiveness. 
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5. Outlier Detection and Removal from MTL Data 

5.1 Introduction 

As stated in [102], the main reason for isolating outliers is associated with data quality 

assurance.  In LiDAR data, the removal of outliers ensures more uniformity in the 

positional accuracy of any points likely to be used for data extraction.  Removing outliers 

is also likely to have a positive impact on data analysis and data mining [102].  It cleans 

up LiDAR point clouds, making data features easier to visualize and manipulate.    

 

In this chapter, three new methods of outlier detection in MTL data will be compared.  As 

was previously discussed in Section 2.3, these methods will use two separate concepts, 

one in the spatial domain and one in the temporal domain.  The first method combines the 

generation of a 10 parameter quadratic polynomial surface and the general principals of 

distance-based outlier detection to spatially compare points to their neighbourhood.  The 

second method also uses a 10 parameter quadratic polynomial surface and the general 

principals of distribution based outlier detection to spatially detect outlying data points.  

The third method makes use of the precise timings available from either MTL or STL in a 

α-β-γ Kalman smoother to predict point positions based on their neighbourhood.  Using 

the principals of distance based outlier detection; the predicted point in the third method 

can be compared to the actual LiDAR point and the actual point can be removed if the 

deviation from the predicted position is too great. 
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The three methods of performing outlier detection in this chapter each have their own 

advantages and disadvantages.  The 10 parameter quadratic polynomial fitting produces a 

surface model from LiDAR points which is accommodating to the varying changes in the 

shape of the object being modeled.  It can adapt to and overcome holes in the LiDAR 

data caused by objects of occlusion and adsorptive targets in the collection area.  That 

being said, the 10 parameter quadratic polynomial is not expected to be forgiving of 

drastic changes in the LiDAR data, such as are encountered when terrain turns into a 

building, or the terrain drops away in the case of a cliff face.  The temporal algorithm, 

based on the α-β-γ Kalman smoother, on the other hand, provides a means for dealing 

with sharp changes in the surfaces scanned by the LiDAR.  Its property as a low pass 

filter (dampening white noise), combined with its ability to deal with rapid changes in 

surface direction, makes it an ideal candidate for use as an outlier filter.  The α-β-γ 

Kalman smoother has the additional benefit of being able to work on both continuous and 

discrete data sets.  How the α-β-γ Kalman smoother deals with gaps and holes in the 

LiDAR data is a question examined in this chapter. 

 

Much of the content in this chapter has been published as “Comprehensive Utilization of 

Temporal and Spatial Domain Outlier Detection Methods for Mobile Terrestrial LiDAR 

Data” [116]. 
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5.2 Mathematical Models 

5.2.1 The α-β-γ Kalman Smoother  

The mathematical basis for the α-β-γ Kalman smoother was presented in [117] and based 

on the concepts presented in [118].  Given a set of coordinate components (R), the 

standard deviations for each R ( Rσ ) and the precise timings associated with each LiDAR 

point, provided by the DG system, the Lagrange multipliers from Equation (5.1) can be 

calculated.   
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      (5.1) 

Where i = -n1,…,-2, -1, 0, 1, 2, …, n2.  Equation (5.1) requires a window size [-n1, n2] to 

be chosen.  This window will specify the number of neighboring points that will be used 

by the routine to estimate the expected range at discrete time period (k).  Once the 

Lagrange multipliers have been calculated, the coefficients for the minimum variance 

unbiased estimate of the state space variables can be found as shown in Equations (5.2.1), 

(5.2.2) and (5.2.3), respectively.   
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Again, i = -n1,…,-2, -1, 0, 1, 2, …, n2 for Equations (5.2.1), (5.2.2) and (5.2.3).  Using the 

results from the calculations in (5.2), the state estimates for the current coordinate can be 

computed as shown in Equation (5.3): 
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The variances of these estimates can be computed as in Equation (5.4): 
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The estimate for the next point in the discrete time series can be estimated as in Equation 

(5.5): 

 2
11 )()(ˆ

2
1)()(ˆ)(ˆ)1(ˆ kkkk ttkttkkk −⋅+−⋅+=+ ++ ϕϕϕϕ                       (5.5.1) 

 )()(ˆ)(ˆ)1(ˆ
1 kk ttkkk −⋅+=+ +ϕϕϕ                                       (5.5.2) 

)(ˆ)1(ˆ kk ϕϕ  =+                                                    (5.5.3) 

It is also possible to use this model to perform outlier detection.  Knowing that the 

observation equation for most α-β-γ smoothers is given by Equation (5.6): 
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( ) ( ) ( )111 +∆++=+ kkkR ϕ                                            (5.6) 

Where, R is the measured range, φ is the state estimate variable and Δ is the measurement 

noise.  By rearranging Equation (5.3.1), a model for the predicted estimate can be 

produced as is shown in Equation (5.7). 
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Finding the difference δR(k) = R(k) – Rp (k) at discrete time period (k), the variance of 

this difference can be computed as in Equation (5.8): 
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Using the variance calculated in Equation (5.8), the standard difference can be computed 

and this value can be used as a statistic test to detect outliers.  If the inequality given in 

(5.9) is true, then the range at (k) can be rejected as an outlier.  

ε
σ

≥
−
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p kRkR )()(
                                                 (5.9) 

Where ε is some threshold value determined by the user. 

5.2.2 Quadratic Polynomial Surface Fitting (PSF) 

The mathematical model presented here was first presented in [119].  The Generalized 

model for a quadric polynomial surface is given in Equation (5.10). 
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Fitting points to the polynomial surface in Equation (5.10) could result in multiple 

parallel surfaces.  Due to the mathematical ambiguity in the surface determination 

introduced by the intercept parameter 10a , It has been proposed that it is necessary to 

constrain the 10 parameter adjustment as shown in Equation (5.11) [120]. 
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After linearization of Equations (5.10) and (5.11), the adjustment problem can be 

modeled as a parametric adjustment with constraint.  The system of normal equations for 

this adjustment is given in Equation (5.12). 
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Given a set of n, (n > 10), three dimensional coordinates; the components of Equation 

(5.12) can be defined as follows: 
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Furthermore, for each point i (1 ≤ i ≤ n) 
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The 10 parameters ( ))0(
10

)0(
1 ,, aa   are the initial approximates of the polynomial surface 

parameters.  There are quite a few methods for estimating these approximate values.  The 

method used here involved computing the eigenvalues and the eigenvectors of Equation 

(5.15). 

BBA T ⋅=                                                               (5.15) 

Since the eigenvalues represent the sum of the squared residuals for each column vector, 

the eigenvector corresponding to the minimum eigenvalue calculated from matrix A in 

Equation (5.15), represents the best estimate of the 10 parameters.  Using this vector as 

the initial estimates in the least squares model will allow this fit to be refined.     

The standard form of the parametric adjustment with constraints defines the residual 

vector as: 
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Where  

( )ni
T vvvV 1=                                         (5.16.2) 
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To better scale the weight matrix, the a-priori variance of unit weight ( 2
0σ ) can be 

introduced as in Equation (5.17).   
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Solving Equation (5.12) for X̂δ , the corrections to the initial approximates contained in 

vector c can be computed as in Equation (5.18.1). 
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Where I is the 10 x 10 identity matrix and Nbb and Ncc are defined below: 

BPBN LL
T

bb ⋅⋅=                                                    (5.18.2) 
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Applying these corrections to the initial approximate vector (c) and iterating this equation 

until some threshold (ε) for the corrections to the initial approximates is reached; the 

estimates for the 10 surface parameters ( )101 ˆ,,ˆ aa   can be refined. 

 

Once the refined estimates of the surface parameters have been obtained, the cofactor 

matrix for the parameter vector (c) and the residual vector (v) can be determined from 

Equations (5.19.1) and (5.19.2) respectively. 

1111 −−−− ⋅⋅⋅⋅−= bb
T

ccbbbbXX NcNcNNQ                                      (5.19.1) 
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T
XXLLVV BQBPQ ⋅⋅−= −1                                           (5.19.2) 

The a-posteriori variance matrices for the parameter vector (c) and the residual vector (v) 

can now be estimated as in Equations (5.20.1) and (5.20.2), respectively. 

XXXX QD ⋅= 2
0σ̂                                                    (5.20.1) 

VVVV QD ⋅= 2
0σ̂                                                    (5.20.2)      

Where 2
0σ̂  is the a-posteriori variance of unit weight.  The a-posteriori variance of unit 

weight can be calculated from Equation (5.21). 

110
ˆ 2

0 +−
⋅⋅

=
n

VPV LL
T

σ                                                  (5.21) 

From Equations (5.16) and (5.19) the test statistic for the student t probability distribution 

can be formed. 

( )1101~
ˆ 0

+−−
⋅

= nt
q

v
T

iiVV

i
i σ

                                       (5.22) 

Where iv  is the ith residual of vector V, 0σ̂  is the standard deviation computed from the 

a-posteriori variance of unit weight and 
iiVVq  is the ith diagonal element of matrix QVV.  

Furthermore, the likelihood that one or more outliers may creep into the point cloud 

sample being used to form the polynomial surface, it would be a good idea to provide a 

statistic check on the goodness-of-fit for each calculated surface.  Such a statistic can be 

produced by comparing the a-posteriori variance with the a-priori variance as shown in 

Equation (5.23). 

( )110~ 2
2
0

+−
⋅⋅ nVPV LL

T

χ
σ

                                       (5.23) 
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5.3 Implementation 

The methods described above were implemented using Microsoft Visual C++ 6.0.  Figure 

5.1 shows the basic idea of how each of these algorithms works.   

 
Figure 5.1: Methods for the detection of outliers. (a) Time series of points used to generate 

predictions (P) for measured points (M).  (b) Polynomial surface patch in the immediate 
neighbourhood of the point being tested.  (c) Spatial residuals to the best fit polynomial 
surface, used to test multiple points simultaneously. 

 

The moving fixed interval prediction algorithm recognizes the fact that the point cloud 

can be treated as a series of lines of point data (Figure 5.1(a)). Since a significant portion 

of any terrestrial LiDAR scan is likely to include portions of the sky, numerous LiDAR 

points can be expected to be missing from the point cloud. These missing shots 

effectively segment the continuous line being followed by the scanner’s optics, into 

multiple smaller line segments.  Treating these smaller line segments as independent 

entities, allows the Kalman filter to be applied to each of these subset lines from the point 
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cloud.  Since only a section of the total point cloud is being used to compare the results 

from these three methods, allowances have to be made for lines shorter that the window 

size (-n1, n2) and the window size has to be adjusted to accommodate points at the start 

and end of each line. 

 

The quadratic curved-surface fitting algorithm generates small surface patches in the 

neighbourhood of each point (Figure 5.1(b)). This is an outlier detector in the spatial 

domain, which relies on the assumption that the points immediately adjacent to an outlier 

will themselves lie on the surface and not be outliers as well.  The variable in 

implementing this method is the number of point cloud coordinates surrounding the point 

in question which should be used. On one hand, at least 10 points are required to derive 

the best fit surface, on the other hand, the larger the number of coordinates used, the 

greater the probability that other outliers will be incorporated into the calculation of the 

surface. In fact, when discussing LiDAR, the conditions, which cause an outlier, will also 

greatly increase the likelihood that other outliers lie close by.  Therefore, care must be 

taken when setting a patch size.  

 

Instead of computing a 10 parameter quadratic surface for numerous small patches, the 

quadratic surface can also be generated for much larger sections of the point cloud.  The 

idea is to segment the point cloud and compute the polynomial surface for user defined 

sections of the point cloud. Using the residuals produced from the adjustment, one can 

examine the separation of each point from the surface.  Using a test statistic, such as the 

one given in Equation (5.23), outliers can be identified.  Due to the potential 
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discrepancies in the magnitude of any set of outliers, it might be necessary to discard 

identified outliers and re-compute the surface. Iteration in this manner should continue 

until no more outliers are identified. This should ensure that all outliers are taken into 

account.   

 

It should be noted that using large number coordinate data to generate a 10 parameter 

quadratic surface can become computationally expensive when fitting numerous surfaces 

to a data set.  One way of dealing with this problem is to choose a point to act as a local 

origin for the surface and difference all points used in the surface fitting with this local 

origin.  This technique is the simplest way of preserving the surface orientation while 

providing a simple means of repositioning the computed surface back into its proper 

place within the larger data set. 

 

Combining the temporal, moving fixed interval prediction algorithm, and the spatial, 

quadratic curved-surface fitting algorithms, can be accomplished in a variety of ways.  

The simplest method of combining these algorithms is to run the temporal algorithm 

followed by the spatial algorithm(s).  During testing, this is how the algorithms were 

combined.  For the rest of this chapter, whenever combining the temporal and spatial 

algorithms is discussed, it will be referring to executing the temporal algorithm (Figure 

5.1 (a)) on a data set followed by the small patch version of the spatial algorithm (Figure 

5.1 (b)). 
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5.4 Algorithm Tests 

All of the case studies discussed below involve MTL data collected with the Lynx Mobile 

Mapper.  To test the effectiveness of the outlier detection methods described in Section 

5.2 and implemented in 5.3, three tests have been conducted using the data collected 

during each case study. 

 
Figure 5.2: Time series calculation of a predicted point in a generic Lynx Mobile Mapper point 

cloud. 
 

First, confirmation of the correct operation of the routines needed to be established.  This 

was accomplished by observing results from a generic Lynx Mobile Mapper point cloud.  

