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Abstract

In this thesis, we consider the Bayesian analysis of undirected graphical Gaussian
models with edges and vertices symmetries. The graphical Gaussian models with
equality constraints on the precision matrix, that is the inverse covariance matrix,
were introduced by Hgjsgaard and Lauritzen [2008] as RCON models. The models
can be represented by colored graphs, where edges or vertices have the same color
if the corresponding entries of the precision matrix are equal. In this thesis, we
define a conjugate prior distribution for the precision matrix in RCON models. For
simplicity, we will call this prior the colored G-Wishart distribution.

We begin with the study of the sampling scheme for the colored G-Wishart dis-
tribution. This sampling method is based on the Metropolis-Hastings algorithm
and the Cholesky decomposition of matrices. In order to assess the accuracy of the
Metropolis-Hastings sampling method, we compute the expected values of the preci-
sion matrix in the colored G-Wishart distribution for some particular colored graphs:

trees, star graphs, a complete graph with 3 vertices and a decomposable model on 4
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vertices. Moreover, the simulation results for comparing the true mean of the pre-
cision matrix K in the colored G-Wishart distribution with the sample mean of K
obtained from our Metropolis-Hastings algorithm are presented.

Next, we propose the distributed Bayesian estimate of the precision matrix for
large colored graphical Gaussian models. We also study the asymptotic behavior
of our proposed estimate under the regular asymptotic regime where the variable
dimension p is fixed and under the double asymptotic regimes where both p and
the sample size n go to infinity. The proofs of the asymptotic properties of the
distributed estimate are provided.

Evaluating the normalizing constant is important and necessary for obtaining
the posterior distribution and the marginal probability of the likelihood. We give
three methods, the Monte Carlo method, the importance sampling and the Laplace
approximation, for estimating the normalizing constant of the colored G-Wishart
distribution. We then apply these methods on the model search for a real dataset

using Bayes factors.

Keywords: asymptotic normality, Bayesian estimator, colored G-Wishart dis-
tribution, conditional independence, conjugate prior, consistency, marginal model,

Metropolis-Hastings, large deviation, symmetry constraint.
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1 Introduction and Notations

1.1 Introduction

Graphical Gaussian models, also known as covariance selection models [Demp-
ster, 1972], is a family of probability distributions in which the dependencies or
independencies among continuous random variables are expressed by an underlying
graph. It provides an efficient framework for compactly modeling the complex joint
distribution by means of their conditional dependency graph. Therefore, it has be-
come a powerful tool of modern statistics for analyzing and representing complex
high-dimensional data. Such models are commonly used in so many different fields,
including biology, medicine, computer vision and statistical physics. In graphical
Gaussian models, each vertex represents a random variable, and the absent of edge
(¢, 7) indicates the conditional independence of the variable X; and the variable X;

given all remaining variables.



Hojsgaard and Lauritzen [2008] introduced graphical Gaussian models with edge
and vertex symmetries in order to reduce the number of parameters in graphical
Gaussian models. The models generalize graphical Gaussian models and can be rep-
resented by colored graphs, where vertices or edges are restricted to being identical
coloring if the associated parameters are equal. These models are defined as graph-
ical Gaussian models with three different types of equality constraints: equality of
specified entries of the precision matrix (RCON), equality of specified entries of the
correlation matrix (RCOR) and equality of specified entries of the covariance ma-
trix generated by permutation symmetry (RCOP). The combination of symmetric
restrictions and conditional independent restrictions results in the reduction in the
number of parameters and makes the models efficient and flexible.

In recent years, many methods which facilitate Bayesian inference have been de-
veloped using graphical Gaussian models. Bayesian analysis of undirected graphical
Gaussian models has been considered by Dawid and Lauritzen [1993]. In particular,
Dawid and Lauritzen [1993] mainly focused on the decomposable graphs and intro-
duced the hyper inverse Wishart distribution as the conjugate prior for the covariance
matrix. Roverato [2002] further generalized the hyper inverse Wishart distribution to
arbitrary graphs. Atay-Kayis and Massam [2005] as well as Letac and Massam [2007]

continued these developments and termed this distribution the G-Wishart as a prior



specified for the inverse covariance matrix. A number of sampling methods for the
G-Wishart distribution associated with an arbitrary graph have been proposed [see,
e.g., Piccioni, 2000, Mitsakakis et al., 2011, Dobra et al., 2011, Carvalho et al., 2007,
Wang and Li, 2012, Lenkoski, 2013]. The existing methods expand the usefulness
of the G-Wishart distribution and provide a statistical tool to the estimation of the
posterior mean for the covariance matrix in a Bayesian framework.

In this thesis, we work with RCON models in a Bayesian framework. In order to
identify the conditional independencies between the random variables in the RCON
models, we concern the problem of estimating the elements of the inverse covariance
matrix, which commonly referred to as the concentration or precision matrix. Since
RCON models belong to an exponential family, we use the Diaconis and Ylvisaker
[1979] (henceforth abbreviated DY) conjugate prior for the precision matrix. This
yields a distribution similar to the G-Wishart distribution but with the colored con-
straints on the edges and vertices. We call this distribution the colored G-Wishart
distribution and further propose a method to sample from the colored G-Wishart
distribution. Our sampling scheme is an adaptation of the Metropolis-Hastings algo-
rithm proposed by Mitsakakis et al. [2011] for the G-Wishart distribution in uncol-
ored models. Extensive numerical experiments demonstrate our proposed sampling

method performs very well by comparing the true mean of the precision matrix K



in the colored G-Wishart distribution with the sample mean of K obtained through
our Metropolis-Hastings algorithm.

At the end, we propose an efficient algorithm to estimate the precision matrix
for high-dimensional setting, which is distributed estimation. The idea behind the
distributed estimation is that the estimation of the precision matrix is separated to
smaller local models from which we can estimate parts of the parameters of the global
model. The estimates of parameters from local models are then combined together
to yield an estimate of the global model. This efficient computational method was
first proposed by Meng et al. [2014] for the maximum likelihood estimate in graphical
Gaussian models and we adapt it here to graphical Gaussian models with edges and
vertices symmetries in a Bayesian framework. We consider the asymptotic behavior
of our proposed estimators when the number of variables p is fixed and the sample size
n grows to infinity. We further derive high-dimensional convergence rates when both
p and n are large. We also demonstrate numerically how our method can scale up to
any dimension by looking at colored graphical Gaussian models represented by large
colored cycles and also by a colored 10 x 10 grid. The simulation study demonstrates
that our method produces statistically efficient estimators of the precision matrix for

the colored graphical Gaussian models.



1.2 Notations and Preliminaries

This chapter covers some terminologies and known results which are going to
be used in the rest of this thesis. They are involved in graph theory, Gaussian
graphical models, colored Gaussian graphical models and the colored G-Wishart
prior. Further details and explanations are available in Hgjsgaard and Lauritzen

[2008] and Lauritzen [1996].

1.2.1 Preliminaries

We summarize here the notations to be used throughout this thesis. We write
f(n) = O(g(n)) if and only if f(n)/g(n) is bounded as n — oco. We write f(n) =
o(g(n)) if and only if f(n)/g(n) — 0 as n — oo. The notation X,, = O,(a,) means
that, for any ¢ > 0, there exists a finite M > 0 such that P(|X,/a,| > M) < ¢
for any n. The cardinality of a set A is denoted by |A| and the difference of two
sets A and B is denoted by A\B. If U and V are square matrices with the same
dimension, then we use tr(UV) = > Uy;Vi; to denote the trace of UV and [U] to

2y
denote the determinant of the matrix U. Let A(U), Aoz (U) and Ay (U) stand for
the eigenvalues, the largest and smallest eigenvalues of U, respectively. Following
the standard notation, Uy p represents a submatrix of U with rows indexed by A

and columns indexed by B. The identity matrix of order p is denoted by I,. For
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p

a vector z = (z1,79,...,7,), ||z|| stands for its Euclidean norm (>_ 2?)Y/2. For a
i=1

square matrix U, ||U|| stands for its operator norm defined by sup{||Uz|| : ||z|| < 1}.

Let 5 and % denote the convergence in distribution and in probability, respectively.

The superscript ¢ denotes the transpose.

1.2.2 Graph Theory

A graph G is an ordered pair G = (V, E) consisting of a nonempty set V' of
vertices and an edge set E disjoint from V. A graph is undirected if the edge set is
composed of unordered vertex pairs. Two vertices v, v’ € V are said to be adjacent
if there is an edge between v and v’. The degree of a vertex v in a graph G is the
number of edges of G incident with v. A graph G = (V, E) is called complete if every
pair of distinct vertices of G are adjacent. A graph is connected if any two vertices
are linked by a path. A connected graph without cycles is called a tree. A star graph

is a tree which consists of a single vertex with degree at least 2.

1.2.3 Graphical Gaussian Models

This thesis is concerned with graphical Gaussian models, where the variables in
the model are jointly Gaussian. The graphical Gaussian model is also known as a

covariance selection model [Dempster, 1972]. Let X! X2 ..., X" be independent



and identically distributed p-dimensional random variables following a multivariate
normal distribution N,(x, ). The inverse covariance matrix X! is called the pre-
cision matrix and we denote 7! by K = (Kj;)pxp, where K;; stands for the (4, )
entry of K. Since the precision matrix is the primary goal, we can assume that
these models are centred N,(0,%) without any loss of generality. In multivariate
Gaussian analysis, the independence and conditional independence relationships be-
tween the variables can be represented by means of an undirected graph G = (V, E),
where V' = {1,2,...,p} and E are the sets of vertices and edges, respectively. For
X = (X,,v € V) and for any pair (i,7) ¢ E, i # j, if the random variable X; and
X are conditionally independent given all the other variables Xy j1, we say that
the distribution of X is Markov with respect to G. Such models for X are called

graphical Gaussian models. The conditional independences can be denoted by

(1,7) € B = X; L X | Xy

The nonzero elements of K are associated with edges in £. A missing edge (i, 7)
in F implies K;; = 0 and corresponds to the conditional independence of univariate
elements X; and X, given the remaining elements. Since the conditional indepen-
dence of the variables X; and Xj is equivalent to K;; = 0, if we let P be the cone
of positive definite matrices with zero (i, j) entry whenever the edge (7, j) does not

belong to E, then the graphical Gaussian model Markov with respect to G can be
7



represented as
Ng ={N(0,%)|K € Pg}.

Therefore, the joint density of X for the sample size n can be written as

K[ L, yint o v
WGXP{—E Z(X)KX }]—Képga

i=1

p(X|K) =

where 14 is an indicator function of the set A.

1.2.4 Colored Graphical Gaussian Models

(1.1)

The graphical Gaussian models with edge and vertex symmetries, which we here

call the colored graphical Gaussian models, have been introduced by Hgjsgaard and

Lauritzen [2008]. These models are defined as graphical Gaussian models with three

different types of symmetry constraints: equality of specified entries of the precision

matrix K, equality of specified entries of the correlation matrix and equality of spec-

ified entries of K generated by a subgroup of the automorphism group of GG. These

models are denoted as RCON, RCOR and RCOP models for short, respectively. In

this thesis, we only consider RCON models. The model can be represented by col-

ored graphs, where edges or vertices have the same color if the corresponding entries

of the precision matrix are equal. Now, we define the RCON model as follows. Let

V ={W,...,Vi} be a partition of V and & = {E4, ..., E;} be a partition of E. If all

8



the vertices belonging to a vertex color class V; of V have the same color, we say that
V is a coloring of V. Similarly, if all the edges belonging to an edge color class E; of
€ have the same color, we say that £ is a coloring of E. We call G = (V,€) a col-
ored graph. Furthermore, if the model (1.1) is imposed with the following additional

restrictions

(Cy) if m is a vertex class in V, then for all i € m, Kj; are equal, and

(Cy) if s is an edge class in &, then for all (i,j) € s, K;; are equal,

then the model is defined as a colored graphical Gaussian model RCON(V, £) and

denoted as

Ng ={N(0,%)|K € Pg}

where Fg is the cone of the positive symmetric matrix with zero and colored con-
straints. When drawing a colored graph, we use black for color classes with only one
element. Thus two vertices displayed in black will be in different color classes. Figure
1.1 illustrates a colored graph G = (V, £), where V = {{1,2,3},{4,5},{6},{7}} and

& = {{12}, {23}, {13}, {34, 45, 46,47} }.



2

Figure 1.1: The colored graph in an RCON model.
1.2.5 Colored G-Wishart Distributions

In 1979, Diaconis and Ylvisaker [1979] derived the standard conjugate priors for
the exponential family distribution. Since the graphical Gaussian model is also a
regular exponential family, then the DY conjugate prior for the graphical Gaussian

model is called G-Wishart distribution with the density

1

p(K|6, D) = To(0.D)

1
|K|(5_2)/2 exp{—§tT(KD)}1KepG (1.2)

where 0 > 0 and D, a symmetric positive definite p X p matrix, are hyperparameters

of the prior distribution and I¢(d, D) is the normalizing constant, namely,
1
14(6. D) = / 1022 exp{ — (K D)} (1.3)
Pg

Next, we will define a colored G-Wishart distribution for the colored graphical Gaus-

sian models in terms of the G-Wishart distribution. The density of colored G-Wishart

10



can be written as

1

pKIS.D) = s

1
|K|0=2/2 exp{—§tr(KD)}1Kepg (1.4)

where 6 > 0 and D, a symmetric positive definite p X p matrix, are hyperparameters

and Ig(d, D) is the normalizing constant, namely,

1
Ig(6,D) = | |K|®=2/2 exp{—5tr(KD)}dK. (1.5)
Pg

After choosing the colored G-Wishart distribution as the prior, the posterior distri-

bution of K can be expressed as

. 1 S _ 1
(K16, D) oo [K|? exp{—5tr(K Y XX} x |K|'Z exp{~5tr(KD)}xer,
=1

n+6—2

= |K| > exp{—%tr(K(D—i-ZXi(Xi)t))}lKGPg'

1.2.6 Related Theorems and Known Results

Definition 1.2.1 (Lezicographical order) Given two partially ordered sets A and B,
the lexicographical order on the Cartesian product A x B is defined as (ay,b;) <

(ag,bs) if and only if either

(1) a3 < ay or

(2) a1 = as and by < bs.

11



Theorem 1.2.1 (Isserlis’ Theorem) Let X = (X1, Xs, -+, X,,) be the random

variables following the multivariate normal distribution N,(0,X), then
E[thXaQ e X(lQn} = Z A(U)

and

E[XalXaz e 'Xa2nfl] =0

where the sum is over every partition o of {1, 2, ..., 2n} into n disjoint pairs
(0(2k — 1),0(2k)) such that o(2k — 1) < 0(2k) for k=1,2,...,n, and c(2k — 1) <

o2k +1) fork=1,2,...,n— 1. For each partition o, A = kﬁl Yo (2k—1)0(2k) -
For example,
EIX1 X X3Xy] = X19X34 + 213304 + L14X03
and
E[X1 XoX3X4X5Xs] = S12(E[X5X4X5Xg]) + S13( B[ X2 X4 X5 X))

+X14(F[ X2 X3X5X6]) + X15( B[ X2 X3X4X6))

+516(E[Xa X5 X4 X5)).

Theorem 1.2.2 (Cauchy-Schwarz inequality) Let w and v be two vectors in R".

Then

<u, v > | < Jul x o]l

12



where < u,v > denotes the inner product of u and v.

If let w = (1,1,---,1)" be a n-dimensional vector and v = (|v1|, |va], - - , |va])*, then

Cauchy-Schwarz inequality implies
n
> vl < Valloll.
=1

The Delta Method:
Now suppose 8 € R¥ and we have an asymptotically normal estimator 6 such
that

~

Vn(d—0) 5 N, D).

Let n = g(0): RF — Ri;ie, n=g(0) = (q1(0),92(0),...,9,(0)), denote the
parameter of interest where n € R/ and j < k. Assume the g(0) is continuous with

continuous first derivatives

091(6) 0q1(8) .. 091(0)

891 892 69k‘
0g2(0)  9g2(0) 992(0)

dg(0) 01 S oo

0ot

9g9;(6) 9g;(6) . 0g;(8)

801 692 89k

Then
9g9(0) . <., 09(0)

V(i — ) = Vi(g(8) — g(8)) = N(0. () S(=5r)"):

13



1.3 Review of Literature

Many statistical problems require at some point the estimation of population
covariance matrices from samples of multivariate data. However, when the number
of variables p increases, the number of unknown parameters %p(p—i—l) in the covariance
matrix increases quadratically with p. Efficient estimation of population covariance

matrices becomes a difficult statistical problem when p increases.

1.3.1 Graphical Gaussian Models

In order to efficiently and parsimoniously estimate the covariance matrix X,
Dempster [1972] first proposed estimating the covariance matrix parsimoniously by
setting off-diagonal elements of the precision matrix K = X! to zero. The reason
for adopting such a model is that in many problems the precision matrix has a large
number of zeros in its off diagonal elements and these should be exploited in the es-
timation [Cox and Wermuth, 1996]. This model is often referred to as the covariance
selection model. Dempster [1972] considered the exponential family of the Gaussian
distribution with unknown covariance parameters. The density is represented by the

family of continuous densities

F(,%) = (o) B



It is a representation of the density f as a member of an exponential family of
distributions:
explag + t(z) + antin(z) + . . . + apstys ()]

with here a;; = B!, ag = —3plog 2m — $log |, ty;(x) = —asx; for i # j, ty(x) =

—%mf and t(x) = 0. Suppose there are m + 1 observations on p random variables.

The estimate of the sample covariance matrix is

m—+1
1

§= > (wi=2)(w -2,

where z = mLH:n:ZJF: x;. Let I be a subset of index pairs (j, k) such that K is zero,
and J be the remaining set of pairs (4, k) such that K is not zero. Dempster [1972]
chose ¥ to be a positive definite symmetric matrix such that S and 3 are identical
for index pairs (j, k) in J while K is identically 0 for index pairs (7, k) in 1.

Several researchers [Cox and Wermuth, 1996, Whittaker, 1990, Lauritzen, 1996]
also called the Gaussian model with a pattern of zero constraints in K as the graphi-
cal Gaussian model since it represents a pairwise conditional independence structure.
A graphical Gaussian model is represented by an undirected G = (V| E), where V
contains p vertices and the edge E describes the conditional independence relation-
ship among the random variables X = {X;, X5..., X, }. The edge between X; and

X is absent if and only if X; and X, are conditionally independent given all the

other variables Xy (5 51, and K;; = 0.
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1.3.2 Bayesian Methods

A number of articles took a Bayesian approach to graphical Gaussian models.
Early work on the Bayesian estimation for graphical Gaussian models has largely
focused on decomposable graphs. When the graph G is decomposable, Dawid and
Lauritzen [1993] proposed a convenient prior based on the factorisations of the like-
lihood in terms of the cliques and separators of the underlying graph GG. The class of
priors is specified over the covariance matrix > as well as on the graphical structure G,
which is named hyper inverse Wishart distribution. Although the priors enjoy many
advantages, such as the computational efficiency due to its conjugate nature and
the exact calculation of marginal likelihoods, they are sometimes inflexible since this
method can deal only with decomposable graphical models. To solve this, Roverato
[2002] generalized the priors over arbitrary graphs and showed that the hyper inverse
Wishart prior for the covariance matrix is equivalent to a constrained Wishart prior
for the precision matrix. This prior is called the G-Wishart distribution. Although
it is straightforward to define a constrained prior distribution for arbitrary graphs in
graphical Gaussian models, until recently, the normalizing constants of such distri-
butions could not be exactly computed unless the graph is decomposable. Using an
iterative method and some special functions, Uhler et al. [2014] seem to have solved

this very difficult problem. Roverato [2002] and Atay-Kayis and Massam [2005] also
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proposed different Monte Carlo methods and efficient simulations for estimating the
normalizing constants for the non-decomposable graph.

There have been several proposed sampling methods for the G-Wishart distribu-
tion. Piccioni [2000] proposed the block Gibbs sampler using the Bayesian iterative
proportional scaling. This sampler updates K according to its clique decomposition
and matrix inversion. Since identifying all cliques and inverting the large matrix
are computationally expensive, it is not suitable for high-dimensional problems. The
related sampling method is the rejection sampling method developed by Wang and
Carvalho [2010]. Implementation of this method relies on the junction tree represen-
tation of graphs through the local computation. In order to avoid the calculation of
the posterior normalizing constants, the authors in Mitsakakis et al. [2011] and Do-
bra et al. [2011] proposed the MH algorithms for the G-Wishart distribution. These
methods are based on the matrix decomposition and matrix completion developed
in Roverato [2002] and Atay-Kayis and Massam [2005]. A direct sampler for the
G-Wishart distribution was recently proposed by Lenkoski [2013] that is closely re-
lated to the block Gibbs sampler of Piccioni [2000]. Unlike the block Gibbs sampler,

however, each sample is drawn independently from previous samples.
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1.3.3 Graphical Gaussian Models with Edge and Vertices Symmetries

Symmetry restrictions for the multivariate Gaussian distribution have a long his-
tory dating back to Wilks [1946]. Wilks [1946] was the first to add the symmetry
restrictions on the covariance matrix such that the covariance matrix with equal
diagonal elements and equal off-diagonal elements. Symmetry restrictions on the
multivariate Gaussian distribution are also considered by several authors [Anders-
son, 1975, Andersson et al., 1983, Jensen, 1988, Olkin, 1969]. Graphical Gaussian
models with symmetry restrictions were first considered by Hylleberg et al. [1993].
Hylleberg et al. [1993] combined the conditional independence restrictions with the
group symmetry restrictions. Subsequently, Andersen et al. [1995] and Madsen [2000]
also considered such models. More recently, Hojsgaard and Lauritzen [2008] consid-
ered graphical Gaussian models with symmetry constraints not necessarily described
by a group action. The symmetry is given by the equality of certain entries either
in the covariance, the correlation or the precision matrices. Models for the multi-
variate random variable X = (X;,7 € V) Markov with respect to G and with edges
and vertices symmetries are called colored graphical Gaussian models. These mod-
els have two main advantages. First, they may reflect true or imposed symmetries.
For example, variables could represent characteristics of twins [see Frets heads data

set, Frets, 1921] and therefore the variance of the corresponding variables can be
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assumed to be equal. Second, since conditional independences imply that certain
entries of the precision matrix are set to zero, these restrictions combined with the
symmetry restrictions reduce the number of free parameters. Hgjsgaard and Lau-
ritzen [2008] also developed algorithms to compute the maximum likelihood estimate

of the covariance, the correlation or the precision matrix.
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2 A Sampling Method: Metropolis-Hastings

In this chapter, following what has been done by Mitsakakis et al. [2011], we want
to develop a Metropolis-Hastings (MH) algorithm to obtain random samples from
the colored G-Wishart distribution. According to Atay-Kayis and Massam [2005],

we first consider the Cholesky decomposition of D! and K. Denote
D'=0Q'Q and K =o'd (2.1)

where Q) = (Qij)1<i<j<p and ® = (®;;)1<i<j<p are upper triangular matrices with
real positive diagonal elements. Then, we will express the density of the colored

(G-Wishart distribution in terms of the new variable
U =0oQ " (2.2)

Finally, we use the MH algorithm to generate the samples of W. After drawing the
random samples of ¥, the samples of K can be obtained by K = Q*(V'¥)Q.
The advantage of changes of variables from K to W is that it keeps the samples

for K positive definite. Also, by change to ¥, we found that (see next section)
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to sample K, we need to deal with normal and chi-squared distributions which we
know how to sample. In the next section, we will derive the density of the colored
G-Wishart distribution in terms of the new variable W. The density can be written
as a multiplication of the densities of chi-squares, normals and a function of free
elements of W. This give us the idea about how to choose the proposal distribution

in the MH algorithm.

2.1 The Density of the Colored G-Wishart

We denote

0,(G) = min{(4,j) € uli < j, ue VUE}

where the minimum is defined according to the lexicographical order and define

v(@) = |J w(G).

ueVUE

Let K% = {K;;| (i,j) € v(G)} be the free entries of K. The zero and coloring
constraints on the entries of K associated with a colored graph G determine the free
entries V(@ = {®](4,5) € v(G)} and U@ = {V.:|(i, j) € v(G)} of the matrices ®
and W, respectively. Each non-free entry ®;; and V,; with (7, ) ¢ v(G) is a function
of the free entries ®;; and ¥;; with (¢, j) € v(G) that precede it in the lexicographical

order. The following two propositions give the expression of the non-free entries of
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® and VU in function of the free ones of (&) and ¥¥(&) and the free entries of K.

