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Abstract

In this thesis, we consider the Bayesian analysis of undirected graphical Gaussian

models with edges and vertices symmetries. The graphical Gaussian models with

equality constraints on the precision matrix, that is the inverse covariance matrix,

were introduced by Højsgaard and Lauritzen [2008] as RCON models. The models

can be represented by colored graphs, where edges or vertices have the same color

if the corresponding entries of the precision matrix are equal. In this thesis, we

define a conjugate prior distribution for the precision matrix in RCON models. For

simplicity, we will call this prior the colored G-Wishart distribution.

We begin with the study of the sampling scheme for the colored G-Wishart dis-

tribution. This sampling method is based on the Metropolis-Hastings algorithm

and the Cholesky decomposition of matrices. In order to assess the accuracy of the

Metropolis-Hastings sampling method, we compute the expected values of the preci-

sion matrix in the colored G-Wishart distribution for some particular colored graphs:

trees, star graphs, a complete graph with 3 vertices and a decomposable model on 4
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vertices. Moreover, the simulation results for comparing the true mean of the pre-

cision matrix K in the colored G-Wishart distribution with the sample mean of K

obtained from our Metropolis-Hastings algorithm are presented.

Next, we propose the distributed Bayesian estimate of the precision matrix for

large colored graphical Gaussian models. We also study the asymptotic behavior

of our proposed estimate under the regular asymptotic regime where the variable

dimension p is fixed and under the double asymptotic regimes where both p and

the sample size n go to infinity. The proofs of the asymptotic properties of the

distributed estimate are provided.

Evaluating the normalizing constant is important and necessary for obtaining

the posterior distribution and the marginal probability of the likelihood. We give

three methods, the Monte Carlo method, the importance sampling and the Laplace

approximation, for estimating the normalizing constant of the colored G-Wishart

distribution. We then apply these methods on the model search for a real dataset

using Bayes factors.

Keywords: asymptotic normality, Bayesian estimator, colored G-Wishart dis-

tribution, conditional independence, conjugate prior, consistency, marginal model,

Metropolis-Hastings, large deviation, symmetry constraint.
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1 Introduction and Notations

1.1 Introduction

Graphical Gaussian models, also known as covariance selection models [Demp-

ster, 1972], is a family of probability distributions in which the dependencies or

independencies among continuous random variables are expressed by an underlying

graph. It provides an efficient framework for compactly modeling the complex joint

distribution by means of their conditional dependency graph. Therefore, it has be-

come a powerful tool of modern statistics for analyzing and representing complex

high-dimensional data. Such models are commonly used in so many different fields,

including biology, medicine, computer vision and statistical physics. In graphical

Gaussian models, each vertex represents a random variable, and the absent of edge

(i, j) indicates the conditional independence of the variable Xi and the variable Xj

given all remaining variables.
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Højsgaard and Lauritzen [2008] introduced graphical Gaussian models with edge

and vertex symmetries in order to reduce the number of parameters in graphical

Gaussian models. The models generalize graphical Gaussian models and can be rep-

resented by colored graphs, where vertices or edges are restricted to being identical

coloring if the associated parameters are equal. These models are defined as graph-

ical Gaussian models with three different types of equality constraints: equality of

specified entries of the precision matrix (RCON), equality of specified entries of the

correlation matrix (RCOR) and equality of specified entries of the covariance ma-

trix generated by permutation symmetry (RCOP). The combination of symmetric

restrictions and conditional independent restrictions results in the reduction in the

number of parameters and makes the models efficient and flexible.

In recent years, many methods which facilitate Bayesian inference have been de-

veloped using graphical Gaussian models. Bayesian analysis of undirected graphical

Gaussian models has been considered by Dawid and Lauritzen [1993]. In particular,

Dawid and Lauritzen [1993] mainly focused on the decomposable graphs and intro-

duced the hyper inverse Wishart distribution as the conjugate prior for the covariance

matrix. Roverato [2002] further generalized the hyper inverse Wishart distribution to

arbitrary graphs. Atay-Kayis and Massam [2005] as well as Letac and Massam [2007]

continued these developments and termed this distribution the G-Wishart as a prior
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specified for the inverse covariance matrix. A number of sampling methods for the

G-Wishart distribution associated with an arbitrary graph have been proposed [see,

e.g., Piccioni, 2000, Mitsakakis et al., 2011, Dobra et al., 2011, Carvalho et al., 2007,

Wang and Li, 2012, Lenkoski, 2013]. The existing methods expand the usefulness

of the G-Wishart distribution and provide a statistical tool to the estimation of the

posterior mean for the covariance matrix in a Bayesian framework.

In this thesis, we work with RCON models in a Bayesian framework. In order to

identify the conditional independencies between the random variables in the RCON

models, we concern the problem of estimating the elements of the inverse covariance

matrix, which commonly referred to as the concentration or precision matrix. Since

RCON models belong to an exponential family, we use the Diaconis and Ylvisaker

[1979] (henceforth abbreviated DY) conjugate prior for the precision matrix. This

yields a distribution similar to the G-Wishart distribution but with the colored con-

straints on the edges and vertices. We call this distribution the colored G-Wishart

distribution and further propose a method to sample from the colored G-Wishart

distribution. Our sampling scheme is an adaptation of the Metropolis-Hastings algo-

rithm proposed by Mitsakakis et al. [2011] for the G-Wishart distribution in uncol-

ored models. Extensive numerical experiments demonstrate our proposed sampling

method performs very well by comparing the true mean of the precision matrix K
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in the colored G-Wishart distribution with the sample mean of K obtained through

our Metropolis-Hastings algorithm.

At the end, we propose an efficient algorithm to estimate the precision matrix

for high-dimensional setting, which is distributed estimation. The idea behind the

distributed estimation is that the estimation of the precision matrix is separated to

smaller local models from which we can estimate parts of the parameters of the global

model. The estimates of parameters from local models are then combined together

to yield an estimate of the global model. This efficient computational method was

first proposed by Meng et al. [2014] for the maximum likelihood estimate in graphical

Gaussian models and we adapt it here to graphical Gaussian models with edges and

vertices symmetries in a Bayesian framework. We consider the asymptotic behavior

of our proposed estimators when the number of variables p is fixed and the sample size

n grows to infinity. We further derive high-dimensional convergence rates when both

p and n are large. We also demonstrate numerically how our method can scale up to

any dimension by looking at colored graphical Gaussian models represented by large

colored cycles and also by a colored 10 × 10 grid. The simulation study demonstrates

that our method produces statistically efficient estimators of the precision matrix for

the colored graphical Gaussian models.
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1.2 Notations and Preliminaries

This chapter covers some terminologies and known results which are going to

be used in the rest of this thesis. They are involved in graph theory, Gaussian

graphical models, colored Gaussian graphical models and the colored G-Wishart

prior. Further details and explanations are available in Højsgaard and Lauritzen

[2008] and Lauritzen [1996].

1.2.1 Preliminaries

We summarize here the notations to be used throughout this thesis. We write

f(n) = O(g(n)) if and only if f(n)/g(n) is bounded as n → ∞. We write f(n) =

o(g(n)) if and only if f(n)/g(n) → 0 as n → ∞. The notation Xn = Op(an) means

that, for any ε > 0, there exists a finite M > 0 such that P (|Xn/an| > M) < ε

for any n. The cardinality of a set A is denoted by |A| and the difference of two

sets A and B is denoted by A\B. If U and V are square matrices with the same

dimension, then we use tr(UV ) =
∑
i,j

UijVij to denote the trace of UV and |U | to

denote the determinant of the matrix U . Let λ(U), λmax(U) and λmin(U) stand for

the eigenvalues, the largest and smallest eigenvalues of U , respectively. Following

the standard notation, UA,B represents a submatrix of U with rows indexed by A

and columns indexed by B. The identity matrix of order p is denoted by Ip. For
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a vector x = (x1, x2, . . . , xp), ||x|| stands for its Euclidean norm (
p∑
i=1

x2i )
1/2. For a

square matrix U , ||U || stands for its operator norm defined by sup{||Ux|| : ||x|| ≤ 1}.

Let
£−→ and

p−→ denote the convergence in distribution and in probability, respectively.

The superscript t denotes the transpose.

1.2.2 Graph Theory

A graph G is an ordered pair G = (V,E) consisting of a nonempty set V of

vertices and an edge set E disjoint from V . A graph is undirected if the edge set is

composed of unordered vertex pairs. Two vertices v, v′ ∈ V are said to be adjacent

if there is an edge between v and v′. The degree of a vertex v in a graph G is the

number of edges of G incident with v. A graph G = (V,E) is called complete if every

pair of distinct vertices of G are adjacent. A graph is connected if any two vertices

are linked by a path. A connected graph without cycles is called a tree. A star graph

is a tree which consists of a single vertex with degree at least 2.

1.2.3 Graphical Gaussian Models

This thesis is concerned with graphical Gaussian models, where the variables in

the model are jointly Gaussian. The graphical Gaussian model is also known as a

covariance selection model [Dempster, 1972]. Let X1, X2, . . . , Xn be independent
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and identically distributed p-dimensional random variables following a multivariate

normal distribution Np(µ,Σ). The inverse covariance matrix Σ−1 is called the pre-

cision matrix and we denote Σ−1 by K = (Kij)p×p, where Kij stands for the (i, j)

entry of K. Since the precision matrix is the primary goal, we can assume that

these models are centred Np(0,Σ) without any loss of generality. In multivariate

Gaussian analysis, the independence and conditional independence relationships be-

tween the variables can be represented by means of an undirected graph G = (V,E),

where V = {1, 2, . . . , p} and E are the sets of vertices and edges, respectively. For

X = (Xv, v ∈ V ) and for any pair (i, j) /∈ E, i ̸= j, if the random variable Xi and

Xj are conditionally independent given all the other variables XV \{i,j}, we say that

the distribution of X is Markov with respect to G. Such models for X are called

graphical Gaussian models. The conditional independences can be denoted by

(i, j) ̸∈ E ⇒ Xi ⊥ Xj | XV \{i,j}.

The nonzero elements of K are associated with edges in E. A missing edge (i, j)

in E implies Kij = 0 and corresponds to the conditional independence of univariate

elements Xi and Xj given the remaining elements. Since the conditional indepen-

dence of the variables Xi and Xj is equivalent to Kij = 0, if we let PG be the cone

of positive definite matrices with zero (i, j) entry whenever the edge (i, j) does not

belong to E, then the graphical Gaussian model Markov with respect to G can be
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represented as

NG = {N(0,Σ)|K ∈ PG}. (1.1)

Therefore, the joint density of X for the sample size n can be written as

p(X|K) =
|K|n/2

(2π)pn/2
exp{−1

2

n∑
i=1

(X i)tKX i}1K∈PG
,

where 1A is an indicator function of the set A.

1.2.4 Colored Graphical Gaussian Models

The graphical Gaussian models with edge and vertex symmetries, which we here

call the colored graphical Gaussian models, have been introduced by Højsgaard and

Lauritzen [2008]. These models are defined as graphical Gaussian models with three

different types of symmetry constraints: equality of specified entries of the precision

matrix K, equality of specified entries of the correlation matrix and equality of spec-

ified entries of K generated by a subgroup of the automorphism group of G. These

models are denoted as RCON, RCOR and RCOP models for short, respectively. In

this thesis, we only consider RCON models. The model can be represented by col-

ored graphs, where edges or vertices have the same color if the corresponding entries

of the precision matrix are equal. Now, we define the RCON model as follows. Let

V = {V1, . . . , Vk} be a partition of V and E = {E1, . . . , El} be a partition of E. If all
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the vertices belonging to a vertex color class Vi of V have the same color, we say that

V is a coloring of V . Similarly, if all the edges belonging to an edge color class Ei of

E have the same color, we say that E is a coloring of E. We call G = (V, E) a col-

ored graph. Furthermore, if the model (1.1) is imposed with the following additional

restrictions

(C1) if m is a vertex class in V , then for all i ∈ m, Kii are equal, and

(C2) if s is an edge class in E , then for all (i, j) ∈ s, Kij are equal,

then the model is defined as a colored graphical Gaussian model RCON(V , E) and

denoted as

NG = {N(0,Σ)|K ∈ PG}

where PG is the cone of the positive symmetric matrix with zero and colored con-

straints. When drawing a colored graph, we use black for color classes with only one

element. Thus two vertices displayed in black will be in different color classes. Figure

1.1 illustrates a colored graph G = (V , E), where V = {{1, 2, 3}, {4, 5}, {6}, {7}} and

E = {{12}, {23}, {13}, {34, 45, 46, 47}}.
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Figure 1.1: The colored graph in an RCON model.

1.2.5 Colored G-Wishart Distributions

In 1979, Diaconis and Ylvisaker [1979] derived the standard conjugate priors for

the exponential family distribution. Since the graphical Gaussian model is also a

regular exponential family, then the DY conjugate prior for the graphical Gaussian

model is called G-Wishart distribution with the density

p(K|δ,D) =
1

IG(δ,D)
|K|(δ−2)/2 exp{−1

2
tr(KD)}1K∈PG

(1.2)

where δ > 0 and D, a symmetric positive definite p× p matrix, are hyperparameters

of the prior distribution and IG(δ,D) is the normalizing constant, namely,

IG(δ,D) =

∫
PG

|K|(δ−2)/2 exp{−1

2
tr(KD)}dK. (1.3)

Next, we will define a colored G-Wishart distribution for the colored graphical Gaus-

sian models in terms of theG-Wishart distribution. The density of coloredG-Wishart
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can be written as

p(K|δ,D) =
1

IG(δ,D)
|K|(δ−2)/2 exp{−1

2
tr(KD)}1K∈PG (1.4)

where δ > 0 and D, a symmetric positive definite p× p matrix, are hyperparameters

and IG(δ,D) is the normalizing constant, namely,

IG(δ,D) =

∫
PG

|K|(δ−2)/2 exp{−1

2
tr(KD)}dK. (1.5)

After choosing the colored G-Wishart distribution as the prior, the posterior distri-

bution of K can be expressed as

π∗(K|δ,D) ∝ |K|
n
2 exp{−1

2
tr(K

n∑
i=1

X i(X i)t)} × |K|
δ−2
2 exp{−1

2
tr(KD)}1K∈PG

= |K|
n+δ−2

2 exp{−1

2
tr
(
K(D +

n∑
i=1

X i(X i)t)
)
}1K∈PG .

1.2.6 Related Theorems and Known Results

Definition 1.2.1 (Lexicographical order) Given two partially ordered sets A and B,

the lexicographical order on the Cartesian product A × B is defined as (a1, b1) ≤

(a2, b2) if and only if either

(1) a1 < a2 or

(2) a1 = a2 and b1 < b2.
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Theorem 1.2.1 (Isserlis’ Theorem) Let X = (X1, X2, · · · , Xm) be the random

variables following the multivariate normal distribution Np(0,Σ), then

E[Xa1Xa2 · · ·Xa2n ] =
∑
σ

A(σ)

and

E[Xa1Xa2 · · ·Xa2n−1 ] = 0

where the sum is over every partition σ of {1, 2, . . . , 2n} into n disjoint pairs

(σ(2k − 1), σ(2k)) such that σ(2k − 1) < σ(2k) for k = 1, 2, . . . , n, and σ(2k − 1) <

σ(2k + 1) for k = 1, 2, . . . , n− 1. For each partition σ, A(σ) =
n∏
k=1

Σσ(2k−1)σ(2k).

For example,

E[X1X2X3X4] = Σ12Σ34 + Σ13Σ24 + Σ14Σ23

and

E[X1X2X3X4X5X6] = Σ12(E[X3X4X5X6]) + Σ13(E[X2X4X5X6])

+Σ14(E[X2X3X5X6]) + Σ15(E[X2X3X4X6])

+Σ16(E[X2X3X4X5]).

Theorem 1.2.2 (Cauchy-Schwarz inequality) Let u and v be two vectors in Rn.

Then

| < u, v > | ≤ ||u|| × ||v||

12



where < u, v > denotes the inner product of u and v.

If let u = (1, 1, · · · , 1)t be a n-dimensional vector and v = (|v1|, |v2|, · · · , |vn|)t, then

Cauchy-Schwarz inequality implies

n∑
i=1

|vi| ≤
√
n||v||.

The Delta Method:

Now suppose θ ∈ Rk and we have an asymptotically normal estimator θ̂ such

that

√
n(θ̂ − θ)

£−→ N(0,Σ).

Let η = g(θ): Rk → Rj; i.e., η = g(θ) = (g1(θ), g2(θ), . . . , gj(θ))
t, denote the

parameter of interest where η ∈ Rj and j ≤ k. Assume the g(θ) is continuous with

continuous first derivatives

∂g(θ)

∂θt =



∂g1(θ)
∂θ1

∂g1(θ)
∂θ2

· · · ∂g1(θ)
∂θk

∂g2(θ)
∂θ1

∂g2(θ)
∂θ2

· · · ∂g2(θ)
∂θk

...
...

. . .
...

∂gj(θ)

∂θ1

∂gj(θ)

∂θ2
· · · ∂gj(θ)

∂θk


.

Then

√
n(η̂ − η) =

√
n(g(θ̂)− g(θ))

£−→ N(0, (
∂g(θ)

∂θt )Σ(
∂g(θ)

∂θt )t).

13



1.3 Review of Literature

Many statistical problems require at some point the estimation of population

covariance matrices from samples of multivariate data. However, when the number

of variables p increases, the number of unknown parameters 1
2
p(p+1) in the covariance

matrix increases quadratically with p. Efficient estimation of population covariance

matrices becomes a difficult statistical problem when p increases.

1.3.1 Graphical Gaussian Models

In order to efficiently and parsimoniously estimate the covariance matrix Σ,

Dempster [1972] first proposed estimating the covariance matrix parsimoniously by

setting off-diagonal elements of the precision matrix K = Σ−1 to zero. The reason

for adopting such a model is that in many problems the precision matrix has a large

number of zeros in its off diagonal elements and these should be exploited in the es-

timation [Cox and Wermuth, 1996]. This model is often referred to as the covariance

selection model. Dempster [1972] considered the exponential family of the Gaussian

distribution with unknown covariance parameters. The density is represented by the

family of continuous densities

f(x,Σ) = (
1

2π
)
1
2
p(

1

|Σ|
)
1
2 exp(−1

2
xtΣ−1x).

14



It is a representation of the density f as a member of an exponential family of

distributions:

exp[α0 + t(x) + α11t11(x) + . . .+ αrstrs(x)]

with here αij = Σ−1
ij , α0 = −1

2
p log 2π − 1

2
log |Σ|, tij(x) = −xixj for i ̸= j, tii(x) =

−1
2
x2i and t(x) = 0. Suppose there are m + 1 observations on p random variables.

The estimate of the sample covariance matrix is

S =
1

m

m+1∑
i=1

(xi − x̄)(xi − x̄)t,

where x̄ = 1
m+1

m+1∑
i=1

xi. Let I be a subset of index pairs (j, k) such that Kjk is zero,

and J be the remaining set of pairs (j, k) such that Kjk is not zero. Dempster [1972]

chose Σ̂ to be a positive definite symmetric matrix such that S and Σ̂ are identical

for index pairs (j, k) in J while K is identically 0 for index pairs (j, k) in I.

Several researchers [Cox and Wermuth, 1996, Whittaker, 1990, Lauritzen, 1996]

also called the Gaussian model with a pattern of zero constraints in K as the graphi-

cal Gaussian model since it represents a pairwise conditional independence structure.

A graphical Gaussian model is represented by an undirected G = (V,E), where V

contains p vertices and the edge E describes the conditional independence relation-

ship among the random variables X = {X1, X2 . . . , Xp}. The edge between Xi and

Xj is absent if and only if Xi and Xj are conditionally independent given all the

other variables XV \{i,j}, and Kij = 0.
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1.3.2 Bayesian Methods

A number of articles took a Bayesian approach to graphical Gaussian models.

Early work on the Bayesian estimation for graphical Gaussian models has largely

focused on decomposable graphs. When the graph G is decomposable, Dawid and

Lauritzen [1993] proposed a convenient prior based on the factorisations of the like-

lihood in terms of the cliques and separators of the underlying graph G. The class of

priors is specified over the covariance matrix Σ as well as on the graphical structureG,

which is named hyper inverse Wishart distribution. Although the priors enjoy many

advantages, such as the computational efficiency due to its conjugate nature and

the exact calculation of marginal likelihoods, they are sometimes inflexible since this

method can deal only with decomposable graphical models. To solve this, Roverato

[2002] generalized the priors over arbitrary graphs and showed that the hyper inverse

Wishart prior for the covariance matrix is equivalent to a constrained Wishart prior

for the precision matrix. This prior is called the G-Wishart distribution. Although

it is straightforward to define a constrained prior distribution for arbitrary graphs in

graphical Gaussian models, until recently, the normalizing constants of such distri-

butions could not be exactly computed unless the graph is decomposable. Using an

iterative method and some special functions, Uhler et al. [2014] seem to have solved

this very difficult problem. Roverato [2002] and Atay-Kayis and Massam [2005] also
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proposed different Monte Carlo methods and efficient simulations for estimating the

normalizing constants for the non-decomposable graph.

There have been several proposed sampling methods for the G-Wishart distribu-

tion. Piccioni [2000] proposed the block Gibbs sampler using the Bayesian iterative

proportional scaling. This sampler updates K according to its clique decomposition

and matrix inversion. Since identifying all cliques and inverting the large matrix

are computationally expensive, it is not suitable for high-dimensional problems. The

related sampling method is the rejection sampling method developed by Wang and

Carvalho [2010]. Implementation of this method relies on the junction tree represen-

tation of graphs through the local computation. In order to avoid the calculation of

the posterior normalizing constants, the authors in Mitsakakis et al. [2011] and Do-

bra et al. [2011] proposed the MH algorithms for the G-Wishart distribution. These

methods are based on the matrix decomposition and matrix completion developed

in Roverato [2002] and Atay-Kayis and Massam [2005]. A direct sampler for the

G-Wishart distribution was recently proposed by Lenkoski [2013] that is closely re-

lated to the block Gibbs sampler of Piccioni [2000]. Unlike the block Gibbs sampler,

however, each sample is drawn independently from previous samples.
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1.3.3 Graphical Gaussian Models with Edge and Vertices Symmetries

Symmetry restrictions for the multivariate Gaussian distribution have a long his-

tory dating back to Wilks [1946]. Wilks [1946] was the first to add the symmetry

restrictions on the covariance matrix such that the covariance matrix with equal

diagonal elements and equal off-diagonal elements. Symmetry restrictions on the

multivariate Gaussian distribution are also considered by several authors [Anders-

son, 1975, Andersson et al., 1983, Jensen, 1988, Olkin, 1969]. Graphical Gaussian

models with symmetry restrictions were first considered by Hylleberg et al. [1993].

Hylleberg et al. [1993] combined the conditional independence restrictions with the

group symmetry restrictions. Subsequently, Andersen et al. [1995] and Madsen [2000]

also considered such models. More recently, Højsgaard and Lauritzen [2008] consid-

ered graphical Gaussian models with symmetry constraints not necessarily described

by a group action. The symmetry is given by the equality of certain entries either

in the covariance, the correlation or the precision matrices. Models for the multi-

variate random variable X = (Xi, i ∈ V ) Markov with respect to G and with edges

and vertices symmetries are called colored graphical Gaussian models. These mod-

els have two main advantages. First, they may reflect true or imposed symmetries.

For example, variables could represent characteristics of twins [see Frets heads data

set, Frets, 1921] and therefore the variance of the corresponding variables can be

18



assumed to be equal. Second, since conditional independences imply that certain

entries of the precision matrix are set to zero, these restrictions combined with the

symmetry restrictions reduce the number of free parameters. Højsgaard and Lau-

ritzen [2008] also developed algorithms to compute the maximum likelihood estimate

of the covariance, the correlation or the precision matrix.
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2 A Sampling Method: Metropolis-Hastings

In this chapter, following what has been done by Mitsakakis et al. [2011], we want

to develop a Metropolis-Hastings (MH) algorithm to obtain random samples from

the colored G-Wishart distribution. According to Atay-Kayis and Massam [2005],

we first consider the Cholesky decomposition of D−1 and K. Denote

D−1 = QtQ and K = ΦtΦ (2.1)

where Q = (Qij)1≤i≤j≤p and Φ = (Φij)1≤i≤j≤p are upper triangular matrices with

real positive diagonal elements. Then, we will express the density of the colored

G-Wishart distribution in terms of the new variable

Ψ = ΦQ−1. (2.2)

Finally, we use the MH algorithm to generate the samples of Ψ. After drawing the

random samples of Ψ, the samples of K can be obtained by K = Qt(ΨtΨ)Q.

The advantage of changes of variables from K to Ψ is that it keeps the samples

for K positive definite. Also, by change to Ψ, we found that (see next section)
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to sample K, we need to deal with normal and chi-squared distributions which we

know how to sample. In the next section, we will derive the density of the colored

G-Wishart distribution in terms of the new variable Ψ. The density can be written

as a multiplication of the densities of chi-squares, normals and a function of free

elements of Ψ. This give us the idea about how to choose the proposal distribution

in the MH algorithm.

2.1 The Density of the Colored G-Wishart

We denote

vu(G) = min{(i, j) ∈ u|i ≤ j, u ∈ V ∪ E}

where the minimum is defined according to the lexicographical order and define

v(G) =
∪

u∈V∪E

vu(G).

Let Kv(G) = {Kij| (i, j) ∈ v(G)} be the free entries of K. The zero and coloring

constraints on the entries of K associated with a colored graph G determine the free

entries Φv(G) = {Φij|(i, j) ∈ v(G)} and Ψv(G) = {Ψij|(i, j) ∈ v(G)} of the matrices Φ

and Ψ, respectively. Each non-free entry Φij and Ψij with (i, j) /∈ v(G) is a function

of the free entries Φij and Ψij with (i, j) ∈ v(G) that precede it in the lexicographical

order. The following two propositions give the expression of the non-free entries of
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Φ and Ψ in function of the free ones of Φv(G) and Ψv(G) and the free entries of K.

The first part of the equations in each proposition can be found in Roverato [2002].

Proposition 2.1.1 Let K = ΦtΦ be an element of PG, and (iu, ju) = min{(i, j) ∈

u|i ≤ j and u ∈ V ∪ E} in the lexicographical order. Then the entries Φij are such

that for (i, j) ∈ v(G),

Φij =

Kij −
i−1∑
k=1

ΦkiΦkj

Φii

. (2.3)

For K1k = 0, k = 2, . . . , p,

Φ1k = 0.

For Kij = 0, j = 1, . . . , p, i ̸= 1,

Φij = −

i−1∑
k=1

ΦkiΦkj

Φii

.

For Kij ̸= 0, (i, j) ∈ u ∈ V ∪ E , (i, j) /∈ v(G),

Φij =

ΦiujuΦiuiu +
iu−1∑
k=1

ΦkiuΦkju −
i−1∑
k=1

ΦkiΦkj

Φii

. (2.4)

For i = 1, . . . , p,

Φii = |Φ2
iuiu +

iu−1∑
k=1

Φ2
kiu −

i−1∑
k=1

Φ2
ki|

1
2 . (2.5)
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Proof. The first three equations can be found in Roverato [2002]. We will only

prove (2.4) since (2.5) will follow immediately from it. For all (i, j) ∈ u ∈ V ∪ E

and (i, j) ̸= (iu, ju) ∈ u, by (2.3), we have that Kiuju =
iu∑
k=1

ΦkiuΦkju and in general

Kij =
i∑

k=1

ΦkiΦkj. Since Kij = Kiuju , it follows that

ΦiujuΦiuiu +
iu−1∑
k=1

ΦkiuΦkju = ΦiiΦij +
i−1∑
k=1

ΦkiΦkj.

Equations (2.4) and (2.5) follow then immediately.

Proposition 2.1.2 For K = Qt(ΨtΨ)Q ∈ PG with Ψ and Q as defined in definitions

(2.1) and (2.2), the entries Ψij of Ψ are as follows: for (r, s) ∈ v(G) and r ̸= s,

Ψrs =
s−1∑
j=r

−Ψrj
Qjs

Qss

+
Φrs

Qss

. (2.6)

For (r, s) ∈ v(G) and r = s,

Ψss =
Φss

Qss

.

For Krs = 0 and r ̸= 1,

Ψrs =
s−1∑
j=r

−Ψrj
Qjs

Qss
−

r−1∑
i=1

(
Ψir+

r−1∑
j=i

Ψij
Qjr
Qrr

Ψrr
)(Ψis +

s−1∑
j=i

Ψij
Qjs

Qss
).

For K1s = 0,

Ψ1s =
s−1∑
j=1

(−Ψ1j
Qjs

Qss

).
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For Krs ̸= 0, (r, s) ∈ u ∈ V ∪ E , (r, s) /∈ v(G),

Ψrs =

ΦiujuΦiuiu +
iu−1∑
k=1

ΦkiuΦkju −
r−1∑
k=1

ΦkrΦks

ΦrrQss

−
s−1∑
j=r

Ψrj
Qjs

Qss

. (2.7)

For s = 1, . . . , p,

Ψss =
|Φ2

iuiu
+

iu−1∑
k=1

Φ2
kiu

−
r−1∑
k=1

Φ2
ks|

1
2

Qss
. (2.8)

Proof. We will prove (2.7) and therefore (2.8). Since Φ = ΨQ, for r ̸= s, we have

Φrs = ΨrsQss +
s−1∑
j=r

ΨrjQjs.

On the other hand, by (2.6), we have

Φrs =

ΦiujuΦiuiu +
iu−1∑
k=1

ΦkiuΦkju −
r−1∑
k=1

ΦkrΦks

Φrr

.

It then follows that

ΨrsQss +
s−1∑
j=r

ΨrjQjs =

ΦiujuΦiuiu +
iu−1∑
k=1

ΦkiuΦkju −
r−1∑
k=1

ΦkrΦks

Φrr

which implies (2.7) and (2.8).