Figure 5.2 shows graphically the results from one correctly identified outlier, found using 

the time series algorithm.  In this figure, the forward and backward processes are 

highlighted as well as the positions of the outlier point and its expected position, derived 

using the time series algorithm.  It is interesting to note that the backward process line 

appears longer than the forward process line.  This is an optical illusion, since each line 
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contains the same number of points.  The points in the backward process line are simply 

spaced farther apart than those of the forward process line.    

 

 
Figure 5.3: Spatial series calculation of a predicted point in a generic Lynx Mobile Mapper point 

cloud. 
 
Similarly, Figure 5.3 shows graphically the results from a correctly identified outlier 

using the spatial series algorithm.  In Figure 5.3, the best fit polynomial surface is 

displayed, along with the original outlier point and the shortest distance projection of the 

outlier point onto the surface.  Examining cross section AB in this figure, it can be seen 

that the polynomial routine has flattened the noise in the road surface data. 

 

From the mathematical model presented in Section 5.2.1, it is apparent that the user of 

this algorithm must choose an appropriate window size for the input data.  This window 

size can be expected to vary depending on the density and arrangement of the data.  

Therefore, for each point cloud used in this experiment, the optimal window size must be 

determined.  Trials were conducted where the window size was varied to see how this 

variable affected the reliability of the routine.  The data selected by the routine was 

divided into correctly identified outliers and incorrectly identified non-outliers.  The 
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results of these trials in the time series are given in Sections 5.4.1.1, 5.4.2.1 and 5.4.3.1, 

respectively. 

 

Similarly, the spatial algorithm described in Section 5.2.2 requires two inputs that may 

need to be adjusted.  The first input is the a-priori reference variance.  Little needs to be 

done to correctly set this variance, since its value should be of the same magnitude as the 

point variances being input to the routine.  Therefore, for all further testing, this value 

was set to 0.001m2.  The other variable is the size of the patch of data used to determine 

the coefficients of the best fit polynomial.  This value has to be at least 10 points, but 

cannot be allowed to grow too large, since this increases the possibility that some of the 

input points could, themselves, be outliers.  To discover what effect patch size has on the 

effectiveness of the PSF routine, the patch size was varied and the data selected by the 

routine was again divided into correctly identified outliers and incorrectly identified non-

outliers.  The results of these trials in the spatial series are given in Sections 5.4.1.2, 

5.4.2.2 and 5.4.3.2, respectively. 

 

Once the correct settings for both the time and spatial series approaches have been 

determined, trials were conducted to establish the effectiveness of operating the routines 

individually and in tandem.  First each routine was run individually to establish its 

effectiveness on each point cloud.  The routines were then run in tandem to see if this 

improved the final result.  The results of these trials in each case study are given in 

Sections 5.4.1.3, 5.4.2.3 and 5.4.3.3, respectively.   

 

181 
 



Finally, the outlier removal tool available in the commercial software package Polyworks 

(www.innovmetric.com) was used to judge the effectiveness of these routines.  A few 

outlier routines exist within the Polyworks software package, all of them tied to another 

function of the software.  For testing purposes the “reject outliers” function associated 

with the “wrap mesh” function of Polyworks IMSurvey module was used.  Details about 

this function can be found in [121].  This “reject outliers” routine uses the spatial 

displacement of the points from their neighbours to determine if outliers are present.  

This routine, run before a triangulated mesh is imposed on the data, has two inputs that 

the user must specify.  The first input, max point-to-point distance, is used to simply limit 

the distance allowed between two neighbouring data points.  The second input, maximum 

cluster size, is used to determine if a cluster of points, each having a nearest neighbour 

less than or equal to the max point-to-point distance, fall outside the main body of the 

point cloud.  The cluster size is determined by the diagonal of the bounding box 

surrounding the cluster. 

 

Since the Polyworks “reject outliers” routine requires that a maximum point to point 

distance is set, the first object was to establish the maximum and minimum grid point 

spacing in each of the candidate point clouds.  This was done by random sampling of 

points in dense and sparse areas of the point cloud.  The maximum and minimum values 

obtained by random sampling are listed in Table 5.6, Table 5.11 and Table 5.16.  Setting 

the max point-to-point distance to less than the minimum caused, in each case, a warning 

box to appear saying that outlier rejection has failed.  Once the input parameters for the 

Polyworks routine were decided upon, each point cloud collected from the case studies 
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were run through this routine.  The results of these trials are presented in Sections 5.4.1.4, 

5.4.2.4 and 5.4.3.4, respectively. 

5.4.1 Case Study 1 – Vaughan, Ontario, Canada  

Data was collected of a typical parking lot in Vaughan Ontario in early November of 

2008 and again in January of 2010.  From this data a section of the asphalt was selected 

and a patch of data was extracted from each of three separate data strips of the parking 

lot.  The content of these three strips is summarized in Table 5.1 and the three strips are 

shown in Figure 5.4. 

Table 5.1: Specifications for point cloud sections collected in a parking lot in Vaughan Ontario and 
used in algorithm testing. 

Point Cloud A1 B1 C1 
Total No. of Points 1098689 295147 237740 

Total No. of Outliers 11035 872 31 

Total % of Points Which are Outliers 1.00 0.30 0.01 
 
Point cloud A1 contains numerous outliers in two large groups.  As shown in Table 5.1, 

the outliers make up 1.00% of the total point cloud.  This data was collected on a January 

day where the asphalt was wet, but the temperature was just below 0ºC.  The prevailing 

cold wet conditions caused condensation from the vehicle’s exhaust pipe to combine with 

varying high and low intensity returns from the standing pools of water.  This caused 

multiple laser reflections to be recorded above the asphalt surface. 

 

Point cloud B1 was collected later the same day as point cloud A1.  There are far fewer 

outliers in this point cloud (0.30% from Table 5.1) and they are more spread out.   

Conditions were nearly the same, however the temperature had risen to just above 0ºC.  A 

traffic barrier arm, which restricts vehicle access to the parking lot, caused the linear 
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outliers in the top left hand corner of point clouds A1 and B1.  The LiDAR system 

captured data on this arm while the arm was is operation.   

 
Figure 5.4: Point cloud sections collected in a parking lot in Vaughan Ontario and used in algorithm 

testing.  Point cloud A1 contains numerous outliers clustered together in two large groups 
above the asphalt surface.  Point cloud B1 contains numerous outliers as well; however, 
these outliers are more evenly distributed above the asphalt surface.  Point cloud C1 
contains few outliers, most of which are within centimeters of the asphalt surface.     

   
 

In contrast, point cloud C1 was collected on a November day where the temperature was 

close to 10ºC and the pavement was dry.  These conditions produced a point cloud with 

comparatively few outliers (0.01% from Table 5.1).  Many of the outliers which do exist 

in this data set are within centimetres of the asphalt surface.  The traffic barrier arm was 

not captured in operation in this scan. 
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5.4.1.1 Test 1 – Appropriate Window Size for the Time Series Approach 

As mentioned at the beginning of Section 5.4, trials to determine the optimal window size 

for the time series approach (algorithm (a)) were conducted.  These trials included the 

data collected in Vaughan Ontario. 
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Figure 5.5: Results of varying window size in the time series approach (routine (a)) using point cloud 

A1. 
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Figure 5.6: Results of varying window size in the time series approach (routine (a)) using point cloud 

B1. 
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Figure 5.7: Results of varying window size in the time series approach (routine (a)) using point cloud 

C1. 
 

Figure 5.5 shows the results of varying the time series window size in point cloud A1 

with respect to the number of outliers and non-outliers found.  These results are discussed 

in Section 5.5.1. 

 

Similarly, Figure 5.6 shows the results of varying the time series window size in point 

cloud B1 with respect to the number of outliers and non-outliers found.  Finally, Figure 

5.7 shows the results of varying the time series window size in point cloud C1 with 

respect to the number of outliers and non-outliers found. 

5.4.1.2 Test 2 – Appropriate Sample Size for the Spatial Series 

Approach 

As mentioned at the beginning of Section 5.4, trials to determine the optimal data patch 

size for the spatial series approach (algorithm (b)) routine were conducted.  These trials 

included the data collected in Vaughan Ontario. 

186 
 



0

100

200

300

400

500

600

700

800

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Patch Size

Po
in

ts

Total Outliers Outliers Detected Non-Outliers Detected

 
Figure 5.8: Results of varying window size in the spatial series approach (routine (b)) using point 

cloud B1. 
 
Figure 5.8 shows the results for varying the spatial series patch size in point cloud B1 

with respect to the number of outliers and non-outliers found.  These results are discussed 

in Section 5.5.2. 

0

5

10

15

20

25

30

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Patch Size

Po
in

ts

Total Outliers Outliers Detected Non-Outliers Detected

 
Figure 5.9: Results of varying window size in the spatial series approach (routine (b)) using point 

cloud C1. 
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Similarly, Figure 5.9 shows the results for varying the spatial series patch size in point 

cloud C1 with respect to the number of outliers and non-outliers found.   

5.4.1.3 Test 3 – Maximum Number of Outliers Detectable by the 

Routines 

As mentioned at the beginning of Section 5.4, trials to determine the individual and 

combined effectiveness of the outlier methods presented in Section 5.2 were conducted.  

These trials included the data collected in Vaughan Ontario. 

 

Table 5.2: Best results from trials conducted using algorithm (a) on point clouds A1, B1 and C1. 
Point Cloud A1 B1 C1 

Window Size (points) 50 35 8 
No. of Outliers Identified 4209 620 8 

No. of Non-Outliers Identified 0 14 3 
No. of Outliers Missed 6826 252 23 
% of Outliers Identified  38.14 71.10 25.81 

% of Point Cloud Identified 1.00 0.30 0.01 
% of Point Cloud Identified Incorrectly 0.00 0.00 0.00 

   
Table 5.3: Best results from trials conducted using algorithm (b) on point clouds B1 and C1. 

Point Cloud B1 C1 
Patch Size (points) 500 150 

No. of Outliers Identified 253 5 
No. of Non-Outliers Identified 0 0 

No. of Outliers Missed 619 26 
% of Outliers Identified  29.01 16.13 

% of Point Cloud Identified 0.30 0.01 
% of Point Cloud Identified Incorrectly 0.00 0.00 

 
Table 5.4: Best results from trials conducted using algorithm (c) on point clouds A1, B1 and C1. 

Point Cloud A1 B1 C1 
No. of Outliers Identified 5221 712 15 

No. of Non-Outliers Identified 15431 0 193 
No. of Outliers Missed 5060 160 16 
% of Outliers Identified 47.31 81.65 48.39 

% of Point Cloud Identified 1.88 0.24 0.09 
% of Point Cloud Identified Incorrectly 1.40 0.00 0.08 
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Table 5.5: Results from trials conducted using algorithm (a) preceding algorithm (b) on point clouds B1 and 
C1. 

Point Cloud B1 C1 
Window Size (Routine A) 35 8 
Patch Size (Routine B) 500 150 

No. of Outliers Identified (Routine A) 620 5 
No. of Outliers Identified (Routine B) 23 2 

No. of Non-Outliers Identified (Routine A) 14 7 
No. of Non-Outliers Identified (Routine B) 0 0 

No. of Outliers Missed 252 26 
% of Outliers Identified  73.74 22.58 

% of Point Cloud Identified 0.22 0.01 
% of Point Cloud Identified Incorrectly 0.00 0.00 

 
The results from tests conducted using point clouds A1, B1 and C1 are given in Table 5.2 

for algorithm (a), in Table 5.3 for algorithm (b) and in Table 5.4 for algorithm (c).  In 

addition, a combination of algorithms (a) and (b) was performed, where the reduced point 

cloud produced by algorithm (a) was input to algorithm (b).  The results for this test 

conducted using data strips B1 and C1 are given in Table 5.5.  These results are discussed 

in Section 5.5.3 

5.4.1.4 Test 4 –Using Commercial Software to Detect Outliers 

As mentioned at the beginning of Section 5.4, the three data sets collected in the parking 

lot in Vaughan Ontario were loaded into Polyworks IMSurvey and the “reject outlier” 

routine available from the “wrap mesh” function was used to isolate outliers in the three 

point clouds. 

 

The results from these tests are listed in Table 5.6 below.  The parameters used in the 

Polyworks routine are included in Table 5.6.  These results are discussed in Section 5.5.4. 
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Table 5.6: Results from trials conducted using Polyworks IMSurvey’s reject outliers routine on point clouds 
A1, B1 and C1. 

Point Cloud A1 B1 C1 
Max Spot Space Measured (m) 0.072 0.053 0.080 
Min Spot Space Measured (m) 0.012 0.023 0.024 

Max Point-to-Point Distance Used (m) 0.100 0.080 0.104 
Maximum Cluster Size Used (m) 5.000 5.000 1.000 

No. of Outliers Identified 4842 717 17 
No. of Non-Outliers Identified 155389 15846 14711 

No. of Outliers Missed 6193 155 14 
% of Outliers Identified  43.88 82.22 54.84 

% of Point Cloud Identified 15.15 5.66 6.20 
% of Point Cloud Identified Incorrectly 14.14 5.37 6.19 

 

5.4.2 Case Study 2 – Pontarlier, France  

In late November 2009 MTL data was collected in a lumber yard outside the village of 

Pontarlier France.  The lumber yard featured an unpaved, rough finished, mostly native 

clay driving area that had been pitted and grooved by the heavy vehicles using it.  The 

weather conditions were dry, as was the clay.  The ambient temperature during the collect 

was about 15ºC.  Several strips of data were collected in rapid succession.  The two strips 

selected were collected from successive drive passes of the lumber yard.  From the two 

selected strips a sample area of fixed dimension was isolated and the data was extracted.  