The first part of the equations in each proposition can be found in Roverato [2002].

Proposition 2.1.1 Let K = ®'® be an element of Pg, and (iy,j,) = min{(i,j) €
uli < j andu € VUEY} in the lexicographical order. Then the entries ®;; are such

that for (i,7) € v(G),

i—1
— > Dy Dy
=1
For Ky, =0, k=2,...,p,
dq = 0.
For K;j=0,5=1,...,p, i # 1,
i—1
> Oy
1
b=y,

For K;; #0, (i,j) eueVUE, (i,7) ¢ v(G),

Gy—1 i—1
i Piin + 20 Prin, Prj, — D2 Pri®Pyj
D, = b=l =1 . (2.4)

(I)ii

Fori=1,...,p,

Ty—1

i—1
@7 +Z<I> DK A (2.5)
k=1
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Proof. The first three equations can be found in Roverato [2002]. We will only

prove (2.4) since (2.5) will follow immediately from it. For all (i,5) € w € VUE

and (4, 7) # (tu, ju) € u, by (2.3), we have that K; ;, = Zu Dy, Prj, and in general
k=1

Kij =Y ®,®;. Since K;; = K, j,, it follows that

k=1
iu—1 i—1
@i, Piyi, + Z @i, Prj, = PiiPij + Z Ppi D
k=1 k=1

Equations (2.4) and (2.5) follow then immediately. =

Proposition 2.1.2 For K = Q'(V'W)Q € Pg with V and Q as defined in definitions

(2.1) and (2.2), the entries V,;; of ¥ are as follows: for (r,s) € v(G) and r # s,

Z i P (2.6)

T‘] QSS QSS
For (r,s) € v(G) and r = s,
®SS
U, = )
QSS
For K,s =0 and r # 1,
s—1 0 r—1 ‘I/errTgl. L7 gi: s—1 0
B =5 g S R )W S
j=r i= Jj=i
For K1, =0
s—1 Q
\Ills = Z( \IJU JS)
j 1 QSS



For K.s #0,(r,s) eueVUE, (rs) ¢ v(G),

iy —1 r—1
Qi inPivie + 20 PrinPrj — 2 CoorPrs 51 0,
v, = =1 =1 Ny, Ee 2.7
(PTTQSS ]ZT’ ! QSS ( )
Fors=1,...,p,

iy —1 r—1 1

|97 5+ 2 PF,,— 2 ¥F12
U,, = k=1 k=l ) (2.8)

Qss

Proof. We will prove (2.7) and therefore (2.8). Since & = V@), for r # s, we have
s—1
CI)'rs - \I/rsts + Z \IjTijs‘
j=r

On the other hand, by (2.6), we have

Gy —1 r—1
D Pivin + 20 Priy Prj, — 2 PrrPrs
D — k=1 k=1
rs q)rr
It then follows that
1 r—1
s—1 D iuPivin + >0 Prin, @i — O Pryp i
k=1 k=1
‘Ijrsts + Z ‘Ijerjs =

. (pT’f'
j=r
which implies (2.7) and (2.8). m
In order to induce the density of the colored G-Wishart distribution in terms of

U, we need to know the Jacobian of the change of variables from K¥(©) to W¥(@)

which can be achieved through two steps as follows.
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Lemma 2.1.1 Let K be in Pg and v¢ be the number j € {i,...,p} such that (i,7) &
v(G). Then the Jacobian of the change of variables K& — &) as defined in (2.1)
18

|J(KC) — @v@))| = oM Hcp” e

where |V| is the number of vertex color class of G.

Proof. We order the entries of both matrices K and ® according to the lexicographic

order. For (7,7) € v(G), differentiating (2.3) yields

0K;; 0K .
=20, =0 f
0%, i 75, =0 for (k,s) > (i,1) ,
0K OK,
i . ij —0f k’ .. . 3

Therefore, the Jacobian is an upper-triangular matrix and its determinant is the
product of the diagonal elements. The lemma then follows immediately from the fact
that for a given ¢ € {1,...,p}, the cardinality of the set {j|(¢,j) € v(G), (i,5) >

(i,))}isp—i+1—0F m

Lemma 2.1.2 Let K be in Pg and d¥ =| {j|j <, (j,i) ¢ v(G)}|. The Jacobian of
the change of variables ®V%) — W) where ® and ¥ are defined in (2.1) and (2.2)
is

|J(®°(@) = 19| = H Q.
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Proof. We order the entries of both matrices & and ¥ according to the lexicographic
order. For (r,s) € v(G), differentiating (2.6), we obtain

aq)rs _ Q aq)rs
oV, % oV,

= 0 for (i,7) > (r,s).

The Jacobian is thus an upper-triangular matrix and its determinant is the product

of the diagonal elements. The lemma follows from the definition of 4. =

Theorem 2.1.3 Let G = (V,E) be an arbitrary p-dimensional colored graph. Then

the density of the colored G-Wishart distribution expressed in terms of W(¢)

2|V| P p U5 —dG+5 1 p—i— UG+5 1 7%% i\l}%ﬂ
" 1a(5,D) H‘I’ e (29)

=1

p(U¥(|5, D)

Proof. The expression of p(@”(G) |0, D) above follows immediately from the fact that
|K| = H 2 that tr(KD) = Z Z ¥, and from the expressions of the Jacobians
i=1j=

given in Lemmas 2.1.1 and 2.1.2. m

2.2 Metropolis-Hastings Algorithms

In this section, the MH algorithm we use to obtain the random samples from the
density (2.9) is briefly described. First, we note that if we make the further change

of variables

(Wi, (1,1) € 0(G), Wiy, (1, 7) € v(G),i # )

= (ta =3, (i,0) € 0(G), Uiy, (4, 5) € v(G), i # j),
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we get

and we observe that ¢, e " has the form of a chi-square X L5 dis-
tribution.

We let Uil and WEH he the current state of the chain and the next state of the

chain, respectively. Denote U’ as the candidate of Wt We further define

U@y = {‘I’ij|(iaj) € ’U(G)C}

where v(G)¢ is the complement of v(G) in V x V. For (i,7) € v(G), an element \IJS]
is updated by sampling a candidate value W;; from a standard normal distribution.
For (i,1) € v(G), a element \IIE} is updated by sampling a candidate value (V%)
from a Xfa—i—uf .5 distribution. The non-free elements of U’ are uniquely defined by
the functions of the free elements in Proposition 2.1.1 and Proposition 2.1.2. The

Markov chain moves to W' with the acceptance probability

¢ P[(Y) )]
min { ————————— 1¢,
R )
where
WP = [ ¥ ew(-5 Y ¥ (2.10)
(i9)ev(G)e ’L])E’U(G
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Finally, we can obtain K[ by Kl = Qf(Wlsh)wllQ.

In our MH algorithm, the candidates are generated independently from the cur-
rent samples through the proposal density. Therefore, the algorithm gives us an
independent MH chain. Since the proposal density is a product of normals and chi-
squares, then any state j can be reached from any state ¢ in a finite number of steps
for all 7 and j, and the probability of going from state j in the step ¢ to state j in
the next step t + 1 is positive for any ¢ > 1. Hence, the MH algorithm constructs an
irreducible and aperiodic Markov chain for which the stationary distribution equals
to the colored G-Wishart distribution of W¥(©).

In this chapter, we adapt the MH algorithm proposed by Mitsakakis et al. [2011]
for the G-Wishart distribution to our colored G-Wishart distribution. We may won-
der whether there is other method we can adapt from the G-Wishart distribution.
For the G-Wishart distribution, Dobra et al. [2011] derived another MH algorithm
to generate the samples. In their MH algorithm, they sample the candidate for the
free diagonal element 1; from a normal distribution N (%[?, 0?) truncated below at
zero, and sample the candidate for the free off diagonal element v;; from a normal
distribution N (@Z)l[?, 0?). This algorithm can be adapted to the colored G-Wishart
distribution. However, the chain from their algorithm has very high autocorrelations.

Wang and Li [2012] and Lenkoski [2013] also derived two different sampling methods
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for the G-Wishart distribution. Both of the methods are based on the block Gibbs
sampler. Let C' = {C,C,,...,Cy} be a set of cliques of the graph. We know that
(Ze) ™~ W(8, De,e,) and (B¢,) ™! = Ke,oo — Koo Ko, o, Kvioie, Thus, in
each clique Cj, we can first generate a Wishart random matrix A from W (4, D¢, ¢,)
and then set K¢, o, = A+ Kciﬁv\CiK\;ici,V\CiKV\CzVCi' The elements of K are up-
dated according to all cliques until convergence. However, in the colored G-Wishart
distribution, there still exists the colored constraints in each clique. We even do not
know what is the conditional distribution on the cliques. Therefore, we can’t adapt
their methods to the colored G-Wishart distribution.

We now have a sampling method for the colored G-Wishart distribution, whether
it is a prior or a posterior distribution and thus obtain an estimate of the posterior
mean of K. Our simulation results in Chapter 4 will show that the chain has a
good mixing, low autocorrelations and the high proximity to the colored G-Wishart
distribution. In order to assess the accuracy of our MH algorithm, we would like
to have the exact value of the expected value of K under the colored G-Wishart

distribution. This is done in the next chapter for some special colored graphs.
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3 Expected Values in Some Special Cases

In this chapter, we evaluate the normalizing constants of the colored G-Wishart
distribution for some special colored graphs. We consider the colored trees, two
colored styles of star graphs, a colored complete graph on three vertices and a sim-
ple decomposable colored graph on four vertices. In order to calculate the analytic
expression of the normalizing constant I5(d, D), we need to know two special func-
tions, the Bessel function of the third kind K,(z) and the hypergeometric function

pFy. The Bessel function of the third kind is defined as
0

For some special values of A\, the Bessel function can be given explicitly, for example

T T
Kip(2) = \/;21/26'2, Ks)9(2) = \/;(21/2 + 273/2)672’

Ksps(2) = \/g(zl/2 + 32732 £ 3,75/%)e 2,
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We will also use the classical formula

Ly = [ et
q 0

The hypergeometric function ,F, is defined by the power series:

o (an)g - (ap)i 2F
Fylay, ... ap;b1,...,b42) = —
piq P q kZ:O (bl)k"'(bp>k k!
where
1 ifk=0
(@) =
ala+1)---(a+k—-1) ifk>0.
The derivative of the hypergeometric function ,Fj(as, ..., ay; b1, ..., by 2) is given by
d al...ap

—pFy(ar, ... ap; by, ... by 2)] =

- (pEy(ar+1, ... ap+1;00+1, ... by+152)) .

by---b,
(3.1)

Since the colored G-Wishart distribution can be expressed in an exponential
family form, then we can use the property of the cumulant generating function to
obtain the mean of K in the colored G-Wishart distribution. For a given colored

graph G, the colored G-Wishart distribution as defined in (1.4) and (1.5) can be

written as an exponential family of the type
FUK: 0)dK = exp{tr(K6) — k(0)}u(dK)

with the generating measure pu(dK) = |K|®2/21xcp,, § = —1D and the cumulant

generating function k(§, D) = log Ig(d, D). From the classical theory of the exponen-
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tial family of distribution, we know that the mean of K in the colored G-Wishart

can be obtained by

Ok(5.D) _ k(3. D)
d(-iD)y T oD

Therefore, we first need to determine for which values of 6 and D the quantity Ig(d, D)
is finite and calculate the analytic expression of Ig(d, D). Then we differentiate this
expression of Ig(d, D) to get the mean of K in the colored G-Wishart distribution.
We can not do this in general but we will consider several special colored graphs
for which we can calculate Ig(d, D). For the corresponding RCON models, we will
see that when 0 > 0 (except in the case of the star graph with all leaves in the same
color class where we must have § > 1), the normalizing constant Ig(d, D) is finite

when the hyperparameter D belongs to the dual P of Pg. For any open convex cone

C' in R™, the dual of C is defined as
C*={ye R"|(z,y) >0, Vo € O\ {0}}

where C' denotes the closure of C' and (x,%) denotes the inner product of z and y.
In the remainder of this chapter, for each RCON model, we determine the dual P}
and compute the value of the normalizing constant Ig(d, D). This will allow us, in

Chapter 4, to verify the accuracy of our sampling method.
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Figure 3.1: (a) The colored tree. (b) The colored star with the centre vertex of a
different color. (c) The colored star with all vertices of the same color. (d) The
triangle with two edges of the same color. (e) The decomposable graph with three

different colors for the edges.

3.1 Trees with Vertices of Different Colors and Edges of the
Same Color

Let T = (V, E) be a tree with vertices of different colors and edges of the same

color. An example of such G is given in Figure 3.1(a). Let a = (a;,¢ = 1,...,p)"

with a; > 0 and b € R. Let S be the space of symmetric p X p matrices. We define

the mapping

m: (a,b) € RP*' — m(a,b) € S (3.2)
with m(a, b) satisfying the conditions

m(a,b)li = a;, [m(a,b)];; =b=[m(a,b)]; for (i,j) € E, [m(a,b)];; =0for (i,5) & E.
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Let M(G) be the linear space of matrices m(a,b) for (a,b) € RP*! and P be the

cone of p X p symmetric positive definite matrices. Then
Po=MG)NP. (3.3)
Proposition 3.1.1 Let T be a tree as described above. The dual cone Pg is

1
x Y S A / /
Pg={m(da’ V) € M(G) | a' = (aj,i=1,....p), V' € R, [V| <H(E)GE\/@§G}
Z7]

(3.4)
Proof. Let M be the set of p x p matrices and

To = {XeM|X;=0, fori <j, X;;=s;;7#0, fori>j(i,5) € E,

be the set of upper triangular matrices with positive diagonal elements and nonzero
entries X;;,7 > j only for (i,j) € E. The vector s = (s;;,(4,7) € E) belongs to
RP~! since a tree with p vertices has p — 1 edges and ¢t = (t;,i = 1,...,p) belongs
to RP. Tt is well-known [see Paulsen et al., 1989, Roverato, 2002] that we can find
a perfect elimination scheme enumeration of the vertices of T" such that, with this
enumeration, K € Py can be written as K = X (¢, )" X (¢, s) with X (¢, s) € Tg. Then

for K = K(a,b) as in (3.3) we have

— 42 E 2 —
a; = tj + Sij? b= tisij7
el
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where (¢, s) is the Cholesky parametrization of K € P;. We can also parameterize

K € Py with (¢,b) € (0,400)? x R using

1
aj =12+ et (3.5)

iGE]' v

In this proof and the following one, without loss of generality, we assume that the
numbering of the vertices of T follows a perfect elimination scheme ordering. We
then say that the last vertex p in that ordering is the root of the tree and we will
write

E;={i,i<j|(i,j) € E}.
For convenience, we denote by C the right-hand side of equation (3.4).

We show first that P; C C. Let D = m(a’,0') € Pj. Using (3.5), we have

(K,D) = ara} + - + apal, + 2(p — )bb' = t2a, + Ab> + 2Bb+ C > 0, (3.6)

where
p 1 p—1
A= —ld, B=@p-1, C= tial. 3.7
Z Z;t A (p—1) Z (3.7)

Now observe that for fixed ¢ = 1,...,p then either i = p and the set {j;i € E;} is
empty since p is the root of the tree, or the set {j;i € E,} is reduced to one point,
say ji. Therefore we have 3, p a} = aj, for i <p and zero for i = p. (For the graph

in Figure 3.1 (a), we have j; = jo = j5 = j¢ = 7 and j3 = j, = 6) and it follows that

A=Y =d. . (3.8)



Let us prove that aj > 0 for all j = 1,...,p. Take (ai,...,a,) € [0,00)P \
{0,...,0}. Then K (a,0) € P\ {0} and (K, D) = aya} + - - - + apal, > 0 implies that
aj > 0 for all j. Let us now prove that Ab? +2Bb+C > 0 for all b. If not, there exists
bo such that Ab2 + 2Bby + C' < 0. Since a; > 0 when t, is very small and b = by in

(3.6), we get a contradiction.

Let us prove that

Since Vb, Ab? +2Bb+ C > 0, we have B? < AC. Now consider the function
(tl, RN ,tp—l) — AC

and let us compute its minimum A*C* on (0, 00)?. This function AC' is homogeneous
of degree 0 and therefore if its minimum is reached at t* = (7,...,t;_;), it will also

be reached on xt* for any x > 0. We have fori =1,...,p—1,

a / 2 /

(2

and we therefore have

Since B? < AC for all (t,...,t,-1) € (0,00)P"!, we can claim that B> < A*C* or

equivalently (3.9).
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Let us prove that inequality (3.9) is strict, that is B? = A*C* is impossible.
Suppose that B = A*C*, ie. |[b/| = A*/(p — 1) > 0. Then with ¢; = t; we get
Ab? 4+ 2Bb + C = A*(b+ sign¥/)?. Taking b = —signb’ and t; = t;,i =1,...,p— 1
vields Ab? +2Bb+ C = 0. Now, letting also ¢, = 0 in (3.6), we see that the left hand
side of (3.6) is zero for an (a,b) € S\ {0} which is not zero, since b = 41. But this
can not happen for D(a’,b") € Pg. Therefore (3.9) is strict and the proof of P C C
is completed.

Let us now show that C' C Pg. For D(a’,b") € C given, we want to show that
(K, D) is positive for all K (a,b) € Pg\ {0}. We will do so first for K(a,b) € Pg and
then for K(a,b) € Pg \ (P; U{0}). For K(a,b) € Pg, t;, > 0 and b € R. From (3.6),

we have

2 2 2
(K, D) =t,a, + Ab" +2Bb+ C =t a;, + A

B\* 1 )
(b+Z) +E(AO_B)

We have checked above that AC' — B* > 0. Moreover a;, > 0 since D(da’,V') € C. It
follows immediately that (K, D) > 0.

Let us now show (K, D) > 0 for K(a,b) € Pg\ (P; U{0}) that is for ¢ ...t, = 0
and (t1,...,t,,b) # 0. We need to show that (K, D) # 0. In fact 0 = aya} + --- +
apa, +2(p—1)bb' = 37 t7aj implies that t; = 0 for all s = 1,. .., p since (a/,0') € C

implies a; > 0. On the other hand, since b = t;s;; implies b = 0, this is impossible

since we exclude the zero matrix for k. =m
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We are now in a position to give the analytic expression of Ig(d, D) for trees with

vertices of different colors and edges of the same color.

Theorem 3.1.2 For G = T as described above, § > 0 and D = m(a',V') € P}, the

normalizing constant Ig (0, D) is finite and equal to

)
p

5 ! > b /
Ig(6,D) = 2%+p711“(§) <H<a2>di2) / % (10| /o ; ’b|75ef(p71)bb db

i=1 z])eE

(3.10)
where d; denotes the number of neighbours of the vertex i in the tree (V, E).
For 6 =1, we have

L1, 2m)f [J() 3 (1Y (@a))i—(p—1p) " +[ Y (ala)*+(p—1¥] ™).

=1 (i,4)€E (i,))eE

For 6 = 3, let o be the k-th elementary function of the variables \/a;a}, (i,j) € E.

We have
D D 3 s 1 (k+1)
Ig(3,D) = 22tixz l_[(a;)_E Zakf(/{: +1)(][ Z (ata’)z — (p— 1)V
i=1 k=0 (i,j)EE
+[ 3 (@) + (p—1p] ")
(i,5)EE

Proof. In Ig(d, D) we make the change of variables (3.5). Switching to these
Cholesky coordinates leads to the Jacobian dadb = 2Pt ...t,dbdt. As seen before

the new domain of the integration is the product

{(b,t);tx > 0,0 € R} = (0,00)” x R.
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With the notation A, B, C' of (3.7), we have
(K(a,b),D(d’, b))y = 2(p — 1)bV' + ara} + - - - + apal, = toa, + Ab> + 2Bb + C.
Using (3.8) for the expression of A, we obtain

I5(6,D)

2,/
/p 1 tza/v b

, t ’L 7 J
— 2?/(0 | R(tl...zﬁp)‘s Lem(p=1bb'e pHe C2F dty .. dt,db (3.11)
00)P X i=1

< 24 o0 . 5/2
= [T, [ e TT (Kbl A0 i )
0 —

o0 i=1

p—1 a o/4
= 2P+S—1% <H a_{> Js(D) (3.12)

=1

with the notation

00 p—1
Js(D) = / e (T b (=TT Ko (|b] (afa, ) /2 db. (3.13)

o0 =1

We now prove by induction that

p—1 a’ p
]z Nd; —2
)T, 3.14
X,I [ = 1T (314)

Of course (3.14) is correct for p = 2. Suppose that (3.14) is true for any rooted
tree with size p. Consider a rooted tree T with vertices {0,1,...,p} and root p and
numbered, as usual, such that ¢+ < 7 implies ¢ < j. Denote T the induced tree with

vertices {1,...,p}. Finally denote d* = (dy, ...,d;) and d = (dy, . ..,d,) the number
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of neighbours in 7" and 7. Then dj = 1, d} = 1+d;, and d} = d; if i # 0 and i # jo.

This implies that

p—1 p—1 p P
1 " H aj, _ a_;‘o 1 y aj, @ a_}o H(a’-)di’z @) H(a{)d;fQ
Y
(a3)” img % Qo (@) o as 0 i

where (1) comes from the induction hypothesis and (2) is due to the link between d
and d*. The induction hypothesis is extended to p + 1 and (3.14) is proved.
We now prove that Js(D) defined as (3.13) converges if D = m(a’,0') € P} where

P is the convex cone defined in Proposition 3.1.1. We write J5(D) as the sum

J(;(D):/O ...db+/0+oo...db. (3.15)

—00

When b — +o00, |b] = +00. From the formula (1) in [Watson, 1995, Chapter 7.23,

Te S’
K/\(S) ~s 00 \/;Slj

We use this fact to analyse the convergence of Js(D). If D = m(a’,V') € Pg, from

page 202|, we have

the asymptotic formula above, we see that the integrands in both integrals on the
right hand side of (3.15), when |b| goes to infinity, behave like |b|°e™ P/ where, since
m(a’, V') € Pg,

P
H= Z aza; — (p — 1)['|sign(bb’) > 0

(i,j)eE

and ¢ = (p — 1)%52. Since the argument of (3.13) is continuous, both integrals

converge at infinity.
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To study the convergence of these integrals when b — 0, we recall that
+oo s 1
2K (s) :/ e 2@ dy,
0
Making the change of variable u = sz in the expression of 2K),(s) we see that
K\(8) ~eo s 2T (N).
Therefore, for both integrals in the RHS of (3.15), the integrand is equivalent to
) I

and therefore both integrals converge at 0. The expression (3.10) of the normalizing

constant is now proved.

Particularly, we will present the expression of the normalizing constants for 6 = 1

and § = 3. By (3.10), Ic(1, D) = 2*-3T(L)(a})~ (T )50 (D), where

s\

o) p—1
Ji(D) = / e~ (= LB | P35 Hm |bl(ala’, )% )db

—0o0

! 7 1
— / —(p— 1bb’|b‘— H\/>|b|_2 aa —felbl(aiaj,-)i)db

p—1 1
_ 1)bb'—|b ala’ )2
= (g)pTl H(a;a;i)* / e ~pm Dl Z( i) db.

N
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We compute the integral

0 (-1t —[b] S (afa; )3 0 (o1 +0"S (ala) )3
/ e i=1 db = / e i=1 odb
_ e (-1 —b'S (alal, )
+ / e ST db
0
B 1 1
- p-1 +p—1 :
;(aéa}i) —(p— 1)V ;(aéa;) + (-1
Therefore
Ji(D)
p—1 p—1 p—1
T p=1 !/ _1 !/ ! 1 / -1 !/ 1 / -1
= ()7 [T [ (D)t = =)+ (Yo (aia)} + (- 1) |
i=1 i=1 =1

p—1
Since _ (ajaj,) = > ; yep(aza;), this yields the expression of Ig(1, D).
i=1 ’
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Similarly, from (3.10), I(3, D) = 2°*2T(2)(a)) "2 [ (2 1) ~4 Jy(D) with

s\

00 p—1
(D) = [ e e TRy (bl(aia; ) )b

i=1
T 3 VY
XH[\f (1614 ()% + [o| 3 @l )~ e Mok
i=1
= [T o e Tyt e
/Ooe | |2 (2) 2 | | 2
T 319—1 1 b 1
T4 2 - aa 2
x [T (aia,) =3 TTI(blaa,)? + 1) P50 jap
=1 i=1
T I © —(p—1)be’ \b\z 3Pl
o - aa
= (5)1)T E(aiagl)i /_Ooe E 1 —+ |b’ (ICL %)db
s p
el _3
= ()" [ a)™
i=1

1
% —(p=1)bb 8| 3 (ajaj,)? _
% / ¢ S5 (14 |bloy + [bPog A [P e, )dD
p—1 p—1 [ p_l 1
T\ pzt _3 —(p—1)bb'—[b| 3 (ajaf )2
= 7 ) “k/_ ‘ S

where the o; = 0y(y/ajal ,i=1,...,p— 1) are the symmetric functions of , fa;as i =

1,...,p— 1. Since

o —1)bb'—|b|i(,
/ e B0 gy

- T(m) (iwzagi)%—(p—l)b') +<i<a;ag>%+<p—1>b/) ,
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which yields the expression of Ig(3,D). =

3.2 The Star Graph with Its n Leaves in One Color Class

An example of the star graph with its n leaves in one color class and different

colors for the edges and the central node is given in Figure 3.1(b). Fora € R, c € R

b= (by,...,b,)" € R", let L(G) be the linear space of matrices of the form

a bl bQ ce bn

bl C 0 Ce 0

l<a7 b7 C) = b2 0 C 0
b, 0 0 ... ¢

It is easy to see that the determinant of I(a, b, ) is
_» Ll
[l(a,b,c)|=c"{a—— (3.16)
c
and therefore, Py is the open cone and denoted by

2
Py ={l(a,b,c) € L(G) : ¢ >0, a—@>0}.
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The dual cone P*(G) and the normalizing constant Ig(d, D) are given by the following

proposition and theorem.