In order to induce the density of the colored G-Wishart distribution in terms of

Ψ, we need to know the Jacobian of the change of variables from Kv(G) to Ψv(G),

which can be achieved through two steps as follows.
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Lemma 2.1.1 Let K be in PG and vGi be the number j ∈ {i, . . . , p} such that (i, j) ̸∈

v(G). Then the Jacobian of the change of variables Kv(G) → Φv(G) as defined in (2.1)

is

|J(Kv(G) → Φv(G))| = 2|V|
p∏
i=1

Φ
p−i+1−vGi
ii

where |V| is the number of vertex color class of G.

Proof. We order the entries of both matricesK and Φ according to the lexicographic

order. For (i, j) ∈ v(G), differentiating (2.3) yields

∂Kii

∂Φii

= 2Φii ,
∂Kii

∂Φks

= 0 for (k, s) > (i, i) ,

∂Kij

∂Φij

= Φii ,
∂Kij

∂Φks

= 0 for (k, s) > (i, j), i ̸= j.

Therefore, the Jacobian is an upper-triangular matrix and its determinant is the

product of the diagonal elements. The lemma then follows immediately from the fact

that for a given i ∈ {1, . . . , p}, the cardinality of the set {j|(i, j) ∈ v(G), (i, j) ≥

(i, i)} is p− i+ 1− vGi .

Lemma 2.1.2 Let K be in PG and dGi =| {j|j ≤ i, (j, i) /∈ v(G)} |. The Jacobian of

the change of variables Φv(G) → Ψv(G) where Φ and Ψ are defined in (2.1) and (2.2)

is

|J(Φv(G) → Ψv(G))| =
p∏
i=1

Q
i−dGi
ii .
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Proof. We order the entries of both matrices Φ and Ψ according to the lexicographic

order. For (r, s) ∈ v(G), differentiating (2.6), we obtain

∂Φrs

∂Ψss

= Qss ,
∂Φrs

∂Ψij

= 0 for (i, j) > (r, s).

The Jacobian is thus an upper-triangular matrix and its determinant is the product

of the diagonal elements. The lemma follows from the definition of dGi .

Theorem 2.1.3 Let G = (V, E) be an arbitrary p-dimensional colored graph. Then

the density of the colored G-Wishart distribution expressed in terms of Ψv(G) is

p(Ψv(G)|δ,D) =
2|V|

IG(δ,D)

p∏
i=1

Q
p−vGi −dGi +δ−1
ii

p∏
i=1

Ψ
p−i−vGi +δ−1
ii e

− 1
2

p∑
i=1

p∑
j=i

Ψ2
ij

. (2.9)

Proof. The expression of p(Φv(G)|δ,D) above follows immediately from the fact that

|K| =
p∏
i=1

Φ2
ii, that tr(KD) =

p∑
i=1

p∑
j=1

Ψ2
ij and from the expressions of the Jacobians

given in Lemmas 2.1.1 and 2.1.2.

2.2 Metropolis-Hastings Algorithms

In this section, the MH algorithm we use to obtain the random samples from the

density (2.9) is briefly described. First, we note that if we make the further change

of variables

(Ψii, (i, i) ∈ v(G),Ψij, (i, j) ∈ v(G), i ̸= j)

7→ (tii = Ψ2
ii, (i, i) ∈ v(G),Ψij, (i, j) ∈ v(G), i ̸= j),
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we get

p(tii, (i, i) ∈ v(G),Ψij, (i, j) ∈ v(G), i ̸= j|δ,D)

∝
p∏
i=1

t
p−i−vGi +δ

2
−1

ii e
− 1

2

∑
i=1

tii
e
− 1

2

p∑
i=1

p∑
j=i+1

Ψ2
ij

and we observe that t
p−i−vGi +δ

2
−1

ii e
− 1

2

∑
i=1

tii
has the form of a chi-square χ2

p−i−vGi +δ
dis-

tribution.

We let Ψ[s] and Ψ[s+1] be the current state of the chain and the next state of the

chain, respectively. Denote Ψ′ as the candidate of Ψ[s+1]. We further define

Ψv(G)c =
{
Ψij|(i, j) ∈ v(G)c

}
where v(G)c is the complement of v(G) in V × V . For (i, j) ∈ v(G), an element Ψ

[s]
ij

is updated by sampling a candidate value Ψ′
ij from a standard normal distribution.

For (i, i) ∈ v(G), a element Ψ
[s]
ii is updated by sampling a candidate value (Ψ2

ii)
′

from a χ2
p−i−vGi +δ

distribution. The non-free elements of Ψ′ are uniquely defined by

the functions of the free elements in Proposition 2.1.1 and Proposition 2.1.2. The

Markov chain moves to Ψ′ with the acceptance probability

min
{ h[(Ψ′)v(G)c ]

h[(Ψ[s])v(G)c ]
, 1
}
,

where

h(Ψv(G)c) =
∏

(i,i)∈v(G)c

Ψ
p−i−vGi +δ−1
ii exp(−1

2

∑
(i,j)∈v(G)c

Ψ2
ij). (2.10)
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Finally, we can obtain K [s] by K [s] = Qt(Ψ[s])tΨ[s]Q.

In our MH algorithm, the candidates are generated independently from the cur-

rent samples through the proposal density. Therefore, the algorithm gives us an

independent MH chain. Since the proposal density is a product of normals and chi-

squares, then any state j can be reached from any state i in a finite number of steps

for all i and j, and the probability of going from state j in the step t to state j in

the next step t+1 is positive for any t ≥ 1. Hence, the MH algorithm constructs an

irreducible and aperiodic Markov chain for which the stationary distribution equals

to the colored G-Wishart distribution of Ψv(G).

In this chapter, we adapt the MH algorithm proposed by Mitsakakis et al. [2011]

for the G-Wishart distribution to our colored G-Wishart distribution. We may won-

der whether there is other method we can adapt from the G-Wishart distribution.

For the G-Wishart distribution, Dobra et al. [2011] derived another MH algorithm

to generate the samples. In their MH algorithm, they sample the candidate for the

free diagonal element ψii from a normal distribution N(ψ
[t]
ii , σ

2) truncated below at

zero, and sample the candidate for the free off diagonal element ψij from a normal

distribution N(ψ
[t]
ij , σ

2). This algorithm can be adapted to the colored G-Wishart

distribution. However, the chain from their algorithm has very high autocorrelations.

Wang and Li [2012] and Lenkoski [2013] also derived two different sampling methods
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for the G-Wishart distribution. Both of the methods are based on the block Gibbs

sampler. Let C = {C1, C2, . . . , Ck} be a set of cliques of the graph. We know that

(ΣCi
)−1 ∼ W (δ,DCi,Ci

) and (ΣCi
)−1 = KCi,Ci

−KCi,V \Ci
K−1
V \Ci,V \Ci

KV \Ci,Ci
Thus, in

each clique Ci, we can first generate a Wishart random matrix A from W (δ,DCi,Ci
)

and then set KCi,Ci
= A + KCi,V \Ci

K−1
V \Ci,V \Ci

KV \Ci,Ci
. The elements of K are up-

dated according to all cliques until convergence. However, in the colored G-Wishart

distribution, there still exists the colored constraints in each clique. We even do not

know what is the conditional distribution on the cliques. Therefore, we can’t adapt

their methods to the colored G-Wishart distribution.

We now have a sampling method for the colored G-Wishart distribution, whether

it is a prior or a posterior distribution and thus obtain an estimate of the posterior

mean of K. Our simulation results in Chapter 4 will show that the chain has a

good mixing, low autocorrelations and the high proximity to the colored G-Wishart

distribution. In order to assess the accuracy of our MH algorithm, we would like

to have the exact value of the expected value of K under the colored G-Wishart

distribution. This is done in the next chapter for some special colored graphs.
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3 Expected Values in Some Special Cases

In this chapter, we evaluate the normalizing constants of the colored G-Wishart

distribution for some special colored graphs. We consider the colored trees, two

colored styles of star graphs, a colored complete graph on three vertices and a sim-

ple decomposable colored graph on four vertices. In order to calculate the analytic

expression of the normalizing constant IG(δ,D), we need to know two special func-

tions, the Bessel function of the third kind Kλ(z) and the hypergeometric function

pFq. The Bessel function of the third kind is defined as

Kλ(z) =

∫ ∞

0

u2λ−1e−
z
2
( 1
u2

+u2)du.

For some special values of λ, the Bessel function can be given explicitly, for example

K1/2(z) =

√
π

2
z−1/2e−z, K3/2(z) =

√
π

2
(z−1/2 + z−3/2)e−z,

K5/2(z) =

√
π

2
(z−1/2 + 3z−3/2 + 3z−5/2)e−z.
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We will also use the classical formula

(
p

q
)
λ
2Kλ(

√
pq) =

∫ ∞

0

u2λ−1e−
1
2
( p

u2
+qu2)du.

The hypergeometric function pFq is defined by the power series:

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bp)k

zk

k!

where

(a)k =


1 if k = 0

a(a+ 1) · · · (a+ k − 1) if k > 0 .

The derivative of the hypergeometric function pFq(a1, . . . , ap; b1, . . . , bq; z) is given by

d

dz
[pFq(a1, . . . , ap; b1, . . . , bq; z)] =

a1 · · · ap
b1 · · · bq

(pFq(a1+1, . . . , ap+1; b1+1, . . . , bq+1; z)) .

(3.1)

Since the colored G-Wishart distribution can be expressed in an exponential

family form, then we can use the property of the cumulant generating function to

obtain the mean of K in the colored G-Wishart distribution. For a given colored

graph G, the colored G-Wishart distribution as defined in (1.4) and (1.5) can be

written as an exponential family of the type

f(K; θ)dK = exp{tr(Kθ)− k(θ)}µ(dK)

with the generating measure µ(dK) = |K|(δ−2)/21K∈PG , θ = −1
2
D and the cumulant

generating function k(δ,D) = log IG(δ,D). From the classical theory of the exponen-
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tial family of distribution, we know that the mean of K in the colored G-Wishart

can be obtained by

E(K) =
∂ k(δ,D)

∂ (−1
2
D)

= −2
∂ k(δ,D)

∂D
.

Therefore, we first need to determine for which values of δ andD the quantity IG(δ,D)

is finite and calculate the analytic expression of IG(δ,D). Then we differentiate this

expression of IG(δ,D) to get the mean of K in the colored G-Wishart distribution.

We can not do this in general but we will consider several special colored graphs

for which we can calculate IG(δ,D). For the corresponding RCON models, we will

see that when δ > 0 (except in the case of the star graph with all leaves in the same

color class where we must have δ ≥ 1), the normalizing constant IG(δ,D) is finite

when the hyperparameter D belongs to the dual P ∗
G of PG. For any open convex cone

C in Rn, the dual of C is defined as

C∗ = {y ∈ Rn | ⟨x, y⟩ > 0, ∀x ∈ C̄ \ {0}}

where C̄ denotes the closure of C and ⟨x, y⟩ denotes the inner product of x and y.

In the remainder of this chapter, for each RCON model, we determine the dual P ∗
G

and compute the value of the normalizing constant IG(δ,D). This will allow us, in

Chapter 4, to verify the accuracy of our sampling method.
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(a) (b) (c) (d) (e)

Figure 3.1: (a) The colored tree. (b) The colored star with the centre vertex of a

different color. (c) The colored star with all vertices of the same color. (d) The

triangle with two edges of the same color. (e) The decomposable graph with three

different colors for the edges.

3.1 Trees with Vertices of Different Colors and Edges of the

Same Color

Let T = (V,E) be a tree with vertices of different colors and edges of the same

color. An example of such G is given in Figure 3.1(a). Let a = (ai, i = 1, . . . , p)t

with ai ≥ 0 and b ∈ R. Let S be the space of symmetric p× p matrices. We define

the mapping

m : (a, b) ∈ Rp+1 7→ m(a, b) ∈ S (3.2)

with m(a, b) satisfying the conditions

[m(a, b)]ii = ai, [m(a, b)]ij = b = [m(a, b)]ji for (i, j) ∈ E, [m(a, b)]ij = 0 for (i, j) ̸∈ E.
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Let M(G) be the linear space of matrices m(a, b) for (a, b) ∈ Rp+1 and P be the

cone of p× p symmetric positive definite matrices. Then

PG =M(G) ∩ P . (3.3)

Proposition 3.1.1 Let T be a tree as described above. The dual cone P ∗
G is

P ∗
G = {m(a′, b′) ∈M(G) | a′ = (a′i, i = 1, . . . , p), b′ ∈ R, |b′| < 1

p− 1

∑
(i,j)∈E

√
a′ia

′
j} .

(3.4)

Proof. Let M be the set of p× p matrices and

TG = {X ∈M | Xij = 0, for i < j, Xij = sij ̸= 0, for i > j, (i, j) ∈ E,

Xii = ti > 0, i = 1, . . . , p}

be the set of upper triangular matrices with positive diagonal elements and nonzero

entries Xij, i > j only for (i, j) ∈ E. The vector s = (sij, (i, j) ∈ E) belongs to

Rp−1 since a tree with p vertices has p − 1 edges and t = (ti, i = 1, . . . , p) belongs

to Rp. It is well-known [see Paulsen et al., 1989, Roverato, 2002] that we can find

a perfect elimination scheme enumeration of the vertices of T such that, with this

enumeration, K ∈ PG can be written as K = X(t, s)tX(t, s) with X(t, s) ∈ TG. Then

for K = K(a, b) as in (3.3) we have

aj = t2j +
∑
i∈Ej

s2ij, b = tisij,
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where (t, s) is the Cholesky parametrization of K ∈ PG. We can also parameterize

K ∈ PG with (t, b) ∈ (0,+∞)p ×R using

aj = t2j + b2
∑
i∈Ej

1

t2i
. (3.5)

In this proof and the following one, without loss of generality, we assume that the

numbering of the vertices of T follows a perfect elimination scheme ordering. We

then say that the last vertex p in that ordering is the root of the tree and we will

write

Ej = {i, i < j | (i, j) ∈ E}.

For convenience, we denote by C the right-hand side of equation (3.4).

We show first that P ∗
G ⊂ C. Let D = m(a′, b′) ∈ P ∗

G . Using (3.5), we have

⟨K,D⟩ = a1a
′
1 + · · ·+ apa

′
p + 2(p− 1)bb′ = t2pa

′
p + Ab2 + 2Bb+ C > 0, (3.6)

where

A =

p∑
j=1

∑
i∈Ej

1

t2i

 a′j, B = (p− 1)b′, C =

p−1∑
i=1

t2i a
′
i. (3.7)

Now observe that for fixed i = 1, . . . , p then either i = p and the set {j; i ∈ Ej} is

empty since p is the root of the tree, or the set {j; i ∈ Ej} is reduced to one point,

say ji. Therefore we have
∑

i∈Ej
a′j = aji for i < p and zero for i = p. (For the graph

in Figure 3.1 (a), we have j1 = j2 = j5 = j6 = 7 and j3 = j4 = 6) and it follows that

A =

p−1∑
i=1

1

t2i
a′ji . (3.8)
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Let us prove that a′j > 0 for all j = 1, . . . , p. Take (a1, . . . , ap) ∈ [0,∞)p \

{0, . . . , 0}. Then K(a, 0) ∈ PG \ {0} and ⟨K,D⟩ = a1a
′
1 + · · ·+ apa

′
p > 0 implies that

a′j > 0 for all j. Let us now prove that Ab2+2Bb+C ≥ 0 for all b. If not, there exists

b0 such that Ab20 + 2Bb0 + C < 0. Since a′p > 0 when tp is very small and b = b0 in

(3.6), we get a contradiction.

Let us prove that

|b′| ≤ 1

p− 1

∑
(i,j)∈E

√
a′ia

′
j. (3.9)

Since ∀b, Ab2 + 2Bb+ C ≥ 0, we have B2 ≤ AC. Now consider the function

(t1, . . . , tp−1) 7→ AC

and let us compute its minimum A∗C∗ on (0,∞)p. This function AC is homogeneous

of degree 0 and therefore if its minimum is reached at t∗ = (t∗1, . . . , t
∗
p−1), it will also

be reached on κt∗ for any κ > 0. We have for i = 1, . . . , p− 1,

∂

∂ti
AC = 2tia

′
iA− 2

t3i
a′jiC = 0

and we therefore have

t∗i = κ

(
a′ji
a′i

)1/4

, A∗ = C∗ =

p−1∑
i=1

√
a′ia

′
ji
=
∑

(i,j)∈E

√
a′ia

′
j.

Since B2 ≤ AC for all (t1, . . . , tp−1) ∈ (0,∞)p−1, we can claim that B2 ≤ A∗C∗ or

equivalently (3.9).
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Let us prove that inequality (3.9) is strict, that is B2 = A∗C∗ is impossible.

Suppose that B2 = A∗C∗, i.e. |b′| = A∗/(p − 1) > 0. Then with ti = t∗i we get

Ab2 + 2Bb + C = A∗(b + sign b′)2. Taking b = −sign b′ and ti = t∗i , i = 1, . . . , p − 1

yields Ab2+2Bb+C = 0. Now, letting also tp = 0 in (3.6), we see that the left hand

side of (3.6) is zero for an (a, b) ∈ S \ {0} which is not zero, since b = ±1. But this

can not happen for D(a′, b′) ∈ P ∗
G . Therefore (3.9) is strict and the proof of P ∗

G ⊂ C

is completed.

Let us now show that C ⊂ P ∗
G . For D(a′, b′) ∈ C given, we want to show that

⟨K,D⟩ is positive for all K(a, b) ∈ PG \ {0}. We will do so first for K(a, b) ∈ PG and

then for K(a, b) ∈ PG \ (PG ∪ {0}). For K(a, b) ∈ PG, tk > 0 and b ∈ R. From (3.6),

we have

⟨K,D⟩ = t2pa
′
p + Ab2 + 2Bb+ C = t2pa

′
p + A

[(
b+

B

A

)2

+
1

A2
(AC −B2)

]
.

We have checked above that AC − B2 ≥ 0. Moreover a′p > 0 since D(a′, b′) ∈ C. It

follows immediately that ⟨K,D⟩ > 0.

Let us now show ⟨K,D⟩ > 0 for K(a, b) ∈ PG \ (PG ∪ {0}) that is for t1 . . . tp = 0

and (t1, . . . , tp, b) ̸= 0. We need to show that ⟨K,D⟩ ̸= 0. In fact 0 = a1a
′
1 + · · · +

apa
′
p+2(p− 1)bb′ =

∑p
i=1 t

2
i a

′
i implies that ti = 0 for all i = 1, . . . , p since (a′, b′) ∈ C

implies a′i > 0. On the other hand, since b = tisij implies b = 0, this is impossible

since we exclude the zero matrix for K.
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We are now in a position to give the analytic expression of IG(δ,D) for trees with

vertices of different colors and edges of the same color.

Theorem 3.1.2 For G = T as described above, δ > 0 and D = m(a′, b′) ∈ P ∗
G , the

normalizing constant IG(δ,D) is finite and equal to

IG(δ,D) = 2
δ
2
+p−1Γ(

δ

2
)

(
p∏
i=1

(a′i)
di−2

) δ
4 ∫ ∞

−∞

 ∏
(i,j)∈E

K δ
2
(|b|
√
a′ia

′
j)

 |b|
pδ
2 e−(p−1)bb′db

(3.10)

where di denotes the number of neighbours of the vertex i in the tree (V,E).

For δ = 1, we have

IG(1, D) = (2π)
p
2

p∏
i=1

(a′i)
− 1

2

(
[
∑

(i,j)∈E

(a′ia
′
j)

1
2 −(p−1)b′]−1+[

∑
(i,j)∈E

(a′ia
′
j)

1
2 +(p−1)b′]−1

)
.

For δ = 3, let σk be the k-th elementary function of the variables
√
a′ia

′
j, (i, j) ∈ E.

We have

IG(3, D) = 2
p
2
+1π

p
2

p∏
i=1

(a′i)
− 3

2

p−1∑
k=0

σkΓ(k + 1)
([ ∑

(i,j)∈E

(a′ia
′
j)

1
2 − (p− 1)b′

]−(k+1)

+
[ ∑
(i,j)∈E

(a′ia
′
j)

1
2 + (p− 1)b′

]−(k+1))
.

Proof. In IG(δ,D) we make the change of variables (3.5). Switching to these

Cholesky coordinates leads to the Jacobian dadb = 2pt1 . . . tp dbdt. As seen before

the new domain of the integration is the product

{(b, t); tk > 0, b ∈ R} = (0,∞)p ×R.
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With the notation A,B,C of (3.7), we have

⟨K(a, b), D(a′, b′)⟩ = 2(p− 1)bb′ + a1a
′
1 + · · ·+ apa

′
p = t2pa

′
p + Ab2 + 2Bb+ C.

Using (3.8) for the expression of A, we obtain

IG(δ,D)

= 2p
∫
(0,∞)p×R

(t1 . . . tp)
δ−1e−(p−1)bb′e−

t2pa
′
p

2

p−1∏
i=1

e
− t2i a

′
i

2
−

b2a′ji
2t2

i dt1 . . . dtp db (3.11)

= 2p
∫ ∞

0

e−
t2pa

′
p

2 tδ−1
p dtp

∫ ∞

−∞
e−(p−1)bb′

p−1∏
i=1

(
Kδ/2(|b|(a′ia′ji)

1/2)(|b|
√
a′ji/ai

δ/2
)
db

= 2p+
δ
2
−1Γ(δ/2)

(a′p)
δ/2

(
p−1∏
i=1

a′ji
a′i

)δ/4

Jδ(D) (3.12)

with the notation

Jδ(D) =

∫ ∞

−∞
e−(p−1)bb′|b|(p−1)δ/2

p−1∏
i=1

Kδ/2(|b|(a′ia′ji)
1/2)db. (3.13)

We now prove by induction that

1

(a′p)
2
×

p−1∏
i=1

a′ji
ai

=

p∏
i=1

(a′i)
di−2. (3.14)

Of course (3.14) is correct for p = 2. Suppose that (3.14) is true for any rooted

tree with size p. Consider a rooted tree T ∗ with vertices {0, 1, . . . , p} and root p and

numbered, as usual, such that i ≺ j implies i ≤ j. Denote T the induced tree with

vertices {1, . . . , p}. Finally denote d∗ = (d∗0, . . . , d
∗
p) and d = (d1, . . . , dp) the number
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of neighbours in T ∗ and T. Then d∗0 = 1, d∗j0 = 1+dj0 and d
∗
i = di if i ̸= 0 and i ̸= j0.

This implies that

1

(a′p)
2
×

p−1∏
i=0

a′ji
ai

=
a′j0
a0

1

(a′p)
2
×

p−1∏
i=1

a′ji
ai

(1)
=
a′j0
a0

p∏
i=1

(a′i)
di−2 (2)

=

p∏
i=0

(a′i)
d∗i−2,

where (1) comes from the induction hypothesis and (2) is due to the link between d

and d∗. The induction hypothesis is extended to p+ 1 and (3.14) is proved.

We now prove that Jδ(D) defined as (3.13) converges if D = m(a′, b′) ∈ P ∗
G where

P ∗
G is the convex cone defined in Proposition 3.1.1. We write Jδ(D) as the sum

Jδ(D) =

∫ 0

−∞
. . . db+

∫ +∞

0

. . . db. (3.15)

When b → ±∞, |b| → +∞. From the formula (1) in [Watson, 1995, Chapter 7.23,

page 202], we have

Kλ(s) ∼s→∞

√
π

2

e−s

s1/2
.

We use this fact to analyse the convergence of Jδ(D). If D = m(a′, b′) ∈ P ∗
G , from

the asymptotic formula above, we see that the integrands in both integrals on the

right hand side of (3.15), when |b| goes to infinity, behave like |b|ce−|b|H where, since

m(a′, b′) ∈ P ∗
G ,

H =

p∑
(i,j)∈E

√
a′ia

′
j − (p− 1)|b′|sign(bb′) > 0

and c = (p − 1) δ−1
2
. Since the argument of (3.13) is continuous, both integrals

converge at infinity.
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To study the convergence of these integrals when b→ 0, we recall that

2Kλ(s) =

∫ +∞

0

xλ−1e−
s
2
(x+ 1

x
)dx.

Making the change of variable u = sx in the expression of 2Kλ(s) we see that

Kλ(s) ∼s→0 s
−λ2λ−1Γ(λ).

Therefore, for both integrals in the RHS of (3.15), the integrand is equivalent to

(
|b|−

δ
2Γ(

δ

2
)
)p−1

|b|
pδ
2 e−(p−1)bb′ = |b|

δ
2 e−(p−1)bb′

and therefore both integrals converge at 0. The expression (3.10) of the normalizing

constant is now proved.

Particularly, we will present the expression of the normalizing constants for δ = 1

and δ = 3. By (3.10), IG(1, D) = 2p−
1
2Γ(1

2
)(a′p)

− 1
2 (
∏p−1

i=1

a′ji
a′i
)
1
4J1(D), where

J1(D) =

∫ ∞

−∞
e−(p−1)bb′|b|

p−1
2

p−1∏
i=1

K 1
2
(|b|(a′ia′ji)

1
2 )db

=

∫ ∞

−∞
e−(p−1)bb′|b|

p−1
2 (

p−1∏
i=1

√
π

2
|b|−

1
2 (a′ia

′
ji
)−

1
4 e|b|(a

′
ia

′
ji
)
1
2
)db

= (
π

2
)
p−1
2

p−1∏
i=1

(a′ia
′
ji
)−

1
4

∫ ∞

−∞
e
−(p−1)bb′−|b|

p−1∑
i=1

(a′ia
′
ji
)
1
2

db.
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We compute the integral

∫ ∞

−∞
e
−(p−1)bb′−|b|

p−1∑
i=1

(a′ia
′
ji
)
1
2

db =

∫ 0

−∞
e
−(p−1)bb′+b

p−1∑
i=1

(a′ia
′
ji
)
1
2

db

+

∫ ∞

0

e
−(p−1)bb′−b

p−1∑
i=1

(a′ia
′
ji
)
1
2

db

=
1

p−1∑
i=1

(a′ia
′
ji
)− (p− 1)b′

+
1

p−1∑
i=1

(a′ia
′
ji
) + (p− 1)b′

.

Therefore

J1(D)

= (
π

2
)
p−1
2

p−1∏
i=1

(a′ia
′
ji
)−

1
4

[( p−1∑
i=1

(a′ia
′
ji
)
1
2 − (p− 1)b′

)−1

+
( p−1∑
i=1

(a′ia
′
ji
)
1
2 + (p− 1)b′

)−1]
.

Since
p−1∑
i=1

(a′ia
′
ji
) =

∑
(i,j)∈E(a

′
ia

′
j), this yields the expression of IG(1, D).
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Similarly, from (3.10), IG(3, D) = 2p+
1
2Γ(3

2
)(a′p)

− 3
2

∏p−1
i=1 (

a′ji
a′i
)−

3
4J3(D) with

J3(D) =

∫ ∞

−∞
e−(p−1)bb′|b|

3
2
(p−1)

p−1∏
i=1

K 3
2
(|b|(a′ia′ji)

1
2 )db

=

∫ ∞

−∞
e−(p−1)bb′|b|

3
2
(p−1)

×
p−1∏
i=1

[

√
π

2
(|b|−

1
2 (a′ia

′
ji
)−

1
4 + |b|−

3
2 (a′ia

′
ji
)−

3
4 )e−|b|(a′ia′ji )

1
2
]db

=

∫ ∞

−∞
e−(p−1)bb′|b|

3
2
(p−1)(

π

2
)
p−1
2 |b|−

3
2
(p−1)

×
p−1∏
i=1

(a′ia
′
ji
)−

3
4

p−1∏
i=1

[(|b|(a′ia′ji)
1
2 + 1)e−|b|(a′ia′ji )

1
2
]db

= (
π

2
)
p−1
2

p−1∏
i=1

(a′ia
′
ji
)−

3
4

∫ ∞

−∞
e
−(p−1)bb′−|b|

p−1∑
i=1

(a′ia
′
ji
)
1
2
p−1∏
i=1

(1 + |b|(a′ia′ji)
1
2 )db

= (
π

2
)
p−1
2

p−1∏
i=1

(a′ia
′
ji
)−

3
4

×
∫ ∞

−∞
e
−(p−1)bb′−|b|

p−1∑
i=1

(a′ia
′
ji
)
1
2

(1 + |b|σ1 + |b|2σ2 + . . .+ |b|p−1σp−1)db

= (
π

2
)
p−1
2

p−1∏
i=1

(a′ia
′
ji
)−

3
4

p−1∑
k=0

σk

∫ ∞

−∞
e
−(p−1)bb′−|b|

p−1∑
i=1

(a′ia
′
ji
)
1
2

|b|kdb ,

where the σi = σi(
√
a′ia

′
ji
, i = 1, . . . , p−1) are the symmetric functions of

√
a′ia

′
ji
, i =

1, . . . , p− 1. Since

∫ ∞

−∞
e
−(p−1)bb′−|b|

p−1∑
i=1

(a′ia
′
ji
)
1
2

|b|m−1db

= Γ(m)

(p−1∑
i=1

(a′ia
′
ji
)
1
2 − (p− 1)b′

)−m

+

(
p−1∑
i=1

(a′ia
′
ji
)
1
2 + (p− 1)b′

)−m ,
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then

IG(3, D) = 2
p
2
+1π

p
2

p∏
i=1

(a′i)
− 3

2

p−1∑
k=0

σkΓ(k + 1)

×

(p−1∑
i=1

(a′ia
′
ji
)
1
2 − (p− 1)b′

)−k−1

+

(
p−1∑
i=1

(a′ia
′
ji
)
1
2 + (p− 1)b′

)−k−1
 ,

which yields the expression of IG(3, D).

3.2 The Star Graph with Its n Leaves in One Color Class

An example of the star graph with its n leaves in one color class and different

colors for the edges and the central node is given in Figure 3.1(b). For a ∈ R, c ∈ R,

b = (b1, . . . , bn)
t ∈ Rn, let L(G) be the linear space of matrices of the form

l(a, b, c) =



a b1 b2 . . . bn

b1 c 0 . . . 0

b2 0 c . . . 0

. . . . . . . . . . . . . . .

bn 0 0 . . . c


.