The content of these two strips is summarized in Table 5.7 and the three strips are shown 

in Figure 5.10. 

Table 5.7: Specifications for point cloud sections collected in a lumber yard in Pontarlier, France and 
used in algorithm testing. 

Point Cloud A2 C2 
Total No. of Points 495345 257730 

Total No. of Outliers 280 220 
% of Point Cloud Outliers 0.06 0.09 

  
Due to the rough condition of the road surface in the lumber yard, the vehicle was driven 

exceedingly slowly (about 2 km/h) during the collection of point cloud A2.  As is shown 

in Table 5.7, the identified outliers make up about 0.06% of the total point cloud.  Since 
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the surface conditions were relatively dry, the outliers observed in this section of the 

point cloud could be attributed to the interaction of the laser beam with the rough 

conditions of the road surface and the reflectance properties of the soil. 

 

 
Figure 5.10: Point cloud sections collected in a lumber yard in Pontarlier, France and used in 

algorithm testing.  Point cloud A2 contains numerous outliers spread out above the 
surface of the lumber yard.  Point cloud B2 shows the previous point cloud from ground 
level, were the cluster of outliers above the road surface can be observed.  Point cloud 
C2 also has outliers spread out above the surface of the road.  Point cloud D2 shows the 
previous point cloud from ground level, were the cluster of outliers above the road 
surface can be observed.       

 

For the collection of point cloud C2, it was decided to try and drive faster in the lumber 

yard (approximately 4 km/h).  Table 5.7 shows that the percentage of outliers in point 

cloud C2 is maintained equivalent to the previous point cloud.  Due to the fact that this 

point cloud was collected immediately following the collection of the data in point cloud 

A2, the weather and surface condition of the road surface can be considered to be 

equivalent.  Therefore, the cause of the outliers in this data is most likely the same as 

previously stated. 
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5.4.2.1 Test 1 – Appropriate Window Size for the Time Series Approach 

As mentioned at the beginning of Section 5.4, trials to determine the optimal window size 

for the Time Series approach (algorithm (a)) were performed on the data collected in 

Pontarlier France.    
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Figure 5.11: Results of varying window size in the time series approach (routine (a)) using point 

cloud A2. 
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Figure 5.12: Results of varying window size in the time series approach (routine (a)) using point 

cloud C2. 
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Figure 5.11 shows the results of varying the time series window size in point cloud A2 

with respect to the number of outliers and non-outliers found. 

 

Similarly, Figure 5.12 shows the results of varying the time series window size in point 

cloud C2 with respect to the number of outliers and non-outliers found.  These results are 

discussed in Section 5.5.1. 

5.4.2.2 Test 2 – Appropriate Sample Size for the Spatial Series 

Approach 

As mentioned at the beginning of Section 5.4, trials to determine the optimal data patch 

size for the spatial series approach (algorithm (b)) were conducted on the data collected 

in Pontarlier, France. 
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Figure 5.13: Results of varying window size in the spatial series approach (routine (b)) using point 

cloud A2. 
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Figure 5.14: Results of varying window size in the spatial series approach (routine (b)) using point 

cloud C2. 
 

Figure 5.13 shows the results for varying the spatial series patch size in point cloud A2 

with respect to the number of outliers and non-outliers found.  These results are discussed 

in Section 5.5.2.  Similarly, Figure 5.14 shows the results for varying the spatial series 

patch size in point cloud C2 with respect to the number of outliers and non-outliers 

found.   

5.4.2.3 Test 3 – Maximum Number of Outliers Detectable by the 

Routines 

As mentioned at the beginning of Section 5.4, trials to determine the individual and 

combined effectiveness of the outlier methods presented in Section 5.2 were conducted 

on the data collected in Pontarlier, France.  The results from tests conducted using point 

clouds A2 and C2 are given in Table 5.8 for algorithm (a) and in Table 5.9 for algorithm 

(b). 
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Table 5.8: Best results from trials conducted using algorithm (a) on point clouds A2 and C2. 
Point Cloud A2 C2 

Window Size (points) 20 20 
No. of Outliers Identified 37 28 

No. of Non-Outliers Identified 3 32 
No. of Outliers Missed 243 192 
% of Outliers Identified  13.21 12.73 

% of Point Cloud Identified 0.06 0.10 
% of Point Cloud Identified Incorrectly 0.00 0.01 

 
Table 5.9: Best results from trials conducted using algorithm (b) on point clouds A2 and C2. 

Point Cloud A2 C2 
Patch Size (points) 100 60 

No. of Outliers Identified 199 52 
No. of Non-Outliers Identified 1 0 

No. of Outliers Missed 81 168 
% of Outliers Identified  71.07 23.64 

% of Point Cloud Identified 0.06 0.09 
% of Point Cloud Identified Incorrectly 0.00 0.00 

 
Table 5.10: Results from trials conducted using algorithm (a) preceding algorithm (b) on point clouds 

A2 and C2. 
Point Cloud A2 C2 

Window Size (Routine A) 20 20 
Patch Size (Routine B) 100 60 

No. of Outliers Identified (Routine A) 37 28 
No. of Outliers Identified (Routine B) 162 29 

No. of Non-Outliers Identified (Routine A) 3 32 
No. of Non-Outliers Identified (Routine B) 0 0 

No. of Outliers Missed 243 192 
% of Outliers Identified  71.07 25.91 

% of Point Cloud Identified 0.06 0.03 
% of Point Cloud Identified Incorrectly 0.00 0.01 

 
In addition, a combination of algorithms (a) and (b) was performed, where the reduced 

point cloud produced by algorithm (a) was input to algorithm (b).  The results for this test 

conducted using data strips A2 and C2 are given in Table 5.10.  These results are 

discussed in Section 5.5.3. 

5.4.2.4 Test 4 –Using Commercial Software to Detect Outliers 

As mentioned at the beginning of Section 5.4, the two data sets collected in the lumber 

yard in Pontarlier France, were loaded into Polyworks IMSurvey and the “reject outlier” 
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routine available from the “wrap mesh” function was used to isolate outliers in the two 

point clouds.   

 

The results from these tests, conducted on the points clouds obtained in Pontarlier, 

France, are listed in Table 5.11 below.  The parameters used in the Polyworks routine are 

included in Table 5.11.  These results are discussed in Section 5.5.4. 

Table 5.11: Results from trials conducted using Polyworks IMSurvey’s reject outliers routine on 
point clouds A2 and C2. 

Point Cloud A2 C2 
Max Spot Space Measured (m) 0.040 0.064 
Min Spot Space Measured (m) 0.012 0.008 

Max Point-to-Point Distance Used (m) 0.050 0.100 
Maximum Cluster Size Used (m) 1.000 1.000 

No. of Outliers Identified 221 84 
No. of Non-Outliers Identified 30645 26841 

No. of Outliers Missed 59 136 
% of Outliers Identified  78.93 38.18 

% of Point Cloud Identified 6.24 10.50 
% of Point Cloud Identified Incorrectly 6.19 10.41 

 

5.4.3 Case Study 3 – Washington D.C., U.S.A. 

In early January 2009 MTL data was collected of downtown Washington D.C. as part of 

the preparation for President Obama’s inauguration.  Several streets in and around 

Pennsylvania Avenue and Constitution Avenue were collected along the proposed parade 

route.  The weather conditions were dry.  The ambient temperature during the collect was 

about 5ºC.  Several strips of data were collected in rapid succession.  The two strips 

selected were collected from different LiDAR sensors during the same drive segment.  

From the two selected strips a sample area of fixed dimension was isolated and the data 

was extracted (Figure 5.15).  The contents of these two strips are summarized in Table 

5.12. 

196 
 



 
Figure 5.15: Point cloud sections collected in a street in Washington D.C., U.S.A and used in 

algorithm testing.  Point cloud A3 contains numerous outliers spread out above the 
surface of the lumber yard.  Point cloud B3 shows the previous point cloud from ground 
level, were the cluster of outliers above the road surface can be observed.  Point cloud 
C3 also has outliers spread out above the surface of the road.  Point cloud D3 shows the 
previous point cloud from ground level, were the cluster of outliers above the road 
surface can be observed.      

 
 
 
 
Table 5.12: Specifications for point cloud sections collected on a street in Washington D.C., U.S.A 

and used in algorithm testing.  
Point Cloud A3 C3 

Total No. of Points 345575 291159 
Total No. of Outliers 95 54 

% of Point Cloud Outliers 0.03 0.02 
  

5.4.3.1 Test 1 – Appropriate Window Size for the Time Series Approach 

As mentioned at the beginning of Section 5.4, trials to determine the optimal window size 

for the time series approach (algorithm (a)) were conducted on the data collected in 

Washington D.C.   

 

Figure 5.16 shows the results of varying the time series window size in point cloud A3 

with respect to the number of outliers and non-outliers found.  Similarly, Figure 5.17 

shows the results of varying the time series window size in point cloud C3 with respect to 
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the number of outliers and non-outliers found.  These results are discussed in Section 

5.5.1. 
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Figure 5.16: Results of varying window size in the time series approach (routine (a)) using point 

cloud A3. 
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Figure 5.17: Results of varying window size in the time series approach (routine (a)) using point 

cloud C3. 
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5.4.3.2 Test 2 – Appropriate Sample Size for the Spatial Series 

Approach 

As mentioned at the beginning of Section 5.4, trials to determine the optimal window size 

for the spatial series approach (algorithm (b)) were conducted on the data collected in 

Washington D.C.   
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Figure 5.18: Results of varying patch size in the spatial series approach (routine (b)) using point 

cloud A3. 
 
 
Figure 5.18 shows the results of varying the spatial series polynomial patch size in point 

cloud A3 with respect to the number of outliers and non-outliers found.  Similarly, Figure 

5.19 shows the results of varying the spatial series polynomial patch size in point cloud 

C3 with respect to the number of outliers and non-outliers found.  These results are 

discussed in Section 5.5.2. 
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Figure 5.19: Results of varying patch size in the spatial series approach (routine (b)) using point 

cloud C3. 

5.4.3.3 Test 3 – Maximum Number of Outliers Detectable by the 

Routines 

As mentioned at the beginning of Section 5.4, trials to determine the individual and 

combined effectiveness of the outlier methods presented in Section 5.2 were conducted 

on the data collected in Washington, D.C. 

Table 5.13: Best results from trials conducted using algorithm (a) on point clouds A3 and C3. 
Point Cloud A3 C3 

Window Size (points) 200 200 
No. of Outliers Identified 17 0 

No. of Non-Outliers Identified 0 0 
No. of Outliers Missed 78 54 
% of Outliers Identified  17.89 0.00 

% of Point Cloud Identified 0.03 0.02 
% of Point Cloud Identified Incorrectly 0.00 0.00 

 
The results from tests conducted using point clouds A3 and C3 are given in Table 5.13 

for algorithm (a) and in Table 5.14 for algorithm (b). 
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In addition, a combination of algorithms (a) and (b) was performed, where the reduced 

point cloud produced by algorithm (a) was input to algorithm (b).  The results for this test 

conducted using data strips A3 and C3 are given in Table 5.15.  These results are 

discussed in Section 5.5.3. 

Table 5.14: Best results from trials conducted using algorithm (b) on point clouds A3 and C3. 
Point Cloud A3 C3 

Patch Size (points) 250 500 
No. of Outliers Identified 2 1 

No. of Non-Outliers Identified 0 0 
No. of Outliers Missed 93 53 
% of Outliers Identified  2.11 1.85 

% of Point Cloud Identified 0.03 0.02 
% of Point Cloud Identified Incorrectly 0.00 0.00 

 
Table 5.15: Results from trials conducted using algorithm (a) preceding algorithm (b) on point clouds 

A3 and C3. 
Point Cloud A3 C3 

Window Size (Routine A) 200 200 
Patch Size (Routine B) 250 500 

No. of Outliers Identified (Routine A) 17 0 
No. of Outliers Identified (Routine B) 0 1 

No. of Non-Outliers Identified (Routine A) 0 0 
No. of Non-Outliers Identified (Routine B) 0 0 

No. of Outliers Missed 78 54 
% of Outliers Identified  17.89 1.85 

% of Point Cloud Identified 0.00 0.00 
% of Point Cloud Identified Incorrectly 0.00 0.00 

 

5.4.3.4 Test 4 – Using Commercial Software to Detect Outliers 

As mentioned at the beginning of Section 5.4, the two data sets collected in the streets of 

Washington D.C. were loaded into Polyworks IMSurvey and the “reject outlier” routine 

available from the “wrap mesh” function was used to isolate outliers in the two point 

clouds.   
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The results from these tests, conducted on the point clouds obtained in Washington D.C., 

are listed in Table 5.16 below.  The parameters used in the Polyworks routine are also 

included in Table 5.16.  These results are discussed in Section 5.5.4. 

Table 5.16: Results from trials conducted using Polyworks IMSurvey’s reject outliers routine on 
point clouds A3 and C3. 