Proposition 3.2.1 For a star graph with all n leaves in one color class, the dual of
Pg 18

Py ={l(a,V,c) e L(G) | ||']]* < nd'c}. (3.17)
Proof. By definition, for the star graph, the dual of Fg is
Py ={D = U(d"¥.d) € M(g) | (K. D) >0, K € P;\{0}}.
Let 8 denote the angle between b and b'. Then, since cos § > —1, we have

(K,D) = ad + ncc +2||b||||V|] cos 8 > aa’ + ncd — 2|[b||||V']|.

APIPIYIE (aa’+ncc’)27 by
ac ac

Therefore, 2|[b||||V/|| < aad’ + ned’. Since ac > 0 and

aa’4+nec')?

differentiation with respect to a and ¢, we see that ( > 4na'c’ and hence

(K, D) > 0 implies that ||V/||* < na'c. =

Theorem 3.2.2 For a star graph G with all n leaves in the same color class, 0 > 1

and D = I(a’,V', ) € Pg, the normalizing constant of the colored G-Wishart is

1

(nalcl _ ||b/||2)(5—1)%+1

<TG -1 +1)1().

I5(6, D) = M g2y /(5 D(n=1) o 2 2
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Proof. Let us introduce the matrix

r S, So Sn
0 t 0 0
Alrys,t) =1 0 0 t ... 0
0 0 0 ... t

If (a,b,c) € Pg, the only triple (r,s,t) such that ¢ > 0 and r > 0 and

2+ |s||? St
K(a,b,c) = A(r,s,t)A(r,s,t) =
ts 21,

satisfies r = (a — @)1/2, t = 4/cand s = A new parameterization of Py is

b
v
therefore given by the change of variables (a,b,c) into (r,s,t) with a = r? + ||s]|?,

b=ts and ¢ = t*, where (r, s,t) belongs to
{(r,s,t);7>0,s € R",t >0} = (0,00) x R" x (0, 00).

With this parameterization, from (3.16), we have | K| = 7?t*" and dadbdc = 4rt"*drdsdt.

Then

—llsl|?a’ —2¢(s, b') r2a’ —nt?e
I5(6,D) = / / ( / B ds) R e
n/2 / o0 —r2q/
— 4(—) ! / e_"f repl tO=n+1 gy ></ T‘S_leTer
a 0 0
n/2 © —nvc’ u||b’ 2 n & —va’
= (2) / / e2+|2ba’lv(6_1)2dv></ v%_le 2 dv
a 0 0

5+né+2 3 1 n 5
— 9T /2 (5 D(n=1) — (0 —1)= + 1)I(=).
o (na'c — ||b/||2)0—1z+! (( )2 +1) (2)
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The proof is completed. m

3.3 The Star Graph with All Vertices in One Color Class

An example of the star graph with all vertices in one color class and different
colors for the edges is given in Figure 3.1(c). This is a special case of the preceding

one and therefore, we have immediately that
Pg = {l(a,b,a) € L(9) | a > 0,a® — |[b]|* > 0}.

Since this is a well-known cone, called the Lorentz cone, we know also that it is self

dual and therefore
Py ={l(d,V,d) € L(G) | d > 0,(a')*> — ||t'||* > 0}.
It remains to compute Ig(d, D).

Theorem 3.3.1 For the star graph G with n leaves and all vertices in the same
color class, 6 > 0 and D = l(a’,V,a’) € P}, the normalizing constant of the colored

G-Wishart is

(n+1)6

> G I((n+1)%) 6 n ) § 1 n+6
[Q((S,D) = (n—l—l)(nzl)é(a’)(ngl)a 3(575) 2F1<(n+1)17(n+1)1+§,T,U)

2[|]]
(n+1)a’

2
where u = ( ) and B($,%) is the Beta function with argument ($,%).
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Proof. It is easy to see that

Ig(0,D) = / (/Ooa”(;;(a HZHQ) 2 exp — ;{(n+1)aa'+2<b,b'>}da) db

oll

— /n (/ooa(” iy ( — ||b|[? ) 2 exp——{(n+ )aa’+2(b,b’>}da) db

oll

Let us make the change of variables

(a,b) € (||b]], +00) x R" — (u, R,0) € (0,1) x (0,400) x S

where b = R, S is the unit sphere in R™ and a = \%. We have dadb = — - — RC, R"'dudRdf

where C,, is the surface area of S. Then

15(8,D)
Cn too (n—1)352 —(n-1)232 ps—2 L s-2 (n+1)Ra’ Ny, —3/2
= / / R R™*(——-1)2 exp—{——F + R0,V ) }u du | R*dR| df
2 Js LJo u PAVAT
+o0o 1 /
- & / ( R<" D3 (D BT R5-2(1 )52 e —{ (T L +R<9,b’>}u*3/2du) R"dR} de
2 Js lJo 2¢/u
“+oo a'
_ ﬁ/ (/ RODE-1,—)E2 8 g 3052 o pe(nt Da +<9,b’>}du) dR} a0
2 Js LJo 2\/’6
1 _ +oo /
- O W3 )t (/ RODE1 oy gy mF Da +<9,b’>}dR) du} 9
2 Js Lo 0 2v/u
F +1 8 —(n+1 s
L GOEDD [ iy () ]
s Lo 2vu
= Cn ((n+ l)g)((n""l)a/)*(nle)% X
2 2
1 N S
—(n+1)8=2_3 1— 8=2 (p41)8 1 2 0.5 *("+1)§d :|d9
L et a - et (14 ) u

n s
o [t oy 2 L
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(n+1)571 s
. T 10, 0((n+1)¢
with K, 5(a") = Es ((THE;). Therefore

()2 (@) 2

I5(6,D)
(n+ 1)%

(s 1>a/>k< X ) /0 T (R KR

_ K M)i( )" (s 03), /luz’?”—l(l—u)i—ldu/w 2% dg
i (2k)! 0 s
>

)
)
( ) )a/>2k ((n+1))'§)2k1“(k:+§();1“ )%)|]b’\|2’“(1/2)k.

n+1

k
(2k)! = (135...(2k — 1))(246...2k)

= o3 2]
22 2
1.1 1 1

= PR+ D)(5+2)(5+ (k-1
SGADG +2g + (k- 1)

= 22kk!(1> .
2/ k

Finally, since the integral is rotational symmetric, we take b’ = ||0/||e; so that (0, V) =

61]6'||. Recalling that df is the distribution of Z- when Z ~ N(0, I,,). Therefore,

[1Z1]
07 ~ Beta(1, 25F) where §; = ﬁ For v = 6y, we have
/|2 ! et 1/2
/<07 b/>2kd0 — Hlb Hn,1 / ,Uk;—%(]_ _ ’U)T_ldv — ||b/||2k( /2)k )
s 3(5, T> 0 (n/2)x
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Writing B(a, 8) for the Beta function with argument («, ), we obtain

(5.D)
= Kus(@)BG, )

. ; <(n +21)a’>2k(§k)! (s 1)g>k<(” " 1 > (g;k " |2k(’§ﬁ
= Kud)B(;, )

g (5),

N3 lolr—t

X Z <(n —1—21)a’>2k22kk’!(%)k <(n + 1)g>k<(n + 1>4 ) (n 5> I Pk( k-

N
Let u = <(ﬂl’1)‘lﬂ> . We note that since D = I(d/,V/,ad') € Pj, then u < 1. After

obvious simplifications in the expression above, we have

5 - (n+1)2) ((n+1)2+1
Ig(0,D) = Kys(a)B(3, g ZZ_( >€n_+5> 1 Q)k
2 k
- Knﬁ(a’)B(g,g) F1<(n+1)§,(n+1)g+%jn7+5;u>

The proof is completed. m

3.4 A Complete Graph on Three Vertices

This graph is represented in Figure 3.1(d). In this case, the cone Py is the set of
positive definite matrices K = (k;;)1<i j<3 With k13 = ko3. The dual cone P*(G) and

the normalizing constant Ig(d, D) are given below.

20



Proposition 3.4.1 For the graph in Figure 3.1(d), the dual of Py is

P = {D = (dij)i<ij<s € S | diz = das,

dii > 0,1 =1,2,3, diy < dy1day, 4di5 < (dyy + doy + 2d12)ds3}

Proof. We write the Cholesky decomposition of K under the form K = AA' with

ail; aiz Az

A=1| o

Qg2 Q23

0 0 as3
Expressing the k;; in terms of the a;; and imposing k13 = keg immediately show that
we must have a3 = ags. Then, let D = (d;;)1<; j<3 With di3 = da3 since the dual of

FPg must be in the same linear space as F;. We also have

(K,D) = (a%l + a%2 + ai%)dll + (agz + a%3>d22 + a§3d33
+2(ag2a12 + ai‘s)dw +4ajzassdis
aiy(diy + dag + 2d19) + 4ajzazsdis + alydyy + 2a12a99dy2

2 2 2
+a11d11 + a22d22 + CL33d33a

o1



which we view as a quadratic form a'Ma with a' = (ay3, ass, a12, ass, ass) and

diy +dos+2dis 2di3 0 0 O

2d,3 dz 0 0 0

M = 0 0 dy dip 0
0 0 dig dyp O

0 0 0 0 dnp

Since AA! is the Cholesky parametrization of Py, clearly K € Pg if and only if
a; > 0,1 =1,2,3. If we can prove the following lemma, the condition M > 0 will

yield the dual cone Pj.

Lemma 3.4.1 The tr(K, D) is positive for all K € Pg\{0} if and only if the matriz

M of the quadratic form (K, D) = a'Ma is positive definite.

Let us now prove the lemma. Clearly if M > 0, then (K, D) = a'Ma > 0 for all
a € R® and in particular for all a with a; > 0, i = 1,2,3. Conversely, let a € R5.

Then a can be written as
_ t
a = (€1<l11, €2092, €3033, A12, a13)
where ¢; is the sign of a;;,7 = 1,2,3 and we have

atMa = (a%1+a%2+a%3)d11+(a32+a%3)d22+a§3d33—|—2(62a22a12—I—a%3)d12+463a13a33d13.
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But this is also equal to a‘'Ma where

a' = (a1, |asg, lass, €2a12, €3a13)

which is in Pg. Therefore (K, D) > 0 for all K € Py if and only if M is positive
definite which translates immediately into the conditions defining Fj in Proposition

341 m

Theorem 3.4.2 For the colored graph G as in Figure 3.1(d), 6 > 0 and D € P,
the normalizing constant of the colored G-Wishart is

3544 ) O0+1.\2
Io(3,D) = 2%°70(3) (r(T)) (dhy + dao + 2dy5)

g
2

o+1

X [ds3(dy1 + dog + 2d42) — 4d%3]_6#(d11d22 - d%2)_7-

Proof. For the proof of the theorem, it will be convenient to adopt a slightly different

form of the parametrization of the Cholesky decomposition of K = AA" in Pg. Let

Aij =
— Q5 if 1 < 7,
so that
aiH—Za?l lf’L:j,
t >
(AA%);; =
—Qij4/ 5 -+ Z aiaj ifi< j

I>max(i,5)

Equating each entry k;; of K to the corresponding entry of AA" with the constraint

that k13 = ko3 shows that
53



_ 2 2 _
ki1 = a1 + afy + afs, kig = —y/axa12 + a13ass,

2

koo = age + ass, ki3 = —\/as3ais,

k33 = as3, kos = —4/@33023-

In particular, we find that asz > 0, a;3 = a3 and kig = —\/axaiz + aj3. The

Jacobian of the transformation from K to A is

k11 K12 K13 koo k33

apn | 1 0 0 0 0
arp| *  —y/axn 0 0 0
J= a| x * —V/asz 2a13 0
ag | * * * 1 0
ass \ * * * * 1
Therefore, it is easy to see |J| = |diag(J)| = a%ézaéé? We now have all the

ingredients necessary to calculate the normalizing constant Ig(d, D). We have | K| =

11022033 and

(K,D) = dyikin + dogkos + dsskss + 2di2k1a + 2di3kis + 2daskos
= dy(an + a%g + a%;),) + dao(ase + aig) + dsszass

+2d12(—+/a22012 + a13a23) + 2d13(—a13+/a33) + 2das(—ags/ass)
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and so the normalizing constant is

§=2 4§—-1 -1 1

1 1 1
[g((s, D) = / alf a,222 0,3?? exp{—§d11a11 — §d22a22 — 56133&33 — 561110,%2
A

1
—§(d11 + doy + 2d12)a2s + dioy/ag2a12 + 2d13a13+/az3 yd A,

where dA denotes the product of all differentials, a;; > 0 and a;; € R, @ < j. The
integral with respect to a;; is a gamma integral with

6—2

o b2 1
/ CLH2 exp{—éduau}dan = ng(
0

_3
2

o
§)d11 :

The integrals with respect to a;2 and a;3 are Gaussian integrals with

h 1 V2T d%,a
/ exp{—5dnaly + dizv/anas}dar, = N s { ;hfz}
- 11

and

o 1
/ exp{—i(dn -+ d22 + 2d12)a%3 + 2d13\/a33a13}da13

V 27 exp 2d%3a33 }
Vi1 + dao + 2dy2 din +dog + 2d1p°
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Therefore, it follows

Ig(éa D)

O, 5 5t 1

= F(§)22d11 2 27T(d11 + d22 + 2d12) 2
% 51 5 doy  di d33 2d2,
2 2 _es 2 2 dagad

/0 i a5 PTG g 0 Y g Ty, ) e

0 o4l 1
= F(§)2%d11 2 27T(d11 + d22 + 2d12)7§

> Ndide — &2, 2 Vdya(diy + dos + 2d1s) — A2,

) 0+1

= D)2 (dhr + dan + 21ho)’

541

X [dss(d11 + dog + 2d12) — 4d%3]_6+71(d11d22 —diy) 2

The proof is completed. =

3.5 A Decomposable Graph

This colored graph is represented in Figure 3.1(e). Then the cone Py is the set

of matrices of the form
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Proposition 3.5.1 For the colored graph G as in Figure 3.1(e), the dual cone is the

set of matrices

Pg = {D = (dij)i<ij<a € S | dog = du3, doy = dua, dyg = ds3, dridpo — diy >0,

d11 > 0, dll + 2d12 + d22 > O, d33<d11 + 2d12 + dgg) — 2(d%3 + dil) > 0}

Proof. We proceed as in the proof of Proposition 3.4.1. That is, we let K = AA!
be the Cholesky decomposition of K with A upper triangular. Equating the entries

of K and AA?! yields

23 = (13, Q24 = A14, Q44 = Q33

with

2 2 2 2 2 2
kin = aj +ajy +ajy +ajy, kg = appage + ajz + ajy, kiz = aizass. kg = ajsass,
Koy = a? 2 2 kog = ki =
92 = 59 + a3 + afy, ko3 = a13a33, K1g4 = a140a33,
2
k33 = Qgg, 3y =0,

k?44 = CL§3.
Then, ordering (K, D) as a polynomial in a;;, we see that
(K,D) = dnai, + doady + 2dssads + diraly + 2dizagsars + afs(din + 2dio + dao)

+4d13a13a33 + a3 (diy + 2d1o + dog) + 4d14a14a33
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is a quadratic form and the matrix of this quadratic form is

dig 0 0 0 0 0
0 dyp diz O 0 0
0 diz din O 0 0
M =
O O 0 2d33 2d13 2dl4
0 0 0 2diz dig + 2dia + das 0
0 0 0 2du 0 dy1 + 2dyo + doo

With exactly the same argument as in Proposition 3.4.1, we can show that (K, D) > 0
for all K € Pg if and only if M > 0, i.e. D satisfies the conditions of Proposition

3.5.1. m

Theorem 3.5.2 For the colored graph G as in Figure 3.1(e), 6 > 0 and D € Pg,

the normalizing constant of the colored G-Wishart is

3.0 0+1 _ _ 541
Ig(6,D) = 29%%p> F(é)F(Tﬂ—‘(é)(dll + day + 2d12)°H (dy1day — diy) K

X [d33(diy + das + 2d12) — 2(d75 + d7,)] 0.

Proof. As in the proof of Theorem 3.4.2, it will be convenient to adopt a slightly

different parametrization of the Cholesky decomposition of K. Let

Q5 if i =7,
Aij -
—Qy ifi < 7,
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so that the entries of AA! are given by

(AAt)ij _ I>i
—Qjj\/jj + IZ ;1041 if 1 < j
>J

Equating each entry k;; of K to the corresponding entry of AA’, we find that
kip = an +afy +afs +afy, ko = —\/ag2012 + 13093 + a14004,

ki3 = —y/asza13 + a14a34, kiy = —\/a4sa14,

_ 2 2 _

koo = age + a34 + a3y, ko3 = —y/aszao3 + a24a34,
_ _ 2

kos = —\/auaa24, k33 = ags + az,,

k34 = T4/ 44034, kag = aqq.

This shows that asy > 0 and asy = 0. Since asz > 0 and k13 = ko3, then a3 = aos.
Since agq > 0 and k14 = koy, then a4 = aoy. Since ks3y = 0, then ass = aygy. Therefore,
we obtain that

_ 2 2 2 _ 2 2
ki = an + aiy + ais + ajy, k1o = —/ Q22012 + Q73 + aiy,

k13 = ]{Z23 = —,/a33a13, k14 - k24 = —4/Q33014,
22 = Q22 + A3 + A7y, 33 = K44 = Q33.

29



The Jacobian of the transformation from K to A is

kll kl? k13 k14 k22 k33

an | 1 0 0 0 0 0

aip| *  —y/axn 0 0 0 0

; aiz| = * —/as3 0 2a13 0
R ajs | * * * —v/ass 2a14 0
oy | * * * * 1 0

asz \ * * * * * 1

It is easy to see |J| = |diag(J)| = ay)’ass. We now have all the ingredients necessary
to calculate the normalizing constant I (d, D). Through the change of variables,

K = AA". Then |K| = ajjaad3;,

(K,D) = dy1ki1 + dagkos + dsskss + dyakas + 2d12k12 + 2di3k13 + 2d14k14
+2daskos + 2dagkoy + 2ds4ksy
= du(an + a3y + ais + ai,) + daz(ass + afs + aly) + 2dszass

+2d19(—~/agaa19 + ais + aiy) + 4diz(—aiz\/az3) + 4dis(—ai4n/azs)
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and so the integral equals

Ig(éa D)
852 o s 1 L.y 1 5
= B a7 A9y Q33 GXP{ - §d11a11 - §d11a12 + d12\/ Q20012 — §(d11 + dag + 2d12)a13

1 1
+2d13a13+/az3 — §<d11 + dyy + 2dy2)a?, + 2d14a14/az3 — §d22a22 — d3zazs JdA,

where dA denotes the product of all differentials, a;; > 0 and a;; € R, i < j. Since

the integral with respect to ay; is a gamma integral, then

>

o 52 1 5 _3d
/ CLH2 eXp{—§d11a11}dCL11 = 2§F(—)d112.
0

[\

Since the integrals with respect to aq2, a13 and a4 are normal integrals, then

ex ,
Vi b 2dyy J

& 1

/ exp{_idlch%Q + digy/asaisfdas =
& 1

/ eXP{—i(dn + doy + 2d12) a2, + 2d13+/azza13}days

V2T exp 2d§3a33
Vi + das + 2dy2 diy + doo + 2d15°

and

o 1
/ exp{—é(dll -+ d22 —+ 2d12)a?4 + 2(114«/&33&14}(1@14

vV 27T { 2d%4a33
ex )
Vi + das + 2dy2 P dyy + dag + 2d;9
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Therefore, the integral becomes

Ig(éa D)
0\,8 —5f1 3 -1
= F(§)22d 1 (27T)2 (dll + d22 + 2d12>
s o dy | di, 2d%, + 2d3,
S o - 4+ —= —d dasod
X / as5 ag3 exp{( 5 + an)am + (—ds3 + dir & doy 1+ 2d12)a33} Q220033
) _ 41
= F(§)26%3d11 ’ 7T%(dll + doo + 2dy12) "
d+1 2d11 641 dyy + dag + 2d59 5
xT z I'(6
( 2 d11d22 — d%Q) ( >(d33(d11 + d22 + 2d12) — Q(d%S + d%4>>
0. 0+1 3 _
= F(i)F(T)F(é)WS?H(dH + doo + 2d12)(S !

5+1

X [d33(di1 + daz + 2d12) — 2(dT; + diy)]*(diido — d3y) ™2

The proof is completed. =
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4 Numerical Experiments for the

Metropolis-Hastings

In this chapter, we examine the effectiveness of the proposed methods. Simula-
tions are conducted in several scenarios, including various colored graphs, situations

of small p and large p.

4.1 Simulation Results for the Special Colored Graphs

In order to illustrate the performance of our MH algorithm, we conduct a nu-
merical experiment for colored graphical models represented by the colored graphs
(a) - (e) shown in Figure 3.1. In each case, for the given hyperparameters D and
9, we first derive log I(d, D), then obtain the prior mean F(K) under the colored
G-Wishart by differentiating log I;(9, D) with respect to —2. We then generate the
samples from the colored G-Wishart distribution. We run the independent chain for

5000 iterations and discard the first 1000 samples as burn in. Our estimate K for K
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1=5000 K

is the average K= ri =izt — of the remaining 4000 iterations KZ, 1 = 1001, ...,5000.

For arbitrary K and K’, we define the normalized mean square error (NMSFE) and

the normalized mean absolutely error (NM AF) between K and K’ as

K — K'||
NMSE(K,K') = I — Kl
K13
and
K — K'||
NMAE(K,K') = IIE = K7l
|72

where || K||3 is the sum of the squares of the elements of K. We repeat the previous

experiment 100 times to obtain K J,5=1,...,100 and calculate
1 100
NMSE(K,E(K NMEKJEK
and
PR

NMAE(K,E(K)) = ZNMAE(KJ E(K))

100

where E(K) is obtained by the differentiation of log I(8, D) with respect to —£ at
our given hyperparameters D and §.

For each colored graph in Figure 3.1, for an arbitrary j € {1,...,100}, we give the
traceplot of log |Kij|, 1 = 1000, ...,5000. The traceplot shows that the independent
chain seems to be mixing well. We also give the autocorrelation plot with time-lag

h for log |Kij|, ¢ = 1000, ...,5000, in function of A where, for an arbitrary given j,
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we define the autocorrelation coefficient for Y; = log |Kl-j|, ¢ = 1000, ...,5000, to be

S0 (Y, — V) (Yin — V)
25000 (Y; — }—/)2 .

1=1000

Ry =

The autocorrelation plots indicate that the samples from the MH algorithm have low
autocorrelations. The numerical values of the matrices D, E(K) and K as well as
the traceplot and autocorrelation plot of log(|K) for all five colored graphs in Figure
3.1 are given as follows.

In practice, we usually choose a small value of § and the identity matrix D as
the hyperparamters in the colored G-Wishart distribution to reduce the effect of the
priors on the likelihood. In the following simulations, we just randomly choose a ¢
and D for the five colored graphs in Figure 3.1 to illustrate the performance of the

MH algorithm.