It is easy to see that the determinant of l(a, b, c) is

|l(a, b, c)| = cn
(
a− ∥b∥2

c

)
(3.16)

and therefore, PG is the open cone and denoted by

PG = {l(a, b, c) ∈ L(G) : c > 0, a− ∥b∥2

c
> 0}.
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The dual cone P ∗(G) and the normalizing constant IG(δ,D) are given by the following

proposition and theorem.

Proposition 3.2.1 For a star graph with all n leaves in one color class, the dual of

PG is

P ∗
G = {l(a′, b′, c′) ∈ L(G) | ||b′||2 ≤ na′c′}. (3.17)

Proof. By definition, for the star graph, the dual of PG is

P ∗
G = {D = l(a′, b′, c′) ∈M(G) | ⟨K,D⟩ > 0, K ∈ P̄G \ {0}}.

Let β denote the angle between b and b′. Then, since cos β > −1, we have

⟨K,D⟩ = aa′ + ncc′ + 2||b||||b′|| cos β > aa′ + ncc′ − 2||b||||b′||.

Therefore, 2||b||||b′|| < aa′ + ncc′. Since ac > 0 and 4||b||2||b′||2
ac

< (aa′+ncc′)2

ac
, by

differentiation with respect to a and c, we see that (aa′+ncc′)2

ac
≥ 4na′c′ and hence

⟨K,D⟩ > 0 implies that ||b′||2 < na′c′.

Theorem 3.2.2 For a star graph G with all n leaves in the same color class, δ ≥ 1

and D = l(a′, b′, c′) ∈ P ∗
G , the normalizing constant of the colored G-Wishart is

IG(δ,D) = 2
δ+nδ+2

2 πn/2 × a′(
δ
2
−1)(n−1) × 1

(na′c′ − ∥b′∥2)(δ−1)n
2
+1

×Γ((δ− 1)
n

2
+ 1)Γ(

δ

2
).
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Proof. Let us introduce the matrix

A(r, s, t) =



r s1 s2 . . . sn

0 t 0 . . . 0

0 0 t . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . t


.

If (a, b, c) ∈ PG, the only triple (r, s, t) such that t > 0 and r > 0 and

K(a, b, c) = A(r, s, t)At(r, s, t) =

 r2 + ∥s∥2 s′t

ts t2In


satisfies r = (a − ∥b∥2

c
)1/2, t =

√
c and s = b√

c
. A new parameterization of PG is

therefore given by the change of variables (a, b, c) into (r, s, t) with a = r2 + ∥s∥2,

b = ts and c = t2, where (r, s, t) belongs to

{(r, s, t); r > 0, s ∈ Rn, t > 0} = (0,∞)×Rn × (0,∞).

With this parameterization, from (3.16), we have |K| = r2t2n and dadbdc = 4rtn+1drdsdt.

Then

IG(δ,D) = 4

∫ ∞

0

∫ ∞

0

(∫
Rn

e
−∥s∥2a′−2t⟨s, b′⟩

2 ds

)
rδ−1t(δ−1)n+1e

−r2a′−nt2c′
2 drdt

= 4
( π
a′

)n/2 ∫ ∞

0

e
−nt2c′

2
+

t2∥b′∥2
2a′ t(δ−1)n+1dt×

∫ ∞

0

rδ−1e
−r2a′

2 dr

=
( π
a′

)n/2 ∫ ∞

0

e
−nvc′

2
+

v∥b′∥2
2a′ v(δ−1)n

2 dv ×
∫ ∞

0

v
δ
2
−1e

−va′
2 dv

= 2
δ+nδ+2

2 πn/2a′(
δ
2
−1)(n−1) 1

(na′c′ − ∥b′∥2)(δ−1)n
2
+1

Γ((δ − 1)
n

2
+ 1)Γ(

δ

2
).
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The proof is completed.

3.3 The Star Graph with All Vertices in One Color Class

An example of the star graph with all vertices in one color class and different

colors for the edges is given in Figure 3.1(c). This is a special case of the preceding

one and therefore, we have immediately that

PG = {l(a, b, a) ∈ L(G) | a > 0, a2 − ||b||2 > 0}.

Since this is a well-known cone, called the Lorentz cone, we know also that it is self

dual and therefore

P ∗
G = {l(a′, b′, a′) ∈ L(G) | a′ > 0, (a′)2 − ||b′||2 > 0}.

It remains to compute IG(δ,D).

Theorem 3.3.1 For the star graph G with n leaves and all vertices in the same

color class, δ > 0 and D = l(a′, b′, a′) ∈ P ∗
G , the normalizing constant of the colored

G-Wishart is

IG(δ,D) =
2

(n+1)δ
2

−1CnΓ((n+ 1) δ
2
)

(n+ 1)
(n+1)δ

2 (a′)
(n+1)δ

2

B(
δ

2
,
n

2
) 2F1

(
(n+ 1)

δ

4
, (n+ 1)

δ

4
+

1

2
,
n+ δ

2
;u
)

where u =
(

2||b′||
(n+1)a′

)2
and B( δ

2
, n
2
) is the Beta function with argument ( δ

2
, n
2
).
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Proof. It is easy to see that

IG(δ,D) =

∫
Rn

(∫ ∞

∥b∥
an

δ−2
2 (a− ||b||2

a
)
δ−2
2 exp−1

2
{(n+ 1)aa′ + 2⟨b, b′⟩}da

)
db

=

∫
Rn

(∫ ∞

∥b∥
a(n−1) δ−2

2 (a2 − ||b||2)
δ−2
2 exp−1

2
{(n+ 1)aa′ + 2⟨b, b′⟩}da

)
db.

Let us make the change of variables

(a, b) ∈ (||b||,+∞)×Rn 7→ (u,R, θ) ∈ (0, 1)× (0,+∞)× S

where b = Rθ, S is the unit sphere inRn and a = R√
u
. We have dadb = − 1

2u3/2
RCnR

n−1dudRdθ

where Cn is the surface area of S. Then

IG(δ,D)

=
Cn

2

∫
S

[∫ +∞

0

(∫ 1

0
R(n−1) δ−2

2 u−(n−1) δ−2
4 Rδ−2(

1

u
− 1)

δ−2
2 exp−{

(n+ 1)Ra′

2
√
u

+R⟨θ, b′⟩}u−3/2du

)
RndR

]
dθ

=
Cn

2

∫
S

[∫ +∞

0

(∫ 1

0
R(n−1) δ−2

2 u−(n+1) δ−2
4 Rδ−2(1− u)

δ−2
2 exp−{

(n+ 1)Ra′

2
√
u

+R⟨θ, b′⟩}u−3/2du

)
RndR

]
dθ

=
Cn

2

∫
S

[∫ +∞

0

(∫ 1

0
R(n+1) δ

2
−1u−(n+1) δ−2

4
− 3

2 (1− u)
δ−2
2 exp−R{

(n+ 1)a′

2
√
u

+ ⟨θ, b′⟩}du
)
dR

]
dθ

=
Cn

2

∫
S

[∫ 1

0
u−(n+1) δ−2

4
− 3

2 (1− u)
δ−2
2

(∫ +∞

0
R(n+1) δ

2
−1 exp−R{

(n+ 1)a′

2
√
u

+ ⟨θ, b′⟩}dR
)
du

]
dθ

=
CnΓ((n+ 1) δ

2
)

2

∫
S

[∫ 1

0
u−(n+1) δ−2

4
− 3

2 (1− u)
δ−2
2

( (n+ 1)a′

2
√
u

+ ⟨θ, b′⟩
)−(n+1) δ

2
du

]
dθ

=
CnΓ((n+ 1) δ

2
)

2
(
(n+ 1)a′

2
)−(n+1) δ

2 ×∫
S

[∫ 1

0
u−(n+1) δ−2

4
− 3

2 (1− u)
δ−2
2 u(n+1) δ

4

(
1 +

2

(n+ 1)a′
√
u⟨θ, b′⟩

)−(n+1) δ
2
du

]
dθ

= Kn,δ(a
′)

∫
S

∫ 1

0
u

n
2
−1(1− u)

δ
2
−1

∞∑
k=0

(−1)k
( 2⟨θ, b′⟩
(n+ 1)a′

)k
u

k
2

(
(n+ 1) δ

2

)
k

k!
du

 dθ
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with Kn,δ(a
′) =

2
(n+1)δ

2 −1CnΓ((n+1) δ
2
)

(n+1)
(n+1)δ

2 (a′)
(n+1)δ

2

. Therefore

IG(δ,D)

= Kn,δ(a
′)

∞∑
k=0

(−1)k
( 2

(n+ 1)a′

)k((n+ 1) δ
2

)
k

k!

∫ 1

0

u
k+n
2

−1(1− u)
δ
2
−1du

∫
S

⟨θ, b′⟩kdθ

= Kn,δ(a
′)

∞∑
k=0

( 2

(n+ 1)a′

)2k((n+ 1) δ
2

)
2k

(2k)!

∫ 1

0

u
2k+n

2
−1(1− u)

δ
2
−1du

∫
S

⟨θ, b′⟩2kdθ

= Kn,δ(a
′)

∞∑
k=0

( 2

(n+ 1)a′

)2k((n+ 1) δ
2

)
2k

(2k)!

Γ(k + n
2
)Γ( δ

2
)

Γ(k + δ+n
2
)
∥b′∥2k (1/2)k

(n/2)k
.

We now use the fact that (α)2k = 22k
(
α
2

)
k

(
α+1
2

)
k
, Γ(α + k) = Γ(α)(α)k and

(2k)! = (135...(2k − 1))(246...2k)

= 2kk!2k
1

2

3

2
...
2k − 1

2

= 22kk!
1

2
(
1

2
+ 1)(

1

2
+ 2)...(

1

2
+ (k − 1))

= 22kk!
(1
2

)
k
.

Finally, since the integral is rotational symmetric, we take b′ = ||b′||e1 so that ⟨θ, b′⟩ =

θ1||b′||. Recalling that dθ is the distribution of Z
||Z|| when Z ∼ N(0, In). Therefore,

θ21 ∼ Beta(1
2
, n−1

2
) where θ1 =

Z1√
Z2
1+...+Z

2
n

. For v = θ1, we have

∫
S

⟨θ, b′⟩2kdθ = ∥b′∥2k

B(1
2
, n−1

2
)

∫ 1

0

vk−
1
2 (1− v)

n−1
2

−1dv = ∥b′∥2k (1/2)k
(n/2)k

.
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Writing B(α, β) for the Beta function with argument (α, β), we obtain

IG(δ,D)

= Kn,δ(a
′)B(

δ

2
,
n

2
)

×
∞∑
k=0

( 2

(n+ 1)a′

)2k 22k

(2k)!

(
(n+ 1)

δ

4

)
k

(
(n+ 1)

δ

4
+

1

2

)
k

(
n
2

)
k(

n+δ
2

)
k

∥b′∥2k
(1
2
)k

(n
2
)k

= Kn,δ(a
′)B(

δ

2
,
n

2
)

×
∞∑
k=0

( 2

(n+ 1)a′

)2k 22k

22kk!(1
2
)k

(
(n+ 1)

δ

4

)
k

(
(n+ 1)

δ

4
+

1

2

)
k

(
n
2

)
k(

n+δ
2

)
k

∥b′∥2k
(1
2
)k

(n
2
)k
.

Let u =
(

2||b′||
(n+1)a′

)2
. We note that since D = l(a′, b′, a′) ∈ P ∗

G , then u ≤ 1. After

obvious simplifications in the expression above, we have

IG(δ,D) = Kn,δ(a
′)B(

δ

2
,
n

2
)

∞∑
k=0

uk

k!

(
(n+ 1) δ

4

)
k

(
(n+ 1) δ

4
+ 1

2

)
k(

n+δ
2

)
k

= Kn,δ(a
′)B(

δ

2
,
n

2
) 2F1

(
(n+ 1)

δ

4
, (n+ 1)

δ

4
+

1

2
,
n+ δ

2
;u
)
.

The proof is completed.

3.4 A Complete Graph on Three Vertices

This graph is represented in Figure 3.1(d). In this case, the cone PG is the set of

positive definite matrices K = (kij)1≤i,j≤3 with k13 = k23. The dual cone P ∗(G) and

the normalizing constant IG(δ,D) are given below.
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Proposition 3.4.1 For the graph in Figure 3.1(d), the dual of PG is

P ∗
G = {D = (dij)1≤i,j≤3 ∈ S | d13 = d23,

dii > 0, i = 1, 2, 3, d212 < d11d22, 4d
2
13 < (d11 + d22 + 2d12)d33}.

Proof. We write the Cholesky decomposition of K under the form K = AAt with

A =


a11 a12 a13

0 a22 a23

0 0 a33

 .

Expressing the kij in terms of the aij and imposing k13 = k23 immediately show that

we must have a13 = a23. Then, let D = (dij)1≤i,j≤3 with d13 = d23 since the dual of

PG must be in the same linear space as PG. We also have

⟨K,D⟩ = (a211 + a212 + a213)d11 + (a222 + a213)d22 + a233d33

+2(a22a12 + a213)d12 + 4a13a33d13

= a213(d11 + d22 + 2d12) + 4a13a33d13 + a212d11 + 2a12a22d12

+a211d11 + a222d22 + a233d33,
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which we view as a quadratic form atMa with at = (a13, a33, a12, a22, a33) and

M =



d11 + d22 + 2d12 2d13 0 0 0

2d13 d33 0 0 0

0 0 d11 d12 0

0 0 d12 d22 0

0 0 0 0 d11


.

Since AAt is the Cholesky parametrization of PG, clearly K ∈ PG if and only if

aii > 0, i = 1, 2, 3. If we can prove the following lemma, the condition M > 0 will

yield the dual cone P ∗
G .

Lemma 3.4.1 The tr(K,D) is positive for all K ∈ P̄G \{0} if and only if the matrix

M of the quadratic form ⟨K,D⟩ = atMa is positive definite.

Let us now prove the lemma. Clearly if M > 0, then ⟨K,D⟩ = atMa > 0 for all

a ∈ R5 and in particular for all a with aii > 0, i = 1, 2, 3. Conversely, let a ∈ R5.

Then a can be written as

a = (ϵ1a11, ϵ2a22, ϵ3a33, a12, a13)
t

where ϵi is the sign of aii, i = 1, 2, 3 and we have

atMa = (a211+a
2
12+a

2
13)d11+(a222+a

2
13)d22+a

2
33d33+2(ϵ2a22a12+a

2
13)d12+4ϵ3a13a33d13.
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But this is also equal to ãtMã where

ãt = (|a11|, |a22|, |a33|, ϵ2a12, ϵ3a13)

which is in PG. Therefore ⟨K,D⟩ > 0 for all K ∈ PG if and only if M is positive

definite which translates immediately into the conditions defining P ∗
G in Proposition

3.4.1.

Theorem 3.4.2 For the colored graph G as in Figure 3.1(d), δ > 0 and D ∈ P ∗
G ,

the normalizing constant of the colored G-Wishart is

IG(δ,D) = 2
3δ+4

2 πΓ(
δ

2
)
(
Γ(
δ + 1

2
)
)2
(d11 + d22 + 2d12)

δ
2

×[d33(d11 + d22 + 2d12)− 4d213]
− δ+1

2 (d11d22 − d212)
− δ+1

2 .

Proof. For the proof of the theorem, it will be convenient to adopt a slightly different

form of the parametrization of the Cholesky decomposition of K = AAt in PG. Let

Aij =


√
aii if i = j,

−aij if i < j,

so that

(AAt)ij =


aii +

∑
l>i

a2il if i = j,

−aij
√
ajj +

∑
l>max(i,j)

ailajl if i < j.

Equating each entry kij of K to the corresponding entry of AAt with the constraint

that k13 = k23 shows that

53



k11 = a11 + a212 + a213, k12 = −√
a22a12 + a13a23,

k22 = a22 + a223, k13 = −√
a33a13,

k33 = a33, k23 = −√
a33a23.

In particular, we find that a33 > 0, a13 = a23 and k12 = −√
a22a12 + a213. The

Jacobian of the transformation from K to A is

J =



k11 k12 k13 k22 k33

a11 1 0 0 0 0

a12 ∗ −√
a22 0 0 0

a13 ∗ ∗ −√
a33 2a13 0

a22 ∗ ∗ ∗ 1 0

a33 ∗ ∗ ∗ ∗ 1


.

Therefore, it is easy to see |J | = |diag(J)| = a
1/2
22 a

1/2
33 . We now have all the

ingredients necessary to calculate the normalizing constant IG(δ,D). We have |K| =

a11a22a33 and

⟨K,D⟩ = d11k11 + d22k22 + d33k33 + 2d12k12 + 2d13k13 + 2d23k23

= d11(a11 + a212 + a213) + d22(a22 + a223) + d33a33

+2d12(−
√
a22a12 + a13a23) + 2d13(−a13

√
a33) + 2d23(−a23

√
a33)
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and so the normalizing constant is

IG(δ,D) =

∫
A

a
δ−2
2

11 a
δ−1
2

22 a
δ−1
2

33 exp{−1

2
d11a11 −

1

2
d22a22 −

1

2
d33a33 −

1

2
d11a

2
12

−1

2
(d11 + d22 + 2d12)a

2
13 + d12

√
a22a12 + 2d13a13

√
a33}dA,

where dA denotes the product of all differentials, aii > 0 and aij ∈ R, i < j. The

integral with respect to a11 is a gamma integral with

∫ ∞

0

a
δ−2
2

11 exp{−1

2
d11a11}da11 = 2

δ
2Γ(

δ

2
)d

− δ
2

11 .

The integrals with respect to a12 and a13 are Gaussian integrals with

∫ ∞

−∞
exp{−1

2
d11a

2
12 + d12

√
a22a12}da12 =

√
2π√
d11

exp
{d212a22

2d11

}
and

∫ ∞

−∞
exp{−1

2
(d11 + d22 + 2d12)a

2
13 + 2d13

√
a33a13}da13

=

√
2π√

d11 + d22 + 2d12
exp

{ 2d213a33
d11 + d22 + 2d12

}
.
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Therefore, it follows

IG(δ,D)

= Γ(
δ

2
)2

δ
2d

− δ+1
2

11 2π(d11 + d22 + 2d12)
− 1

2∫ ∞

0

a
δ−1
2

22 a
δ−1
2

33 exp
{
(−d22

2
+

d212
2d11

)a22 + (−d33
2

+
2d213

d11 + d22 + 2d12
)a33

}
da22da33

= Γ(
δ

2
)2

δ
2d

− δ+1
2

11 2π(d11 + d22 + 2d12)
− 1

2

Γ(
δ + 1

2
)(

2d11
d11d22 − d212

)
δ+1
2 Γ(

δ + 1

2
)(

2(d11 + d22 + 2d12)

d33(d11 + d22 + 2d12)− 4d213
)
δ+1
2

= Γ(
δ

2
)Γ2(

δ + 1

2
)π2

3δ+4
2 (d11 + d22 + 2d12)

δ
2

×[d33(d11 + d22 + 2d12)− 4d213]
− δ+1

2 (d11d22 − d212)
− δ+1

2 .

The proof is completed.

3.5 A Decomposable Graph

This colored graph is represented in Figure 3.1(e). Then the cone PG is the set

of matrices of the form

K =



k11 k12 k13 k14

k12 k22 k13 k14

k13 k13 k33 0

k14 k14 0 k33


.
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Proposition 3.5.1 For the colored graph G as in Figure 3.1(e), the dual cone is the

set of matrices

P ∗
G = {D = (dij)1≤i,j≤4 ∈ S | d23 = d13, d24 = d14, d44 = d33, d11d22 − d212 > 0,

d11 > 0, d11 + 2d12 + d22 > 0, d33(d11 + 2d12 + d22)− 2(d213 + d214) > 0}.

Proof. We proceed as in the proof of Proposition 3.4.1. That is, we let K = AAt

be the Cholesky decomposition of K with A upper triangular. Equating the entries

of K and AAt yields

a23 = a13, a24 = a14, a44 = a33

with

k11 = a211 + a212 + a212 + a214, k12 = a12a22 + a213 + a214, k13 = a13a33. k14 = a14a33,

k22 = a222 + a213 + a214, k23 = a13a33, k14 = a14a33,

k33 = a233, k34 = 0,

k44 = a233.

Then, ordering ⟨K,D⟩ as a polynomial in aij, we see that

⟨K,D⟩ = d11a
2
11 + d22a

2
22 + 2d33a

2
33 + d11a

2
12 + 2d12a22a12 + a213(d11 + 2d12 + d22)

+4d13a13a33 + a214(d11 + 2d12 + d22) + 4d14a14a33
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is a quadratic form and the matrix of this quadratic form is

M =



d11 0 0 0 0 0

0 d22 d12 0 0 0

0 d12 d11 0 0 0

0 0 0 2d33 2d13 2d14

0 0 0 2d13 d11 + 2d12 + d22 0

0 0 0 2d14 0 d11 + 2d12 + d22



.

With exactly the same argument as in Proposition 3.4.1, we can show that ⟨K,D⟩ > 0

for all K ∈ P̄G if and only if M > 0, i.e. D satisfies the conditions of Proposition

3.5.1.

Theorem 3.5.2 For the colored graph G as in Figure 3.1(e), δ > 0 and D ∈ P ∗
G ,

the normalizing constant of the colored G-Wishart is

IG(δ,D) = 2δ+2π
3
2Γ(

δ

2
)Γ(

δ + 1

2
)Γ(δ)(d11 + d22 + 2d12)

δ−1(d11d22 − d212)
− δ+1

2

×[d33(d11 + d22 + 2d12)− 2(d213 + d214)]
−δ.

Proof. As in the proof of Theorem 3.4.2, it will be convenient to adopt a slightly

different parametrization of the Cholesky decomposition of K. Let

Aij =


√
aii if i = j,

−aij if i < j,
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so that the entries of AAt are given by

(AAt)ij =


aii +

∑
l>i

a2il if i = j,

−aij
√
ajj +

∑
l>j

ailajl if i < j.

Equating each entry kij of K to the corresponding entry of AAt, we find that

k11 = a11 + a212 + a213 + a214, k12 = −√
a22a12 + a13a23 + a14a24,

k13 = −√
a33a13 + a14a34, k14 = −√

a44a14,

k22 = a22 + a223 + a224, k23 = −√
a33a23 + a24a34,

k24 = −√
a44a24, k33 = a33 + a234,

k34 = −√
a44a34, k44 = a44.

This shows that a44 > 0 and a34 = 0. Since a33 > 0 and k13 = k23, then a13 = a23.

Since a44 > 0 and k14 = k24, then a14 = a24. Since k34 = 0, then a33 = a44. Therefore,

we obtain that

k11 = a11 + a212 + a213 + a214, k12 = −√
a22a12 + a213 + a214,

k13 = k23 = −√
a33a13, k14 = k24 = −√

a33a14,

k22 = a22 + a213 + a214, k33 = k44 = a33.
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The Jacobian of the transformation from K to A is

J =



k11 k12 k13 k14 k22 k33

a11 1 0 0 0 0 0

a12 ∗ −√
a22 0 0 0 0

a13 ∗ ∗ −√
a33 0 2a13 0

a14 ∗ ∗ ∗ −√
a33 2a14 0

a22 ∗ ∗ ∗ ∗ 1 0

a33 ∗ ∗ ∗ ∗ ∗ 1



.

It is easy to see |J | = |diag(J)| = a
1/2
22 a33. We now have all the ingredients necessary

to calculate the normalizing constant IG(δ,D). Through the change of variables,

K = AAt. Then |K| = a11a22a
2
33,

⟨K,D⟩ = d11k11 + d22k22 + d33k33 + d44k44 + 2d12k12 + 2d13k13 + 2d14k14

+2d23k23 + 2d24k24 + 2d34k34

= d11(a11 + a212 + a213 + a214) + d22(a22 + a213 + a214) + 2d33a33

+2d12(−
√
a22a12 + a213 + a214) + 4d13(−a13

√
a33) + 4d14(−a14

√
a33)
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and so the integral equals

IG(δ,D)

=

∫
A

a
δ−2
2

11 a
δ−1
2

22 aδ−1
33 exp

{
− 1

2
d11a11 −

1

2
d11a

2
12 + d12

√
a22a12 −

1

2
(d11 + d22 + 2d12)a

2
13

+2d13a13
√
a33 −

1

2
(d11 + d22 + 2d12)a

2
14 + 2d14a14

√
a33 −

1

2
d22a22 − d33a33

}
dA,

where dA denotes the product of all differentials, aii > 0 and aij ∈ R, i < j. Since

the integral with respect to a11 is a gamma integral, then

∫ ∞

0

a
δ−2
2

11 exp{−1

2
d11a11}da11 = 2

δ
2Γ(

δ

2
)d

− δ
2

11 .

Since the integrals with respect to a12, a13 and a14 are normal integrals, then

∫ ∞

−∞
exp{−1

2
d11a

2
12 + d12

√
a22a12}da12 =

√
2π√
d11

exp{d
2
12a22
2d11

},

∫ ∞

−∞
exp{−1

2
(d11 + d22 + 2d12)a

2
13 + 2d13

√
a33a13}da13

=

√
2π√

d11 + d22 + 2d12
exp{ 2d213a33

d11 + d22 + 2d12
},

and

∫ ∞

−∞
exp{−1

2
(d11 + d22 + 2d12)a

2
14 + 2d14

√
a33a14}da14

=

√
2π√

d11 + d22 + 2d12
exp{ 2d214a33

d11 + d22 + 2d12
}.
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Therefore, the integral becomes

IG(δ,D)

= Γ(
δ

2
)2

δ
2d

− δ+1
2

11 (2π)
3
2 (d11 + d22 + 2d12)

−1

×
∫ ∞

0

a
δ−1
2

22 a
δ−1
2

33 exp{(−d22
2

+
d212
2d11

)a22 + (−d33 +
2d213 + 2d214

d11 + d22 + 2d12
)a33}da22da33

= Γ(
δ

2
)2

δ+3
2 d

− δ+1
2

11 π
3
2 (d11 + d22 + 2d12)

−1

×Γ(
δ + 1

2
)(

2d11
d11d22 − d212

)
δ+1
2 Γ(δ)(

d11 + d22 + 2d12
d33(d11 + d22 + 2d12)− 2(d213 + d214)

)δ

= Γ(
δ

2
)Γ(

δ + 1

2
)Γ(δ)π

3
22δ+2(d11 + d22 + 2d12)

δ−1

×[d33(d11 + d22 + 2d12)− 2(d213 + d214)]
−δ(d11d22 − d212)

− δ+1
2 .

The proof is completed.
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4 Numerical Experiments for the

Metropolis-Hastings

In this chapter, we examine the effectiveness of the proposed methods. Simula-

tions are conducted in several scenarios, including various colored graphs, situations

of small p and large p.

4.1 Simulation Results for the Special Colored Graphs

In order to illustrate the performance of our MH algorithm, we conduct a nu-

merical experiment for colored graphical models represented by the colored graphs

(a) - (e) shown in Figure 3.1. In each case, for the given hyperparameters D and

δ, we first derive log IG(δ,D), then obtain the prior mean E(K) under the colored

G-Wishart by differentiating log IG(δ,D) with respect to −D
2
. We then generate the

samples from the colored G-Wishart distribution. We run the independent chain for

5000 iterations and discard the first 1000 samples as burn in. Our estimate K̂ for K
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is the average K̂ =
∑i=5000

i=1001 K̂i

4000
of the remaining 4000 iterations K̂i, i = 1001, . . . , 5000.

For arbitrary K and K ′, we define the normalized mean square error (NMSE) and

the normalized mean absolutely error (NMAE) between K and K ′ as

NMSE(K,K ′) =
||K −K ′||22

||K ′||22

and

NMAE(K,K ′) =
||K −K ′||2

||K ′||2

where ||K||22 is the sum of the squares of the elements of K. We repeat the previous

experiment 100 times to obtain K̂j, j = 1, . . . , 100 and calculate

NMSE(K̂, E(K)) =
1

100

100∑
j=1

NMSE(K̂j, E(K))

and

NMAE(K̂, E(K)) =
1

100

100∑
j=1

NMAE(K̂j, E(K))

where E(K) is obtained by the differentiation of log IG(δ,D) with respect to −D
2
at

our given hyperparameters D and δ.

For each colored graph in Figure 3.1, for an arbitrary j ∈ {1, . . . , 100}, we give the

traceplot of log |Kj
i |, i = 1000, . . . , 5000. The traceplot shows that the independent

chain seems to be mixing well. We also give the autocorrelation plot with time-lag

h for log |Kj
i |, i = 1000, . . . , 5000, in function of h where, for an arbitrary given j,
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we define the autocorrelation coefficient for Yi = log |Kj
i |, i = 1000, . . . , 5000, to be

Rh =

∑5000−h
i=1000 (Yi − Ȳ )(Yi+h − Ȳ )∑5000

i=1000 (Yi − Ȳ )2
.

The autocorrelation plots indicate that the samples from the MH algorithm have low

autocorrelations. The numerical values of the matrices D, E(K) and K̂ as well as

the traceplot and autocorrelation plot of log(|K|) for all five colored graphs in Figure

3.1 are given as follows.

In practice, we usually choose a small value of δ and the identity matrix D as

the hyperparamters in the colored G-Wishart distribution to reduce the effect of the

priors on the likelihood. In the following simulations, we just randomly choose a δ

and D for the five colored graphs in Figure 3.1 to illustrate the performance of the

MH algorithm.

Graph in Figure 3.1(a)

For the colored tree in Figure 3.1(a), we choose the hyperparameters δ = 1 and
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D =



1 0 0 2 0 0 0

0 2 0 2 0 0 0

0 0 5 2 0 0 0

2 2 2 25 2 0 0

0 0 0 2 6 2 2

0 0 0 0 2 3 0

0 0 0 0 2 0 4



.

The true mean of K can be computed as

E(K) =



1.1294 0 0 −0.0129 0 0 0

0 0.5915 0 −0.0129 0 0 0

0 0 0.2578 −0.0129 0 0 0

−0.0129 −0.0129 −0.0129 0.0767 −0.0129 0 0

0 0 0 −0.0129 0.2589 −0.0129 −0.0129

0 0 0 0 −0.0129 0.3699 0

0 0 0 0 −0.0129 0 0.2817



.