Point Cloud A3 C3 
Max Spot Space Measured (m) 0.100 0.102 
Min Spot Space Measured (m) 0.014 0.022 

Max Point-to-Point Distance Used (m) 0.110 0.150 
Maximum Cluster Size Used (m) 1.000 1.000 

No. of Outliers Identified 93 34 
No. of Non-Outliers Identified 44627 40023 

No. of Outliers Missed 2 20 
% of Outliers Identified  97.89 62.96 

% of Point Cloud Identified 12.94 13.76 
% of Point Cloud Identified Incorrectly 12.91 13.75 

 

5.5 Discussion 

The overall results delivered by the tested routines are varied.  The ability to get all of the 

identified outliers while eliminating the minimum number of non-outlying points is not 

an easy task to perform.  One interesting note that was observed about all the data sets 

used to test these algorithms is the prevalence of the number of outliers detected in the 

plane of the road.  Looking at the scan pattern of each road segment, the existence of 

disjointed line segments and discontinuous pattern distortions are observed.  Partly, these 

observed changes in pattern can be explained by the road surface variation and terrain 

feature changes.  Partly, these pattern changes can be explained by vehicle acceleration 

and deceleration.   

 

However, the pattern discontinuities in the point clouds cannot be full explained by either 

of these explanations.  An example of a pattern discontinuity is given in Figure 5.20. 
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Inquiry into why this type of discontinuity occurred revealed that the manufacturer has 

built into the Lynx system, an automated cycle sync between the two LiDAR scanners.  If 

one LiDAR scanner is deemed to be moving appreciably faster or slower than the other 

scanner, than the speed of the offending scanner will be adjusted.  Therefore the values 

enter by the user into the Lynx system at the time data is being collected are only nominal 

speed values for the mirror motion.  These inconsistencies within the pattern of the point 

cloud had to be addressed for the temporal series by limiting the focus of the detection 

routine to vertical estimation.  When horizontal estimation is left in place the result is 

much the same as the commercial software. 

 

Figure 5.20: Close up image of scan pattern from point cloud B1 showing scan pattern discontinuity.  
The scan pattern has been enhanced with red lines tracing scan lines.   
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Another important detail involves the estimated standard deviation of the points in the 

LiDAR point cloud.  Using estimates for the overall position of the DG system, the error 

estimates used in both routines vary from 1cm to up to 14cm.  Figures 5.21, 5.22 and 5.23 

show the point error estimates used during testing for each point cloud. 
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Figure 5.21: Easting error estimates for point clouds used during algorithm testing. 
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Figure 5.22: Northing error estimates for point clouds used during algorithm testing. 
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Figure 5.23: Up error estimates for point clouds used during algorithm testing. 
 
These estimates are largely concerned with the accuracy of the GPS derived position of 

the vehicle at the time the points in the point cloud were collected.  The LiDAR error 

estimates currently being used are very small, between 0.1mm and 3mm.  With no 

boresight error estimates available, the only alternative would be to input these error 

estimates into the models, however, this will result in a host of non-outlier points to be 

selected for removal, since this value is much smaller than the observable noise in the 

data set. 

5.5.1 Results of Window Size Determination in the Time Series 

Approach to Outlier Detection 

The graphs for the three trial areas show a wide variation in the growth of detected 

outliers as window size increases.  The intersection at which the number of points 

incorrectly identified as outliers crosses the number of true outliers detected by the 

algorithm also varies widely.  The graphs from Sections 5.4.1.1, 5.4.2.1 and 5.4.3.1 show 
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that the time series approach was most effective on point cloud B1, with the majority of 

outliers found for all window sizes tested.  These same graphs also show that this 

approach was least effective on point cloud C3, since no outliers were detected in this 

point cloud at all.  If the image of point cloud B1 from Figure 5.4 is compared to the 

image of point cloud C3 in Figure 5.15, it can be immediately noticed that many of the 

outliers in point cloud B1 are obvious, while those in point cloud C3 are not.   

 

Point cloud B1 has both individual outliers and small clumps of outliers standing at 

significant distances from the road surface.  Most of outliers identified by the time series 

approach in point cloud B1 are the individual outliers, while the clumps of outliers had 

only some of their number detected.  The outlier clumps in point cloud B1 differ from the 

outlier clumps in point cloud A1, in that the average point to point difference in point 

cloud B1 is greater than the error estimates used in the algorithm.  The opposite is true for 

point cloud A1.  The median point to point difference for the outlier clumps is about 4cm, 

while Figures 5.21, 5.22 and 5.23 show that the error estimates used in the model vary 

between about 1cm and 3cm.  Where the point to point distance is less than the 3cm error 

estimate used, outlier points in the clumps were missed.    

 

The outliers in point cloud C3 are all close to the road surface itself.  The failure of the 

routine to detect any outliers here is easily explained once the error estimates for the 

point clouds are examined.  Figures 5.21, 5.22 and 5.23, which show the error estimate 

used by the time series routine, indicate that error estimates in the 12cm to 15cm range, 

for each coordinate component (x, y, z), were used by the time series routine.  These error 
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estimates were completely derived from the DG system error estimates, since the 

downtown core of Washington D.C. provided poor GPS coverage.  This poor GPS 

coverage greatly affected the DG system solution.  The fact that all of the outliers in point 

cloud C3, fall much closer to the road surface than 12cm explains why no outliers were 

detected. 

 

Similar to point cloud C3, point clouds A2 and C2, taken in France have their outlier 

points close to the road surface.  Most of these points fall within less than 2cm from the 

road surface and therefore were not identified due to the fact that the largest error 

estimate used in the algorithm was about 2cm. 

5.5.2 Results of Patch Size Determination in the Spatial Series 

Approach to Outlier Detection 

The graphs plotting the result of the spatial algorithm as patch size was increased also 

show a wide variation of performance as polynomial patch size is increased.  The number 

of erroneously selected outliers was, compared to the previous algorithm, significantly 

lower.  The graphs from Sections 5.4.1.2, 5.4.2.2 and 5.4.3.2 show that the spatial series 

approach was most effective on point cloud A2.  Similar to the time series performance 

on point cloud B1, the spatial series found the majority of outliers for all window sizes 

tested on point cloud A2.  These same graphs also show that this approach was least 

effective on point cloud C3, since almost no outliers were detected in this point cloud at 

all.  Comparing the image of point cloud A2 (specifically the view depicted in B2) from 

Figure 5.10 to the image of point cloud C3 in Figure 5.15, it can be seen that the outliers 
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in A2 are close to the surface but noticeable, while the outliers in C3 are scattered and 

hard to see. 

 

Point cloud A2, for which the time series gave an underwhelming performance and the 

spatial series gave a good performance, consists of relatively well spaced outliers close to 

the road surface.  To understand why this point cloud worked well using the spatial series 

algorithm, the chi squared fit statistic must be examined for the calculated surfaces.  The 

chi squared fit statistic indicates that for point cloud A2, up to 0.16% of all calculated 

surfaces did not fit the data well.  The same statistic indicates that up to 0.42% of all 

calculated surfaces in point cloud B1 provided for poor fits to the data.  This is nearly 3 

times poorer surface fits in point cloud B1 than A2.  For both models, the actual number 

of surfaces which failed to be calculated, due to the formation of singular matrices, were 

very low (< 10).  Furthermore, the number of poor fit surfaces which coincided with 

detected outliers remains very low (less than 2%) for most patch sizes in point cloud A2.  

Point cloud B1, on the other hand, has a much higher number (between 3% and 26%) of 

outliers detected with poorly fitting surfaces.  It makes sense that where outliers cluster or 

clump together, the quality of a surface fit around any one point would suffer from the 

other outliers, which lie in close proximity. 

 

The spatial series algorithm preformed just as poorly as the time series algorithm on point 

clouds A3 and C3.  Again the high standard deviations provided by the DG system 

position proved the downfall of the routine.  Most likely due to the large standard 

deviations feed into the routine from the DG system, the number of surfaces which failed 
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due to ill conditioned matrices was excessive.  For small patch sizes (~20 points) the 

number of failed surfaces was as high as 69% of the total number of surfaces computed.  

For larger patch sizes (> 60 points) the number of failed surfaces averaged out at about 

2% of the total number tried.  Except for the high error estimates on the individual point 

positions, point clouds A3 and C3 are ideally suited for the spatial series routine.  Each of 

these point clouds is flat with few outliers, well-spaced apart.  What this failure 

dramatically demonstrates is that when poor DG system position errors are included with 

the individual point error estimates, the success or failure of both the temporal and spatial 

routines is completely dependent on the quality of the trajectory solution. 

5.5.3 Results of Maximum Number of Outliers Detectable by the 

Routines 

Using the graphs generated by the last test, the optimal window (time series) and patch 

(spatial series) sizes were determined.  Using these empirically optimized results the 

statistics listed in Sections 5.4.1.3, 5.4.2.3 and 5.4.3.3 were generated.  These results 

indicate that between the two algorithms over 70% of the outliers were found in two of 

the test cases.  Point clouds B1 and A2 each had over two thirds of their outliers 

identified or removed by one of the two routines.  Each of these point clouds contain 

individually spaced outliers separated from the surface, and other outliers, by a distance 

greater than the input error estimates.  It appears that algorithm (a) does better when the 

outlier points are farther from the legitimate point cloud points.  It also appears that 

algorithm (a) is not bothered too much by clumps of outliers. Being that the algorithm is 

examining the point cloud scan line by scan line, this is not surprising.  Only outliers 

lying in the same scan line as a current test point will affect the quality of the comparison.  
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Algorithm (b) is not affected as much by points that lie at distances from the surface, 

which are just outside the error estimate limit.  It does seem to have a problem with 

clumps of outliers however.  Outliers in close proximity to each other tend to disrupt the 

fit of the polynomial surface causing inaccurate models for comparison with outlier 

points. 

 

By comparison, point clouds C1 and C2 also contain outliers spaced at an appreciable 

distance from the point cloud and each other, however, this distance happens, more often 

than not, to be less than the input error estimates.  The result of this is that the two 

routines find only about a quarter of the identified outliers. 

 

Point clouds A3 and C3, because of the extremely high error estimates from the DG 

system, give poor results from both routines.  Algorithm (a) gives better results in point 

cloud A3, with nearly a fifth of the outliers detected, otherwise these point clouds show 

almost no outliers detected by either routine.   

 

Finally, running the two algorithms in sequence, algorithm (a) followed by algorithm (b) 

showed that many of the points detected by one routine, had also been found by the other 

routine when the algorithms had been run separately.  This is shown for each test case 

since the results of running the algorithms in series is only marginally better than running 

them individually.  In each case, the results of running the algorithms together was about 

3% better than the best outlier detection result obtained by running the routines 

separately. 
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5.5.4 Results of Using Commercial Software to Detect Outliers 

As a control test the outlier removal tool, which is incorporated with the “warp mesh” 

function in Polyworks IMSurvey, was used on the same point clouds discussed in the 

previous sections.  The statistics listed in Sections 5.4.1.4, 5.4.2.4 and 5.4.3.4 clearly 

show that the commercially available routine detected approximately the same number of 

outliers as algorithm’s (a) and (b).  Indeed, the commercial routine accomplished this 

while also removing vastly more non-outlier points.  In fact, in the case of point cloud 

A1, the routine removed over 15% of the total point cloud.  The manually identified 

outliers in this point cloud only constitute about 1% of the point cloud.  This means that 

over 14% of the total point cloud has been unnecessarily removed.  The same large 

removal of non-outliers can be said for all the other point clouds.   

 

Point clouds A3 and C3, which produced the worst results from algorithms (a) and (b), 

were much better behaved for the commercial routine.  The Polyworks “remove outlier” 

routine was able to remove 98% of the manually identified outliers from point cloud A3 

and 63% of the manually identified outliers from point cloud C3.  Of course this was 

accomplished at a cost of removing around 14% of the point cloud in both scans.  Most of 

the removed points were not outliers and were removed unnecessarily.  Since the 

commercial routine is relying on user input for spot spacing and cluster size and is not 

dependent on the point error estimates generated from the system itself, the commercial 

routine appears to have had an advantage over algorithms (a) and (b) in outlier 

determination in point clouds A3 and C3. 
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5.6 Summary 

In this chapter, methods for performing outlier detection based on both the temporal and 

spatial information available from most MTL systems, were proposed and tested.  The 

new method of temporal outlier detection involved modifying a α-β-γ Kalman smoother 

to predict the location of a point based on the location of other points in the time series 

and then performed a statistic test to evaluate if the difference between the predicted 

point and the actual point qualified the point as an outlier.  The main benefits of using 

such a method of outlier detection is that its fast and can, if desired, be executed in real-

time, while the data is being collected.  Tests on three different MTL data sets showed 

that this algorithm could be up to 71% effective at finding outliers if the time series 

interval was maintained.  Compared to commercial software used on the same data sets, 

the temporal outlier algorithm proposed and tested in this chapter, could have comparable 

effectiveness with far less false detections, under the right circumstances. 

 

The new spatial methods for detecting outliers are based on a 10 parameter polynomial 

surface model.  Two methods based on this polynomial surface were proposed and tested.  

The first method computed a small polynomial patch in the immediate vicinity of a test 

point and used a statistic test to compare the candidate point with the surface.  This 

method assumes all the points used in the surface fitting are good points, not outliers.  