Graph in Figure 3.1(a)

For the colored tree in Figure 3.1(a), we choose the hyperparameters 6 = 1 and
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000 0 2320

000 0 20 4
The true mean of K can be computed as
1.1294 0 0 —0.0129
0 0.5915 0 —0.0129
0 0 0.2578 —0.0129
E(K)=1 -0.0129 —0.0129 —0.0129 0.0767
0 0 0 —0.0129
0 0 0 0
0 0 0 0

0 0 0

0 0 0

0 0 0
—0.0129 0 0
0.2589 —0.0129 —0.0129
—0.0129  0.3699 0
—0.0129 0 0.2817

The sample mean of K7 for a random j and the mean of K over 100 simulations

are
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~

and E(K) =

1.1274 0 0 —0.0127 0 0 0
0 0.5961 0 —0.0127 0 0 0
0 0 0.2563 —0.0127 0 0 0
—0.0127 —-0.0127 -0.0127 0.0767 —0.0127 0 0
0 0 0 —-0.0127  0.2594 —0.0127 —-0.0127
0 0 0 0 —0.0127  0.3708 0
0 0 0 0 —0.0127 0 0.2818
1.1287 0 0 —0.0163 0 0 0
0 0.5436 0 —0.0163 0 0 0
0 0 0.26733 —0.0163 0 0 0
—-0.0163 —0.0163 —0.0163 0.0875 —0.0163 0 0
0 0 0 —0.0163 0.2596 —0.0163
0 0 0 0 —0.0163  0.4116 0
0 0 0 0 —0.0163 0

0.2825

The traceplot and the autocorrelation plot for log(|K|) are shown in Figure 4.1.

Graph in Figure 3.1(b)

For the colored star with the centre vertex of a different color in Figure 3.1(b),

we choose the hyperparameters § = 3 and
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Traceplot of Logdet Autocorrelation of Logdet
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Figure 4.1: (a) Traceplot of log(| k) v.s. the number of iterations. (b) Autocorrela-

tion plot of log(|K|) for Figure 3.1(a).

D=14 0 0 0220 0 0 0
5 0 0 0 0 25 0 0 0
6 0 0 0 0 0 25 0 0

70 0 O O O O 25 O

8 0 0 0 0 O O 0 25

The true mean of K can be computed as
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1.4778  —0.0112 —0.0225 —0.0338 —0.0451 —0.0563 —0.0676 —0.0789 —0.0902
—-0.0112  0.1015 0 0 0 0 0 0 0
—0.0225 0 0.1015 0 0 0 0 0 0
—0.0338 0 0 0.1015 0 0 0 0 0

E(K)=| -0.0451 0 0 0 0.1015 0 0 0 0
—0.0563 0 0 0 0 0.1015 0 0 0
—0.0676 0 0 0 0 0 0.1015 0 0
—0.0789 0 0 0 0 0 0 0.1015 0
—0.0902 0 0 0 0 0 0 0 0.1015

The sample mean of K7 for a random j and the mean of K over 100 simulations are

1.4690 —0.0113 —0.0223 —0.0341 —0.0455 —0.0569 —0.0677 —0.0796 —0.0905
—0.0113  0.1016 0 0 0 0 0 0 0
—0.0223 0 0.1016 0 0 0 0 0 0
—0.0341 0 0 0.1016 0 0 0 0 0

Ki=| _o.0455 0 0 0 0.1016 0 0 0 0 and
—0.0569 0 0 0 0 0.1016 0 0 0
—0.0677 0 0 0 0 0 0.1016 0 0
—0.0796 0 0 0 0 0 0 —0.1016 0
—0.0905 0 0 0 0 0 0 0 —0.1016
1.4697  —0.0114 —0.0224 —0.0340 —0.0454 —0.0569 —0.0670 —0.0793 —0.0902
—0.0114  0.1016 0 0 0 0 0 0 0
—0.0224 0 0.1016 0 0 0 0 0 0
—0.0340 0 0 0.1016 0 0 0 0 0

E(K)=| —0.0454 0 0 0 0.1016 0 0 0 0
—0.0569 0 0 0 0 0.1016 0 0 0
—0.0670 0 0 0 0 0 0.1016 0 0
—0.0793 0 0 0 0 0 0 —0.1016 0
—0.0902 0 0 0 0 0 0 0 —0.1016

The traceplot and the autocorrelation plot for log(|K|) are shown in Figure 4.2.
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Figure 4.2: Traceplot and Autocorrelation plot of log(|K|) for Graph in Figure 3.1(b).

Graph in Figure 3.1(c)

For the colored star with all vertices of the same color in Figure 3.1(c), we choose

the hyperparameters 6 = 3 and
25 9 8 7 6 5 4 3 2 1

9 2 0 0 0 0 0 0 0 O
g8 0 25 0 0 O O 0 0 O
7 0 0 25 0 0 0 0 0 O

6 0 0 0 25 0 0 0 0 O




The true mean of K can be computed as

0.1229

—0.0013
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—0.0052

—0.0065
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—0.0091

—0.0104

—0.0117

—0.0013

0.1229

0

—0.0026

0

0.1229

—0.0039 —0.0052
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0 0
0.1229 0

0 0.1229

0 0

0 0

0 0

0 0

0 0

—0.0065

0

—0.0078 —0.0091
0 0
0 0
0 0
0 0
0 0
0.1229 0
0 0.1229
0 0
0 0

—0.0104

0

0

0.1229

—0.0117

0

0.1229

The sample mean of K7 for a random j and the mean of K over 100 simulations

are

0.1223

—0.0012

—0.0027

—0.0041

—0.0055

—0.0064

—0.0077

—0.0090

—0.0102

—0.0115

—0.0012

0.1223

0

—0.0027

0

0.1223

0

—0.0041

0

0

0.1223

—0.0055
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Figure 4.3: Traceplot and Autocorrelation plot of log(| K'|) for Graph in Figure 3.1(c).

0.1225 —0.0012 —0.0028 —0.0044
—0.0012  0.1225 0 0
—0.0028 0 0.1225 0
—0.0044 0 0 0.1225
and E(R’) _ —0.0051 0 0 0
—0.0063 0 0 0
—0.0079 0 0 0
—0.0090 0 0 0
—0.0103 0 0 0
—0.0116 0 0 0

The traceplot and the autocorrelation plot for log(|K|) are shown in Figure 4.3.

Graph in Figure 3.1(d)

—0.0051 —0.0063 —0.0079
0 0 0
0 0 0
0 0 0
0.1225 0 0
0 0.1225 0
0 0 0.1225
0 0 0
0 0 0
0 0 0

—0.0090

—0.0103

—0.0116

0

0

0.1225

For the triangle with two edges of the same color in Figure 3.1(d), one hyperpa-
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Figure 4.4: Traceplot and Autocorrelation plot of log(|K|) for Graph in Figure 3.1(d).

rameter 6 = 3. The other hyperparamete D and the true mean of K are as follows

31 2 1.8108 —0.0073 —0.5517
D=1 4 2 | and E(K)=| —0.0073 14472 —0.5517
2 2 5 —0.5517 —0.5517 1.2413

The sample mean of K7 for a random j and the mean of & over 100 simulations are
1.8097 —0.0075 —0.5514
Ki=| _00075 14485 —0.5514 | and
—0.5514 —0.5514 1.2442
1.7900 —0.0054 —0.5487
E(K)=| —0.0054 14443 —0.5487

—0.5487 —0.5487 1.2487

The traceplot and the autocorrelation plot for log(|K|) are shown in Figure 4.4.
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Graph in Figure 3.1 (e)

For the decomposable graph with three different colors for edges in Figure 3.1(e),
one hyperparameter 6 = 3. The other hyperparameter D and the true mean of K

are as follows:

21 3 4 4.4631 —3.5368 —0.0189 —0.0252

11 3 4 —3.5368 8.4631 —0.0189 —0.0252
D= and F(K) =

3 3 200 O —0.0189 —0.0189 0.0157 0

4 4 0 200 —0.0252 —0.0252 0 0.0157

The sample mean of K7 for a random j and the mean of K over 100 simulations are

44714 —3.5386 —0.0192 —0.0256

—3.5386 8.4658 —0.0192 —0.0256

Ki—
—0.0192 —-0.0192 0.0158 0
—0.0256 —0.0256 0 0.0158
and
44726 —3.5374 —0.0187 —0.0258
R —3.5374 8.4658 —0.0187 —0.0258
E(K) =
—0.0187 —0.0187 0.0164 0
—0.0258 —0.0258 0 0.0164

The traceplot and the autocorrelation plot for log(|K’|) are shown in Figure 4.5.
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Figure 4.5: Traceplot and Autocorrelation plot of log(| K'|) for Graph in Figure 3.1(e).

A summary of calculations and results are given in Table 4.1 which, for all dif-
ferent five colored graphs in Figure 3.1, shows the hyperparameter 6 we chose for
the prior distribution, log Ig(d, D) and the normalized mean square errors. In order
to obtain the true mean F(K) of the colored G-Wishart distribution for the colored
graph in Figure 3.1(c), we use formula (3.1) to get the derivative of the hypergeo-
metric function ,Fy(ay,...,ap;b1,...,b,; 2) defined in Chapter 1. We see that from
Table 4.1 the normalized mean square error is of the order of 1072 or less except for

the star graph with all leaves of the same color in Figure 3.1(b).

4.2 Posterior Mean from the Simulated Data: p = 20, p = 30

In order to assess the accuracy of our MH method for larger colored graphs,
we generate data from a N(0, K~1) distribution with K given in Pg. We take the

colored G-Wishart distribution with hyperparameters 6 = 3 and D = I as the prior
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G |6 log Ig(8, D) NMSE | NMAE

)

7
(a) | 1 —3s > logal +log | 7—— — 0.0069 | 0.0517
i=1 :1((1;(1;-1_ )2 —6Y igl(a;a;-i )2 +6b

k3

(b) | 3 Tloga' — 9log(8a'd — [[V[|?) 0.0187 | 0.3196
(c) |3 —15logd’ + log oF} (%,8;6; Qg'a”,i) 0.0064 | 0.2080
d) |3 3og d — 2log(dssd — 4d%) — 21og(dyydas — d2,) 0.0005 | 0.0071

(e) | 3| 2logd — 3log(dssd — 2d2, — 2d2,) — 2log(dyydos — d2,) | 0.0009 | 0.0112

Table 4.1: For the graphs of Figure 3.1 and ¢ given: analytic expression of log Ig(d, D)
where d = dy; + dys + 2d;2, and values of NMSE(K, E(K)) and NMAE(K, E(K))

averaged over 100 experiments.
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3 50 4 50 4
(a) (b) (c)

Figure 4.6: Cycles of length 6 with three different patterns of coloring that we use
for the cycles of length p = 20 and p = 30. Black vertices or edges indicate different

arbitrary colors.

distribution of the precision matrix K. Clearly the posterior distribution will be the
colored G-Wishart distribution with parameters 0 + n and I + nS where S is the
sample covariance matrix. We will use the sampling method proposed in Chapter 2
to obtain the samples from this posterior distribution.

We conduct our experiment with six different colored graphs. For three of them,
the skeleton is a colored cycle of order p = 20 and for the other three, the skeleton
is a colored cycle of order p = 30. For each cycle of order p = 20 or p = 30, we give
three different patterns of coloring which, for the sake of saving space, are illustrated

in Figure 4.6 for p = 6. The values for the elements of K for all three types of graphs
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are given as follows:

Ki=014i=13,....2p—1, Ki=0.031i=24,...,p,

Ki,iJrl == KiJrl,i == 001, 1= 1,27 N 1, Klp = Kpl = 0.01.

For each colored graph, we generate 100 datasets from the multivariate normal
N(0, K~1) distribution. The posterior mean estimates are the sample mean of
K based on 5000 iterations after the first 1000 burn-in iterations. We denote
K = (Kij)1<ij<p as the posterior mean estimate of K.

Table 4.2 shows WSE(K , K) for the three colored models when p = 20 and
p = 30, averaged over 100 simulations. Standard errors are indicated in parentheses.
Computations were performed on a 2 core 4 threads with i5-4200U, 2.3 GHZ chips
and 8GB of RAM, running on Windows 8. We also give in Table 4.2 the computing
time per simulation in minutes.

For the colored graphs of Figure 4.6 with p = 20 and p = 30, we give the estimates
of the elements of K together with their batch standard errors. The estimates and
batch standard errors are given below for the elements of K listed in the lexicographic
order. Table 4.3 shows the estimates and batch standard errors for the precision
matrix K in Figure 4.6(a). Tables 4.4 and 4.5 illustrate the estimates and batch
standard errors for the precision matrix K in Figure 4.6(b) when p = 20, respectively.

Tables 4.6 and 4.7 show the estimates and batch standard errors for the precision
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g

p =20

NMSE(K,K) Time/sim

p =30

NMSE(K,K) Time/sim

Figure 4.6(a)
Figure 4.6(b)

Figure 4.6(c)

0.005 (0.003)
0.011 (0.003)

0.039 (0.021)

19.425

18.739

16.410

0.040 (0.021)  86.423
0.033 (0.011)  82.876

0.080 (0.033) 82.563

Table 4.2: NMSE(K, K) for the three colored models when p = 20 and p = 30.

matrix K in Figure 4.6(b) when p = 30, respectively. Tables 4.8 and 4.9 show the

estimates and batch standard errors for the precision matrix K in Figure 4.6(c) when

p = 20, respectively. Tables 4.10 and 4.11 show the estimates and batch standard

errors for the precision matrix K in Figure 4.6(c) when p = 30, respectively.

b K

K12

Ky, K

20 | 0.1040 (0.0005)

30 | 0.1223 (0.0009)

0.0103 (0.0002)

0.0121 (0.0004)

0.0104 (0.0002) 0.0313 (0.0001)

0.0125 (0.0004) 0.0361 (0.0003)

Table 4.3: The average estimates and batch standard errors for K in Figure 4.6(a).
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0.1072 0.0100 0.0096 0.0322 0.0109 0.0093 0.0102 0.0105 0.0101

0.0103 0.0099 0.0106 0.0100 0.0099 0.0109 0.0104 0.0111 0.0116

0.0104 0.0100 0.0113 0.0115

Table 4.4: The average estimates for entries of K for Figure 4.6(b) when p = 20.

0.0004 0.0005 0.0005 0.0001 0.0005 0.0005 0.0005 0.0005

0.0005 0.0005 0.0005 0.0004 0.0005 0.0004 0.0005 0.0004

0.0005 0.0005 0.0005 0.0005 0.0004 0.0005

Table 4.5: The batch standard errors for Figure 4.6(b) when p = 20.

0.1217 0.0109 0.0126 0.0366 0.0109 0.0118 0.0120 0.0120 0.0115 0.0122

0.0108 0.0121 0.0113 0.0119 0.0125 0.0114 0.0120 0.0112 0.0119 0.0131

0.0115 0.0125 0.0116 0.0132 0.0110 0.0119 0.0119 0.0107 0.0129 0.0119

0.0124 0.0119

Table 4.6: The average estimates for entries of K for Figure 4.6(b) when p = 30.
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0.0008 0.0006 0.0006 0.0003 0.0006 0.0006 0.0006 0.0006

0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006

0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006

0.0006 0.0005 0.0006 0.0005 0.0006 0.0006 0.0005 0.0005

Table 4.7: The batch standard errors for Figure 4.6(b) when p = 30.

0.1102 0.0106 0.0104 0.0347 0.1135 0.0329 0.1104 0.0335 0.1113 0.0332

0.1103 0.0326 0.1157 0.0330 0.1082 0.0333 0.1083 0.0318 0.1096 0.0326

0.1059 0.0311

Table 4.8: The average estimates for entries of K for Figure 4.6(c) when p = 20.

0.0011 0.0002 0.0002 0.0004 0.0012 0.0003 0.0011 0.0004

0.0012 0.0004 0.0012 0.0003 0.0013 0.0003 0.0012 0.0003

0.0012 0.0004 0.0011 0.0003 0.0012 0.0003

Table 4.9: The batch standard errors for Figure 4.6(c) when p = 20.
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0.1295 0.0117 0.0111 0.0384 0.1253 0.0386 0.1266 0.0376 0.1248 0.0357

0.1214 0.0358 0.1209 0.0357 0.1181 0.0358 0.1161 0.0349 0.1126 0.0345

0.1123 0.0339 0.1126 0.0338 0.1136 0.0330 0.1143 0.0323 0.1083 0.0324

0.1077 0.0318

Table 4.10: The average estimates for entries of K for Figure 4.6(c) when p = 30.

0.0013 0.0002 0.0002 0.0003 0.0012 0.0004 0.0011 0.0004

0.0011 0.0003 0.0011 0.0003 0.0013 0.0004 0.0010 0.0004

0.0011 0.0003 0.0010 0.0003 0.0010 0.0003 0.0011 0.0003

0.0010 0.0003 0.0012 0.0003 0.0010 0.0003 0.0010 0.0003

Table 4.11: The batch standard errors for Figure 4.6(c) when p = 30.
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5 Estimation of Normalizing Constants

The normalizing constant is an important quantity in model comparisons. Al-
though we can not compute the normalizing constant exactly for any arbitrary col-
ored graph, it would be worthwhile to investigate the estimation of normalizing con-
stants in an efficient manner. This chapter introduces three methods for computing
the normalizing constant of the colored G-Wishart distribution and illustrates their

application in the analysis of Fret’s heads data [Frets, 1921].
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5.1 Monte Carlo Method

According to (2.9) in Theorem 2.1.3, the normalizing constant of the colored

G-Wishart distribution can be written as
dS+5—-1 i 0Gys_1\ ~3 Y3 w2,
IQ<5> D) = / Pl H Qp i <H \IJZ_Z_Ui - )6 i=1j=i Y d\IJU(G)
=1

= QIVIHQZJ v —df 46— 1/

Pg

i=1
1 2
G . el —3 Z \I}z
= 2|V|HQP S 1/ ( H P +6_1>€ 2 ip&se
2
Pg  (i5)ev(G)e
1 2 _1 2
e -3 2 -3 > Y
x( H pPiv +5—1)e Paiena Mo PapenGrizi
2

(i,0)ev(G)

< J[ ava [ dvs (5.1)

(i9)€v(G) (i,5)€v(G),i#]

Let v1(G) = {(¢,7); (i, j) € v(G),i # j}. Then (5.1) becomes

Jv1 (&) v -
Ig(6,D) = 2M2m) = Q4 1/ h(Wo(c)e)

i=1 Fg

(i,)€v(G)

L 1y
X H \/%6 2 Y3 H d\pu H d‘;[fzj (52)

(i,)€v(G),i#] (i8)€v(G) (i,5)€v(G),i#j
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where A(W,(c):) is defined as in (2.10). Since d¥; = 10;'d(¥?%), then (5.2) becomes

p
1v1(G)| oG 451
lo(0.0) = 2Mem) = [ @ /P h(Py(cye)
=1 C
p=i=v; o 11 1 7% ..Z \Il?z
X( H \Ijm 2\11“. >e (i,5)€v(G)
(i) €v(G)

X 1:[ Qe%defo T v,

(6,5)€v(G),i#] (i) €v(G) (i,5)€v(G),i#]

ﬁ

1 (@) vG —dG+6-1
= MaMen S [T [ nar)
=1 g

(i,i)ev(G)

X

(i,)ev(G),i#j

\/_ i, H A2 H v,

(i) €v(@) (i,7)€v(G),i#j

_ (27T)‘U1;G>‘< 2pfif2v?+6r<p —of +5 ><HQp vG—dS +6— 1>

1 p*if'ui +5_ 1 2
< her) T () e
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(i,)€v(G),i#]

\/2_ N | L 2 | A (5.3)

(¢,9)€v(G) (i,5)€v(G),i#]

We are now ready to state our result about the normalizing constant for the colored

G-Wishart.

Theorem 5.1.1 Let G be an arbitrary colored graph and Ig(6, D) be the normalizing
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constant of the colored G-Wishart distribution. Then

ey p—i=vf4s p—j—vF + 4
l6.0) = (o) (] 277 rt——21=)
(i,)€v(G)

—viG—diG-l-é—l
<(TT e ) Erwaop ()]

(5.4)

where h(Vyq)e) is defined as in (2.10) and

1 g\ PV gy 1y2
f(\IJ’U(G)) - H p—i—viG-HS p—i—v.G+6 (\IJ“) 2 e 2 »
(iev(@ 2 2 ()
1 —lyg2

V2T

X
(6,)€v(G),i#]

Proof. The proof follows immediately from expression (5.3) for Ig(J, D). =

By the Law of Large Numbers, the Monte Carlo method evaluates the normalizing
constant Ig(d, D) by the formula ]lvlg:lh(‘lli(g)c), where N is a large integer, Uy,
(1,1) € v(@), are the random samples from the independent chi-squared distribution
with p —i — v + § degrees of freedom, and W,;, (i,j) € v(G), i # j, are the random

samples from the independent standard normal distribution.

5.2 Importance Sampling

According to the importance sampler, we are going to estimate the normalizing

constant IQ((Sv D) by N Z h(\DU(G)C) fo (W @)

=1
86

. Since ¥;;, (i, 7) € v(G)¢, are well defined



functions for all (i,7) € v(G), we can compute h(\Ili(Gy), [ = 1,2,

obtaining the samples V;;, (4, j) € v(G), from the density fi(Vyq))-

5.3 Laplace Approximation

The normalizing constant can be written as

14(6, D) = /K ew(Bp) T ar

(i.4)€v(@)

where P§p(K) = =2)og |K| — itr(KD).

The Laplace approximation to Ig(d, D) is

[v(G)]

I5(8, D) = exp{Fj p (K)}(2m) % | Hsp(K)[ /2

-+« , N, after

where K € Py is the mode of the colored G-Wishart and Hs p(K) is the |u(G)| x

|v(G)| Hessian matrix associated with — Py, (K). For each colour class u € v(G), let

A" be the p x p diagonal matrix with entries Aj; = 1if (4,7) € u and 0 otherwise.

Therefore,

P(—Pip(K) -2, .
K.OK. 2 tr(A"SAY).
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5.4 Simulations

We illustrate the performance of the Monte Carlo method, the importance sam-
pling method and the Laplace approximation. Let D = I, be the identity matrix. To
evaluate the performance of our Monte Carlo method and the importance sampling
method, we take 15000 sample points. The simulation results are shown in Table 5.1
and Table 5.2 using the Monte Carlo method. The NMSE(I4(6, D), I5(5, D)) are
presented in Table 5.1 for the five graphs in Fig. 3.1 for different values of 6 with 100
replications. Table 5.2 reports NMSE(Ig(d, D), Ig(6, D)) for the star graphs with
all the vertices in the same color for different p and different ¢ with 100 replications.
Standard deviations are shown in parentheses. The performance of our algorithm is
very bad for Fig. 3.1(c) and is not good for Fig. 3.1(e) when using the Monte Carlo
method.

We use the importance sampling method for Fig. 3.1(c) and Fig. 3.1(e). In Fig.
3.1(c), we sample W2, (i,i) € v(G), from the chi-square distribution with k¥ = 8,10, 12
degrees of freedom and sample ¥;;, (7,7) € v(G) and ¢ # j, from the normal dis-
tribution with zero mean and standard deviations equal to o = 0.2,0.5,0.8. In Fig.
3.1(e), we sample U2, (i,i) € v(G), from the chi-square distribution with k = 4,5,6,7
degrees of freedom and sample U,;, (4, 7) € v(G) and i # j, from the normal distribu-

tion with zero mean and standard deviations equal to o = 0.5,0.7,0.9. Table 5.3 and
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Table 5.4 show NMSE(Ig(8, D), I(0, D)) with 30 replications and 100 replications
for graphs in Fig. 3.1(c) and Fig. 3.1(e) for different k& and o, respectively. Table
5.3 show us the NMSE(Ig(0, D), Ig(6, D)) is very small when we choose k = 8 or
10, and o = 0.6 for Fig. 3.1(c). Table 5.4 show us NMSE(Ig(8, D), Ig(6, D)) is very
small when we choose k = 5 or 6, and o = 0.7 for Fig. 3.1(e). Comparing to the
Monte Carlo method, the algorithm of the importance sampling is highly efficient
for Fig. 3.1(c) and Fig. 3.1(e).

At the end, we compare the performance of the Monte Carlo method and the
Laplace approximation. Table 5.5 and Table 5.6 report NMSE(Ig(, D), Ig(d, D))
of normalizing constants in Fig. 3.1 for different § when we use the Monte Carlo
method and the Laplace approximation, respectively. The results indicate that the
Monte Carlo method works very much better than the Laplace approximation for
Figs. 3.1(a), (b) and (d). However, for Figs. 3.1(c) and (e), both of two methods

don’t give a good estimation.