The sample mean of Kj for a random j and the mean of K̂ over 100 simulations

are
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K̂j =



1.1274 0 0 −0.0127 0 0 0

0 0.5961 0 −0.0127 0 0 0

0 0 0.2563 −0.0127 0 0 0

−0.0127 −0.0127 −0.0127 0.0767 −0.0127 0 0

0 0 0 −0.0127 0.2594 −0.0127 −0.0127

0 0 0 0 −0.0127 0.3708 0

0 0 0 0 −0.0127 0 0.2818



and E(K̂) =



1.1287 0 0 −0.0163 0 0 0

0 0.5436 0 −0.0163 0 0 0

0 0 0.26733 −0.0163 0 0 0

−0.0163 −0.0163 −0.0163 0.0875 −0.0163 0 0

0 0 0 −0.0163 0.2596 −0.0163 −0.0163

0 0 0 0 −0.0163 0.4116 0

0 0 0 0 −0.0163 0 0.2825



.

The traceplot and the autocorrelation plot for log(|K|) are shown in Figure 4.1.

Graph in Figure 3.1(b)

For the colored star with the centre vertex of a different color in Figure 3.1(b),

we choose the hyperparameters δ = 3 and
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Figure 4.1: (a) Traceplot of log(|K|) v.s. the number of iterations. (b) Autocorrela-

tion plot of log(|K|) for Figure 3.1(a).

D =



9 1 2 3 4 5 6 7 8

1 25 0 0 0 0 0 0 0

2 0 25 0 0 0 0 0 0

3 0 0 25 0 0 0 0 0

4 0 0 0 25 0 0 0 0

5 0 0 0 0 25 0 0 0

6 0 0 0 0 0 25 0 0

7 0 0 0 0 0 0 25 0

8 0 0 0 0 0 0 0 25



.

The true mean of K can be computed as
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E(K) =



1.4778 −0.0112 −0.0225 −0.0338 −0.0451 −0.0563 −0.0676 −0.0789 −0.0902

−0.0112 0.1015 0 0 0 0 0 0 0

−0.0225 0 0.1015 0 0 0 0 0 0

−0.0338 0 0 0.1015 0 0 0 0 0

−0.0451 0 0 0 0.1015 0 0 0 0

−0.0563 0 0 0 0 0.1015 0 0 0

−0.0676 0 0 0 0 0 0.1015 0 0

−0.0789 0 0 0 0 0 0 0.1015 0

−0.0902 0 0 0 0 0 0 0 0.1015



.

The sample mean of Kj for a random j and the mean of K̂ over 100 simulations are

K̂j =



1.4690 −0.0113 −0.0223 −0.0341 −0.0455 −0.0569 −0.0677 −0.0796 −0.0905

−0.0113 0.1016 0 0 0 0 0 0 0

−0.0223 0 0.1016 0 0 0 0 0 0

−0.0341 0 0 0.1016 0 0 0 0 0

−0.0455 0 0 0 0.1016 0 0 0 0

−0.0569 0 0 0 0 0.1016 0 0 0

−0.0677 0 0 0 0 0 0.1016 0 0

−0.0796 0 0 0 0 0 0 −0.1016 0

−0.0905 0 0 0 0 0 0 0 −0.1016



and

E(K̂) =



1.4697 −0.0114 −0.0224 −0.0340 −0.0454 −0.0569 −0.0670 −0.0793 −0.0902

−0.0114 0.1016 0 0 0 0 0 0 0

−0.0224 0 0.1016 0 0 0 0 0 0

−0.0340 0 0 0.1016 0 0 0 0 0

−0.0454 0 0 0 0.1016 0 0 0 0

−0.0569 0 0 0 0 0.1016 0 0 0

−0.0670 0 0 0 0 0 0.1016 0 0

−0.0793 0 0 0 0 0 0 −0.1016 0

−0.0902 0 0 0 0 0 0 0 −0.1016


The traceplot and the autocorrelation plot for log(|K|) are shown in Figure 4.2.
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Figure 4.2: Traceplot and Autocorrelation plot of log(|K|) for Graph in Figure 3.1(b).

Graph in Figure 3.1(c)

For the colored star with all vertices of the same color in Figure 3.1(c), we choose

the hyperparameters δ = 3 and

D =



25 9 8 7 6 5 4 3 2 1

9 25 0 0 0 0 0 0 0 0

8 0 25 0 0 0 0 0 0 0

7 0 0 25 0 0 0 0 0 0

6 0 0 0 25 0 0 0 0 0

5 0 0 0 0 25 0 0 0 0

4 0 0 0 0 0 25 0 0 0

3 0 0 0 0 0 0 25 0 0

2 0 0 0 0 0 0 0 25 0

1 0 0 0 0 0 0 0 0 25



.
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The true mean of K can be computed as

E(K) =



0.1229 −0.0013 −0.0026 −0.0039 −0.0052 −0.0065 −0.0078 −0.0091 −0.0104 −0.0117

−0.0013 0.1229 0 0 0 0 0 0 0 0

−0.0026 0 0.1229 0 0 0 0 0 0 0

−0.0039 0 0 0.1229 0 0 0 0 0 0

−0.0052 0 0 0 0.1229 0 0 0 0 0

−0.0065 0 0 0 0 0.1229 0 0 0 0

−0.0078 0 0 0 0 0 0.1229 0 0 0

−0.0091 0 0 0 0 0 0 0.1229 0 0

−0.0104 0 0 0 0 0 0 0 0.1229 0

−0.0117 0 0 0 0 0 0 0 0 0.1229



.

The sample mean of Kj for a random j and the mean of K̂ over 100 simulations

are

K̂j =



0.1223 −0.0012 −0.0027 −0.0041 −0.0055 −0.0064 −0.0077 −0.0090 −0.0102 −0.0115

−0.0012 0.1223 0 0 0 0 0 0 0 0

−0.0027 0 0.1223 0 0 0 0 0 0 0

−0.0041 0 0 0.1223 0 0 0 0 0 0

−0.0055 0 0 0 0.1223 0 0 0 0 0

−0.0064 0 0 0 0 0.1223 0 0 0 0

−0.0077 0 0 0 0 0 0.1223 0 0 0

−0.0090 0 0 0 0 0 0 0.1223 0 0

−0.0102 0 0 0 0 0 0 0 0.1223 0

−0.0115 0 0 0 0 0 0 0 0 0.1223


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Figure 4.3: Traceplot and Autocorrelation plot of log(|K|) for Graph in Figure 3.1(c).

and E(K̂) =



0.1225 −0.0012 −0.0028 −0.0044 −0.0051 −0.0063 −0.0079 −0.0090 −0.0103 −0.0116

−0.0012 0.1225 0 0 0 0 0 0 0 0

−0.0028 0 0.1225 0 0 0 0 0 0 0

−0.0044 0 0 0.1225 0 0 0 0 0 0

−0.0051 0 0 0 0.1225 0 0 0 0 0

−0.0063 0 0 0 0 0.1225 0 0 0 0

−0.0079 0 0 0 0 0 0.1225 0 0 0

−0.0090 0 0 0 0 0 0 0.1225 0 0

−0.0103 0 0 0 0 0 0 0 0.1225 0

−0.0116 0 0 0 0 0 0 0 0 0.1225



.

The traceplot and the autocorrelation plot for log(|K|) are shown in Figure 4.3.

Graph in Figure 3.1(d)

For the triangle with two edges of the same color in Figure 3.1(d), one hyperpa-
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Figure 4.4: Traceplot and Autocorrelation plot of log(|K|) for Graph in Figure 3.1(d).

rameter δ = 3. The other hyperparamete D and the true mean of K are as follows

D =


3 1 2

1 4 2

2 2 5

 and E(K) =


1.8108 −0.0073 −0.5517

−0.0073 1.4472 −0.5517

−0.5517 −0.5517 1.2413

 .

The sample mean of Kj for a random j and the mean of K̂ over 100 simulations are

K̂j =


1.8097 −0.0075 −0.5514

−0.0075 1.4485 −0.5514

−0.5514 −0.5514 1.2442

 and

E(K̂) =


1.7900 −0.0054 −0.5487

−0.0054 1.4443 −0.5487

−0.5487 −0.5487 1.2487

.

The traceplot and the autocorrelation plot for log(|K|) are shown in Figure 4.4.
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Graph in Figure 3.1 (e)

For the decomposable graph with three different colors for edges in Figure 3.1(e),

one hyperparameter δ = 3. The other hyperparameter D and the true mean of K

are as follows:

D =



2 1 3 4

1 1 3 4

3 3 200 0

4 4 0 200


and E(K) =



4.4631 −3.5368 −0.0189 −0.0252

−3.5368 8.4631 −0.0189 −0.0252

−0.0189 −0.0189 0.0157 0

−0.0252 −0.0252 0 0.0157


.

The sample mean of Kj for a random j and the mean of K̂ over 100 simulations are

K̂j =



4.4714 −3.5386 −0.0192 −0.0256

−3.5386 8.4658 −0.0192 −0.0256

−0.0192 −0.0192 0.0158 0

−0.0256 −0.0256 0 0.0158


and

E(K̂) =



4.4726 −3.5374 −0.0187 −0.0258

−3.5374 8.4658 −0.0187 −0.0258

−0.0187 −0.0187 0.0164 0

−0.0258 −0.0258 0 0.0164


.

The traceplot and the autocorrelation plot for log(|K|) are shown in Figure 4.5.
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Figure 4.5: Traceplot and Autocorrelation plot of log(|K|) for Graph in Figure 3.1(e).

A summary of calculations and results are given in Table 4.1 which, for all dif-

ferent five colored graphs in Figure 3.1, shows the hyperparameter δ we chose for

the prior distribution, log IG(δ,D) and the normalized mean square errors. In order

to obtain the true mean E(K) of the colored G-Wishart distribution for the colored

graph in Figure 3.1(c), we use formula (3.1) to get the derivative of the hypergeo-

metric function pFq(a1, . . . , ap; b1, . . . , bq; z) defined in Chapter 1. We see that from

Table 4.1 the normalized mean square error is of the order of 10−3 or less except for

the star graph with all leaves of the same color in Figure 3.1(b).

4.2 Posterior Mean from the Simulated Data: p = 20, p = 30

In order to assess the accuracy of our MH method for larger colored graphs,

we generate data from a N(0, K−1) distribution with K given in PG. We take the

colored G-Wishart distribution with hyperparameters δ = 3 and D = I as the prior
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G δ log IG(δ,D) NMSE NMAE

(a) 1 −1
2

7∑
i=1

log a′i + log

 1
6∑

i=1
(a′ia

′
ji
)
1
2−6b′

− 1
6∑

i=1
(a′ia

′
ji
)
1
2+6b′

 0.0069 0.0517

(b) 3 7
2
log a′ − 9 log(8a′c′ − ∥b′∥2) 0.0187 0.3196

(c) 3 −15 log a′ + log 2F1

(
15
2
, 8; 6; ∥b′∥2

25a′2

)
0.0064 0.2080

(d) 3 3
2
log d− 2 log(d33d− 4d213)− 2 log(d11d22 − d212) 0.0005 0.0071

(e) 3 2 log d− 3 log(d33d− 2d213 − 2d214)− 2 log(d11d22 − d212) 0.0009 0.0112

Table 4.1: For the graphs of Figure 3.1 and δ given: analytic expression of log IG(δ,D)

where d = d11 + d22 + 2d12, and values of NMSE(K̂, E(K)) and NMAE(K̂, E(K))

averaged over 100 experiments.
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(a) (b) (c)

Figure 4.6: Cycles of length 6 with three different patterns of coloring that we use

for the cycles of length p = 20 and p = 30. Black vertices or edges indicate different

arbitrary colors.

distribution of the precision matrix K. Clearly the posterior distribution will be the

colored G-Wishart distribution with parameters δ + n and I + nS where S is the

sample covariance matrix. We will use the sampling method proposed in Chapter 2

to obtain the samples from this posterior distribution.

We conduct our experiment with six different colored graphs. For three of them,

the skeleton is a colored cycle of order p = 20 and for the other three, the skeleton

is a colored cycle of order p = 30. For each cycle of order p = 20 or p = 30, we give

three different patterns of coloring which, for the sake of saving space, are illustrated

in Figure 4.6 for p = 6. The values for the elements of K for all three types of graphs
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are given as follows:

Kii = 0.1, i = 1, 3, . . . , 2p− 1, Kii = 0.03. i = 2, 4, . . . , p,

Ki,i+1 = Ki+1,i = 0.01, i = 1, 2, . . . , p− 1, K1p = Kp1 = 0.01.

For each colored graph, we generate 100 datasets from the multivariate normal

N(0, K−1) distribution. The posterior mean estimates are the sample mean of

K based on 5000 iterations after the first 1000 burn-in iterations. We denote

K̂ = (K̂ij)1≤i,j≤p as the posterior mean estimate of K.

Table 4.2 shows NMSE(K̂,K) for the three colored models when p = 20 and

p = 30, averaged over 100 simulations. Standard errors are indicated in parentheses.

Computations were performed on a 2 core 4 threads with i5-4200U, 2.3 GHZ chips

and 8GB of RAM, running on Windows 8. We also give in Table 4.2 the computing

time per simulation in minutes.

For the colored graphs of Figure 4.6 with p = 20 and p = 30, we give the estimates

of the elements of K together with their batch standard errors. The estimates and

batch standard errors are given below for the elements ofK listed in the lexicographic

order. Table 4.3 shows the estimates and batch standard errors for the precision

matrix K in Figure 4.6(a). Tables 4.4 and 4.5 illustrate the estimates and batch

standard errors for the precision matrixK in Figure 4.6(b) when p = 20, respectively.

Tables 4.6 and 4.7 show the estimates and batch standard errors for the precision
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p = 20 p = 30

G NMSE(K̂,K) Time/sim NMSE(K̂,K) Time/sim

Figure 4.6(a) 0.005 (0.003) 19.425 0.040 (0.021) 86.423

Figure 4.6(b) 0.011 (0.003) 18.739 0.033 (0.011) 82.876

Figure 4.6(c) 0.039 (0.021) 16.410 0.080 (0.033) 82.563

Table 4.2: NMSE(K̂,K) for the three colored models when p = 20 and p = 30.

matrix K in Figure 4.6(b) when p = 30, respectively. Tables 4.8 and 4.9 show the

estimates and batch standard errors for the precision matrix K in Figure 4.6(c) when

p = 20, respectively. Tables 4.10 and 4.11 show the estimates and batch standard

errors for the precision matrix K in Figure 4.6(c) when p = 30, respectively.

p K11 K12 K1p K22

20 0.1040 (0.0005) 0.0103 (0.0002) 0.0104 (0.0002) 0.0313 (0.0001)

30 0.1223 (0.0009) 0.0121 (0.0004) 0.0125 (0.0004) 0.0361 (0.0003)

Table 4.3: The average estimates and batch standard errors for K in Figure 4.6(a).
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0.1072 0.0100 0.0096 0.0322 0.0109 0.0093 0.0102 0.0105 0.0101

0.0103 0.0099 0.0106 0.0100 0.0099 0.0109 0.0104 0.0111 0.0116

0.0104 0.0100 0.0113 0.0115

Table 4.4: The average estimates for entries of K for Figure 4.6(b) when p = 20.

0.0004 0.0005 0.0005 0.0001 0.0005 0.0005 0.0005 0.0005

0.0005 0.0005 0.0005 0.0004 0.0005 0.0004 0.0005 0.0004

0.0005 0.0005 0.0005 0.0005 0.0004 0.0005

Table 4.5: The batch standard errors for Figure 4.6(b) when p = 20.

0.1217 0.0109 0.0126 0.0366 0.0109 0.0118 0.0120 0.0120 0.0115 0.0122

0.0108 0.0121 0.0113 0.0119 0.0125 0.0114 0.0120 0.0112 0.0119 0.0131

0.0115 0.0125 0.0116 0.0132 0.0110 0.0119 0.0119 0.0107 0.0129 0.0119

0.0124 0.0119

Table 4.6: The average estimates for entries of K for Figure 4.6(b) when p = 30.
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0.0008 0.0006 0.0006 0.0003 0.0006 0.0006 0.0006 0.0006

0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006

0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006

0.0006 0.0005 0.0006 0.0005 0.0006 0.0006 0.0005 0.0005

Table 4.7: The batch standard errors for Figure 4.6(b) when p = 30.

0.1102 0.0106 0.0104 0.0347 0.1135 0.0329 0.1104 0.0335 0.1113 0.0332

0.1103 0.0326 0.1157 0.0330 0.1082 0.0333 0.1083 0.0318 0.1096 0.0326

0.1059 0.0311

Table 4.8: The average estimates for entries of K for Figure 4.6(c) when p = 20.

0.0011 0.0002 0.0002 0.0004 0.0012 0.0003 0.0011 0.0004

0.0012 0.0004 0.0012 0.0003 0.0013 0.0003 0.0012 0.0003

0.0012 0.0004 0.0011 0.0003 0.0012 0.0003

Table 4.9: The batch standard errors for Figure 4.6(c) when p = 20.
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0.1295 0.0117 0.0111 0.0384 0.1253 0.0386 0.1266 0.0376 0.1248 0.0357

0.1214 0.0358 0.1209 0.0357 0.1181 0.0358 0.1161 0.0349 0.1126 0.0345

0.1123 0.0339 0.1126 0.0338 0.1136 0.0330 0.1143 0.0323 0.1083 0.0324

0.1077 0.0318

Table 4.10: The average estimates for entries of K for Figure 4.6(c) when p = 30.

0.0013 0.0002 0.0002 0.0003 0.0012 0.0004 0.0011 0.0004

0.0011 0.0003 0.0011 0.0003 0.0013 0.0004 0.0010 0.0004

0.0011 0.0003 0.0010 0.0003 0.0010 0.0003 0.0011 0.0003

0.0010 0.0003 0.0012 0.0003 0.0010 0.0003 0.0010 0.0003

Table 4.11: The batch standard errors for Figure 4.6(c) when p = 30.
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5 Estimation of Normalizing Constants

The normalizing constant is an important quantity in model comparisons. Al-

though we can not compute the normalizing constant exactly for any arbitrary col-

ored graph, it would be worthwhile to investigate the estimation of normalizing con-

stants in an efficient manner. This chapter introduces three methods for computing

the normalizing constant of the colored G-Wishart distribution and illustrates their

application in the analysis of Fret’s heads data [Frets, 1921].
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5.1 Monte Carlo Method

According to (2.9) in Theorem 2.1.3, the normalizing constant of the colored

G-Wishart distribution can be written as

IG(δ,D) =

∫
PG

2|V|
p∏
i=1

Q
p−vGi −dGi +δ−1
ii

( p∏
i=1

Ψ
p−i−vGi +δ−1
ii

)
e
− 1

2

p∑
i=1

p∑
j=i

Ψ2
ij

dΨv(G)

= 2|V|
p∏
i=1

Q
p−vGi −dGi +δ−1
ii

∫
PG

( p∏
i=1

Ψ
p−i−vGi +δ−1
ii

)
e
− 1

2

p∑
i=1

p∑
j=i

Ψ2
ij

dΨv(G)

= 2|V|
p∏
i=1

Q
p−vGi −dGi +δ−1
ii

∫
PG

( ∏
(i,i)∈v(G)c

Ψ
p−i−vGi +δ−1
ii

)
e
− 1

2

∑
(i,j)∈v(G)c

Ψ2
ij

×
( ∏

(i,i)∈v(G)

Ψ
p−i−vGi +δ−1
ii

)
e
− 1

2

∑
(i,i)∈v(G)

Ψ2
ii

e
− 1

2

∑
(i,j)∈v(G),i ̸=j

Ψ2
ij

×
∏

(i,i)∈v(G)

dΨii

∏
(i,j)∈v(G),i̸=j

dΨij. (5.1)

Let v1(G) = {(i, j); (i, j) ∈ v(G), i ̸= j}. Then (5.1) becomes

IG(δ,D) = 2|V|(2π)
|v1(G)|

2

p∏
i=1

Q
p−vGi −dGi +δ−1
ii

∫
PG

h(Ψv(G)c)

×
( ∏

(i,i)∈v(G)

Ψ
p−i−vGi +δ−1
ii

)
e
− 1

2

∑
(i,i)∈v(G)

Ψ2
ii

×
∏

(i,j)∈v(G),i ̸=j

1√
2π
e−

1
2
Ψ2

ij

∏
(i,i)∈v(G)

dΨii

∏
(i,j)∈v(G),i ̸=j

dΨij (5.2)
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where h(Ψv(G)c) is defined as in (2.10). Since dΨii =
1
2
Ψ−1
ii d(Ψ

2
ii), then (5.2) becomes

IG(δ,D) = 2|V|(2π)
|v1(G)|

2

p∏
i=1

Q
p−vGi −dGi +δ−1
ii

∫
PG

h(Ψv(G)c)

×
( ∏

(i,i)∈v(G)

Ψ
p−i−vGi +δ−1
ii

1

2
Ψ−1
ii

)
e
− 1

2

∑
(i,i)∈v(G)

Ψ2
ii

×
∏

(i,j)∈v(G),i ̸=j

1√
2π
e−

1
2
Ψ2

ij

∏
(i,i)∈v(G)

dΨ2
ii

∏
(i,j)∈v(G),i̸=j

dΨij

= (
1

2
)|V|2|V|(2π)

|v1(G)|
2

p∏
i=1

Q
p−vGi −dGi +δ−1
ii

∫
PG

h(Ψv(G)c)

×
( ∏

(i,i)∈v(G)

(Ψ2
ii)

p−i−vGi +δ

2
−1
)
e
− 1

2

∑
(i,i)∈v(G)

Ψ2
ii

×
∏
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1√
2π
e−

1
2
Ψ2

ij

∏
(i,i)∈v(G)

dΨ2
ii

∏
(i,j)∈v(G),i̸=j

dΨij

= (2π)
|v1(G)|

2

( ∏
(i,i)∈v(G)

2
p−i−vGi +δ

2 Γ(
p− i− vGi + δ

2
)
)( p∏

i=1

Q
p−vGi −dGi +δ−1
ii

)
×
∫
PG

h(Ψv(G)c)
∏

(i,i)∈v(G)

1

2
p−i−vG

i
+δ

2 Γ(
p−i−vGi +δ

2
)
(Ψ2

ii)
p−i−vGi +δ

2
−1e−

1
2
Ψ2

ii

×
∏

(i,j)∈v(G),i ̸=j

1√
2π
e−

1
2
Ψ2

ij

∏
(i,i)∈v(G)

dΨ2
ii

∏
(i,j)∈v(G),i̸=j

dΨij. (5.3)

We are now ready to state our result about the normalizing constant for the colored

G-Wishart.

Theorem 5.1.1 Let G be an arbitrary colored graph and IG(δ,D) be the normalizing
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constant of the colored G-Wishart distribution. Then

IG(δ,D) = (2π)
|v1(G)|

2

( ∏
(i,i)∈v(G)

2
p−i−vGi +δ

2 Γ(
p− i− vGi + δ

2
)
)

×
( p∏
i=1

Q
p−vGi −dGi +δ−1
ii

)
Ef(Ψv(G))[h(Ψv(G)c)]

(5.4)

where h(Ψv(G)c) is defined as in (2.10) and

f(Ψv(G)) =
∏

(i,i)∈v(G)

1

2
p−i−vG

i
+δ

2 Γ(
p−i−vGi +δ

2
)
(Ψ2

ii)
p−i−vGi +δ

2
−1e−

1
2
Ψ2

ii

×
∏

(i,j)∈v(G),i ̸=j

1√
2π
e−

1
2
Ψ2

ij .

Proof. The proof follows immediately from expression (5.3) for IG(δ,D).

By the Law of Large Numbers, the Monte Carlo method evaluates the normalizing

constant IG(δ,D) by the formula 1
N

N∑
l=1

h(Ψl
v(G)c), where N is a large integer, Ψii,

(i, i) ∈ v(G), are the random samples from the independent chi-squared distribution

with p− i− vGi + δ degrees of freedom, and Ψij, (i, j) ∈ v(G), i ̸= j, are the random

samples from the independent standard normal distribution.

5.2 Importance Sampling

According to the importance sampler, we are going to estimate the normalizing

constant IG(δ,D) by 1
N

N∑
l=1

h(Ψl
v(G)c)

f(Ψl
v(G)

)

f∗(Ψl
v(G)

)
. Since Ψij, (i, j) ∈ v(G)c, are well defined
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functions for all (i, j) ∈ v(G), we can compute h(Ψl
v(G)c), l = 1, 2, · · · , N , after

obtaining the samples Ψij, (i, j) ∈ v(G), from the density f∗(Ψv(G)).

5.3 Laplace Approximation

The normalizing constant can be written as

IG(δ,D) =

∫
K∈PG

exp{P ∗
δ,D(K)}

∏
(i,j)∈v(G)

dKij

where P ∗
δ,D(K) = δ−2

2
log |K| − 1

2
tr(KD).

The Laplace approximation to IG(δ,D) is

ÎG(δ,D) = exp{P ∗
δ,D(K̂)}(2π)

|v(G)|
2 |Hδ,D(K̂)|−1/2

where K̂ ∈ PG is the mode of the colored G-Wishart and Hδ,D(K̂) is the |v(G)| ×

|v(G)| Hessian matrix associated with −P ∗
δ,D(K). For each colour class u ∈ v(G), let

Au be the p × p diagonal matrix with entries Auij = 1 if (i, j) ∈ u and 0 otherwise.

Therefore,

∂2(−P ∗
δ,D(K))

∂Ku∂Kv

=
δ − 2

2
tr(AuΣAvΣ).
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5.4 Simulations

We illustrate the performance of the Monte Carlo method, the importance sam-

pling method and the Laplace approximation. Let D = Ip be the identity matrix. To

evaluate the performance of our Monte Carlo method and the importance sampling

method, we take 15000 sample points. The simulation results are shown in Table 5.1

and Table 5.2 using the Monte Carlo method. The NMSE(ÎG(δ,D), IG(δ,D)) are

presented in Table 5.1 for the five graphs in Fig. 3.1 for different values of δ with 100

replications. Table 5.2 reports NMSE(ÎG(δ,D), IG(δ,D)) for the star graphs with

all the vertices in the same color for different p and different δ with 100 replications.

Standard deviations are shown in parentheses. The performance of our algorithm is

very bad for Fig. 3.1(c) and is not good for Fig. 3.1(e) when using the Monte Carlo

method.

We use the importance sampling method for Fig. 3.1(c) and Fig. 3.1(e). In Fig.

3.1(c), we sample Ψ2
ii, (i, i) ∈ v(G), from the chi-square distribution with k = 8, 10, 12

degrees of freedom and sample Ψij, (i, j) ∈ v(G) and i ̸= j, from the normal dis-

tribution with zero mean and standard deviations equal to σ = 0.2, 0.5, 0.8. In Fig.

3.1(e), we sample Ψ2
ii, (i, i) ∈ v(G), from the chi-square distribution with k = 4, 5, 6, 7

degrees of freedom and sample Ψij, (i, j) ∈ v(G) and i ̸= j, from the normal distribu-

tion with zero mean and standard deviations equal to σ = 0.5, 0.7, 0.9. Table 5.3 and
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Table 5.4 show NMSE(ÎG(δ,D), IG(δ,D)) with 30 replications and 100 replications

for graphs in Fig. 3.1(c) and Fig. 3.1(e) for different k and σ, respectively. Table

5.3 show us the NMSE(ÎG(δ,D), IG(δ,D)) is very small when we choose k = 8 or

10, and σ = 0.6 for Fig. 3.1(c). Table 5.4 show us NMSE(ÎG(δ,D), IG(δ,D)) is very

small when we choose k = 5 or 6, and σ = 0.7 for Fig. 3.1(e). Comparing to the

Monte Carlo method, the algorithm of the importance sampling is highly efficient

for Fig. 3.1(c) and Fig. 3.1(e).

At the end, we compare the performance of the Monte Carlo method and the

Laplace approximation. Table 5.5 and Table 5.6 report NMSE(ÎG(δ,D), IG(δ,D))

of normalizing constants in Fig. 3.1 for different δ when we use the Monte Carlo

method and the Laplace approximation, respectively. The results indicate that the

Monte Carlo method works very much better than the Laplace approximation for

Figs. 3.1(a), (b) and (d). However, for Figs. 3.1(c) and (e), both of two methods

don’t give a good estimation.

5.5 Real Data Analysis

We use the Monte Carlo method and the Laplace approximation to compute the

normalizing constant to perform a model search for Fret’s heads dataset in Frets

[1921]. The data consist of measurements in millimetres of the length and breadth
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δ Fig. 3.1(a) Fig. 3.1(b) Fig. 3.1(c) Fig. 3.1(d) Fig. 3.1(e)

1 2.506× 10−4 2.178× 10−4 587.721 4.703× 10−5 11.007

(0.019) (0.016) (25.329) (0.008) (1.034)

3 1.018× 10−4 7.337× 10−5 35.671 2.420× 10−5 0.563

(1.361× 10−4) (0.010) (1.453) (0.007) (0.144)

5 6.813× 10−5 6.538 1.962× 10−5 0.120

(0.009) (0.548) (0.006) (0.084)

7 9.016× 10−5 1.780 1.662× 10−7 0.037

(0.011) (0.105) (0.005) (0.062)

Table 5.1: NMSE(ÎG(δ,D), IG(δ,D)) for graphs in Fig. 3.1 using the Monte Carlo

method.

of the heads of 25 random pairs of first and second sons. We compare the 12 colored

graphs shown in Fig. 5.1. Whittaker [1990] shows the model represented by the

uncolored graph in Fig. 5.1(a) fits the data very well. The analyses in Højsgaard

and Lauritzen [2008] support the models represented by graphs in Fig. 5.1(b) and

Fig. 5.1(c) comparing the saturated model using the likelihood ratio test. The

Edwards-Havránek model selection procedure in Gehrmann [2011] arrives at 9 min-

imally accepted models represented by the graphs in Figs. 5.1(d)-5.1(l). The model
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δ p = 2 p = 3 p = 4 p = 5

1 0.176 0.994 3.288 9.049

(0.172) (0.352) (0.637) (1.252)

3 0.017 0.111 0.381 1.001

(0.037) (0.075) (0.121) (0.194)

5 0.003 0.021 0.075 0.207

(0.023) (0.042) (0.069) (0.101)

7 5.349× 10−4 0.018 0.019 0.053

(0.013) (0.027) (0.044) (0.069)

Table 5.2: NMSE(ÎG(δ,D), IG(δ,D)) for the star graph with all the vertices in the

same color using the Monte Carlo method.

presented in Fig. 5.1(l) gives the lowest BIC value among the 9 models.