The second method involved using many more point cloud points to fit a surface model 

to a larger section of the point cloud.  The residuals of the surface fitting would then be 

tested and any outlier removed.  The surface fitting would then be iteratively run until all 

points whose residuals registered as outliers were removed.  By its nature, this method 
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assumed multiple outliers would likely be present in one surface fitting.  Tests on three 

different MTL data sets showed that the small polynomial patch method could be up to 

70% effective under the right circumstances and that the large polynomial patch method 

could be over 80% effective under the right circumstances.  In both cases the polynomial 

surface fitting found a comparable number of outliers to the commercial software used 

while returning less false detections.  Combining the temporal and spatial algorithms by 

first running the data through the temporal algorithm and then running the reduced data 

set through the small patch spatial algorithm produced slightly better results than those 

achieved by running the data through only one algorithm. 

 

Having developed and tested methods for detecting the outlying observations from the 

MTL point cloud data and having developed and tested methods for calibrating the MTL 

hardware in Chapter 4, it is time to apply all these techniques to real MTL data.  To this 

end, the next chapter discusses the results of two trials conducted on real MTL data.  

These trials were conducted on data collected in real situations, one around a commercial 

office building and the other along a typical street scene. 
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6. Improving the Accuracy of MTL Point Cloud Data 

In the previous chapters, several techniques have been presented to improve the accuracy 

of MTL point clouds.  Chapter 4 dealt with methods for improving the measurement 

accuracies of the range finder within the LiDAR sensor itself and the calibration of the 

LiDAR sensor to the vehicle’s onboard DG system.   Chapter 5 dealt with identifying and 

removing inaccurate point cloud elements.  A method for evaluating the individual point 

cloud elements was presented and tested in Chapter 3.  By combining the techniques 

described in these chapters, clean accurate point clouds may be produced.   

 

In this chapter, a procedure for improving the quality of the LiDAR point clouds from 

MTL systems is outlined, and then the techniques developed in Chapters 3 to 5 are 

demonstrated on two MTL data sets.  The point clouds are first evaluated before 

processing by direct comparison to control, and then using the conditional variance 

analysis in Chapter 3.  The zero error and temperature correction developed in Chapter 4 

are then used to adjust the measured ranges reported by the LiDAR sensors.  Next, the 

boresight and lever arm calibration from Chapter 4 is performed.  Finally, the α-β-γ 

smoother from Chapter 5 is applied to the data to identify and remove outliers.  Once 

complete, the point clouds are again evaluated against control and through the use of 

conditional variance analysis, to gauge the effectiveness of this procedure on real MTL 

data. 
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6.1 Procedure for Improving the Accuracy of MTL Point Clouds     

The first step to improving a LiDAR point cloud is to understand how accurate the 

current point cloud is and which variables are producing the greatest sources of error.   

 

Figure 6.1: Procedure for MTL accuracy improvement. 
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Using residual analysis combined with the conditional variance analysis approach 

outlined in Chapter 3, the current state of the MTL calibration can be evaluated.  After 

that evaluation is complete, the procedure outlined in Figure 6.1 can be followed to 

calibrate and process the MTL data.  Once the procedure is complete, residual and 

conditional analysis can be performed again to evaluate and compare the data to its 

previous state.   

 

An initial processing of the data needs to be performed, using estimates for the boresight 

and lever arm values.   The better these estimates the faster the boresight and lever arm 

calibration from Chapter 4 will operate, however, generic values which are several 

degrees and up to a meter offset from their true values can be used.  Once processed, 

extraction from the point clouds of common features between each sensor pair and any 

available control points is performed.  These common and control points, along with the 

initial estimates for the boresight and lever arm values, are introduced to the calibration 

from Chapter 4 and updated estimates for the boresight and lever arm values are 

produced.  These updated estimates are used to re-process the raw MTL data into new 

point clouds. 

 

These new point clouds are then subjected to the α-β-γ outlier detector discussed in 

Chapter 5.  Points are identified by this outlier detector and removed.  Once the outliers 

have been removed, residual analysis and the variance component analysis of Chapter 3 

can be re-run on this data so that it may be compared to its initial state. 

216 
 



6.2 Application to Real MTL Data  

6.2.1 Data of a Commercial Office Building 

Figure 4.13 in Chapter 4 shows a commercial office building.  Table 4.16 in Chapter 4 

lists the control points that were surveyed on prominent features of that building.  MTL 

data of this building was collected again using the same LiDAR sensors calibrated for 

zero error and temperature drift in Chapter 4.  Zero error and temperature calibration is 

required to ensure that the LiDAR sensors are reporting the most accurate ranges 

possible.  To make use of the boresight and lever arm calibration method introduced in 

Chapter 4, it was important that at least one pair of LiDAR sensors were used and control 

data is available.   

 

Figure 6.2 shows the data collected around the office building.  Intensity contrast in the 

point clouds for both Sensor 1 and Sensor 2 was verified before testing was performed to 

ensure that control points located at the edges of parking lines were usable. 

 

 
Figure 6.2: MTL data collected around a commercial office building on April 19th 2012 in Vaughan 

Ontario. 
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Figure 6.3: One-sigma accuracy estimates for control points surveyed on the horizontal surfaces of 

the building. 
 

The control field in Table 4.16 was expanded to 74 control points for the purposes of 

estimating the absolute accuracy of the point cloud.  The process is similar to that 

described by Figures 3.1 and 3.2 in Section 3.3 of Chapter 3.  The points in the expanded 

control field were surveyed at the same time as those in Table 4.16 which were surveyed 

by traversing around the target site with a Leica TC1800 (1”, 1mm + 2ppm) total station.  

ECEF coordinates were established by post processing static GPS observations of the 

control traverse and referencing them to the same base station as the MTL data. The static 

GPS was collected using a Leica 1200 GPS receiver (5mm + 0.5ppm (horizontal), 10mm 

+ 0.5ppm (vertical)). 
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Figure 6.4: One-sigma accuracy estimates for control points surveyed on the vertical surfaces of the 

building. 
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Figure 6.3 lists all the control points used on the ground surfaces in the parking lot of the 

commercial office building and shows the one sigma standard deviation estimates for 

these points.  Similarly, Figure 6.4 lists all of the control points used on the vertical 

surfaces of the commercial office building and graphically displays the calculated one 

sigma standard deviation estimates for these points.  For the purposes of calibrating the 

two LiDAR sensors to the DG system, two control points on vertical surfaces and two 

control points on parking lot lines were extracted from the East, North and West sides of 

the building.  These control points were randomly selected from the control field and 

apportioned equally to the individual sensors. 

6.2.1.1 Assessing the Quality of the Data before Processing 

Point primitives were used to extract 50 building features and 24 parking lot lines to 

which control points have been associated.  These extracted LiDAR points were then 

compared to the associated control points to compute check point residual values for the 

point cloud.  Figure 6.5 shows the results of computing the check point residuals from the 

point clouds of both LiDAR Sensor 1 and LiDAR Sensor 2 and the control in the parking 

lot.  The check point residuals in Figure 6.5 are broken down into their horizontal and 

vertical components.  It was found that the horizontal component of the check point 

residuals in the parking lot for Sensor 1 had a mean average of 0.061m and a standard 

deviation of 0.055m.  For Sensor 2, the horizontal component of the check point residuals 

in the parking lot had a mean average of 0.058m and a standard deviation of 0.056m.  

The vertical component of the check point residuals in Figure 6.5 had a mean average of 

0.031m and a standard deviation of 0.031m, for Sensor 1.  The vertical component of the 
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check point residuals for Sensor 2 had a mean average of 0.020m and a standard 

deviation of 0.027m. 

 

 

Figure 6.5: Check point residuals computed from point primitives extracted from both sensor’s 
LiDAR point clouds and compared to the ground control points associated with parking 
lot lines. 

 

A similar analysis was conducted on the 50 building features that were extracted using 

point primitives.  Check point residuals were created by comparing the point primitives 

extracted from the LiDAR point clouds to the control points for both LiDAR sensors in 

the MTL system (Figure 6.6).  As was done with the check point residuals from the 

parking lot lines, the check point residuals from the building features were segmented 

into their horizontal and vertical components.   
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Figure 6.6: Check point residuals computed from point primitives extracted from both sensor’s 
LiDAR point clouds and compared to the control points associated with vertical building 
features. 

 

The horizontal component of the check point residuals shown in Figure 6.6 produced a 

mean average of 0.064m and a standard deviation of 0.029m for Sensor 1 and a mean 

average of 0.065m and a standard deviation of 0.036m for Sensor 2.  The vertical 

component of the check point residuals shown in Figure 6.6 produced a mean average of 
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-0.002m and a standard deviation of 0.031m for Sensor 1 and a mean average of -0.010m 

and a standard deviation of 0.032m for Sensor 2.  

 

Chapter 3 also presented the method of variance component analysis as a means of 

evaluating this data.  Chapter 3 described the measurements used in Equation 3.1 to 

calculate points from LiDAR and DG system measurements.  These measurements were 

grouped based on their dependencies.  Group 1 consisted of the DG system position in 

Cartesian ECEF coordinates ( ECEF
INSX , ECEF

INSY , ECEF
INSZ ).  The Group 1 parameters are 

converted from the geodetic latitude (B) longitude (L) and ellipsoidal height (ht) 

measured by the DG system.  Group 2 consisted of the roll, pitch and heading ( hpr ,, ) of 

the DG system with respect to the local geodetic coordinate frame.  Group 3 consisted of 

the components of the lever arm vector ( ZYX lll ,, ) between the DG system and the 

LiDAR.  Group 4 consisted of the x, y and z Euler rotations ( ZYX θθθ ,, ) of the LiDAR 

coordinate frame in the DG system frame.  Group 5 consisted of the horizontal angle, 

vertical angle, range and zero error α( , β , d , )K  measured by the LiDAR in the local 

LiDAR coordinate frame. 

 

Using the same group categories for the LiDAR data presented here and running the data 

through the conditional variance analysis of Chapter 3, a breakdown of the contribution 

to the total error from each group of variables is obtained.  This breakdown of error is 

presented here as the colourized LiDAR data shown in Figure 6.7 for Sensor 1 and Figure 

6.8 for Sensor 2.    
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Figure 6.7: MTL data from Sensor 1 of a commercial office building before the quality of the MTL 
data was improved.  The data has been coloured by using an artificial colour scale 
derived from the total effect indexes from conditional variance analysis. 

 
Figure 6.8: MTL data from Sensor 2 of a commercial office building before the quality of the MTL 

data was improved.  The data has been coloured by using an artificial colour scale 
derived from the total effect indexes from conditional variance analysis. 
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In Figure 6.7, it is clear that more than 50% of the error in the Sensor 1 point cloud 

comes from Group 3 which represents the lever arm values.  In fact, the areas of the point 

cloud that show orange in Group 3 represent places were lever arm errors are causing up 

to 75% of the error.  Examining this further, the majority of the error assigned to Group 3 

comes specifically from the Z lever arm.  Group 1, which represents the DG system 

positional errors accounts for another 10% of the error in the point cloud.  In this case, it 

is mainly the Z component of the DG system positional errors that account for this result.  

Group 5 shows a band of increased error significance beneath the vehicle trajectory.  This 

increase is due solely to range error caused by the short ranges measured to the asphalt 

directly under the vehicle. 

 

Figure 6.8, shows almost identical results for the point cloud from Sensor 2.  The most 

significant contributor to the error in Sensor 2 is Group 3 and more specifically the Z 

lever arm.  The amount of error contributed by this lever arm to the point cloud is 

between 60% and 75%.  Group 1 in Sensor 2 is the second largest contributor to the error 

in the point cloud (around 10% of the error).  Specifically it is the Z component of the 

DG system position that contributes 10% of the error to the point cloud.  The third largest 

source of error in the close range points (ranges less than 1.5m from the sensor) is the 

range component of Group 5. 

 

By applying the correction techniques in order the distribution of errors in the point cloud 

should become more balanced.  Currently the vast majority of error is located in the Z 

lever arm.  Correction of the data should see the percentage of error caused by the Z lever 

225 
 



arm reduce, while other variables, such as the DG system positional errors should 

increase in significance.  The first step is to correct the sensor correction values for zero 

error and temperature drift. 

6.2.1.2 Zero Error and Temperature Correction 

The sensors used to produce the data shown in Figure 6.2 are the same sensors used in 

Chapter 4.  Figure 4.10 and Figure 4.11 from Section 4.2 show the temperature drift for 

the two LiDAR sensors. Checking the data collection logs from Sensor 1 it was found 

that the sensor maintained an internal temperature between 56.2°C and 57.0°C.  From 

Figure 4.10, this translates to a range correction of +0.0004m to 0.0000m.  Similarly, the 

data collection logs for Sensor 2 show that the sensor maintained an internal temperature 

between 56.1°C and 57.2°C.  From Figure 4.11, this translates to a range correction of  

-0.0002m to +0.0001m.  These temperature corrections were applied to the ranges 

measured by each LiDAR sensor, however, they are vanishingly small therefore likely of 

little consequence. 

 

The calibration file associated with the MTL lists the zero error for each sensor as shown 

in Table 6.1.  Using the data collected for each sensor as shown in Figure 4.1, the one 

sigma standard deviations for these zero error values were estimated from the residuals 

between known target separations and LiDAR measured ranges.  These estimated 

standard deviation values are also shown in Table 6.1. 

Table 6.1: Zero error as calculated by the manufacturer. 

 
Zero Error (m) STDev (m) 

Sensor 1 -0.8715 0.011 
Sensor 2 -1.2685 0.005 
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Adjusting the data according to the method described in Section 4.1, new zero error 

values and their associated one sigma standard deviation errors were estimated (Table 

6.2).  The values in Table 6.2 were then applied to the data before moving on to the next 

step, calibrating the MTL to its DG system.  