5.5 Real Data Analysis

We use the Monte Carlo method and the Laplace approximation to compute the
normalizing constant to perform a model search for Fret’s heads dataset in Frets

[1921]. The data consist of measurements in millimetres of the length and breadth
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§  Fig 3.1(a)  Fig. 3.1(b) Fig. 3.1(c) Fig. 3.1(d) Fig. 3.1(e)
1 2506x107* 2178 x 107*  587.721  4.703 x 10°  11.007
(0.019) (0.016) (25.329) (0.008) (1.034)
3 1.018x107* 7.337x 1075 35671  2420x 1075 0.563
(1.361 x 104 (0.010) (1.453) (0.007) (0.144)
5 6813 x 107 6538  1.962x 10™°  0.120
(0.009) (0.548) (0.006) (0.084)
7 9.016 x 10°  1.780  1.662x 1077  0.037
(0.011) (0.105) (0.005) (0.062)

Table 5.1: NMSE(Ig(5, D), Ig(6, D)) for graphs in Fig. 3.1 using the Monte Carlo

method.

of the heads of 25 random pairs of first and second sons. We compare the 12 colored
graphs shown in Fig. 5.1. Whittaker [1990] shows the model represented by the
uncolored graph in Fig. 5.1(a) fits the data very well. The analyses in Hgjsgaard
and Lauritzen [2008] support the models represented by graphs in Fig. 5.1(b) and
Fig. 5.1(c) comparing the saturated model using the likelihood ratio test. The
Edwards-Havranek model selection procedure in Gehrmann [2011] arrives at 9 min-

imally accepted models represented by the graphs in Figs. 5.1(d)-5.1(1). The model
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o p=2 p=3 p=4 p=5

1 0.176 0.994 32838  9.049
(0.172)  (0.352) (0.637) (1.252)
3 0.017 0.111  0.381  1.001
(0.037)  (0.075) (0.121) (0.194)
5 0.003 0.021  0.075  0.207
(0.023)  (0.042) (0.069) (0.101)
7 5349 x107* 0.018  0.019  0.053

(0.013)  (0.027) (0.044) (0.069)

Table 5.2: NMSE(Ig(8, D), I5(5, D)) for the star graph with all the vertices in the

same color using the Monte Carlo method.

presented in Fig. 5.1(1) gives the lowest BIC value among the 9 models.

We here use the Bayes factors to compare the 12 models presented in Fig. 5.1.
In the prior colored G-Wishart distribution, the hyperparameters 6 = 3,10 and
D = I;. In order to obtain the estimated normalizing constants using the Monte
Carlo method, we take 15000 sample points. For the normalizing constant of the
posterior distribution, we always use the Monte Carlo method to get the estimate.

For the estimation of the normalizing constant of the prior distribution, we use two
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k 0=02 oc=05 o0c=0.8

8 4528 0003  0.237
(3.764)  (0.063) (0.082)
10 0.726  0.004  0.097
(0.461) (0.073) (0.283)
120932 0011  0.205

(0.868) (0.107) (0.438)

Table 5.3: NMSE(Ig(6, D), Ig(5, D)) for the graph in Fig. 3.1(c) using the impor-

tance sampling when 0 = 3 and D = I,.

methods to compute them. One is the Monte Carlo method while the other one is
the Laplace approximation. For both methods, the results of the model selection
are the exactly same. Tables 5.7 and 5.8 show the estimation of the normalizing
constant using the Monte Carlo method and the Laplace approximation for § = 3
and 0 = 10, respectively. Tables 5.9 and 5.10 report the marginal probability of the
posterior distribution using the Monte Carlo method and the Laplace approximation,
respectively. Both methods select the same most likely models for the same 6. The
most three likely models are Fig. 5.1(k), Fig. 5.1(b) and Fig. 5.1(1) for 6 = 3, and

for 6 = 10, the most three likely models are Fig. 5.1(1), Fig. 5.1(k) and Fig. 5.1(b).
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L1 L2 L1 L2 L1 L2 L1 L2

e ® ®
oo @ ®
BI1 B2 BI B2  BI B2  BI B2
(a) (b) () (d)
L1 L2 L1 L2 L1 L2 L1 L2
BI1 B2 BI B2 Bl B2 Bl B2

L2 Li L2 L1 L2 L1 L2

|

B1 B2 Bl B2 B1 B2 B1 B2

(i) §)) (k) (1)

Figure 5.1: Possible colored graphs supported by Fret’s heads data. L1: The head
length of the eldest son; B1l: The head breadth of the eldest son; L2: The head

length of the second son; B2: The head breadth of the second son.
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k oc0=05 o0=07 0=09

4 0108  0.032  0.093
(0.299)  (0.009) (0.013)
5 0.097 0016  0.044
(0.494)  (0.014) (0.013)
6 0020 0013  0.030
(0.067)  (0.031)  (0.039)
70219 0056  0.028

(1.796)  (0.290) (0.049)

Table 5.4: NMSE(fg((S, D), Ig(6, D)) for the graph in Fig. 3.1(e) using the impor-

tance sampling when § = 3 and D = I,.

0 Fig. 3.1(a) Fig. 3.1(b) Fig. 3.1(c) Fig. 3.1(d) Fig. 3.1(e)

3 0.521 0.760 50.426 0.566 0.620
5 0.307 36.465 0.192 0.219
7 0.156 15.247 0.093 0.108

Table 5.5: NMSE(Ig(6, D), I(5, D)) for the graphs in Fig. 3.1 using the Laplace

approximation.
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d Fig. 3.1(a)  Fig. 3.1(b) Fig. 3.1(c) Fig. 3.1(d) Fig. 3.1(e)

3 1.328x107° 3.197 x 1070 32.416 2.288 x 1077 0.568
5 1.048 x 10~* 6.779 1.050 x 107° 0.119

7 1.115 x 10~ 1.699 6.984 x 1077 0.038

Table 5.6: NMSE(Ig(6, D), Ig(8, D)) for the graphs in Fig. 3.1 using the Monte

Carlo sampling.
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Fig. 5.1(a) Fig. 5.1(b) Fig. 5.1(c) Fig. 5.1(d)

posterior 1.191x10717  4.966x1071%2  9.758x1072% 1.554x107204
prior (MC) 1.052x10* 33.200 0.443 5.938
prior (Laplace) 843.704 9.469 0.245 2.056
Fig. 5.1(e) Fig. 5.1(f) Fig. 5.1(g) Fig. 5.1(h)
posterior 6.997x107173  1.035x1071%%  6.981x107216  4.622x1072°
prior (MC) 2.526x 103 2.530x 103 243.525 242.603
prior (Laplace) 336.589 336.589 47.475 47.475
Fig. 5.1()  Fig. 5.1()  Fig. 5.1(k)  Fig. 5.1()
posterior < 1073% < 1073% 9.594x 10711 9.285x1071%6
prior (MC) 38.623 9.179 8.315 2.282
prior (Laplace) 13.392 3.777 3.777 1.065

Table 5.7: The normalizing constants for the graphs in Fig. 5.1 for § = 3.
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Fig. 5.1(a) Fig. 5.1(b) Fig. 5.1(c) Fig. 5.1(d)

posterior 5.014x 107187 2.042x10180 < 107300 2.941x10727
prior (MC) | 1.248x10'  4.665x10''  5.475x10%  3.794x10%
prior (Laplace) | 8.088x10 4.012x 10 4.596x 10% 3.080x 1010
Fig. 5.1(e) Fig. 5.1(f) Fig. 5.1(g) Fig. 5.1(h)

posterior < 1073% 3.785x 107191 3.239x107%5  6.423x1072%°
prior (MC) 1.608x 10 1.605x 10 7.334x 102 7.389x 10*2
prior (Laplace) | 1.141x10" 1.141x10% 5.689x 102 5.689x 10"
Fig. 5.1()  Fig. 5.1()  Fig. 5.1(k)  Fig. 5.1()

posterior < 1073% < 1073% 2.421x1071  3.697x107180
prior (MC) 6.424x 10" 6.361x10%° 6.297x1010 6.446x 10°
prior (Laplace) | 5.674x10! 5.659x 101 5.659x 101 5.644x10°

Table 5.8: The normalizing constants for the graphs in Fig. 5.1 for 6 = 10.
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0 | Fig. 5.1(a) Fig. 5.1(b) Fig. 5.1(c) Fig. 5.1(d)
3 | 1.133x107161 1.496x 107153 2.202x1072% 2.618x1072%
10 | 4.016x107202  4.378x 107192 < 107300 7.753x107288
Fig. 5.1(e) Fig. 5.1(f) Fig. 5.1(g) Fig. 5.1(h)
3 | 2.770x107176  4.092x107162  2.867x10721% 1.905x1072%8
10 < 107300 2.358x10720°  4.417x10728  8.693x 1072
Fig. 5.1()  Fig. 5.1()  Fig. 5.1(k)  Fig. 5.1(1)
3 < 107300 < 10730 1.154x107 11 4.068x10~1%¢
10 < 107300 < 107300 3.845x107199  5.736x 10719

Table 5.9: The marginal probability of the posterior distribution for the graphs in

Fig. 5.1 using the Monte Carlo method.
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0 | Fig. 5.1(a) Fig. 5.1(b) Fig. 5.1(c) Fig. 5.1(d)
3 | 1.412x107160 52441071  3.975x1072%  7.559x1072%
10 | 6.200x10720%  5.091x 1012 < 107300 9.549x 10288
Fig. 5.1(e) Fig. 5.1(f) Fig. 5.1(g) Fig. 5.1(h)
3 ]12.079x1071  3.076x10711  1.471x107217 9.736x1072%8
10 < 107300 3.318x1072%  5.695x1072%  1.129x 107292
Fig. 5.1()  Fig. 5.1()  Fig. 5.1(k)  Fig. 5.1(1)
3 < 107300 < 10730 2.540x 10711 8.713x 107156
10 < 107300 < 107300 4.279x107199  6.551x 10719

Table 5.10: The marginal probability of the posterior distribution for the graphs in

Fig. 5.1 using the Laplace approximation.

99



6 Precision Estimation in High-dimensional

Models

6.1 Bayesian Estimation in Large Dimensions

Recently, covariance estimation in graphical Gaussian models in high dimensional
settings with relatively small sample sizes has attracted more and more attentions.
However, traditional estimation methods often rely on the expensive inference of
global models and can not be implemented efficiently. To conquer these challenges, a
general framework for distributed algorithms, in which both data and estimation are
distributed across the vertices of the underlying graph, is developed based on com-
bining local and inexpensive estimators. The distributed algorithm is usually directly
applicable to practically sized problem because of its attractive properties, including

low computational cost and low communication cost across the local models.
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6.1.1 Distributed Algorithms in Graphical Gaussian Models

Meng et al. [2014] considered the distributed estimation of the precision matrix
K in graphical Gaussian models based on the maximum likelihood estimation. The
distributed algorithms in Meng et al. [2014] determined the global estimator of K by
splitting the global estimator into low-dimensional local estimators. Their approach
estimated the local parameters by maximizing the marginal likelihood corresponding
to each vertex and its neighborhood in the underlying graph.

Now we briefly introduce their method here. Define the set of immediate neigh-
bours of the given vertex ¢ € V as ne(i) = {j|(¢,j) € E}. Then the one-hop
neighbourhood and two-hop neighbourhood can be defined as N; = {i} Une(i) and
N; ={i}Une(i)U{k | (k,j) € E,j € ne(i)}, respectively. The local marginal model
for X' = {X,,v € N;} is defined as the graphical Gaussian model with the precision

matrix denoted by K¢ which can be evaluated through
K'=(nw) = Knon, = Knorw Ky vl ™ Ky, (6.1)

Denote B; = {j|j € N;, ne(j) N (V\N;) # 0} as the buffer set and P; = N;\B; as

the protected set, which are illustrated in Figure 6.1(b). The Markov property of a
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random vector X with respect to G implies Kp, y\n, = 0. Therefore, we have that

IC%»;,'PZ' IC%DZ',BZ' KPi,Pi K’Pi,Bi 0 0

i i ~1
K. p, Kb, s, Kp,», Kb, B 0 Kgp, v\, (Kv\vwv) ™ K, s,

This shows that the local parameters of K' indexed by (P;, P;) and (P;, B;) are
totally preserved and equal to the corresponding global parameters. However, this
claim does not hold for the parameters indexed by (B;, B;).

Based on these observations, Meng et al. [2014] defined relaxed local graphs as
follows. Denote a local graph corresponding to the given vertex i by G; = (IV;, E;)
where

Ei =FEnN {{’Pl X PZ} U {PZ X Bl} U {Bz X 731}} U {Bl X Bl}

In the local graph G, the zero constraints of the edges in E;\{B;, B;} are the same
as the corresponding constraints in the global graph . The edges in B; x B; are
arbitrary without any constraint. An illustration of these local graphs is given in
Figure 6.1(c). Each relaxed local model corresponding to the vertex 7 is a graphical
Gaussian model with respect to the local graph G;. In each relaxed local model, the
MLE K will be used to estimate K. Then the estimate of local parameters can be
obtained by extracting the elements in Ki corresponding to the vertex ¢ and edges

adjacent to vertex i. Meng et al. [2014] also proved that the proposed distributed
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Figure 6.1: (a) The underlying graph. (b) The colors of the buffer set and the
protected set are blue and red, respectively. The two-hop neighbourhood for vertex i
is indicated with dashed contours. (c¢) The graphs representing the one-hop relaxed
model (left) and the two-hop relaxed model (right). Dotted lines denote edges not

existing in the original underlying graph.

estimate of K in graphical Gaussian models is asymptotically consistent when the
number of variables p is fixed and the sample size n grows to infinity. Furthermore,
the convergence rate to the true parameters was derived when both p and n go to

infinity.

6.1.2 Bayesian Estimation and Large Deviation

In a Bayesian framework, we consider the distributed estimation of the precision
matrix K in large colored graphical Gaussian models. Since the colored G-Wishart

distribution is a member of exponential families, we can use the strategy proposed in
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Ghosal [2000] to study the asymptotic properties of our distributed estimate. In fact,
Ghosal [2000] considered the consistency of the posterior mean of the parameters in
an exponential family when both p and n go to infinity. Suppose the p-dimensional
independent random samples X1, Xy, ..., X,, are from the exponential family with

the density
f(@:0) = exp{z'0 — ¥(0)}.
Denote = 9'(6p) and F' = 1" (6y) where 0 is the true value of the parameter 0. Let

J be a square root of F. Moreover, let u = \/nJ(6 — ) and A,, = \/nJ " (z — p)
x;. Under some conditions, Ghosal [2000] proved that
=1

where 7 = %

2

[l (@) = os A 1) 2 0 62)

where 7*(u) is the posterior distribution and ¢(u; A, I,) is the density of multi-
variate normal N(A,,I,). It follows that the posterior mean of the parameter is
asymptotically normal and asymptotically efficient when both p and n increase to
infinity. The proof can be achieved by expressing the left-hand side of (6.2) as a
sum of three terms and locating the corresponding upper bounds for the three terms
separately. In each term, the only random component is ||A,|| and ||A,|| = O,(/p)
by Chebyshev’s inequality.

We will use the above technique in our proofs for the local relaxed models. Never-

theless, every vertex in the global graph corresponds to a local relaxed model. If we
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allow the number of vertices increases to infinity, there is an infinite number of local
models. In order to use Bonferroni inequality to bound the overall error between the
distributed estimate and the true value of the parameter 6 in probability, we need to
know the exact tail probability of P(||A,|| > ¢p), where ¢ is a constant. This requires
us to establish a new large deviation result for ||A,||. Fortunately, Gao and Carroll
[2015] proposed the cumulant boundedness conditions for the large deviation results
based on the quadratic forms [Spokoiny and Zhilova, 2013]. We next briefly intro-
duce their idea. Let £ be a random vector and B be a matrix. Then ||B¢|| follows a
general quadratic form and the deviation probability for quadratic forms ||B&|| was
established by Spokoiny and Zhilova [2013] under the following exponential moment

condition
log Elexp{~y'¢}] < [[[*/2, yeR, |hW|<g

where g is a positive constant.
Gao and Carroll [2015] introduced a cumulant boundedness condition and proved
that the exponential moment condition in Spokoiny and Zhilova [2013] can be satis-

fied asymptotically under the cumulant boundedness condition.

Definition 6.1.1 [Cumulant Boundedness Condition, Gao and Carroll, 2015] Let
Ch, Cy and C5 be constants. For a random vector Z of dimension m, let g(y) denote

its cumulant generation function, where v denotes an m dimensional vector. Assume
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the first two derivatives of its cumulant generating function satisfy |889—§7)|7:0| <
J

9%9(v)
070k

and | ly=o| < Cy. Assume further that there exists a constant § such that with
l|7]] < 0, the absolute value of all the third derivatives of its cumulant generating

function satisfy |%| < C5 foralll1 <j k1 <m.
J

Based on the cumulant boundedness condition, Gao and Carroll [2015] proved
the following asymptotical exponential moment condition, which provides a toolbox
for calculating the deviation probability bound of ||A,|| using the large deviation

results in Spokoiny and Zhilova [2013].

Theorem 6.1.1 [Gao and Carroll, 2015] Let Z;,;i = 1,2,...,n, be independently
distributed random vectors of dimension m with zero mean and identity covariance
matrices and n = \/Lﬁ Zzn:l Z;. If each random vector Z; satisfies the cumulant bound-
edness condition with the same bounds and p*logp = o(n), then log E[exp{y'n}] <

a|[¥]12/2 for ||vl| < (p*logp)/? with some constant a* > 1 when n is sufficiently

large.

This result implies that if the cumulant boundedness condition holds, we will be
able to apply large deviation results in Spokoiny and Zhilova [2013] to the proof of the
asymptotic properties of the distributed estimate in the colored graphical Gaussian

models.
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6.2 Distributed Estimation in Large Colored Graphical Mod-

els

Distributed estimation methods have recently been given for computing the max-
imum likelihood estimate of the precision matrix K in large graphical Gaussian
models. Our aim, in this chapter, is to give a distributed Bayesian estimate of the
precision matrix K in large colored graphical Gaussian models. In each local relaxed
model, we take the sample posterior mean of the precision matrix as our estimate
of the precision matrix. The simulation results show that the distributed Bayesian

estimate performs very well when the number of variable p is large.

6.2.1 Local Relaxed Marginal Models

For a given vertex ¢ € V', define the set of immediate neighbors of vertex i as
ne(i) = {j|(i,7) € E}. For each vertex i € V, we consider two types of neigh-
bourhoods of the vertex ¢, the so-called one-hop and two-hop neighbourhood. The
one-hop neighbourhood N; = {i} U ne(i) is made up of the vertex i and the ver-
tices directly connected to it. The two-hop neighbourhood N; = {i} U ne(i) U {k |
(k,j) € E,j € ne(i)} consists of the vertex 4, its neighbours and the neighbours of
the neighbours. Without the risk of confusion, we let N; be either a one-hop or two-

hop neighbourhood. We consider the local marginal model for Xy, = {X,,v € N;}
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which is abbreviated as X®. This is a graphical Gaussian model with the precision

matrix denoted by K¢. Then we have that

K'=(Enn) " = Knon — Enow K]~ K- (6.3)
Based on the collection of vertices NN; and its complement set V\N;, we partition
the set N; further into two subsets. One is the buffer set denoted as B; = {j|j € N;
and ne(j) N (V\N;) # 0}, which are the vertices having edges connecting to the
complement of N; in V. The other is the protected set denoted as P; = N;\B;,

which contains the vertices in N; that are not directly connected to V\N;. Since the

distribution of X is Markov with respect to G, then we have that Xp, L Xy,

Xp

2

and it follows that

Kp,v\n; = 0. (6.4)
Then equation (6.3) becomes
pp Kp,s,
Kp.p Kb.s,
Kp,p, Kp, B, Kp, N,
= - (Kv\wirw) ™ ( Kv\n,pi K\, B )
Kp,p, Kp, B Kp, v\~
B Kp,p, Kp, s, 0 0
Kp,», Kp,.B 0 Kp v\ (Kv\wvw) " Ky, s,
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where the 0’s in the matrix above follows from the identity (6.4). Therefore, we

obtain the following relationships

1 _ 7 —
ICPi,Pi - Kpiﬂ’w Pi,Bi — KPini7

’CiBhBi = Kp, B, — KBi,V\Ni(KV\Ni,V\Ni)ilKV\Ni,Bi-

This shows that the local parameters of K’ indexed by (P;,P;) and (P;, B;) are
equal to the corresponding global parameters but the same does not hold for the
parameters indexed by (B;, B;). This important observation above motivates us to
use the N;-marginal local models to estimate those parameters which are identical
in both local and global models.

We denote by G; the colored graph with vertex set N; and edge set
Ei =FEnN {{Pl X Pz} U {'Pz X Bz} U {BZ X 'Pz}} U {Bz X BZ}

In G;, the colors of the vertices in N; \ B; are the same as the corresponding colors in
G. The colors of the edges in E;\{B;, B;} are the same as the corresponding colors
in G. The colors of the vertices in B; and the edges in B; x B; are arbitrary without
any constraint. Let K* be the precision matrix of this relaxed local marginal model.

We thus keep the important relationships

) )
]C'Pi,'Pi = KPZ-,'P ]C'Pi,Bi = Kpi,Bi

77
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and have a local graphical Gaussian model with the canonical parameter K on which
we can put a local colored G-Wishart distribution as the prior. In each local model
Markov with respect to G;, ¢ € {1,2,...,p}, we use the method developed in Chapter
2 to obtain the Bayesian estimator K, the sample posterior mean of K with the
colored G-Wishart prior.

Next, we will show how to construct a distributed Bayesian estimate based on
the local models. Let 6 = (6y,,0v,,...,0v.,08,,05,,...,05;)" denote the global
parameter, that is the “free” entries of K which represent the vertex class or the edge
class, and let 0 be its true value. In each local model G;, we define the local parameter
as 0" = (01,05,...,0% )", the vector of free entries of K*, and the corresponding local
estimator as 6. The true value of 6’ is denoted by 6. Furthermore, we collapse all

the local parameters into one vector
0= ((0"),(6%,.... ("))

and its true value is denoted as 6. After obtaining the local estimators, a distributed

estimate of § can be constructed as

éVk ng 9_ | |ZZ(9 191 =0y, - k=1,2,....T,
k i€V j=1
and
gEk:gEk 2|Ek| Zzezlgz =0, k=1,2,...,5,

i€eGy j=1
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where Gy, = {i|3h € N;, (i,h) € E)}. Define the global distributed Bayesian estimate

é = 9(9) = (gV1 (9)7 gVQ(Q)’ cee 7gVT(9)7 9E, (9)’ 9E, (0)7 -, 9Eg (9))t

6.2.2 Simulations

In order to illustrate the performance of our proposed distributed Bayesian es-
timate of K, we conduct a number of experiments using simulated data. For each
simulation, we compute the distributed estimator using relaxed local marginal models
built on the “one-hop” and on the “two-hop” neighbourhoods of each i € {1,2,...,p}.
We choose the colored G-Wishart distribution as the prior with hyperparameters
D' =1, and §" =3 for all i € {1,2,...,p}. The corresponding estimators are called
the MBE-1hop and MBE-2hop estimates of K respectively. We consider seven dif-
ferent colored graphical Gaussian models. The underlying graph of three of those
models are colored cycles of length p = 20 with alternate vertex and edge colors as
indicated in Figure 4.6 (a), (b) and (c). Three other models have the same type of
underlying colored graphs but the colored cycles are of length p = 30. The underly-
ing graph of the seventh model is a 10 x 10 grid with colors as shown in Figure 6.2.
For both the colored cycles and the 10 x 10 grid, black edges or vertices indicate that
there is no color constraint on edges or vertices. For the sake of comparisons, for

models represented by the colored cycles of order 20 or 30, we also compute the global
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Bayesian estimate of the precision matrix K, denoted by GBE, using the method
given in Chapter 2. Since asymptotically, the posterior mean of K is expected to
be close to the maximum likelihood estimate of K, for all colored models, we also
compute the global MLE of K, denoted by GMLE.

The values of (K;;)1<i j<p used for the simulation for models represented by col-
ored graphs as given in Figure 4.6 (a), (b) and (c) are given in Table 6.1. For
the 10 x 10 colored grid-graph of Figure 6.2, we chose Kijio(j—1),i+1+410(j—1) = 1 for
i=1,2,...,9and j = 1,2,...,10, Kit10(j-1),i+10; = 14+0.01i4-0.15 fori = 1,2,...,10
and j =1,2,...,9 and K;; = 10+ 0.017 for « = 1,2,...,100. The posterior mean
estimates of K obtained from the MH algorithm are based on 5000 iterations after
the first 1000 burn-in iterations.