We here use the Bayes factors to compare the 12 models presented in Fig. 5.1.

In the prior colored G-Wishart distribution, the hyperparameters δ = 3, 10 and

D = I4. In order to obtain the estimated normalizing constants using the Monte

Carlo method, we take 15000 sample points. For the normalizing constant of the

posterior distribution, we always use the Monte Carlo method to get the estimate.

For the estimation of the normalizing constant of the prior distribution, we use two
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k σ = 0.2 σ = 0.5 σ = 0.8

8 4.528 0.003 0.237

(3.764) (0.063) (0.082)

10 0.726 0.004 0.097

(0.461) (0.073) (0.283)

12 0.932 0.011 0.205

(0.868) (0.107) (0.438)

Table 5.3: NMSE(ÎG(δ,D), IG(δ,D)) for the graph in Fig. 3.1(c) using the impor-

tance sampling when δ = 3 and D = Ip.

methods to compute them. One is the Monte Carlo method while the other one is

the Laplace approximation. For both methods, the results of the model selection

are the exactly same. Tables 5.7 and 5.8 show the estimation of the normalizing

constant using the Monte Carlo method and the Laplace approximation for δ = 3

and δ = 10, respectively. Tables 5.9 and 5.10 report the marginal probability of the

posterior distribution using the Monte Carlo method and the Laplace approximation,

respectively. Both methods select the same most likely models for the same δ. The

most three likely models are Fig. 5.1(k), Fig. 5.1(b) and Fig. 5.1(l) for δ = 3, and

for δ = 10, the most three likely models are Fig. 5.1(l), Fig. 5.1(k) and Fig. 5.1(b).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.1: Possible colored graphs supported by Fret’s heads data. L1: The head

length of the eldest son; B1: The head breadth of the eldest son; L2: The head

length of the second son; B2: The head breadth of the second son.
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k σ = 0.5 σ = 0.7 σ = 0.9

4 0.108 0.032 0.093

(0.299) (0.009) (0.013)

5 0.097 0.016 0.044

(0.494) (0.014) (0.013)

6 0.020 0.013 0.030

(0.067) (0.031) (0.039)

7 0.219 0.056 0.028

(1.796) (0.290) (0.049)

Table 5.4: NMSE(ÎG(δ,D), IG(δ,D)) for the graph in Fig. 3.1(e) using the impor-

tance sampling when δ = 3 and D = Ip.

δ Fig. 3.1(a) Fig. 3.1(b) Fig. 3.1(c) Fig. 3.1(d) Fig. 3.1(e)

3 0.521 0.760 50.426 0.566 0.620

5 0.307 36.465 0.192 0.219

7 0.156 15.247 0.093 0.108

Table 5.5: NMSE(ÎG(δ,D), IG(δ,D)) for the graphs in Fig. 3.1 using the Laplace

approximation.
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δ Fig. 3.1(a) Fig. 3.1(b) Fig. 3.1(c) Fig. 3.1(d) Fig. 3.1(e)

3 1.328× 10−5 3.197× 10−5 32.416 2.288× 10−7 0.568

5 1.048× 10−4 6.779 1.050× 10−5 0.119

7 1.115× 10−4 1.699 6.984× 10−7 0.038

Table 5.6: NMSE(ÎG(δ,D), IG(δ,D)) for the graphs in Fig. 3.1 using the Monte

Carlo sampling.
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Fig. 5.1(a) Fig. 5.1(b) Fig. 5.1(c) Fig. 5.1(d)

posterior 1.191×10−157 4.966×10−152 9.758×10−295 1.554×10−204

prior (MC) 1.052×104 33.200 0.443 5.938

prior (Laplace) 843.704 9.469 0.245 2.056

Fig. 5.1(e) Fig. 5.1(f) Fig. 5.1(g) Fig. 5.1(h)

posterior 6.997×10−173 1.035×10−158 6.981×10−216 4.622×10−206

prior (MC) 2.526×103 2.530×103 243.525 242.603

prior (Laplace) 336.589 336.589 47.475 47.475

Fig. 5.1(i) Fig. 5.1(j) Fig. 5.1(k) Fig. 5.1(l)

posterior < 10−300 < 10−300 9.594×10−151 9.285×10−156

prior (MC) 38.623 9.179 8.315 2.282

prior (Laplace) 13.392 3.777 3.777 1.065

Table 5.7: The normalizing constants for the graphs in Fig. 5.1 for δ = 3.
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Fig. 5.1(a) Fig. 5.1(b) Fig. 5.1(c) Fig. 5.1(d)

posterior 5.014×10−187 2.042×10−180 < 10−300 2.941×10−277

prior (MC) 1.248×1015 4.665×1011 5.475×108 3.794×1010

prior (Laplace) 8.088×1014 4.012×1011 4.596×108 3.080×1010

Fig. 5.1(e) Fig. 5.1(f) Fig. 5.1(g) Fig. 5.1(h)

posterior < 10−300 3.785×10−191 3.239×10−285 6.423×10−280

prior (MC) 1.608×1014 1.605×1014 7.334×1012 7.389×1012

prior (Laplace) 1.141×1014 1.141×1014 5.689×1012 5.689×1012

Fig. 5.1(i) Fig. 5.1(j) Fig. 5.1(k) Fig. 5.1(l)

posterior < 10−300 < 10−300 2.421×10−179 3.697×10−180

prior (MC) 6.424×1011 6.361×1010 6.297×1010 6.446×109

prior (Laplace) 5.674×1011 5.659×1010 5.659×1010 5.644×109

Table 5.8: The normalizing constants for the graphs in Fig. 5.1 for δ = 10.
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δ Fig. 5.1(a) Fig. 5.1(b) Fig. 5.1(c) Fig. 5.1(d)

3 1.133×10−161 1.496×10−153 2.202×10−294 2.618×10−205

10 4.016×10−202 4.378×10−192 < 10−300 7.753×10−288

Fig. 5.1(e) Fig. 5.1(f) Fig. 5.1(g) Fig. 5.1(h)

3 2.770×10−176 4.092×10−162 2.867×10−218 1.905×10−208

10 < 10−300 2.358×10−205 4.417×10−298 8.693×10−293

Fig. 5.1(i) Fig. 5.1(j) Fig. 5.1(k) Fig. 5.1(l)

3 < 10−300 < 10−300 1.154×10−151 4.068×10−156

10 < 10−300 < 10−300 3.845×10−190 5.736×10−190

Table 5.9: The marginal probability of the posterior distribution for the graphs in

Fig. 5.1 using the Monte Carlo method.
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δ Fig. 5.1(a) Fig. 5.1(b) Fig. 5.1(c) Fig. 5.1(d)

3 1.412×10−160 5.244×10−153 3.975×10−294 7.559×10−205

10 6.200×10−202 5.091×10−192 < 10−300 9.549×10−288

Fig. 5.1(e) Fig. 5.1(f) Fig. 5.1(g) Fig. 5.1(h)

3 2.079×10−175 3.076×10−161 1.471×10−217 9.736×10−208

10 < 10−300 3.318×10−205 5.695×10−298 1.129×10−292

Fig. 5.1(i) Fig. 5.1(j) Fig. 5.1(k) Fig. 5.1(l)

3 < 10−300 < 10−300 2.540×10−151 8.713×10−156

10 < 10−300 < 10−300 4.279×10−190 6.551×10−190

Table 5.10: The marginal probability of the posterior distribution for the graphs in

Fig. 5.1 using the Laplace approximation.

99



6 Precision Estimation in High-dimensional

Models

6.1 Bayesian Estimation in Large Dimensions

Recently, covariance estimation in graphical Gaussian models in high dimensional

settings with relatively small sample sizes has attracted more and more attentions.

However, traditional estimation methods often rely on the expensive inference of

global models and can not be implemented efficiently. To conquer these challenges, a

general framework for distributed algorithms, in which both data and estimation are

distributed across the vertices of the underlying graph, is developed based on com-

bining local and inexpensive estimators. The distributed algorithm is usually directly

applicable to practically sized problem because of its attractive properties, including

low computational cost and low communication cost across the local models.
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6.1.1 Distributed Algorithms in Graphical Gaussian Models

Meng et al. [2014] considered the distributed estimation of the precision matrix

K in graphical Gaussian models based on the maximum likelihood estimation. The

distributed algorithms in Meng et al. [2014] determined the global estimator of K by

splitting the global estimator into low-dimensional local estimators. Their approach

estimated the local parameters by maximizing the marginal likelihood corresponding

to each vertex and its neighborhood in the underlying graph.

Now we briefly introduce their method here. Define the set of immediate neigh-

bours of the given vertex i ∈ V as ne(i) = {j|(i, j) ∈ E}. Then the one-hop

neighbourhood and two-hop neighbourhood can be defined as Ni = {i} ∪ ne(i) and

Ni = {i}∪ne(i)∪{k | (k, j) ∈ E, j ∈ ne(i)}, respectively. The local marginal model

for X i = {Xv, v ∈ Ni} is defined as the graphical Gaussian model with the precision

matrix denoted by Ki, which can be evaluated through

Ki = (ΣNi,Ni
)−1 = KNi,Ni

−KNi,V \Ni
[KV \Ni,V \Ni

]−1KV \Ni,Ni
. (6.1)

Denote Bi = {j|j ∈ Ni, ne(j) ∩ (V \Ni) ̸= ∅} as the buffer set and Pi = Ni\Bi as

the protected set, which are illustrated in Figure 6.1(b). The Markov property of a
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random vector X with respect to G implies KPi,V \Ni
= 0. Therefore, we have that Ki

Pi,Pi
Ki

Pi,Bi

Ki
Bi,Pi

Ki
Bi,Bi

 =

 KPi,Pi
KPi,Bi

KBi,Pi
KBi,Bi

−

 0 0

0 KBi,V \Ni
(KV \Ni,V \Ni

)−1KV \Ni,Bi

 .

This shows that the local parameters of Ki indexed by (Pi,Pi) and (Pi, Bi) are

totally preserved and equal to the corresponding global parameters. However, this

claim does not hold for the parameters indexed by (Bi, Bi).

Based on these observations, Meng et al. [2014] defined relaxed local graphs as

follows. Denote a local graph corresponding to the given vertex i by Gi = (Ni, Ei)

where

Ei = E ∩ {{Pi ×Pi} ∪ {Pi ×Bi} ∪ {Bi × Pi}} ∪ {Bi ×Bi}.

In the local graph Gi, the zero constraints of the edges in Ei\{Bi, Bi} are the same

as the corresponding constraints in the global graph G. The edges in Bi × Bi are

arbitrary without any constraint. An illustration of these local graphs is given in

Figure 6.1(c). Each relaxed local model corresponding to the vertex i is a graphical

Gaussian model with respect to the local graph Gi. In each relaxed local model, the

MLE K̂i will be used to estimate Ki. Then the estimate of local parameters can be

obtained by extracting the elements in K̂i corresponding to the vertex i and edges

adjacent to vertex i. Meng et al. [2014] also proved that the proposed distributed

102



(a) (b) (c)

Figure 6.1: (a) The underlying graph. (b) The colors of the buffer set and the

protected set are blue and red, respectively. The two-hop neighbourhood for vertex i

is indicated with dashed contours. (c) The graphs representing the one-hop relaxed

model (left) and the two-hop relaxed model (right). Dotted lines denote edges not

existing in the original underlying graph.

estimate of K in graphical Gaussian models is asymptotically consistent when the

number of variables p is fixed and the sample size n grows to infinity. Furthermore,

the convergence rate to the true parameters was derived when both p and n go to

infinity.

6.1.2 Bayesian Estimation and Large Deviation

In a Bayesian framework, we consider the distributed estimation of the precision

matrix K in large colored graphical Gaussian models. Since the colored G-Wishart

distribution is a member of exponential families, we can use the strategy proposed in
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Ghosal [2000] to study the asymptotic properties of our distributed estimate. In fact,

Ghosal [2000] considered the consistency of the posterior mean of the parameters in

an exponential family when both p and n go to infinity. Suppose the p-dimensional

independent random samples X1, X2, . . . , Xn are from the exponential family with

the density

f(x; θ) = exp{xtθ − ψ(θ)}.

Denote µ = ψ′(θ0) and F = ψ′′(θ0) where θ0 is the true value of the parameter θ. Let

J be a square root of F . Moreover, let u =
√
nJ(θ − θ0) and ∆n =

√
nJ−1(x̄ − µ)

where x̄ = 1
n

n∑
i=1

xi. Under some conditions, Ghosal [2000] proved that∫
||u|| · |π∗(u)− ϕ(u; ∆n, Ip)|du

p−→ 0 (6.2)

where π∗(u) is the posterior distribution and ϕ(u; ∆n, Ip) is the density of multi-

variate normal N(∆n, Ip). It follows that the posterior mean of the parameter is

asymptotically normal and asymptotically efficient when both p and n increase to

infinity. The proof can be achieved by expressing the left-hand side of (6.2) as a

sum of three terms and locating the corresponding upper bounds for the three terms

separately. In each term, the only random component is ||∆n|| and ||∆n|| = Op(
√
p)

by Chebyshev’s inequality.

We will use the above technique in our proofs for the local relaxed models. Never-

theless, every vertex in the global graph corresponds to a local relaxed model. If we
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allow the number of vertices increases to infinity, there is an infinite number of local

models. In order to use Bonferroni inequality to bound the overall error between the

distributed estimate and the true value of the parameter θ in probability, we need to

know the exact tail probability of P (||∆n|| > cp), where c is a constant. This requires

us to establish a new large deviation result for ||∆n||. Fortunately, Gao and Carroll

[2015] proposed the cumulant boundedness conditions for the large deviation results

based on the quadratic forms [Spokoiny and Zhilova, 2013]. We next briefly intro-

duce their idea. Let ξ be a random vector and B be a matrix. Then ||Bξ|| follows a

general quadratic form and the deviation probability for quadratic forms ||Bξ|| was

established by Spokoiny and Zhilova [2013] under the following exponential moment

condition

logE[exp{γtξ}] ≤ ||γ||2/2, γ ∈ Rp, ||γ|| ≤ g

where g is a positive constant.

Gao and Carroll [2015] introduced a cumulant boundedness condition and proved

that the exponential moment condition in Spokoiny and Zhilova [2013] can be satis-

fied asymptotically under the cumulant boundedness condition.

Definition 6.1.1 [Cumulant Boundedness Condition, Gao and Carroll, 2015] Let

C1, C2 and C3 be constants. For a random vector Z of dimension m, let g(γ) denote

its cumulant generation function, where γ denotes an m dimensional vector. Assume
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the first two derivatives of its cumulant generating function satisfy |∂g(γ)
∂γj

|γ=0| ≤ C1

and | ∂
2g(γ)

∂γj∂γk
|γ=0| ≤ C2. Assume further that there exists a constant δ such that with

||γ|| ≤ δ, the absolute value of all the third derivatives of its cumulant generating

function satisfy | ∂3g(γ)
∂γj∂γk∂γl

| ≤ C3 for all 1 ≤ j, k, l ≤ m.

Based on the cumulant boundedness condition, Gao and Carroll [2015] proved

the following asymptotical exponential moment condition, which provides a toolbox

for calculating the deviation probability bound of ||∆n|| using the large deviation

results in Spokoiny and Zhilova [2013].

Theorem 6.1.1 [Gao and Carroll, 2015] Let Zi, i = 1, 2, . . . , n, be independently

distributed random vectors of dimension m with zero mean and identity covariance

matrices and η = 1√
n

n∑
i=1

Zi. If each random vector Zi satisfies the cumulant bound-

edness condition with the same bounds and p2 log p = o(n), then logE[exp{γtη}] ≤

a2||γ||2/2 for ||γ|| < (p2 log p)1/2 with some constant a2 > 1 when n is sufficiently

large.

This result implies that if the cumulant boundedness condition holds, we will be

able to apply large deviation results in Spokoiny and Zhilova [2013] to the proof of the

asymptotic properties of the distributed estimate in the colored graphical Gaussian

models.
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6.2 Distributed Estimation in Large Colored Graphical Mod-

els

Distributed estimation methods have recently been given for computing the max-

imum likelihood estimate of the precision matrix K in large graphical Gaussian

models. Our aim, in this chapter, is to give a distributed Bayesian estimate of the

precision matrix K in large colored graphical Gaussian models. In each local relaxed

model, we take the sample posterior mean of the precision matrix as our estimate

of the precision matrix. The simulation results show that the distributed Bayesian

estimate performs very well when the number of variable p is large.

6.2.1 Local Relaxed Marginal Models

For a given vertex i ∈ V , define the set of immediate neighbors of vertex i as

ne(i) = {j|(i, j) ∈ E}. For each vertex i ∈ V , we consider two types of neigh-

bourhoods of the vertex i, the so-called one-hop and two-hop neighbourhood. The

one-hop neighbourhood Ni = {i} ∪ ne(i) is made up of the vertex i and the ver-

tices directly connected to it. The two-hop neighbourhood Ni = {i} ∪ ne(i) ∪ {k |

(k, j) ∈ E, j ∈ ne(i)} consists of the vertex i, its neighbours and the neighbours of

the neighbours. Without the risk of confusion, we let Ni be either a one-hop or two-

hop neighbourhood. We consider the local marginal model for XNi
= {Xv, v ∈ Ni}
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which is abbreviated as X i. This is a graphical Gaussian model with the precision

matrix denoted by Ki. Then we have that

Ki = (ΣNi,Ni
)−1 = KNi,Ni

−KNi,V \Ni
[KV \Ni,V \Ni

]−1KV \Ni,Ni
. (6.3)

Based on the collection of vertices Ni and its complement set V \Ni, we partition

the set Ni further into two subsets. One is the buffer set denoted as Bi = {j|j ∈ Ni

and ne(j) ∩ (V \Ni) ̸= ∅}, which are the vertices having edges connecting to the

complement of Ni in V . The other is the protected set denoted as Pi = Ni\Bi,

which contains the vertices in Ni that are not directly connected to V \Ni. Since the

distribution of X is Markov with respect to G, then we have that XPi
⊥ XV \Ni

|XBi

and it follows that

KPi,V \Ni
= 0. (6.4)

Then equation (6.3) becomes Ki
Pi,Pi

Ki
Pi,Bi

Ki
Bi,Pi

Ki
Bi,Bi



=

 KPi,Pi
KPi,Bi

KBi,Pi
KBi,Bi

−

 KPi,V \Ni

KBi,V \Ni

 (KV \Ni,V \Ni
)−1

(
KV \Ni,Pi

KV \Ni,Bi

)

=

 KPi,Pi
KPi,Bi

KBi,Pi
KBi,Bi

−

 0 0

0 KBi,V \Ni
(KV \Ni,V \Ni

)−1KV \Ni,Bi


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where the 0’s in the matrix above follows from the identity (6.4). Therefore, we

obtain the following relationships

Ki
Pi,Pi

= KPi,Pi
, Ki

Pi,Bi
= KPi,Bi

,

Ki
Bi,Bi

= KBi,Bi
−KBi,V \Ni

(KV \Ni,V \Ni
)−1KV \Ni,Bi

.

This shows that the local parameters of Ki indexed by (Pi,Pi) and (Pi, Bi) are

equal to the corresponding global parameters but the same does not hold for the

parameters indexed by (Bi, Bi). This important observation above motivates us to

use the Ni-marginal local models to estimate those parameters which are identical

in both local and global models.

We denote by Gi the colored graph with vertex set Ni and edge set

Ei = E ∩ {{Pi ×Pi} ∪ {Pi ×Bi} ∪ {Bi × Pi}} ∪ {Bi ×Bi}.

In Gi, the colors of the vertices in Ni \Bi are the same as the corresponding colors in

G. The colors of the edges in Ei\{Bi, Bi} are the same as the corresponding colors

in G. The colors of the vertices in Bi and the edges in Bi×Bi are arbitrary without

any constraint. Let Ki be the precision matrix of this relaxed local marginal model.

We thus keep the important relationships

Ki
Pi,Pi

= KPi,Pi
, Ki

Pi,Bi
= KPi,Bi
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and have a local graphical Gaussian model with the canonical parameterKi on which

we can put a local colored G-Wishart distribution as the prior. In each local model

Markov with respect to Gi, i ∈ {1, 2, . . . , p}, we use the method developed in Chapter

2 to obtain the Bayesian estimator K̃i, the sample posterior mean of Ki with the

colored G-Wishart prior.

Next, we will show how to construct a distributed Bayesian estimate based on

the local models. Let θ = (θV1 , θV2 , . . . , θVT , θE1 , θE2 , . . . , θES
)t denote the global

parameter, that is the “free” entries of K which represent the vertex class or the edge

class, and let θ0 be its true value. In each local model Gi, we define the local parameter

as θi = (θi1, θ
i
2, . . . , θ

i
Si
)t, the vector of free entries of Ki, and the corresponding local

estimator as θ̃i. The true value of θi is denoted by θi0. Furthermore, we collapse all

the local parameters into one vector

θ̄ = ((θ̃1)t, (θ̃2)t, . . . , (θ̃p)t)t

and its true value is denoted as θ̄0. After obtaining the local estimators, a distributed

estimate of θ̃ can be constructed as

θ̃Vk = gVk(θ̄) =
1

|Vk|
∑
i∈Vk

Si∑
j=1

θ̃ij1θij=θVk
, k = 1, 2, . . . , T,

and

θ̃Ek
= gEk

(θ̄) =
1

2|Ek|
∑
i∈Gk

Si∑
j=1

θ̃ij1θij=θEk
, k = 1, 2, . . . , S,
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where Gk = {i|∃h ∈ Ni, (i, h) ∈ Ek}. Define the global distributed Bayesian estimate

θ̃ = g(θ̄) = (gV1(θ̄), gV2(θ̄), . . . , gVT (θ̄), gE1(θ̄), gE2(θ̄), . . . , gES
(θ̄))t.

6.2.2 Simulations

In order to illustrate the performance of our proposed distributed Bayesian es-

timate of K, we conduct a number of experiments using simulated data. For each

simulation, we compute the distributed estimator using relaxed local marginal models

built on the “one-hop” and on the “two-hop” neighbourhoods of each i ∈ {1, 2, . . . , p}.

We choose the colored G-Wishart distribution as the prior with hyperparameters

Di = Ipi and δ
i = 3 for all i ∈ {1, 2, . . . , p}. The corresponding estimators are called

the MBE-1hop and MBE-2hop estimates of K respectively. We consider seven dif-

ferent colored graphical Gaussian models. The underlying graph of three of those

models are colored cycles of length p = 20 with alternate vertex and edge colors as

indicated in Figure 4.6 (a), (b) and (c). Three other models have the same type of

underlying colored graphs but the colored cycles are of length p = 30. The underly-

ing graph of the seventh model is a 10× 10 grid with colors as shown in Figure 6.2.

For both the colored cycles and the 10×10 grid, black edges or vertices indicate that

there is no color constraint on edges or vertices. For the sake of comparisons, for

models represented by the colored cycles of order 20 or 30, we also compute the global
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Bayesian estimate of the precision matrix K, denoted by GBE, using the method

given in Chapter 2. Since asymptotically, the posterior mean of K is expected to

be close to the maximum likelihood estimate of K, for all colored models, we also

compute the global MLE of K, denoted by GMLE.

The values of (Kij)1≤i,j≤p used for the simulation for models represented by col-

ored graphs as given in Figure 4.6 (a), (b) and (c) are given in Table 6.1. For

the 10 × 10 colored grid-graph of Figure 6.2, we chose Ki+10(j−1),i+1+10(j−1) = 1 for

i = 1, 2, . . . , 9 and j = 1, 2, . . . , 10,Ki+10(j−1),i+10j = 1+0.01i+0.1j for i = 1, 2, . . . , 10

and j = 1, 2, . . . , 9 and Ki,i = 10 + 0.01i for i = 1, 2, . . . , 100. The posterior mean

estimates of K obtained from the MH algorithm are based on 5000 iterations after

the first 1000 burn-in iterations.

Table 6.2 shows the normalized mean square error NMSE(K̂,K) = ||K̂−K||2
||K||2 for

the six models with the colored cycles as underlying graphs. Values are averaged

over 100 data sets from the multivariate normal N(0, K−1) distribution. We repeat

the simulations 100 times. Standard deviations are shown in parentheses. From

these results, we see that our MBE-1hop and MBE-2hop estimates perform very

well compared to the global estimate GBE. In Figure 6.3 we give the graphs of

NMSE(K̂,K) in the function of the sample size, for different sample sizes ranging

from 50 to 100 for the four models with underlying graphs the colored cycles of
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(a)

Figure 6.2: The 10×10 colored grid graph. Black vertices or edges indicate different

arbitrary colors.

length p = 20 and the 10× 10 grid. We see that the MLE and the GBE consistently

yield the smallest and largest NMSE(K̂,K) respectively with the MBE-1hop and

MBE-2hop, and the NMSE(K̂,K) of MBE-2hop is always smaller than that of the

MBE-1hop. As expected, as n increases, all NMSE(K̂,K) tend to the same value.

Computations are performed on a 2 core 4 thread processor with i5-4200U, 2.3

GHZ chips and 8 GB of RAM, running on Windows 8. The computing times for the

estimates of K are given in minutes in Table 6.3 for the six models with cycles as

underlying graphs. We can see that the computation times for the MBE-1hop and

MBE 2-hop are much smaller than for the GBE.
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Figure 6.3: NMSE in K for different colored graphical models. (a) NMSE for the

colored graph in Figure 4.6 (a) when p = 20. (b) NMSE for the colored graph in

Figure 4.6 (b) when p = 20. (c) NMSE for the colored graph in Figure 4.6 (c) when

p = 20. (d) NMSE for the colored lattice graph in Figure 6.2 when p = 100.
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parameters Figure 4.6 (a) Figure 4.6 (b) Figure 4.6 (c)

Kii (i = 1, 3, . . . , 2p− 1) 0.1 0.1 0.1+0.1i

Kii (i = 2, 4, . . . , p) 0.03 0.3 0.03+0.01i

Ki,i+1 = Ki+1,i (i = 1, 3, . . . , 2p− 1) 0.01 0.01+0.001i 0.01

Ki,i+1 = Ki+1,i (i = 2, 4, . . . , p− 2) 0.02 0.01+0.002i 0.02

K1p = Kp1 0.02 0.01 0.02

Table 6.1: The parameters chosen for the matrix K for producing Figure 4.6.

p G MBE 1hop MBE 2hop GBE

(a) 0.0162 (0.0155) 0.0032 (0.0027) 0.0110 (0.0102)

20 (b) 0.0256 (0.0153) 0.0148 (0.0058) 0.0237 (0.0189)

(c) 0.0375 (0.0283) 0.0305 (0.0142) 0.0308 (0.0241)

(a) 0.0098 (0.0070) 0.0017(0.0014) 0.0317 (0.0571)

30 (b) 0.0234 (0.0088) 0.0151(0.0054) 0.0482 (0.0533)

(c) 0.0379 (0.0127) 0.0308 (0.0086) 0.0823 (0.0257)

Table 6.2: NMSE(K, K̂) for the three colored models when p = 20 and p = 30.
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p G MBE 1hop MBE 2hop GBE

(a) 0.365 3.410 21.875

20 (b) 1.047 3.353 16.249

(c) 0.944 3.054 15.513

(a) 1.442 4.952 83.965

30 (b) 1.538 4.557 80.255

(c) 1.504 4.509 79.918

Table 6.3: Timing for the three colored models when p = 20 and p = 30.
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7 Asymptotic Analysis of Distributed Bayesian

Estimation

We study the asymptotic behaviour of the distributed estimate proposed in Chap-

ter 6 under the regular asymptotic regime when the number of variables p is fixed

and under the double asymptotic regimes when both p and the sample size n are

large.

When the number of variables p is fixed, we obtain the limiting distribution of

the estimator, which can be used to approximate the density of the estimator in a

large samples. The approximate distribution is necessary for statistical inference:

confidence interval and hypothesis tests. We can see that the asymptotic variance

of the estimator decreases as the sample size n increases. That means the estimator

can estimate the true value very well when the sample size is large enough. This also

implies the consistency of the distributed estimator.

When the number of variables p grows with the sample size n, we compute the

117



upper bound of the distance between the estimator and the true value. Under certain

growth restrictions on p, the upper bound shows the accuracy of the estimator.

Condition (4) below implies that p grows much slower than n when the number of

variables in the local models goes to infinity. However, in practice, the local graphs

are very sparse and of low dimension. Therefore, condition (4) can be relaxed to

condition (4∗) to obtain a smaller upper bound.

We also show in particular, that when the number of parameters in the local

models is uniformly bounded, the convergence rate we obtain for the asymptotic

consistency, in the Frobenius norm, of our estimate of the precision matrix compares

well with the convergence rate in previous literature for the maximum likelihood

estimate.

7.1 Bayesian Estimator When p Is Fixed and n→ ∞

In each local model corresponding to the vertex i ∈ {1, 2, . . . , p}, let Li(θi) and

li(θi) denote the likelihood and log likelihood, respectively. The Fisher information

is denoted by I i(θi) = Eθi [
∂
∂θi
li(θi|X i)[ ∂

∂θi
li(θi|X i)]t]. Define a Si-dimensional vector

Uij =
1√
n
[I i(θi0)]

−1 ∂l
i(θi|Xi

j)

∂θi

∣∣
θi=θi0

for j = 1, . . . , n and i = 1, . . . , p, a
p∑
i=1

Si-dimensional

vector Uj = (U t
1j, U

t
2j, . . . , U

t
pj)

t and Ḡ = nCov(U1). For each r, r = 1, 2, . . . , Si, let

δir be the Si × Si indicator matrix with (δir)hl = 1 if Ki
hl = θir and 0 otherwise. The
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following theorem shows that the global estimator has the property of asymptotic

normality when the number of variables p is fixed and the sample size n goes to

infinity.