Table 6.2: Zero error calculated from the method in Chapter 5. 

 
Zero Error (m) STDev (m) 

Sensor 1 -0.8615 0.002 
Sensor 2 -1.2666 0.0013 

6.2.1.3 Calibrating the LiDAR to the DG System 

Calibration of the MTL system was done using a subset of the control data in Table 4.16 

from Chapter 4 and some new control points.  Using a set of initial approximations for 

the boresight and lever arm values, point clouds for each sensor were produced.  Based 

on the results discussed in Chapter 4, Section 4.3.3.3, at least 7 control points will be 

needed to calibrate the sensor’s lever arms.  With this in mind, 9 control points from 

Sensor 1 (Table 6.3), 9 control points from Sensor 2 (Table 6.4) and 22 common points 

were extracted from these point clouds.  Inputting these points into the adjustment will 

yield 28 degrees of freedom (22 + 9 + 9 – 12).  These control points and common points 

were located on the West, North and East sides of the building and include both 

horizontal and vertical surfaces. 

 

Running the adjustment for a single iteration, the one sigma standard deviations for the 

initial approximates to the boresight and lever arms were produced.  The initial 

approximates and the calculated one sigma standard deviations are listed in Table 6.5 for 

both sensors.  The values in Table 6.5 were used as part of the inputs to estimate the total 

Sobol indexes in Section 6.2.1.1.  

227 
 



Table 6.3: Control data used with Sensor 1. 

Target ID X [m] Y [m] Z [m] 
σX σY σZ σ3D 

[mm] [mm] [mm] [mm] 
H215 838508.279 -4534994.819 4391296.377 2.4 1.8 1.7 3.5 
H235 838507.915 -4534991.132 4391300.274 3.6 2.4 2.1 4.8 
H255 838507.582 -4534987.429 4391304.223 3.3 2.0 1.7 4.2 
H315 838477.939 -4534967.735 4391330.728 1.0 0.6 0.7 1.4 
H345 838469.350 -4534968.832 4391331.064 1.6 1.0 1.1 2.2 
H385 838458.643 -4534970.169 4391331.471 1.0 0.8 0.9 1.5 
V204 838500.793 -4534989.516 4391314.848 3.6 2.6 1.7 4.8 
V311 838461.206 -4534979.451 4391330.065 2.2 4.5 3.1 6.0 
V403 838445.664 -4534997.083 4391317.459 3.7 1.8 1.5 4.4 

 
Table 6.4: Control data used with Sensor 2. 

Target ID X [m] Y [m] Z [m] 
σX σY σZ σ3D 

[mm] [mm] [mm] [mm] 
H216 838508.269 -4534994.740 4391296.463 2.4 1.8 1.7 3.5 
H236 838507.904 -4534991.060 4391300.357 3.6 2.4 2.1 4.8 
H256 838507.568 -4534987.349 4391304.307 3.4 2.0 1.7 4.2 
H316 838477.825 -4534967.749 4391330.731 1.0 0.6 0.7 1.4 
H346 838469.243 -4534968.848 4391331.071 1.6 1.0 1.1 2.2 
H386 838458.531 -4534970.185 4391331.479 1.0 0.8 0.9 1.5 
V213 838500.944 -4534995.744 4391299.689 4.1 3.5 3.0 6.1 
V313 838478.990 -4534975.214 4391327.488 3.9 3.9 3.5 6.5 
V425 838445.626 -4535000.375 4391307.945 5.3 2.6 2.9 6.6 

 
Table 6.5: Boresight and lever arm values and one sigma standard deviations for both sensors before 

correction. 

  
Roll (°) Pitch (°) Heading (°) X (m) Y (m) Z (m) 

Sensor 
1 

Value -0.0300 -22.8000 35.9600 0.000 -0.720 -0.164 
STDev 0.0014 0.0017 0.0013 0.011 0.009 0.015 

Sensor 
2 

Value -0.1600 -24.3000 -37.8600 0.020 0.680 -0.168 
STDev 0.0014 0.0026 0.0015 0.011 0.010 0.014 

 
Table 6.6: Boresight and lever arm values and one sigma standard deviations for both sensors after 

correction. 

  
Roll (°) Pitch (°) Heading (°) X (m) Y (m) Z (m) 

Sensor 
1 

Value 0.0929 -22.6929 35.7443 -0.007 -0.699 -0.178 
STDev 0.0006 0.0007 0.0005 0.007 0.005 0.008 

Sensor 
2 

Value 0.0344 -24.2598 -38.0934 0.027 0.719 -0.173 
STDev 0.0007 0.0009 0.0007 0.006 0.006 0.008 
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Allowing the adjustment to run until the solution converged; new boresight and lever arm 

values were estimated with their associated one sigma standard deviations.  These values 

are listed in Table 6.6.  The standard deviations in Table 6.6 indicate the boresight has 

changed little compared to the boresight in Table 6.5, but there is a significant 

improvement in the lever arm values between Tables 6.5 and 6.6. 

6.2.1.4 Removing Outliers  
 
Outlier removal was implemented to eliminate any stray points with inaccurate ranges 

due to target properties or angle of incidence of the laser beam.  The time series approach 

from Chapter 5 was used to filter the dual sensor point cloud in Figure 6.2.  The time 

series approach employed the α-β-γ Kalman smoother to predict the position of each 

point in the time sequence based on a sample of data points both before and after the 

point occurred in time.  Based on the testing done in Chapter 5, shown in such Figures as 

5.5, 5.6 and 5.7, it was decided to use a point sample size of 35 points both before and 

after each test point.  Table 6.7 shows the results of this filtering, out of the 

approximately 25 million points in each sensor; the outlier filter removed around 4 

million points as outliers.  This represents 16.7% of the Sensor 1 point cloud and 14.6% 

of the Sensor 2 point cloud. 

Table 6.7: Points removed from each sensor's point clouds by the outlier filter based on the α-β-γ 
Kalman smoother. 

 

Total No. of 
Points 

No. of 
Outliers 

% of Points 
Removed 

Sensor 1 25,974,313 4,331,211 16.7 
Sensor 2 24,945,314 3,648,481 14.6 

 
The filter also failed to return a correct prediction on some points in the point cloud.  

Most of these points occurred where significant gaps were present in the time series.  
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Table 6.8 shows a breakdown of these points.  They represent 0.5% of the Sensor 1 point 

cloud and 0.6% of the Sensor 2 point cloud.  Being that these points are unchecked, they 

are assumed to be good points and remain in the filtered point cloud. 

Table 6.8: Points that failed to return a result from the outlier filter based on the α-β-γ Kalman 
smoother and were therefore indeterminate. 

 

Total No. of 
Points 

No. of Points 
Not Checked 

% of Points 
Not Checked 

Sensor 1 25,974,313 127,610 0.5 
Sensor 2 24,945,314 155,361 0.6 

 

 

Figure 6.9: Points removed from the MTL data set.  Frame A) shows vehicle exhaust highlighted red 
in the context of the wider point cloud, Frame B) shows the points identified by the α-β-γ 
Kalman smoother routine and removed from the data set. 

 

Examining the points that were removed from the point cloud, it was found that many of 

them fall within the leafy parts of the shrubbery surrounding the building or stray points 

on the lawn.  Technically, these points fit the definition of outliers as established in 

Chapter 5, though most people would consider them good data points.  There are a few 

places around the building where the LiDAR has taken ranges on the vehicle exhaust and 

produced a cloud above the parking lot.  The red points shown in Figure 6.9 indicate 

vehicle exhaust points correctly identified by the outlier filter and removed.  The left side 
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of Figure 6.9 shows the points in context of the actual scan data, while the right side 

shows the points identified and removed from the scan in this same area. 

6.2.1.5 Assessing the Quality of the Data after Processing 

As was done in Section 6.2.1.1, point primitives were used to extract the same 50 

building features and 24 parking lot lines.  Again, the extracted LiDAR points were 

compared to the associated control points and check point residual values were computed 

for each point cloud.  Figure 6.10 shows the results of computing the check point 

residuals in the parking lot and Figure 6.11 shows the results of computing the check 

point residuals on the extracted building features. 

 

Figure 6.10: Check point residuals computed from point primitives extracted from both sensor’s 
LiDAR point clouds and compared to the ground control points associated with parking 
lot lines.  Note that points H215, H216, H235, H236, H255, H256, H315, H316, H345, 
H346, H385 and H386 were used in the adjustment process leaving the other 14 points as 
independent check points. 
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Figure 6.11: Check point residuals computed from point primitives extracted from both sensor’s 
LiDAR point clouds and compared to the control points associated with vertical building 
features.  Note that points V204, V213, V311, V313, V403 and V425 were used in the 
adjustment process leaving the other 44 points as independent check points. 

 

The control points from Table 6.3 (H215, H235, H255, H315, H345, H385, V204, V311 

and V403) and the control points from Table 6.4 (H216, H236, H256, H316, H346, 

H386, V213, V313 and V425) which were used to constrain the adjustment, are included 
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in Figures 6.10 and 6.11 to quantify the final size of the minimized residuals and so they 

may be contrasted with the pre-adjustment residuals (Figures 6.5 and 6.6).  The number 

of independent check points depicted in Figures 6.10 and 6.11 are therefore reduced to 

the other 56 check point residuals. 

 

From the parking lot features (Figure 6.10) it was found that the horizontal component of 

the check point residuals for Sensor 1 had a mean average of 0.017m and a standard 

deviation of 0.013m.  For Sensor 2, the horizontal component of the residuals in the 

parking lot had a mean average of 0.024m and a standard deviation of 0.017m.  The 

vertical component of the residuals in Figure 6.10 had a mean average of 0.016m and a 

standard deviation of 0.019m for Sensor 1 and a mean average of 0.012m and a standard 

deviation of 0.017m for Sensor 2.  Similarly, from the building features (Figure 6.11) it 

was found that the horizontal component of the check point residuals produced a mean 

average of 0.027m and a standard deviation of 0.026m for Sensor 1 and a mean average 

of 0.021m and a standard deviation of 0.021m for Sensor 2.  The vertical component of 

the check point residuals shown in Figure 6.11 produced a mean average of -0.010m and 

a standard deviation of 0.015m for Sensor 1 and a mean average of -0.015m and a 

standard deviation of 0.018m for Sensor 2.  

 

In addition, the calibrated and filtered data was grouped as in Section 6.2.1.1 and run 

through conditional variance analysis.   The results of conditional variance analysis for 

Sensor 1 are shown in Figure 6.12.  In Figure 6.12, it is observed that the Group 3 

variables now account for around 50% of the error in the data, while the Group 1 
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variables now account for up to 20% of the error in the data.  The Group 5 variables 

under the vehicle trajectory also now contribute up to 20% of the error in the point cloud. 

 

 
Figure 6.12: MTL data from Sensor 1 of a commercial office building after the quality of the MTL 

data was improved.  The data has been coloured by using an artificial colour scale 
derived from the total effect indexes from conditional variance analysis.   

 
A similar result is found from Sensor 2 (Figure 6.13), where Group 3 variables account 

for 40% to 50% of the error in the point cloud, Group 1 variables account for up to 25% 

of error in the point cloud and Group 5 variables account for up to 20% of error in the 

point cloud. 

 

These results show that the major bias caused by the Z lever arm has been significantly 

reduced and that errors from other error sources have become more prominent as the Z 

lever arm has been reduced.  It should also be noted that Figures 6.12 and 6.13 show a 
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great reduction of the scattered individual points.  Figures 6.7 and 6.8 show that many of 

these scattered individual points had high error contributions from the Z lever arm. 

 

 

Figure 6.13: MTL data from Sensor 2 of a commercial office building after the quality of the MTL 
data was improved.  The data has been coloured by using an artificial colour scale 
derived from the total effect indexes from conditional variance analysis. 

6.2.2 Data of a Typical Street Scene 

Data was collected with a different MTL system than used in Section 6.2.1 along a 

typical street scene at Oakdale road, in the city of Toronto, Canada.  Figure 6.14 shows a 

dimensioned planimetric view of the LiDAR collected along this corridor combined with 

a detailed close up of the street scene.  The street scene consisted of one story 

commercial buildings, trees, overhead wires, sidewalks, grass, road signage, manholes, 

catch basins and asphalt.  Control data was surveyed along the sidewalks and on the 

corners of building along a 400m stretch of the street.  To survey the control, a traverse 
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was established along the length of the test corridor using a Topcon GTS-235w (2”, 2mm 

+ 2ppm) total station.  ECEF coordinates were established by post processing static GPS 

observations of the control traverse and referencing them to the same base station as the 

MTL data. The static GPS was collected using a Topcon Legacy E GPS receiver (3mm + 

1ppm (horizontal), 5mm + 1.5ppm (vertical)). 

 

Figure 6.14: Dual sensor MTL data of a 400m stretch of Oakdale Road in Toronto, Canada. 
 

Figure 6.15 lists all the control points used on both the ground surfaces and the vertical 

building walls.  Figure 6.15 also shows the one sigma standard deviation estimates for 

these points.  The quality of the control used in this test was not as good as that used in 

Section 6.2.1; with most of the control having 1 sigma accuracy estimates in excess of 

1cm.  In addition, targets on the sidewalk were not ideal as the oblique angle of incidence 

at which the MTL could see these points contributed to elongated laser footprints 

reducing the accuracy of individual LiDAR points.  Using specialty made targets was 
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considered, but it was decided that using the natural targets available in the street better 

replicated the normal conditions under which users of MTL function.  