12

Table 6.2 shows the normalized mean square error NMSE(K, K) = IR K

jxe - for

the six models with the colored cycles as underlying graphs. Values are averaged
over 100 data sets from the multivariate normal N (0, K~!) distribution. We repeat
the simulations 100 times. Standard deviations are shown in parentheses. From
these results, we see that our MBE-1hop and MBE-2hop estimates perform very
well compared to the global estimate GBE. In Figure 6.3 we give the graphs of
NMSE (K' , K) in the function of the sample size, for different sample sizes ranging

from 50 to 100 for the four models with underlying graphs the colored cycles of
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(a)

Figure 6.2: The 10 x 10 colored grid graph. Black vertices or edges indicate different

arbitrary colors.

length p = 20 and the 10 x 10 grid. We see that the MLE and the GBE consistently
yield the smallest and largest NMSE (K , K) respectively with the MBE-1hop and
MBE-2hop, and the N]WSE(K7 K) of MBE-2hop is always smaller than that of the
MBE-1hop. As expected, as n increases, all NMSE(K, K) tend to the same value.

Computations are performed on a 2 core 4 thread processor with i5-4200U, 2.3
GHZ chips and 8 GB of RAM, running on Windows 8. The computing times for the
estimates of K are given in minutes in Table 6.3 for the six models with cycles as
underlying graphs. We can see that the computation times for the MBE-1hop and

MBE 2-hop are much smaller than for the GBE.
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Figure 6.3: NMSE in K for different colored graphical models. (a) NMSE for the
colored graph in Figure 4.6 (a) when p = 20. (b) NMSE for the colored graph in
Figure 4.6 (b) when p = 20. (c) NMSE for the colored graph in Figure 4.6 (c¢) when

p = 20. (d) NMSE for the colored lattice graph in Figure 6.2 when p = 100.
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parameters Figure 4.6 (a) Figure 4.6 (b) Figure 4.6 (c)

Ki(i=1,3,...,2p—1) 0.1 0.1 0.140.1i
Ki (i=2,4,...,p) 0.03 0.3 0.03+0.014
Kiji1 =K, (1=1,3,....2p—1) 0.01 0.01+0.0017 0.01
Kiji1 =K (1=2,4,...,p—2) 0.02 0.01-+0.002i 0.02
K, =Ky 0.02 0.01 0.02

Table 6.1: The parameters chosen for the matrix K for producing Figure 4.6.

p G MBE _1hop MBE _2hop GBE

(a) 0.0162 (0.0155) 0.0032 (0.0027) 0.0110 (0.0102)
20 (b) 0.0256 (0.0153) 0.0148 (0.0058) 0.0237 (0.0189)

() 0.0375 (0.0283) 0.0305 (0.0142) 0.0308 (0.0241)

(a) 0.0098 (0.0070) 0.0017(0.0014) 0.0317 (0.0571)
30 (b) 0.0234 (0.0088) 0.0151(0.0054) 0.0482 (0.0533)

(¢) 0.0379 (0.0127) 0.0308 (0.0086) 0.0823 (0.0257)

Table 6.2: NMSE(K, K) for the three colored models when p = 20 and p = 30.
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p G MBE_lhop MBE 2hop GBE

(a)  0.365 3.410  21.875
20 (b)  1.047 3.353  16.249
(¢)  0.944 3.054 15513
(a)  1.442 4952 83.965
30 (b)  1.538 4557 80.255
(¢)  1.504 4509  79.918

Table 6.3: Timing for the three colored models when p = 20 and p = 30.
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7 Asymptotic Analysis of Distributed Bayesian

Estimation

We study the asymptotic behaviour of the distributed estimate proposed in Chap-
ter 6 under the regular asymptotic regime when the number of variables p is fixed
and under the double asymptotic regimes when both p and the sample size n are
large.

When the number of variables p is fixed, we obtain the limiting distribution of
the estimator, which can be used to approximate the density of the estimator in a
large samples. The approximate distribution is necessary for statistical inference:
confidence interval and hypothesis tests. We can see that the asymptotic variance
of the estimator decreases as the sample size n increases. That means the estimator
can estimate the true value very well when the sample size is large enough. This also
implies the consistency of the distributed estimator.

When the number of variables p grows with the sample size n, we compute the
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upper bound of the distance between the estimator and the true value. Under certain
growth restrictions on p, the upper bound shows the accuracy of the estimator.
Condition (4) below implies that p grows much slower than n when the number of
variables in the local models goes to infinity. However, in practice, the local graphs
are very sparse and of low dimension. Therefore, condition (4) can be relaxed to
condition (4*) to obtain a smaller upper bound.

We also show in particular, that when the number of parameters in the local
models is uniformly bounded, the convergence rate we obtain for the asymptotic
consistency, in the Frobenius norm, of our estimate of the precision matrix compares
well with the convergence rate in previous literature for the maximum likelihood

estimate.

7.1 Bayesian Estimator When p Is Fixed and n — oo

In each local model corresponding to the vertex i € {1,2,...,p}, let L*(#°) and
[(0") denote the likelihood and log likelihood, respectively. The Fisher information

is denoted by I'(0") = Egi[-2:1°(0"| X ") [-2;1}(6?| X")]"]. Define a S;-dimensional vector

207 07
o (67| X P
Ui, = \%[[’(96)]*1% bidi forj=1,...,nandi=1,...,p, a ;Si-dimensional
vector U; = (Uf;,Us;, ..., Up;)" and G = nCov(Uy). For each v, r = 1,2,...,S;, let

8% be the S; x S; indicator matrix with (§%), = 1 if K}; = 6% and 0 otherwise. The
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following theorem shows that the global estimator has the property of asymptotic
normality when the number of variables p is fixed and the sample size n goes to
infinity.
Theorem 7.1.1 Let 6y, 0, 0 and G be defined above. Then

\/ﬁ(é—é’o)iN(O,A) as  m— oo
where A = —-é—(?(—g_—)
Proof. Foranyi € {1,2,...,p}, we have that /n(6'—67) = /n(0'—=T%)++/n(T'—6})

where T = 0+ L[1¢(g;)] 1 201

. It then follows from Theorem 8.3 in Lehmann

91

and Casella [1998] that /n(6" — T7) £> 0. Furthermore, we have

0i= Z U”

with E[U;] = 0for j =1,2,---,n. Next, we compute the covariance matrix Cov(Uy)

Vil - o) = = 280,

with (7, k) entry

X, ot XY
Qi |9 =0} (

CovUa, ) = ~1I'05)) " B2 P L 3T (AY

Based on the definition of the indicator matrix §¢,

5 1
90:(

|7'1|

tr(01K5), e (9 K), -+ =t (95, o))

|7'2| |Tsi|

where 7! is the numbers of elements belonging to the r-th color class in K}. Since

X" has a multivariate normal distribution N (0, (K§)~!), we have

oI (0" X1)
90!

L siprin- L sivrig v
= 5”(5]'(}(0) - §tr(5jX1(X1)t).

0i=0;
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oU (9°|X1)
001

(21D |
0i=0i\~ 90k  |gk=gk

Therefore, the (¢, m) entry of E [

)] in (7.1) is

o' (6| X7)
00

1 o 1 R
- Ztr(ézilf)) x tr(6k vb) — Ztr(éng) x tr(0F E[XF(XHY)

o1 (6"|xb)
9i296 aefn ‘9’%9{;]

|

(85 58) x (BB OX)]) 4+ Bler(GL (X)) x or(d, XE (X))

where X} = (K¢)™! and 3F = (K%)™'. According to Isserlis’ Theorem, we have that

E[X1aX16X1:X14] = (30)ab(30)ed + (X0)ac(X0)pa + (X0)ad(E0)se-

Therefore, each entry of nCov(U;) is well-defined. By Multivariate Central Limit

Theorem, we have /n(0 — ;) LN N(0,G) as n — oo, where G = nCov(U;). As

g(#), based on Delta method, we have that /n(6 — 6,) £ N(0,A) where

SS
|

All proofs of lemmas and propositions used in the proofs of theorems of this
chapter are given in the Appendix A. We now establish an asymptotic result similar
to Theorem 7.1.1 but with the MLE replacing the posterior mean of K. Based on
the same local models, we compute the local MLE 0 of §' from the local models and

obtain a distributed MLE for the global model, which is denoted by g,
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Theorem 7.1.2 Let 6 be the distributed MLE. Then
Vi —0,) 5 N@©0,A) as n—0
where A is defined as in Theorem 7.1.1 above.

Proof. For any i € {1,2,...,p}, we use the well known result for MLE as follows

Vil = of) = St S

J=1

+ R (7.2)

01=0}
where R* % 0 as n — oo. Comparing identity (7.2) with (7.1) in Theorem 7.1.1, the
result of Theorem 7.1.2 follows. m

The distributed MLE is calculated by the method of Meng et al. [2014] using
the local relaxed marginal models defined above. We thus see that the distributed

Bayesian estimator 6 we proposed has the same limiting distribution as the dis-

tributed MLE 6.

7.2 Bayesian Estimator When p — oo and n — o

In this section, we study the consistency of the global estimator 6 when both p

and n go to infinity. For a p X p matrix A, let ||A||r be its Frobenius norm defined
p P

by ||Allr (Z Z |aji]? )2. In the local model Markov with respect to G; as defined
j: :

in Section 6.2.1 above, we write the density of X’:, j=1,2,...,n,as
\Kz\z exp{ KXI(Xl) )}

(27T)
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where p; = |N;|. The normalized local colored G-Wishart distribution of K* is

denoted by

. o . 1 - 1 o
¢ K’L (51 DZ ey B e——— KZ (6172)/2 ——t KlDl 1 i
m ( | ’ ) I(Z_;Z((;Z,DZ)| eXp{ 2 T( )} K'ePg,>»

where I}, (0*, D") is the normalizing constant. In order to obtain our asymptotic
results, we will follow an argument similar to that of Ghosal [2000] which gives the
asymptotic distribution of the posterior mean of K when both the dimension p of the
model and the sample size n grow to co. Ghosal [2000] considers a random variable

X with the density belonging to the natural exponential family

f(2:8) oc expla’d — ¥ (0)],

where x is the canonical statistic, # is the canonical parameter and (6) is the
cumulant generating function. Following the notations of Ghosal [2000], we define

an S;-dimensional vector

J

Y/ = _5(”<51Xj(xj)t)a tr(62Xj(Xj)t)7 . atr@sin(Xj)t))t? (7.3)

where 07,05, --- , 0%, are indicator matrices for each color class and j = 1,2,...,n.

The distribution of Y;’ is as follows
i i 1 ivigvingy | L i it i i
JY);KY) o exp | — 5757"([( X3H(X7) )+§10g!K ] = exp [(Y])'0" —(6")]
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where ¥(6%) = —%log|Ki| is the cumulant generating function. From standard

properties of natural exponential families, we have that
p=05) and  F'="(6)) (7.4)

are the mean vector and the covariance matrix of Y;-", 7 =1,2,... n, respectively.

Let J* be a square root of F' i.e. J'(J')! = F*. Let
V= ()1 - Eu(Y)) r5)

be the standardized version of the canonical statistic. Following Ghosal [2000], for

any constant ¢, ¢ > 0, we define

B () = sup{EplaV; (" a € B flall = 1, 70" ~ 65)| < ©)
and

Bio(e) = sup{Byla'Vi[* - a € B [l = 1L/ — g3)|1> < ).
Define also

u' = /nJ (0" — 6}),
then ' = 6} + n~Y2(J")~*u’. Therefore, the likelihood ratio can be written as a

function of u' in the following form

[T £(Vi:6) 1
Zi(u') = T = exp{ V(Y (T) M — [0 + n () ) — (0]},
[T f(Y};65)
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where Y* = £ 37 ¥/ Furthermore, we denote
J=1

AL = V()T = i), (7.6)
The following four conditions will be assumed.

(1) The orders of logp and logn are the same, i.e. 1252 — ¢ > 0 as n — oo.

logn

(2) There exists two constants £1 and kg such that 0 < k1 < Apin(Ko) < Apaz(Ko) <

Ko < 00.

(3) For any i € {1,2,...,p}, the numbers 7 of the entries K;k in the same color

class is bounded.

(4) As p — 0, the sample size satisfies the rate ]DBLFW — 0.

n2

Remark 7.2.1 Condition (2) implies 0 < é < Amin(Z0) < Anaz(Bo) < £ < 0.

K1

By the interlacing property of eigenvalues, we have that 0 < = < X\pin((Zo)n,n,) <

K2

Amaz((Z0) N, N;) < Ril < oo where N; is defined as in Section 6.2.1. Therefore,

0 < k1 < Anin((Zo)nyv;) ™1 < Mnaz (Z0) v v, ) ™! < ko < 0. By the definition (6.3),

for any i € {1,2,...,p}, we have 0 < K1 < Apin(KY) < Mpaz (K3) < Ko < 00.

Our aim in this section is to prove that under Conditions (1)-(4) when both p and
n are large, the distributed estimator 6 tends to 6, in Frobenius norm with probability

tending to 1. Ghosal [2000] considered the consistency of the posterior mean of K
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for the exponential family. The convergence rate depends on three expressions which
added together yield an upper bound of the overall error ||#—6||. In each expression,
the only random component is ||A%|| and [|AL]] = O,(p). However, we have an
infinite number of local models. In order to use Bonferroni inequality to bound the
overall error probability, we need to know the exact tail probability of P(||A®|| > cp),
where c is a constant. This leads us to establish a new large deviation result for ||A? ||

in Lemma A.1.3. We now state the asymptotic consistency of our proposed estimator
in Theorem 7.2.1.
Theorem 7.2.1 Under Conditions (1)-(4), there exists a constant ¢* such that

p

vn

with probability greater than 1 — 10.4 exp{—%p2 logp + log p}.

116 — 6|| < =

Proof. In this theorem, we study the consistency of 6 in the context of Frobenius
norm. In order to do this, first, we evaluate the norm ||#” — 8} ||> in each local model.

Since |[/nJ (01 —00)|2 = n(6F — 08 (J) T —01) > ndpin (F?)||6F — 612, we obtain

N pil)2 < il i N2
16" — Gol]* < Mmm( )H\/_J(G 6)|
I 1(F)HN / u'[rl(u') — ¢(u'; AL, Is,)]du’||* by Lemma A.1.7
< (FZ H nHQJrH/ plul; Al [Si)]duiHQ) (7.7)
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where ¢(+;v,Y%) stands for the multivariate normal density of N(v,Y) and 7’ (u’)
stands for the posterior distribution of u!. Next, for every element of the vector
Juilri(ut) — ¢(u’y AL, Ig,)]du’ in (7.7), we will find out its upper bound. Denote
u' = (uf,ub, - ,uf )", Then for the j-th element of [ u'[r(u’) — ¢(u'; AL, Ig,)]du’,

we have that

[l — ot al Iolda < [ i () - o' AL Tl (79

Let Zi (u') = exp[(u’)' Al — L||u’||?] and M (p) = p*logp. According to the argument
of Theorem 2.3 in Ghosal [2000], the integral [ |[u’||[7%(u") — ¢(u’; AL, Ig,)]du’ in

(7.8) can be bounded by a sum of three integrals as follows.

du’

[l i) = o(u's A1 1)
L R o Rt

7.9
) [ G Zaw ) 79
+f”’““2>CM || - Z2 (w7 (8 + 2 (J)) L) du? (7.10)
[ 7(68) Zi (ui) dui .
+/ [[u'llé(u's Ay, 15, )du (7.11)
[|w?]|2>cM (p)
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where ¢ is defined in Lemma A.1.5. By Lemmas A.1.4, A.1.5 and A.1.6, [ |[u]] X

|7t (u?) — d(u'; Al Is,)|du’ can be bounded by

ptlogp

NG

2 2
+ exp[—co(c)p® log p] + — —da?+4 | (/3.2 ot

A(p, n, C) = C5<C) \/ﬁp \/%

with probability greater than 1 — 10.4 exp{—%pz}. Consequently,

/ ulml(u') — p(u's AL, Is)ldu' - < A(p,n, c)

with probability greater than 1—10.4 exp{—#p?}. Since the dimension of [ u’[r’ (u’)—

(ut; Al Ig)]du’ is S;, from the inequality (7.7) and Lemma A.1.3, we get

1 3@2 2 Sz
LA

Gi _pi)2 < i
16" = 6ll” = )\mm(Fz)< n n

A(p,n, c))

with probability greater than 1 — 10.4 exp{—%pQ}. Finally, we will estimate the
Frobenius norm ||@ — 6| for the distributed estimator § in terms of ||#* — 6}|| from

the local model. By Proposition A.1.1, for any i € {1,2,...,p}, Apin(F') > 5.
2
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Therefore, we have

P
16 — 6] < |0 — 6ol < (Z 16" — 96\\2)% by triangle inequality
i=1
b 1 3a’p® S, z
3a*p*  p*(p+1) 3
< {B[=E+ B apn o)}

with probability greater than 1 —10.4p exp{—%pQ} by the Bonferroni inequality. Fur-
thermore, Condition (4) implies A(p,n,c) — 0. Therefore, there exists a constant ¢*

such that

3a2p3 . P2(p + 1)0(1)} }5

o
19—l < {m3[= =

Njw  ——

« P
C —

IN
S

with probability greater than 1 — 10.4exp{—%p® +logp} - 1. =

7.3 Bayesian Estimator When Dimensions of Local Models

Bounded

We investigated in Section 7.2 the asymptotic behaviour of 6 when S; is un-
bounded under the double asymptotic regimes. In this Section, we assume that the

dimension S; in the local models is bounded and we will see that for 8 to be close
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to 6y, n must grow as a power of log p rather than as a power of p. Furthermore, we

assume the following conditions:

(4*) The orders of log p and logn satisfy that 1222 — ¢, 0 < ¢ < 1, as n — 0.

logn
(5) The number of parameters in each local model is bounded by a constant S*,
le. 5; < S*i1e{l,2,...,p}.

The main result of this section is Theorem 7.3.1 stated below.

Theorem 7.3.1 Under Conditions (2), (4*) and (5), there exists a constant ¢ such

that
1
p2logp

vn

with probability greater than 1 — 10.4 exp{—3 log® p + log p}.

||9~—90|| <q

For the convenience, we now point out the main difference between the proofs of
Theorems 7.2.1 and 7.3.1.

(a) Under Conditions (2), (4*) and (5), for any ¢ € {1,2,...,p}, the quantities
log | F| in Proposition A.1.3, By, (c) and BS (¢), i =1,2,...,p, in Proposition A.1.6
are all uniformly bounded because the number of parameters in each local model is
uniformly bounded and the eigenvalues of K* are uniformly bounded from above and
below.

(b) The equivalent of Lemma A.1.2 under our new boundedness condition is

Lemma A.1.8 where ||7'|| < p is replaced by the condition ||v*|| < log p.
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(c) The equivalent of Lemma A.1.3 is Lemma A.1.9, the large deviation result is
established for ||A?||? > 3a?*(log p)? rather than ||A[|? > 3a?p®.

(d) When S; is unbounded, in Theorem 2.1 of Ghosal [2000], the fact that
|AL||2 > 3a2p? with probability 1 — ¢ implies n||#" — 0i|]> > bp? with the same
probability 1 —&, where 6 is the MLE and b is a constant. For S; bounded, using the
new large deviation result ||A?|]* > 3a*(log p)? in (c) above, we have the new result
of n|[f" — 6}]|> > V'(logp)? with probability greater than 1 — 10.4exp{—1(logp)?},
where b’ is a constant (See Lemma A.1.10).

(e) As a consequence of our choice ||7!|| < logpin (b) above, the threshold M (p) =
p?logp in the proof of Theorem 7.2.1 can be replaced by M (p) = (log p)?(loglog p).

Proof. The proof follows the same line as that of Theorem 7.2.1. Our aim is to
find the upper bound for the three terms (7.9), (7.10) and (7.11).

1. A bound for (7.9): Under Condition (5), the Lipschitz continuity in Propo-

sition A.1.5 becomes |log 7 (6") — log 7 (0})| < MS*||0° — 60}|| when [|6° — 0)|] <

VII(FD=L[eM (p) /n. We choose M (p) = log® p(log log p), then ¢! (c) = O(M)

1
and fi(||A%l],c) = O(bg‘gp(b%p)j) in Lemma A.1.4. Therefore, following the

same proof of Lemma A.1.4, we have that there exists a constant c¢f(c) such that
Ri(||AL]],¢) < cg(c)w% with probability greater than 1—10.4 exp{—1 log® p}.

Condition (4*) implies bgm% — 0 as p — o0.
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2. A bound for (7.10): According to Lemma A.1.10 and following the same proof
of Lemma 2.2 of Ghosal [2000], with probability greater than 1—10.4 exp{—¢ log” p},
we have Z!(u') < exp[—1iclog?p(loglogp)] on ||uf[|*> > cM(p). Following the same
proof as that of Lemma A.1.5, there exists a constant ¢ and a constant cy(c) such

that
Ry(||AL]] ¢) < exp[—cy(c) M (p)]
with probability greater than 1 — 10.4 exp{—g¢ log? p}.

3. A bound for (7.11): According to Lemma A.1.6, for M(p) = log” p(loglogp),

we have

2 a P A/ 1 4a D
/ ||| p(ul; AL Is,)du! < 250 ey | 2V3S logp -ty
[[w?[]>>cM (p) Vv 27T V2T

with probability greater than 1 — 10.4 exp{—% log® p}.

Combining the above results, we have

7 _— S;

Vn Vo Vo

with probability greater than 1 — 10.4 exp{—% log? p}. Tt follows

~ 3a2 log? S; 3
0=ooll < {m[E—5L 4 2 A0,

. VPlogp
=

with probability greater than 1 — 10.4p exp{—% log® p} by the Bonferroni inequality.

4 2 / i @
A(p,n,c) = CQ(C)—log ploglogp+€_c,9(c)M(p)+ 25i 67% 2v3a?3 logp : 2M(p)

The condition (4*) implies ‘[\lﬁgp — 0 as p — oo. This completes the proof. =
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1
Remark 7.3.1 We note that the error bound ’L\/‘%gp in Theorem 7.3.1 is smaller
3
than that % in Theorem 7.2.1. Also the rate of growth for the sample size is in

terms of powers of log p rather than p as in Section 7.2.

Remark 7.3.2 As in Meng et al. [201}], we assume that the graph structure is

2
known. When S; < S*, the error bound in our case is of the order B2 which

n

compares well with the order P52 in Meng et al. [2014]. The sample size requirement

n

bgm% — 0 s slightly more demanding than Meng’s condition of n > log p.
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8 Conclusions and Future Work

In this chapter, we summarize the results in this thesis and also point out some

problems for future research.

8.1 Conclusions

In this thesis, we investigated the sampling methods of the colored G-Wishart
distribution and the precision matrix estimation under a Bayesian framework.

We proposed a conjugate prior for the colored graphical Gaussian models. Such
prior is called the colored G-Wishart distribution. One of the major contributions
of the thesis is the proposal of a sampling method from the colored G-Wishart
distribution, based on the Metropolis-Hastings algorithm. The proposed sampling
method makes it possible to obtain the estimation of the posterior mean of K which
is used for the Bayesian estimation of the precision matrix.

In order to illustrate the validity of the proposed Metropolis-Hastings algorithm,
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we also investigated the issue of computing the expected value of the precision matrix
on the colored G-Wishart distribution for some particular colored graphs. These
colored graphs are the colored tree, two types of colored stars, one colored complete
graph with 3 vertices and one non-decomposable graph with 4 vertices. For all of
these colored graphs, we compared the expected values of the precision matrix K with
the sample mean of K obtained from the Metropolis-Hastings algorithm. Through
a number of numerical experiments, we found that the Bayesian estimator for the
precision matrix provides a good estimate of the true value.

We further developed a fast algorithm for estimating the precision matrix in
large colored graphical Gaussian models. The parallel algorithm is suitable for high-
dimensional applications and computationally efficient. The distributed algorithm
split the high-dimensional global model into p different low-dimensional local models.
Each vertex corresponds to one local model based on its neighborhood. In each local
model, the estimate of the local precision matrix was obtained by the Metropolis-
Hastings algorithm algorithm we proposed. The global estimate was defined as the
average of corresponding local estimates in order to satisfy the symmetric property
of the precision matrix. We also derived asymptotic properties for the proposed
distributed Bayesian estimator, as well as the convergence rate when the dimension

of the model is large. Results from simulation studies have shown the accuracy and
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efficiency of the proposed estimators in various settings.