Theorem 7.1.1 Let θ0, θ̃, θ̄ and Ḡ be defined above. Then

√
n(θ̃ − θ0)

£−→ N(0, A) as n→ ∞

where A = ∂g(θ̄)

∂θ̄t
Ḡ(∂g(θ̄)

∂θ̄t
)t.

Proof. For any i ∈ {1, 2, . . . , p}, we have that
√
n(θ̃i−θi0) =

√
n(θ̃i−T i)+

√
n(T i−θi0)

where T i = θi0+
1
n
[I i(θi0)]

−1 ∂l
i(θi)
∂θi

∣∣
θi=θi0

. It then follows from Theorem 8.3 in Lehmann

and Casella [1998] that
√
n(θ̃i − T i)

p−→ 0. Furthermore, we have

√
n(T i − θi0) =

1√
n
[I i(θi0)]

−1∂l
i(θi)

∂θi
∣∣
θi=θi0

=
n∑
j=1

Uij

with E[Uj] = 0 for j = 1, 2, · · · , n. Next, we compute the covariance matrix Cov(U1)

with (i, k) entry

Cov(Ui1, Uk1) =
1

n
[Ii(θi0)]

−1E
[∂li(θi|Xi

1)

∂θi
∣∣
θi=θi

0
(
∂lk(θk|Xk

1 )

∂θk
∣∣
θk=θk

0
)t
]
[Ik(θk0 )]

−1. (7.1)

Based on the definition of the indicator matrix δir,

θi0 = (
1

|τ i1|
tr(δi1K

i
0),

1

|τ i2|
tr(δi2K

i
0), · · · ,

1

|τ iSi
|
tr(δiSi

Ki
0))

t,

where τ ir is the numbers of elements belonging to the r-th color class in Ki
0. Since

X i has a multivariate normal distribution N(0, (Ki
0)

−1), we have

∂li(θi|X i
1)

∂θij

∣∣
θi=θi0

=
1

2
tr(δij(K

i
0)

−1)− 1

2
tr(δijX

i
1(X

i
1)
t).
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Therefore, the (q,m) entry of E
[∂li(θi|Xi

1)

∂θi

∣∣
θi=θi0

(
∂lk(θk|Xk

1 )

∂θk

∣∣
θk=θk0

)t
]
in (7.1) is

E
[∂li(θi|X i

1)

∂θiq

∣∣
θi=θi0

∂lk(θk|Xk
1 )

∂θkm

∣∣
θk=θk0

]
=

1

4
tr(δiqΣ

i
0)× tr(δkmΣ

k
0)−

1

4
tr(δiqΣ

i
0)× tr(δkmE[X

k
1 (X

k
1 )
t])

−1

4
tr(δkmΣ

k
0)× tr(δiqE[X

i
1(X

i
1)
t]) +

1

4
E[tr(δiqX

i
1(X

i
1)
t)× tr(δkmX

k
1 (X

k
1 )
t)]

where Σi
0 = (Ki

0)
−1 and Σk

0 = (Kk
0 )

−1. According to Isserlis’ Theorem, we have that

E[X1aX1bX1cX1d] = (Σ0)ab(Σ0)cd + (Σ0)ac(Σ0)bd + (Σ0)ad(Σ0)bc.

Therefore, each entry of nCov(U1) is well-defined. By Multivariate Central Limit

Theorem, we have
√
n(θ̄ − θ̄0)

£−→ N(0, Ḡ) as n → ∞, where Ḡ = nCov(U1). As

θ̃ = g(θ̄), based on Delta method, we have that
√
n(θ̃ − θ0)

£−→ N(0, A) where

A = ∂g(θ̄)

∂θ̄t
Ḡ(∂g(θ̄)

∂θ̄t
)t.

All proofs of lemmas and propositions used in the proofs of theorems of this

chapter are given in the Appendix A. We now establish an asymptotic result similar

to Theorem 7.1.1 but with the MLE replacing the posterior mean of K. Based on

the same local models, we compute the local MLE θ̂i of θi from the local models and

obtain a distributed MLE for the global model, which is denoted by θ̂.
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Theorem 7.1.2 Let θ̂ be the distributed MLE. Then

√
n(θ̂ − θ0)

£−→ N(0, A) as n→ 0

where A is defined as in Theorem 7.1.1 above.

Proof. For any i ∈ {1, 2, . . . , p}, we use the well known result for MLE as follows

√
n(θ̂i − θi0) =

1√
n
[I i(θi0)]

−1

n∑
j=1

∂li(θi|X i
j)

∂θi
∣∣
θi=θi0

+Ri (7.2)

where Ri p−→ 0 as n→ ∞. Comparing identity (7.2) with (7.1) in Theorem 7.1.1, the

result of Theorem 7.1.2 follows.

The distributed MLE is calculated by the method of Meng et al. [2014] using

the local relaxed marginal models defined above. We thus see that the distributed

Bayesian estimator θ̃ we proposed has the same limiting distribution as the dis-

tributed MLE θ̂.

7.2 Bayesian Estimator When p→ ∞ and n→ ∞

In this section, we study the consistency of the global estimator θ̃ when both p

and n go to infinity. For a p× p matrix A, let ||A||F be its Frobenius norm defined

by ||A||F = (
p∑
j=1

p∑
k=1

|ajk|2)
1
2 . In the local model Markov with respect to Gi as defined

in Section 6.2.1 above, we write the density of X i
j, j = 1, 2, . . . , n, as

f(X i
j;K

i) =
|Ki| 12 exp

{
− 1

2
tr(KiX i

j(X
i
j)
t)
}

(2π)
pi
2

1Ki∈PGi
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where pi = |Ni|. The normalized local colored G-Wishart distribution of Ki is

denoted by

πi(Ki|δi, Di) =
1

I iGi
(δi, Di)

|Ki|(δi−2)/2 exp{−1

2
tr(KiDi)}1Ki∈PGi

,

where I iGi
(δi, Di) is the normalizing constant. In order to obtain our asymptotic

results, we will follow an argument similar to that of Ghosal [2000] which gives the

asymptotic distribution of the posterior mean of K when both the dimension p of the

model and the sample size n grow to ∞. Ghosal [2000] considers a random variable

X with the density belonging to the natural exponential family

f(x; θ) ∝ exp[xtθ − ψ(θ)],

where x is the canonical statistic, θ is the canonical parameter and ψ(θ) is the

cumulant generating function. Following the notations of Ghosal [2000], we define

an Si-dimensional vector

Y i
j = −1

2
(tr(δi1X

i
j(X

i
j)
t), tr(δi2X

i
j(X

i
j)
t), . . . , tr(δiSi

X i
j(X

i
j)
t))t, (7.3)

where δi1, δ
i
2, · · · , δiSi

are indicator matrices for each color class and j = 1, 2, . . . , n.

The distribution of Y i
j is as follows

f(Y i
j ;K

i) ∝ exp
[
− 1

2
tr(KiX i

j(X
i
j)
t) +

1

2
log |Ki|

]
= exp

[
(Y i

j )
tθi − ψ(θi)

]
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where ψ(θi) = −1
2
log |Ki| is the cumulant generating function. From standard

properties of natural exponential families, we have that

µi = ψ′(θi0) and F i = ψ′′(θi0) (7.4)

are the mean vector and the covariance matrix of Y i
j , j = 1, 2, . . . , n, respectively.

Let J i be a square root of F i, i.e. J i(J i)t = F i. Let

V i
j = (J i)−1(Y i

j − Eθi(Y
i
j )) (7.5)

be the standardized version of the canonical statistic. Following Ghosal [2000], for

any constant c, c > 0, we define

Bi
1n(c) = sup{Eθi|atV i

j |3 : a ∈ RSi , ||a|| = 1, ||J i(θi − θi0)||2 ≤
cSi
n

}

and

Bi
2n(c) = sup{Eθi|atV i

j |4 : a ∈ RSi , ||a|| = 1, ||J i(θi − θi0)||2 ≤
cSi
n

}.

Define also

ui =
√
nJ i(θi − θi0),

then θi = θi0 + n−1/2(J i)−1ui. Therefore, the likelihood ratio can be written as a

function of ui in the following form

Zi
n(u

i) =

n∏
j=1

f(Y i
j ; θ

i)

n∏
j=1

f(Y i
j ; θ

i
0)

= exp{
√
n(Ȳ i)t(J i)−1ui − n[ψ(θi0 + n− 1

2 (J i)−1ui)− ψ(θi0)]},
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where Ȳ i = 1
n

n∑
j=1

Y i
j . Furthermore, we denote

∆i
n =

√
n(J i)−1(Ȳ i − µi). (7.6)

The following four conditions will be assumed.

(1) The orders of log p and log n are the same, i.e. log p
logn

→ ζ > 0 as n→ ∞.

(2) There exists two constants κ1 and κ2 such that 0 < κ1 ≤ λmin(K0) < λmax(K0) ≤

κ2 <∞.

(3) For any i ∈ {1, 2, . . . , p}, the numbers τ i of the entries Ki
jk in the same color

class is bounded.

(4) As p→ 0, the sample size satisfies the rate p13(log p)2

n
1
2

→ 0.

Remark 7.2.1 Condition (2) implies 0 < 1
κ2

≤ λmin(Σ0) < λmax(Σ0) ≤ 1
κ1
< ∞.

By the interlacing property of eigenvalues, we have that 0 < 1
κ2

≤ λmin((Σ0)Ni,Ni
) <

λmax((Σ0)Ni,Ni
) ≤ 1

κ1
< ∞ where Ni is defined as in Section 6.2.1. Therefore,

0 < κ1 ≤ λmin((Σ0)Ni,Ni
)−1 < λmax((Σ0)Ni,Ni

)−1 ≤ κ2 < ∞. By the definition (6.3),

for any i ∈ {1, 2, . . . , p}, we have 0 < κ1 ≤ λmin(K
i
0) < λmax(K

i
0) ≤ κ2 <∞.

Our aim in this section is to prove that under Conditions (1)-(4) when both p and

n are large, the distributed estimator θ̃ tends to θ0 in Frobenius norm with probability

tending to 1. Ghosal [2000] considered the consistency of the posterior mean of K
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for the exponential family. The convergence rate depends on three expressions which

added together yield an upper bound of the overall error ||θ̃−θ0||. In each expression,

the only random component is ||∆i
n|| and ||∆i

n|| = Op(p). However, we have an

infinite number of local models. In order to use Bonferroni inequality to bound the

overall error probability, we need to know the exact tail probability of P (||∆i
n|| > cp),

where c is a constant. This leads us to establish a new large deviation result for ||∆i
n||

in Lemma A.1.3. We now state the asymptotic consistency of our proposed estimator

in Theorem 7.2.1.

Theorem 7.2.1 Under Conditions (1)-(4), there exists a constant c∗ such that

||θ̃ − θ0|| ≤ c∗
p

3
2

√
n

with probability greater than 1− 10.4 exp{−1
6
p2 log p+ log p}.

Proof. In this theorem, we study the consistency of θ̃ in the context of Frobenius

norm. In order to do this, first, we evaluate the norm ||θ̃i− θi0||2 in each local model.

Since ||
√
nJ i(θ̃i−θi0)||2 = n(θ̃i−θi0)t(J i)tJ i(θ̃i−θi0) ≥ nλmin(F

i)||θ̃i−θi0||2, we obtain

||θ̃i − θi0||2 ≤ 1

nλmin(F i)
||
√
nJ i(θ̃i − θi0)||2

=
1

nλmin(F i)
||∆i

n +

∫
ui[πi∗(u

i)− ϕ(ui; ∆i
n, ISi

)]dui||2 by Lemma A.1.7

≤ 1

nλmin(F i)

(
||∆i

n||2 + ||
∫
ui[πi∗(u

i)− ϕ(ui; ∆i
n, ISi

)]dui||2
)

(7.7)
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where ϕ(·; v,Σ) stands for the multivariate normal density of N(v,Σ) and πi∗(u
i)

stands for the posterior distribution of ui. Next, for every element of the vector∫
ui[πi∗(u

i) − ϕ(ui; ∆i
n, ISi

)]dui in (7.7), we will find out its upper bound. Denote

ui = (ui1, u
i
2, · · · , uiSi

)t. Then for the j-th element of
∫
ui[πi∗(u

i) − ϕ(ui; ∆i
n, ISi

)]dui,

we have that

∫
uij[π

i
∗(u

i)− ϕ(ui; ∆i
n, ISi

)]dui ≤
∫

||ui||[πi∗(ui)− ϕ(ui; ∆i
n, ISi

)]dui. (7.8)

Let Z̃i
n(u

i) = exp[(ui)t∆i
n− 1

2
||ui||2] andM(p) = p2 log p. According to the argument

of Theorem 2.3 in Ghosal [2000], the integral
∫
||ui||[πi∗(ui) − ϕ(ui; ∆i

n, ISi
)]dui in

(7.8) can be bounded by a sum of three integrals as follows.

∫
||ui|| × |πi∗(ui)− ϕ(ui; ∆i

n, ISi
)|dui

≤

∫
||ui||2≤cM(p)

||ui|| · |πi(θi0 + n− 1
2 (J i)−1ui)Zi

n(u
i)− πi(θi0)Z̃

i
n(u

i)|dui∫
πi(θi0)Z̃

i
n(u

i)dui
(7.9)

+

∫
||ui||2>cM(p)

||ui|| · Zi
n(u

i)πi(θ0 + n− 1
2 (J i)−1ui)dui∫

πi(θi0)Z̃
i
n(u

i)dui
(7.10)

+

∫
||ui||2>cM(p)

||ui||ϕ(ui; ∆i
n, ISi

)dui, (7.11)
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where c is defined in Lemma A.1.5. By Lemmas A.1.4, A.1.5 and A.1.6,
∫
||ui|| ×

|πi∗(ui)− ϕ(ui; ∆i
n, ISi

)|dui can be bounded by

A(p, n, c) = c5(c)
p13 log p√

n
+ exp[−c9(c)p2 log p] +

2√
2π
p−4a2+4 +

√
3a2

2√
2π
p−4a2+3

with probability greater than 1− 10.4 exp{−1
6
p2}. Consequently,

∫
uij[π

i
∗(u

i)− ϕ(ui; ∆i
n, ISi

)]dui ≤ A(p, n, c)

with probability greater than 1−10.4 exp{−1
6
p2}. Since the dimension of

∫
ui[πi∗(u

i)−

ϕ(ui; ∆i
n, ISi

)]dui is Si, from the inequality (7.7) and Lemma A.1.3, we get

||θ̃i − θi0||2 ≤ 1

λmin(F i)

(3a2p2
n

+
Si
n
A(p, n, c)

)

with probability greater than 1 − 10.4 exp{−1
6
p2}. Finally, we will estimate the

Frobenius norm ||θ̃ − θ0|| for the distributed estimator θ̃ in terms of ||θ̃i − θi0|| from

the local model. By Proposition A.1.1, for any i ∈ {1, 2, . . . , p}, λmin(F i) ≥ 1
κ22
.
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Therefore, we have

||θ̃ − θ0|| ≤ ||θ̄ − θ̄0|| ≤ (

p∑
i=1

||θ̃i − θi0||2)
1
2 by triangle inequality

≤
{ p∑

i=1

[ 1

λmin(F i)

(3a2p2
n

+
Si
n
A(p, n, c)

)]} 1
2

≤
{
κ22
[3a2p3

n
+
p2(p+ 1)

2n
A(p, n, c)

]} 1
2

with probability greater than 1−10.4p exp{−1
6
p2} by the Bonferroni inequality. Fur-

thermore, Condition (4) implies A(p, n, c) → 0. Therefore, there exists a constant c∗

such that

||θ̃ − θ0|| ≤
{
κ22
[3a2p3

n
+
p2(p+ 1)

2n
o(1)

]} 1
2

≤ c∗
p

3
2

√
n

with probability greater than 1− 10.4 exp{−1
6
p2 + log p} → 1.

7.3 Bayesian Estimator When Dimensions of Local Models

Bounded

We investigated in Section 7.2 the asymptotic behaviour of θ̃ when Si is un-

bounded under the double asymptotic regimes. In this Section, we assume that the

dimension Si in the local models is bounded and we will see that for θ̃ to be close
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to θ0, n must grow as a power of log p rather than as a power of p. Furthermore, we

assume the following conditions:

(4∗) The orders of log p and log n satisfy that log p
logn

→ ζ, 0 < ζ < 1, as n→ ∞.

(5) The number of parameters in each local model is bounded by a constant S∗,

i.e. Si ≤ S∗, i ∈ {1, 2, . . . , p}.

The main result of this section is Theorem 7.3.1 stated below.

Theorem 7.3.1 Under Conditions (2), (4*) and (5), there exists a constant c∗1 such

that

||θ̃ − θ0|| ≤ c∗1
p

1
2 log p√
n

with probability greater than 1− 10.4 exp{−1
6
log2 p+ log p}.

For the convenience, we now point out the main difference between the proofs of

Theorems 7.2.1 and 7.3.1.

(a) Under Conditions (2), (4*) and (5), for any i ∈ {1, 2, . . . , p}, the quantities

log |F i| in Proposition A.1.3, Bi
1n(c) and B

i
2n(c), i = 1, 2, . . . , p, in Proposition A.1.6

are all uniformly bounded because the number of parameters in each local model is

uniformly bounded and the eigenvalues of Ki are uniformly bounded from above and

below.

(b) The equivalent of Lemma A.1.2 under our new boundedness condition is

Lemma A.1.8 where ||γi|| < p is replaced by the condition ||γi|| < log p.

129



(c) The equivalent of Lemma A.1.3 is Lemma A.1.9, the large deviation result is

established for ||∆i
n||2 > 3a2(log p)2 rather than ||∆i

n||2 > 3a2p2.

(d) When Si is unbounded, in Theorem 2.1 of Ghosal [2000], the fact that

||∆i
n||2 > 3a2p2 with probability 1 − ε implies n||θ̂i − θi0||2 > bp2 with the same

probability 1−ε, where θ̂i is the MLE and b is a constant. For Si bounded, using the

new large deviation result ||∆i
n||2 > 3a2(log p)2 in (c) above, we have the new result

of n||θ̂i − θi0||2 > b′(log p)2 with probability greater than 1 − 10.4 exp{−1
6
(log p)2},

where b′ is a constant (See Lemma A.1.10).

(e) As a consequence of our choice ||γi|| < log p in (b) above, the thresholdM(p) =

p2 log p in the proof of Theorem 7.2.1 can be replaced by M(p) = (log p)2(log log p).

Proof. The proof follows the same line as that of Theorem 7.2.1. Our aim is to

find the upper bound for the three terms (7.9), (7.10) and (7.11).

1. A bound for (7.9): Under Condition (5), the Lipschitz continuity in Propo-

sition A.1.5 becomes | log πi(θi) − log πi(θi0)| ≤ M1S
∗||θi − θi0|| when ||θi − θi0|| ≤√

||(F i)−1||cM(p)/n. We chooseM(p) = log2 p(log log p), then φin(c) = O( log p(log log p)
1
2√

n
)

and f i(||∆i
n||, c) = O( log

3 p(log log p)
1
2√

n
) in Lemma A.1.4. Therefore, following the

same proof of Lemma A.1.4, we have that there exists a constant c′5(c) such that

R1(||∆i
n||, c) ≤ c′5(c)

log4 p log log p√
n

with probability greater than 1−10.4 exp{−1
6
log2 p}.

Condition (4∗) implies log4 p log log p√
n

→ 0 as p→ ∞.
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2. A bound for (7.10): According to Lemma A.1.10 and following the same proof

of Lemma 2.2 of Ghosal [2000], with probability greater than 1−10.4 exp{−1
6
log2 p},

we have Zi
n(u

i) ≤ exp[−1
4
c log2 p(log log p)] on ||ui||2 > cM(p). Following the same

proof as that of Lemma A.1.5, there exists a constant c and a constant c′9(c) such

that

R2(||∆i
n||, c) ≤ exp[−c′9(c)M(p)]

with probability greater than 1− 10.4 exp{−1
6
log2 p}.

3. A bound for (7.11): According to Lemma A.1.6, for M(p) = log2 p(log log p),

we have∫
||ui||2>cM(p)

||ui||ϕ(ui; ∆i
n, ISi

)dui ≤ 2S2
i√
2π
e
− 4a2M(p)

Si +
2
√
3a2Si log p√

2π
e
− 4a2M(p)

Si

with probability greater than 1− 10.4 exp{−1
6
log2 p}.

Combining the above results, we have

A(p, n, c) = c′5(c)
log4 p log log p√

n
+e−c

′
9(c)M(p)+

2S2
i√
2π
e
− 4a2M(p)

Si +
2
√
3a2Si log p√

2π
e
− 4a2M(p)

Si

with probability greater than 1− 10.4 exp{−1
6
log2 p}. It follows

||θ̃ − θ0|| ≤
{
κ22
[p3a2 log2 p

n
+
Si
n
A(p, n, c

]} 1
2

≤ c∗1

√
p log p
√
n

with probability greater than 1− 10.4p exp{−1
6
log2 p} by the Bonferroni inequality.

The condition (4∗) implies
√
p log p√
n

→ 0 as p→ ∞. This completes the proof.
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Remark 7.3.1 We note that the error bound p
1
2 log p√
n

in Theorem 7.3.1 is smaller

than that p
3
2√
n
in Theorem 7.2.1. Also the rate of growth for the sample size is in

terms of powers of log p rather than p as in Section 7.2.

Remark 7.3.2 As in Meng et al. [2014], we assume that the graph structure is

known. When Si < S∗, the error bound in our case is of the order p log2 p
n

which

compares well with the order p log p
n

in Meng et al. [2014]. The sample size requirement

log4 p log log p√
n

→ 0 is slightly more demanding than Meng’s condition of n > log p.
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8 Conclusions and Future Work

In this chapter, we summarize the results in this thesis and also point out some

problems for future research.

8.1 Conclusions

In this thesis, we investigated the sampling methods of the colored G-Wishart

distribution and the precision matrix estimation under a Bayesian framework.

We proposed a conjugate prior for the colored graphical Gaussian models. Such

prior is called the colored G-Wishart distribution. One of the major contributions

of the thesis is the proposal of a sampling method from the colored G-Wishart

distribution, based on the Metropolis-Hastings algorithm. The proposed sampling

method makes it possible to obtain the estimation of the posterior mean of K which

is used for the Bayesian estimation of the precision matrix.

In order to illustrate the validity of the proposed Metropolis-Hastings algorithm,
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we also investigated the issue of computing the expected value of the precision matrix

on the colored G-Wishart distribution for some particular colored graphs. These

colored graphs are the colored tree, two types of colored stars, one colored complete

graph with 3 vertices and one non-decomposable graph with 4 vertices. For all of

these colored graphs, we compared the expected values of the precision matrixK with

the sample mean of K obtained from the Metropolis-Hastings algorithm. Through

a number of numerical experiments, we found that the Bayesian estimator for the

precision matrix provides a good estimate of the true value.

We further developed a fast algorithm for estimating the precision matrix in

large colored graphical Gaussian models. The parallel algorithm is suitable for high-

dimensional applications and computationally efficient. The distributed algorithm

split the high-dimensional global model into p different low-dimensional local models.

Each vertex corresponds to one local model based on its neighborhood. In each local

model, the estimate of the local precision matrix was obtained by the Metropolis-

Hastings algorithm algorithm we proposed. The global estimate was defined as the

average of corresponding local estimates in order to satisfy the symmetric property

of the precision matrix. We also derived asymptotic properties for the proposed

distributed Bayesian estimator, as well as the convergence rate when the dimension

of the model is large. Results from simulation studies have shown the accuracy and
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efficiency of the proposed estimators in various settings.

Finally, in this thesis, we proposed three methods for estimating the normalizing

constants of the colored G-Wishart distribution for any arbitrary colored graph:

the Monte Carlo method, the importance sampling and the Laplace approximation.

Moreover, we applied these methods to the study of heredity of head dimensions

[Frets, 1921]. In this real data analysis, we compute the marginal probability of

the data for each colored graph G. The marginal probability is the ratio of the

normalizing constant of the posterior distribution and the normalizing constant for

the prior distribution. Both the Monte Carlo method and the Laplace approximation

were used to estimate the normalizing constant of the colored G-Wishart distribution

for different choices of δ.

8.2 Future Work

Our proposed sampling method in Chapter 2 involves the matrix completion step

for every update of the Cholesky components of the precision matrix. However, the

matrix completion step is conducted iteratively and time-consuming. For the model

with increasingly large dimensions, the computational requirement of the matrix

completion step becomes increasingly burdensome. An interesting future direction

would be developing a new sampling method from the colored G-Wishart distribu-
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tion which can reduce the computational complexity. In my thesis, we assume the

structure of the colored graphical models is known. Based on this assumption, we

developed the Bayesian estimator of the precision matrix. However, we sometimes

do not have enough statistical information for the structure of the underlying graphs

in practice. Therefore, another topic worth investigating is the model selection. The

graphical model selection problem can be reduced to the problem of estimating the

zero-pattern and equal-pattern of the precision matrix. The existing method for the

simultaneous clustering and feature selection in a regression would be adapted to the

graphical model selection.
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A Appendix

A.1 Proofs Used in Chapter 7

Here we provide the lemmas and their proofs used in Chapter 7. We let

Ū i
j = (J i)−1(Y i

j − µi) (A.1)

for i = 1, 2, . . . , p, and j = 1, 2, . . . , n. We now want to show the large deviation

result for ∆i
n. To do so, we need to show that the cumulant boundedness condition

is satisfied by Ū i
j (Lemma A.1.1). This will allow us to show that ∆i

n satisfy the

exponential moment condition (Lemma A.1.2). In Lemma A.1.3, we obtain the large

deviation result for ∆i
n.

Lemma A.1.1 For any i ∈ {1, 2, . . . , p}, there exist constants η and C2 such that

under Conditions (2) and (3), for ||γi|| ≤ η and for all 1 ≤ k, l,m ≤ Si, the absolute

value of all the third derivatives of the cumulant generating function Gi
Ū i
j
(γi) of Ū i

j
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satisfy ∣∣∣ ∂3Gi
Ū i
j
(γi)

∂γik∂γ
i
l∂γ

i
m

∣∣∣ ≤ C2, j = 1, 2 . . . , n.

Proof. Let Y i
j be defined in (7.3) and Gi

Y i
j
(γi) = logE(e(γ

i)tY i
j ) be the cumulant

generating function of Y i
j . Let γi be a Si-dimensional vector, by Theorem 3.2.3 in

Muirhead [1982], the moment generating function of Y i
j is

M i(γi) = E{exp[(γi)tY i
j ]} = |Ipi + T i(γi)Σi

0|−
1
2

where T i(γi) is a pi × pi matrix with T iαβ = γik if K
i
αβ = θik. Therefore, the cumulant

generating function Gi
Y i
j
(γi) of Y i

j is given by

Gi
Y i
j
(γi) = logM i(γi) = −1

2
log |Ipi + T i(γi)Σi

0|.

It is easy to obtain the first, second and third derivative of the cumulant generating

function Gi
Y i
j
(γi), which can be expressed as

∂Gi
Y i
j
(γi)

∂γik
= −1

2
tr
(
[Ipi + T i(γi)Σi

0]
−1(δikΣ

i
0)
)
,

∂2Gi
Y i
j
(γi)

∂γik∂γ
i
l

=
1

2
tr
(
δikΣ

i
0[Ipi + T i(γi)Σi

0]
−1(δilΣ

i
0)[Ipi + T i(γi)Σi

0]
−1
)
and

∂3Gi
Y i
j
(γi)

∂γik∂γ
i
l∂γ

i
m

= −1

2
tr
(
δikΣ

i
0[Ipi + T i(γi)Σi

0]
−1(δimΣ

i
0)(Ipi + T i(γi)Σi

0)
−1(δilΣ

i
0)

×[Ipi + T i(γi)Σi
0]

−1 + δikΣ
i
0[Ipi + T i(γi)Σi

0]
−1(δilΣ

i
0)[Ipi + T i(γi)Σi

0]
−1

×(δimΣ
i
0)[Ipi + T i(γi)Σi

0]
−1
)
,
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respectively. First, Condition (2) implies λmax(Σ
i
0) ≤ 1

κ1
. By Proposition A.1.2, the

absolute value of each element of Σi
0 is bounded by 1

κ1
. Next, by

p∑
j=1

|λj(A)| ≤ ||A||F

and ||AB|| ≤ ||AB||F ≤ ||A||F ||B|| for any two p×p symmetric matrix, we have that

|λj(T i(γi)Σi
0)| ≤ ||T i(γi)||F ||Σi

0|| ≤ η 1
κ1
. It implies 1 − η 1

κ1
≤ λj(Ipi + T i(γi)Σi

0) ≤

1 + η 1
κ1
. Moreover, according to Lemma A.1.13, Ipi + T i(γi)Σi

0 is a positive definite.

Therefore, by Proposition A.1.2 again, the absolute value of each element of [Ipi +

T i(γi)Σi
0]

−1 is bounded. Finally, combining the above results and Condition (3), for

any i ∈ {1, 2, . . . , p}, there exists a constant C1 such that |
∂3Gi

Y i
j

(γi)

∂γik∂γ
i
l∂γ

i
m
| ≤ C1 for any

k,m, l. Since the cumulant generating function of Ū i
j is

Gi
Ū i
j
(γi) = logE[e(γ

i)t(Ji)−1(Y i
j −µi)] = Gi

Y i
j
((J i)−1γi)− (γi)t(J i)−1µi.

It follows that there exists a constant C2 such that |
∂3Gi

Ūi
j

(γi)

∂γik∂γ
i
l∂γ

i
m
| ≤ C2 for ||γi|| ≤ η.