 

 
Figure 6.15: One-sigma accuracy estimates for control points surveyed on both horizontal and 

vertical surfaces located along a 400m section of street in Toronto, Canada.  
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6.2.2.1 Assessing the Quality of the Data Before Processing 

Similar to the previous case in Section 6.2.1.1, primitive geometry was used to extract 

point features from the point cloud that corresponds to the control points listed in Figure 

6.15.  These extracted points from the LiDAR point clouds of each sensor, were then 

compared to the control points.  Residuals were formed between the extracted check 

points and the control points, the results of which are shown in Figure 6.16.  The check 

point residuals in Figure 6.16 are separated into their horizontal and vertical components.  

The designator V and H are used on residuals to indicate if the feature is a vertical (V) 

feature such as a building wall or a horizontal (H) feature such as a sidewalk seem. 

 

Based on the check point residuals labeled V in Figure 6.16, it was found that the 

horizontal component of the V check point residuals on the buildings had a mean average 

of 0.062m and a standard deviation of 0.016m for Sensor 1 and a mean average of 

0.041m and a standard deviation of 0.023m for Sensor 2.  The vertical component of the 

V check point residuals on the buildings had a mean average of -0.025m and a standard 

deviation of 0.019m for Sensor 1 and a mean average of -0.035m and a standard 

deviation of 0.017m for Sensor 2. 

 

A similar analysis was conducted on the check point residuals labeled H (ground points) 

in Figure 6.16.  It was found that the horizontal component of the H check point residuals 

shown in Figure 6.16 produced a mean average of 0.034m and a standard deviation of 

0.018m for Sensor 1 and a mean average of 0.037m and a standard deviation of 0.017m 

for Sensor 2.  The vertical component of the H check point residuals shown in Figure 
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6.16 produced a mean average of -0.010m and a standard deviation of 0.016m for Sensor 

1 and a mean average of -0.002m and a standard deviation of 0.019m for Sensor 2.  

 

 

Figure 6.16: Check point residuals computed from point primitives extracted from both sensor’s 
LiDAR point clouds and compared to the control points associated with unique street 
features before correction. 
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Figure 6.17: MTL data from Sensor 1 of a typical street scene before the quality of the MTL data 
was improved.  The data has been coloured by using an artificial colour scale derived 
from the total effect indexes from conditional variance analysis. 

 
Performing conditional variance analysis and using the variable groups as established in 

Chapter 3, it was found that the majority of the errors in the point cloud come from 

Group 3, specifically the Z lever arm.  Figure 6.17 shows that for Sensor 1, the Z lever 

arm makes up for almost 50% of the error in the overall point cloud.  Group 1, the 

position of the system from the DG system trajectory is the next major contributor.  

Group 5 does show error spikes directly under the vehicle; these are caused by a 

degradation of the laser range accuracy caused by its proximity to the road.  Similarly, 
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Figure 6.18 shows the same pattern for Sensor 2, where the Z lever arm is contributing 

the most error to the point cloud, the DG system position the next most error in the point 

cloud and the LiDAR is only contributing a significant amount of error directly under the 

vehicle’s trajectory. 

 
Figure 6.18: MTL data from Sensor 2 of a typical street scene before the quality of the MTL data 

was improved.  The data has been coloured by using an artificial colour scale derived 
from the total effect indexes from conditional variance analysis. 

 

As stated in Section 6.2.1.2, applying the correction techniques, previously outlined in 

Chapters 3 to 5, to these data sets should cause the distribution of errors in the point cloud 

to become more balanced.  Currently the vast majority of error is located in the Z lever 
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arm.  Correction of the data should see the percentage of error caused by the Z lever arm 

reduce, while other variables, such as the DG system positional errors should increase in 

significance.  

6.2.2.2 Zero Error and Temperature Correction 

No temperature correction data is available for the MTL system used in this data collect.  

The data logs from the system indicate that Sensor 1 operated at a constant temperature 

of 42.9°C and that Sensor 2 operated at a constant temperature of 42.5°C for the duration 

of the collect.   For the sensors used in Section 6.2.1 this would have indicated range 

corrections of -0.0068m and 0.0041m, respectively.  However, since no temperature chart 

exists for these sensors, it is assumed that the temperature error is vanishingly close to 

zero.   

Table 6.9: Zero error as calculated by the manufacturer. 

 
Zero Error (m) STDev (m) 

Sensor 1 -0.8522 0.01 
Sensor 2 -0.9926 0.01 

 

The zero error provided by the manufacturer is listed in Table 6.9.  The two sensors used 

to collect this data were not available for zero error calibration as described in Chapter 5.  

Since the manufacturer does not provide information about the accuracy of their zero 

error calculations, it will be assumed, based on the standard deviations in Table 6.1, that 

the zero errors for each sensor will have a one sigma standard deviation of approximately 

0.01m.  
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6.2.2.3 Calibrating the LiDAR to the DG System 

Calibration of the LiDAR sensors was done using the dual sensor technique presented in 

Chapter 4.  As was done in Section 6.2.1.3, initial approximates to the boresight and lever 

arm values were estimated and point clouds were produced for each sensor.  Based on the 

results discussed in Chapter 4, Section 4.3.3.3, at least 7 control points will be needed to 

calibrate the sensor’s lever arms.  With this in mind, a total of 12 control points from 

Figure 6.15 were extracted from the point clouds of both sensors, along with 47 common 

points. 

Table 6.10: Control data used with Sensor 1. 
Target 

ID X [m] Y [m] Z [m] 
σX σY σZ σ3D 

[mm] [mm] [mm] [mm] 

V1070 839018.250 -4538405.588 4387631.624 9.0 6.0 4.0 11.5 
V1573 839020.064 -4538312.463 4387731.492 8.0 7.0 4.0 11.4 
H1236 838989.795 -4538404.521 4387630.561 5.0 9.0 3.0 10.7 
H1259 838980.492 -4538286.936 4387759.012 6.0 10.0 5.0 12.7 
H1261 838985.796 -4538298.300 4387745.988 5.0 10.0 4.0 11.9 
H1300 838997.051 -4538366.640 4387670.448 7.0 10.0 4.0 12.8 
H1308 838997.248 -4538361.571 4387675.803 7.0 10.0 4.0 12.8 

 
Table 6.11: Control data used with Sensor 2. 

Target 
ID X [m] Y [m] Z [m] 

σX σY σZ σ3D 
[mm] [mm] [mm] [mm] 

V1122 838981.939 -4538348.297 4387706.811 6.0 6.0 3.0 9.0 
V1857 839000.080 -4538264.829 4387789.119 8.0 8.0 4.0 12.0 
H1223 838994.929 -4538329.136 4387711.486 9.0 10.0 6.0 14.7 
H1244 838979.050 -4538287.385 4387758.909 6.0 10.0 5.0 12.7 
H1248 838968.929 -4538264.941 4387784.488 8.0 10.0 6.0 14.1 
H1303 838998.774 -4538385.141 4387650.135 9.0 10.0 5.0 14.4 
H1309 839000.351 -4538355.482 4387681.842 6.0 10.0 4.0 12.3 

 
Table 6.10 lists 6 control points and their estimated standard deviations.  The control 

points in Table 6.10 correspond to features extracted from the Sensor 1 point cloud and 

used in the adjustment to find the calibration parameters for the two sensors.  Table 6.11 
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lists another 6 control points and their estimated standard deviations.  The control points 

in Table 6.11 correspond to features extracted from the Sensor 2 point cloud and used in 

the adjustment to find the calibration parameters for the two sensors.  Inputting the 47 

common points along with 7 control points on Sensor 1 and the 7 control points on 

Sensor 2, means the two sensor adjustment will have 49 degrees of freedom (47 + 7 + 7 – 

12).   

 
Running the adjustment for a single iteration, the one sigma standard deviations for the 

initial approximates to the boresight and lever arms were produced.  The initial 

approximates and the calculated one sigma standard deviations are listed in Table 6.12 

for both sensors.  The values in Table 6.12 were used as part of the inputs to estimate the 

total Sobol indexes in Section 6.2.2.1. 

Table 6.12: Boresight and lever arm values and one sigma standard deviations for both sensors 
before correction. 

  
Roll (°) Pitch (°) Heading (°) X (m) Y (m) Z (m) 

Sensor 
1 

Value -0.0700 -29.7000 37.5500 0.000 -0.717 -0.169 
STDev 0.0005 0.0016 0.0004 0.009 0.009 0.010 

Sensor 
2 

Value -0.1500 -29.8500 -37.0500 0.000 0.673 -0.162 
STDev 0.0005 0.0014 0.0004 0.009 0.009 0.010 

 
Table 6.13: Boresight and lever arm values and one sigma standard deviations for both sensors after 

correction. 

  
Roll (°) Pitch (°) Heading (°) X (m) Y (m) Z (m) 

Sensor 
1 

Value -0.1453 -29.3109 37.6422 -0.005 -0.724 -0.196 
STDev 0.0003 0.0012 0.0003 0.004 0.004 0.004 

Sensor 
2 

Value -0.2928 -29.6620 -36.9568 -0.013 0.685 -0.178 
STDev 0.0003 0.0011 0.0003 0.004 0.004 0.004 

 
Allowing the adjustment to run until the solution converged; new boresight and lever arm 

values were estimated with their associated one sigma standard deviations.  These values 

are listed in Table 6.13.  The standard deviations in Table 6.13 indicate that the boresight 

values have undergone small incremental changes compared to the values in Table 6.12, 
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but there is a significant improvement in the accuracy of the lever arm values between 

Tables 6.11 and 6.12.  

6.2.2.4 Removing Outliers  

As was done in Section 6.2.1.4, outlier removal was implemented to eliminate points 

with inaccurate ranges due to target properties or angle of incidence of the laser beam.  

The time series approach from Chapter 5 was used to filter both sensors’ point clouds as 

shown in Figure 6.14.  Several attempts were made to determine the optimal window size 

for this data set and it was found that a point sample size of 10 points both before and 

after each test point gave the best results.  Table 6.14 shows the results of this filtering.  

Out of the approximately 8 million points in each sensor; the outlier filter removed 

around 100,000 points as outliers.  This represents 1.2% of the Sensor 1 point cloud and 

1.2% of the Sensor 2 point cloud. 

Table 6.14: Points removed from each sensor's point clouds by the outlier filter based on the α-β-γ 
Kalman smoother. 

 

Total No. of 
Points 

No. of 
Outliers 

% of Points 
Removed 

Sensor 1 8,096,474 99899 1.2 
Sensor 2 8,100,610 100,336 1.2 

 
Table 6.15: Points that failed to return a result from the outlier filter based on the α-β-γ Kalman 

smoother and were therefore indeterminate. 

 

Total No. of 
Points 

No. of Points 
Not Checked 

% of Points 
Not Checked 

Sensor 1 8,096,474 10,960 0.4 
Sensor 2 8,100,610 5,560 0.1 

 

The filter also failed to return a correct prediction on some points in the point cloud.  

Most of these points occurred where significant gaps were present in the time series.  

Table 6.15 shows a breakdown of these points.  They represent 0.4% of the Sensor 1 
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point cloud and 0.1% of the Sensor 2 point cloud.  Being that these points are unchecked, 

they are assumed to be good points and remain in the filtered point cloud. 

 

Figure 6.19: Points removed from the MTL data set.  Frame A) shows calibrated MTL data before 
the outlier removal was performed, Frame B) shows the points identified by the α-β-γ 
Kalman smoother routine and removed from the data set. 

 
Examining the points that were removed from the point cloud, it was found that there 

were virtually no outliers in the point clouds from the two sensors.  The vast majority of 

the points removed from the point cloud fell within the leafy parts of the trees and shrubs 

lining the street.  Some of the points that were removed also belonged to the overhead 

wires that paralleled the street.  Technically, these points fit the definition of outliers as 

established in Chapter 5, though most people would consider them good data points.  

Figure 6.19 shows the complete point cloud from a section of the street and the points 

selected by the algorithm for removal.  As is shown in Figure 6.19, the tips of the tree 

branches and the overhead wires form the vast majority of the data removed by the 

outlier algorithm. 
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6.2.2.5 Assessing the Quality of the Data after Processing 

To assess the quality of the processed data, primitive geometry was again used to extract 

point features from the corrected point clouds from the two sensors.  The points extracted 

from the post-processed point clouds correspond to the 47 control points listed in Figure 

6.15.   Residuals were formed between the extracted check points and the control points, 

the results of which are shown in Figure 6.20.   

 

The control points from Table 6.10 (V1070, V1573, H1236, H1259, H1261, H1300 and 

H1308) and the control points from Table 6.11 (V1122, V1857, H1223, H1244, H1248, 

H1303 and H1309) which were used to constrain the adjustment, are included in Figure 

6.20 to quantify the final size of the minimized residuals and so they may be contrasted 

with the pre-adjustment residuals (Figure 6.16).  The number of independent check points 

depicted in Figure 6.20 is therefore reduced to the other 33 check point residuals.  As was 

done in Section 6.2.2.1, the check point residuals in Figure 6.20 are separated into their 

horizontal and vertical components.  The designator V and H are used on the check point 

residuals to indicate if the feature is a vertical (V) feature such as a building wall or a 

horizontal (H) feature such as a sidewalk seem. 