Finally, in this thesis, we proposed three methods for estimating the normalizing
constants of the colored G-Wishart distribution for any arbitrary colored graph:
the Monte Carlo method, the importance sampling and the Laplace approximation.
Moreover, we applied these methods to the study of heredity of head dimensions
[Frets, 1921]. In this real data analysis, we compute the marginal probability of
the data for each colored graph G. The marginal probability is the ratio of the
normalizing constant of the posterior distribution and the normalizing constant for
the prior distribution. Both the Monte Carlo method and the Laplace approximation
were used to estimate the normalizing constant of the colored G-Wishart distribution

for different choices of ¢.

8.2 Future Work

Our proposed sampling method in Chapter 2 involves the matrix completion step
for every update of the Cholesky components of the precision matrix. However, the
matrix completion step is conducted iteratively and time-consuming. For the model
with increasingly large dimensions, the computational requirement of the matrix
completion step becomes increasingly burdensome. An interesting future direction

would be developing a new sampling method from the colored G-Wishart distribu-
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tion which can reduce the computational complexity. In my thesis, we assume the
structure of the colored graphical models is known. Based on this assumption, we
developed the Bayesian estimator of the precision matrix. However, we sometimes
do not have enough statistical information for the structure of the underlying graphs
in practice. Therefore, another topic worth investigating is the model selection. The
graphical model selection problem can be reduced to the problem of estimating the
zero-pattern and equal-pattern of the precision matrix. The existing method for the
simultaneous clustering and feature selection in a regression would be adapted to the

graphical model selection.
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A Appendix

A.1 Proofs Used in Chapter 7

Here we provide the lemmas and their proofs used in Chapter 7. We let
Ui = ()Y — ) (A1)

fore=1,2,...,p, and j = 1,2,...,n. We now want to show the large deviation
result for A%. To do so, we need to show that the cumulant boundedness condition
is satisfied by U] (Lemma A.1.1). This will allow us to show that A satisfy the
exponential moment condition (Lemma A.1.2). In Lemma A.1.3, we obtain the large

deviation result for A?.

Lemma A.1.1 For any i € {1,2,...,p}, there exist constants n and Cy such that
under Conditions (2) and (3), for ||v'|| < n and for all1 < k,l,m < S;, the absolute

value of all the third derivatives of the cumulant generating function G, (v") of [_J;
J
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satisfy
G ()
Yj

D — §C27 j:1,2,n
‘8%287?5%

Proof. Let Y} be defined in (7.3) and G%(y’) = log E(e")Y7) be the cumulant
generating function of Yy Let +* be a S;-dimensional vector, by Theorem 3.2.3 in

Muirhead [1982], the moment generating function of Y} is
M'(v') = E{exp[(v")'Y]1} = L, + T" (") S5 2
where T*(7*) is a p; X p; matrix with 77, = v;, if K/ 5 = ;. Therefore, the cumulant

generating function G%,,(v") of Y} is given by

Gyi(v') = log M*(7") = —5 log [y, + T (") 2]

It is easy to obtain the first, second and third derivative of the cumulant generating

function G%,; (7%), which can be expressed as

5’G§/i(7i) 1
J - __ o) i1—1/ i\

i 2t7’<[lpi+T(7 )20] (5k20))a
82G§n‘(7i) 1
— = —tr(6Xi[L, + T (SNSRI, + TSt d
o = o (S + TGS OIS + TG ) an
agGl}i(”Yi) 1
—— = ——tr (X[, + T (Y)ZE] (0 B (L, + T (v)Sh) (6; %8
graugr — ot (RSl + TGOS I 0 + TN 6

X[, + TSR ™ + 6, + T ) S0~ 6120y, + T (7))
X (8, S Ip, + T' (4],
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respectively. First, Condition (2) implies A0 (25) < i. By Proposition A.1.2, the
absolute value of each element of X, is bounded by . Next, by Z N (A)] < ||A]lr
=

and ||AB|| < ||AB||r < ||A||r]|B]| for any two p X p symmetric matrix, we have that
NS < T RIS < mys I6 implies 1 — o < NI, + T°(7)Ep) <
1 41 Moreover, according to Lemma A.1.13, I, + T"(7")% is a positive definite.
Therefore, by Proposition A.1.2 again, the absolute value of each element of [I,,, +
T ()]~ is bounded. Finally, combining the above results and Condition (3), for

83G1 ( 1)

any ¢ € {1,2,...,p}, there exists a constant C; such that |W <

for any

k,m,l. Since the cumulant generating function of U ; is

Gy (v") = log Ble 0 = GL(7)7) = (1)'()

893G . ( z)

It follows that there exists a constant Cy such that |

W\<sz0r|h!!<?7 m

Lemma A.1.2 Let A} and U be as defined in (7.6) and (A.1), respectively. Let Cy

be as in Lemma A.1.1. Then, under Conditions (2)-(4), for any arbitrary constant

a such that a* > 1, we have that zf C”’ <a-—1, then as n — oo,

A (1) = log (B{expl(V) L)) < @l 122 for [Wll<p.  (A2)
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Proof. By a Taylor expansion of G, (") around 0, there exists a vector v** on the
J

line segment between 0 and ¢ such that

S 0Gy(7) S S 0°Gri(v)
L | U:
Gp:(v') = )+ ) (=) + 5 — i hi=0).
Uj Z; a,yk v ) k 2 L ( 87]7%8'7/; Y ) kIl
&S S GG
IS (G i
0 k=1 I=1 m=1 0797197
_ . aG%i (")
Since U; has zero mean and identity covariance matrices, then # i
k
oG (v") PG, ()
- = S R ~
o = [ and oo = Furthermore, since

ij;-(()) =0, we have

S S5 0G0
N 1 iNE i 1 U;
Gp(r) = S0 5D 1(—3%3%18%

iz ) VeV Vo

By the definition (7.6), we have A’ = \/iﬁ 221 U!. Since the moment generating func-
j:

tion of U] is exp G : (7%), then the moment generating function of A? is

i i ('Yi)t% Enl [ n 71 ti7i
Bl = Ble A =] Bl

j=1
o 11 &S PG
= eXP{§(7)”Y +6_n k:1; 1(m 72—71*)7k717m}

Since ||y . Moreover, Condition (4) implies

7= — 0, and thus ||\}—HH < 7 for n large enough. Therefore, by Lemma A.1.1, there
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PG (F7)

exists a constant Cy such that ’ < (5. It follows

VIO,
E[e0"A0] < exp{l( )iy l—i 53 %2%1’71}
2 6\/_ k=1 =1 m=1

= e {50971 %;7=§: I}

Therefore, for any arbitrary constant a such that a® > 1, if 12 3 47 < a® — 1,
then we have

log E[eV™] < a?||'|*/2
Actually, the inequality 3 i C2 Z 7. < a®* — 1 holds under Condition (4). Since

[[7'|] < p, we have |v: | < ||7|| < p for any 1 < m < S;. Therefore, according to

Condition (4), we have

1 02 Z = o(1).

s
It implies £52 3~ 4/ < a? — 1 for any constant a with ¢ > 1. m

m=1

Lemma A.1.3 Under Conditions (2)-(4), for anyi € {1,2,...,p} andn sufficiently

large, there exists a constant a, a®> > 1, such that
Q2 2.2 1,
P{[|AR]]" > 3a’p"} < 104 exp{—cp7}

where Al is defined as in (7.6).
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Proof. According to Lemma A.1.2, we have

log (E{exp[(V)'ALl}) < a®ll[F/2 for Il <p

where a is a constant with a®> > 1. Let g = ap and ¢} = ay’, then the subsequent
inequality holds

i

A . .
log(E{expl()'—]}) <lalPP/2 for Al <4

Next we apply the large deviation result from Corollary 3.2 in Spokoiny and Zhilova
[2013]. Following the notations in Spokoiny and Zhilova [2013], we introduce w!

satisfying the equation % = 95;1/2. Based on w’, we define x’, = 0.55;[(w’)?* —
+H(wi)2)2

log(1 + (w?)?)]. Since ¢* = a’*p* > # > S;, by the arguments in Spokoiny and

[

Zhilova [2013], we have z > 1g? = 1a?p®. Let x = 1p?, then 2i < p2+.p <z <2l

By Corollary 3.2 in Spokoiny and Zhilova [2013], the following inequality holds

i

Ai 1
P(||==|1? > S; + 6.6 x 6p?) < e P 4 8.4e
a

Y

which implies P(H%Hz > 3p?) < 10.4e~ 67" Hence, P(||AL||2 > 3a2p?) < 10.4e 67",

which means [|AL]]> = O,(p?). m

n

The next four lemmas are used to complete the proof of Theorem 7.2.1.

Lemma A.1.4 Under Conditions (2)-(4), for any given i € {1,2,...,p} and for
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any given constant c, there exists a constant cs(c) such that

fﬂ’ i (ut)du? B N

with probability greater than 1 — 10.4 exp{—%p2}.
Proof. Let Q' denote the set {u;||[u’||> < cM(p)}. We get that

[/7Ti(93)Z~Z;(1f)dui]‘1 [[u'[[ - [ (0 + n= () ) Z3 (u”) = 7 (0) Z,, (u') | du
Qi

o 4 . i(pi —1/2¢ yiy=1,4y o
- ([ 7O Ziwhan ,Huluw”(eﬁfﬂ(@i;” ) 75 (w) - 240 i 0
i (91+n—1/2 J’L 1
Sup U i z 1 i i
sup {1 } o2 fo I 1Z4(0) = Ziu '

N [ Zi(ui)dui [ Zi(ui)dui

Since M (p) = [[u'||* = [[V/nJ'(6" = 65)[1* = nAmin (F7)[16" — 65] %, then ||6" — ]| <
w. By Proposition A.1.1, we have x? < [|(F")7!] < k2. Based on
Condition (4), @ — 0. Therefore, ||6" — 6|| — 0. Using the fact |e” — 1| < 2|z

for sufficiently small |z| and Proposition A.1.5, we obtain

N R CA P 2cMyka M (p)p
sup {1+ TAEL Iy} <o /artaplo oy < 20
0
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where M, is a constant. We also have that
Jor Ziluydn' Jo Ziu)dul + [y (Z3(0) = Zi(ul '
[ Zi (i) [ Z(u)du

~ A\ 1 oo ~ .
< v ([ zona) " [ iz - Zi

According to Lemma 2.3 in Ghosal [2000], we can obtain

([ Zitwan) /Q 123 = Zi(ud) ' < F(IALL ) (A1)

where
PSS = (@t + (- 26e) AL (- 200)
(AL
X exp {W}?
and
Ple) = gl M) B 0) + oM () B, (o)

Furthermore, since ||u’|| < y/cM(p), by the inequality (A.4), it is easy to see that

Jo

|| | 23 () — Zi () du
[ Zi(ui)du

< VeM@p)f(IALL ).

Combining the above results, we can show that the LHS in (A.3) is bounded by

Ry(|[AL]], ) = QCMl’jﬁM(p)pu P ] + VTR (1AL c).
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According to Proposition A.1.6, we have Bi (0) = O(p?) and Bgn(c@) = O(p"?).

Therefore, there exist two constants ¢; and ¢, such that

; 1, (eM(p)) %Clp
Al < LA e

_1wﬂ@50006\%§
-6 Jn [Veer + e NG J- (A.5)

Since the first term in (A.5) is the dominating term, then there exists a constant
i p'%logp e i

c3(c) such that ¢! (c) < 03(0)7. By Condition (4), we have that ¢! (c) — 0.

Furthermore, using the fact (1—2)™! < 2 and —log(1 —z) < 2z for sufficiently small

v i 7 i
z, we have [1 — 201 (¢)]™F < 2 and ¢ (ZFDle (1-20) < e(F+D40()  Therefore,

the following inequality holds

PUIALLE) < Gh@l? + 2185 Flexpl (2 + Dagh (@)} exp {265 011AL ).

According to Lemma A.1.3, we see that P(||AL|]* < 3a?p?) > 1 — 10.4 exp{—3p*}.

Therefore,

FlALlLe) < Cs(C)M[pz + 6a’p*] exp {03(0)

p'*Iogp
Vn Vn

(6a°p® + 2p* + 4)}

with probability greater than 1 — 10.4 exp{—%p2}. By Condition (4), we have that

1og L(6a*p? + 2p® + 2) — 0. Therefore, exp {03(0)’%(4612]92 +2p* + 2)} < 2.
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It follows

p'*VIogp
Vn

ALl e) < 2(1+ 6a%)es(c)
with probability greater than 1 — 10.4exp{—¢p®}. Let cs(c) = 2(1 4 6a®)cs(c),
then fi(||A%]],c) < 04(0)1)127 VI8P with probability greater than 1 — 10.4exp{—1p?}.

Furthermore, we can get

: 2cMi k2 M (p)p p*ylogp p'Vlogp
Ri([|AL]le) = [1+ ca(c) ]+ VeM(p)ea(e)——=—
n n n
vn vn 1 vn
2c M kop? log p N p3logp 2c M, kop?log? p

= \/ﬁ \/ﬁ [64(6) \/ﬁ + \/504(C)IA6)

with probability greater than 1 — 10.4 exp{—%pQ}. It is easy to see that the third
term in (A.6) is the dominating term. Therefore, there exists a constant c;(c) such
that Ry(||AL]],¢) < cﬂc)% with probability greater than 1 — 10.4 exp{—3p*}.

The proof is completed. =

Lemma A.1.5 Under Conditions (2)-(4), there exists a constant ¢ large enough and

a constant co(c) such that for any given i € {1,2,...,p},

it |[W]T (0 4+ 02 (T " ) ZE (u) du?
Jiwetpserrr o ) < expl—co(c)p? log ]
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with probability greater than 1 — 10.4 exp{—3p®}.

Proof. Let
i f||ui||2>cM(p) || |7 (0 +n~2 () ') ZE (u') du’
RQ(HAnH?C) = T, p
S m(66)Z; (u)du
i TGN T i
_ fllui||2>cM(p) [Jul] = 7 (0) Zy,(u')du
- 1|2
(271-)51-/2 exp[”AgH ]

According to Lemma 2.2 in Ghosal [2000], we have that Z!(u) < exp[—1cp®logp]
with probability greater than 1 — 10.4exp{—3p®}. Let 7}(6") denotes the non-

normalized local colored G-Wishart distribution. Then we obtain that

Ry([|AL]], )

exp[—5cp®log p|
il]2
(27T>Si/2 eXp[IIASII ]

N ANy
V(0 = 0y)|| 207 2 g o
VBT = )1 gL

S; 1 1 o
< exp[; logn + 5 log | F*| — Zsz log p — log m,(65)

S
lvnJi (0 —05)|1>>cM (p

4 log / | VAT (6 — 60)|m(6")d6] (A7)
[|v/nJ (08 —05)[]2>cM (p)
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with probability greater than 1 —10.4 exp{—%pz}. By Proposition A.1.4 and Lemma

A.1.15, we have that

()

, S, 1 1 1
By([[An]] €)= exp[logn + 5 log [ F] — —cp?logp + Spiia — pilog k1

4 2 2

+M;p* log p]

with probability greater than 1 — 10.4 exp{—%pQ}. By Condition (1), logn and logp
are of the same order. Furthermore, Proposition A.1.3 implies log|F?| = O(p?).
Therefore, there exists a constant cg such that log |F?| < cgp®. It follows the RHS in
(A.7) is bounded by the following term

p(p+1) 1 1 1 5t —2
4

pilog k1 + Mzp*log p]

logp + =cep® — ~cp*log p + =pikiz —

exp| 2 1 2 2

with probability greater than 1 — 10.4 exp{—%pz}. Furthermore, there exists a con-

stant cg such that

Ry(|| ALl 0) < exp[2Z log p — Lep?log p + Mzp® log p + csp? log p)

with probability greater than 1 — 10.4 exp{—%pQ}. We can choose a constant ¢ big

enough such that cy(c) = c+cg+ M7 < 0. Tt immediately implies Ry (||AL]], ¢) <

1 1
171
exp|—cy(c)p? log p] with probability greater than 1 — 10.4 exp{—%p2}. [ |
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Lemma A.1.6 Under Conditions (2)-(4), for any given i € {1,2,...,p} and for

any constant ¢ such that ¢ > 11a® and a® > 1, we have

, 2 2 2 2
HU H‘b(u Az ) du’ S _p74a +4 4 /36L2 p74a +3
/Iui||2>cM( ) Vim V2T

with probability greater than 1 — 10.4 exp{—%pQ}.

Proof. First we observe that

/ [ (u's A, s, )
[[ut]]2>cM (p)

< / (Il — AN (s Al I, )du + / 1AL Ip(u's AL, Ts,)dud
[|u?]|2>cM (p)

[lw*][?>cM (p)

Let v* = u* — A?

n’

since [[v']|* + [|AL]? > [[v* + AL[[? = [[u'[|* > cM(p), then
immediately |[v’||? > cM(p) — ||A%|]>. By Lemma A.1.3, we can see that ||A?||? <
3a?p? with probability greater than 1 — 10.4 exp{—3p*} with a® > 1. As ¢ is chosen
that ¢ > 11a?, we can get |[v'||> > cM(p) — ||AL]|*? > ¢M(p) — 3a*p? > (11a* —

3a?)p*logp = 8a’p*logp with probability greater than 1 — 10.4exp{—¢p?}. Thus
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the following inequality holds with probability greater than 1 — 10.4 exp{—zp*}

/ | (Il = AN (s AL, I, )du
[|u?]|2>cM (p)

/ ol |6(v's 0, Is,)dv’
[[vi+AL[[2>cM (p)

where v/ is the j-th element of v*. We also have that

S Si S;
/ [vi|p(v"; 0, Is,)dv" < Z
[[v?][2>8a% M (p) j=1 k=1

RSt -1 /(vi)2>8a2 M (p)

0, Ig,)dv" + 5;
M(p) ‘Uk,gb(v S) U * Z/sil /(vi)2>8a

|,sz|¢(vlu 07 ISi)dUiv

[0 (e';0, I, )

S

k3

5 M(p) ‘U; W(UZ; O’ Isi)dvl
S
. (vk)2 .
S; . T2 du;
/(v£)2>8a2MS<f) |Uk| ,—27T6 U,
1 wp? o] wh?
+S; / e 2 dvl/ vl e~ 2 duvt
1 wH2
251»/ v e 2 du
vi>,/8a2%ip) g V2 g
1 (vi)? ) R | (v%)?2 .
+SZ~Z2 ) e 2 dvfg[Z/ v ¢ e dvj]
P2k Jui>y/8a2 gt u 0 m
< 25»/ v L e’(vé)zdvi
l vi>‘/8a2m k\/271' F
1 wp? . < 1 G
/ e_ 2 dv,i[Z/ v} e” 2 dvj]
> 8a2M(p) 0 27'['
o
i v, ——¢€ v v} e v
vi> SaZ%ip) g 2T g £k 0 ! 2m !
1 _ 8a2M(p) 1 1 8a2 M (p) 1 2
28i——e = [1+4(S—1)2—=] <257——¢ = < 2p'——p
V2T | ( ) Vi 27r] V2T b \/27Tp



with probability greater than 1 — 10.4exp{—gp*}, and
. o . 2 2
AL l[o(u's A, I, )du' < V/3a2p® —=—=p~*
Aw%cM(m v

with probability greater than 1 — 10.4 exp{—%p2}. Hence, the desired result follows.

]
Lemma A.1.7 For a given i € {1,2,...,p}, we have

VT = o) = a5+ [ i) - o(u's Il
where 7t (u') is the posterior distribution of u’.

Proof. Let ¢.(6") be the posterior distribution of #°. Therefore, we have that

G — / 6 . ¢ (6')d6
= [ ) G ) )
= /(98 + n_%(Ji)_lui)ﬂi(ui)dui =0} + n_%(Ji)_1 /Mwi(zﬁ)duZ
It follows v/nJi (67 — 6)) = [ uimi(u’)du'. On the other hand, the following equations

hold
We thus have

V' (00 = 65) = A, = /ui[ﬂi(ui) — p(u's A, Is,)]du.
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Lemma A.1.8 (Parallel to Lemma A.1.2) Let Al, and U} be as defined in (7.6) and
(A.1), respectively. Let Cy be defined as in Lemma A.1.1. Then under Conditions
(2), (4*) and (5), for any arbitrary constant a such that a®> > 1, we have that if

Cgl—;%p <a-—1, for ||7Y|| <logp and n sufficiently large,

Giai (7)) = log (E{exp[(v)'AL]}) < a®[|y'] /2.

Proof. Since ||7]| < logp and 1"% — 0 by Condition (4*), then H\}—EH < n where 7

as given in Lemma A.1.1 is the size of the neighborhood for 4¢. Therefore, by Lemma

»PGL (\f)
A.1.1, there exists a constant Cy such that )W < (5. We also have
TN m
S.
1 0y <« logp
—— v =0 .
i 2 = 00

According to Condition (4%), 62 = o(1). Therefore, for any arbitrary constant a

Si
such that > > 1, 22 3" 4¢ < ¢? — 1. Following the argument similar to that of
m=1

73\f

Lemma A.1.2, we obtain

log B[] < a?||7||*/2.

Lemma A.1.9 (Parallel to Lemma A.1.3) Under Conditions (2), (4*) and (5), for

any i € {1,2,...,p} and n sufficiently large, there exists a constant a, a®> > 1, such
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that

| 1
P|ALI[* > 3a%log” p} < 10.4exp{—log” p}

where A! is defined as in (7.6).
Proof. According to Lemma A.1.8, we have

log (E{exp[(v))'ALl}) < d®IVP/2 for  |]¥']| <logp

where a is a constant with a> > 1. Condition (5) implies a®log”p > S;. Let 2 be
defined as in the proof of Lemma A.1.3. Then z! > 1a?log”p and let z = %logf P,
then we have g—% < z < z'. Following similar argument as in the proof of Lemma

A.1.3, we can obtain that P(]|AL||2 > 3a2log?p) < 10.4e 55’7, m

Lemma A.1.10 Let 0" be the MLE of 0" in the i-th local model. Under Conditions

(2), (4%) and (5), for any i € {1,2,...,p},
Vil JH(@ = 65)]] < ¢ logp

with probability greater than 1 — 10.4 exp{—¢ log® p}, where ¢ = 1.2v/3a i’;”z((?:))

min

Proof. Let B(§) = ¢/(6°) — Y be the negative of the score function. Then the

1 .
MLE 6" satisfy the likelihood equation B*(#%) = 0. Let b, = \/gf/lggp f\’?”“((fj)) with

a? > 1. We are going to show with probability greater than 1 —10.4exp{—g¢ log” p},
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for any 6’ on the ball ||0° — 6| = 1.2b,,, we have

(0" —0.) B (6") > 0. (A.8)
Because that according to Theorem 6.3.4 of Ortega and Rheinboldt [1970], this will
imply that there exists a root of Bi(%) = 0 inside the ball ||#" — 6i|| < 1.2b,
and thus with probability greater than 1 — 10.4 exp{—élog2 p}, |10 — 61| <

1 .
Aaz (F*)1.2b, < ¢ 10%). To complete the proof, it now suffices to show the inequality

(A.8) holds. Based on (2.3) in Proposition 2.1 of Portnoy [1988], we have
(O — 6 B) = (O —6) (0 - V)

= (07— O+ (07— 0)' " (63)(0" — 0))

1 ) ) ) ) L
+SEpl(0' = )V — (6 - 6))' Y

= (BT ]+ (6 6 G )
b5 Bpl(6 — 61V

= terml + term?2 4+ term3,

where pf = ¢/(0}), Vi is defined as in (7.5) and 6" is a point on the line segment

between 6" and 6. It is easy to see that
term2 > Apin (F)[|(6" — 05)||.

For term3, under Condition (5), from (A.10), (A.11) and Lemma A.1.11, we see that

sup{| Ey(a'V})?| : l|a|| = 1, 6" — 63| is bounded. Since b, — 0, then g\ (F7) —
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oo. Therefore,

. o 0.1 :
supf | Eo(a'V})?| : [lal| = 1, 16" = o] = 1.2bn} < 5= Amin(F").

n

It follows

term3 > —%)\mm(lﬂ)

n

In terml, there is a random term Y — ¢/(%). We will now show that

terml > ———="= 2. (F)]|0" — 6}

V3a log p
vn

with probability greater than 1 — 10.4 exp{—% log®p}. According to Lemma A.1.9,
we have [|A!|[* < 3a?log®p with probability greater than 1 — 10.4 exp{—1 log® p}.