Lemma A.1.2 Let ∆i
n and Ū i

j be as defined in (7.6) and (A.1), respectively. Let C2

be as in Lemma A.1.1. Then, under Conditions (2)-(4), for any arbitrary constant

a such that a2 > 1, we have that if C2p3

3
√
n
≤ a− 1, then as n→ ∞,

Gi
∆i

n
(γi) = log

(
E{exp[(γi)t∆i

n]}
)
≤ a2||γi||2/2 for ||γi|| < p. (A.2)
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Proof. By a Taylor expansion of Gi
Ū i
j
(γi) around 0, there exists a vector γi,∗ on the

line segment between 0 and γi such that

Gi
Ū i
j
(γi) = Gi

Ū i
j
(0) +

Si∑
k=1

(∂Gi
Ū i
j
(γi)

∂γik
|γi=0

)
γik +

1

2

Si∑
k=1

Si∑
l=1

(∂2Gi
Ū i
j
(γi)

∂γik∂γ
i
l

|γi=0

)
γikγ

i
l

+
1

6

Si∑
k=1

Si∑
l=1

Si∑
m=1

( ∂3Gi
Ū i
j
(γi)

∂γik∂γ
i
l∂γ

i
m

|γi=γi,∗
)
γikγ

i
lγ
i
m.

Since Ū i
j has zero mean and identity covariance matrices, then

∂Gi
Ūi
j

(γi)

∂γik
|γi=0 = 0,

∂2Gi
Ūi
j

(γi)

∂γik∂γ
i
l
|γi=0 = 1 for k = l and

∂2Gi
Ūi
j

(γi)

∂γik∂γ
i
l
|γi=0 = 0 for k ̸= l. Furthermore, since

Gi
Ū i
j
(0) = 0, we have

Gi
Ū i
j
(γi) =

1

2

(
γi)tγi +

1

6

Si∑
k=1

Si∑
l=1

Si∑
m=1

(
∂3Gi

Ū i
j
(γi)

∂γik∂γ
i
l∂γ

i
m

|γi=γi,∗
)
γikγ

i
lγ
i
m.

By the definition (7.6), we have ∆i
n = 1√

n

n∑
j=1

Ū i
j . Since the moment generating func-

tion of Ū i
j is expG

i
Ū i
j
(γi), then the moment generating function of ∆i

n is

E[e(γ
i)t∆i

n ] = E[e
(γi)t 1√

n

n∑
j=1

Ū i
j

] =
n∏
j=1

E[e
( γi√

n
)tŪ i

j ]

= exp
{1
2
(γi)tγi +

1

6

1√
n

Si∑
k=1

Si∑
l=1

Si∑
m=1

(∂3Gi
Ū i
j
( γ

i
√
n
)

∂γik∂γ
i
l∂γ

i
m

|γi=γi,∗
)
γikγ

i
lγ
i
m

}
.

Since ||γi,∗|| < ||γi||, we have ||γi,∗√
n
|| < || γi√

n
|| < p√

n
. Moreover, Condition (4) implies

p√
n
→ 0, and thus || γi√

n
|| ≤ η for n large enough. Therefore, by Lemma A.1.1, there

146



exists a constant C2 such that
∣∣∣∂3Gi

Ūi
j

( γi√
n
)

∂γik∂γ
i
l∂γ

i
m

∣∣∣ ≤ C2. It follows

E[e(γ
i)t∆i

n ] ≤ exp
{1
2
(γi)tγi +

1

6

C2√
n

Si∑
k=1

Si∑
l=1

Si∑
m=1

γikγ
i
lγ
i
m

}
= exp

{1
2
(γi)tγi

[
1 +

1

3

C2√
n

Si∑
m=1

γim
]}
.

Therefore, for any arbitrary constant a such that a2 > 1, if 1
3
C2√
n

Si∑
m=1

γim ≤ a2 − 1,

then we have

logE[e(γ
i)tηi ] ≤ a2||γi||2/2.

Actually, the inequality 1
3
C2√
n

Si∑
m=1

γim ≤ a2 − 1 holds under Condition (4). Since

||γi|| < p, we have |γim| ≤ ||γi|| < p for any 1 ≤ m ≤ Si. Therefore, according to

Condition (4), we have

1

3

C2√
n

Si∑
m=1

γim = O
( p3√

n

)
= o(1).

It implies 1
3
C2√
n

Si∑
m=1

γim ≤ a2 − 1 for any constant a with a2 > 1.

Lemma A.1.3 Under Conditions (2)-(4), for any i ∈ {1, 2, . . . , p} and n sufficiently

large, there exists a constant a, a2 > 1, such that

P{||∆i
n||2 > 3a2p2} ≤ 10.4 exp{−1

6
p2}

where ∆i
n is defined as in (7.6).
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Proof. According to Lemma A.1.2, we have

log
(
E{exp[(γi)t∆i

n]}
)
≤ a2||γi||2/2 for ||γi|| ≤ p

where a is a constant with a2 > 1. Let g = ap and ti1 = aγi, then the subsequent

inequality holds

log(E{exp[(ti1)t
∆i
n

a
]}) ≤ ||ti1||2/2 for ||ti1|| ≤ g.

Next we apply the large deviation result from Corollary 3.2 in Spokoiny and Zhilova

[2013]. Following the notations in Spokoiny and Zhilova [2013], we introduce wic

satisfying the equation wi
c(1+w

i
c)

[1+(wi
c)

2]
1
2
= gS

−1/2
i . Based on wic, we define x

i
c = 0.5Si[(w

i
c)

2−

log(1 + (wic)
2)]. Since g2 = a2p2 > p2+p

2
≥ Si, by the arguments in Spokoiny and

Zhilova [2013], we have xic >
1
4
g2 = 1

4
a2p2. Let x = 1

6
p2, then Si

6.6
≤ p2+p

2×6.6
< x < xic.

By Corollary 3.2 in Spokoiny and Zhilova [2013], the following inequality holds

P (||∆
i
n

a
||2 ≥ Si + 6.6× 1

6
p2) ≤ 2e−

1
6
p2 + 8.4e−x

i
c ,

which implies P (||∆
i
n

a
||2 ≥ 3p2) ≤ 10.4e−

1
6
p2 . Hence, P (||∆i

n||2 ≥ 3a2p2) ≤ 10.4e−
1
6
p2 ,

which means ||∆i
n||2 = Op(p

2).

The next four lemmas are used to complete the proof of Theorem 7.2.1.

Lemma A.1.4 Under Conditions (2)-(4), for any given i ∈ {1, 2, . . . , p} and for
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any given constant c, there exists a constant c5(c) such that∫
||ui||2≤cM(p)

||ui|| · |πi(θi0 + n− 1
2 (J i)−1ui)Zi

n(u
i)− πi(θi0)Z̃

i
n(u

i)|dui∫
πi(θi0)Z̃

i
n(u

i)dui
≤ c5

p13 log p√
n

(A.3)

with probability greater than 1− 10.4 exp{−1
6
p2}.

Proof. Let Qi denote the set {ui; ||ui||2 ≤ cM(p)}. We get that

[

∫
πi(θi0)Z̃

i
n(u

i)dui]−1

∫
Qi

||ui|| · |πi(θi0 + n−1/2(J i)−1ui)Zi
n(u

i)− πi(θi0)Z̃
i
n(u

i)|dui

= [

∫
πi(θi0)Z̃

i
n(u

i)dui]−1

∫
Qi

||ui|| · |π
i(θi0 + n−1/2(J i)−1ui)

πi(θi0)
Zi
n(u

i)− Z̃i
n(u

i)|πi(θi0)dui

≤
sup
ui∈Qi

{
||ui|| · |π

i(θi0+n
−1/2(Ji)−1ui)

πi(θi0)
− 1|

}∫
Qi Z

i
n(u

i)dui∫
Z̃i
n(u

i)dui
+

∫
Qi ||ui|| · |Zi

n(u
i)− Z̃ i

n(u
i)|dui∫

Z̃i
n(u

i)dui
.

Since cM(p) ≥ ||ui||2 = ||
√
nJ i(θi − θi0)||2 ≥ nλmin(F

i)||θi − θi0||2, then ||θi − θi0|| ≤√
cM(p)||(F i)−1||

n
. By Proposition A.1.1, we have κ21 ≤ ||(F i)−1|| ≤ κ22. Based on

Condition (4), p2 log p
n

→ 0. Therefore, ||θi − θi0|| → 0. Using the fact |ex − 1| ≤ 2|x|

for sufficiently small |x| and Proposition A.1.5, we obtain

sup
ui∈Qi

{
||ui|| · |π

i(θi0 + n−1/2(J i)−1ui)

πi(θi0)
− 1|

}
≤ 2
√
cM(p)M1p||θi − θi0|| ≤

2cM1κ2M(p)p√
n
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where M1 is a constant. We also have that∫
Qi Z

i
n(u

i)dui∫
Z̃ i
n(u

i)dui
=

∫
Qi Z̃

i
n(u

i)dui +
∫
Qi [Z

i
n(u

i)− Z̃i
n(u

i)]dui∫
Z̃i
n(u

i)dui

≤ 1 +
(∫

Z̃i
n(u

i)dui
)−1

∫
Qi

|Zi
n(u

i)− Z̃i
n(u

i)|dui.

According to Lemma 2.3 in Ghosal [2000], we can obtain

(∫
Z̃i
n(u

i)dui
)−1

∫
Qi

|Zi
n(u

i)− Z̃i
n(u

i)|dui ≤ f i(||∆i
n||, c) (A.4)

where

f i(||∆i
n||, c) = φin(c)[p

2
i +

(
1− 2φin(c)

)−1||∆i
n||2]

(
1− 2φin(c)

)−(
p2i
2
+1)

× exp
{φin(c)||∆i

n||2

1− 2φin(c)

}
,

and

φin(c) =
1

6
[n− 1

2

(
cM(p)

) 1
2Bi

1n(0) + n−1cM(p)Bi
2n(c

M(p)

Si
)].

Furthermore, since ||ui|| ≤
√
cM(p), by the inequality (A.4), it is easy to see that∫

Qi ||ui|| · |Zi
n(u

i)− Z̃i
n(u

i)|dui∫
Z̃i
n(u

i)dui
≤
√
cM(p)f(||∆i

n||, c).

Combining the above results, we can show that the LHS in (A.3) is bounded by

R1(||∆i
n||, c) =

2cM1κ2M(p)p√
n

[1 + f i(||∆i
n||, c)] +

√
cM(p)f i(||∆i

n||, c).
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According to Proposition A.1.6, we have Bi
1n(0) = O(p9) and Bi

2n(c
M(p)
Si

) = O(p12).

Therefore, there exist two constants c1 and c2 such that

φin(c) ≤ 1

6
[

(
cM(p)

) 1
2 c1p

9

√
n

+ n−1cM(p)c2p
12]

=
1

6

p10
√
log p√
n

[
√
cc1 + c2c

p4
√
log p√
n

]. (A.5)

Since the first term in (A.5) is the dominating term, then there exists a constant

c3(c) such that φin(c) ≤ c3(c)
p10

√
log p√
n

. By Condition (4), we have that φin(c) → 0.

Furthermore, using the fact (1−x)−1 ≤ 2 and − log(1−x) ≤ 2x for sufficiently small

x, we have [1 − 2φin(c)]
−1 ≤ 2 and e−(

p2i
2
+1) log

(
1−2φi

n(c)
)
≤ e(

p2i
2
+1)4φi

n(c). Therefore,

the following inequality holds

f i(||∆i
n||, c) ≤ φin(c)[p

2 + 2||∆i
n||2] exp{(

p2

2
+ 1)4φin(c)} exp

{
2φin(c)||∆i

n||2
}
.

According to Lemma A.1.3, we see that P (||∆i
n||2 ≤ 3a2p2) > 1 − 10.4 exp{−1

6
p2}.

Therefore,

f i(||∆i
n||, c) ≤ c3(c)

p10
√
log p√
n

[p2 + 6a2p2] exp
{
c3(c)

p10
√
log p√
n

(6a2p2 + 2p2 + 4)
}

with probability greater than 1 − 10.4 exp{−1
6
p2}. By Condition (4), we have that

p10
√
log p√
n

(6a2p2 + 2p2 + 2) → 0. Therefore, exp
{
c3(c)

p10
√
log p√
n

(4a2p2 + 2p2 + 2)
}
< 2.
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It follows

f i(||∆i
n||, c) ≤ 2(1 + 6a2)c3(c)

p12
√
log p√
n

with probability greater than 1 − 10.4 exp{−1
6
p2}. Let c4(c) = 2(1 + 6a2)c3(c),

then f i(||∆i
n||, c) ≤ c4(c)

p12
√
log p√
n

with probability greater than 1 − 10.4 exp{−1
6
p2}.

Furthermore, we can get

R1(||∆i
n||, c) =

2cM1κ2M(p)p√
n

[1 + c4(c)
p12

√
log p√
n

] +
√
cM(p)c4(c)

p12
√
log p√
n

=
2cM1κ2p

3 log p√
n

+
p13 log p√

n
[c4(c)

2cM1κ2p
2 log

1
2 p√

n
+
√
cc4(c)](A.6)

with probability greater than 1 − 10.4 exp{−1
6
p2}. It is easy to see that the third

term in (A.6) is the dominating term. Therefore, there exists a constant c5(c) such

that R1(||∆i
n||, c) ≤ c5(c)

p13 log p√
n

with probability greater than 1 − 10.4 exp{−1
6
p2}.

The proof is completed.

Lemma A.1.5 Under Conditions (2)-(4), there exists a constant c large enough and

a constant c9(c) such that for any given i ∈ {1, 2, . . . , p},∫
||ui||2>cM(p)

||ui||πi(θi0 + n− 1
2 (J i)−1ui)Zi

n(u
i)dui∫

πi(θi0)Z̃
i
n(u

i)dui
≤ exp[−c9(c)p2 log p]
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with probability greater than 1− 10.4 exp{−1
6
p2}.

Proof. Let

R2(||∆i
n||, c) =

∫
||ui||2>cM(p)

||ui||πi(θi0 + n− 1
2 (J i)−1ui)Zi

n(u
i)dui∫

πi(θi0)Z̃
i
n(u

i)dui

=

∫
||ui||2>cM(p)

||ui||π
i(θi0+n

− 1
2 (Ji)−1ui)

πi(θi0)
Zi
n(u

i)dui

(2π)Si/2 exp[ ||∆
i
n||2
2

]
.

According to Lemma 2.2 in Ghosal [2000], we have that Zi
n(u

i) ≤ exp[−1
4
cp2 log p]

with probability greater than 1 − 10.4 exp{−1
6
p2}. Let πi0(θ

i) denotes the non-

normalized local colored G-Wishart distribution. Then we obtain that

R2(||∆i
n||, c)

≤
exp[−1

4
cp2 log p]

(2π)Si/2 exp[ ||∆
i
n||2
2

]

×
∫
||
√
nJi(θi−θi0)||2>cM(p)

||
√
nJ i(θi − θi0)||

πi0(θ
i)

πi0(θ
i
0)
nSi/2|J i|dθi

≤ exp[
Si
2
log n+

1

2
log |F i| − 1

4
cp2 log p− log πi0(θ

i
0)

+ log

∫
||
√
nJi(θi−θi0)||2>cM(p)

||
√
nJ i(θi − θi0)||πi0(θi)dθi] (A.7)
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with probability greater than 1−10.4 exp{−1
6
p2}. By Proposition A.1.4 and Lemma

A.1.15, we have that

R2(||∆i
n||, c) ≤ exp[

Si
2
log n+

1

2
log |F i| − 1

4
cp2 log p+

1

2
piκ2 −

δi − 2

2
pi log κ1

+M7p
2 log p]

with probability greater than 1− 10.4 exp{−1
6
p2}. By Condition (1), log n and log p

are of the same order. Furthermore, Proposition A.1.3 implies log |F i| = O(p2).

Therefore, there exists a constant c6 such that log |F i| ≤ c6p
2. It follows the RHS in

(A.7) is bounded by the following term

exp[
p(p+ 1)

4
log p+

1

2
c6p

2 − 1

4
cp2 log p+

1

2
piκ2 −

δi − 2

2
pi log κ1 +M7p

2 log p]

with probability greater than 1− 10.4 exp{−1
6
p2}. Furthermore, there exists a con-

stant c8 such that

R2(||∆i
n||, c) ≤ exp[p(p+1)

4
log p− 1

4
cp2 log p+M7p

2 log p+ c8p
2 log p]

with probability greater than 1 − 10.4 exp{−1
6
p2}. We can choose a constant c big

enough such that c9(c) =
1
4
− 1

4
c+c8+M7 < 0. It immediately implies R2(||∆i

n||, c) ≤

exp[−c9(c)p2 log p] with probability greater than 1− 10.4 exp{−1
6
p2}.
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Lemma A.1.6 Under Conditions (2)-(4), for any given i ∈ {1, 2, . . . , p} and for

any constant c such that c > 11a2 and a2 > 1, we have

∫
||ui||2>cM(p)

||ui||ϕ(ui; ∆i
n, ISi

)dui ≤ 2√
2π
p−4a2+4 +

√
3a2

2√
2π
p−4a2+3

with probability greater than 1− 10.4 exp{−1
6
p2}.

Proof. First we observe that

∫
||ui||2>cM(p)

||ui||ϕ(ui; ∆i
n, ISi

)dui

≤
∫
||ui||2>cM(p)

(||ui −∆i
n||)ϕ(ui; ∆i

n, ISi
)dui +

∫
||ui||2>cM(p)

||∆i
n||ϕ(ui; ∆i

n, ISi
)dui.

Let vi = ui − ∆i
n, since ||vi||2 + ||∆i

n||2 ≥ ||vi + ∆i
n||2 = ||ui||2 > cM(p), then

immediately ||vi||2 > cM(p) − ||∆i
n||2. By Lemma A.1.3, we can see that ||∆i

n||2 ≤

3a2p2 with probability greater than 1− 10.4 exp{−1
6
p2} with a2 > 1. As c is chosen

that c > 11a2, we can get ||vi||2 > cM(p) − ||∆i
n||2 > cM(p) − 3a2p2 > (11a2 −

3a2)p2 log p = 8a2p2 log p with probability greater than 1 − 10.4 exp{−1
6
p2}. Thus
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the following inequality holds with probability greater than 1− 10.4 exp{−1
6
p2}.

∫
||ui||2>cM(p)

(||ui −∆i
n||)ϕ(ui; ∆i

n, ISi
)dui

=

∫
||vi+∆i

n||2>cM(p)

||vi||ϕ(vi; 0, ISi
)dvi ≤

Si∑
j=1

∫
||vi||2>8a2M(p)

|vij|ϕ(vi; 0, ISi
)dvi,

where vij is the j-th element of vi. We also have that

Si∑
j=1

∫
||vi||2>8a2M(p)

|vij|ϕ(vi; 0, ISi
)dvi ≤

Si∑
j=1

Si∑
k=1

∫
RSi−1

∫
(vik)

2>8a2
M(p)
Si

|vij|ϕ(vi; 0, ISi
)dvi

= Si

∫
RSi−1

∫
(vik)

2>8a2
M(p)
Si

|vik|ϕ(vi; 0, ISi
)dvi + Si

∑
j ̸=k

∫
RSi−1

∫
(vik)

2>8a2
M(p)
Si

|vij|ϕ(vi; 0, ISi
)dvi

= Si

∫
(vik)

2>8a2
M(p)
Si

|vik|
1√
2π
e−

(vik)2

2 dvik

+Si
∑
j ̸=k

∫
(vik)

2>8a2
M(p)
Si

1√
2π
e−

(vik)2

2 dvik

∫ ∞

−∞
|vij|

1√
2π
e−

(vij)
2

2 dvij

= 2Si

∫
vik>

√
8a2

M(p)
Si

vik
1√
2π
e−

(vik)2

2 dvik

+Si
∑
j ̸=k

2

∫
vik>

√
8a2

M(p)
Si

1√
2π
e−

(vik)2

2 dvik[2

∫ ∞

0

vij
1√
2π
e−

(vij)
2

2 dvij]

< 2Si

∫
vik>

√
8a2

M(p)
Si

vik
1√
2π
e−

(vik)2

2 dvik

+Si
∑
j ̸=k

2

∫
vik>

√
8a2

M(p)
Si

vik
1√
2π
e−

(vik)2

2 dvik[2

∫ ∞

0

vij
1√
2π
e−

(vij)
2

2 dvij]

= 2Si

∫
vik>

√
8a2

M(p)
Si

vik
1√
2π
e−

(vik)2

2 dvik
[
1 +

∑
j ̸=k

2

∫ ∞

0

vij
1√
2π
e−

(vij)
2

2 dvij
]

= 2Si
1√
2π
e
− 8a2M(p)

2Si [1 + (Si − 1)2
1√
2π

] ≤ 2S2
i

1√
2π
e
− 8a2M(p)

2Si ≤ 2p4
1√
2π
p−4a2
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with probability greater than 1− 10.4 exp{−1
6
p2}, and∫

||ui||2>cM(p)

||∆i
n||ϕ(ui; ∆i

n, ISi
)dui ≤

√
3a2p3

2√
2π
p−4a2

with probability greater than 1− 10.4 exp{−1
6
p2}. Hence, the desired result follows.

Lemma A.1.7 For a given i ∈ {1, 2, . . . , p}, we have

√
nJ i(θ̃i − θi0) = ∆i

n +

∫
ui[πi∗(u

i)− ϕ(ui; ∆i
n, ISi

)]dui

where πi∗(u
i) is the posterior distribution of ui.

Proof. Let qi∗(θ
i) be the posterior distribution of θi. Therefore, we have that

θ̃i =

∫
θi · qi∗(θi)dθi

=

∫
(θi0 + n− 1

2 (J i)−1ui)qi∗(θ
i
0 + n− 1

2 (J i)−1ui)|n−1/2(J i)−1|dui

=

∫
(θi0 + n− 1

2 (J i)−1ui)πi∗(u
i)dui = θi0 + n− 1

2 (J i)−1

∫
uiπi∗(u

i)dui.

It follows
√
nJ i(θ̃i− θi0) =

∫
uiπi∗(u

i)dui. On the other hand, the following equations

hold∫
uiϕ(ui; ∆i

n, ISi
)du =

∫
(ui −∆i

n)ϕ(u
i; ∆i

n, ISi
)dui +∆i

n

∫
ϕ(ui; ∆i

n, ISi
)dui = ∆i

n.

We thus have

√
nJ i(θ̃i − θi0)−∆i

n =

∫
ui[πi∗(u

i)− ϕ(ui; ∆i
n, ISi

)]dui.
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Lemma A.1.8 (Parallel to Lemma A.1.2) Let ∆i
n and Ū i

j be as defined in (7.6) and

(A.1), respectively. Let C2 be defined as in Lemma A.1.1. Then under Conditions

(2), (4*) and (5), for any arbitrary constant a such that a2 > 1, we have that if

C2 log p
3
√
n

≤ a− 1, for ||γi|| < log p and n sufficiently large,

Gi
∆i

n
(γi) = log

(
E{exp[(γi)t∆i

n]}
)
≤ a2||γi||2/2.

Proof. Since ||γi|| < log p and log p√
n
→ 0 by Condition (4*), then || γi√

n
|| ≤ η where η

as given in Lemma A.1.1 is the size of the neighborhood for γi. Therefore, by Lemma

A.1.1, there exists a constant C2 such that
∣∣∣∂3Gi

Ūi
j

( γi√
n
)

∂γik∂γ
i
l∂γ

i
m

∣∣∣ ≤ C2. We also have

1

3

C2√
n

Si∑
m=1

γim = O
( log p√

n
).

According to Condition (4*), log p√
n

= o(1). Therefore, for any arbitrary constant a

such that a2 > 1, 1
3
C2√
n

Si∑
m=1

γim ≤ a2 − 1. Following the argument similar to that of

Lemma A.1.2, we obtain

logE[e(γ
i)tηi ] ≤ a2||γi||2/2.

Lemma A.1.9 (Parallel to Lemma A.1.3) Under Conditions (2), (4*) and (5), for

any i ∈ {1, 2, . . . , p} and n sufficiently large, there exists a constant a, a2 > 1, such
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that

P{||∆i
n||2 > 3a2 log2 p} ≤ 10.4 exp{−1

6
log2 p}

where ∆i
n is defined as in (7.6).

Proof. According to Lemma A.1.8, we have

log
(
E{exp[(γi)t∆i

n]}
)
≤ a2||γi||2/2 for ||γi|| ≤ log p

where a is a constant with a2 > 1. Condition (5) implies a2 log2 p > Si. Let xic be

defined as in the proof of Lemma A.1.3. Then xic >
1
4
a2 log2 p and let x = 1

6
log2 p,

then we have Si

6.6
< x < xic. Following similar argument as in the proof of Lemma

A.1.3, we can obtain that P (||∆i
n||2 ≥ 3a2 log2 p) ≤ 10.4e−

1
6
log2 p.

Lemma A.1.10 Let θ̂i be the MLE of θi in the i-th local model. Under Conditions

(2), (4*) and (5), for any i ∈ {1, 2, . . . , p},

√
n||J i(θ̂i − θi0)|| ≤ c′ log p

with probability greater than 1− 10.4 exp{−1
6
log2 p}, where c′ = 1.2

√
3aλmax(F i)

λ2min(F
i)
.

Proof. Let Bi(θi) = ψ′(θi) − Ȳ i be the negative of the score function. Then the

MLE θ̂i satisfy the likelihood equation Bi(θ̂i) = 0. Let bn =
√
3a log p√
n

λ
1
2
max(F

i)
λmin(F i)

with

a2 > 1. We are going to show with probability greater than 1− 10.4 exp{−1
6
log2 p},
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for any θi on the ball ||θi − θi0|| = 1.2bn, we have

(θi − θi0)
tBi(θi) > 0. (A.8)

Because that according to Theorem 6.3.4 of Ortega and Rheinboldt [1970], this will

imply that there exists a root of Bi(θ̂i) = 0 inside the ball ||θi − θi0|| ≤ 1.2bn

and thus with probability greater than 1 − 10.4 exp{−1
6
log2 p}, ||J i(θ̂i − θi0)|| ≤

λ
1
2
max(F i)1.2bn ≤ c′ log p√

n
. To complete the proof, it now suffices to show the inequality

(A.8) holds. Based on (2.3) in Proposition 2.1 of Portnoy [1988], we have

(θi − θi0)
tBi(θi) = (θi − θi0)

t(ψ′(θi)− Ȳ i)

= (θi − θi0)
tµi + (θi − θi0)

tψ′′(θi0)(θ
i − θi0)

+
1

2
Eθ̄i [(θ

i − θi0)
tV i
j ]

3 − (θi − θi0)
tȲ i

= −(θi − θi0)
t[Ȳ i − µi] + (θi − θi0)

tψ′′(θi0)(θ
i − θi0)

+
1

2
Eθ̄i [(θ

i − θi0)
tV i
j ]

3

= term1 + term2 + term3,

where µi = ψ′(θi0), V
i
j is defined as in (7.5) and θ̄i is a point on the line segment

between θi and θi0. It is easy to see that

term2 ≥ λmin(F
i)||(θi − θi0)||2.

For term3, under Condition (5), from (A.10), (A.11) and Lemma A.1.11, we see that

sup{|Eθ(atV i
j )

3| : ||a|| = 1, ||θi − θi0|| is bounded. Since bn → 0, then 0.1
bn
λmin(F

i) →
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∞. Therefore,

sup{|Eθ(atV i
j )

3| : ||a|| = 1, ||θi − θi0|| = 1.2bn} ≤ 0.1

bn
λmin(F

i).

It follows

term3 ≥ −0.05

bn
λmin(F

i).

In term1, there is a random term Ȳ i − ψ′(θi0). We will now show that

term1 ≥
√
3a log p√
n

λ
1
2
max(F

i)||θi − θi0||

with probability greater than 1 − 10.4 exp{−1
6
log2 p}. According to Lemma A.1.9,

we have ||∆i
n||2 ≤ 3a2 log2 p with probability greater than 1 − 10.4 exp{−1

6
log2 p}.

Furthermore, since

||∆i
n||2 = ||

√
n(J i)−1(Ȳ i−µi)||2 = n(Ȳ i−µi)t(F i)−1(Ȳ i−µi) ≥ n

λmax(F i)
||Ȳ i−µi||2,

then n
λmax(F i)

||Ȳ i−µi||2 ≤ 3a2 log2 p with probability greater than 1−10.4 exp{−1
6
log2 p}.

It implies ||Ȳ i−µi||2 ≤
√
3a log p√
n

λ
1
2
max(F i) with probability greater than 1−10.4 exp{−1

6
log2 p}.

Consequently, term1 ≥
√
3a log p√
n

λ
1
2
max(F i)||θi − θi0||. Combining the above results, on
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the ball of ||θi − θi0|| = 1.2bn, we have

(θi − θi0)
tBi(θi)

≥ −
√
3a log p√
n

λ
1
2
max(F

i)||θi − θi0||+ λmin(F
i)||(θi − θi0)||2 −

0.05

bn
λmin(F

i)||θi − θi0||3

= −3a2

√
log2 p

n
λ

1
2
max(F

i)1.2bn + λmin(F
i)(1.2bn)

2 − λmin(F
i)
0.05

bn
(1.2bn)

3

≥ λmin(F
i)b2n[−1.2 + (1.2)2 − 0.05(1.2)3] > 0

with probability greater than 1 − 10.4 exp{−1
6
log2 p}. Therefore, we proved that

||θ̂i − θi0|| ≤ 1.2bn with probability greater than 1− 10.4 exp{−1
6
log2 p}. It follows

||J i(θ̂i − θi0)|| ≤ λ
1
2
max(F

i)||θ̂i − θi0|| ≤ λ
1
2
max(F

i)1.2bn

with probability greater than 1− 10.4 exp{−1
6
log2 p}.

Proposition A.1.1 Let F i be defined in definition (7.4) for any i ∈ {1, 2, . . . , p},

then under Condition (2), we have that

1

κ22
≤ λmin(F

i) ≤ λmax(F
i) ≤ 1

κ21
.

Proof. Let Gi be the Fisher information matrix for the uncolored graphical models

e.g. Gi = ψ′′
u(θ

i) where ψu(θ
i) = (−1

2
log |Ki| + pi

2
log(2π))1Ki∈PGi

. Let τ and ϖ be

the numbers of eigenvalues of Gi and F i. Since F i is a linear projection of Gi onto

the space of uncolored symmetric matrices, then τ > ϖ. Under Condition (2) and
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by Proposition A.1.7, for any l, 1 ≤ l ≤ ϖ, we have

1

κ22
≤ min

1≤j,k≤τ
{ 1

λj(Gi)λk(Gi)
} ≤ λl(Fi) ≤ max

1≤j,k≤τ
{ 1

λj(Gi)λk(Gi)
} ≤ 1

κ21
.