 

Based on the residuals labeled V in Figure 6.20, it was found that the horizontal 

component of the V check point residuals on the buildings had a mean average of 0.049m 

and a standard deviation of 0.029m for Sensor 1 and a mean average of 0.038m and a 

standard deviation of 0.032m for Sensor 2.  The vertical component of the V check point 

residuals on the buildings had a mean average of -0.006m and a standard deviation of 
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0.013m for Sensor 1 and a mean average of -0.005m and a standard deviation of 0.025m 

for Sensor 2.   

 

Figure 6.20: Check point residuals computed from point primitives extracted from both sensor’s 
LiDAR point clouds and compared to the control points associated with unique street 
features after correction.  Note that points V1070, V1122, V1573, V1857, H1236, H1223, 
H1259, H1244, H1261, H1248, H1300, H1303, H1308 and H1309 were used in the 
adjustment process leaving the other 33 points as independent check points. 
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Furthermore, it was found that the horizontal component of the H check point residuals 

shown in Figure 6.20 produced a mean average of 0.009m and a standard deviation of 

0.006m for Sensor 1 and a mean average of 0.006m and a standard deviation of 0.005m 

for Sensor 2.  The vertical component of the H check point residuals shown in Figure 

6.20 produced a mean average of 0.004m and a standard deviation of 0.007m for Sensor 

1 and a mean average of -0.005m and a standard deviation of 0.012m for Sensor 2. 

 
Figure 6.21: MTL data from Sensor 1 of a typical street scene after the quality of the MTL data was 

improved.  The data has been coloured by using an artificial colour scale derived from 
the total effect indexes from conditional variance analysis.  

 
Again, performing conditional variance analysis and using the variable groups as 

established in Chapter 3 it was found that the calibration adjustment had reduced the 

249 
 



significance of the Z lever arm substantially.  Figure 6.21 shows that Group 3 (DG 

system to LiDAR sensor lever arms) contributes to less than 15% of the overall error in 

the Sensor 1 point cloud, compared with the 50% it contributed before correction (Figure 

6.17).  As expected Figure 6.21 now shows that most of the error in the point cloud is 

derived from Group 1 which contains the three position parameters from the DG system.  

In addition, the significance of the errors in Group 5 from the laser range finder has 

increased.   

 

 

Figure 6.22: MTL data from Sensor 2 of a typical street scene after the quality of the MTL data was 
improved The data has been coloured by using an artificial colour scale derived from 
the total effect indexes from conditional variance analysis. 
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Similar to Figure 6.21, Figure 6.22 shows the distribution of errors in the point cloud 

derived from Sensor 2 after correction.  Again the DG system position errors have 

become the most significant error source after calibration correction.  Group 3 in Figure 

6.22 shows that a significant improvement has been made to the amount of error 

contributed to the point cloud by the sensor to DG system lever arm values.  

6.3 Summary 

In this chapter, two sets of real data were processed using the outlier detection, zero error 

calibration, temperature correction, boresight angle and lever arm calibration techniques 

discussed in Chapters 4 and 5.  In addition, the data was evaluated using the error 

analysis techniques outlined in Chapter 3.  A procedure for performing the correction of 

the test case data was first presented and then the data from the two test cases were 

processed.  Test case 1 showed that by following the outlined processing procedure for 

the MTL data, the residuals between a control field and the MTL point cloud were 

reduced by 4.4cm for points located on both horizontal and vertical target surfaces.  

Conditional variance analysis on test case 1 showed a 25% reduction in the errors 

generated by the boresight angle uncertainties and an increase in the significance of the 

uncertainty of the DG system position.  Similarly, test case 2 showed an average post 

procedure reduction in the residuals between control points and MTL data of 2~3cm on 

horizontal surfaces and 1~2cm on vertical surfaces.  Conditional variance analysis on test 

case 2 showed more than a 30% reduction in the significance of the uncertainty in the 

boresight angle parameters, causing the DG system position to become the most 

significant source of error within the post procedure point cloud. 
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7. Conclusions and Recommendations for Future Work 

7.1 Conclusions 

The first objective of this research, the establishment of methods for the testing and 

determination of the accuracy of MTL point clouds, was successfully achieved, and can 

definitely be applied to any other LiDAR system as a general tool to study instrumental 

accuracy and reliability.  Through the use of residual analysis, error propagation and 

conditional variance analysis, real data from two MTL systems was analyzed and it was 

found that the actual errors exceeded the manufacturer’s estimates of system accuracy by 

over 10mm.  Conditional variance analysis on these systems has shown that the 

contribution by the interactions among the measured parameters to the variances of the 

points in MTL point clouds is insignificant.  The sizes of the variances for the 

measurements used to produce a point are the primary source of error in the output point 

cloud.  In particular, under a loosely controlled error condition, the Z lever arm and roll 

angle from the LiDAR to the DG system contribute more errors in the output point cloud 

than any of the other parameters, including the DG system position.  Under the tightly 

controlled boresight and lever arm calibration conditions, short range laser measurements 

and DG system positioning errors become the dominant source of error in the point 

cloud.  Therefore, MTL systems that have been mounted and boresighted using non-

rigorous methodologies provide the greatest source of systematic error in the resulting 

point cloud.  It is therefore essential that high quality rigorous methods be used to derive 

the integration parameters so that high quality LiDAR data may be collected with any 

MTL system. 
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The second objective, the creation of methods for the reduction of errors in all phases of 

data acquisition and processing, was successful achieved, in that all the test data 

experienced measureable accuracy improvements after processing occurred.  The 

methods for the boresight and lever arm calibration of the LiDAR sensors to the DG 

system, the zero error calibration, the temperature correction and the outlier detector all 

succeeded in improving the accuracy and the quality of the MTL data tested.  It was 

found that the method of simultaneous calibration of the boresight angles and lever arms 

for two LiDAR sensors (Chapter 4, Section 4.3) did improve the system calibration 

values.  Comparing the two sensors to one another produced enough unique information 

to enable the computation of the boresight parameters without the aid of ground control 

points.  The redundancy indexes and the variance contribution indexes from multiple 

MTL system measurements indicated that the lever arms, especially the Z lever arm was 

extremely dependent on the number, quality and distribution of the ground control points 

used in the adjustment.  It was found that the ground control points had to be located on 

both of the horizontal and vertical surfaces throughout the collection area for the lever 

arms to be accurately calibrated.  The X and Y lever arms were found to have sub 

centimetre accuracy estimates when the 7 control points were located on either the 

horizontal or vertical surfaces, however, the Z lever arm component required that the 7 

ground control points be dispersed on both types of surfaces for an accurate calibration.  

Applying this calibration technique to real MTL data from two different systems 

produced an improvement in the accuracy of both the estimated boresight angles and the 
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estimated lever arm parameters.  In both case studies, the estimated errors were reduced 

to less than ±4 arc seconds for all boresight angles and less than ±8mm for all lever arms. 

 

The laboratory calibration of the zero error (Chapter 4, Section 4.1) proved to be 

successful.  Calibration values computed for the sensors used in the trial around the 

commercial office building produced zero errors with the accuracy of ±1~2mm.  These 

accuracy estimates were a distinct improvement over the accuracy estimates for the 

original zero error values which had accuracy estimates as low as ±11mm.  The scale 

errors estimated from the laboratory data showed a fair amount of fluctuation and the 

associated accuracy estimates were comparatively high.  Therefore, as the maximum 

range for the tested sensors is 100m and the manufacturer ignores scale errors in these 

sensors, the scale error is probably not an issue for this LiDAR system and can be 

discarded. 

 

The temperature correction in MTL laser range finders (Chapter 4, Section 4.2) has been 

demonstrated to be effective.  When temperature observations are available, it is possible 

not only to characterize the changes in the measured ranges due to temperature in MTL 

sensors, but also to produce a table of corrections for the measured ranges.  The 

laboratory data presented here showed that to a fixed target the MTL sensors used to scan 

the commercial office building displayed a temperature related range error of up to 

2.5cm.  That being said, the temperature measured in the LiDAR sensors during the field 

trial around the commercial office building produced range corrections for both sensors 

that were sub-millimetre and therefore insignificant.  
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The outlier algorithms have proven to be effective at filtering erroneous points from MTL 

point clouds.  The outlier filter based on the α-β-γ smoother proved capable of accurately 

identifying and removing up to 70% of the outliers in some point cloud trials of Chapter 5 

without erroneously removing any non-outlier points.  This performance could be 

improved by combining the outlier filter based on the α-β-γ Kalman smoother with the 

outlier filters based on the surface fitting routines.  The main weakness of the outlier filter 

based on the α-β-γ Kalman smoother appears to occur whenever the pattern of the MTL 

scan lines is interrupted, such as at the end of each scan line.  Applying the outlier filter 

based on the α-β-γ smoother to the MTL data collected during the two trials in Chapter 6 

showed that it could identify and remove outliers caused by vehicle exhaust, while 

preserving the non-outlier points within these point clouds.  In both trials, the outlier filter 

removed LiDAR points collected around vegetation.  Technically, these points fit the 

definition of outliers as established in Chapter 5, though most people would consider 

them good data points. 

  

The two test cases on real MTL data, used to evaluate the effectiveness of the error 

correction techniques previously mention, showed that in both cases significant 

improvements to the final MTL point clouds occurred.  Test case 1 showed a significant 

improvement of the residuals between extracted LiDAR points and control points located 

on both horizontal and vertical surfaces.  Residuals located on horizontal surfaces showed 

an improvement of 44mm, while the estimated standard deviations for these same points 

were reduced to as much as 1/5 of their previous values.  Residuals on vertical surfaces 

also showed an improvement of 44mm; however the reduction in the estimated standard 
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deviations stayed largely the same.  At the same time, conditional variance analysis 

showed that before the data was improved, the majority of error within the point cloud 

was emanating from the Z lever arm, which was responsible for 60%~75%.of the error.  

After improving the quality of this data, it was found the lever arms still contribute a 

significant amount of error in the point clouds, up to 50%.  Conditional variance analysis, 

however, indicates that the error in the point clouds is now more evenly distributed with 

the DG system and the LiDAR playing a more significant role.  The residuals between 

the surveyed control points and the MTL point clouds produced mean averages in the 

range of 12mm~27mm and one sigma standard deviations between ±13mm~±26mm, 

which slightly exceeds the limits set in [5]. 

 

Test case 2 showed an improvement of the residuals between extracted LiDAR points 

and control points located on horizontal surfaces of between 20mm~30mm, while the 

estimated standard deviations for these same points were cut in half.  The residuals for 

the few points located on vertical surfaces saw less improvement, with a reduction in the 

residual’s mean average of between 10mm~20mm, while the standard deviation for these 

same points increased.  At the same time, conditional variance analysis showed that 

before the data was improved, the majority of error within the point cloud was emanating 

from a single variable.  The Z lever arm was responsible for up to 50% of the error in the 

point clouds produced from these sensors.  After the improvement to the quality of this 

data, the lever arms take on far less significance, making the DG system the greatest 

source of error in these point clouds.  In this test case the control points on the horizontal 

road surfaces had mean averages in the range of 4mm~9mm and one sigma standard 
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deviations in the range ±5mm~±12mm.  However, the control points on the vertical 

building surfaces had mean averages in the range 5mm~49mm and one sigma standard 

deviations between ±13mm~±32mm, which again exceed the limits set in [5]. 

7.2 Recommendations for Future Work 

The work presented here has examined and proposed solutions for some of the error 

sources encountered by MTL users.  Being that the MTL consists of many parts, each 

containing their own sensors and each contributing to the overall error in the system, 

further work on other aspects of the system could reduce system errors so as to meet the 

accuracy requirements in specific engineering applications.  In the examination of MTL 

errors presented in this dissertation, no work on correcting or moderating errors generated 

by the DG system were addressed, as it is equipped as a standalone self-contained 

component to which a user normally has no access to either its internal hardware and/or 

software.  One possible method for post collection adjustment of the DG system 

trajectory may involve modifying the calibration adjustment presented in Chapter 4 to 

include trajectory variables.  It may also be possible to successfully integrate the zero 

error and temperature correction techniques presented in Sections 4.1 and 4.2, 

respectively, into the calibration model presented in Section 4.3, so that a simultaneous 

estimation of these values occurs.   

 

Another possibility for future work would be to upgrade the temporal based outlier 

detection routine to more effectively identify and preserve power line and vegetation 

data.  Currently, the routine treats the individual scan line from the MTL in relative 

isolation, causing linear features pointed in the direction of the MTL trajectory to be 
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falsely identified.  By combining the methodology presented in Section 5.2.1 with 

another filter that works on identified outliers in conjugate lines, such false detections 

may be eliminated.  This methodology may even provide the basis for some sort of 

automatic feature extractor. 

 

The standardization of MTL techniques for geodetic applications in terms of technical 

specifications and operational procedures, similar to those used by other geodetic 

instrumental systems, is also needed in practice.  However, a specific authority, such as 

the Ministry of Transportation, may be required to establish and maintain these standards.  

Further work on producing such standardized specifications and procedures, capable of 

encompassing the range of MTL applications should be under taken. 
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Appendix A 
In Section 3.2.1 the LiDAR to Geocentric coordinate conversion that was used to 

translate local MTL coordinates to global Geocentric coordinates was introduced.  For 

the purposes of error analysis and boresight calibration, the first derivatives of ECEFP  

needed to be determined with respect to several of the input parameters.  The derivations 

of these first derivatives used during the course of this research are presented here.  
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