Furthermore, since

_ . n

AL = V() Y =[P = n(Y" = p) (F) 7Y = p') 2 A—(FZ.)H?"—MHZ,

then

g Yi—pi'||* < 3a®log” p with probability greater than 1—10.4 exp{—1 log® p}.
_ 1 4
It implies ||Y'—p!|]* < %A%GZ(FZ) with probability greater than 1—10.4 exp{—2 log” p}.

1 o
Consequently, terml1 > %)\%M(F ))|6" — 65]|. Combining the above results, on
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the ball of ||6° — 0}|| = 1.2b,,, we have

(0" — 05)' B'(¢")

NI i i i i 0.05 i gt i
(60" = 0511+ Xenin (FO)[(0" = 05) | = ——Xmin (F)[160" = 6]

V3alogp N
bn,

\/ﬁ max
logZp 1 ) . 0.
— 328 (Y1 2b, + A (F7)(1.25,) —)\mm(Fz)ObOS(lzbn)?’
n

n

v

> Ain(FH2[—1.2 4 (1.2)% — 0.05(1.2)%] > 0

with probability greater than 1 — 10.4 exp{—%log2 p}. Therefore, we proved that

1167 — 63]] < 1.2b,, with probability greater than 1 — 10.4 exp{—1log” p}. It follows
1700 = 01| < A (F)[6" = 05| < Ao (F7) 1.2,
with probability greater than 1 — 10.4exp{—3log’p}. =

Proposition A.1.1 Let F* be defined in definition (7.4) for any i € {1,2,...,p},

then under Condition (2), we have that

, o
< Amm(FZ) < Amax(FZ) < ?
1

Sl
MMH

Proof. Let G be the Fisher information matrix for the uncolored graphical models
e.g. G = !I(0") where ¢, (0") = (—3 log |K*| + & log(2))1icp, - Let 7 and @ be
the numbers of eigenvalues of G* and F*. Since F* is a linear projection of G onto

the space of uncolored symmetric matrices, then 7 > w. Under Condition (2) and
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by Proposition A.1.7, for any [, 1 <[ < w, we have

1 1 ! Es
— < min {————} < N(F) < N (O N () '
Ky 1§r§l}gr{ )\j(Gl))\k(G’)} < MlF) < 1;?7%)3(7{ A (G Ae(GY) wi

Proposition A.1.2 For any i € {1,2,...,p}, let Ki’g be the (o, 8) entry of K.

Under Condition (2), we have |Kég| < Ka.

Proof. By Condition (2), we have \,q.(K}) < ko for any i € {1,2,...,p}. There-
fore, ko —\;j(K}),7 =1,2,- -+, p;, are the eigenvalues of koI, — Kj. Since Ayaz (K{) <
Ka, then kg > N\;j(K(),j = 1,2, -+, p;. Tt follows that kol,, — K} is a positive semidef-
inite matrix. Since the diagonal elements of a positive semidefinite koI, — K} are
all non negative, then o — K22 > 0, =1,2,...,p;. It follows 0 < K"9 < k5. Since

K} is a positive definite matrix, then each 2 by 2 principal sub matrices

i,0 2,0
Kéza Kaﬁ
1,0 1,0
Kﬁa Kﬁﬂ

of K| are positive definite. Therefore, K QgKE’B — (K;’g)z > 0, from which we get

KL < (KAKGOY? < Ky m

The next four propositions provide the properties of log|F?|, the colored G-

Wishart prior, the third and fourth moments of the normalized Yj
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Proposition A.1.3 Under Condition (3), for any i € {1,2,...,p}, we have the
trace of F' satisfies tr(F?) = O(p*) and the determinant |F*| satisfies log |F'| =

O(p?).

e OPU(O i Sy i - iy
Proof. Since ae?éa;j = 5tr(8i%§0,5)), then tr(F') = %]; tr((95%4)?). Furthermore,

by Condition (3), tr(853f) is bounded. Therefore, tr((653§)?) is bounded. It follows

Si

i 1 i\ 2 Lpi(pi +1) i\ 2 Lp(p+1) RRY) 2
tr(F") = 2 ;”(@Eo) ) < QT”((@E(}) ) < §Tt7“((5jzo) ) =O0(°).
S
. ; . ; S; ; jgl)\j(Fl) Si tr(F?) Si
Next, let us consider log |F"|. Since [F*| = [[;Z; \;(F") < ( 5, > = ( S, ) ,
then
i i(pi+1) AwAY]
. tr(FY)  pilpi+1), 328 0r((6030)?)
10g |F ’ S SZ log Sz S 2 10g ; : pz‘(pﬂrl)] - O<p2)

2

The proposition is proved. m

Proposition A.1.4 Under Condition (2), for anyi € {1,2,...,p}, we have

o 1 5 —2
log gy (K§) > —§pi/<2 + 5

pilog iy
when D' = I,,.

Proof. The non-normalized colored G-Wishart distribution can be rewritten as

)

2

1 & -2 Z 4
= exp{— 3 D MK + 5 log [ 250}
j=1 J=1

) ) 1 ) )
mIG) = exp{ = Str(iL,) + = log | Kl

1 5 —2
> GXP{—§Z%‘I€2+ 5
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The last inequality due to Condition (2). m

Proposition A.1.5 (Lipschitz continuity) For any ¢ € {1,2,...,p} and any con-

stant c, there exists a constant My such that

[log 7' (6") — log ' (6)| < Mipl|0" — 6|

when ||0" — 65| < /I[(F)~[eM(p)/n — 0.

Proof. Let 7}(6") be the non-normalized colored G-Wishart distribution for the

local model. By mean value theorem, we have

o o o - . - Olog (6
log 7 (6) — log ' (6h)] = logmy(6') —logmy(ai)| = (" — oy STy )
D > s B
= |lo" =0l - [—-tr (D) + Tt (S (K1),
7=1

where 6 is the point on the line segment joining 6 and 6i. Since [|6" —6|| — 0, then
(K™ — (K})~'. According to Condition (2) and Proposition A.1.2, each entry of
(K¢)~! is uniformly bounded, then using the similar proof of Lemma A.1.11, each

entry (K%)~' is uniformly bounded. Therefore, there exists a constant M, such that

— 2 . .
1r(515%) g\/p—*l;p%)Mlu\/p“z P gz = Mip.

Si

> [— %tr@;Di) +

j=1

Proposition A.1.6 For any i € V, let Y} and V} be defined in (7.3) and (7.5),

respectively. Then Bi, (c) = O(p?) and B3, (c) = O(p'?).
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Proof. Let B,s be the (o, ) entry of (J*)~!. Define b = max{|B,s|;a,3 €

{1,2,...,8i}}. Then for the vectors Y} = (Y}, Y}y, ..., Y/s,) and a = (a1, as, . . ., ag,)’

]17 ]27 9

the following property holds for h = 1,2, 3,4

bZ| il

bZI il
Egiat

IV < EBa(laal,lasl, . las)

D
- Eel[bz] Al Zm} .

(A.9)
According to Cauchy-Schwarz inequality, we have that
Epla (7)Y " < Bylb Z| ADVSilall]
S; S;
< H(S)M2Eq | Vil Vil (A10)
k=1  kp=1

According to Lemma A.1.11, each entry of ¢° is bounded when ||J/(6" — 63)|]* <

i 5 0. By Lemma A.1.12, we have Ej

n

]k1| |Y;k |] is bounded for h =

1,2,3,4. Therefore, Eyila'(J)'Y}|" = O(pi*). Similarly, |a'(J") ™" Ep(Y])|" =
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O(p"). Hence, we have

By

&t‘/jz‘S — Egi

at({]i)fly}i _ at(Ji)flEei(Y;i)‘S
< Bpla' ()Y 4 3 () Ee (YV]) | Bge(a () 7Y)?
+3[a’ (J)) " Bt (V) Egilat (7)Y} + |[af (J) T B (Y]] (A1)

= O(p)) = 0(p").

A similar argument deduces Eyila'V/|* = O(p"). By the definition Bj,(c) and

Bi (c), the desired result follows. m

Lemma A.1.11 Let 0; be the j-th element of 0°, i = 1,2,...,p. Under Condition

(2), for 16" — 65| < 1, we have that |02 < &1 + Ks.

Proof. Let 0}, be the j-th element of 6, i = 1,2,...,p. Since [[6" — || < &1, then

(05 — 0:)* < 1. Therefore, for any j € {1,2,...,5;}, we have

S

(05— 010)2 < (| D (6 —0i)* < e,

j=1

It implies [0 — 64| < e1. By Proposition A.1.2, under Condition (2), we have

|(9;70| < kg. It follows |€;| <érthe W

Lemma A.1.12 Let Y] be defined in (7.3) and denote Y] = (Yj1,Yjs, -+, Yjs,)",

Y

under Condition (2) and ||6" — 64| < €1, we have Ey: |[Y},

|- |ijh|] is bounded for

h=1,234.
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Proof. According to Lemma A.1.11, each element of #° is bounded. Since szk =
—5tr(6, XH(X1)"), by Isserlis’” Theorem, the moments of every entry of X7(X!)" is
finite. By Condition (3), Eyi(Y}}) is bounded and Ep:(Y}})? is also bounded. By
Holder’s inequality, we have Ey[| XY]|] < (Egi[|X|p])%(Egi[|Y|q])%. Therefore, when
Y.

h=1, Eg(|Y},]) < [Egi(Yﬁﬁ)Q]% is bounded. When h = 2, we have

EQ'L (

Vi Vi) < [Boi (Vi )22 By (Yi,))2.

It follows Eji(

Y} 1Y},]) is bounded. When h = 3, we have

N

214 )
Egi (1Y 1Y 1Y, 1) < (Bt (1Y, Y5, %12 [ (Y, )]

Since Egi(

Vi 1Y, 1) is bounded, then Epi(

Y} 1Y}, 1)? is also bounded. Therefore,
Egi (1Y, 1Y, 1Yk, 1) is bounded. Consequently, Eg: |[Y}, |- |Y;kh|] is bounded for

h=1,234 m

Proposition A.1.7 Let E be a Euclidean space and let F' C E be a linear subspace.
Let pr denote the orthogonal projection of E onto F'. Let g be a linear symmetric

operator g : E — E and consider the linear application f of F' into itself defined by

frxeF — f(x) =prog(r)

Then, we have that if p1 < po < -+ < p,, are the eigenvalues of g and Ay < Ay <

- < A\, are the eigenvalues of f, n < m, then for any 7 =1,2,--- ,n, the following
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inequalities hold

M1 S )\j S,um

Proof. We prove is first for m = dim(F) = dim(E) — 1. Let e = (e1,ea,- -+ ,€,) be
an orthonormal basis of F' such that basis the matrix representative of f is a diagonal
[f]1¢ = diag(A1, Mg, - -+, An) and let ey € E be such that ¢’ = (eg, e, €2, ,€,) is an

orthonormal basis of E/. Then in that basis, the matrix representative of ¢ is

a bl bn
) by A 0 0
gl =
0
b, 0 A,

We see here that the matrix representative of f is a submatrix of the matrix repre-

sentative of g. By the interlacing property of the eigenvalues, we have

Mlg)\jéﬂn+1 j:1,2,...,n.

If dim(F) — dim(F) > 1, we iterate the process by induction on dim(E) — dim(F)

and complete the proof. m

Lemma A.1.13 For any i € {1,2,...,p}, let T'(") be a symmetric matriz with
dimension p;. Then there exists a constant n such that with ||[T*(V")||r < n, the

matriz I, + T (7")X is positive definite.
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Proof. If we want to show I, + T(y")X{ is positive definite, it is equivalent to
show for any non zero vector z with dimension p;, 2*(I,, +T%(7")Z})z is positive. By
Cauchy-Schwarz inequality, we have
| <T'(v)2, 0z > | < TVl < |IZozl] < TN < 0] [1Z5]] < (=]
< JEPIT GOl x — < ll=l*
z — z||F—.

= YR oy n oy

Therefore,
A + TSRl = 2Lz + 2T (V) Doz = |2+ < T°(v')2, Zpz >

1 1
2 2 2
_ = (1 =-—p= )
[12[17 = 1]=]] 771%1 ( 77'%1)”2“

v

We can thus choose a constant 7, such that n < r;. It follows 2/(I,, + T*(v") X))z >

[1211* > 0 when ||T"(v))|lr < 7. =
Lemma A.1.14 Let K = (K;j)1<i j<p be p X p positive semi-definite matriz. Then
1K < tr*(K).

Proof. Because K is positive semi-definite, we have Kfj < K;Kj;. Thus

KL< Y KuKj=() Ki)( Y Ky =() Ka)

1<i,j<p 1<i,j<p 1<i<p 1<j<p 1<i<p

In order to prove the following Theorem , we start from a finite-dimensional real

linear space E of dimension n (thus isomorphic to R™ but we prefer to avoid the
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use of artificial coordinates). We denote by E* its dual space, that means the set of
linear applications 6 : E +— R. We denote (#,z) = 0(z). If E is Euclidean, the dual
E* is identified with E and (6, x) is the scalar product.

Consider a non empty open convex cone C with closure C such that C'is proper,
that is to say such that

cn(-C) = {ol.

The dual cone of C is
C*={0eE"; (0,xr) >0Vx EU\{O}}.

This is a standard result of convex analysis that C* is not empty [Faraut and Koranyi,
1994]. In general the description of C* is a non trivial matter.

A polynomial P on E is a function P : E — R such that if e = (eq,...,¢,) is a
basis of F and if © = z1e; + - -+ + x,e, € F then P(x) is a polynomial with respect
to the real variables (z1,...,x,). Needless to say the definition does not depend on
the particular chosen basis e. A polynomial P is homogeneous of degree k if for all

A€ R and all x € E we have
P(\z) = N P(x).

Theorem A.1.8 Let C be an open convexr and proper cone of E, let P be a homo-

geneous polynomial on E of degree k and let « > —n/k. We assume that P(x) > 0
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on C. We choose a Lebesgue measure dx on E. For 6 € E* consider the integral
L(#) = / e P(z)der < oo,
c

If 0 ¢ C* the integral L(0) diverges. If 0 € C* denote Hy = {x € E ; (§,x) = 1}.
Then C N Hy is compact. In this case § € C*, the integral L(0) is finite if and only

if meHl P(x)*dx is finite. Furthermore

L(#) =T (ak +n) /cmH P(z)*dz. (A.12)

Proof. (personal communication from G. Letac) Suppose that 6, € C*

and let us show (A.12). Consider the affine hyperplanes H; and Hy of E defined by
H1 = {I ek 3 <90,ZL’> = 1}, HO = {ZL’ ek ; <90,ZE> = O}

The convex set C' N H; is compact. To see this let us choose an arbitrary scalar
product on E. Observe that the function v — (6y, u) defined on the intersection of
C with the unit sphere of E is continuous and reaches a minimum m > 0 since the

set of definition is compact. Thus for all z € C'N H; we have

1 1
< —{(0 = —
2l < — (B0, ) =

and the closed set C'N H; is also bounded, thus compact.
We fix now hy € H; and we write any element x of E in a unique way as

T = xg + x1hy where x; is a number and zq is in H,. If F is Euclidean, a natural
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choice for hy is 6y/]|6]|* although other choices would be possible. We also write
x = (xg, 1) for short. We denote by K C Hj the set of o such that zq+hy = (¢, 1)
is in C'N H;. Note that K is also compact. We get that o = (g, ;) is in C'\ {0} if

and only if y = z¢/x; € K and x; > 0. To see this denote
Cy ={(zo,21) ; y = xo/21 € K, 21 > 0}.

The inclusion C; C C'\ {0} is obvious as well as C'\ Hy C C;. However if (zg,0) is
in C'N Hy and if 2y # 0 this implies that (Ax, 0) is in C'N Hy for all A > 0 and thus
Az € K for all A > 0: this contradicts the compactness of K. As a result (z¢,0) in
C'N Hy implies 79 = 0. This implies C'\ {0} = C \ Hy and thus C \ {0} = O}

We are now in position to make the change of variable (zg, z1) — (y = xo/x1, 1)

in the integral L(6y) with an easy Jacobian, since dim Hy =n — 1:
dx = dxodr, = x?’ldydazl.
We get

L(6) :/e_le(aso,xl)adxod:vlz/ I(y)dy
c

K

I(y) = / e N P(yzy, x1)2" Yy = Py, 1)°T(ak +n) = P(y + hy)°T (ak + n)
0

from the homogeneity of the polynomial P. Thus (A.12) is proved.
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Suppose that 0y ¢ C*. This is saying that there exists o € C such that (fy, z¢) < 0.
Let us show that L(6)) = oo. Since C' is open we may assume that (6p, z9) < 0.
Choose an arbitrary scalar product on E. There exists € such that for all x in B =

{z; ||l* — xo|]| < €} we have x € C and (y,z) < 0. Consider the open subcone

Ci={\x; v € B, A\>0}of C. We can write

L(6o) > / e~ 00.5) P(3) g > / P(x)da.
Cl C11

Clearly the last integral diverges for o > 0. For —n/k < a < 0 we use the same
trick: we parameterize C; with the help of the compact set C; N H; by considering

the compact set K, of y € Hy such that y + h; € C; N H; and we write

/ P(x)%dx :/ / P*(xq, x1)dx :/ P(y,1)* (/ a:?“”_ldxl) dy = oo.
Ch K1 J0 K 0

This proves = . =
Lemma A.1.15 For anyi € {1,2,...,p}, there exists a constant My such that
log/ - [[VnJ (0" — 03)||74(0")do" < exp|[M7p*log p).
[[V/nJ (07 =6)[1>>cM (p)
Proof. Without loss of generality, let 8! k = 1,...,s;, be the entries of K’ on the

diagonal and 0} k = s; + 1,...,5;, be the off-diagonal entries. We assume that
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D" = I,,,, which we need later on anyway. Then

k=1
. 1 i_9 o
mo(0%:8 1) = exp{~5 Y _bi7i + log |K'(6")[},  and
k=1
1017 = D 00>+ D (6 < D> 7i(6;)
k=1 k=s;+1 k=1

IKY(0)]|r < (Y T1i6:)? by lemma A.1.14,

where 7/ = |vi] is the number of elements in the color class v}.

167 < kzl 7.0%. Let H' denote the convex cone Pg: for short.

» v/ (0" — 00)||mo (6")db”

= H\/ﬁjz( 0" — 0p)|| exp{— Zeszk 108;\Kl(
H*

‘ . . 5 —2
< VIFTVa | 1611+ 61 esp— LS
‘ k_l

7

= VIFIVale [ expl—5 3 tiri+
’ k=1

~ i 1 i i, 0 —
VIFIE [ [#llexpi—5 3 tiri +
‘ k=1

We therefore have

D[}’

log |Ki(9i)|}d9i

— 2 1og | K (07} 6" (A13)

2 log | (0)[}d6. (A.14)

By Proposition A.1.2, we have ||0}|* < S;x3. Furthermore, according to Proposition

A.1.1, we have ||F'|| < <. We therefore need to find upper bounds for the integrals

n (A.13) and (A.14). These two integrals are of the type [, f(
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where f(0°) is a homogeneous function of order k°. If n’ is the dimension of the space

in which H' sits, we use the result of Theorem A.1.8. Let D’ be the s;-dimensional

vector with entries 2. We have
ex _l S i o' —2 i/pi i —tr(Di0V) | 171 ( pyi &2
“exp{ 229k7k+ log [K*(0")[}d0" = | e [K*(0")] = de”,
and / 1167] \exp{—-29krk log|KZ(91)]}d91
/ ZT 01 —tr(D6%) Kz(ez)| dQZ,
o Si
and therefore since K'(#') is homogeneous of order p;, > 7;6; is homogeneous of
k=1
order 1 and 1 is homogeneous of order 0, we have, for o' = 5i2’ 2
/ e PO (9| T d8" = T(a'p; + ) / [ (0%)| 7
i HNH}
[ (S rdte 6] ap
HY gy
= D(a'pi+1+5) / > HOD K677 F db. (A.15)
HiNH{ 3=
However, we do not know how to compute the integrals [, . [K i(6”')|612_ * o
1

and [, (S0 HOD|K(07)“F2d6". The set H{ = {0 | tr(D'0") = 1} is H} = {0 |
k=1

;:1 7.0i = 2}. So, we only have one integral, meH{ ’Ki(m)"“;

d0, to compute. But
Pi

Zﬂﬂ = tr(K'(0")1,,) = tr(K'(6) = Y )

k=1 j=1
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where the )\; are the eigenvalues of K*(6"). Following the inequality between the

arithmetic mean and the geometric mean, on Hj N H', we have

o Pi ( b )\)pl Pi
i/t =1"7Y
|K(0°)| = (1:[)\3‘) < JT =
and thus
. . i_g . 2Pi .
K09 = do' < = 9’ (A.16)
) ) ppz ) )
HiNH} i JHINH!

We are now going to use Theorem A.1.8 in the reverse direction with f(6") = 1 in

order to evaluate d6’. We have

inmH{'
i HiNH?

and we are going to majorize [ i e~ (D) 49t We now use the fact that the matrices

in H' are positive definite, thus we have that, for [ = s; +1,...,5;, (6{)* < 6: 6!

[T

whenever 6} = K7;, j # k and 0}, = K7;,0; = Kj;. Since the cone H' is included

Jir 7w
in the cone P! of positive definite matrices, we have that, for [ = s; +1,...,S;,
(0;)* < 6, 6,, whenever 0] = K}, j # k and 0}, = K};,0, = K}, and thus we can
write
o 4 +o0 400 s 92 01
/ e—t?“(D 0 )del < / o / D i H / del H dez
Hi 0 0 1= Sﬂrl 0;,0i,
oo oo Sq i Qi
= / / eE-D"[H eglegl}ndel.
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Since we have assumed that D? is equal to the identity, D! = %’1 with the 7! being

bounded. Then

+o0 +o0 Si Si
/ / e~ Th WH[ I] 2 egle;l]dei

r=1 l:sl-i—l

Py T N SV S 5ok
= 21 ’LH (97,)26 2 T:2’b zH(Tl) F(2+1)
=10

r=1 T

where k; is the number of ¢; or u; equal to r in the ¢-th local model. From the
majorization above, (A.17), (A.16) and (A.15) successively, we obtain the following

inequalities

, 1 2 K /{;i
gt < 9%isi THD(Z 4+ 1),
/HH I(s) HW G+

r=1

N L 2Si—si+pi Si 2 L
Ki(0)" o' < i 2r),
G iy LG FmG5
S .
S i —tr (D) | i iy | 822 i 25t Il (afp; + 14 5)) 1 ke k,
/.(ZTk9k>e W KN det < pT(S;) H(ﬂ) +1F(2 +1);
b ok= 2 r=1
5909 | 1o ¢ i E=2 i 255 (alp; + S5) 1 kL k.
d —tr (D0 [ (90| *SR dgF < : Feipfe
awd [ )T < ek 71_11@2) (5 +1)
It follows that
[ Ivaae 6y ime)as
11 25 —si+p; S 2 kz ‘ ‘
< TJFIF +1 M, ZFOdzZ—l—SI —|—2F06zl+1—|—81
S m AT )[ (= ) (5 + DI(Mop,I'(a'p ) (a'p )
3 1 25i—sitpi 2o 9 ki 4
< SRy T(alp; + 1+ S,
S nAN S )[ (= ) (5 + DIMapil(@'ps + 1+ 5)),
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where My and M, are constants. Therefore,

g { [ IR0 - 0)ini(0")do'}
1
= 5 logn —log k1 + (Si — si + pi) log 2 — p; log p; — log I'(S;) + log M + log p;
ki 2 k

logT(a'p; + 1+ S; —T11f1P—;1.
+logI'(a'p; + +S)+;[(2+ )ogT;—irog (2—|— )]

Since logn and log p is the same order and k% < p;, we have that

expliog { [ V(6" = 63) [y (#)do'}
1 ; i
< exp[§ logp + (S; — s; + pi) log 2 + log p; + log T'(a'p; + 1+ 5;) —|—p,-(% + 1) log 2

+p; log F(% + 1) + Mj),

where Mj is a constant. By Sterling’s approximation, we have logn! = nlogn +

O(logn). Therefore, there exist two constant M5 and Mg such that

4 ' i(pi +1
log F(oﬂpi + 1+ SZ) < IOgF(o/pi L1 %

) < log(2a'p; + p)! < Msp? log p;

and

logF(% +1) < log p;! < Mgp; log p;.
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Combining all results above, we obtain that

exp (1og { / VAT (0 — 63| mi(0')d0'})

pi(pi +1)

5 + pi]log 2 + log p; + Msp; log p; + pi(% + 1) log 2

1
< exp (glongr [

+Mgp; log p; + Ms) < exp[Mqp? log p),

where M7 is a constant. m
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