Proposition A.1.2 For any i ∈ {1, 2, . . . , p}, let Ki,0
αβ be the (α, β) entry of Ki

0.

Under Condition (2), we have |Ki,0
αβ| ≤ κ2.

Proof. By Condition (2), we have λmax(K
i
0) ≤ κ2 for any i ∈ {1, 2, . . . , p}. There-

fore, κ2−λj(Ki
0), j = 1, 2, · · · , pi, are the eigenvalues of κ2Ipi−Ki

0. Since λmax(K
i
0) ≤

κ2, then κ2 ≥ λj(K
i
0), j = 1, 2, · · · , pi. It follows that κ2Ipi−Ki

0 is a positive semidef-

inite matrix. Since the diagonal elements of a positive semidefinite κ2Ipi − Ki
0 are

all non negative, then κ2 −Ki,0
αα ≥ 0, α = 1, 2, . . . , pi. It follows 0 < K i,0

αα ≤ κ2. Since

Ki
0 is a positive definite matrix, then each 2 by 2 principal sub matrices Ki,0

αα Ki,0
αβ

Ki,0
βα Ki,0

ββ


of Ki

0 are positive definite. Therefore, Ki,0
ααK

i,0
ββ − (Ki,0

αβ)
2 > 0, from which we get

|Ki,0
αβ| < (Ki,0

ααK
i,0
ββ)

1/2 < κ2.

The next four propositions provide the properties of log |F i|, the colored G-

Wishart prior, the third and fourth moments of the normalized Y i
j .
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Proposition A.1.3 Under Condition (3), for any i ∈ {1, 2, . . . , p}, we have the

trace of F i satisfies tr(F i) = O(p2) and the determinant |F i| satisfies log |F i| =

O(p2).

Proof. Since ∂2ψ(θi)

∂θij∂θ
i
k
= 1

2
tr(δijΣ

i
0δ
i
kΣ

i
0), then tr(F

i) = 1
2

Si∑
j=1

tr((δijΣ
i
0)

2). Furthermore,

by Condition (3), tr(δijΣ
i
0) is bounded. Therefore, tr((δ

i
jΣ

i
0)

2) is bounded. It follows

tr(F i) =
1

2

Si∑
j=1

tr((δijΣ
i
0)

2) ≤ 1

2

pi(pi + 1)

2
tr((δijΣ

i
0)

2) ≤ 1

2

p(p+ 1)

2
tr((δijΣ

i
0)

2) = O(p2).

Next, let us consider log |F i|. Since |F i| =
∏Si

j=1 λj(F
i) ≤

( Si∑
j=1

λj(F
i)

Si

)Si

=
(
tr(F i)
Si

)Si

,

then

log |F i| ≤ Si log
tr(F i)

Si
≤ pi(pi + 1)

2
log

1
2
pi(pi+1)

2
tr((δijΣ

i
0)

2)
pi(pi+1)

2

= O(p2).

The proposition is proved.

Proposition A.1.4 Under Condition (2), for any i ∈ {1, 2, . . . , p}, we have

log πi0(K
i
0) ≥ −1

2
piκ2 +

δi − 2

2
pi log κ1

when Di = Ipi.

Proof. The non-normalized colored G-Wishart distribution can be rewritten as

πi0(K
i
0) = exp

{
− 1

2
tr(Ki

0Ipi) +
δi − 2

2
log |Ki

0|
}

= exp
{
− 1

2

pi∑
j=1

λj(K
i
0) +

δi − 2

2
log

pi∏
j=1

λj(K
i
0)
}

≥ exp
{
− 1

2
piκ2 +

δi − 2

2
pi log κ1

}
.
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The last inequality due to Condition (2).

Proposition A.1.5 (Lipschitz continuity) For any i ∈ {1, 2, . . . , p} and any con-

stant c, there exists a constant M1 such that

| log πi(θi)− log πi(θi0)| ≤M1p||θi − θi0||

when ||θi − θi0|| ≤
√

||(F i)−1||cM(p)/n→ 0.

Proof. Let πi0(θ
i) be the non-normalized colored G-Wishart distribution for the

local model. By mean value theorem, we have

| log πi(θi)− log πi(θi0)| = | log πi0(θi)− log πi0(θ
i
0)| = |(θi − θi0)

t∂ log π
i
0(θ

i)

∂θi
|θi=θ̌i|

= ||θi − θi0|| ·

√√√√ Si∑
j=1

[
− 1

2
tr(δijD

i) +
δi − 2

2
tr(δij(Ǩ

i)−1)
]2
,

where θ̌i is the point on the line segment joining θi and θi0. Since ||θi−θi0|| → 0, then

(Ǩi)−1 → (Ki
0)

−1. According to Condition (2) and Proposition A.1.2, each entry of

(Ki
0)

−1 is uniformly bounded, then using the similar proof of Lemma A.1.11, each

entry (Ǩi)−1 is uniformly bounded. Therefore, there exists a constant M1 such that√√√√ Si∑
j=1

[
− 1

2
tr(δijD

i) +
δ − 2

2
tr(δijΣ

i
0)
]2

≤
√
pi(1 + pi)

2
M2

1 ≤
√
p(1 + p)

2
M2

1 =M1p.

Proposition A.1.6 For any i ∈ V , let Y i
j and V i

j be defined in (7.3) and (7.5),

respectively. Then Bi
1n(c) = O(p9) and Bi

2n(c) = O(p12).
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Proof. Let Bαβ be the (α, β) entry of (J i)−1. Define b = max{|Bαβ|;α, β ∈

{1, 2, . . . , Si}}. Then for the vectors Y i
j = (Y i

j1, Y
i
j2, . . . , Y

i
jSi

)t and a = (a1, a2, . . . , aSi
)t,

the following property holds for h = 1, 2, 3, 4

Eθi|at(J i)−1Y i
j |h ≤ Eθi

[
(|a1|, |a2|, . . . , |aSi

|)



b
Si∑
k=1

|Y i
jk|

b
Si∑
k=1

|Y i
jk|

...

b
Si∑
k=1

|Y i
jk|


]h

= Eθi
[
(b

Si∑
k=1

|Y i
jk|)

Si∑
k=1

|ak|
]h
.

(A.9)

According to Cauchy-Schwarz inequality, we have that

Eθi|at(J i)−1Y i
j |h ≤ Eθi

[
b(

Si∑
k=1

|Y i
jk|)
√
Si||a||

]h
≤ bh(Si)

h/2Eθi
[ Si∑
k1=1

. . .

Si∑
kh=1

|Y i
jk1

| · · · |Y i
jkh

|
]
. (A.10)

According to Lemma A.1.11, each entry of θi is bounded when ||J i(θi − θi0)||2 ≤

cSi

n
→ 0. By Lemma A.1.12, we have Eθi

[
|Y i
jk1

| · · · |Y i
jkh

|
]
is bounded for h =

1, 2, 3, 4. Therefore, Eθi|at(J i)−1Y i
j |h = O(p3hi ). Similarly, |at(J i)−1Eθi(Y

i
j )|h =
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O(p3hi ). Hence, we have

Eθi|atV i
j |3 = Eθi|at(J i)−1Y i

j − at(J i)−1Eθi(Y
i
j )|3

≤ Eθi|at(J i)−1Y i
j |3 + 3|at(J i)−1Eθi(Y

i
j )|Eθi(at(J i)−1Y i

j )
2

+3[at(J i)−1Eθi(Y
i
j )]

2Eθi|at(J i)−1Y i
j |+ |[at(J i)−1Eθi(Y

i
j )]

3| (A.11)

= O(p9i ) = O(p9).

A similar argument deduces Eθi|atV i
j |4 = O(p12). By the definition Bi

1n(c) and

Bi
2n(c), the desired result follows.

Lemma A.1.11 Let θij be the j-th element of θi, i = 1, 2, . . . , p. Under Condition

(2), for ||θi − θi0|| ≤ ε1, we have that |θij| ≤ ε1 + κ2.

Proof. Let θij,0 be the j-th element of θi0, i = 1, 2, . . . , p. Since ||θi − θi0|| ≤ ε1, then√
Si∑
j=1

(θij − θij,0)
2 ≤ ε1. Therefore, for any j ∈ {1, 2, . . . , Si}, we have

√
(θij − θij,0)

2 ≤

√√√√ Si∑
j=1

(θij − θij,0)
2 ≤ ε1.

It implies |θij − θij,0| ≤ ε1. By Proposition A.1.2, under Condition (2), we have

|θij,0| ≤ κ2. It follows |θij| ≤ ε1 + κ2.

Lemma A.1.12 Let Y i
j be defined in (7.3) and denote Y i

j = (Yj1, Yj2, · · · , YjSi
)t,

under Condition (2) and ||θi− θi0|| ≤ ε1, we have Eθi
[
|Y i
jk1

| · · · |Y i
jkh

|
]
is bounded for

h = 1, 2, 3, 4.
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Proof. According to Lemma A.1.11, each element of θi is bounded. Since Y i
jk =

−1
2
tr(δikX

i
j(X

i
j)
t), by Isserlis’ Theorem, the moments of every entry of X i

j(X
i
j)
t is

finite. By Condition (3), Eθi(Y
i
jk) is bounded and Eθi(Y

i
jk)

2 is also bounded. By

Hölder’s inequality, we have Eθi [|XY |] ≤ (Eθi [|X|p])
1
p (Eθi [|Y |q])

1
q . Therefore, when

h = 1, Eθi(|Y i
jk1

|) ≤ [Eθi(Y
i
jk1

)2]
1
2 is bounded. When h = 2, we have

Eθi(|Y i
jk1

||Y i
jk2

|) ≤ [Eθi(Y
i
jk1

)2]
1
2 [Eθi(Y

i
jk2

)2]
1
2 .

It follows Eθi(|Y i
jk1

||Y i
jk2

|) is bounded. When h = 3, we have

Eθi(|Y i
jk1

||Y i
jk2

||Y i
jk3

|) ≤ [Eθi(|Y i
jk1

||Y i
jk2

|)2]
1
2 [Eθi(Y

i
jk3

)2]
1
2 .

Since Eθi(|Y i
jk1

||Y i
jk2

|) is bounded, then Eθi(|Y i
jk1

||Y i
jk2

|)2 is also bounded. Therefore,

Eθi(|Y i
jk1

||Y i
jk2

||Y i
jk3

|) is bounded. Consequently, Eθi
[
|Y i
jk1

| · · · |Y i
jkh

|
]
is bounded for

h = 1, 2, 3, 4.

Proposition A.1.7 Let E be a Euclidean space and let F ⊂ E be a linear subspace.

Let pF denote the orthogonal projection of E onto F . Let g be a linear symmetric

operator g : E → E and consider the linear application f of F into itself defined by

f : x ∈ F → f(x) = pF ◦ g(x)

Then, we have that if µ1 < µ2 < · · · < µm are the eigenvalues of g and λ1 < λ2 <

· · · < λn are the eigenvalues of f , n < m, then for any j = 1, 2, · · · , n, the following
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inequalities hold

µ1 ≤ λj ≤ µm.

Proof. We prove is first for m = dim(F ) = dim(E)− 1. Let e = (e1, e2, · · · , en) be

an orthonormal basis of F such that basis the matrix representative of f is a diagonal

[f ]ee = diag(λ1, λ2, · · · , λn) and let e0 ∈ E be such that e′ = (e0, e1, e2, · · · , en) is an

orthonormal basis of E. Then in that basis, the matrix representative of g is

[g]e
′

e′ =



a b1 · · · bn

b1 λ1 0 0

· · · · · · . . . 0

bn · · · 0 λn


.

We see here that the matrix representative of f is a submatrix of the matrix repre-

sentative of g. By the interlacing property of the eigenvalues, we have

µ1 ≤ λj ≤ µn+1 j = 1, 2, . . . , n.

If dim(E) − dim(F ) > 1, we iterate the process by induction on dim(E) − dim(F )

and complete the proof.

Lemma A.1.13 For any i ∈ {1, 2, . . . , p}, let T i(γi) be a symmetric matrix with

dimension pi. Then there exists a constant η such that with ||T i(γi)||F ≤ η, the

matrix Ipi + T i(γi)Σi
0 is positive definite.
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Proof. If we want to show Ipi + T i(γi)Σi
0 is positive definite, it is equivalent to

show for any non zero vector z with dimension pi, z
t(Ipi +T i(γi)Σi

0)z is positive. By

Cauchy-Schwarz inequality, we have

| < T i(γi)z,Σi
0z > | ≤ ||T i(γi)z|| × ||Σi

0z|| ≤ ||T i(γi)|| × ||z|| × ||Σi
0|| × ||z||

≤ ||z||2||T i(γi)||F × 1

κ1
≤ η||z||2 1

κ1
.

Therefore,

zt[Ipi + T i(γi)Σi
0]z = ztIpiz + ztT i(γi)Σi

0z = ||z||2+ < T i(γi)z,Σi
0z >

≥ ||z||2 − ||z||2η 1

κ1
= (1− η

1

κ1
)||z||2.

We can thus choose a constant η, such that η < κ1. It follows z
t(Ipi + T i(γi)Σi

0)z ≥

||z||2 > 0 when ||T i(γi)||F ≤ η.

Lemma A.1.14 Let K = (Kij)1≤i,j≤p be p× p positive semi-definite matrix. Then

||K||F ≤ tr2(K).

Proof. Because K is positive semi-definite, we have K2
ij ≤ KiiKjj. Thus

∑
1≤i,j≤p

K2
ij ≤

∑
1≤i,j≤p

KiiKjj = (
∑
1≤i≤p

Kii)(
∑

1≤j≤p

Kjj) = (
∑
1≤i≤p

Kii)
2.

In order to prove the following Theorem , we start from a finite-dimensional real

linear space E of dimension n (thus isomorphic to Rn but we prefer to avoid the
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use of artificial coordinates). We denote by E∗ its dual space, that means the set of

linear applications θ : E 7→ R. We denote ⟨θ, x⟩ = θ(x). If E is Euclidean, the dual

E∗ is identified with E and ⟨θ, x⟩ is the scalar product.

Consider a non empty open convex cone C with closure C such that C is proper,

that is to say such that

C ∩ (−C) = {0}.

The dual cone of C is

C∗ = {θ ∈ E∗ ; ⟨θ, x⟩ ≥ 0 ∀x ∈ C \ {0}}.

This is a standard result of convex analysis that C∗ is not empty [Faraut and Korányi,

1994]. In general the description of C∗ is a non trivial matter.

A polynomial P on E is a function P : E 7→ R such that if e = (e1, . . . , en) is a

basis of E and if x = x1e1 + · · ·+ xnen ∈ E then P (x) is a polynomial with respect

to the real variables (x1, . . . , xn). Needless to say the definition does not depend on

the particular chosen basis e. A polynomial P is homogeneous of degree k if for all

λ ∈ R and all x ∈ E we have

P (λx) = λkP (x).

Theorem A.1.8 Let C be an open convex and proper cone of E, let P be a homo-

geneous polynomial on E of degree k and let α > −n/k. We assume that P (x) > 0
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on C. We choose a Lebesgue measure dx on E. For θ ∈ E∗ consider the integral

L(θ) =

∫
C

e−⟨θ,x⟩P (x)αdx ≤ ∞.

If θ /∈ C∗ the integral L(θ) diverges. If θ ∈ C∗ denote H1 = {x ∈ E ; ⟨θ, x⟩ = 1}.

Then C ∩H1 is compact. In this case θ ∈ C∗, the integral L(θ) is finite if and only

if
∫
C∩H1

P (x)αdx is finite. Furthermore

L(θ) = Γ(αk + n)

∫
C∩H1

P (x)αdx. (A.12)

Proof. (personal communication from G. Letac) Suppose that θ0 ∈ C∗

and let us show (A.12). Consider the affine hyperplanes H1 and H0 of E defined by

H1 = {x ∈ E ; ⟨θ0, x⟩ = 1}, H0 = {x ∈ E ; ⟨θ0, x⟩ = 0}.

The convex set C ∩ H1 is compact. To see this let us choose an arbitrary scalar

product on E. Observe that the function u 7→ ⟨θ0, u⟩ defined on the intersection of

C with the unit sphere of E is continuous and reaches a minimum m > 0 since the

set of definition is compact. Thus for all x ∈ C ∩H1 we have

∥x∥ ≤ 1

m
⟨θ0, x⟩ =

1

m

and the closed set C ∩H1 is also bounded, thus compact.

We fix now h1 ∈ H1 and we write any element x of E in a unique way as

x = x0 + x1h1 where x1 is a number and x0 is in H0. If E is Euclidean, a natural
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choice for h1 is θ0/∥θ0∥2 although other choices would be possible. We also write

x = (x0, x1) for short. We denote by K ⊂ H0 the set of x0 such that x0+h1 = (x0, 1)

is in C ∩H1. Note that K is also compact. We get that x = (x0, x1) is in C \ {0} if

and only if y = x0/x1 ∈ K and x1 > 0. To see this denote

C1 = {(x0, x1) ; y = x0/x1 ∈ K, x1 > 0}.

The inclusion C1 ⊂ C \ {0} is obvious as well as C \H0 ⊂ C1. However if (x0, 0) is

in C ∩H0 and if x0 ̸= 0 this implies that (λx0, 0) is in C ∩H0 for all λ > 0 and thus

λx0 ∈ K for all λ > 0: this contradicts the compactness of K. As a result (x0, 0) in

C ∩H0 implies x0 = 0. This implies C \ {0} = C \H0 and thus C \ {0} = C1

We are now in position to make the change of variable (x0, x1) 7→ (y = x0/x1, x1)

in the integral L(θ0) with an easy Jacobian, since dimH0 = n− 1 :

dx = dx0dx1 = xn−1
1 dydx1.

We get

L(θ0) =

∫
C

e−x1P (x0, x1)
αdx0dx1 =

∫
K

I(y)dy

where

I(y) =

∫ ∞

0

e−x1P (yx1, x1)
αxn−1

1 dx1 = P (y, 1)αΓ(αk + n) = P (y + h1)
αΓ(αk + n)

from the homogeneity of the polynomial P. Thus (A.12) is proved.
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Suppose that θ0 /∈ C∗. This is saying that there exists x0 ∈ C such that ⟨θ0, x0⟩ ≤ 0.

Let us show that L(θ0) = ∞. Since C is open we may assume that ⟨θ0, x0⟩ < 0.

Choose an arbitrary scalar product on E. There exists ϵ such that for all x in B =

{x ; ∥x − x0∥ < ϵ} we have x ∈ C and ⟨θ0, x⟩ < 0. Consider the open subcone

C1 = {λx ; x ∈ B, λ > 0} of C. We can write

L(θ0) ≥
∫
C1

e−⟨θ0,x⟩P (x)αdx ≥
∫
C1

P (x)αdx.

Clearly the last integral diverges for α ≥ 0. For −n/k < α < 0 we use the same

trick: we parameterize C1 with the help of the compact set C1 ∩H1 by considering

the compact set K1 of y ∈ H0 such that y + h1 ∈ C1 ∩H1 and we write

∫
C1

P (x)αdx =

∫
K1

∫ ∞

0

P α(x0, x1)dx =

∫
K1

P (y, 1)α
(∫ ∞

0

xαk+n−1
1 dx1

)
dy = ∞.

This proves ⇒ .

Lemma A.1.15 For any i ∈ {1, 2, . . . , p}, there exists a constant M7 such that

log

∫
||
√
nJi(θi−θi0)||2>cM(p)

||
√
nJ i(θi − θi0)||πi0(θi)dθi ≤ exp[M7p

2 log p].

Proof. Without loss of generality, let θik, k = 1, . . . , si, be the entries of Ki on the

diagonal and θik, k = si + 1, . . . , Si, be the off-diagonal entries. We assume that
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Di = Ipi , which we need later on anyway. Then

tr(KiDi) = tr(KiIpi) =

si∑
k=1

τ ikθ
i
k = tr(Ki),

πi0(θ
i; δi, Ipi) = exp{−1

2

si∑
k=1

θikτ
i
k +

δi − 2

2
log |Ki(θi)|}, and

||θi||2 =

si∑
k=1

(θik)
2 +

Si∑
k=si+1

(θik)
2 ≤

Si∑
k=1

τ ik(θ
i
k)

2

= ||Ki(θi)||F ≤ (

si∑
k=1

τ ikθ
i
k)

2 by lemma A.1.14,

where τ ik = |vik| is the number of elements in the color class vik. We therefore have

||θi|| ≤
si∑
k=1

τ ikθ
i
k. Let H

i denote the convex cone PGi for short.∫
Hi

||
√
nJ i(θi − θi0)||πi0(θi)dθi

=

∫
Hi

||
√
nJ i(θi − θi0)|| exp{−

1

2

si∑
k=1

θikτ
i
k +

δi − 2

2
log |Ki(θi)|}dθi

≤
√
||F i||

√
n

∫
Hi

[
||θi||+ ||θi0||

]
exp{−1

2

si∑
k=1

θikτ
i
k +

δi − 2

2
log |Ki(θi)|}dθi

=
√
||F i||

√
n||θi0||

∫
Hi

exp{−1

2

si∑
k=1

θikτ
i
k +

δi − 2

2
log |Ki(θi)|}dθi (A.13)

+
√

||F i||
√
n

∫
Hi

||θi|| exp{−1

2

si∑
k=1

θikτ
i
k +

δi − 2

2
log |Ki(θi)|}dθi. (A.14)

By Proposition A.1.2, we have ||θi0||2 ≤ Siκ
2
2. Furthermore, according to Proposition

A.1.1, we have ||F i|| ≤ 1
κ21
. We therefore need to find upper bounds for the integrals

in (A.13) and (A.14). These two integrals are of the type
∫
Hi f(θ

i)α
i
e−tr(θ

iDi)dθi
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where f(θi) is a homogeneous function of order ki. If ni is the dimension of the space

in which H i sits, we use the result of Theorem A.1.8. Let D̄i be the si-dimensional

vector with entries
τ ik
2
. We have

∫
Hi

exp{−1

2

si∑
k=1

θikτ
i
k +

δi − 2

2
log |Ki(θi)|}dθi =

∫
Hi

e−tr(D̄
iθi)|Ki(θi)|

δi−2
2 dθi,

and

∫
Hi

||θi|| exp{−1

2

si∑
k=1

θikτ
i
k +

δi − 2

2
log |Ki(θi)|}dθi

≤
∫
Hi

(

si∑
k=1

τ ikθ
i
k)e

−tr(D̄iθi)|Ki(θi)|
δi−2

2 dθi,

and therefore since Ki(θi) is homogeneous of order pi,
Si∑
k=1

τ ikθ
i
k is homogeneous of

order 1 and 1 is homogeneous of order 0, we have, for αi = δi−2
2∫

Hi

e−tr(D̄
iθi)|Ki(θi)|

δi−2
2 dθi = Γ(αipi + Si)

∫
Hi∩Hi

1

|Ki(θi)|
δi−2

2 dθi,∫
Hi

(

si∑
k=1

τ ikθ
i
k)e

−tr(D̄iθi)|Ki(θi)|
δi−2

2 dθi

= Γ(αipi + 1 + Si)

∫
Hi∩Hi

1

(

si∑
k=1

τ ikθ
i
k)|Ki(θi)|

δi−2
2 dθi. (A.15)

However, we do not know how to compute the integrals
∫
Hi∩Hi

1
|Ki(θi)| δ

i−2
2 dθi

and
∫
Hi∩Hi

1
(
si∑
k=1

τ ikθ
i
k)|Ki(θi)| δ

i−2
2 dθi. The set H i

1 = {θi | tr(D̄iθi) = 1} is H i
1 = {θi |

si∑
k=1

τ ikθ
i
k = 2}. So, we only have one integral,

∫
Hi∩Hi

1
|Ki(θi)| δ

i−2
2 dθi, to compute. But

si∑
k=1

τ ikθ
i
k = tr(Ki(θi)Ipi) = tr(Ki(θi)) =

pi∑
j=1

λj
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where the λj are the eigenvalues of Ki(θi). Following the inequality between the

arithmetic mean and the geometric mean, on H i
1 ∩H i, we have

|Ki(θi)| = (

pi∏
i

λj) ≤
(
∑pi

j=1 λj)
pi

ppii
=

2pi

ppii

and thus ∫
Hi∩Hi

1

|Ki(θi)|
δi−2

2 dθi ≤ 2pi

ppii

∫
Hi∩Hi

1

dθi. (A.16)

We are now going to use Theorem A.1.8 in the reverse direction with f(θi) = 1 in

order to evaluate
∫
Hi∩Hi

1
dθi. We have

∫
Hi

e−tr(D̄
iθi)dθi = Γ(0 + Si)

∫
Hi∩Hi

1

dθi (A.17)

and we are going to majorize
∫
Hi e

−tr(D̄iθi)dθi. We now use the fact that the matrices

in H i are positive definite, thus we have that, for l = si + 1, . . . , Si, (θ
i
l)

2 ≤ θitlθ
i
ul

whenever θil = Ki
jk, j ̸= k and θitl = Ki

jj, θ
i
ul

= Ki
kk. Since the cone H i is included

in the cone P i of positive definite matrices, we have that, for l = si + 1, . . . , Si,

(θil)
2 ≤ θitlθ

i
ul

whenever θil = Ki
jk, j ̸= k and θitl = Ki

jj, θ
i
ul

= Ki
kk and thus we can

write

∫
Hi

e−tr(D̄
iθi)dθi ≤

∫ +∞

0

. . .

∫ +∞

0

e−
∑si

r=1 D̄
i
rθ

i
r

[ Si∏
l=si+1

∫ −
√
θitl
θiul

−
√
θitl
θiul

dθil

] si∏
r=1

dθir

=

∫ +∞

0

. . .

∫ +∞

0

e−
∑si

r=1 D̄
i
rθ

i
r

[ Si∏
l=si+1

2
√
θitlθ

i
ul

] si∏
r=1

dθir.
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Since we have assumed that Di is equal to the identity, D̄i
r =

τ ir
2
with the τ ir being

bounded. Then

∫ +∞

0

. . .

∫ +∞

0

e−
∑si

r=1 D̄
i
rθ

i
r

si∏
r=1

[ Si∏
l=si+1

2
√
θitlθ

i
ul

]
dθir

= 2Si−si
si∏
r=1

∫ +∞

0

(θir)
kir
2 e−

τirθ
i
r

2 dθir = 2Si−si
si∏
r=1

(
2

τ ir
)
kir
2
+1Γ(

kir
2

+ 1)

where kir is the number of tl or ul equal to r in the i-th local model. From the

majorization above, (A.17), (A.16) and (A.15) successively, we obtain the following

inequalities

∫
Hi∩Hi

1

dθi ≤ 1

Γ(Si)
2Si−si

si∏
r=1

(
2

τ ir
)
kir
2
+1Γ(

kir
2

+ 1),

∫
Hi∩Hi

1

|Ki(θi)|
δi−2

2 dθi ≤ 2Si−si+pi

ppii Γ(Si)

si∏
r=1

(
2

τ ir
)
kir
2
+1Γ(

kir
2

+ 1),

∫
Hi

(

Si∑
k=1

τ ikθ
i
k)e

−tr(D̄iθi)|Ki(θi)|
δi−2

2 dθi ≤ 2Si−si+pi+1Γ(αipi + 1 + Si)

ppii Γ(Si)

si∏
r=1

(
2

τ ir
)
kir
2
+1Γ(

kir
2

+ 1),

and

∫
Hi

e−tr(D̄
iθi)|Ki(θi)|

δi−2
2 dθi ≤ 2Si−si+piΓ(αipi + Si)

ppii Γ(Si)

si∏
r=1

(
2

τ ir
)
kir
2
+1Γ(

kir
2

+ 1).

It follows that

∫
||
√
nJ(θi − θi0)||πi0(θi)dθi

≤ n
1
2
1

κ1

2Si−si+pi

ppii Γ(Si)
[

si∏
r=1

(
2

τ ir
)
kir
2
+1Γ(

kir
2

+ 1)](M0piΓ(α
ipi + Si) + 2Γ(αipi + 1 + Si))

≤ n
1
2
1

κ1

2Si−si+pi

ppii Γ(Si)
[

si∏
r=1

(
2

τ ir
)
kir
2
+1Γ(

kir
2

+ 1)]M2piΓ(α
ipi + 1 + Si),
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where M0 and M2 are constants. Therefore,

log
{∫

||
√
nJ i(θi − θi0)||πi0(θi)dθi

}
≤ 1

2
log n− log κ1 + (Si − si + pi) log 2− pi log pi − log Γ(Si) + logM2 + log pi

+ log Γ(αipi + 1 + Si) +

si∑
r=1

[(
kir
2

+ 1) log
2

τ ir
+ log Γ(

kir
2

+ 1)].

Since log n and log p is the same order and kir ≤ pi, we have that

exp[log
{∫

||
√
nJ i(θi − θi0)||πi0(θi)dθi

}
]

≤ exp[
1

2
log p+ (Si − si + pi) log 2 + log pi + log Γ(αipi + 1 + Si) + pi(

pi
2
+ 1) log 2

+pi log Γ(
pi
2
+ 1) +M3],

where M3 is a constant. By Sterling’s approximation, we have log n! = n log n +

O(log n). Therefore, there exist two constant M5 and M6 such that

log Γ(αipi + 1 + Si) ≤ log Γ(αipi + 1 +
pi(pi + 1)

2
) ≤ log(2αipi + p2i )! ≤M5p

2
i log pi

and

log Γ(
pi
2
+ 1) ≤ log pi! ≤M6pi log pi.
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Combining all results above, we obtain that

exp
(
log
{∫

||
√
nJ i(θi − θi0)||πi0(θi)dθi

})
≤ exp

(1
2
log p+ [

pi(pi + 1)

2
+ pi] log 2 + log pi +M5p

2
i log pi + pi(

pi
2
+ 1) log 2

+M6p
2
i log pi +M3

)
≤ exp[M7p

2 log p],

where M7 is a constant.
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